Science.gov

Sample records for optically realizable localized

  1. Super-diffusion in optical realizations of Anderson localization

    NASA Astrophysics Data System (ADS)

    Krivolapov, Yevgeny; Levi, Liad; Fishman, Shmuel; Segev, Mordechai; Wilkinson, Michael

    2012-04-01

    We discuss the dynamics of particles in one dimension in potentials that are random in both space and time. The results are applied to recent optics experiments on Anderson localization, in which the transverse spreading of a beam is suppressed by random fluctuations in the refractive index. If the refractive index fluctuates along the direction of the paraxial propagation of the beam, the localization is destroyed. We analyze this broken localization in terms of the spectral decomposition of the potential. When the potential has a discrete spectrum, the spread is controlled by the overlap of Chirikov resonances in phase space. As the number of Fourier components is increased, the resonances merge into a continuum, which is described by a Fokker-Planck equation. We express the diffusion coefficient in terms of the spectral intensity of the potential. For a general class of potentials that are commonly used in optics, the solutions to the Fokker-Planck equation exhibit anomalous diffusion in phase space, implying that when Anderson localization is broken by temporal fluctuations of the potential, the result is transport at a rate similar to a ballistic one or even faster. For a class of potentials which arise in some existing realizations of Anderson localization, atypical behavior is found.

  2. Bessel-Gauss pulse as an appropriate mathematical model for optically realizable localized waves.

    PubMed

    Reivelt, Kaido; Saari, Peeter

    2004-06-01

    We show that the field of the optically feasible luminal localized wave solutions of the scalar homogeneous wave equation can be modeled by means of Bessel-Gauss pulses. As the Bessel-Gauss pulses have a closed-form expression, this fact may be of great value in numerical simulations of various experimental situations.

  3. Local heating realization by reverse thermal cloak.

    PubMed

    Hu, Run; Wei, Xuli; Hu, Jinyan; Luo, Xiaobing

    2014-01-08

    Transformation thermodynamics, as one of the important branches among the extensions of transformation optics, has attracted plentiful attentions and interests recently. The result of transformation thermodynamics, or called as "thermal cloak", can realize isothermal region and hide objects from heat. In this paper, we presented the concept of "reverse thermal cloak" to correspond to the thermal cloak and made a simple engineering definition to identify them. By full-wave simulations, we verified that the reverse thermal cloak can concentrate heat and realize local heating. The performance of local heating depends on the anisotropic dispersion of the cloaking layer's thermal conductivity. Three-dimensional finite element simulations demonstrated that the reverse thermal cloak can be used to heat up objects. Besides pre-engineered metamaterials, such reverse thermal cloak can even be realized with homogenous materials by alternating spoke-like structure or Hashin coated-sphere structure.

  4. Realizing Parafermions in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Liu, Fangli; Gorshkov, Alexey

    2016-05-01

    Parafermions, which are the fractional versions of Majorana fermions, possess more exotic braiding statistics than Majorana fermions and are therefore more powerful from the point of view of topological quantum computing. We propose a scheme to realize parafermionic zero modes in optical lattices, without the use of superconductive paring. With the help of laser assisted tunneling and on-site interactions, two layers of ultracold atoms in distinct hyperfine states can be engineered to host +/- 1 / m fractional quantum Hall states. We then introduce a finite-extent potential barrier that pierces both layers - this gives rise to two counter-propagating edge states that sit on top of each other. Finally, laser induced coupling is used to introduce backscattering between the two edge states and to gap them out. We show that the resulting defects give rise to the topological degeneracy associated with parafermions. We also discuss methods for preparation and detection.

  5. Nonlinear realization and hidden local symmetries

    NASA Astrophysics Data System (ADS)

    Bando, Masako; Kugo, Taichiro; Yamawaki, Koichi

    1988-07-01

    The idea of dynamical gauge bosons of hidden local symmetries in nonlinear sigma models is reviewed. Starting with a fresh look at the Goldstone theorem and low energy theorems, we present a modern review of the general theory of nonlinear realization both in nonsupersymmetric and supersymmetric cases. We then show that any nonlinear sigma model based on the manifold G/ H is gauge equivalent to a “linear” model possessing a Gglobal × Hlocal symmetry, Hlocal being a hidden local symmetry. The corresponding supersymmetric formulation is also presented. The above gauge equivalence can be extended to a model having a larger symmetry Gglobal × Glocal. Also reviewed are dynamical calculatio ns showing that in some two-, three- and four-dimensional models, the gauge bosons of the hidden local symmetries acquire the kinetic terms via quantum effects, thus becoming “dynamical”. We suggest that such a dynamical gauge boson may be a rather common phenomenon realized in Nature. As a realistic example, we examine the QCD case where we identify the vector mesons (ϱ,ω,ф,K ∗) with the dynamical gauge bosons of the hidden U(3) v local symmetry in the U(3) L × U(3) R/U(3) V nonlinear sigma model. The totality of the vector meson phenomenology seems to support our basic idea. The axial-vector mesons are also incorporated into our framework. Also given is a brief sketch of some applications of this formalism to unified models beyond the standard model, such as technicolor, composite W/Z boson and supergravity models.

  6. Realization of Localized Bohr-like Wavepackets

    SciTech Connect

    Mestayer, J. J.; Wyker, B.; Lancaster, J. C.; Dunning, F. B.; Reinhold, Carlos O; Yoshida, S.; Burgdorfer, J.

    2008-01-01

    We demonstrate a protocol to create localized wavepackets in very-high-n Rydberg states which travel in nearly circular orbits around the nucleus. Although these wavepackets slowly dephase and eventually lose their localization, their motion can be monitored over several orbital periods. These wavepackets represent the closest analog yet achieved to the original Bohr model of the hydrogen atom, i.e., an electron in circular classical orbit around the nucleus. Possible extension of the approach to create so far elusive "planetary atoms" in highly correlated stable multiply-excited states is discussed.

  7. The Realization and Study of Optical Wings

    NASA Astrophysics Data System (ADS)

    Artusio-Glimpse, Alexandra Brae

    Consider the airfoil: a carefully designed structure capable of stable lift in a uniform air flow. It so happens that air pressure and radiation (light) pressure are similar phenomena because each transfer momentum to flow-disturbing objects. This, then, begs the question: does an optical analogue to the airfoil exist? Though an exceedingly small effect, scientists harness radiation pressure in a wide gamut of applications from micromanipulation of single biological particles to the propulsion of large spacecrafts called solar sails. We introduce a cambered, refractive rod that is subjected to optical forces analogous to those seen in aerodynamics, and I call this analogue the optical wing. Flight characteristics of optical wings are determined by wing shape and material in a uniform radiation field. Theory predicts the lift force and axial torque are functions of the wing's angle of attack with stable and unstable orientations. These structures can operate as intensity-dependent, parametrically driven oscillators. In two-dimensions, the wings exhibit bistability when analyzed in an accelerating frame. In three-dimensions, the motion of axially symmetric spinning hemispherical wings is analogous to a spinning top. Experiments on semi-buoyant wings in water found semicylindrically shaped, refractive microparticles traversed a laser beam and rotated to an illumination-dependent stable orientation. Preliminary tests aid in the development of a calibrated force measurement experiment to directly evaluate the optical forces and torque on these samples. A foundational study of the optical wing, this work contributes to future advancements of flight-by-light.

  8. Optical cryostat realizations at absolut System

    NASA Astrophysics Data System (ADS)

    Trollier, T.; Ravex, A.; Tanchon, J.

    2014-01-01

    This paper describes two kinds of optical cryostats designed and manufactured at Absolut System. The first one makes use of pressurized LN2 for temperature control of a sample holder in the 80 K - 470 K temperature range. An optical window is implemented above the sample holder to allow for rugosity and 3D distortion of heterogeneous semicon sample assemblies on a wafer. The second one makes use of CRYOMECH remote motor type pulse tube cryocoolers for temperature control of the sample holder in the 3 K - 300 K temperature range. In this type of cryostats, particular attention has been paid to reduce the vibrations exported by the cooler. These 4 K ultra low vibration cryostats are used for characterization of samples via optical windows. Both designs will be presented and the performance reported.

  9. Green photonics realized by optical complex systems

    NASA Astrophysics Data System (ADS)

    Nanri, Hiroto; Sasaki, Wakao

    2013-12-01

    We have experimentally demonstrated a new smart grid model which can control DC electric power flow autonomously among individual homes, by using an optical self-organized node with optical non-linear characteristics, and these homes are assumed to be installed by distributed power supplies, and electric power storage devices, and also supposed to be supplied partly by the commercial electric power grid utilities. An electric power network is composed of nodes and devises called Power Gate Unit (PGU). The nodes have optical nonlinearity for self-organizing informations about surplus or shortage of electric power as to individual homes. The PGU is a distributing unit of actual electric power based on above informations of power surplus or shortage at each home. The PGU at each home is electrically connected to both the onsite power supplies and household load such as a solar panel, a DC motor, and a storage battery as well as the commercial electric power grid utilities. In this work, we composed our experimental self-organized DC power grid with above components and supposed the supplied maximum power from the commercial electric power grid utilities to be limited to 5V-0.5A. In this network, information about surplus or shortage of electric power will propagate through the nodes. In the experiments, surplus electric current 0.4A at a particular node was distributed toward a PGU of another node suffering from shortage of electric current. We also confirmed in the experiments and simulations that even when signal propagation path was disconnected accidentally the network could recover an optimized path. The present smart grid system we have attained may be applied by optical fiber link in the near future because our essential components controlling PGU, i.e. the nodes are electro-optical hybrid which are easily applicable to fiber optical link so as to control electric power transmission line.

  10. Optical realization of two-boson tunneling dynamics

    SciTech Connect

    Longhi, Stefano

    2011-04-15

    An optical realization of the tunneling dynamics of two interacting bosons in a double-well potential, based on light transport in a four-core microstructured fiber, is proposed. The optical setting enables one to visualize, in a purely classical system, the entire crossover from Rabi oscillations to correlated pair tunneling and to tunneling of a fragmented pair in the fermionization limit.

  11. Design and realization of photoelectric instrument binocular optical axis parallelism calibration system

    NASA Astrophysics Data System (ADS)

    Ying, Jia-ju; Chen, Yu-dan; Liu, Jie; Wu, Dong-sheng; Lu, Jun

    2016-10-01

    The maladjustment of photoelectric instrument binocular optical axis parallelism will affect the observe effect directly. A binocular optical axis parallelism digital calibration system is designed. On the basis of the principle of optical axis binocular photoelectric instrument calibration, the scheme of system is designed, and the binocular optical axis parallelism digital calibration system is realized, which include four modules: multiband parallel light tube, optical axis translation, image acquisition system and software system. According to the different characteristics of thermal infrared imager and low-light-level night viewer, different algorithms is used to localize the center of the cross reticle. And the binocular optical axis parallelism calibration is realized for calibrating low-light-level night viewer and thermal infrared imager.

  12. Realization and characterization of fiber optic reflective sensor

    NASA Astrophysics Data System (ADS)

    Guzowski, B.; Łakomski, M.; Słapek, B.

    2016-11-01

    In almost all of non-invasive techniques, fiber optic sensors may be the most promising ones because of their inherent advantages such as very small size and hard environment tolerance. Proximity sensors based on optical fiber are highly required especially in the impact area of electromagnetic fields. In this paper three different types of fiber optic reflective sensors are presented. In all three types of the sensor four multimode optical fibers (MMF) illuminate the movable surface. The difference is in the number of collecting the reflected light MMF. In the first one, 12 MMF collect the light, in the second one 20 MMF, while in the third one the number of MMF collecting reflected light is 32. Moreover, all three types of fiber optic reflective sensors were realized in two configurations. In the first one, the cleaved MMF were used to collect reflected light, while in the second configuration - the ball-lensed optical fibers were chosen. In this paper an analysis of each type of realized sensor is presented. In the last part of this paper the obtained results and the detailed discussion are given.

  13. Confocal micro-optical distance sensor: realization and results

    NASA Astrophysics Data System (ADS)

    Lucke, Peter; Last, Arndt; Mohr, Jurgen; Ruprecht, Aiko K.; Pruss, Christof; Tiziani, Hans J.; Osten, Wolfgang; Lehmann, Peter; Schonfelder, Sven

    2005-06-01

    In this paper, the realization and characterization of a microoptical sensor using the chromatic confocal principle is presented. The sensor head is designed for distance gauging applications in high aspect ratio cavities with a diameter of about 2 mm. The first part of this paper focuses on the design and fabrication process of the hybrid optical benches, which combines refractive and diffractive micro optical components. Very tight tolerances of the optical path are required for the functionality of the sensor. Therefore the alignment structures and mounts between the different optical elements are produced from PMMA using deep X-ray lithography, the first step of the LIGA process. In the second part of this paper the characterization of first prototypes using different light sources are described and results presented.

  14. Realization of an all optical exciton-polariton router

    SciTech Connect

    Marsault, Félix; Nguyen, Hai Son; Tanese, Dimitrii; Lemaître, Aristide; Galopin, Elisabeth; Sagnes, Isabelle; Amo, Alberto

    2015-11-16

    We report on the experimental realization of an all optical router for exciton-polaritons. This device is based on the design proposed by Flayac and Savenko [Appl. Phys. Lett. 103, 201105 (2013)], in which a zero-dimensional island is connected through tunnel barriers to two periodically modulated wires of different periods. Selective transmission of polaritons injected in the island, into either of the two wires, is achieved by tuning the energy of the island state across the band structure of the modulated wires. We demonstrate routing of ps polariton pulses using an optical control beam which controls the energy of the island quantum states, thanks to polariton-exciton interactions.

  15. Experimental realization of an optical second with strontium lattice clocks.

    PubMed

    Le Targat, R; Lorini, L; Le Coq, Y; Zawada, M; Guéna, J; Abgrall, M; Gurov, M; Rosenbusch, P; Rovera, D G; Nagórny, B; Gartman, R; Westergaard, P G; Tobar, M E; Lours, M; Santarelli, G; Clairon, A; Bize, S; Laurent, P; Lemonde, P; Lodewyck, J

    2013-01-01

    Progress in realizing the SI second had multiple technological impacts and enabled further constraint of theoretical models in fundamental physics. Caesium microwave fountains, realizing best the second according to its current definition with a relative uncertainty of 2-4 × 10(-16), have already been overtaken by atomic clocks referenced to an optical transition, which are both more stable and more accurate. Here we present an important step in the direction of a possible new definition of the second. Our system of five clocks connects with an unprecedented consistency the optical and the microwave worlds. For the first time, two state-of-the-art strontium optical lattice clocks are proven to agree within their accuracy budget, with a total uncertainty of 1.5 × 10(-16). Their comparison with three independent caesium fountains shows a degree of accuracy now only limited by the best realizations of the microwave-defined second, at the level of 3.1 × 10(-16).

  16. Realizing type-II Weyl points in an optical lattice

    NASA Astrophysics Data System (ADS)

    Shastri, Kunal; Yang, Zhaoju; Zhang, Baile

    2017-01-01

    The recent discovery of the Lorentz symmetry-violating "type-II" Weyl semimetal phase has renewed interest in the study of Weyl physics in condensed-matter systems. However, tuning the exceptional properties of this novel state has remained a challenge. Optical lattices, created using standing laser beams, provide a convenient platform to tune tunneling parameters continuously in time. In this paper, we propose a generalized two level system exhibiting type-II Weyl points that can be realized using ultracold atoms in an optical lattice. The system is engineered using a three-dimensional lattice with complex π phase tunneling amplitudes. Various unique properties of the type-II Weyl semimetal such as open Fermi surface, anomalous chirality, and topological Fermi arcs can be probed using the proposed optical lattice scheme.

  17. Experimental realization of optical lumped nanocircuits at infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Edwards, Brian; Alù, Andrea; Engheta, Nader

    2012-03-01

    The integration of radiofrequency electronic methodologies on micro- as well as nanoscale platforms is crucial for information processing and data-storage technologies. In electronics, radiofrequency signals are controlled and manipulated by ‘lumped’ circuit elements, such as resistors, inductors and capacitors. In earlier work, we theoretically proposed that optical nanostructures, when properly designed and judiciously arranged, could behave as nanoscale lumped circuit elements—but at optical frequencies. Here, for the first time we experimentally demonstrate a two-dimensional optical nanocircuit at mid-infrared wavelengths. With the guidance of circuit theory, we design and fabricate arrays of Si3N4 nanorods with specific deep subwavelength cross-sections, quantitatively evaluate their equivalent impedance as lumped circuit elements in the mid-infrared regime, and by Fourier transform infrared spectroscopy show that these nanostructures can indeed function as two-dimensional optical lumped circuit elements. We further show that the connections among nanocircuit elements, in particular whether they are in series or in parallel combination, can be controlled by the polarization of impinging optical signals, realizing the notion of ‘stereo-circuitry’ in metatronics—metamaterials-inspired optical circuitry.

  18. Experimental realization of optical lumped nanocircuits at infrared wavelengths.

    PubMed

    Sun, Yong; Edwards, Brian; Alù, Andrea; Engheta, Nader

    2012-01-29

    The integration of radiofrequency electronic methodologies on micro- as well as nanoscale platforms is crucial for information processing and data-storage technologies. In electronics, radiofrequency signals are controlled and manipulated by 'lumped' circuit elements, such as resistors, inductors and capacitors. In earlier work, we theoretically proposed that optical nanostructures, when properly designed and judiciously arranged, could behave as nanoscale lumped circuit elements--but at optical frequencies. Here, for the first time we experimentally demonstrate a two-dimensional optical nanocircuit at mid-infrared wavelengths. With the guidance of circuit theory, we design and fabricate arrays of Si3N4 nanorods with specific deep subwavelength cross-sections, quantitatively evaluate their equivalent impedance as lumped circuit elements in the mid-infrared regime, and by Fourier transform infrared spectroscopy show that these nanostructures can indeed function as two-dimensional optical lumped circuit elements. We further show that the connections among nanocircuit elements, in particular whether they are in series or in parallel combination, can be controlled by the polarization of impinging optical signals, realizing the notion of 'stereo-circuitry' in metatronics-metamaterials-inspired optical circuitry.

  19. Proposed realization of itinerant ferromagnetism in optical lattices

    SciTech Connect

    Zhang Shizhong; Hung Hsianghsuan; Wu Congjun

    2010-11-15

    We propose a scheme to realize the itinerant ferromagnetism of two-component cold fermionic atoms in the p-orbital bands in optical lattices. The band flatness in the two-dimensional honeycomb lattice dramatically amplifies the interaction effect, driving the ferromagnetic transition even with a relatively weak repulsive interaction. This scheme has the advantage that the stability of the system can be maintained without causing decay to the molecular state as one approaches the Feshbach resonance from the side with the positive scattering length. Experimental signatures and detections are also discussed.

  20. Recursive linear optical networks for realizing quantum algorithms

    NASA Astrophysics Data System (ADS)

    Tabia, Gelo Noel

    Linear optics has played a leading role in the development of practical quantum technologies. In recent years, advances in integrated quantum photonics have significantly improved the functionality and scalability of linear optical devices. In this talk, I present recursive schemes for implementing quantum Fourier transforms and inversion about the mean in Grover's algorithm with photonic integrated circuits. By recursive, I mean that two copies of a d-dimensional unitary operation is used to build the corresponding unitary operation on 2 d modes. The linear optical networks operate on path-encoded qudits and realize d-dimensional unitary operations using O (d2) elements. To demonstrate that the recursive circuits are viable in practice, I conducted simulations of proof-of-principle experiments using a fabrication model of realistic errors in silicon-based photonic integrated devices. The results indicate high-fidelity performance in the circuits for 2-qubit and 3-qubit quantum Fourier transforms, and for quantum search on 4-item and 8-item databases. This work was funded by institutional research grant IUT2-1 from the Estonian Research Council and by the European Union through the European Regional Development Fund.

  1. Indoor Free Space Optic: a new prototype, realization and evaluation

    NASA Astrophysics Data System (ADS)

    Bouchet, Olivier; Besnard, Pascal; Mihaescu, Adrian

    2008-08-01

    The Free Space Optic (FSO) communication is a daily reality used by an increasing number of companies. For indoor environment, optical wireless communication becomes a good alternative with respect to radio proposals. For both technologies, the architecture is similar: emission/reception base station (Gateway or Bridge) are installed to cover zones, which are defined to ensure a quality of service. The customers may be connected to the Wireless Local Area Network (WLAN) with an adapter or module that emits and receives on this network. But due to its specific characteristics, wireless optical technology could present important advantages such as: Transmitted data security, medical immunity, high data rate, etc... Nevertheless, the optical system may have a limit on the network management aspect and link budget. The scope of this paper is to present a proposal at crossroads between optical fibre telecom system and data processing. In this document, we will present a prototype developed in Brittany during a regional collaborative project (Techim@ges). In order to answer to the management aspect and the link budget, this prototype uses an optical multiplexing technique in 1550 nm band: the Wavelength Division Multiple Access (WDMA). Moreover it also proposes a new class 1 high power emission solution. This full duplex system transmits these various wavelengths in free space, by using optical Multiplexer/Demultiplexer and optical modules. Each module has a defined and personal wavelength associated to the terminal identification (addresses MAC or IP). This approach permits a data rate at a minimum of a ten's Mbit/s per customer and potentially hundred Mbps for a line of sight system. The application field for the achieved and proposed prototype is potentially investigated from WLAN to WPAN.

  2. Experimental realization of a nondeterministic optical noiseless amplifier

    SciTech Connect

    Ferreyrol, Franck; Blandino, Remi; Barbieri, Marco; Tualle-Brouri, Rosa; Grangier, Philippe

    2011-06-15

    Linear amplifiers are necessarily affected by a minimal amount of noise, which is needed in order to preserve the linearity and the unitarity prescribed by quantum mechanics. Such a limitation might be partially overcome if the process is realized by conditioning its operation on a trigger event, for instance, the result of a measurement. Here we present a detailed analysis of a noiseless amplifier, implemented using linear optics, a down-conversion-based single-photon source, and single-photon detection. Our results demonstrate an amplification adding a level of noise lower than the minimum allowed by quantum mechanics for deterministic amplifiers. This is made possible by the nondeterministic character of our device, whose success rate is sufficiently low not to violate any fundamental limit. We compare our experimental data to a model taking into account the main imperfections of the setup and find a good agreement.

  3. Photonic processing and realization of an all-optical digital comparator based on semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Singh, Simranjit; Kaur, Ramandeep; Kaler, Rajinder Singh

    2015-01-01

    A module of an all-optical 2-bit comparator is analyzed and implemented using semiconductor optical amplifiers (SOAs). By employing SOA-based cross phase modulation, the optical XNOR logic is used to get an A=B output signal, where as AB¯ and A¯B> logics operations are used to realize A>B and Aoptical high speed networks and computing systems.

  4. Realization of localized Bohr-like wave packets.

    PubMed

    Mestayer, J J; Wyker, B; Lancaster, J C; Dunning, F B; Reinhold, C O; Yoshida, S; Burgdörfer, J

    2008-06-20

    We demonstrate a protocol to create localized wave packets in very-high-n Rydberg states which travel in nearly circular orbits around the nucleus. Although these wave packets slowly dephase and eventually lose their localization, their motion can be monitored over several orbital periods. These wave packets represent the closest analog yet achieved to the original Bohr model of the hydrogen atom, i.e., an electron in a circular classical orbit around the nucleus. The possible extension of the approach to create "planetary atoms" in highly correlated stable multiply excited states is discussed.

  5. Design principles and realization of electro-optical circuit boards

    NASA Astrophysics Data System (ADS)

    Betschon, Felix; Lamprecht, Tobias; Halter, Markus; Beyer, Stefan; Peterson, Harry

    2013-02-01

    The manufacturing of electro-optical circuit boards (EOCB) is based to a large extent on established technologies. First products with embedded polymer waveguides are currently produced in series. The range of applications within the sensor and data communication markets is growing with the increasing maturity level. EOCBs require design flows, processes and techniques similar to existing printed circuit board (PCB) manufacturing and appropriate for optical signal transmission. A key aspect is the precise and automated assembly of active and passive optical components to the optical waveguides which has to be supported by the technology. The design flow is described after a short introduction into the build-up of EOCBs and the motivation for the usage of this technology within the different application fields. Basis for the design of EOCBs are the required optical signal transmission properties. Thereafter, the devices for the electro-optical conversion are chosen and the optical coupling approach is defined. Then, the planar optical elements (waveguides, splitters, couplers) are designed and simulated. This phase already requires co-design of the optical and electrical domain using novel design flows. The actual integration of an optical system into a PCB is shown in the last part. The optical layer is thereby laminated to the purely electrical PCB using a conventional PCB-lamination process to form the EOCB. The precise alignment of the various electrical and optical layers is thereby essential. Electrical vias are then generated, penetrating also the optical layer, to connect the individual electrical layers. Finally, the board has to be tested electrically and optically.

  6. Non-local Optical Potentials

    NASA Astrophysics Data System (ADS)

    Thompson, Ian

    2010-11-01

    In all direct reactions to probe the structure of exotic nuclei at FRIB, optical potentials will be needed in the entrance and exit channels. At high energies Glauber approximations may be useful, but a low energies (5 to 20 MeV/nucleon) other approaches are required. Recent work of the UNEDF project [1] has shown that reaction cross sections at these energies can be accounted for by calculating all inelastic and transfer channels reachable by one particle-hole transitions from the elastic channel. In this model space, we may also calculate the two-step dynamic polarization potential (DPP) that adds to the bare folded potential to form the complex optical potential. Our calculations of the DPP, however, show that its non-localities are very significant, as well as the partial-wave dependence of both its real and imaginary components. The Perey factors (the wave function ratio to that from an equivalent local potential) are more than 20% different from unity, especially for partial waves inside grazing. These factors combine to suggest a reexamination of the validity of local and L-independent fitted optical potentials, especially for capture reactions that are dominated by low partial waves. Prepared by LLNL under Contract DE-AC52-07NA27344. [1] G.P.A. Nobre, F.S. Dietrich, J.E. Escher, I.J. Thompson, M. Dupuis, J. Terasaki and J. Engel, submitted to Phys. Rev. Letts., 2010.

  7. Realization of FDDI optical bypass switches using surface micromachining technology

    NASA Astrophysics Data System (ADS)

    Lee, Shi-sheng; Lin, Lih-Yuan; Wu, Ming C.

    1995-09-01

    We report a novel fiber data distribution interface (FDDI) optical bypass switch using the surface-micromachining technology. In this design, all of the switches' components are made of polysilicon films and are monolithically patterned. The switch consists of four multimode optical fibers and a two-sided mirror sitting vertically on the top of a sliding plate which can be driven by an integrated micro-actuator. The gap between two in-line fibers are minimized to reduce insertion loss without using any lense. The total insertion loss of the switch has been measured to be 2.8 dB for the CROSS state and 3.1 dB for the BAR state with a LED source operates at 1.3 micrometers wavelegnth. The cross-talk between two states is measured to be 26.1 dB. The insertion loss and cross-talk can be improved further using different designs. Using this approach, the size, weight, and cost of current FDDI bypass switches can be dramatically reduced. Furthermore, the micromachined FDDI bypass switches are potentially integrable with the optical sources/detectors and controlling electronics.

  8. Realization of first-order optical systems using thin convex lenses of fixed focal length.

    PubMed

    Yasir, P A Ameen; Ivan, J Solomon

    2014-09-01

    A general axially symmetric first-order optical system is realized using free propagation and thin convex lenses of fixed focal length. It is shown that not more than five convex lenses of fixed focal length are required to realize the most general first-order optical system, with the required number of lenses depending on the situation. The free propagation distances are evaluated explicitly in each situation. The optimality of the decomposition obtained in each situation is brought out. Decompositions for some familiar subgroups of SL2(R) are also worked out. Convex or concave lenses of arbitrary focal length are realized using three or two convex lenses of fixed focal length, respectively. It is further shown that three convex lenses of arbitrary focal length are sufficient to realize the most general first-order optical system.

  9. Experimental realization of the analogy of quantum dense coding in classical optics

    SciTech Connect

    Yang, Zhenwei; Sun, Yifan; Li, Pengyun; Zhang, Xiong; Song, Xinbing E-mail: songxinbing@bit.edu.cn; Zhang, Xiangdong E-mail: songxinbing@bit.edu.cn

    2016-06-15

    We report on the experimental realization of the analogy of quantum dense coding in classical optical communication using classical optical correlations. Compared to quantum dense coding that uses pairs of photons entangled in polarization, we find that the proposed design exhibits many advantages. Considering that it is convenient to realize in optical communication, the attainable channel capacity in the experiment for dense coding can reach 2 bits, which is higher than that of the usual quantum coding capacity (1.585 bits). This increased channel capacity has been proven experimentally by transmitting ASCII characters in 12 quaternary digitals instead of the usual 24 bits.

  10. Realization of All-Optical Multistate Switching in an Atomic Coherent Medium

    NASA Astrophysics Data System (ADS)

    Sheng, Jiteng; Khadka, Utsab; Xiao, Min

    2012-11-01

    We have experimentally observed optical multistability (OM) in an optical ring cavity containing three-level Λ-type Doppler-broadened rubidium atoms. The shape of the OM curve can be significantly modified by changing the power of the control laser field. An all-optical multistate switching or coding element is realized and flexibly controlled by adding a pulse sequence to the input (probe) intensity.

  11. Optical interferometric logic gates based on metal slot waveguide network realizing whole fundamental logic operations.

    PubMed

    Pan, Deng; Wei, Hong; Xu, Hongxing

    2013-04-22

    Optical interferometric logic gates in metal slot waveguide network are designed and investigated by electromagnetic simulations. The designed logic gates can realize all fundamental logic operations. A single Y-shaped junction can work as logic gate for four logic functions: AND, NOT, OR and XOR. By cascading two Y-shaped junctions, NAND, NOR and XNOR can be realized. The working principle is analyzed in detail. In the simulations, these gates show large intensity contrast for the Boolean logic states of the output. These results can be useful for future integrated optical computing.

  12. Experimental Realization of Multipartite Entanglement of 60 Modes of a Quantum Optical Frequency Comb

    NASA Astrophysics Data System (ADS)

    Chen, Moran; Menicucci, Nicolas C.; Pfister, Olivier

    2014-03-01

    We report the experimental realization and characterization of one 60-mode copy and of two 30-mode copies of a dual-rail quantum-wire cluster state in the quantum optical frequency comb of a bimodally pumped optical parametric oscillator. This is the largest entangled system ever created whose subsystems are all available simultaneously. The entanglement proceeds from the coherent concatenation of a multitude of Einstein, Podolsky, and Rosen pairs by a single beam splitter, a procedure which is also a building block for the realization of hypercubic-lattice cluster states for universal quantum computing.

  13. Optical FFT/IFFT circuit realization using arrayed waveguide gratings and the applications in all-optical OFDM system.

    PubMed

    Wang, Zhenxing; Kravtsov, Konstantin S; Huang, Yue-Kai; Prucnal, Paul R

    2011-02-28

    Arrayed waveguide gratings (AWG) are widely used as wavelength division multiplexers (MUX) and demultiplexers (DEMUX) in optical networks. Here we propose and demonstrate that conventional AWGs can also be used as integrated spectral filters to realize a Fast Fourier transform (FFT) and its inverse form (IFFT). More specifically, we point out that the wavelength selection conditions of AWGs when used as wavelength MUX/DEMUX also enable them to perform FFT/IFFT functions. Therefore, previous research on AWGs can now be applied to optical FFT/IFFT circuit design. Compared with other FFT/IFFT optical circuits, AWGs have less structural complexity, especially for a large number of inputs and outputs. As an important application, AWGs can be used in optical OFDM systems. We propose an all-optical OFDM system with AWGs and demonstrate the simulation results. Overall, the AWG provides a feasible solution for all-optical OFDM systems, especially with a large number of optical subcarriers.

  14. Realization of preconditioned Lanczos and conjugate gradient algorithms on optical linear algebra processors.

    PubMed

    Ghosh, A

    1988-08-01

    Lanczos and conjugate gradient algorithms are important in computational linear algebra. In this paper, a parallel pipelined realization of these algorithms on a ring of optical linear algebra processors is described. The flow of data is designed to minimize the idle times of the optical multiprocessor and the redundancy of computations. The effects of optical round-off errors on the solutions obtained by the optical Lanczos and conjugate gradient algorithms are analyzed, and it is shown that optical preconditioning can improve the accuracy of these algorithms substantially. Algorithms for optical preconditioning and results of numerical experiments on solving linear systems of equations arising from partial differential equations are discussed. Since the Lanczos algorithm is used mostly with sparse matrices, a folded storage scheme to represent sparse matrices on spatial light modulators is also described.

  15. Accurate calculation and Matlab based fast realization of merit function's Hesse matrix for the design of multilayer optical coating

    NASA Astrophysics Data System (ADS)

    Wu, Su-Yong; Long, Xing-Wu; Yang, Kai-Yong

    2009-09-01

    To improve the current status of home multilayer optical coating design with low speed and poor efficiency when a large layer number occurs, the accurate calculation and fast realization of merit function’s gradient and Hesse matrix is pointed out. Based on the matrix method to calculate the spectral properties of multilayer optical coating, an analytic model is established theoretically. And the corresponding accurate and fast computation is successfully achieved by programming with Matlab. Theoretical and simulated results indicate that this model is mathematically strict and accurate, and its maximal precision can reach floating-point operations in the computer, with short time and fast speed. Thus it is very suitable to improve the optimal search speed and efficiency of local optimization methods based on the derivatives of merit function. It has outstanding performance in multilayer optical coating design with a large layer number.

  16. Realization of optical multimode TSV waveguides for Si-Interposer in 3D-chip-stacks

    NASA Astrophysics Data System (ADS)

    Killge, S.; Charania, S.; Richter, K.; Neumann, N.; Al-Husseini, Z.; Plettemeier, D.; Bartha, J. W.

    2017-05-01

    Optical connectivity has the potential to outperform copper-based TSVs in terms of bandwidth at the cost of more complexity due to the required electro-optical and opto-electrical conversion. The continuously increasing demand for higher bandwidth pushes the breakeven point for a profitable operation to shorter distances. To integrate an optical communication network in a 3D-chip-stack optical through-silicon vertical VIAs (TSV) are required. While the necessary effort for the electrical/optical and vice versa conversion makes it hard to envision an on-chip optical interconnect, a chip-to-chip optical link appears practicable. In general, the interposer offers the potential advantage to realize electro-optical transceivers on affordable expense by specific, but not necessarily CMOS technology. We investigated the realization and characterization of optical interconnects as a polymer based waveguide in high aspect ratio (HAR) TSVs proved on waferlevel. To guide the optical field inside a TSV as optical-waveguide or fiber, its core has to have a higher refractive index than the surrounding material. Comparing different material / technology options it turned out that thermal grown silicon dioxide (SiO2) is a perfect candidate for the cladding (nSiO2 = 1.4525 at 850 nm). In combination with SiO2 as the adjacent polymer layer, the negative resist SU-8 is very well suited as waveguide material (nSU-8 = 1.56) for the core. Here, we present the fabrication of an optical polymer based multimode waveguide in TSVs proved on waferlevel using SU-8 as core and SiO2 as cladding. The process resulted in a defect-free filling of waveguide TSVs with SU-8 core and SiO2 cladding up to aspect ratio (AR) 20:1 and losses less than 3 dB.

  17. Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding.

    PubMed

    Ghosh, S; Keyvavinia, S; Van Roy, W; Mizumoto, T; Roelkens, G; Baets, R

    2012-01-16

    A waveguide optical isolator realized by adhesive bonding of a garnet die, containing a Ce:YIG magneto-optic layer, on a silicon-on-insulator waveguide circuit is demonstrated. The die was bonded on top of an asymmetric Mach-Zehnder interferometer using a 100nm thick DVS-BCB adhesive bonding layer. A static magnetic field applied perpendicular to the light propagation direction results in a non-reciprocal phase shift for the fundamental quasi-TM mode in the hybrid waveguide geometry. A maximum optical isolation of 25 dB is obtained.

  18. Realization of a fiber optic sensor detecting the presence of a liquid

    NASA Astrophysics Data System (ADS)

    Guzowski, B.; Łakomski, M.; Nowogrodzki, K.

    2016-11-01

    Over the past thirty years, optical fibers have revolutionized the telecommunication market. Fiber optics play also important roles in other numerous applications. One of these applications is fiber sensing - very fast developing area. In this paper, realization of different configurations of a fiber optic sensor detecting the presence of liquid is presented. In the presented sensor, two multimode fibers (MMF) are placed opposite each other, where the first one transmits the light radiation, while the second one is a receiver. Due to the small size of the core (50 μm diameter), they had to be precisely positioned. Therefore the optical fibers were placed in the etched channels in the silicon substrate. In order to make sensors more sensitive, ball-lensed optical fibers were used. Four different diameters of lenses were examined. Sensitivity to the presence of liquids was compared in all realized sensors. Moreover, the influence of distance between the transmitting and receiving optical fiber on the received optical power is also described in this paper. All developed sensors were tested at 1300 nm wavelength. In the last part of this paper the detailed discussion is given.

  19. Local and long-range realizations of a spin-reorientation surface phase transition

    NASA Astrophysics Data System (ADS)

    He, G.; Winch, H.; Belanger, R.; Nguyen, P. H.; Venus, D.

    2017-03-01

    The spin-reorientation transition of an ultrathin film from perpendicular to in-plane magnetization is driven by a competition between dipole and anisotropy energies. In situ measurements of the magnetic susceptibility of Fe/2 monolayers (ML) Ni/W(110) films as a function of Fe coverage, made as the films are deposited at constant temperature, show two clear peaks that are described quantitatively as a long-range and a local realization of the transition. In the long-range realization, the susceptibility probes the striped domain pattern that is formed in response to the balance of energetics on a mesoscopic scale. Here the reorientation transition occurs at a noninteger layer thickness. In the local realization, the susceptibility probes the response of small islands with in-plane anisotropy in the third atomic Fe layer that are grown on the second atomic Fe layer, which has perpendicular anisotropy. It is a response to the local finite-size, metastable energetics due to discrete steps in thickness. An excellent quantitative description of the susceptibility data is obtained when both local and long-range aspects of the spin-reorientation transition are included.

  20. Two-photon absorption for the realization of optical waveguides on printed circuit boards

    NASA Astrophysics Data System (ADS)

    Langer, Gregor; Riester, Markus

    2007-02-01

    The integration of optical interconnections in printed circuit boards (PCBs) is an emerging field that arouses rapidly growing interest worldwide. At present the key issue is to identify a technical concept, which allows for the realization of optical interconnections that are compatible to existing PCB manufacturing processes. Above all, the material in which the optical interconnections are embedded has to withstand increased temperatures and lamination pressures as well as various wet chemistry processes. AT&S uses so-called two-photon absorption (TPA) laser structuring - a rather new and innovative technology - to realize optical circuits in a special polymer layer. In this case a near infrared laser is applied working in the femto-second regime. The high photon density that can be reached in the laser's focus results in a modification of the optical polymer, which is usually photosensitive in the UV-spectrum of light only. In our particular case, the refractive index of the optical polymer is increased. Choosing the right laser intensity and focus propagation speed one achieves a waveguide well embedded within the polymer layer, which has not been affected by the laser. In contrast to one-photon absorption, which only allows a two dimensional respectively lateral modification of a polymer, this technology allows a modification within the volume resulting in 3D-microstructures inside the polymer layer. Apart from the possibility to realize structures in three dimensions, this TPA-technique has additional advantages. First of all, it allows one step fabrication, which reduces costs and production time compared to etching procedures or conventional UV lithography processes. Moreover, this technique allows varying the waveguide's cross section geometry and diameter simply varying size and form of the structuring laser focus. Whereas the realization of optical waveguides is not challenging anymore the coupling of waveguides with optoelectronic components is rather

  1. High efficiency broadband -90° to 90° arbitrary optical rotation realized with meta reflectarray.

    PubMed

    Hu, Xiaobin; Wei, Xin

    2017-03-06

    We theoretically demonstrate high efficiency broadband -90° to 90° arbitrary optical rotation realized with meta reflectarray composed of a L-shaped silver antenna array, a silica spacer, and a silver ground plane. Co-polarized and cross-polarized components of reflected wave can be manipulated efficiently by adjusting arm length of the L-shaped antenna, and 0° to 90° arbitrary optical rotation with high degree of linear polarization (DoLP) over a broadband can be achieved readily. The phase of cross-polarized field component can be reversed by turning the L-shaped antennas upside down, and 0° to 90° optical rotation can be turned into 0° to -90° rotation. Reflected phase can be shift by π after a 90° rotation of the L-shaped or Γ-shaped antennas, while optical rotation angle remains the same. Thus, rotation angle θ is changed to 180° + θ after the rotation, and we realized 0° to 360° polarization rotation with a step of 60° with the combination of six discrete structure units. In addition, we proposed metamaterial structures for highly efficient generation of vector beams with these units. The high efficiency broadband arbitrary angle optical rotation will profoundly affect a wide range of applications involving optical polarization.

  2. Simple integration technique to realize parallel optical interconnects: implementation of a pluggable two-dimensional optical data link

    NASA Astrophysics Data System (ADS)

    Goulet, Alain; Naruse, Makoto; Ishikawa, Masatoshi

    2002-09-01

    An assembly technique is presented to realize pluggable or fully integrated optoelectronic systems based on image relays. A method to visually align and assemble optoelectronic chips or fiber bundles to half of a relay is explained. To validate this technique, two-dimensional arrays of vertical-cavity surface-emitting lasers and photodetectors and a fiber image guide have been integrated to gradient index lenses with simple optomechanical parts. Although the connection of these modules was realized with +/-0.5 mm lateral tolerances, parallel optical interconnects were successfully achieved at 10 MHz. The lateral misalignment between chips was on average 20 μm and at worst 60 μm.

  3. Orientation function of optical mouse realized by digital speckle correlation method

    NASA Astrophysics Data System (ADS)

    Zhen, ZhiQiang; Tang, ZhengXin; Yan, Haitao; Lai, Fangming

    2008-12-01

    Used digital speckle correlation method (DSCM) to realize orientation function of optical mouse is researched. The experiment is designed to obtain the dynamic speckle patterns which are shot by CCD, Then the DSCM is used to process the sequential images and also the experiment is simulated. The experimental results show the DSCM can confirm orientation function of the optical mouse, and have a good agreement with the simulation results, and the resolution we obtained is higher than the resolution of mouse on the market.

  4. Used digital speckle correlation method to realize orientation function of optical mouse

    NASA Astrophysics Data System (ADS)

    Yan, Haitao; Wang, Ming; Ge, Yixian; Zhou, Junping

    2008-09-01

    Used digital speckle correlation method (DSCM) to realize orientation function of optical mouse is researched. The experiment is designed to obtain the dynamic speckle patterns which are shot by CCD, then the DSCM is used to process the sequential images and also the experiment is simulated. The experimental results show the DSCM can confirm orientation function of the optical mouse, and have a good agreement with the simulation results, and the resolution we obtained is higher than the resolution of mouse on the market.

  5. Optical Realization of Double-Continuum Fano Interference and Coherent Control in Plasmonic Metasurfaces.

    PubMed

    Arju, Nihal; Ma, Tzuhsuan; Khanikaev, Alexander; Purtseladze, David; Shvets, Gennady

    2015-06-12

    Classical realization of a ubiquitous quantum mechanical phenomenon of double-continuum Fano interference using metasurfaces is experimentally demonstrated by engineering the near-field interaction between two bright and one dark plasmonic modes. The competition between the bright modes, one of them effectively suppressing the Fano interference for the orthogonal light polarization, is discovered. Coherent control of optical energy concentration and light absorption by the ellipticity of the incident light is theoretically predicted.

  6. Optical Realization of Double-Continuum Fano Interference and Coherent Control in Plasmonic Metasurfaces

    NASA Astrophysics Data System (ADS)

    Arju, Nihal; Ma, Tzuhsuan; Khanikaev, Alexander; Purtseladze, David; Shvets, Gennady

    2015-06-01

    Classical realization of a ubiquitous quantum mechanical phenomenon of double-continuum Fano interference using metasurfaces is experimentally demonstrated by engineering the near-field interaction between two bright and one dark plasmonic modes. The competition between the bright modes, one of them effectively suppressing the Fano interference for the orthogonal light polarization, is discovered. Coherent control of optical energy concentration and light absorption by the ellipticity of the incident light is theoretically predicted.

  7. Experimental realization of the quantum duel game using linear optical circuits

    NASA Astrophysics Data System (ADS)

    Balthazar, W. F.; Passos, M. H. M.; Schmidt, A. G. M.; Caetano, D. P.; Huguenin, J. A. O.

    2015-08-01

    We report on the experimental realization of the quantum duel game for two players, Alice and Bob. Using an all optical approach, we have encoded Alice and Bob states in transverse modes and polarization degrees of freedom of a laser beam, respectively. By setting Alice and Bob input states and considering the possibility of Alice performing two shots, we demonstrated the quantum features of the game as well as we recovered the classical version of the game.

  8. Optical communication with two-photon coherent states. III - Quantum measurements realizable with photoemissive detectors

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.; Shapiro, J. H.

    1980-01-01

    Homodyne detection is shown to achieve the same signal-to-noise ratio as the quantum field quadrature measurement, thus providing a receiver which realizes linear modulation TCS performance gain. The full equivalence of homodyne detection and single-quadrature field measurement is established. A heterodyne configuration which uses a TCS image-band oscillator in addition to the usual coherent state local oscillator is studied. Results are obtained by means of a representation theorem which shows that photoemissive detection realizes the photon flux density measurement.

  9. Realization of a video-rate distributed aperture millimeter-wave imaging system using optical upconversion

    NASA Astrophysics Data System (ADS)

    Schuetz, Christopher; Martin, Richard; Dillon, Thomas; Yao, Peng; Mackrides, Daniel; Harrity, Charles; Zablocki, Alicia; Shreve, Kevin; Bonnett, James; Curt, Petersen; Prather, Dennis

    2013-05-01

    Passive imaging using millimeter waves (mmWs) has many advantages and applications in the defense and security markets. All terrestrial bodies emit mmW radiation and these wavelengths are able to penetrate smoke, fog/clouds/marine layers, and even clothing. One primary obstacle to imaging in this spectrum is that longer wavelengths require larger apertures to achieve the resolutions desired for many applications. Accordingly, lens-based focal plane systems and scanning systems tend to require large aperture optics, which increase the achievable size and weight of such systems to beyond what can be supported by many applications. To overcome this limitation, a distributed aperture detection scheme is used in which the effective aperture size can be increased without the associated volumetric increase in imager size. This distributed aperture system is realized through conversion of the received mmW energy into sidebands on an optical carrier. This conversion serves, in essence, to scale the mmW sparse aperture array signals onto a complementary optical array. The side bands are subsequently stripped from the optical carrier and recombined to provide a real time snapshot of the mmW signal. Using this technique, we have constructed a real-time, video-rate imager operating at 75 GHz. A distributed aperture consisting of 220 upconversion channels is used to realize 2.5k pixels with passive sensitivity. Details of the construction and operation of this imager as well as field testing results will be presented herein.

  10. Realization of the Harper Hamiltonian with Artificial Gauge Fields in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Miyake, Hirokazu; Siviloglou, Georgios; Kennedy, Colin; Burton, William Cody; Ketterle, Wolfgang

    2014-03-01

    Systems of charged particles in magnetic fields have led to many discoveries in science-such as the integer and fractional quantum Hall effects-and have become important paradigms of quantum many-body physics. We have proposed and implemented a scheme which realizes the Harper Hamiltonian, a lattice model for charged particles in magnetic fields, whose energy spectrum is the fractal Hofstadter butterfly. We experimentally realize this Hamiltonian for ultracold, charge neutral bosonic particles of 87Rb in a two-dimensional optical lattice by creating an artificial gauge field using laser-assisted tunneling and a potential energy gradient provided by gravity. Laser-assisted tunneling processes are characterized by studying the expansion of the atoms in the lattice. Furthermore, this scheme can be extended to realize spin-orbit coupling and the spin Hall effect for neutral atoms in optical lattices by modifying the motion of atoms in a spin-dependent way by laser recoil and Zeeman shifts created with a magnetic field gradient. Major advantages of our scheme are that it does not rely on near-resonant laser light to couple different spin states and should work even for fermionic particles. Our work is a step towards studying novel topological phenomena with ultracold atoms. Currently at the RAND Corporation.

  11. Teleportation-based realization of an optical quantum two-qubit entangling gate

    PubMed Central

    Gao, Wei-Bo; Goebel, Alexander M.; Lu, Chao-Yang; Dai, Han-Ning; Wagenknecht, Claudia; Zhang, Qiang; Zhao, Bo; Peng, Cheng-Zhi; Chen, Zeng-Bing; Chen, Yu-Ao; Pan, Jian-Wei

    2010-01-01

    In recent years, there has been heightened interest in quantum teleportation, which allows for the transfer of unknown quantum states over arbitrary distances. Quantum teleportation not only serves as an essential ingredient in long-distance quantum communication, but also provides enabling technologies for practical quantum computation. Of particular interest is the scheme proposed by D. Gottesman and I. L. Chuang [(1999) Nature 402:390–393], showing that quantum gates can be implemented by teleporting qubits with the help of some special entangled states. Therefore, the construction of a quantum computer can be simply based on some multiparticle entangled states, Bell-state measurements, and single-qubit operations. The feasibility of this scheme relaxes experimental constraints on realizing universal quantum computation. Using two different methods, we demonstrate the smallest nontrivial module in such a scheme—a teleportation-based quantum entangling gate for two different photonic qubits. One uses a high-fidelity six-photon interferometer to realize controlled-NOT gates, and the other uses four-photon hyperentanglement to realize controlled-Phase gates. The results clearly demonstrate the working principles and the entangling capability of the gates. Our experiment represents an important step toward the realization of practical quantum computers and could lead to many further applications in linear optics quantum information processing. PMID:21098305

  12. Teleportation-based realization of an optical quantum two-qubit entangling gate.

    PubMed

    Gao, Wei-Bo; Goebel, Alexander M; Lu, Chao-Yang; Dai, Han-Ning; Wagenknecht, Claudia; Zhang, Qiang; Zhao, Bo; Peng, Cheng-Zhi; Chen, Zeng-Bing; Chen, Yu-Ao; Pan, Jian-Wei

    2010-12-07

    In recent years, there has been heightened interest in quantum teleportation, which allows for the transfer of unknown quantum states over arbitrary distances. Quantum teleportation not only serves as an essential ingredient in long-distance quantum communication, but also provides enabling technologies for practical quantum computation. Of particular interest is the scheme proposed by D. Gottesman and I. L. Chuang [(1999) Nature 402:390-393], showing that quantum gates can be implemented by teleporting qubits with the help of some special entangled states. Therefore, the construction of a quantum computer can be simply based on some multiparticle entangled states, Bell-state measurements, and single-qubit operations. The feasibility of this scheme relaxes experimental constraints on realizing universal quantum computation. Using two different methods, we demonstrate the smallest nontrivial module in such a scheme--a teleportation-based quantum entangling gate for two different photonic qubits. One uses a high-fidelity six-photon interferometer to realize controlled-NOT gates, and the other uses four-photon hyperentanglement to realize controlled-Phase gates. The results clearly demonstrate the working principles and the entangling capability of the gates. Our experiment represents an important step toward the realization of practical quantum computers and could lead to many further applications in linear optics quantum information processing.

  13. Real-time realizations of the Bayesian Infrasonic Source Localization Method

    NASA Astrophysics Data System (ADS)

    Pinsky, V.; Arrowsmith, S.; Hofstetter, A.; Nippress, A.

    2015-12-01

    The Bayesian Infrasonic Source Localization method (BISL), introduced by Mordak et al. (2010) and upgraded by Marcillo et al. (2014) is destined for the accurate estimation of the atmospheric event origin at local, regional and global scales by the seismic and infrasonic networks and arrays. The BISL is based on probabilistic models of the source-station infrasonic signal propagation time, picking time and azimuth estimate merged with a prior knowledge about celerity distribution. It requires at each hypothetical source location, integration of the product of the corresponding source-station likelihood functions multiplied by a prior probability density function of celerity over the multivariate parameter space. The present BISL realization is generally time-consuming procedure based on numerical integration. The computational scheme proposed simplifies the target function so that integrals are taken exactly and are represented via standard functions. This makes the procedure much faster and realizable in real-time without practical loss of accuracy. The procedure executed as PYTHON-FORTRAN code demonstrates high performance on a set of the model and real data.

  14. Nonlinear optical localization in embedded chalcogenide waveguide arrays

    SciTech Connect

    Li, Mingshan; Huang, Sheng; Wang, Qingqing; Chen, Kevin P.; Petek, Hrvoje

    2014-05-15

    We report the nonlinear optical localization in an embedded waveguide array fabricated in chalcogenide glass. The array, which consists of seven waveguides with circularly symmetric cross sections, is realized by ultrafast laser writing. Light propagation in the chalcogenide waveguide array is studied with near infrared laser pulses centered at 1040 nm. The peak intensity required for nonlinear localization for the 1-cm long waveguide array was 35.1 GW/cm{sup 2}, using 10-nJ pulses with 300-fs pulse width, which is 70 times lower than that reported in fused silica waveguide arrays and with over 7 times shorter interaction distance. Results reported in this paper demonstrated that ultrafast laser writing is a viable tool to produce 3D all-optical switching waveguide circuits in chalcogenide glass.

  15. Trapped Fermi Gases in Rotating Optical Lattices: Realization and Detection of the Topological Hofstadter Insulator

    SciTech Connect

    Umucalilar, R. O.; Oktel, M. Oe.; Zhai Hui

    2008-02-22

    We consider a gas of noninteracting spinless fermions in a rotating optical lattice and calculate the density profile of the gas in an external confinement potential. The density profile exhibits distinct plateaus, which correspond to gaps in the single particle spectrum known as the Hofstadter butterfly. The plateaus result from insulating behavior whenever the Fermi energy lies within a gap. We discuss the necessary conditions to realize the Hofstadter insulator in a cold atom setup and show how the quantized Hall conductance can be measured from density profiles using the Streda formula.

  16. Optical Fibers Would Sense Local Strains

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Proposed fiber-optic transducers measure local strains. Includes lead-in and lead-out lengths producing no changes in phase shifts, plus short sensing length in which phase shift is sensitive to strain. Phase shifts in single-mode fibers vary with strains. In alternative version, multiple portions of optical fiber sensitive to strains characteristic of specific vibrational mode of object. Same principle also used with two-mode fiber.

  17. Linear-optics realization of channels for single-photon multimode qudits

    SciTech Connect

    Piani, Marco; Pitkanen, David; Luetkenhaus, Norbert; Kaltenbaek, Rainer

    2011-09-15

    We propose and theoretically study a method for the stochastic realization of arbitrary quantum channels on multimode single-photon qudits. In order for our method to be undemanding in its implementation, we restrict our analysis to linear-optical techniques, vacuum ancillary states, and nonadaptive schemes, but we allow for random switching between different optical networks. With our method it is possible to deterministically implement random-unitary channels and to stochastically implement general channels. We provide an expression for the optimal probability of success of our scheme and calculate this quantity for specific examples such as the qubit amplitude-damping channel. The success probability is shown to be related to the entanglement properties of the Choi-Jamiolkowski state isomorphic to the channel.

  18. Realization of the scale of high fiber optic power at three national standards laboratories

    SciTech Connect

    Envall, Jouni; Andersson, Anne; Petersen, Jan C.; Kaerhae, Petri

    2005-08-20

    Nowadays the transmission powers in optical telecommunication networks are often hundreds of milliwatts. Such high power levels are known to cause several nonlinear effects, thus affecting data transfer. Therefore, accurate measurements of such high power levels are required. The general issues that are to be considered when one is realizing a scale for high fiber optic power are discussed. The scales of the national standards laboratories in Finland, Sweden, and Denmark are described, and the results of a trilateral comparison of these scales are presented. The power range of the comparison was 1-200 mW. The results show that the stated measurement uncertainties of the three laboratories (1.3%-2.9%,k=2) are applicable over this power range.

  19. Optofluidic realization and retaining of cell-cell contact using an abrupt tapered optical fibre

    NASA Astrophysics Data System (ADS)

    Xin, Hongbao; Zhang, Yao; Lei, Hongxiang; Li, Yayi; Zhang, Huixian; Li, Baojun

    2013-06-01

    Studies reveal that there exists much interaction and communication between bacterial cells, with parts of these social behaviors depending on cell-cell contacts. The cell-cell contact has proved to be crucial for determining various biochemical processes. However, for cell culture with relatively low cell concentration, it is difficult to precisely control and retain the contact of a small group of cells. Particularly, the retaining of cell-cell contact is difficult when flows occur in the medium. Here, we report an optofluidic method for realization and retaining of Escherichia coli cell-cell contact in a microfluidic channel using an abrupt tapered optical fibre. The contact process is based on launching a 980-nm wavelength laser into the fibre, E. coli cells were trapped onto the fibre tip one after another, retaining cell-cell contact and forming a highly organized cell chain. The formed chains further show the ability as bio-optical waveguides.

  20. Optofluidic realization and retaining of cell–cell contact using an abrupt tapered optical fibre

    PubMed Central

    Xin, Hongbao; Zhang, Yao; Lei, Hongxiang; Li, Yayi; Zhang, Huixian; Li, Baojun

    2013-01-01

    Studies reveal that there exists much interaction and communication between bacterial cells, with parts of these social behaviors depending on cell–cell contacts. The cell–cell contact has proved to be crucial for determining various biochemical processes. However, for cell culture with relatively low cell concentration, it is difficult to precisely control and retain the contact of a small group of cells. Particularly, the retaining of cell–cell contact is difficult when flows occur in the medium. Here, we report an optofluidic method for realization and retaining of Escherichia coli cell–cell contact in a microfluidic channel using an abrupt tapered optical fibre. The contact process is based on launching a 980-nm wavelength laser into the fibre, E. coli cells were trapped onto the fibre tip one after another, retaining cell–cell contact and forming a highly organized cell chain. The formed chains further show the ability as bio-optical waveguides. PMID:23771190

  1. Optimized phase mask to realize retro-reflection reduction for optical systems

    NASA Astrophysics Data System (ADS)

    He, Sifeng; Gong, Mali

    2017-10-01

    Aiming at the threats to the active laser detection systems of electro-optical devices due to the cat-eye effect, a novel solution is put forward to realize retro-reflection reduction in this paper. According to the demands of both cat-eye effect reduction and the image quality maintenance of electro-optical devices, a symmetric phase mask is achieved from a stationary phase method and a fast Fourier transform algorithm. Then, based on a comparison of peak normalized cross-correlation (PNCC) between the different defocus parameters, the optimal imaging position can be obtained. After modification with the designed phase mask, the cat-eye effect peak intensity can be reduced by two orders of magnitude while maintaining good image quality and high modulation transfer function (MTF). Furthermore, a practical design example is introduced to demonstrate the feasibility of our proposed approach.

  2. Floquet Realization and Signatures of One-Dimensional Anyons in an Optical Lattice

    NASA Astrophysics Data System (ADS)

    Sträter, Christoph; Srivastava, Shashi C. L.; Eckardt, André

    2016-11-01

    We propose a simple scheme for mimicking the physics of one-dimensional anyons in an optical-lattice experiment. It relies on a bosonic representation of the anyonic Hubbard model to be realized via lattice-shaking-induced resonant tunneling against potential offsets, which are created by a combination of a lattice tilt and strong on-site interactions. No lasers additional to those used for the creation of the optical lattice are required. We also discuss experimental signatures of the continuous interpolation between bosons and fermions when the statistical angle θ is varied from 0 to π . Whereas the real-space density of the bosonic atoms corresponds directly to that of the simulated anyonic model, this is not the case for the momentum distribution. Therefore, we propose to use Friedel oscillations in the density as a probe for continuous fermionization of the bosonic atoms.

  3. Classical realization of dispersion-canceled, artifact-free, and background-free optical coherence tomography.

    PubMed

    Ogawa, Kazuhisa; Kitano, Masao

    2016-04-18

    Quantum-optical coherence tomography (Q-OCT) provides a dispersion-canceled axial-imaging method, but its practical use is limited by the weakness of the light source and by artifacts in the images. A recent study using chirped-pulse interferometry (CPI) has demonstrated dispersion-canceled and artifact-free OCT with a classical system; however, unwanted background signals still remain after removing the artifacts. Here, we propose a classical optical method that realizes dispersion-canceled, artifact-free, and background-free OCT. We employ a time-reversed system for Q-OCT with transform-limited input laser pulses to achieve dispersion-canceled OCT with a classical system. We have also introduced a subtraction method to remove artifacts and background signals. With these methods, we experimentally demonstrated dispersion-canceled, artifact-free, and background-free axial imaging of a coverglass and cross-sectional imaging of the surface of a coin.

  4. Optical Excision Program. Holographic Local Oscillator

    DTIC Science & Technology

    1979-07-01

    decade it has been known that an optical spectrum analyzer that has an acousto - optical input transducer can reconstruct the signal by coherently detecting...C)~ I,)) pcc F2- PSI-ER-5538-01 2.1 --Continued Figure 2 illustrates the use of the processed hologram to generate the optical local oscillator beam...below: 1) 7 minutes with gentle agitation in D -19 (400 mf of Kodak D -19 concentrate per 2 C of warm tap water. 2 ) 1 minute in 1.3% solution of acetic

  5. Realization of optical OFDM using time lenses and its comparison with optical OFDM using FFT.

    PubMed

    Yang, Dong; Kumar, Shiva

    2009-09-28

    An optical orthogonal frequency division multiplexing (OFDM) scheme with Fourier transform in optical domain using time lenses both at the transmitter and at the receiver is analyzed. The comparison of performance between this scheme with the optical OFDM scheme that utilizes fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) in electrical domain is made. The nonlinear effects induced by Mach-Zehnder modulator (MZM) as well as by the fiber are investigated for both schemes. Results show that the coherent OFDM using time lenses has almost the same performance as that using FFT when the electrical driving message signal voltages are low so that MZM operates in the linear region. The nonlinearity of MZM deteriorates the conventional coherent OFDM based on FFT when the power of electrical driving signal increases significantly, but only has negligible impairment on the coherent OFDM using time lenses. Details of the time lens set up are provided and a novel scheme to implement the time lens without requiring the quadratic dependence of the driving voltage is presented.

  6. Ultralow bias power all-optical photonic crystal memory realized with systematically tuned L3 nanocavity

    SciTech Connect

    Kuramochi, Eiichi Nozaki, Kengo; Shinya, Akihiko; Taniyama, Hideaki; Notomi, Masaya; Takeda, Koji; Matsuo, Shinji; Sato, Tomonari

    2015-11-30

    An InP photonic crystal nanocavity with an embedded InGaAsP active region is a unique technology that has realized an all-optical memory with a sub-micro-watt operating power and limitless storage time. In this study, we employed an L3 design with systematic multi-hole tuning, which realized a higher loaded Q factor (>40 000) and a lower mode volume (0.9 μm{sup 3}) than a line-defect-based buried-heterostructure nanocavity (16 000 and 2.2 μm{sup 3}). Excluding the active region realized a record loaded Q factor (210 000) in all for InP-based nanocavities. The minimum bias power for bistable memory operation was reduced to 2.3 ± 0.3 nW, which is about 1/10 of the previous record of 30 nW. This work further established the capability of a bistable nanocavity memory for use in future ultralow-power-consumption on-chip integrated photonics.

  7. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating.

    PubMed

    Yan, Jiahao; Liu, Pu; Ma, Churong; Lin, Zhaoyong; Yang, Guowei

    2016-04-28

    Through the excitation of plasmon resonance, the energy of plasmonic nanoparticles either reradiates through light scattering or decays into energetic electrons (absorption). The plasmon-induced absorption can greatly enhance the efficiency of solar energy harvesting, local heating, photodetection and photocatalysis. Here, we demonstrate that heavily self-doped titanium oxide nanoparticles (TiO1.67 analogue arising from oxygen vacancies in rutile TiO2) with the plasmon resonance dominated by an interband transition shows strong absorption to build a broadband perfect absorber in the wavelength range from 300 to 2000 nm covering the solar irradiation spectrum completely. The absorptivity of the fabricated array is greater than 90% in the whole spectral range. And the broadband and strong absorption is due to the plasmon hybridization and hot spot generation from near-touching TiO1.67 nanoparticles with different sizes. What is more, the local heating of a TiO1.67 nanoparticle layer is fast and effective. The temperature increases quickly from 30 °C to 80 °C within 200 seconds. This local heating can realize rapid solar-enabled evaporation which can find applications in large-scale distillation and seawater desalination. These findings actually open a pathway for applications of these newly developed plasmonic materials in the energy and environment fields.

  8. Transverse impedance localization using intensity dependent optics

    SciTech Connect

    Calaga,R.; Arduini, G.; Metral, E.; Papotti, G.; Quatraro, D.; Rumolo, G.; Salvant, B.; Tomas, R.

    2009-05-04

    Measurements of transverse impedance in the SPS to track the evolution over the last few years show discrepancies compared to the analytical estimates of the major contributors. Recent measurements to localize the major sources of the transverse impedance using intensity dependent optics are presented. Some simulations using HEADTAIL to understand the limitations of the reconstruction and related numerical aspects are also discussed.

  9. Optical Fibers Would Sense Local Temperatures

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Proposed fiber-optic transducers measure local temperatures. Includes lead-in and lead-out lengths producing no changes in phase shifts, plus short sensing length in which phase shift sensitive to temperature. Phase shifts in two-mode fibers vary with temperatures.

  10. Optical link upgrade by dispersion and nonlinearity management technique realized by compensating optical cable coiled around of fiber optic closure

    NASA Astrophysics Data System (ADS)

    Burdin, Vladimir A.; Bourdine, Anton V.; Volkov, Kirill A.

    2012-01-01

    We represent results of numerical simulations for upgrade of optical link with SMF by using the DDMS technique based on application of compensating optical cable coiled around of optical closure. We propose this technique for minimization land cost. Nonlinearity management for decreasing of quasi-solitons interaction is considered. Based on NLSE the model of optical link regeneration section with dispersion and nonlinearity management is described. The NLSE was solved numerically. Estimated values for optical system performance were derived by taking into account the amplified spontaneous emission noise, parameters of dispersion map deviations, and the interaction of quasi-solitons.

  11. Annular force based variable curvature mirror aiming to realize non-moving element optical zooming

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Xie, Xiaopeng; Wei, Jingxuan; Ren, Guorui; Pang, Zhihai; Xu, Liang

    2015-10-01

    Recently, a new kind of optical zooming technique in which no moving elements are involved has been paid much attention. The elimination of moving elements makes optical zooming suitable for applications which has exacting requirements in space, power cost and system stability. The mobile phone and the space-borne camera are two typical examples. The key to realize non-moving elements optical zooming lies in the introduction of variable curvature mirror (VCM) whose radius of curvature could be changed dynamically. When VCM is about to be used to implement optical zoom imaging, two characteristics should be ensured. First, VCM has to provide large enough saggitus variation in order to obtain a big magnification ratio. Second, after the radius of curvature has been changed, the corresponding surface figure accuracy should still be maintained superior to a threshold level to make the high quality imaging possible. In this manuscript, based on the elasticity theory, the physical model of the annular force based variable curvature mirror is established and numerically analyzed. The results demonstrate that when the annular force is applied at the half-the-aperture position, the actuation force is reduced and a smaller actuation force is required to generate the saggitus variation and thus the maintenance of surface figure accuracy becomes easier during the variation of radius of curvature. Besides that, a prototype VCM, whose diameter and thickness are 100mm and 3mm respectively, have been fabricated and the maximum saggitus variation that could be obtained approaches more than 30 wavelengths. At the same time, the degradation of surface figure accuracy is weakly correlated to the curvature radius variation. Keywords: optical zooming; variable curvature mirror; surface figure accuracy; saggitus;

  12. Realizing mode conversion and optical diode effect by coupling photonic crystal waveguides with cavity

    NASA Astrophysics Data System (ADS)

    Ye, Han; Zhang, Jin-Qian-Nan; Yu, Zhong-Yuan; Wang, Dong-Lin; Chen, Zhi-Hui

    2015-09-01

    We propose a novel two-dimensional photonic crystal structure consisting of two line defect waveguides and a cavity to realize mode conversion based on the coupling effect. The W1/cavity/W2 structure breaks the spatial symmetry and successfully converts the even (odd) mode to the odd (even) mode in the W2 waveguide during the forward (backward) transmission. When considering the incidence of only the even mode, the optical diode effect emerges and achieves approximate 35 dB unidirectionality at the resonant frequency. Moreover, owing to the narrow bandpass feature and the flexibility of the tuning cavity, utilization of the proposed structure as a wavelength filter is demonstrated in a device with a Y-branch splitter. Here, we provide a heuristic design for a mode converter, optical diode, and wavelength filter derived from the coupling effect between a cavity and adjacent waveguides, and expect that the proposed structure can be applied as a building block in future all-optical integrated circuits. Project supported by the National Natural Science Foundation of China (Grant Nos. 61372037 and 61307069), Beijing Excellent Ph. D. Thesis Guidance Foundation, China (Grant No. 20131001301), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2013021017-3).

  13. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating

    NASA Astrophysics Data System (ADS)

    Yan, Jiahao; Liu, Pu; Ma, Churong; Lin, Zhaoyong; Yang, Guowei

    2016-04-01

    Through the excitation of plasmon resonance, the energy of plasmonic nanoparticles either reradiates through light scattering or decays into energetic electrons (absorption). The plasmon-induced absorption can greatly enhance the efficiency of solar energy harvesting, local heating, photodetection and photocatalysis. Here, we demonstrate that heavily self-doped titanium oxide nanoparticles (TiO1.67 analogue arising from oxygen vacancies in rutile TiO2) with the plasmon resonance dominated by an interband transition shows strong absorption to build a broadband perfect absorber in the wavelength range from 300 to 2000 nm covering the solar irradiation spectrum completely. The absorptivity of the fabricated array is greater than 90% in the whole spectral range. And the broadband and strong absorption is due to the plasmon hybridization and hot spot generation from near-touching TiO1.67 nanoparticles with different sizes. What is more, the local heating of a TiO1.67 nanoparticle layer is fast and effective. The temperature increases quickly from 30 °C to 80 °C within 200 seconds. This local heating can realize rapid solar-enabled evaporation which can find applications in large-scale distillation and seawater desalination. These findings actually open a pathway for applications of these newly developed plasmonic materials in the energy and environment fields.Through the excitation of plasmon resonance, the energy of plasmonic nanoparticles either reradiates through light scattering or decays into energetic electrons (absorption). The plasmon-induced absorption can greatly enhance the efficiency of solar energy harvesting, local heating, photodetection and photocatalysis. Here, we demonstrate that heavily self-doped titanium oxide nanoparticles (TiO1.67 analogue arising from oxygen vacancies in rutile TiO2) with the plasmon resonance dominated by an interband transition shows strong absorption to build a broadband perfect absorber in the wavelength range from 300 to

  14. Finite violations of a Bell inequality for high spin: An optical realization

    SciTech Connect

    Gerry, Christopher C.; Albert, Jaroslav

    2005-10-15

    Some years ago Peres [Phys. Rev. A 46, 4413 (1992)] described a gedanken experiment for a pair of spatially spin j particles in a singlet state and showed using with a dichotomic observable (essentially a parity operator) that Bell's theorem in the form of the Clauser-Home-Shimony-Holt (CHSH) inequality is violated by a constant amount (24%) in the limit j{yields}{infinity}. In this paper we present a scheme for an optical realization of a state that is very close to the spin-j singlet state using two traveling-wave modes of the quantized field using a 50:50 beam splitter with an input number state. A near-singlet states comes about because the binomial output state of the beam splitter can be written as a sum in terms of states in the form vertical bar j,m>{sub 1}x vertical bar j,-m>{sub 2}, each state being associated with a Holstein-Primakoff realization of the su(2) spin algebra in terms of the Bose operators of each of the field modes, where j=N/2, N being the number of photons passing through the beam splitter. The binomial state can violate the CHSH inequality to a greater degree than does the singlet state.

  15. Optic Disc Localization Using Directional Models.

    PubMed

    Wu, Xiangqian; Dai, Baisheng; Bu, Wei

    2016-07-13

    Reliable localization of the optic disc (OD) is important for retinal image analysis and ophthalmic pathology screening. This paper presents a novel method to automatically localize ODs in retinal fundus images based on directional models. According to the characteristics of retina vessel networks, such as their origin at the OD and parabolic shape of the main vessels, a global directional model, named the relaxed bi-parabola directional model (R-BPDM), is firstly built. In this model the main vessels are modeled by using two parabolas with a shared vertex and different parameters. Then a local directional model, named the disc directional model (DDM), is built to characterize the local vessel convergence in the OD as well as the shape and the brightness of the OD. Finally, the global and the local directional models are integrated to form a hybrid directional model, which can exploit the advantages of the global and local models for highly accurate OD localization. The proposed method is evaluated on nine publicly available databases, and achieves an accuracy of 100% for each database, which demonstrates the effectiveness of the proposed OD localization method.

  16. Fiber optic configurations for local area networks

    NASA Technical Reports Server (NTRS)

    Nassehi, M. M.; Tobagi, F. A.; Marhic, M. E.

    1985-01-01

    A number of fiber optic configurations for a new class of demand assignment multiple-access local area networks requiring a physical ordering among stations are proposed. In such networks, the data transmission and linear-ordering functions may be distinguished and be provided by separate data and control subnetworks. The configurations proposed for the data subnetwork are based on the linear, star, and tree topologies. To provide the linear-ordering function, the control subnetwork must always have a linear unidirectional bus structure. Due to the reciprocity and excess loss of optical couplers, the number of stations that can be accommodated on a linear fiber optic bus is severely limited. Two techniques are proposed to overcome this limitation. For each of the data and control subnetwork configurations, the maximum number of stations as a function of the power margin, for both reciprocal and nonreciprocal couplers, is computed.

  17. Local Distribution Fiber Optic Cable Communication System.

    DTIC Science & Technology

    1981-03-20

    RESEARCH AND DEVELOPMENT TECHNICAL .REPORT CORADCOM-79-0508-F 1 LOCAL DISTRIBUTION FIBER OPTIC q CABLE COMMUNICATION SYSTEM 0 FINAL TECHNICAL REPORT DT[!c...Massachusetts 02194 5 September 1980 Final Report for Period Feb. 1979 - Sept. 1980 C.PREPARED FOR: Z. CORADCOM L" U S ARMY COMMUNICATIONS RESEARCH ... independently , correcting any problems that occurred. and then intearatina all three tnaether. 2.2.1.2 Problems Identified and Solutions Implemented A

  18. Optical multiresolution analysis with spatial localization

    NASA Astrophysics Data System (ADS)

    Mazzaferri, Javier; Ledesma, Silvia

    2010-05-01

    Multiresolution analysis is very useful for characterization of textures, segmentation tasks, and feature enhancement. The development of optical methods to perform such procedures is highly promissory for real-time applications. Usually, the optical implementations of multiresolution analysis consist in the decomposition of the input scene in different frequency bands, obtaining various filtered versions of the scene. However, under certain circumstances it could be useful to provide just one version of the scene where the different filters are applied in different regions. This procedure could be specially interesting for biological and medical applications in situations when the approximate localization of the scale information is known a priori. In this paper we present a fully optical method to perform multiresolution analysis with spatial localization. By means of the proposed technique, the multi-scale analysis is performed at once in a unique image. The experimental set-up consist of a double-pass convergent optical processor. The first stage of the device allows the multiple band decomposition, while the second stage confines the information of each band to different regions of the object and recombines it to achieve the desired operation. Numerical simulations and experimental results, which prove the very good performance of the method, are presented.

  19. Realization of a fiber-optic force-torque sensor with six degrees of freedom

    NASA Astrophysics Data System (ADS)

    Müller, M. S.; Hoffmann, L.; Buck, T. S.; Koch, A. W.

    2008-11-01

    Multi-axial force and torque sensing is of importance for robot control and many force-feedback applications. Minimal invasive robotic surgery (MIRS) is a possible field of application of force and torque sensors with up to six degrees of freedom. Although these sensors are not yet employed in current commercial MIRS systems, extensive work has been carried out on the development of these sensors. Some of their issues are related to their electric working principle: they are limited in performance by thermal noise, need electric power inside the patient and are not usable under influence of strong magnet fields (e. g. in MRI machines). One possible alternative is seen in fiber optic force torque sensors, since the signal demodulation may be located in some distance to the actual sensor and they also do not have to include any magnetic material. This article presents a fiber optic force and torque sensor with six degrees of freedom. The general setup resembles a Stewart Platform, whereas its connecting beams are formed by the fiber itself, and the element creating stiffness may be of arbitrary form. Only a single fiber is needed to extract all six parameters since they are measured on six multiplexed fiber Bragg grating sensors. We demonstrate how the sensor is realized and show results of torque measurements with variable load.

  20. Seeing the unseen with localized optical contrast

    NASA Astrophysics Data System (ADS)

    Suran, Swathi; Bharadwaj, Krishna; Raghavan, Srinivasan; Varma, Manoj M.

    2016-03-01

    Optical wide-field imaging of sub-diffraction limit nanostructures is of interest in a wide array of applications. In applications where the nanostructures to be visualized are well isolated, a high enough optical contrast is sufficient to detect these. Here we demonstrate a technique to visualize nanoscale features, such as grain boundaries in Chemical Vapor Deposited (CVD) single layer graphene, which are just a few atom length defects, using regular bright field optical microscopy. This remarkably low lateral length scale was imaged using of a special thin film structure consisting of a water-soluble thin film layer deposited on a metal substrate, which produces a strong color change as a function of the film thickness. Small local water transport differences in the graphene layer result in thickness variation of the underlying thin film due to its solubility in water and produces color contrast readily observable under a normal brightfield optical microscope with the naked eye. We demonstrate the use of this technique for direct optical visualization of grain boundaries in graphene as wide as 2-5 nm and sub-100 nm photoresist lines. By using super-resolution image processing algorithms, we may be able to detect structure even smaller in size than currently achieved. We believe that this technique can be extended to single molecule detection.

  1. Scaling analysis of Anderson localizing optical fibers

    NASA Astrophysics Data System (ADS)

    Abaie, Behnam; Mafi, Arash

    2017-02-01

    Anderson localizing optical fibers (ALOF) enable a novel optical waveguiding mechanism; if a narrow beam is scanned across the input facet of the disordered fiber, the output beam follows the transverse position of the incoming wave. Strong transverse disorder induces several localized modes uniformly spread across the transverse structure of the fiber. Each localized mode acts like a transmission channel which carries a narrow input beam along the fiber without transverse expansion. Here, we investigate scaling of transverse size of the localized modes of ALOF with respect to transverse dimensions of the fiber. Probability density function (PDF) of the mode-area is applied and it is shown that PDF converges to a terminal shape at transverse dimensions considerably smaller than the previous experimental implementations. Our analysis turns the formidable numerical task of ALOF simulations into a much simpler problem, because the convergence of mode-area PDF to a terminal shape indicates that a much smaller disordered fiber, compared to previous numerical and experimental implementations, provides all the statistical information required for the precise analysis of the fiber.

  2. Intrinsic Localized Modes in Optical Photonic Lattices and Arrays

    NASA Astrophysics Data System (ADS)

    Christodoulides, Demetrios

    Discretizing light behavior requires optical elements that can confine optical energy at distinct sites. One possible scenario in implementing such arrangements is to store energy within low loss high Q-microcavities and then allow photon exchange between such components in time. This scheme requires high-contrast dielectric elements that became available with the advent of photonic crystal technologies. Another possible avenue where such light discretization can be directly observed and studied is that based on evanescently coupled waveguide arrays. As indicated in several studies, discrete systems open up whole new directions in terms of modifying light transport properties. One such example is that of discrete solitons. By nature, discrete solitons represent self-trapped wavepackets in nonlinear periodic structures and result from the interplay between lattice diffraction (or dispersion) and material nonlinearity. In optics, this class of self-localized states has been successfully observed in both one- and two-dimensional nonlinear waveguide arrays. In recent years such photonic lattices have been implemented or induced in a variety of material systems, including those with cubic (Kerr), quadratic, photorefractive, and liquid-crystal nonlinearities. In all cases the underlying periodicity or discreteness can lead to new families of optical solitons that have no counterpart whatsoever in continuous systems. Interestingly, these results paved the way for observations in other physical systems obeying similar evolution equations like Bose-Einstein condensates. New developments in laser writing ultrashort femtosecond laser pulses, now allow the realization of all-optical switching networks in fully 3D environments using nonlinear discrete optics. Using this approach all-optical routing can be achieved using blocking operations. The spatio-temporal evolution of optical pulses in both normally and anomalously dispersive arrays can lead to novel schemes for mode

  3. Columnar deformation of human red blood cell by highly localized fiber optic Bessel beam stretcher

    PubMed Central

    Lee, Sungrae; Joo, Boram; Jeon, Pyo Jin; Im, Seongil; Oh, Kyunghwan

    2015-01-01

    A single human red blood cell was optically stretched along two counter-propagating fiber-optic Bessel-like beams in an integrated lab-on-a-chip structure. The beam enabled highly localized stretching of RBC, and it induced a nonlinear mechanical deformation to finally reach an irreversible columnar shape that has not been reported. We characterized and systematically quantified this optically induced mechanical deformation by the geometrical aspect ratio of stretched RBC and the irreversible stretching time. The proposed RBC mechanism can realize a versatile and compact opto-mechanical platform for optical diagnosis of biological substances in the single cell level. PMID:26601005

  4. Realizing artificial spin ice states for magnetic colloids on optical trap arrays

    NASA Astrophysics Data System (ADS)

    Libál, A.; Reichhardt, C. M.; Olson Reichhardt, C. J.

    2016-10-01

    Colloids interacting with periodic substrates such as those created with optical traps are an ideal system in which to study various types of phase transitions such as commensurate to incommensurate states and melting behaviors, and they can also be used to create new types of ordering that can be mapped to spin systems. Here we numerically demonstrate how magnetic colloids interacting with an array of elongated two-state traps can be used to realize square artificial spin ice. By tuning the magnetic field, it is possible to precisely control the interaction strength between the colloids, making it possible to observe a transition from a disordered state to an ordered state that obeys the two-in/two-out ice rules. We also examine the dynamics of excitations of the ground state, including pairs of monopoles, and show that the monopoles have emergent attractive interactions. The strength of the interaction can be modified by the magnetic field, permitting the monopole velocity to be tuned.

  5. Design of proton beam optics to realize beam distribution transformation in C-ADS HTBT

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-Qi; Luo, Huan-Li; Hao, Hao; Tang, Jing-Yu; Li, Wei-Min; Xu, Hong-Liang

    2013-02-01

    The linac to the transmuter beam transport line (LTBT) connecting the end of the linac to the spallation target is a critical sub-system in the accelerator driven system (ADS). It has the function of transporting the accelerated high power proton beam to the target with a beam footprint satisfying the special requirements of the minor actinide (MA) transmuter. In this paper, a preliminary conceptual design of the hurling magnet to transmuter beam transport section (HTBT), as a part of the LTBT, for the China ADS (C-ADS) system is proposed and developed. In this design, a novel hurling magnet with a two dimensional amplitude modulation (AM) of 1 kHz and scanning of more than 10 kHz at 360° in transverse directions is used to realize a 300 mm diameter uniform distribution of beam on target. The preliminary beam optics design of C-ADS HTBT optimized to minimize the beam loss on the vacuum chamber and the radiation damage caused by back-scattering neutrons will be reported.

  6. Localized long gage fiber optic strain sensors

    NASA Astrophysics Data System (ADS)

    Fan, N. Y.; Huang, S.; Measures, R. M.

    1998-04-01

    Long gage length integrated strain sensing is frequently required in structural measurement applications. An optical fiber structural sensing system based on a low-coherence Michelson interferometer was built and shown to be of low cost and capable of absolute measurement and moderate accuracy for quasistatic measurement of strain or structural deformations. This type of sensor was found to be useful for monitoring the hoop-strain around structures like shells, cylinders and columns. We have also shown that localization of the sensing section of an optical fiber can be achieved through the use of one or more Bragg gratings. In effect, the sensing section of the optical fiber acts as a Fabry-Pérot interferometer. When a low-coherence source is used, interference is only attained when the cavity length of this Fabry-Pérot matches the optical path difference (OPD) between the two mirrors of a fiber optic Michelson interferometer. Changes in the sensing length are determined from the commensurate changes that must be made to the reference Michelson interferometer to maintain some fixed degree of interference. Recently, we have developed a novel single-ended localized fiber optic sensor for making absolute strain measurements over arbitrary (cm to m) long gage lengths using a tunable laser. The sensor's gage is again defined between two in-fiber broad-bandwidth Bragg gratings or one grating and the mirror coated end of the same fiber. For this sensing system the change in the OPD of the sensing Fabry-Pérot interferometer with respect to the OPD of a fixed Michelson reference interferometer is determined from the measurement of the phase change, recorded by a low-pass filtered photodetector, associated with a known sweep of the laser wavelength. This tunable laser demodulation scheme avoids the use of moving parts and lends itself to a compact, portable system. This type of sensor is particularly well suited for certain structural applications, such as monitoring the

  7. Light-guided localization within tissue using biocompatible surgical suture fiber as an optical waveguide.

    PubMed

    Choi, Woo June; Park, Kwan Seob; Lee, Byeong Ha

    2014-09-01

    In breast-conserving surgery, an optical wire is a useful surgical guiding tool to optically locate small lesions within the breast tissue. However, the use of a long silica glass fiber as the optical wire can be burdensome to patients because of its stiffness and nonbiocompatibility. We investigate the use of a biocompatible fiber for light localization in tissue. A surgical suture with a diameter of 400 μm and a few centimeters long is employed as the biocompatible optical waveguide to transport the visible laser light to the inner tissue site. Optical location is confirmed with glow ball-like red laser illumination at the tip of the suture embedded within a fresh chicken breast tissue. Effective optical power coupling to the suture is made by using a double-cladding fiber coupler. From this preliminary result, we realize practical light localization with biopolymer waveguides.

  8. Safety analysis and realization of safe information transmission optical LAN on high-speed railway

    NASA Astrophysics Data System (ADS)

    Tao, Ying; Wu, Chongqing; Li, Zuoyi

    2001-10-01

    High-speed railway that has been progressing very quickly is one of the greatest techniques in present time because of its high speed, economy, comfort, environment benefits and other advantages. And among all of these, safe is the backbone and lifeline, so the chief task in developing high-speed railway is to establish safety guarantee system. Also in this safety guarantee system, train control is one of the key techniques to guarantee safe train operation and to advance ability of transportation, so operation safe is located in the hardcore position. That is to say, it is imperative to set up a safe, real-time and reliable automatic train control system. And we can easily find out that this kind of system is now developed and applied in many countries. Important information related to train control, such as the received and transmitted information of track-sided equipment, is called safe information, because it deals with train operation's safe, reliability, and even directly with people's life and wealth. It is so important that if there were some kind of fault with its making, transmission, or processing, fatal accident would occur. So to some degree, it is impossible to transmit and process this information through present railway communication network because of the former's extreme importance and the latter's no safe capability. Therefore, a specific communication network that mainly considers about safe transmission and management should be established in order to realize the specific function for this specific information. High-speed railway safe information transmission optical LAN, which adopts optical fiber as transmission media and transmits safe information, is a kind of LAN designed for the request for safe, real-time and highly reliable automatic train control system in the process of our country's high-speed railway construction and commonly train speed. In this paper, after analyzing the characteristics of automatic train control system and the

  9. Direct optical nanoscopy with axially localized detection

    NASA Astrophysics Data System (ADS)

    Bourg, N.; Mayet, C.; Dupuis, G.; Barroca, T.; Bon, P.; Lécart, S.; Fort, E.; Lévêque-Fort, S.

    2015-09-01

    Evanescent light excitation is widely used in super-resolution fluorescence microscopy to confine light and reduce background noise. Here, we propose a method of exploiting evanescent light in the context of emission. When a fluorophore is located in close proximity to a medium with a higher refractive index, its near-field component is converted into light that propagates beyond the critical angle. This so-called supercritical-angle fluorescence can be captured using a high-numerical-aperture objective and used to determine the axial position of the fluorophore with nanometre precision. We introduce a new technique for three-dimensional nanoscopy that combines direct stochastic optical reconstruction microscopy (dSTORM) with dedicated detection of supercritical-angle fluorescence emission. We demonstrate that our approach of direct optical nanoscopy with axially localized detection (DONALD) typically yields an isotropic three-dimensional localization precision of 20 nm within an axial range of ∼150 nm above the coverslip.

  10. Experimental Realization of Strong Effective Magnetic Fields in an Optical Lattice

    SciTech Connect

    Aidelsburger, M.; Atala, M.; Trotzky, S.; Chen, Y.-A.; Bloch, I.; Nascimbene, S.

    2011-12-16

    We use Raman-assisted tunneling in an optical superlattice to generate large tunable effective magnetic fields for ultracold atoms. When hopping in the lattice, the accumulated phase shift by an atom is equivalent to the Aharonov-Bohm phase of a charged particle exposed to a staggered magnetic field of large magnitude, on the order of 1 flux quantum per plaquette. We study the ground state of this system and observe that the frustration induced by the magnetic field can lead to a degenerate ground state for noninteracting particles. We provide a measurement of the local phase acquired from Raman-induced tunneling, demonstrating time-reversal symmetry breaking of the underlying Hamiltonian. Furthermore, the quantum cyclotron orbit of single atoms in the lattice exposed to the magnetic field is directly revealed.

  11. Localized Turing patterns in nonlinear optical cavities

    NASA Astrophysics Data System (ADS)

    Kozyreff, G.

    2012-05-01

    The subcritical Turing instability is studied in two classes of models for laser-driven nonlinear optical cavities. In the first class of models, the nonlinearity is purely absorptive, with arbitrary intensity-dependent losses. In the second class, the refractive index is real and is an arbitrary function of the intracavity intensity. Through a weakly nonlinear analysis, a Ginzburg-Landau equation with quintic nonlinearity is derived. Thus, the Maxwell curve, which marks the existence of localized patterns in parameter space, is determined. In the particular case of the Lugiato-Lefever model, the analysis is continued to seventh order, yielding a refined formula for the Maxwell curve and the theoretical curve is compared with recent numerical simulation by Gomila et al. [D. Gomila, A. Scroggie, W. Firth, Bifurcation structure of dissipative solitons, Physica D 227 (2007) 70-77.

  12. Fluorophores as optical sensors for local forces.

    PubMed

    Marawske, Stefan; Dörr, Denis; Schmitz, Daniel; Koslowski, Axel; Lu, You; Ritter, Helmut; Thiel, Walter; Seidel, Claus A M; Kühnemuth, Ralf

    2009-08-24

    The main aim of this study is to investigate correlations between the impact of an external mechanical force on the molecular framework of fluorophores and the resultant changes in their fluorescence properties. Taking into account previous theoretical studies, we designed a suitable custom-tailored oligoparaphenylenevinylene derivative (OPV5) with a twisted molecular backbone. Thin foils made of PVC doped with 100 nM OPV were prepared. By applying uniaxial force, the foils were stretched and three major optical effects were observed simultaneously. First, the fluorescence anisotropy increased, which indicates a reorientation of the fluorophores within the matrix. Second, the fluorescence lifetime decreased by approximately 2.5% (25 ps). Finally, we observed an increase in the emission energy of about 0.2% (corresponding to a blue-shift of 1.2 nm). In addition, analogous measurements with Rhodamine 123 as an inert reference dye showed only minor effects, which can be attributed to matrix effects due to refractive index changes. To relate the observed spectroscopic changes to the underlying changes in molecular properties, quantum-chemical calculations were also performed. Semiempirical methods had to be used because of the size of the OPV5 chromophore. Two conformers of OPV5 (C(2) and C(i) symmetry) were considered and both gave very similar results. Both the observed blue-shift of fluorescence and the reduced lifetime of OPV5 under tensile stress are consistent with the results of the semiempirical calculations. Our study proves the feasibility of fluorescence-based local force probes for polymers under tension. Improved optical sensors of this type should in principle be able to monitor local mechanical stress in transparent samples down to the single-molecule level, which harbors promising applications in polymer science and nanotechnology.

  13. Realization of an ultrafast all-optical Toffoli logic gate based on the phase relation between two second order nonlinear optical signals

    NASA Astrophysics Data System (ADS)

    Kazemi, Mehdi Mohammad; Mazaheri Tehrani, Alireza; Zeb Khan, Tahir; Namboodiri, Mahesh; Materny, Arnulf

    2015-12-01

    A Toffoli logic gate (CCNOT gate) is a universal reversible logic gate from which all other reversible gates can be constructed. It has a three-bit input and output. The goal of our work was to realize a Toffoli gate where all inputs and outputs are realized optically, which allows for ultrafast switching processes. We demonstrate experimentally that a Toffoli logic gate can be created based on nonlinear multi-wave interactions of light with matter. Using femtosecond laser pulses, the all-optical Toffoli gate is based on the coherence of the optical signals produced via the nonlinear optical processes. Sum frequency (SF) and second harmonic (SH) generations are combined in such a way so as to yield the complete truth table of the universal reversible logic gate.

  14. Realization of rapid debugging for detection circuit of optical fiber gas sensor: Using an analog signal source

    NASA Astrophysics Data System (ADS)

    Tian, Changbin; Chang, Jun; Wang, Qiang; Wei, Wei; Zhu, Cunguang

    2015-03-01

    An optical fiber gas sensor mainly consists of two parts: optical part and detection circuit. In the debugging for the detection circuit, the optical part usually serves as a signal source. However, in the debugging condition, the optical part can be easily influenced by many factors, such as the fluctuation of ambient temperature or driving current resulting in instability of the wavelength and intensity for the laser; for dual-beam sensor, the different bends and stresses of the optical fiber will lead to the fluctuation of the intensity and phase; the intensity noise from the collimator, coupler, and other optical devices in the system will also result in the impurity of the optical part based signal source. In order to dramatically improve the debugging efficiency of the detection circuit and shorten the period of research and development, this paper describes an analog signal source, consisting of a single chip microcomputer (SCM), an amplifier circuit, and a voltage-to-current conversion circuit. It can be used to realize the rapid debugging detection circuit of the optical fiber gas sensor instead of optical part based signal source. This analog signal source performs well with many other advantages, such as the simple operation, small size, and light weight.

  15. Non-local classical optical correlation and implementing analogy of quantum teleportation.

    PubMed

    Sun, Yifan; Song, Xinbing; Qin, Hongwei; Zhang, Xiong; Yang, Zhenwei; Zhang, Xiangdong

    2015-03-17

    This study reports an experimental realization of non-local classical optical correlation from the Bell's measurement used in tests of quantum non-locality. Based on such a classical Einstein-Podolsky-Rosen optical correlation, a classical analogy has been implemented to the true meaning of quantum teleportation. In the experimental teleportation protocol, the initial teleported information can be unknown to anyone and the information transfer can happen over arbitrary distances. The obtained results give novel insight into quantum physics and may open a new field of applications in quantum information.

  16. Non-local classical optical correlation and implementing analogy of quantum teleportation

    PubMed Central

    Sun, Yifan; Song, Xinbing; Qin, Hongwei; Zhang, Xiong; Yang, Zhenwei; Zhang, Xiangdong

    2015-01-01

    This study reports an experimental realization of non-local classical optical correlation from the Bell's measurement used in tests of quantum non-locality. Based on such a classical Einstein–Podolsky–Rosen optical correlation, a classical analogy has been implemented to the true meaning of quantum teleportation. In the experimental teleportation protocol, the initial teleported information can be unknown to anyone and the information transfer can happen over arbitrary distances. The obtained results give novel insight into quantum physics and may open a new field of applications in quantum information. PMID:25779977

  17. Multi-Valued Neural Network Modified Model and Its Optical Realization,

    DTIC Science & Technology

    1995-03-07

    This paper presents a modified optical neural networK model, and the optical system, constructed with spatial light modulator PROM, can materialize...modified model improves cognitive ability of an optical neural network and also improves the storage capacity to a certain extent.

  18. Optical systems modeling and experimental realization of pump and probe technique: investigation of nonlinear absorption in colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Golinskaya, A.; Ezhova, K.; Kozlova, M.; Dneprovskii, V.

    2016-04-01

    Two optical systems modeling of laser and broadband radiation focusing, that is necessary for realization of the pump and probe method, was carried out in this work. Modeling was utilized to construct experimental setup for transmission spectra measuring of studied sample by probe nanosecond broadband radiation (coumarin photoluminescence) depending on the intensity of the nanosecond laser pump pulses. The saturation effect of absorption and the induced charge Stark-effect coexistence and predominate issue of these effects are determined by power of optical excitation. In dependence of tuning of excitation radiation frequency from basic exciton transition frequency nonlinear effects in colloidal CdSe/ZnS quantum dots has been investigated.

  19. INTERNATIONAL REPORT: Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003)

    NASA Astrophysics Data System (ADS)

    Felder, R.

    2005-08-01

    In 2003, the International Committee for Weights and Measures (CIPM) recommended updated values of the frequency for certain optical frequency standards recommended for the practical realization of the definition of the metre. The text of this CIPM Recommendation and details of the updated radiations are given here. The complete updated set of recommended radiations, including frequencies, wavelengths, uncertainties and operating conditions where appropriate, is available on the BIPM website.

  20. Realization of the Haldane-Kane-Mele Model in a System of Localized Spins

    NASA Astrophysics Data System (ADS)

    Kim, Se Kwon; Ochoa, Héctor; Zarzuela, Ricardo; Tserkovnyak, Yaroslav

    2016-11-01

    We study a spin Hamiltonian for spin-orbit-coupled ferromagnets on the honeycomb lattice. At sufficiently low temperatures supporting the ordered phase, the effective Hamiltonian for magnons, the quanta of spin-wave excitations, is shown to be equivalent to the Haldane model for electrons, which indicates the nontrivial topology of the band and the existence of the associated edge state. At high temperatures comparable to the ferromagnetic-exchange strength, we take the Schwinger-boson representation of spins, in which the mean-field spinon band forms a bosonic counterpart of the Kane-Mele model. The nontrivial geometry of the spinon band can be inferred by detecting the spin Nernst effect. A feasible experimental realization of the spin Hamiltonian is proposed.

  1. Matter-wave localization in a weakly perturbed optical lattice

    SciTech Connect

    Cheng, Yongshan; Adhikari, S. K.

    2011-11-15

    By numerical solution and variational approximation of the Gross-Pitaevskii equation, we studied the localization of a noninteracting and weakly interacting Bose-Einstein condensate in a weakly perturbed optical lattice in one and three dimensions. The perturbation achieved through a weak delocalizing expulsive or a linear potential as well as a weak localizing harmonic potential removes the periodicity of the optical lattice and leads to localization. We also studied some dynamics of the localized state confirming its stability.

  2. Transformative Hispanic-Serving Institutions: Realizing Equity Praxis through Community Connections and Local Solutions

    ERIC Educational Resources Information Center

    Ruiz, Marisol; Valverde, Michelle

    2012-01-01

    Schools serve as antidemocratic spaces where teacher, parent, community member, and student voices are typically disregarded. Instead, philanthropists and businesses are allowed to drive school and district agendas. An exploration of 3 local efforts that connect a Hispanic-Serving Institution (HSI) with prekindergarten to Grade 12 students and…

  3. Realization of a single-beam mini magneto-optical trap: A candidate for compact CPT cold atom-clocks

    NASA Astrophysics Data System (ADS)

    Xu, B. M.; Chen, X.; Wang, J.; Zhan, M. S.

    2008-12-01

    We have demonstrated the experimental realization of a single-beam mini magneto-optical trap of 87Rb atoms, originally designed for a cold atom-clock with coherent population trapping (CPT). Only one beam is used as cooling, trapping and repumping beams rather than the three pairs of orthogonal beams of the standard magneto-optical trap. The core optics, which consists of a modified pyramidal funnel type mirror, a quarter-wave plate and a retroreflect mirror, is installed inside a mini titanium cubic chamber. The vacuum system, rubidium source, magnetic field coils and beam expander are designed in a compact geometry. As many as 1.1 × 10 7 rubidium atoms are cooled and trapped, and thus the mini trap is ready for the implementation of a novel compact coherent population trapping cold atom-clock.

  4. Realization of optical bistability and multistability in Landau-quantized graphene

    NASA Astrophysics Data System (ADS)

    Hamedi, H. R.; Asadpour, S. H.

    2015-05-01

    The solution of input-output curves in an optical ring cavity containing Landau-quantized graphene is theoretically investigated taking the advantage of density-matrix method. It is found that under the action of strong magnetic and infrared laser fields, one can efficiently reduce the threshold of the onset of optical bistability (OB) at resonance condition. At non-resonance condition, we observed that graphene metamaterial can support the possibility to obtain optical multistability (OM), which is more practical in all-optical switching or coding elements. We present an analytical approach to elucidate our simulations. Due to very high infrared optical nonlinearity of graphene stemming from very unique and unusual properties of quantized Landau levels near the Dirac point, such controllability on OB and OM may provide new technological possibilities in solid state quantum information science.

  5. Realization of optical bistability and multistability in Landau-quantized graphene

    SciTech Connect

    Hamedi, H. R.; Asadpour, S. H.

    2015-05-14

    The solution of input-output curves in an optical ring cavity containing Landau-quantized graphene is theoretically investigated taking the advantage of density-matrix method. It is found that under the action of strong magnetic and infrared laser fields, one can efficiently reduce the threshold of the onset of optical bistability (OB) at resonance condition. At non-resonance condition, we observed that graphene metamaterial can support the possibility to obtain optical multistability (OM), which is more practical in all-optical switching or coding elements. We present an analytical approach to elucidate our simulations. Due to very high infrared optical nonlinearity of graphene stemming from very unique and unusual properties of quantized Landau levels near the Dirac point, such controllability on OB and OM may provide new technological possibilities in solid state quantum information science.

  6. Imaging the local density of states of optical corrals.

    PubMed

    Chicanne, C; David, T; Quidant, R; Weeber, J C; Lacroute, Y; Bourillot, E; Dereux, A; Colas Des Francs, G; Girard, C

    2002-03-04

    This paper reports the experimental observation, at optical frequencies, of the electromagnetic local density of states established by nanostructures corresponding to the recently introduced concept of optical corral [G. Colas des Francs et al., Phys. Rev. Lett. 86, 4950 (2001)]. The images obtained by a scanning near-field optical microscope under specific operational conditions are found in agreement with the theoretical maps of the optical local density of states. A clear functionality of detection by the scanning near-field optical microscope is thereby identified since the theoretical maps are computed without including any specific tip model.

  7. Design and realization of functional metamaterial basis structures through optical phase manipulation based interference lithography

    NASA Astrophysics Data System (ADS)

    Behera, Saraswati; Joseph, Joby

    2017-10-01

    Functional metamaterials are of interest to research due to their exotic response to electromagnetic field, leading to interesting properties and wide applications that are unachievable in nature. Most of the study in this field is limited to theory and currently there are certain multi-step experimental studies reported. However, there is not much exploration of an interference lithography technique that is rapid and cost effective to realize such structures over a large area and in bulk (3D) for real world applications. We present the design of 2D and 3D periodic functional metamaterial basis structures arranged in a square and hexagonal lattice using the interference of multiple phase manipulated plane beams. The designed structures are realized in a single step using a phase only spatial light modulator (SLM) assisted Fourier filtering experimental setup in a few seconds. The phase and amplitude of the individual interfering beams are manipulated computationally using MATLAB to generate an irradiance profile for metamaterial structures of different basis features and orientations. The designed structures are: a linearly packed rectangular array, a hexagonally packed rectangular array, ta riangular lattice array, a star, U, V, C, dual-symmetric and dual-asymmetric shaped structures. Three dimensional stacks of such structures can also be realized involving an axial beam into the plane of interference. Templates of some of the microstructures are realized on a positive photoresist that have a spatial periodicity of 6.5 μm. The transfer of the realized patterns to a suitable metallodielectric medium may find interesting applications reported so far in the literature or may lead to some interesting applications.

  8. Realization of two-dimensional Aubry-André localization of light waves via electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Li, Hui-jun; Dou, Jian-peng; Huang, Guoxiang

    2014-03-01

    We propose a scheme to construct a two-dimensional Aubry-André (AA) model and realize two-dimensional AA localization of light waves via electromagnetically induced transparency (EIT). The system we suggest is a cold, resonant atomic gas with an N-type level configuration and interacting with probe, control, assisted, and far-detuned laser fields. We show that under EIT conditions the probe-field envelope obeys a modified nonlinear Schrödinger equation with a quasiperiodic potential, which becomes a two-dimensional nonlinear AA model when the system parameters are suitably chosen. The quasiperiodic potential is obtained by the cross-phase modulation of the assisted field and the Stark shift of the far-detuned laser field. In addition, the cubic nonlinearity term appearing in the model is contributed by the self-phase modulation of the probe field. We demonstrate that the system can be used to not only realize various two-dimensional AA localizations of light waves, but also to display nonlinearity and dimensionality effects on the AA localizations.

  9. Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths.

    PubMed

    Jia, Xiaojun; Yan, Zhihui; Duan, Zhiyuan; Su, Xiaolong; Wang, Hai; Xie, Changde; Peng, Kunchi

    2012-12-21

    Entangled states of light including low-loss optical fiber transmission and atomic resonance frequencies are essential resources for future quantum information networks. We present the experimental achievement on the three-color entanglement generation at 852, 1550, and 1440 nm wavelengths for optical continuous variables. The entanglement generation system consists of two cascaded nondegenerated optical parametric oscillators (NOPOs). The flexible selectivity of nonlinear crystals in the two NOPOs and the tunable property of NOPO provide large freedom for the frequency selection of three entangled optical beams. The presented system will hopefully be developed as a practical entangled source to be used in quantum-information networks with atomic storage units and long fiber transmission lines.

  10. Local anesthesia and exposure for carotid endarterectomy: background and technical realization.

    PubMed

    Falkensammer, J; Duschek, N; Skrinjar, E; Hirsch, K; Senekowitsch, C; Assadian, A

    2012-02-01

    While carotid endarterectomy is an established method for the treatment of symptomatic as well as high-grade asymptomatic carotid artery stenoses, there is a considerable variation concerning the kind of anesthesia used as well as technical details of the operation. In the present article differing arguments on local versus general anesthesia as well as a transverse versus a longitudinal skin incision will be discussed. Furthermore, possible access routes to the carotid bifurcation, the retrojugular compared to the ventrojugular approach, will be presented in detail.

  11. Optical integration of laterally modified multiple quantum well structures by implantation enhanced intermixing to realize gain coupled DFB lasers

    NASA Astrophysics Data System (ADS)

    Hofsäß, V.; Kuhn, J.; Kaden, C.; Härle, V.; Bolay, H.; Scholz, F.; Schweizer, H.; Hillmer, H.; Lösch, R.; Schlapp, W.

    1995-12-01

    We report on the realization of gain coupled distributed feedback (GC-DFB) lasers using masked implantation enhanced intermixing (MIEI) in a full planar technology. The process requires only planar epitaxy steps to minimize ion straggling. We present a detailed investigation on the integration processing steps as implantation, subsequent annealing and regrowth with InP (MOCVD). We also discuss critical technology steps. Surface morphology depends very sensitive on implantation and annealing. Nonradiative recombination caused by defects leads to high losses in optical devices. We achieve good results for an AsH 3 stabilized annealing step in a MOCVD equipment, compared to rapid thermal annealing (RTA), which proceeds as the second epitaxial step. Photoluminescence (PL) studies show the excellent interface quality. High homogeneity and small linewidth after the integration process indicate sufficient quality to realize electrical gain coupled DFB-laser devices by IEI.

  12. Optical study of a polymeric LED with a nano-sized electrode realized by a modified SNOM setup

    NASA Astrophysics Data System (ADS)

    Micheletto, Ruggero; Yoshimatsu, Nobuki; Yokokawa, Masatoshi; An, Taekyung; Lee, Haiwon; Okazaki, Satoshi

    2001-09-01

    Semiconductive polythiophene derivate polymers show electroluminescence (EL) properties if excited under opportune conditions and can be used as active element in novel efficient light-emitting diodes (LEDs) or in photovoltaic applications as detectors or solar cells. These intriguing and innovative materials are so far studied in bulk condition, under the excitation of two macroscopic electrodes, averaging the optical phenomena over a large region. To realize a better understanding of the spatial distribution of the EL on the films and its optical properties, we modified a scanning near-field optical microscope (SNOM) setup in order to measure the EL signal of poly-3-(2-(5-chlorobenzotriazolo)ethyl)thiophene. The film were deposited over a macroscopic electrode substrate (a transparent indium tin oxide (ITO) treated glass), while a sharp aluminum coated glass probe worked as a nano-sized Al electrode, realizing an Al/polymer/ITO light emitting device in a highly confined region. We describe in detail the methodology we used for the novel EL measurements and we will show the first resulting high-resolution EL emission mapping, as well as other spectroscopic and morphological characterization of the film used.

  13. Realizing the Harper Hamiltonian and Spin-Orbit Coupling with Laser-Assisted Tunneling in an Optical Lattice

    NASA Astrophysics Data System (ADS)

    Kennedy, Colin; Miyake, Hiro; Burton, Cody; Chung, Woo Chang; Siviloglou, Georgios; Ketterle, Wolfgang

    2014-05-01

    The study of charged particles in a magnetic field has led to paradigm shifts in condensed matter physics including the discovery of topologically ordered states like the quantum Hall and fractional quantum Hall states. Quantum simulation of such systems using neutral atoms has drawn much interest recently in the atomic physics community due to the versatility and defect-free nature of such systems. We discuss our recent experimental realization of the Harper Hamiltonian and strong, uniform effective magnetic fields for neutral particles in an optical lattice. Additionally, our scheme represents a promising system to realize spin-orbit coupling and the quantum spin Hall states without flipping atomic spin states and thus without the intrinsic heating that comes with near-resonant Raman lasers. We point out that our scheme can be implemented all optically through the use of a period-tripling superlattice, offering faster switching times and more precise control than with magnetic field gradients. Finally, we show that this method is very general for engineering novel single particle spectra in an optical lattice and can be used to map out Hofstadter's butterfly.

  14. Improved high order grating method to realize wide angle beam steering on liquid crystal optical phased array

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Wang, Xiangru; Xiong, Caidong; Huang, Ziqiang; Du, Jing; Tan, Qinggui; Li, Man; Wu, Shuanghong; Qiu, Qi

    2015-11-01

    To achieve a wider scanning range of liquid crystal optical phased array (LC-OPA), in this paper, a novel method of improved high order grating (i-HOG) is proposed in one device without introducing any other devices. The method of i-HOG breaks through the traditional ideas of modulo 𝟐𝛑 phase and takes the fringe effect into account to have a multi order extension. Subsequently, the method is verified by numerical simulation showing that it realizes a scanning range of wider than 20 degrees and even wider.

  15. Fano resonant Ge2Sb2Te5 nanoparticles realize switchable lateral optical force

    NASA Astrophysics Data System (ADS)

    Cao, Tun; Mao, Libang; Gao, Dongliang; Ding, Weiqiang; Qiu, Cheng-Wei

    2016-03-01

    Sophisticated optical micromanipulation of small biomolecules usually relies on complex light, e.g., structured light, highly non-paraxial light, or chiral light. One emerging technique is to employ chiral light to drive the chiral nanoparticle along the direction perpendicular to the propagation of the light, i.e., the lateral optical force. Here, we theoretically study the lateral optical force exerted by a entirely Gaussian beam. For the very first time we demonstrate that the Fano resonances (FRs) of the Ge2Sb2Te5 (GST) phase-change nanoparticles encapsulated with Au shells could enable a conventional Gaussian laser to exert a lateral force on such a dielectric GST nanoparticle, attributed to the strongly asymmetric energy flow around the sphere in the dipole-quadrupole FRs. More interestingly, the direction of this lateral force could be reversible during the state transition (i.e., from amorphous to crystalline). By bonding small biomolecules to the outer surface of the phase-change nanoparticle, the particle behaves as a direction-selective vehicle to transport biomolecules along opposite directions, at pre-assessed states of the Ge2Sb2Te5 core correspondingly. Importantly, the origin of the reversal of the lateral optical force is further unveiled by the optical singularity of the Poynting vector. Our mechanism of tailoring the FRs of phase-change nanoparticles, not just limited to GST, may bring a new twist to optical micromanipulation and biomedical applications.Sophisticated optical micromanipulation of small biomolecules usually relies on complex light, e.g., structured light, highly non-paraxial light, or chiral light. One emerging technique is to employ chiral light to drive the chiral nanoparticle along the direction perpendicular to the propagation of the light, i.e., the lateral optical force. Here, we theoretically study the lateral optical force exerted by a entirely Gaussian beam. For the very first time we demonstrate that the Fano resonances

  16. Realization of particular liquid crystal cells for propagation and characterization of optical spatial soliton.

    PubMed

    De Luca, Antonio; Coschignano, Gianluca; Umeton, Cesare; Morabito, Marco

    2006-06-12

    We report on the design, fabrication process and characterization of liquid crystal cells for investigation of optical spatial solitons. Controlling of the director orientation at the input interface, as well as in the bulk, allows to obtain configurations that can produce distinct optical phenomena in a light beam propagating in the cell. For a particular director configuration, it is possible to produce two waves inside the nematic liquid crystal cell: the extraordinary and the ordinary one. With a different director configuration, the extraordinary wave only is obtained, which propagates inside the cell at an angle of more than 7 degrees with respect to the impinging wave vector direction. Under this peculiar configuration and by applying an external voltage, it is possible to have a good control of the propagation direction of the optical spatial soliton.

  17. Sub-wavelength Unidirectional Antenna Realized by Stacked Spoof Localized Surface Plasmon Resonators

    NASA Astrophysics Data System (ADS)

    Qin, Feifei; Zhang, Qiang; Xiao, Jun-Jun

    2016-07-01

    The use of resonant structures to control scattering strength and directionality is of importance in various electromagnetic systems. Here we propose and demonstrate sub-wavelength unidirectional scattering by two nearby spoof localized surface plasmon resonators for microwave. The principle is that metal surfaces corrugated by grooves can support magnetic dipolar modes, as well as electric dipolar modes. The resonance is essentially dictated by the geometric parameter of the structure, enabling extremely high degrees of freedom for tuning the scattering properties of the resonator. Particularly, by adjusting the thickness of the resonators, we can make the magnetic dipole mode of one resonator have nearly the same resonant frequency with that of the electric dipole mode of the other resonator. We show that nearly zero backscattering happens when the distance between the two resonators is subwavelenght but larger than a certain value, otherwise strong vertical coupling and mode splitting occur. The results can be extended to other frequency bands and might find application in unique resonant devices as a radio frequency (RF) antenna, filter and metasurface.

  18. Sub-wavelength Unidirectional Antenna Realized by Stacked Spoof Localized Surface Plasmon Resonators.

    PubMed

    Qin, Feifei; Zhang, Qiang; Xiao, Jun-Jun

    2016-07-13

    The use of resonant structures to control scattering strength and directionality is of importance in various electromagnetic systems. Here we propose and demonstrate sub-wavelength unidirectional scattering by two nearby spoof localized surface plasmon resonators for microwave. The principle is that metal surfaces corrugated by grooves can support magnetic dipolar modes, as well as electric dipolar modes. The resonance is essentially dictated by the geometric parameter of the structure, enabling extremely high degrees of freedom for tuning the scattering properties of the resonator. Particularly, by adjusting the thickness of the resonators, we can make the magnetic dipole mode of one resonator have nearly the same resonant frequency with that of the electric dipole mode of the other resonator. We show that nearly zero backscattering happens when the distance between the two resonators is subwavelenght but larger than a certain value, otherwise strong vertical coupling and mode splitting occur. The results can be extended to other frequency bands and might find application in unique resonant devices as a radio frequency (RF) antenna, filter and metasurface.

  19. Sub-wavelength Unidirectional Antenna Realized by Stacked Spoof Localized Surface Plasmon Resonators

    PubMed Central

    Qin, Feifei; Zhang, Qiang; Xiao, Jun-Jun

    2016-01-01

    The use of resonant structures to control scattering strength and directionality is of importance in various electromagnetic systems. Here we propose and demonstrate sub-wavelength unidirectional scattering by two nearby spoof localized surface plasmon resonators for microwave. The principle is that metal surfaces corrugated by grooves can support magnetic dipolar modes, as well as electric dipolar modes. The resonance is essentially dictated by the geometric parameter of the structure, enabling extremely high degrees of freedom for tuning the scattering properties of the resonator. Particularly, by adjusting the thickness of the resonators, we can make the magnetic dipole mode of one resonator have nearly the same resonant frequency with that of the electric dipole mode of the other resonator. We show that nearly zero backscattering happens when the distance between the two resonators is subwavelenght but larger than a certain value, otherwise strong vertical coupling and mode splitting occur. The results can be extended to other frequency bands and might find application in unique resonant devices as a radio frequency (RF) antenna, filter and metasurface. PMID:27405356

  20. Fiber Optic Tactical Local Network (FOTLAN)

    NASA Technical Reports Server (NTRS)

    Bergman, L. A.; Hartmayer, R.; Wu, W. H.; Cassell, P.; Edgar, G.; Lambert, J.; Mancini, R.; Jeng, J.; Pardo, C.

    1991-01-01

    A 100 Mbit/s FDDI (fiber distributed data interface) network interface unit is described that supports real-time data, voice and video. Its high-speed interrupt-driven hardware architecture efficiently manages stream and packet data transfer to the FDDI network. Other enhancements include modular single-mode laser-diode fiber optic links to maximize node spacing, optic bypass switches for increased fault tolerance, and a hardware performance monitor to gather real-time network diagnostics.

  1. The research and realization of digital management platform for ultra-precision optical elements within life-cycle

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Wang, Jian; Li, Lijuan; Zhou, Kun

    2014-08-01

    In order to solve the information fusion, process integration, collaborative design and manufacturing for ultra-precision optical elements within life-cycle management, this paper presents a digital management platform which is based on product data and business processes by adopting the modern manufacturing technique, information technique and modern management technique. The architecture and system integration of the digital management platform are discussed in this paper. The digital management platform can realize information sharing and interaction for information-flow, control-flow and value-stream from user's needs to offline in life-cycle, and it can also enhance process control, collaborative research and service ability of ultra-precision optical elements.

  2. Mode-locked laser realized by selective area growth for short pulse generation and optical clock recovery in TDM systems

    NASA Astrophysics Data System (ADS)

    Lach, Eugen; Baums, Dieter; Bouayad-Amine, Jamal; Hache, Claudia; Haisch, Hansjorg; Kuhn, Edgar; Satzke, Klaus; Schilling, Michael; Weber, Juergen; Zielinski, Erich

    1996-04-01

    We report on monolithically integrated active/passive coupled cavity mode locked lasers for 1.55 micrometer realized by selective area growth technology of InGaAs(P) quantum wells. Mode locked FP or DBR lasers are fabricated with an integrated cavity comprising up to three different band gaps. The devices emit short light pulses at around 10 GHz repetition rate with pulse width down to 8.7 ps. A time-bandwidth product of 0.5 is achieved for mode locked DBR lasers. Active/passive integrated mode locked laser is used for generation of optical 10 GHz clock signal from optical 10 Gb/s PRBS RZ data stream injected into the laser cavity.

  3. Realization of compact broadband optical diode in linear air-hole photonic crystal waveguide.

    PubMed

    Ye, Han; Yu, Zhongyuan; Liu, Yumin; Chen, Zhihui

    2016-10-17

    In this paper, we present a compact broadband design for reciprocal optical diode in linear two-dimensional air-hole photonic crystal waveguide. The forward even-to-odd mode conversion and backward blockade of even mode are achieved by introducing the functional region with 1.2a×2.8a area. The inside dielectric distribution is obtained by finite element method combining geometry projection method and the method of moving asymptotes. In our design, only one asymmetrically deformed air hole locates in the functional region. The parabola-like unidirectionality keeps higher than 15dB within the operational bandwidth 0.01c/a (about 40nm when 1550nm is the center wavelength), and the maximum value reaches approximate 24 dB near the center frequency. Meanwhile, the forward transmission efficiency keeps higher than 89.9%. Moreover, the optical diode effect of the proposed design is validated in three-dimensional model and the tolerance of the imperfection in fabricating is demonstrated as well. This compact broadband optical diode can contribute to the all-optical integrated circuits.

  4. Protein phosphorylation: Localization in regenerating optic axons

    SciTech Connect

    Larrivee, D. )

    1990-09-01

    A number of axonal proteins display changes in phosphorylation during goldfish optic nerve regeneration. (1) To determine whether the phosphorylation of these proteins was closely linked to their synthesis in the retinal ganglion cell body, cycloheximide was injected intraocularly into goldfish whose optic nerves had been regenerating for 3 weeks. Cycloheximide reduced the incorporation of (3H)proline and 32P orthophosphate into total nerve protein by 84% and 46%, respectively. Of the 20 individual proteins examined, 17 contained less than 15% of the (3H)proline label measured in corresponding controls, whereas 18 proteins contained 50% or more of the 32P label, suggesting that phosphorylation was largely independent of synthesis. (2) To determine whether the proteins were phosphorylated in the ganglion cell axons, axonal transport of proteins was blocked by intraocular injection of vincristine. Vincristine reduced (3H)proline labeling of total protein by 88% and 32P labeling by 49%. Among the individual proteins (3H)proline labeling was reduced by 90% or more in 18 cases but 32P labeling was reduced only by 50% or less. (3) When 32P was injected into the cranial cavity near the ends of the optic axons, all of the phosphoproteins were labeled more intensely in the optic tract than in the optic nerve. These results suggest that most of the major phosphoproteins that undergo changes in phosphorylation in the course of regeneration are phosphorylated in the optic axons.

  5. Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium.

    PubMed

    Akamatsu, Daisuke; Nakajima, Yoshiaki; Inaba, Hajime; Hosaka, Kazumoto; Yasuda, Masami; Onae, Atsushi; Hong, Feng-Lei

    2012-07-02

    A narrow linewidth diode laser system at 689 nm is realized by phase-locking an extended cavity diode laser to one tooth of a narrow linewidth optical frequency comb. The optical frequency comb is phase-locked to a narrow linewidth laser at 1064 nm, which is frequency stabilized to a high-finesse optical cavity. We demonstrate the magneto-optical trapping of Sr using an intercombination transition with the developed laser system.

  6. Realization of non-PT -symmetric optical potentials with all-real spectra in a coherent atomic system

    NASA Astrophysics Data System (ADS)

    Hang, Chao; Gabadadze, Gregory; Huang, Guoxiang

    2017-02-01

    We present a physical setup for realizing all-real-spectrum optical potentials with arbitrary gain-and-loss distributions in a coherent medium consisting of a cold three-level atomic gas driven by control and probe laser fields. We show that by the interference of Raman resonances and the Stark shift induced by a far-detuned laser field, tunable, non-parity-time (non-PT )-symmetric optical potentials with all-real spectra proposed recently by Nixon and Yang [Phys. Rev. A 93, 031802(R) (2016), 10.1103/PhysRevA.93.031802] can be actualized physically. We also show that when the real parts of the non-PT -symmetric optical potentials are tuned cross certain thresholds, phase transitions—where the eigenspectrum of the system changes from all real to complex—may occur and hence the stability of the probe-field propagation is altered. Our scheme can also be extended to high dimensions and to a nonlinear propagation regime, where stable optical solitons with power of the order of nano-Watts may be generated in the system.

  7. Realization of pure frequency modulation of DFB laser via combined optical and electrical tuning.

    PubMed

    Tian, Chao; Chen, I-Chun Anderson; Park, Seong-Wook; Martini, Rainer

    2013-04-08

    In this paper we present a novel approach to convert AM signal into FM signal in semiconductor lasers via off resonance optical pumping and report on experimental results obtained with a commercial DFB laser. Aside of demonstrating discrete and fast frequency modulation, we achieve pure frequency modulation through combination with electrical modulation suppressing the associated amplitude modulation, which is detrimental to application such as spectroscopy and communication.

  8. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency.

    PubMed

    Xu, Qianfan; Sandhu, Sunil; Povinelli, Michelle L; Shakya, Jagat; Fan, Shanhui; Lipson, Michal

    2006-03-31

    We provide the first experimental observation of structure tuning of the electromagnetically induced transparency-like spectrum in integrated on-chip optical resonator systems. The system consists of coupled silicon ring resonators with 10 microm diameter on silicon, where the coherent interference between the two coupled resonators is tuned. We measured a transparency-resonance mode with a quality factor of 11,800.

  9. All-optical devices realized by the post-growth processing of multiquantum-well structures

    NASA Astrophysics Data System (ADS)

    LiKamWa, Patrick; Kan'an, Ayman M.; Dutta, Mitra; Pamulapati, Jagadeesh

    1997-01-01

    An inexpensive and reliable process for the area-selective disordering of MQW structures is reported. The method relies on the diffusion, by rapid thermal annealing, of surface vacancies into the quantum wells thereby intermixing the Ga and Al atoms between the wells and barriers. A silicon oxide cap that is formed by curing a spun-on solution of glass forming compound acts as porous layer that enhances the formation of surface vacancies by allowing out-diffusion of Ga and Al atoms. This technique has been applied to the fabrication of two integrated optical devices. One is the nonlinear zero-gap directional coupler with disordered input and output branching waveguides, and the other is the symmetric nonlinear integrated Mach-Zehnder interferometer with one arm containing a non-intermixed MQW section. In both devices, the mechanism for the switching is the nonlinear refractive index that is caused by photo-generated carriers. Since this mechanism entails absorption of some of the pump beam, it is hence very important that the optical absorption be confined to the active sections only. Selective area disordering is shown to be very effective at defining regions of different bandgap energies. Hence it can be ensured that the energy of the pump laser beam is too low in comparison to the bandgap energy of the passive regions to be absorbed and the free carriers are only created in the non-intermixed active sections. The devices investigated using a pump-probe setup, exhibited strong all-optical switching behavior with a contrast ratio of better than 7:1. The controlled selective area intermixing of MQW structures will potentially play a significant role in the advancement of photonic integrated circuits.

  10. Fiber optic vibration sensor for high-power electric machines realized using 3D printing technology

    NASA Astrophysics Data System (ADS)

    Igrec, Bojan; Bosiljevac, Marko; Sipus, Zvonimir; Babic, Dubravko; Rudan, Smiljko

    2016-03-01

    The objective of this work was to demonstrate a lightweight and inexpensive fiber-optic vibration sensor, built using 3D printing technology, for high-power electric machines and similar applications. The working principle is based on modulating the light intensity using a blade attached to a bendable membrane. The sensor prototype was manufactured using PolyJet Matrix technology with DM 8515 Grey 35 Polymer. The sensor shows linear response, expected bandwidth (< 150 Hz), and from our measurements we estimated the damping ratio for used polymer to be ζ ≍ 0.019. The developed prototype is simple to assemble, adjust, calibrate and repair.

  11. Annihilating optical angular momentum and realizing a meta-waveplate with anomalous functionalities.

    PubMed

    Yang, Hui; Li, Guanhai; Su, Xiaofang; Cao, Guangtao; Zhao, Zengyue; Yu, Feilong; Chen, Xiaoshuang; Lu, Wei

    2017-07-24

    Manipulating the polarization states of electromagnetic waves, a fundamental issue in optics, has attracted intense attention. However, most of the reported devices are either so bulky or with specific functionalities. Here we propose a conceptually new approach to design an ultra-thin meta-waveplate (MWP) with anomalous functionalities. By elaborately designing the structural units of the metasurface, the incident right circular polarized (CP) light carrying spin angular momentum can be coupled into two surface plasmon modes with opposite orbital angular momenta which interaction with each other in the near-field, degenerating to a linear polarized (LP) light in the far-filed. The incoming spin angular momentum is annihilated and the designed MWP can function as a quarter-waveplate. However, compared with the conventional quarter-waveplates, our designed MWP owns the unidirectional function (only converting CP light to LP light) with a certain output polarization angle, which provides an extra degree of freedoms in controlling the polarization. Moreover, the designed MWP can function as a chiral material and exhibiting optical rotation properties within a broad bandwidth.

  12. Optical localization in quasi-periodic multilayers

    NASA Astrophysics Data System (ADS)

    Vasconcelos, M. S.; Albuquerque, E. L.; Mariz, A. M.

    1998-07-01

    We investigate the optical transmission spectra of quasi-periodic dielectric multilayer slabs arranged in a fashion that exhibits what has been called deterministic disorders. They can be of the so-called substitutional sequences type, and are characterized by the nature of their Fourier spectrum, which can be dense pure point (e.g. a Fibonacci sequence) or singular continuous (e.g. Thue-Morse and double-period sequences). The transmission coefficients are conveniently derived by using a theoretical model based on the transfer-matrix approach. A comparison between the oblique-incidence optical transmission spectrum and the normal-incidence one shows quite a different transmission behaviours over a particular range of frequency.

  13. Magnetic domains and defects in ferromagnetic liquid crystal colloids realized with optical patterning

    NASA Astrophysics Data System (ADS)

    Hess, Andrew; Liu, Qingkun; Smalyukh, Ivan

    A promising approach in designing composite materials with unusual physical behavior combines solid nanostructures and orientationally ordered soft matter at the mesoscale. Such composites not only inherit properties of their constituents but also can exhibit emergent behavior, such as ferromagnetic ordering of colloidal metal nanoparticles forming mesoscopic magnetization domains when dispersed in a nematic liquid crystal. Here we demonstrate the optical patterning of domain structures and topological defects in such ferromagnetic liquid crystal colloids which allows for altering their response to magnetic fields. Our findings reveal the nature of the defects in this soft matter system which is different as compared to non-polar nematic and ferromagnetic systems alike. This research was supported by the NSF Grant DMR-1420736.

  14. The realization of the dipole (γ, γ) method and its application to determine the absolute optical oscillator strengths of helium

    PubMed Central

    Xu, Long-Quan; Liu, Ya-Wei; Kang, Xu; Ni, Dong-Dong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Zhu, Lin-Fan

    2015-01-01

    The dipole (γ, γ) method, which is the inelastic x-ray scattering operated at a negligibly small momentum transfer, is proposed and realized to determine the absolute optical oscillator strengths of the vanlence-shell excitations of atoms and molecules. Compared with the conventionally used photoabsorption method, this new method is free from the line saturation effect, which can seriously limit the accuracies of the measured photoabsorption cross sections for discrete transitions with narrow natural linewidths. Furthermore, the Bethe-Born conversion factor of the dipole (γ, γ) method varies much more slowly with the excitation energy than does that of the dipole (e, e) method. Absolute optical oscillator strengths for the excitations of 1s2 → 1 snp(n = 3 − 7) of atomic helium have been determined using the high-resolution dipole (γ, γ) method, and the excellent agreement of the present measurements with both those measured by the dipole (e, e) method and the previous theoretical calculations indicates that the dipole (γ, γ) method is a powerful tool to measure the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules. PMID:26678298

  15. Single-step optical realization of bio-inspired dual-periodic motheye and gradient-index-array photonic structures.

    PubMed

    Behera, Saraswati; Joseph, Joby

    2016-08-01

    This Letter demonstrates a single-step optical realization method for hexagonal and square lattice-based dual periodic motheye and gradient-index-array photonic structures over large areas. Computed phase mask of gradient interference patterns are used as inputs to a phase-only spatial light modulator (SLM), and the first-order diffracting beams are coherently superposed with the help of a 2f-2f Fourier filtering setup to avoid complex optical geometry for generation and control of individual beams. The simulated interference patterns are verified experimentally through a CMOS camera. The fabricated micro-structures on a positive photoresist are shown to have a major periodicity of 638 μm and minor periodicity of 25.2 μm, with the air hole diameter varying from 22.7 to 6.9 μm along the X and Y axes. The depth of the fabricated structure gradually varies from 4.203 μm at the center to 1.818 μm at the corner. These structures may be scaled down to submicron features that can show improved anti-reflection properties for solar energy harvesting and GRIN lens for optical wavelength region.

  16. Localized structures in dissipative media: from optics to plant ecology

    PubMed Central

    Tlidi, M.; Staliunas, K.; Panajotov, K.; Vladimirov, A. G.; Clerc, M. G.

    2014-01-01

    Localized structures (LSs) in dissipative media appear in various fields of natural science such as biology, chemistry, plant ecology, optics and laser physics. The proposal for this Theme Issue was to gather specialists from various fields of nonlinear science towards a cross-fertilization among active areas of research. This is a cross-disciplinary area of research dominated by nonlinear optics due to potential applications for all-optical control of light, optical storage and information processing. This Theme Issue contains contributions from 18 active groups involved in the LS field and have all made significant contributions in recent years. PMID:25246688

  17. Investigation of artificial domains realized by local gallium focused ion-beam modification of Pt/Co/Pt trilayer structures

    NASA Astrophysics Data System (ADS)

    Aziz, A.; Bending, S. J.; Roberts, H.; Crampin, S.; Heard, P. J.; Marrows, C. H.

    2006-04-01

    We present the results of experimental investigations of magnetic switching and magnetotransport in a generation of magnetic devices containing artificially patterned domains. Our devices are realized by locally reducing the coercive field of a perpendicularly magnetized Pt(3.5 nm)/Co(0.5 nm)/Pt(1.6 nm) trilayer structure using a gallium focused ion beam. Artificial domain walls are created at the interfaces between dosed and undosed regions when an external magnetic field switches the former but not the latter. We have exploited this property to create stripelike domains with widths down to submicron length scales, separated by undosed regions. Using the extraordinary Hall effect to monitor the local magnetization we have investigated the reversal dynamics of these artificial domains by measuring major and minor hysteresis loops. The coercive field of regions irradiated with identical doses systematically increases as their size decreases. In the lower branch of minor loops, reversal is seen to occur via a few large Barkhausen events. Preliminary measurements of transport across domain walls reveal a positive domain-wall resistance, that does not change sign from 4.2 to 300 K.

  18. The Spitzer Local Volume Legacy (LVL) global optical photometry

    NASA Astrophysics Data System (ADS)

    Cook, David O.; Dale, Daniel A.; Johnson, Benjamin D.; Van Zee, Liese; Lee, Janice C.; Kennicutt, Robert C.; Calzetti, Daniela; Staudaher, Shawn M.; Engelbracht, Charles W.

    2014-11-01

    We present the global optical photometry of 246 galaxies in the Local Volume Legacy (LVL) survey. The full volume-limited sample consists of 258 nearby (D < 11 Mpc) galaxies whose absolute B-band magnitude span a range of -9.6 < MB < -20.7 mag. A composite optical (UBVR) data set is constructed from observed UBVR and Sloan Digital Sky Survey ugriz imaging, where the ugriz magnitudes are transformed into UBVR. We present photometry within three galaxy apertures defined at UV, optical, and IR wavelengths. Flux comparisons between these apertures reveal that the traditional optical R25 galaxy apertures do not fully encompass extended sources. Using the larger IR apertures, we find colour-colour relationships where later type spiral and irregular galaxies tend to be bluer than earlier type galaxies. These data provide the missing optical emission from which future LVL studies can construct the full panchromatic (UV-optical-IR) spectral energy distributions.

  19. Fibre optic sensor with disturbance localization in one optical fibre

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Ciurapinski, W.

    2007-05-01

    Ordinary perimeter security systems consist of many individual sensors with detection range 200-300 meters. These limitations are connected with physical phenomena that are used in microwave and infrared barriers as well as in ground and fence cable sensors. On the contrary, fiber optic perimeter sensors can be applied in the range of many kilometers and zone length 200-300 meters is degradation of their possibilities. This paper presents investigation results of a new generation of the fiber optic perimeter sensor in a two Sagnac and Sagna'c interferometers configuration. This system can detect a potential intruder and determine its position along a protected zone. We propose a method that makes use of the inherent properties of both interferometers. After demodulation of signals from both interferometers, obtained amplitude characteristic of the Sagnac interferometer depends on position of a disturbance along the both interferometer. So, quotient of both demodulated characteristics is proportional to the position of the disturbance. Arrangement of a laboratory model of the sensor and its signal processing scheme is presented. During research of a laboratory model, it was possible to detect the position of the disturbance with resolution of about 50m along a 10-km long sensor.

  20. Super-resolution optical telescopes with local light diffraction shrinkage.

    PubMed

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-12-18

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems.

  1. Super-resolution optical telescopes with local light diffraction shrinkage

    NASA Astrophysics Data System (ADS)

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-12-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems.

  2. Super-resolution optical telescopes with local light diffraction shrinkage

    PubMed Central

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820

  3. Localized biosensing with Topas microstructured polymer optical fiber.

    PubMed

    Emiliyanov, Grigoriy; Jensen, Jesper B; Bang, Ole; Hoiby, Poul E; Pedersen, Lars H; Kjaer, Erik M; Lindvold, Lars

    2007-03-01

    We present what is believed to be the first microstructured polymer optical fiber (mPOF) fabricated from Topas cyclic olefin copolymer, which has attractive material and biochemical properties. This polymer allows for a novel type of fiber-optic biosensor, where localized sensor layers may be activated on the inner side of the air holes in a predetermined section of the mPOF. The concept is demonstrated using a fluorescence-based method for selective detection of fluorophore-labeled antibodies.

  4. Direct laser writing of polymeric nanostructures via optically induced local thermal effect

    SciTech Connect

    Tong, Quang Cong; Nguyen, Dam Thuy Trang; Do, Minh Thanh; Luong, Mai Hoang; Journet, Bernard; Ledoux-Rak, Isabelle; Lai, Ngoc Diep

    2016-05-02

    We demonstrate the fabrication of desired structures with feature size below the diffraction limit by use of a positive photoresist. The direct laser writing technique employing a continuous-wave laser was used to optically induce a local thermal effect in a positive photoresist, which then allowed the formation of solid nanostructures. This technique enabled us to realize multi-dimensional sub-microstructures by use of a positive photoresist, with a feature size down to 57 nm. This mechanism acting on positive photoresists opens a simple and low-cost way for nanofabrication.

  5. Spread spectrum fiber-optic local area network using optical processing

    NASA Technical Reports Server (NTRS)

    Prucnal, P. R.; Santoro, M. A.; Fan, T. R.

    1986-01-01

    Spread spectrum code division multiple access (CDMA) allows asynchronous multiple access to a local area network (LAN) with no waiting. The additional bandwidth required by spread spectrum can be accommodated by using a fiber-optic channel and incoherent optical signal processing. New CDMA sequences are designed specifically for optical processing. It is shown that increasing the number of chips per bit, by using optical processing, allows an increase in capacity of a CDMA LAN. An experiment is performed demonstrating the performance of an optical CDMA LAN, operating at 100 Mbd with three users.

  6. The optical Anderson localization in three-dimensional percolation system

    NASA Astrophysics Data System (ADS)

    Burlak, G.; Martinez-Sánchez, E.

    2017-03-01

    We study the optical Anderson localization associated with the properties of three-dimensional (3D) disordered percolation system, where the percolating clusters are filled by active media composed by light noncoherent emitters. In such a non-uniformly spatial structure the radiating and scattering of field occur by incoherent way. We numerically study 3D field structures where the wave localization takes place and propose the criterion of field localization based on conception of a mean photon free path in such system. The analysis of a mean free path and the Inverse participation ratio (IPR) shows that the localization arises closely to the threshold of 3D percolation phase transition.

  7. Cooling and long-lived single-site localization of an ion in an optical lattice

    NASA Astrophysics Data System (ADS)

    Bylinskii, Alexei; Karpa, Leon; Gangloff, Dorian; Cetina, Marko; Vuletic, Vladan

    2013-05-01

    We report on localization of a continuously cooled single ion by a one-dimensional optical lattice. The ion is confined in a hybrid trap formed by an optical dipole potential produced by the standing-wave field of an optical cavity and a two-dimensional radio-frequency Paul trap transverse to the cavity axis. A lattice-assisted resolved Raman sideband process cools the ion to energies 20 times lower than the depth of the lattice potential, close to the vibrational ground state. We observe ion localization by measuring its displacement in the presence of a periodically driven electric field parallel to the lattice. We demonstrate full suppression of the driven ion motion due to optical localization to a single lattice site on a time-scale of 100 μs, which is 100 times longer than the vibrational period of the ion in the lattice site. At a longer time scale of 1 ms, driven motion is suppressed to 50%. The presented system paves the way to the realization of novel experiments studying classical and quantum friction models, and many-body physics with long-range interactions in periodic potentials. Army Research Office, National Science Foundation, National Science and Engineering Research Council of Canada, Alexander von Humboldt Foundation.

  8. Vortex emission accompanies the advection of optical localized structures.

    PubMed

    Haudin, F; Rojas, R G; Bortolozzo, U; Clerc, M G; Residori, S

    2011-02-11

    We show that the advection of optical localized structures is accompanied by the emission of vortices, with phase singularities appearing in the wake of the drifting structure. Localized structures are obtained in a light-valve experiment and made to drift by a mirror tilt in the feedback loop. Pairs of oppositely charged vortices are detected for small drifts, whereas for large drifts a vortex array develops. Observations are supported by numerical simulations and linear stability analysis of the system equations and are expected to be generic for a large class of translated optical patterns.

  9. Local, hierarchic, and iterative reconstructors for adaptive optics

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.

    2003-06-01

    Adaptive optics systems for future large optical telescopes may require thousands of sensors and actuators. Optimal reconstruction of phase errors using relative measurements requires feedback from every sensor to each actuator, resulting in computational scaling for n actuators of n2. The optimum local reconstructor is investigated, wherein each actuator command depends only on sensor information in a neighboring region. The resulting performance degradation on ``global'' modes is quantified analytically, and two approaches are considered for recovering global performance. Combining local and global estimators in a two-layer hierarchic architecture yields computations scaling with n4/3; extending this approach to multiple layers yields linear scaling. An alternative approach that maintains a local structure is to allow actuator commands to depend on both local sensors and prior local estimates. This iterative approach is equivalent to a temporal low-pass filter on global information and gives a scaling of n3/2. The algorithms are simulated by using data from the Palomar Observatory adaptive optics system. The analysis is general enough to also be applicable to active optics or other systems with many sensors and actuators.

  10. Gateway design specification for fiber optic local area networks

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This is a Design Specification for a gateway to interconnect fiber optic local area networks (LAN's). The internetworking protocols for a gateway device that will interconnect multiple local area networks are defined. This specification serves as input for preparation of detailed design specifications for the hardware and software of a gateway device. General characteristics to be incorporated in the gateway such as node address mapping, packet fragmentation, and gateway routing features are described.

  11. Optical superheterodyne receiver uses laser for local oscillator

    NASA Technical Reports Server (NTRS)

    Lucy, R. F.

    1966-01-01

    Optical superheterodyne receiver uses a laser coupled to a frequency translator to supply both the incident signal and local oscillator signal and thus permit reception of amplitude modulated video bandwidth signals through the atmosphere. This receiver is useful in scientific propagation experiments, tracking experiments, and communication experiments.

  12. Realizing high photovoltaic efficiency with parallel multijunction solar cells based on spectrum-splitting and -concentrating diffractive optical element

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Ze; Huang, Qing-Li; Xu, Xin; Quan, Bao-Gang; Luo, Jian-Heng; Zhang, Yan; Ye, Jia-Sheng; Li, Dong-Mei; Meng, Qing-Bo; Yang, Guo-Zhen

    2015-05-01

    Based on the facts that multijunction solar cells can increase the efficiency and concentration can reduce the cost dramatically, a special design of parallel multijunction solar cells was presented. The design employed a diffractive optical element (DOE) to split and concentrate the sunlight. A rainbow region and a zero-order diffraction region were generated on the output plane where solar cells with corresponding band gaps were placed. An analytical expression of the light intensity distribution on the output plane of the special DOE was deduced, and the limiting photovoltaic efficiency of such parallel multijunction solar cells was obtained based on Shockley-Queisser’s theory. An efficiency exceeding the Shockley-Queisser limit (33%) can be expected using multijunction solar cells consisting of separately fabricated subcells. The results provide an important alternative approach to realize high photovoltaic efficiency without the need for expensive epitaxial technology widely used in tandem solar cells, thus stimulating the research and application of high efficiency and low cost solar cells. Project supported by the National Natural Science Foundation of China (Grant Nos. 91233202, 21173260, and 51072221) and the National Basic Research Program of China (Grant No. 2012CB932903).

  13. Optical fingerprint recognition based on local minutiae structure coding.

    PubMed

    Yi, Yao; Cao, Liangcai; Guo, Wei; Luo, Yaping; Feng, Jianjiang; He, Qingsheng; Jin, Guofan

    2013-07-15

    A parallel volume holographic optical fingerprint recognition system robust to fingerprint translation, rotation and nonlinear distortion is proposed. The optical fingerprint recognition measures the similarity by using the optical filters of multiplexed holograms recorded in the holographic media. A fingerprint is encoded into multiple template data pages based on the local minutiae structure coding method after it is adapted for the optical data channel. An improved filter recording time schedule and a post-filtering calibration technology are combined to suppress the calculating error from the large variations in data page filling ratio. Experimental results tested on FVC2002 DB1 and a forensic database comprising 270,216 fingerprints demonstrate the robustness and feasibility of the system.

  14. Fast novel nonlinear optical NLC system with local response

    NASA Astrophysics Data System (ADS)

    Iljin, Andrey; Residori, Stefania; Bortolozzo, Umberto

    2017-06-01

    Nonlinear optical performance of a novel liquid crystalline (LC) cell has been studied in two-wave mixing experiments revealing high diffraction efficiency within extremely wide intensity range, fast recording times and spatial resolution. Photo-induced modulation of the LC order parameter resulting from trans-cis isomerisation of dye molecules causes consequent changes of refractive indices of the medium (Light-Induced Order Modification, LIOM-mechanism) and is proved to be the main mechanism of optical nonlinearity. The proposed arrangement of the electric-field-stabilised homeotropic alignment hinders the LC director reorientation, prevents appearance of surface effects and ensures the optical cell quality. The LIOM-type nonlinearity, characterised with the substantially local nonlinear optical response, could also be extended for the recording of arbitrary phase profiles as requested in several applications for light-beam manipulation, recording of dynamic volume holograms and photonic lattices.

  15. Localized structures in dissipative media: from optics to plant ecology.

    PubMed

    Tlidi, M; Staliunas, K; Panajotov, K; Vladimirov, A G; Clerc, M G

    2014-10-28

    Localized structures (LSs) in dissipative media appear in various fields of natural science such as biology, chemistry, plant ecology, optics and laser physics. The proposal for this Theme Issue was to gather specialists from various fields of nonlinear science towards a cross-fertilization among active areas of research. This is a cross-disciplinary area of research dominated by nonlinear optics due to potential applications for all-optical control of light, optical storage and information processing. This Theme Issue contains contributions from 18 active groups involved in the LS field and have all made significant contributions in recent years. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Automated localization of the optic disc and the fovea.

    PubMed

    Niemeijer, M; Abramoff, M D; van Ginneken, B

    2008-01-01

    The detection of the position of the normal anatomy in color fundus photographs is an important step in the automated analysis of retinal images. An automatic system for the detection of the position of the optic disc and the fovea is presented. The method integrates the use of local vessel geometry and image intensity features to find the correct positions in the image. A kNN regressor is used to accomplish the integration. Evaluation was performed on a set of 250 digital color fundus photographs and the detection performance for the optic disc and the fovea were 99.2% and 96.4% respectively.

  17. Local probing and stimulation of neuronal cells by optical manipulation

    NASA Astrophysics Data System (ADS)

    Cojoc, Dan

    2014-09-01

    During development and in the adult brain, neurons continuously explore the environment searching for guidance cues, leading to the appropriate connections. Elucidating these mechanisms represents a gold goal in neurobiology. Here, I discuss our recent achievements developing new approaches to locally probe the growth cones and stimulate neuronal cell compartments with high spatial and temporal resolution. Optical tweezers force spectroscopy applied in conjunction with metabolic inhibitors reveals new properties of the cytoskeleton dynamics. On the other hand, using optically manipulated microvectors as functionalized beads or filled liposomes, we demonstrate focal stimulation of neurons by small number of signaling molecules.

  18. Deploying Monitoring Trails for Fault Localization in All- Optical Networks and Radio-over-Fiber Passive Optical Networks

    NASA Astrophysics Data System (ADS)

    Maamoun, Khaled Mohamed

    Fault localization is the process of realizing the true source of a failure from a set of collected failure notifications. Isolating failure recovery within the network optical domain is necessary to resolve alarm storm problems. The introduction of the monitoring trail (m-trail) has been proven to deliver better performance by employing monitoring resources in a form of optical trails - a monitoring framework that generalizes all the previously reported counterparts. In this dissertation, the m-trail design is explored and a focus is given to the analysis on using m-trails with established lightpaths to achieve fault localization. This process saves network resources by reducing the number of the m-trails required for fault localization and therefore the number of wavelengths used in the network. A novel approach based on Geographic Midpoint Technique, an adapted version of the Chinese Postman's Problem (CPP) solution and an adapted version of the Traveling Salesman's Problem (TSP) solution algorithms is introduced. The desirable features of network architectures and the enabling of innovative technologies for delivering future millimeter-waveband (mm-WB) Radio-over-Fiber (RoF) systems for wireless services integrated in a Dense Wavelength Division Multiplexing (DWDM) is proposed in this dissertation. For the conceptual illustration, a DWDM RoF system with channel spacing of 12.5 GHz is considered. The mm-WB Radio Frequency (RF) signal is obtained at each Optical Network Unit (ONU) by simultaneously using optical heterodyning photo detection between two optical carriers. The generated RF modulated signal has a frequency of 12.5 GHz. This RoF system is easy, cost-effective, resistant to laser phase noise and also reduces maintenance needs, in principle. A revision of related RoF network proposals and experiments is also included. A number of models for Passive Optical Networks (PON)/ RoF-PON that combine both innovative and existing ideas along with a number of

  19. Optical Excitation of Carbon Nanotubes Drives Localized Diazonium Reactions.

    PubMed

    Powell, Lyndsey R; Piao, Yanmei; Wang, YuHuang

    2016-09-15

    Covalent chemistries have been widely used to modify carbon nanomaterials; however, they typically lack the precision and efficiency required to directly engineer their optical and electronic properties. Here, we show, for the first time, that visible light which is tuned into resonance with carbon nanotubes can be used to drive their functionalization by aryldiazonium salts. The optical excitation accelerates the reaction rate 154-fold (±13) and makes it possible to significantly improve the efficiency of covalent bonding to the sp(2) carbon lattice. Control experiments suggest that the reaction is dominated by a localized photothermal effect. This light-driven reaction paves the way for precise nanochemistry that can directly tailor carbon nanomaterials at the optical and electronic levels.

  20. Installation and Maintenance Considerations Fiber Optic Local Area Networks (LAN)

    NASA Astrophysics Data System (ADS)

    Chesser, Gary L.

    1990-01-01

    During the late '70s and early '80s two exciting communication technologies evolved. One was a network technology dealing with computer integration called Local Area Networks (LAN), and the other was a transmission media, fiber optics, which offered data integrity in addition to increased transmission speed and distance for the data communication network. Local Area Networks are designed and installed to allow many different computing devices to communicate with one another. LANs, considered premise-based networks, provide high-speed reliable data communication within a specific geographical area such as individual buildings and/or campus environments. Advances in fiber optic communication technologies and a continued increase in business requirements for distributed data processing, offered by LANs, ironically set the stage for a natural relationship of the two technologies.

  1. Localization of angular momentum in optical waves propagating through turbulence.

    PubMed

    Sanchez, Darryl J; Oesch, Denis W

    2011-12-05

    This is the first in a series of papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. The scope of this first paper is much narrower. Here, we demonstrate that atmospheric turbulence can impart non-trivial angular momentum to beams and that this non-trivial angular momentum is highly localized. Furthermore, creation of this angular momentum is a normal part of propagation through atmospheric turbulence.

  2. Localized surface plasmon resonance based fiber optic sensor with nanoparticles

    NASA Astrophysics Data System (ADS)

    Rani, Mahima; Sharma, Navneet K.; Sajal, Vivek

    2013-04-01

    A localized surface plasmon resonance (LSPR) based fiber optic sensor with a nanoparticle layer coated on the core of the optical fiber has been presented and theoretically analyzed. Nanoparticles of four materials: ITO, Au, Ag and Cu have been considered for the study. The complete analysis of sensitivity of the LSPR based fiber optic sensor with each nanoparticle layer individually for various values of thickness and particle size has been done numerically in order to use these four materials in plasmonic sensing applications. The sensitivity of LSPR based fiber optic sensor increases with the increase in the thickness of nanoparticles layer for all four materials. Also, for a fixed value of thickness of nanoparticles layer, the sensitivity of LSPR based fiber optic sensor further increases as the particle size of nanoparticles increases (up to 20 nm). The optimized values of thickness and particle size of nanoparticles layers for all four materials individually are revealed to be 60 nm and 20 nm respectively. With sensitivity of 6240 nm/RIU, the 60 nm thick ITO nanoparticles layer (with 20 nm particle size) based LSPR sensor has been shown to have better performance than other three material's naoparticles based LSPR sensors.

  3. Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits.

    PubMed

    Yu, Longhai; Zheng, Jiajiu; Xu, Yang; Dai, Daoxin; He, Sailing

    2014-11-25

    Graphene is well-known as a two-dimensional sheet of carbon atoms arrayed in a honeycomb structure. It has some unique and fascinating properties, which are useful for realizing many optoelectronic devices and applications, including transistors, photodetectors, solar cells, and modulators. To enhance light-graphene interactions and take advantage of its properties, a promising approach is to combine a graphene sheet with optical waveguides, such as silicon nanophotonic wires considered in this paper. Here we report local and nonlocal optically induced transparency (OIT) effects in graphene-silicon hybrid nanophotonic integrated circuits. A low-power, continuous-wave laser is used as the pump light, and the power required for producing the OIT effect is as low as ∼0.1 mW. The corresponding power density is several orders lower than that needed for the previously reported saturated absorption effect in graphene, which implies a mechanism involving light absorption by the silicon and photocarrier transport through the silicon-graphene junction. The present OIT effect enables low power, all-optical, broadband control and sensing, modulation and switching locally and nonlocally.

  4. Localization of collisionally inhomogeneous condensates in a bichromatic optical lattice

    SciTech Connect

    Cheng Yongshan; Adhikari, S. K.

    2011-02-15

    By direct numerical simulation and variational solution of the Gross-Pitaevskii equation, we studied the stationary and dynamic characteristics of a cigar-shaped, localized, collisionally inhomogeneous Bose-Einstein condensate trapped in a one-dimensional bichromatic quasiperiodic optical-lattice potential, as used in a recent experiment on the localization of a Bose-Einstein condensate [Roati et al., Nature (London) 453, 895 (2008)]. The effective potential characterizing the spatially modulated nonlinearity is obtained. It is found that the collisional inhomogeneity has influence not only on the central region but also on the tail of the Bose-Einstein condensate. The influence depends on the sign and value of the spatially modulated nonlinearity coefficient. We also demonstrate the stability of the stationary localized state by performing a standard linear stability analysis. Where possible, the numerical results are shown to be in good agreement with the variational results.

  5. Initiatory concept of localized CO2 laser-based tapering rig for realization of in-fiber devices

    NASA Astrophysics Data System (ADS)

    Aharoni, Ran; Bidani, Liron; Sinvani, Moshe; Zalevsky, Zeev

    2012-07-01

    We present the development procedure as well as preliminary fabrication results for a CO2 laser-based tapering rig allowing one stage tapering of optical fibers. Our aim is to develop in-fiber devices constructed from fibers filled with various materials, which can be drawn from thick preforms using the presented procedure. The constructed tapering rig consists of a CO2 laser as the heating source, ellipsoid-based mirror optics, and computer-controlled high-precision motors.

  6. Correction of localized shape errors on optical surfaces by altering the localized density of surface or near-surface layers

    SciTech Connect

    Taylor, John S.; Folta, James A.; Montcalm, Claude

    2005-01-18

    Figure errors are corrected on optical or other precision surfaces by changing the local density of material in a zone at or near the surface. Optical surface height is correlated with the localized density of the material within the same region. A change in the height of the optical surface can then be caused by a change in the localized density of the material at or near the surface.

  7. Optic disk localization by a robust fusion method

    NASA Astrophysics Data System (ADS)

    Zhang, Jielin; Yin, Fengshou; Wong, Damon W. K.; Liu, Jiang; Baskaran, Mani; Cheng, Ching-Yu; Wong, Tien Yin

    2013-02-01

    The optic disk localization plays an important role in developing computer-aided diagnosis (CAD) systems for ocular diseases such as glaucoma, diabetic retinopathy and age-related macula degeneration. In this paper, we propose an intelligent fusion of methods for the localization of the optic disk in retinal fundus images. Three different approaches are developed to detect the location of the optic disk separately. The first method is the maximum vessel crossing method, which finds the region with the most number of blood vessel crossing points. The second one is the multichannel thresholding method, targeting the area with the highest intensity. The final method searches the vertical and horizontal region-of-interest separately on the basis of blood vessel structure and neighborhood entropy profile. Finally, these three methods are combined using an intelligent fusion method to improve the overall accuracy. The proposed algorithm was tested on the STARE database and the ORIGAlight database, each consisting of images with various pathologies. The preliminary result on the STARE database can achieve 81.5%, while a higher result of 99% can be obtained for the ORIGAlight database. The proposed method outperforms each individual approach and state-of-the-art method which utilizes an intensity-based approach. The result demonstrates a high potential for this method to be used in retinal CAD systems.

  8. Testbed for a Scalable Terabit Optical Local Area Network

    NASA Astrophysics Data System (ADS)

    Au, Albert; Supmonchai, Boonchuay; Szymanski, Ted H.

    2000-08-01

    The design of a fiber-optic local area network (LAN) demonstration system is described. A complete LAN system would consist of an array of 16 personal computers (PC s), where each PC has a network interface card (NIC) with a parallel fiber-optic datalink to a centralized optoelectronic switch core. The centralized core switches the data generated by 16 NIC s, up to 128 Gbit s of bandwidth. The demonstrator is designed to scale to terabits of bandwidth by use of an emerging optoelectronic technology, i.e., integrated complementary metal-oxide semiconductor (CMOS) substrates with vertical-cavity surface-emitting laser (VCSEL) and photodetector optical input and output. A subset of the complete system was constructed and is operational. A prototype NIC card, with Motorola Optobus VCSEL transceivers for the optical datalinks, was constructed and is described. A prototype high-speed bipolar switch core, with statically configurable electrical positive-emitter coupled-logic 16 16 crossbar switches, CMOS field-programmable gate arrays, and Motorola Optobus transceivers, was constructed and is described. We successfully demonstrated the transmission of high-speed packetized data from one NIC card, through 10 m of parallel fiber ribbon and the centralized switch core, and back to the NIC. We summarize our experiences on the design and testing of our first demonstration system and our development toward a terabit switch core.

  9. Testbed for a scalable terabit optical local area network.

    PubMed

    Au, A; Supmonchai, B; Szymanski, T H

    2000-08-10

    The design of a fiber-optic local area network (LAN) demonstration system is described. A complete LAN system would consist of an array of 16 personal computers (PC's), where each PC has a network interface card (NIC) with a parallel fiber-optic datalink to a centralized optoelectronic switch core. The centralized core switches the data generated by 16 NIC's, up to 128 Gbit/s of bandwidth. The demonstrator is designed to scale to terabits of bandwidth by use of an emerging optoelectronic technology, i.e., integrated complementary metal-oxide semiconductor (CMOS) substrates with vertical-cavity surface-emitting laser (VCSEL) and photodetector optical input and output. A subset of the complete system was constructed and is operational. A prototype NIC card, with Motorola Optobus VCSEL transceivers for the optical datalinks, was constructed and is described. A prototype high-speed bipolar switch core, with statically configurable electrical positive-emitter coupled-logic 16 x 16 crossbar switches, CMOS field-programmable gate arrays, and Motorola Optobus transceivers, was constructed and is described. We successfully demonstrated the transmission of high-speed packetized data from one NIC card, through 10 m of parallel fiber ribbon and the centralized switch core, and back to the NIC. We summarize our experiences on the design and testing of our first demonstration system and our development toward a terabit switch core.

  10. Optical Photometry of the Local Volume Legacy (LVL) Survey

    NASA Astrophysics Data System (ADS)

    Cook, David O.; Dale, D. A.; van Zee, L.; Johnson, B. D.; Lee, J. C.; Cales, S.; LVL Team

    2014-01-01

    We present new optical (UBVR) imaging of 258 nearby (D < 11 Mpc) galaxies in the Local Volume Legacy (LVL) survey. The volume limited sample is dominated by dwarf galaxies, however, the sample as a whole probes many global galaxy environments. This photometry completes the panchromatic data set which spans a wide wavelength range (1500 Å - 160 μm). This study focuses on GALEX (FUV & NUV), optical (UBVR), 2MASS (JHK), and Spitzer (3.6 μm, 4.5 μm, 5 um, 8 μm, & 24 μm) data. Photometry was performed with three separate apertures (defined from the FUV, 3.6 μm, and optical) to allow direct photometric comparisons between galaxies with consistent apertures. The wide wavelength coverage with uniform apertures across many environments will facilitate studying the effect of secular galaxy evolution and environment on galaxy-wide properties. Furthermore, the proximity of these galaxies will yield a wealth information on sub-kpc scales since individual star-forming regions can be identified and studied with the same wide wavelength coverage. We present the basic optical properties and SEDs of these galaxies and their relationships to the full panchromatic data set to evince underlying physical processes.

  11. Analysis of Optical Imaging from the Local Volume Legacy Survey

    NASA Astrophysics Data System (ADS)

    Friberg, Sarah; Snyder, E.; van Zee, L.; Croxall, K. V.; Funes, J. G.; Warren, S. R.; Lee, H.; Lee, J. C.; LVL Team

    2010-01-01

    We report the results of Halpha and broadband optical imaging of 96 galaxies in the Local Volume Legacy Survey (LVL). The majority of galaxies in the volume limited (D < 11 Mpc) parent sample are low luminosity dwarf galaxies. We examine optical colors, star formation rates, and Halpha equivalent widths both as global values and as a function of radius. As expected, the majority of galaxies in this sample have blue colors and modest star formation activity. While the majority of galaxies have negligible color gradients in their stellar disks, a handful of galaxies have strong red color gradients (greater than 0.4 mag/kpc in U-B). These galaxies tend to be smaller and more compact than other galaxies in the sample with comparable luminosities and are likely starbursting or post-burst systems.

  12. [Local involvement of the optic nerve by acute lymphoblastic leukemia].

    PubMed

    Bernardczyk-Meller, Jadwiga; Stefańska, Katarzyna

    2005-01-01

    The leucemias quite commonly involve the eyes and adnexa. In some cases it causes visual complants. Both, the anterior chamber of the eye and the posterior portion of the globe may sites of acute or chronic leukemia and leucemic relapse. We report an unique case of a 14 years old leucemic patient who suffered visual loss and papilloedema, due to a unilateral local involvement within optic nerve, during second relapse of acute lymphocytic leuemia. In spite of typical treatment of main disease, the boy had died. The authors present typical ophthalmic features of the leucemia, too.

  13. Localized modes in optics of photonic liquid crystals with local anisotropy of absorption

    SciTech Connect

    Belyakov, V. A. E-mail: bel@landau.ac.ru; Semenov, S. V.

    2016-05-15

    The localized optical modes in spiral photonic liquid crystals are theoretically studied for the certainty at the example of chiral liquid crystals (CLCs) for the case of CLC with an anisotropic local absorption. The model adopted here (absence of dielectric interfaces in the structures under investigation) makes it possible to get rid of mixing of polarizations on the surfaces of the CLC layer and of the defect structure and to reduce the corresponding equations to only the equations for light with polarization diffracting in the CLC. The dispersion equations determining connection of the edge mode (EM) and defect mode (DM) frequencies with the CLC layer parameters (anisotropy of local absorption, CLC order parameter) and other parameters of the DMS are obtained. Analytic expressions for the transmission and reflection coefficients of CLC layer and DMS for the case of CLC with an anisotropic local absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce the EM and DM lifetimes (and increase the lasing threshold) in the way different from the case of CLC with an isotropic local absorption. Due to the Borrmann effect revealing of which is different at the opposite stop-band edges in the case of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-bands edges may be significantly different. The options of experimental observations of the theoretically revealed phenomena are briefly discussed.

  14. Localized modes in optics of photonic liquid crystals with local anisotropy of absorption

    NASA Astrophysics Data System (ADS)

    Belyakov, V. A.; Semenov, S. V.

    2016-05-01

    The localized optical modes in spiral photonic liquid crystals are theoretically studied for the certainty at the example of chiral liquid crystals (CLCs) for the case of CLC with an anisotropic local absorption. The model adopted here (absence of dielectric interfaces in the structures under investigation) makes it possible to get rid of mixing of polarizations on the surfaces of the CLC layer and of the defect structure and to reduce the corresponding equations to only the equations for light with polarization diffracting in the CLC. The dispersion equations determining connection of the edge mode (EM) and defect mode (DM) frequencies with the CLC layer parameters (anisotropy of local absorption, CLC order parameter) and other parameters of the DMS are obtained. Analytic expressions for the transmission and reflection coefficients of CLC layer and DMS for the case of CLC with an anisotropic local absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce the EM and DM lifetimes (and increase the lasing threshold) in the way different from the case of CLC with an isotropic local absorption. Due to the Borrmann effect revealing of which is different at the opposite stop-band edges in the case of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-bands edges may be significantly different. The options of experimental observations of the theoretically revealed phenomena are briefly discussed.

  15. Light Localization by Defects in Optically Induced Photonic Structures

    NASA Astrophysics Data System (ADS)

    Yang, Jianke; Wang, Xiaosheng; Wang, Jiandong; Chen, Zhigang

    In the past ten years, there has blossomed an interest in the study of collective behavior of wave propagation in periodic waveguide arrays and photonic lattices [1-3]. The unique bandgap structures of these periodic media, coupled with nonlinear effects, give rise to many types of novel soliton structures [1- 26]. On the other hand, it is well known that one of the unique and most interesting features of photonic band-gap structures is a fundamentally different way of waveguiding by defects in otherwise uniformly periodic structures. Such waveguiding has been demonstrated with an "air-hole" in photonic crystal fibers (PCF) for optical waves [27, 28], in an isolated defect in two-dimensional arrays of dielectric cylinders for microwaves [29-31], and recently in all-solid PCF with a lower-index core [32, 33]. In addition, laser emission based on photonic defect modes has been realized in a number of experiments [34-38]. In one-dimensional (1D) fabricated semiconductor waveguide arrays, previous experiments have investigated nonlinearity-induced escape from a defect state [39] and interactions of discrete solitons with structural defects [40] (see also [41]). Despite the above efforts, theoretical understanding on defect guiding was still limited, and experimental demonstrations of defect guiding was still scarce. In addition, when nonlinear effects are significant, how defect guiding is affected by nonlinearity is largely an open issue. Recently, in a series of theoretical and experimental studies, we optically induced 1D, 2D and ringlike photonic lattices with single-site negative defects in photorefractive crystals, and investigated their linear and nonlinear light guiding properties [42-48]. This work will be reviewed in this Chapter. In addition, we present the first experimental demonstration of nonlinear defect modes which undergoes nonlinear propagation through the defects. Our work not only has a direct link to technologically important systems of periodic

  16. Depth-resolved photothermal optical coherence tomography by local optical path length change measurement (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Makita, Shuichi; Hong, Young-Joo; Li, En; Yasuno, Yoshiaki

    2016-03-01

    Photothermal OCT has been emerged to contrast absorbers in biological tissues. The tissues response to photothermal excitation as change of thermal strain and refractive index. To resolve the depth of absorption agents, the measurements of the local thermal strain change and local refractive index change due to photothermal effect is required. In this study, we developed photothermal OCT for depth-resolved absorption contrast imaging. The phase-resolved OCT can measure the axial strain change and local refractive index change as local optical path length change. A swept-source OCT system is used with a wavelength swept laser at 1310 nm with a scanning rate of 50 kHz. The sensitivity of 110 dB is achieved. At the sample arm, the excitation beam from a fiber-coupled laser diode of 406 nm wavelength is combined with the OCT probe beam co-linearly. The slowly modulated excitation beam around 300 Hz illuminate biological tissues. M-mode scan is applied during one-period modulation duration. The local optical path length change is measured by temporal and axial phase difference. The theoretical prediction of the photothermal response is derived and in good agreement with experimental results. In the case of slow modulation, the delay of photothermal response can be neglected. The local path length changes are averaged over the half period of the excitation modulation, and then demodulated. This method exhibits 3-dB gain in the sensitivity of the local optical path length change measurement over the direct Fourier transform method. In vivo human skin imaging of endogenous absorption agent will be demonstrated.

  17. Reconciling the requirements of the science team and the spacecraft engineering team with a realizable optical system

    NASA Technical Reports Server (NTRS)

    Larks, L.

    1975-01-01

    Problems in the development of a suitable optical system for the imaging science payload of an interplanetary space probe are considered, taking into account the characteristics of the three categories of optical systems from which the engineer selects his system. These categories include the Catoptric or all mirror optical system, the Dioptric or all refracting optical system, and the Catadioptric system which combines elements of the other two categories. Examples of equipment selection and development in the preparation of a number of interplanetary space missions are discussed.

  18. Reconciling the requirements of the science team and the spacecraft engineering team with a realizable optical system

    NASA Technical Reports Server (NTRS)

    Larks, L.

    1975-01-01

    Problems in the development of a suitable optical system for the imaging science payload of an interplanetary space probe are considered, taking into account the characteristics of the three categories of optical systems from which the engineer selects his system. These categories include the Catoptric or all mirror optical system, the Dioptric or all refracting optical system, and the Catadioptric system which combines elements of the other two categories. Examples of equipment selection and development in the preparation of a number of interplanetary space missions are discussed.

  19. Analysis of localized fringes in the holographic optical Schlieren system

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.

    1980-01-01

    The relation between localization of interference fringes in classical and holographic interferometry is reviewed and an application of holographic interferometry is considered for which the object is a transparent medium with nonhomogeneous refractive index. The technique is based on the analysis of the optical path length change of the object wave as it propagates through a transparent medium. Phase shifts due to variations of the speed of light within the medium give rise to an interference pattern. The resulting interferogram can be used to determine the physical properties of the medium or transparent object. Such properties include the mass density of fluids, electron densities of plasmas, the temperature of fluids, the chemical species concentration of fluids, and the state of stress in solids. The optical wave used can be either a simple plane or spherical wave, or it may be a complicated spatial wave scattered by a diffusing screen. The mathematical theory on the formation and analysis of localized fringes, the general theoretical concepts used, and a computer code for analysis are included along with the inversion of fringe order data.

  20. Shared Access Optical Networks For The Local Loop

    NASA Astrophysics Data System (ADS)

    Payne, D. B.; Stern, J. R.

    1988-09-01

    The application of single mode fibre to the local network environment opens up major opportunities for service provision via shared access networks. Previous technologies (copper pair, coaxial cable and multimode fibre) had bandwidth limitation problems that placed a severe restriction on both the level of resource sharing and the service package that could be delivered. The enormous bandwidth capability of single mode fibre can be used to provide significant resource sharing without incurring fundamental restrictions on the capacity of the services carried. The paper briefly outlines some of the activities within British Telecom on shared access systems. Early systems concepts were either based on fibre feeders to remote multiplexers for the delivery of telephony and data services to large customers or the use of advanced wavelength multiplexing techniques over passive optical networks for the transmission of wideband services to business and residential customers. Recently activity has concentrated on a passive optical network that shows good potential for the economic provision of telephony services. The structure of the network allows the later addition of broadband services via additional wavelengths without disturbing existing telephony/data customers. The basic network has a fibre feeder from the exchange to passive optical splitters housed at the Cabinet and Distribution Points (DP). Each customer receives a fibre from DP and via this a TDM multiplex broadcast from the exchange which carries the customer's traffic. The customer equipment accesses the time slots destined for the customer and delivers the data via a suitable interface to provide the services required. Customers transmit back to the exchange in a time multiplex synchronised by a ranging protocol that sets an appropriate delay in the customer equipment to avoid collisions at the optical combiners in the DPs and Cabinet. Present studies are considering a total optical split of 128 ways with a

  1. Localized Spoof Surface Plasmons based on Closed Subwavelength High Contrast Gratings: Concept and Microwave-Regime Realizations

    NASA Astrophysics Data System (ADS)

    Li, Zhuo; Xu, Bingzheng; Liu, Liangliang; Xu, Jia; Chen, Chen; Gu, Changqing; Zhou, Yongjin

    2016-06-01

    In this work, we report the existence of spoof localized surface plasmons (spoof-LSPs) arising with closed high contrast gratings (HCGs) at deep subwavelength scales, another platform for field localization at microwave frequencies. The HCGs are in the form of a periodic array of radial dielectric blocks with high permittivity around a metal core supporting spoof-LSPs of transverse magnetic (TM) form. Simulation results validate the phenomenon and a metamaterial approach is also given to capture all the resonant features of this kind of spoof-LSPs. In addition, experimental verification of the existence of spoof-LSPs supported by a three dimensional (3D) HCGs resonance structure in the microwave regime is presented. This work expands the original spoof-LSPs theory and opens up a new avenue for obtaining resonance devices in the microwave frequencies.

  2. Localized Spoof Surface Plasmons based on Closed Subwavelength High Contrast Gratings: Concept and Microwave-Regime Realizations

    PubMed Central

    Li, Zhuo; Xu, Bingzheng; Liu, Liangliang; Xu, Jia; Chen, Chen; Gu, Changqing; Zhou, Yongjin

    2016-01-01

    In this work, we report the existence of spoof localized surface plasmons (spoof-LSPs) arising with closed high contrast gratings (HCGs) at deep subwavelength scales, another platform for field localization at microwave frequencies. The HCGs are in the form of a periodic array of radial dielectric blocks with high permittivity around a metal core supporting spoof-LSPs of transverse magnetic (TM) form. Simulation results validate the phenomenon and a metamaterial approach is also given to capture all the resonant features of this kind of spoof-LSPs. In addition, experimental verification of the existence of spoof-LSPs supported by a three dimensional (3D) HCGs resonance structure in the microwave regime is presented. This work expands the original spoof-LSPs theory and opens up a new avenue for obtaining resonance devices in the microwave frequencies. PMID:27251026

  3. Fiber optic distributed temperature sensing for fire source localization

    NASA Astrophysics Data System (ADS)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Sigrist, Markus W.; Li, Jun; Dong, Fengzhong

    2017-08-01

    A method for localizing a fire source based on a distributed temperature sensor system is proposed. Two sections of optical fibers were placed orthogonally to each other as the sensing elements. A tray of alcohol was lit to act as a fire outbreak in a cabinet with an uneven ceiling to simulate a real scene of fire. Experiments were carried out to demonstrate the feasibility of the method. Rather large fluctuations and systematic errors with respect to predicting the exact room coordinates of the fire source caused by the uneven ceiling were observed. Two mathematical methods (smoothing recorded temperature curves and finding temperature peak positions) to improve the prediction accuracy are presented, and the experimental results indicate that the fluctuation ranges and systematic errors are significantly reduced. The proposed scheme is simple and appears reliable enough to locate a fire source in large spaces.

  4. Creating and Probing Graphene Electron Optics with Local Scanning Probes

    NASA Astrophysics Data System (ADS)

    Stroscio, Joseph

    Ballistic propagation and the light-like dispersion of graphene charge carriers make graphene an attractive platform for optics-inspired graphene electronics where gate tunable potentials can control electron refraction and transmission. In analogy to optical wave propagation in lenses, mirrors and metamaterials, gate potentials can be used to create a negative index of refraction for Veselago lensing and Fabry-Pérot interferometers. In circular geometries, gate potentials can induce whispering gallery modes (WGM), similar to optical and acoustic whispering galleries albeit on a much smaller length scale. Klein scattering of Dirac carriers plays a central role in determining the coherent propagation of electron waves in these resonators. In this talk, I examine the probing of electron resonators in graphene confined by linear and circular gate potentials with the scanning tunneling microscope (STM). The tip in the STM tunnel junction serves both as a tunable local gate potential, and as a probe of the graphene states through tunneling spectroscopy. A combination of a back gate potential, Vg, and tip potential, Vb, creates and controls a circular pn junction that confines the WGM graphene states. The resonances are observed in two separate channels in the tunneling spectroscopy experiment: first, by directly tunneling into the state at the bias energy eVb, and, second, by tunneling from the resonance at the Fermi level as the state is gated by the tip potential. The second channel produces a fan-like set of WGM peaks, reminiscent of the fringes seen in planar geometries by transport measurements. The WGM resonances split in a small applied magnetic field, with a large energy splitting approaching the WGM spacing at 0.5 T. These results agree well with recent theory on Klein scattering in graphene electron resonators. This work is done in collaboration with Y. Zhao, J. Wyrick, F.D. Natterer, J. F. Rodriquez-Nieva, C. Lewandoswski, K. Watanabe, T. Taniguchi, N. B

  5. Localizer with high occlusion immunity using diffraction optics

    NASA Astrophysics Data System (ADS)

    Ditto, Thomas D.; Farges, Jacques

    2004-10-01

    The chromatic method of diffraction range finding can be exploited to construct a 3D localizer that tracks the position of a pointer, a 3-D scanner or a robotic end-effecter. A spectrogram is made using a diffraction grating as the primary objective of an optical system that tracks a broad band emitter such as a tungsten filament or white L.E.D. Image processing on the resulting spectra transforms the spectrogram at the input to distance and displacement at the output. The behavior conforms to geometric optics following the Diffraction Equation. This novel technique has unique features. For example, the number of samples increases with target distance, reversing the loss of resolution as a function of distance that is endemic to triangulation. The plurality of samples also can overcome occlusion liability common to time-of-flight range finders, since multiple paths exist between emitter and sensor. The grating can be made from inexpensive embossed plastic, and a wave length sensor can be constructed from garden variety color cameras. The method is robust at a grazing exodus angles that allow for a compact configuration of the receiver. In this paper we disclose the theory of operation including a mathematical model, and we demonstrate the method empirically.

  6. Novel localized surface plasmon resonance based optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Muri, Harald Ian D. I.; Hjelme, Dag R.

    2016-03-01

    Over the last decade various optical fiber sensing schemes have been proposed based on local surface plasmon resonance (LSPR). LSPR are interacting with the evanescent field from light propagating in the fiber core or by interacting with the light at the fiber end face. Sensor designs utilizing the fiber end face is strongly preferred from a manufacturing point of view. However, the different techniques available to immobilize metallic nanostructures on the fiber end face for LSPR sensing is limited to essentially a monolayer, either by photolithographic structuring of metal film, thermal nucleation of metal film, or by random immobilization of nanoparticles (NP). In this paper, we report on a novel LSPR based optical fiber sensor architecture. The sensor is prepared by immobilizing gold NP's in a hydrogel droplet polymerized on the fiber end face. This design has several advantages over earlier designs. It dramatically increase the number of NP's available for sensing, it offers precise control over the NP density, and the NPs are position in a true 3D aqueous environment. The sensor design is also compatible with low cost manufacturing. The sensor design can measure volumetric changes in a stimuli-responsive hydrogel or measure binding to receptors on the NP surface. It can also be used as a two-parameter sensor by utilizing both effects. We present results from proof-of-concept experiments demonstrating a pH sensor based on LSPR sensing in a poly(acrylamide-co-acrylic acid) hydrogel embedding gold nanoparticles.

  7. The realization of optical switching generated from the combination of Ag/a-Si/p-Si memristor and silicon waveguide

    NASA Astrophysics Data System (ADS)

    Li, Dongyang; Guo, Anran; Song, Qinjian; Guo, Guohui; Jiang, Yadong; Li, Wei

    2016-10-01

    Much attention has been attracted by applications of memristor in data storage, unconventional computing and logic circuit since 2008, but very few have been focused on applications in optical switches and optical modulators. Here, by combining a silicon waveguide with a memristor of Ag/a-Si/p-Si structure, a novel optical switch (OS) for use at 1.55μm has been set up. The device consists of a bottom p-Si waveguide, an upper a-Si layer and a top Ag electrode, i.e. a sandwich structure named as Ag/a-Si/p-Si. The light transmitting through the silicon waveguide can be modulated by changing optical parameters of a-Si dielectric layer in which the formation and annihilation of Ag filament can be adjusted by an alternately electrical field between Ag and p-Si electrodes. The distribution of optical power dependence on the thicknesses of a-Si layer and Ag layer as well as the geometric size of waveguide have been studied by numerical analysis. Finally, based on Ag/a-Si/p-Si sandwich structure and the simulated results, we have proposed a new and improved OS.

  8. A highly stable mm-wave synthesizer realized by mixing two lasers locked to an optical frequency comb generator

    NASA Astrophysics Data System (ADS)

    Musha, Mitsuru; Ueda, Akitoshi; Horikoshi, Munekazu; Nakagawa, Ken'ichi; Ishiguro, Masato; Ueda, Ken-ichi; Ito, Hiroshi

    2004-10-01

    Millimeter signal generation with high spectral purity and low phase fluctuations up to 100 GHz were demonstrated with an optical method in which two external-cavity laser diodes were phase-locked to an electro-optic modulator (EOM)-based optical frequency comb generator (OFCG). The additional phase noise caused from the cavity fluctuation in OFCG was completely canceled, and the phase noise of the heterodyne beat note of two LDs was determined only by that of the signal generator below offset frequency of 10 kHz. The detailed investigation of such a high frequency signal had never been done before, and the measured frequency of 100 GHz was limited only by the bandwidth of the phase noise detection system, and can be expanded up to more than 1 THz.

  9. Optical Sensing and Trapping Based on Localized Surface Plasmons

    NASA Astrophysics Data System (ADS)

    Kang, Zhiwen

    This project involves the study of novel plasmonic nanodevices that provide unique functionality in optical sensing, surface-enhanced Raman scattering (SERS), and optical trapping. The first design is based on a coupling system involving double-layered metal nano-strips arrays. This system has the advantages of simple geometry and direct integration with microfluidic chips. The intense optical localization due to field coupling within the system can enhance detection sensitivity of target molecules, especially by virtue of the optical trapping of plasmonic nanoparticles. The optical resonant condition is obtained theoretically through analyzing the SPs modes. Numerical modeling based on two-dimensional (2D) finite-difference time-domain (FDTD) is consistent with the theoretical analysis and demonstrates the feasibility of using this system for optical sensing and trapping. In the second design, a gold nano-ring structure is demonstrated to be an effective approach for plasmonic nano-optical tweezers (PNOTs) for trapping metallic nanoparticles. In our demonstration example, we have optimized a device for SERS operation at the wavelength of 785 nm. Three-dimensional (3D) FDTD techniques have been employed to calculate the optical response, and the optical force distribution have been derived using the Maxwell stress tensor (MST) method. Simulation results indicate that the nano-ring produces a maximum trapping potential well of ~32 kBT on a 20 nm gold nanoparticle. The existence of multiple potential well results in a very large active trapping volume of ~106 nm3 for the target particles. Furthermore, the trapped gold nanoparticles further lead to the formation of nano-gaps that offer a near-field enhancement of ~160 times, resulting in an achievable EF of 108 for SERS. In the third design, we propose a concept of all-optical nano-manipulation. We show that target molecules, after being trapped, can be transferred between the trapping sites within a linear array of

  10. Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Ihlefeld, Jon F.; Dominguez, Jason; Gonzales, Edward F.; Eric Bower, John; Bruce Burckel, D.; Sinclair, Michael B.; Brener, Igal

    2013-04-01

    Tellurium (Te) dielectric resonator metamaterials for thermal infrared applications were fabricated using a multi-cycle deposition-etch process that circumvents pinch-off issues during deposition. Deposition and etching of Te were studied in detail. Metamaterial samples with varying resonator dimensions were fabricated using this technique. All the samples showed two transmission minima corresponding to magnetic and electric dipole resonances. Longer resonant wavelengths were observed as the resonator dimension was increased. Observation of spectral overlap between magnetic and electric resonances gives us the potential opportunity to realize a negative refractive index material.

  11. Fast left ventricle tracking using localized anatomical affine optical flow.

    PubMed

    Queirós, Sandro; Vilaça, João L; Morais, Pedro; Fonseca, Jaime C; D'hooge, Jan; Barbosa, Daniel

    2017-02-16

    In daily clinical cardiology practice, left ventricle (LV) global and regional function assessment is crucial for disease diagnosis, therapy selection and patient follow-up. Currently, this is still a time-consuming task, spending valuable human resources. In this work, a novel fast methodology for automatic LV tracking is proposed based on localized anatomically constrained affine optical flow. This novel method can be combined to previously proposed segmentation frameworks or manually delineated surfaces at an initial frame to obtain fully delineated datasets and, thus, assess both global and regional myocardial function. Its feasibility and accuracy was investigated in three distinct public databases, namely in realistically simulated 3D ultrasound (US), clinical 3D echocardiography and clinical cine cardiac magnetic resonance (CMR) images. The method showed accurate tracking results in all databases, proving its applicability and accuracy for myocardial function assessment. Moreover, when combined to previous state-of-the-art segmentation frameworks, it outperformed previous tracking strategies in both 3D US and CMR data, automatically computing relevant cardiac indices with smaller biases and narrower limits of agreement compared to reference indices. Simultaneously, the proposed localized tracking method showed to be suitable for online processing, even for 3D motion assessment. Importantly, although here evaluated for LV tracking only, this novel methodology is applicable for tracking of other target structures with minimal adaptations. This article is protected by copyright. All rights reserved.

  12. Realization of all-optical three-person voting function based on self-collimation with the two-dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    Jiang, Yu-Chi; Liu, Shao-Bin

    2016-01-01

    In the paper, a simple structure of three-person voting circuit is proposed and based on self-collimation effect with the two-dimensional photonic crystals. The electric field intensity of the proposed structure is deduced according to optical interference theory. The results show that the simple structure with two-dimensional photonic crystals can realize the three-person voting either from the optical interference theory or simulation, meanwhile, the light contrast ratio between the output logic signal "1" and "0" can reach as high as 19 dB. When compared with three-person voting designed with digital electronic technology, the size of the proposed design in this paper is more smaller, which is valuable in photonic device integration and compactness.

  13. New algorithms for broad-band and narrowband source localization and a separable 2-D IIR filter realization

    NASA Astrophysics Data System (ADS)

    Shaw, Arnab K.

    1991-09-01

    Optimal Design of ARMA (IIR) filters with arbitrary number of poles and zeros from Impulse Response Data has been developed. The general criterion derived in this report has never been found before. Optimal synthesis of two dimensional IIR filters using one dimensional modules have been developed. Optimal design of a class of two dimensional IIR filters from spatial domain data has been developed. Optimal identification of Multivariable systems from Impulse response data is given. A Periodogram-based Maximum Likelihood estimator of Narrowband frequencies requiring only off the shelf hardware/software has been developed. A faster Simulated-Annealing method has been developed and applied to frequency estimation. A coherent one-step angles of arrival estimator of multiple broadband sources has been developed. Existing coherent techniques can not localize well separated sources in one step. An Order-Recursive approach has been given for AR-Bispectrum estimation. A Time-Delay-Neural Network has been trained with LPC coefficients for Phoneme/Vowel recognition. Parametric Non-linear prediction algorithms have been introduced for the first time for speech prediction/synthesis/coding.

  14. Realizing A Mid-Infrared Optically Pumped Molecular Gas Laser Inside Hollow-Core Photonic Crystal Fiber

    DTIC Science & Technology

    2012-01-01

    Filled Fiber Lasers ............................................. 53  vii 5.2.1 Quantitative Study of Laser Optical Properties ...gases have attractive properties including high damage thresholds, the possibility of heat dissipation through gas circulation, relatively large...CO2 [18], and OCS [19], to alkali vapor [20], CO [13, 14], HBr [15], C2H2 and HCN 3 [16]. Some of these OPGLs can be pumped via rotational

  15. Nano-composite magnetic material embedded on TiO2 pillars to realize magneto-optical resonant guided mode gratings

    NASA Astrophysics Data System (ADS)

    Varghese, B.; Gamet, E.; Jamon, D.; Neveu, S.; Berthod, L.; Shavdina, O.; Reynaud, S.; Verrier, I.; Veillas, C.; Royer, F.

    2016-02-01

    Periodic structuration of magnetic material is a way to enhance the magneto-optical behavior of optical devices like isolators. It is useful to reduce the footprint of such integrated devices or to improve their features. However, the structuration and/or integration of efficient magnetic materials on photonic platforms is still a difficult problem, because classical magneto-optical materials require an annealing temperature as high as 700°C. A novel wafer-scale approach is to incorporate that material into an already structured template through a single step deposition at low temperature. Using the dip-coating method, a magneto-optical thin film (~300nm) of CoFe2O4 nanoparticles in silica matrix prepared by sol-gel technique was coated on a 1D and 2D TiO2 subwavelength gratings. Such gratings were realized by the patterning of TiO2 films obtained by a sol-gel process. It was confirmed by Scanning Electron Microscope images that the magneto-optical composite completely occupies the voids of the 2D structuration showing a good compatibility between both materials. This composite shows a specific Faraday rotation of about 200°cm-1 at 1,5μm for 1% of volume fraction of nanoparticles. Spectral studies of the transmission and the reflection of a 1D TiO2 grating filled with the MO composite have evidenced the presence of a guided-mode optical resonance at 1,55μm. The position of this resonance was confirmed by numerical simulations, as well as its quite low efficiency. Based on simulations results, one can conclude that an increase of the grating depth is required to improve the efficiency of the resonance.

  16. Nonlinear optical methods for cellular imaging and localization.

    PubMed

    McVey, A; Crain, J

    2014-07-01

    Of all the ways in which complex materials (including many biological systems) can be explored, imaging is perhaps the most powerful because delivering high information content directly. This is particular relevant in aspects of cellular localization where the physical proximity of molecules is crucial in biochemical processes. A great deal of effort in imaging has been spent on enabling chemically selective imaging so that only specific features are revealed. This is almost always achieved by adding fluorescent chemical labels to specific molecules. Under appropriate illumination conditions only the molecules (via their labels) will be visible. The technique is simple and elegant but does suffer from fundamental limitations: (1) the fluorescent labels may fade when illuminated (a phenomenon called photobleaching) thereby constantly decreasing signal contrast over the course of image acquisition. To combat photobleaching one must reduce observation times or apply unfavourably low excitation levels all of which reduce the information content of images; (2) the fluorescent species may be deactivated by various environmental factors (the general term is fluorescence quenching); (3) the presence of fluorescent labels may introduce unexpected complications or may interfere with processes of interest (4) Some molecules of interest cannot be labelled. In these circumstances we require a fundamentally different strategy. One of the most promising alternative is based on a technique called Coherent Anti-Stokes Raman scattering (CARS). CARS is a fundamentally more complex process than is fluorescence and the experimental procedures and optical systems required to deliver high quality CARS images are intricate. However, the rewards are correspondingly very high: CARS probes the chemically distinct vibrations of the constituent molecules in a complex system and is therefore also chemically selective as are fluorescence-based methods. Moreover,the potentially severe problems of

  17. Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory

    PubMed Central

    Fu, Shencheng; Zhang, Xintong; Han, Qiang; Liu, Shuangyan; Han, Xiuxiu; Liu, Yichun

    2016-01-01

    Tunable spectrum-response is desired for efficient photo-energy transformation. Blu-ray (~405 nm) and polarization sensitive Ag/TiO2 nanocomposite films are thus fascinating in application of fast-response and high-density optical memory device. The Ag/TiO2 film has the ability of replicating hologram based on optical coherence by laser-stimulated dissolution of Ag nanoparticles (NPs). The rate and efficiency of the dissolution are supposed to be enhanced by introducing uniform and small-sized Ag NPs in TiO2 nanoporous films. However, no effective methods have been proposed to resolve this issue by now. Here, we develop a simple method of thermal-reduction to obtain high-density, space-dispersed and extremely small-sized Ag NPs in TiO2 nanoporous films pretreated with tannic acid. The film shows both high and narrow absorbance band centered at ~405 nm. Diffraction efficiency of the blu-ray holographic storage in the Ag/TiO2 film is improved by one order of magnitude compared to the traditional UV-reduced sample. Based on such properties, polarization-multiplexing holograms are able to be written at 405 nm and readout with little crosstalk. This work provides effective solutions for sensitizing localized surface plasmon resonance at near-UV region, extending the growth range of Ag NPs in the volume of TiO2, and resultantly, realizing high-density optical memory. PMID:27819328

  18. Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory

    NASA Astrophysics Data System (ADS)

    Fu, Shencheng; Zhang, Xintong; Han, Qiang; Liu, Shuangyan; Han, Xiuxiu; Liu, Yichun

    2016-11-01

    Tunable spectrum-response is desired for efficient photo-energy transformation. Blu-ray (~405 nm) and polarization sensitive Ag/TiO2 nanocomposite films are thus fascinating in application of fast-response and high-density optical memory device. The Ag/TiO2 film has the ability of replicating hologram based on optical coherence by laser-stimulated dissolution of Ag nanoparticles (NPs). The rate and efficiency of the dissolution are supposed to be enhanced by introducing uniform and small-sized Ag NPs in TiO2 nanoporous films. However, no effective methods have been proposed to resolve this issue by now. Here, we develop a simple method of thermal-reduction to obtain high-density, space-dispersed and extremely small-sized Ag NPs in TiO2 nanoporous films pretreated with tannic acid. The film shows both high and narrow absorbance band centered at ~405 nm. Diffraction efficiency of the blu-ray holographic storage in the Ag/TiO2 film is improved by one order of magnitude compared to the traditional UV-reduced sample. Based on such properties, polarization-multiplexing holograms are able to be written at 405 nm and readout with little crosstalk. This work provides effective solutions for sensitizing localized surface plasmon resonance at near-UV region, extending the growth range of Ag NPs in the volume of TiO2, and resultantly, realizing high-density optical memory.

  19. A design of panoramic lens system to realize the projection from the local annular object field to rectangular image field by using freeform surfaces

    NASA Astrophysics Data System (ADS)

    Bian, Xuqi; Ma, Tao; Zhang, Jun

    2016-10-01

    Nowadays, panoramic annular lens (PAL) applies in aerospace, robotics vision, industrial pipeline endoscope and corporate video conferencing. A cylinder-to-plane projection which called the Flat Cylinder Perspective (FCP) is adopted in PAL. The FCP projected the three-dimensional cylindrical field object onto a two-dimensional annular image plane. The optical system has fade zone in the center of detector. Based on the structure of the PAL system, this paper shows that a panoramic lens is designed with free-form surfaces. In the designed optical system, the local annular object field of view is projected onto a rectangular image plane. The free-form panoramic lens has a wide field of view of 140°in horizontal direction and a field of view of 40°in vertical direction. The design of the panoramic lens can maximize the use of area and have no fade zone in rectangular detector.

  20. Localized immunoassay in flow-through optical microbubble resonator (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Berneschi, Simone; Baldini, Francesco; Cosci, Alessandro; Cosi, Franco; Farnesi, Daniele; Nunzi Conti, Gualtiero; Tombelli, Sara; Trono, Cosimo; Pelli, Stefano; Giannetti, Ambra

    2016-05-01

    The integration of the Whispering Gallery Modes (WGMs) resonators in a microfluidics platform represents an important feature towards the realization of a compact high performance label-free biosensor. These hollow resonant microstructures present the advantage to combine the WGM resonator properties with the intrinsic capability of integrated microfluidics. In this sense, optical microbubble resonators (OMBRs), intended as a hollow core spherical bulge realized in a glass microcapillary by a suitable fabrication process, with their high Q factors (< 107 in air) well satisfy this requirement. Their operation is based on the fact that, given a small enough wall thickness of the bubble, the WGM optical field extends on both sides of the wall, so that it is possible to couple light into the resonator from an outer waveguide, and at the same time to have interaction of the WGM field with the inner fluid and analyte. The biosensing mechanism of these devices is based on the WGMs morphological dependence: any change on the OMBR inner surface, due to some chemical and/or biochemical binding, causes a shift of the resonance position and reduces the Q factor of the OMBR. By measuring these changes, important information about the sensing capability of the device can be obtained. In order to develop an OMBR based biosensor and optimize its performance, a crucial step is represented by its chemical/biochemical functionalization. Here we present a novel technique able to guarantee that the chemical interaction occurs in the OMBR inner wall, leaving the other microfluidic parts completely inert from a biochemical point of view. The method is based on UV photoactivation, which allows to localize the biolayers only in correspondence of the OMBR inner wall. As a proof of concept, an immunoassay based on rabbit IgG/anti rabbit-IgG interaction was performed and. The anti rabbit-IgG antibody was labelled with Alexa Fluor 488 to verify, by a fluorescence characterization, the goodness

  1. Local-field effects and nanostructuring for controlling optical properties and enabling novel optical phenomena

    NASA Astrophysics Data System (ADS)

    Dolgaleva, Ksenia

    My Ph. D. thesis is devoted to the investigation of the methods of controlling and improving the linear and nonlinear optical properties of materials. Within my studies, two approaches are considered: nanostructuring and invoking local-field effects. These broad topics involve various projects that I have undertaken during my Ph. D. research. The first project is on composite laser gain media. It involves both nanostructuring and using local-field effects to control the basic laser parameters, such as the radiative lifetime, small-signal gain and absorption, and the saturation intensity. While being involved in this project, I have performed both theoretical and experimental studies of laser characteristics of composite materials. In particular, I have developed simple theoretical models for calculating the effective linear susceptibilities of layered and Maxwell Garnett composite materials with a gain resonance in one of their components. The analysis of the results given by the models suggests that local-field effects provide considerable freedom in controlling the optical properties of composite laser gain media. I have also experimentally measured the radiative lifetime of Nd:YAG nanopowder suspended in different liquids to extract information regarding local-field effects. The second project is devoted to the investigation of a not-well-known phenomenon that local-field effects can induce, which is microscopic cascading in nonlinear optics. This project involves the theoretical prediction of local-field-induced microscopic cascading effect in the fifth-order nonlinear response and its first experimental observation. This effect has been mostly overlooked or underestimated, but could prove useful in quantum optics. I have shown that, under certain conditions, the microscopic cascaded contribution can be a dominant effect in high-order nonlinearities. The third project is about characterization of laser performance of a new dye, oligofluorene, embedded into

  2. Analysis of the Localization of Michelson Interferometer Fringes Using Fourier Optics and Temporal Coherence

    ERIC Educational Resources Information Center

    Narayanamurthy, C. S.

    2009-01-01

    Fringes formed in a Michelson interferometer never localize in any plane, in the detector plane and in the localization plane. Instead, the fringes are assumed to localize at infinity. Except for some explanation in "Principles of Optics" by Born and Wolf (1964 (New York: Macmillan)), the fringe localization phenomena of Michelson's interferometer…

  3. Analysis of the Localization of Michelson Interferometer Fringes Using Fourier Optics and Temporal Coherence

    ERIC Educational Resources Information Center

    Narayanamurthy, C. S.

    2009-01-01

    Fringes formed in a Michelson interferometer never localize in any plane, in the detector plane and in the localization plane. Instead, the fringes are assumed to localize at infinity. Except for some explanation in "Principles of Optics" by Born and Wolf (1964 (New York: Macmillan)), the fringe localization phenomena of Michelson's interferometer…

  4. Topological defect formation in 1D and 2D spin chains realized by network of optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Hamerly, Ryan; Inaba, Kensuke; Inagaki, Takahiro; Takesue, Hiroki; Yamamoto, Yoshihisa; Mabuchi, Hideo

    2016-09-01

    A network of optical parametric oscillators (OPOs) is used to simulate classical Ising and XY spin chains. The collective nonlinear dynamics of this network, driven by quantum noise rather than thermal fluctuations, seeks out the Ising/XY ground state as the system transitions from below to above the lasing threshold. We study the behavior of this “Ising machine” for three canonical problems: a 1D ferromagnetic spin chain, a 2D square lattice and problems where next-nearest-neighbor couplings give rise to frustration. If the pump turn-on time is finite, topological defects form (domain walls for the Ising model, winding number and vortices for XY) and their density can be predicted from a numerical model involving a linear “growth stage” and a nonlinear “saturation stage”. These predictions are compared against recent data for a 10,000-spin 1D Ising machine.

  5. Image transport through a disordered optical fibre mediated by transverse Anderson localization.

    PubMed

    Karbasi, Salman; Frazier, Ryan J; Koch, Karl W; Hawkins, Thomas; Ballato, John; Mafi, Arash

    2014-02-25

    Transverse Anderson localization of light allows localized optical-beam-transport through a transversely disordered and longitudinally invariant medium. Its successful implementation in disordered optical fibres recently resulted in the propagation of localized beams of radii comparable to that of conventional optical fibres. Here we demonstrate optical image transport using transverse Anderson localization of light. The image transport quality obtained in the polymer disordered optical fibre is comparable to or better than some of the best commercially available multicore image fibres with less pixelation and higher contrast. It is argued that considerable improvement in image transport quality can be obtained in a disordered fibre made from a glass matrix with near wavelength-size randomly distributed air-holes with an air-hole fill-fraction of 50%. Our results open the way to device-level implementation of the transverse Anderson localization of light with potential applications in biological and medical imaging.

  6. Local electronic, sensing and optical properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Staii, Cristian

    The work presented in this thesis is focused on the electronic and optical properties of single wall carbon nanotubes (swCNs). In a first set of experiments we investigate the local electronic properties of swCNs using novel scanning probe microscopies. We use Scanning Gate Microscopy (SGM) to measure the energy of the resonant scattering centers in metallic swCNs, and to show the local nature of the memory effect observed in swCN field effect transistors (swCN-FETs). We also combine Impedance Spectroscopy and SGM to measure the high frequency properties of swCN-FETs. These experiments provide the first observations concerning the role of individual defects at high frequencies. The results are consistent with a simple parallel R-C circuit model for the swCN-FET. Furthermore, we present a quantitative model for the phase shifts observed in Scanning Conductance Microscopy (SCM) and demonstrate that this can be used to investigate the electronic properties of nanoscale samples without requiring electrical contacts. We provide a general method based on SCM that can be used to measure the dielectric constant of nanoscale objects. In a second set of experiments we demonstrate that swCN-FETs functionalized with single stranded DNA (ss-DNA) act as highly sensitive chemical sensors. The ss-DNA decorated swCN-FETs are sensitive to chemical species (odors) that do not cause a detectable response in non-functionalized swCN-FETs. Moreover, odor responses of these devices are different in sign and magnitude for different odors, and the odor response characteristics are dependent on the base sequence of the ss-DNA used to decorate the swCN. These results suggest that swCN-FET functionalized with ss-DNA and related molecules (RNA, aptamers, etc) are extremely promising candidates for sensing applications. Finally, we present photoluminescence measurements on individual swCNs, freely suspended across open apertures. These experiments show asymmetric peak line shapes, with line

  7. Design and realization of a side-polished single-mode fiber optic high-sensitive temperature sensor

    NASA Astrophysics Data System (ADS)

    Nagaraju, B.; Varshney, R. K.; Pal, B. P.; Singh, A.; Monnom, G.; Dussardier, B.

    2008-11-01

    A high sensitive temperature sensor based on evanescent field coupling between a side-polished fiber half-coupler (SPFHC) and a thermo-optic multimode overlay waveguide (MMOW) is designed and demonstrated. Such a structure essentially functions as an asymmetric directional coupler with a band-stop characteristic attributable to the wavelengthdependent resonant coupling between the mode of the SPFHC and one or more modes of the MMOW. A slight change in temperature leads to a significant shift in the phase resonance-coupling wavelength ( λr ) between the MMOW and SPFHC λr, which is easily measurable. The wavelength sensitivity of the device is measured to be ~ 5.3 nm/°C within the measurement range of 26-70°C this sensitivity is more than 5 times higher compared to earlier reported temperature sensors of this kind. The SPFHC was fabricated by selective polishing of the cladding from one side of a bent telecommunication standard single-mode fiber and the MMOW was formed on top of the SPFHC through spin coating. A semi- numerical rigorous normal mode analysis was employed at the design stage by including the curvature effect of the fiber lay in the half-coupler block and the resultant z-dependent evanescent coupling mechanism. An excellent agreement between theoretical and experimental results is found.

  8. Topology, localization, and quantum information in atomic, molecular and optical systems

    NASA Astrophysics Data System (ADS)

    Yao, Norman Ying

    The scientific interface between atomic, molecular and optical (AMO) physics, condensed matter, and quantum information science has recently led to the development of new insights and tools that bridge the gap between macroscopic quantum behavior and detailed microscopic intuition. While the dialogue between these fields has sharpened our understanding of quantum theory, it has also raised a bevy of new questions regarding the out-of-equilibrium dynamics and control of many-body systems. This thesis is motivated by experimental advances that make it possible to produce and probe isolated, strongly interacting ensembles of disordered particles, as found in systems ranging from trapped ions and Rydberg atoms to ultracold polar molecules and spin defects in the solid state. The presence of strong interactions in these systems underlies their potential for exploring correlated many-body physics and this thesis presents recent results on realizing fractionalization and localization. From a complementary perspective, the controlled manipulation of individual quanta can also enable the bottom-up construction of quantum devices. To this end, this thesis also describes blueprints for a room-temperature quantum computer, quantum credit cards and nanoscale quantum thermometry.

  9. Optical Activity Governed by Local Chiral Structures in Two-Dimensional Curved Metallic Nanostructures.

    PubMed

    Narushima, Tetsuya; Hashiyada, Shun; Okamoto, Hiromi

    2016-07-01

    Chiral nanostructures show macroscopic optical activity. Local optical activity and its handedness are not uniform in the nanostructure, and are spatially distributed depending on the shape of the nanostructure. In this study we fabricated curved chain nanostructures made of gold by connecting linearly two or more arc structures in a two-dimensional plane. Spatial features of local optical activity in the chain structures were evaluated with near-field circular dichroism (CD) imaging, and analyzed with the aid of classical electromagnetic simulation. The electromagnetic simulation predicted that local optical activity appears at inflection points where arc structures are connected. The handedness of the local optical activity was dependent on the handedness of the local chirality at the inflection point. Chiral chain structures have odd inflection points and the local optical activity distributed symmetrically with respect to structural centers. In contrast, achiral chain structures have even inflection points and showed antisymmetric distribution. In the near-field CD images of fabricated chain nanostructures, the symmetric and antisymmetric distributions of local CD were observed for chiral and achiral chain structures, respectively, consistent with the simulated results. The handedness of the local optical activity was found to be determined by the handedness of the inflection point, for the fabricated chain structures having two or more inflection points. The local optical activity was thus governed primarily by the local chirality of the inflection points for the gold chain structures. The total effect of all the inflection points in the chain structure is considered to be a predominant factor that determines the macroscopic optical activity. Chirality 28:540-544, 2016. © 2016 Wiley Periodicals, Inc.

  10. Terrain-aided localization using electro-optical sensing (TALEOS)

    NASA Astrophysics Data System (ADS)

    Collins, Peter R. C.; Stephens, Arthur S.; Greenway, Phil; Deaves, Rob H.; Priestley, M. D. J.; Bullen, Mark

    1997-06-01

    The next generation of weapons systems will benefit from an array of new technologies which, when integrated, will provide the capability of accurately selecting the correct target. For example, target image features can be extracted from high resolution satellite data and this information can be fused with feature positions obtained from a weapon's imaging sensor. This will allow automatic target recognition to be performed. Terrain aided localization using electro-optical sensing (TALEOS) is a robust method of enhancing the performance of an imaging system through the exploitation of other sources of information. The primary image processing technique used in TALEOS is model-matching. The objective of model-matching is to discover the 3D position and orientation of an object (the model) with respect to the sensor reference frame by performing a match with corresponding features. In TALEOS, the model is derived from remotely sensed data and contains information about potentially observable features which might be extracted from the image. Embedded in this extended model is information about specific targets, including their known or estimated position, and features which characterize them. The Sowerby Research Center terrain model facility was used to gather realistic imagery. The terrain model is a 300:1 scale model of a 25 square kilometer area of real terrain. An overhead gantry system carries a video camera over the model enabling a wide variety of flight scenarios to be simulated experimentally. By a combination of special paint schemes and video inversion, pictures of the terrain model can provide a realistic simulation of infrared imagery. An image database was simulated using an overhead view of the model as if seen from a 'satellite' or reconnaissance aircraft. This imagery was utilized to evaluate the performance of the TALEOS technique for comparison with theoretical results. TALEOS integrates the data from the image processing subsystem with data from

  11. Investigation of local and nonlocal nonlinear optical refraction effect in IZO thin films

    NASA Astrophysics Data System (ADS)

    Htwe, Zin Maung; Zhang, Yun-Dong; Yao, Cheng-Bao; Li, Hui; Yuan, Ping

    2016-10-01

    We report the local and nonlocal nonlinear optical refraction properties of indium doped zinc oxide (IZO) thin films using closed aperture Z-scan technique. The Z-scan results show the films have positive nonlinear optical refraction properties. The nonlocal parameter m of samples is increased with indium. In both of local and nonlocal studies, the nonlinear optical refractions of thin films were increased with In contents and laser energy. This relation reveals the role of In composition in IZO affects on the nonlinear optical responses of the films. These results make the IZO thin films as the promising application in optoelectronics devices.

  12. Lightfast optical current in dielectric by plasmonically induced local field

    NASA Astrophysics Data System (ADS)

    Kim, Seungchul; Kwon, Ojoon; Lee, Tae-Woo

    2014-08-01

    Recently, ultrafast strong field induced optical current in SiO2 dielectric medium has demonstrated. By foaming laser intensity more than 1013 W•cm-2 in the dielectric material, the optical current was generated in a dielectric gap without any DC bias. This phenomenon is affected by the strength electric field of incident laser field and the generated electrons follow the speed of optical frequency enabling lightfast electronics in the future. In this study, we especially adopted nanoplasmonic field to trigger and control current flow in a nanometer spatial resolution. Nanoplasmonic field enables to manipulate light field in nanoscale domain. By using nanoplasmonic field, optically induced current flow can be selectively controlled by characteristic of nanoplasmonic nanostructure. For the first demonstration, saw tooth like 2-D nano Au pattern was numerically and experimentally investigated to boost up the laser intensity of incident 4.5 fs laser pulse with minimum field distortion and broadening. The intensity enhancement factor of plasmonic field at the saw tooth tip was ~40, enabling Wannier-Stark effect with incidence intensity level of only 1011W•cm-2 in the TiO2 substrate. The carrier envelope phase of laser pulse is controlled to measure ultrafast optical current generation in dielectric medium by plasmonically induced strong near-field. This will be the basis for developing practical lightfast optical electronics in the future.

  13. Local Optical Spectroscopies for Subnanometer Spatial Resolution Chemical Imaging

    SciTech Connect

    Weiss, Paul

    2014-01-20

    The evanescently coupled photon scanning tunneling microscopes (STMs) have special requirements in terms of stability and optical access. We have made substantial improvements to the stability, resolution, and noise floor of our custom-built visible-photon STM, and will translate these advances to our infrared instrument. Double vibration isolation of the STM base with a damping system achieved increased rigidity, giving high tunneling junction stability for long-duration and high-power illumination. Light frequency modulation with an optical chopper and phase-sensitive detection now enhance the signal-to-noise ratio of the tunneling junction during irradiation.

  14. Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end.

    PubMed

    Ortega-Mendoza, J Gabriel; Padilla-Vivanco, Alfonso; Toxqui-Quitl, Carina; Zaca-Morán, Placido; Villegas-Hernández, David; Chávez, Fernando

    2014-10-09

    This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR). We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented.

  15. Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End

    PubMed Central

    Ortega-Mendoza, J. Gabriel; Padilla-Vivanco, Alfonso; Toxqui-Quitl, Carina; Zaca-Morán, Placido; Villegas-Hernández, David; Chávez, Fernando

    2014-01-01

    This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR). We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented. PMID:25302813

  16. Chiral optical local density of states in a spiral plasmonic cavity

    NASA Astrophysics Data System (ADS)

    Pham, Aline; Berthel, Martin; Jiang, Quanbo; Bellessa, Joel; Huant, Serge; Genet, Cyriaque; Drezet, Aurélien

    2016-11-01

    We discuss an alternate paradigm: the chiral electromagnetic local density of states (LDOS) in a spiral plasmonic nanostructure. In both classical and quantum regimes, we reveal using near-field scanning optical microscopy (NSOM) in combination with spin analysis that a spiral cavity possesses spin-dependent local optical modes. We expect this work to lead to promising directions for future quantum plasmonic device development, highlighting the potentials of chirality in quantum information processing.

  17. Development of all-solid-state coherent 589 nm light source: toward the realization of sodium lidar and laser guide star adaptive optics

    NASA Astrophysics Data System (ADS)

    Saito, Norihito; Akagawa, Kazuyuki; Kato, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi

    2006-12-01

    We report an all-solid-state coherent 589 nm light source in single-pass sum-frequency generation (SFG) with actively mode-locked Nd:YAG lasers for the realization of sodium lidar and laser guide star adaptive optics. The Nd:YAG lasers are constructed as a LD-side-pumped configuration and are operated at 1064 and 1319 nm for 589 nm light generation in SFG. Output powers of 16.5 and 5.3 W at 1064 and 1319 nm are obtained with two pumping chambers. Each chamber consisted of three 80-W-LD arrays. Single transverse mode TEM 00; M2 ~1.1 is achieved with adjustment of cavity length considering thermal lens effect with increase of input LD power. The cavity length is set to approximately 1 m. Accordingly the mode-locked lasers are operated at a repetition rate of approximately 150 MHz. Synchronization of two pulse trains at 1064 and 1319 nm is accomplished by control of phase difference between two radio frequencies input in acousto-optic mode-lockers. Then temporal delay is controlled with a resolution of 37 ps/degree. Pump beams are mixed in periodically poled stoichiometric lithium tantalate (PPSLT) without an antireflection coating. The effective aperture and length of the crystal are 0.5 × 2 mm2 and 15 mm. When input intensity is set at 5.6 MW/cm , an average output power of 4.6 W is obtained at 589.159 nm. Precise tuning to the sodium D II line is accomplished by thermal control of etalons set in the Nd:YAG lasers. The output power at 589.159 nm is stably maintained within +/-1.2% for 8 hours.

  18. Spatiotemporal localized modes in PT-symmetric optical media

    NASA Astrophysics Data System (ADS)

    Wang, Yue-Yue; Dai, Chao-Qing; Wang, Xiao-Gang

    2014-09-01

    We firstly obtain spatiotemporal localized mode solutions of a (3+1)-dimensional nonlinear Schrödinger equation in PT-symmetric potentials, and then discuss the linear stability of LMs, which are also tested by means of direct simulations. Moreover, phase switches and transverse power-flow density associated with these localized modes have also been examined. At last, we investigate the dynamical behaviors of spatiotemporal LMs in three kinds of inhomogeneous media.

  19. Realization of single-phase BaSi2 films by vacuum evaporation with suitable optical properties and carrier lifetime for solar cell applications

    NASA Astrophysics Data System (ADS)

    Hara, Kosuke O.; Nakagawa, Yoshihiko; Suemasu, Takashi; Usami, Noritaka

    2015-07-01

    We have realized BaSi2 films by a simple vacuum evaporation technique for solar cell applications. X-ray diffraction analysis shows that single-phase BaSi2 films are formed on alkali-free glass substrates at 500 and 600 °C while impurity phases coexist on quartz or soda-lime glass substrates or at a substrate temperature of 400 °C. The mechanism of film growth is discussed by analyzing the residue on the evaporation boat. An issue on the fabricated films is cracking due to thermal mismatch, as observed by secondary electron microscopy. Optical characterizations by transmittance and reflectance spectroscopy show that the evaporated films have high absorption coefficients, reaching 2 × 104 cm-1 for a photon energy of 1.5 eV, and have indirect absorption edges of 1.14-1.21 eV, which are suitable for solar cells. The microwave-detected photoconductivity decay measurement reveals that the carrier lifetime is approximately 0.027 µs, corresponding to the diffusion length of 0.84 µm, which suggests the potential effective usage of photoexcited carriers.

  20. New compact and efficient local oscillator optic system for the KSTAR electron cyclotron emission imaging system

    SciTech Connect

    Nam, Y. B. Yun, G. S.; Lee, D. J.; Lee, J.; Lee, W.; Kim, C.; Park, H. K.

    2016-11-15

    Electron cyclotron emission imaging (ECEI) diagnostic on Korean Superconducting Tokamak Advanced Research utilizes quasi-optical heterodyne-detection method to measure 2D (vertical and radial) T{sub e} fluctuations from two toroidally separated poloidal cross section of the plasma. A cylindrical lens local oscillator (LO) optics with optical path length (OPL) 2–2.5 m has been used in the current ECEI system to couple the LO source to the 24 vertically aligned array of ECE detectors. For efficient and compact LO optics employing the Powell lens is proposed so that the OPL of the LO source is significantly reduced from ∼2.0 m to 0.4 m with new optics. The coupling efficiency of the LO source is expected to be improved especially at the edge channels. Results from the optical simulation together with the laboratory test of the prototype optics will be discussed in this paper.

  1. New compact and efficient local oscillator optic system for the KSTAR electron cyclotron emission imaging system.

    PubMed

    Nam, Y B; Lee, D J; Lee, J; Kim, C; Yun, G S; Lee, W; Park, H K

    2016-11-01

    Electron cyclotron emission imaging (ECEI) diagnostic on Korean Superconducting Tokamak Advanced Research utilizes quasi-optical heterodyne-detection method to measure 2D (vertical and radial) Te fluctuations from two toroidally separated poloidal cross section of the plasma. A cylindrical lens local oscillator (LO) optics with optical path length (OPL) 2-2.5 m has been used in the current ECEI system to couple the LO source to the 24 vertically aligned array of ECE detectors. For efficient and compact LO optics employing the Powell lens is proposed so that the OPL of the LO source is significantly reduced from ∼2.0 m to 0.4 m with new optics. The coupling efficiency of the LO source is expected to be improved especially at the edge channels. Results from the optical simulation together with the laboratory test of the prototype optics will be discussed in this paper.

  2. New compact and efficient local oscillator optic system for the KSTAR electron cyclotron emission imaging system

    NASA Astrophysics Data System (ADS)

    Nam, Y. B.; Lee, D. J.; Lee, J.; Kim, C.; Yun, G. S.; Lee, W.; Park, H. K.

    2016-11-01

    Electron cyclotron emission imaging (ECEI) diagnostic on Korean Superconducting Tokamak Advanced Research utilizes quasi-optical heterodyne-detection method to measure 2D (vertical and radial) Te fluctuations from two toroidally separated poloidal cross section of the plasma. A cylindrical lens local oscillator (LO) optics with optical path length (OPL) 2-2.5 m has been used in the current ECEI system to couple the LO source to the 24 vertically aligned array of ECE detectors. For efficient and compact LO optics employing the Powell lens is proposed so that the OPL of the LO source is significantly reduced from ˜2.0 m to 0.4 m with new optics. The coupling efficiency of the LO source is expected to be improved especially at the edge channels. Results from the optical simulation together with the laboratory test of the prototype optics will be discussed in this paper.

  3. ZnO nanotube waveguide arrays on graphene films for local optical excitation on biological cells

    NASA Astrophysics Data System (ADS)

    Baek, Hyeonjun; Kwak, Hankyul; Song, Minho S.; Ha, Go Eun; Park, Jongwoo; Tchoe, Youngbin; Hyun, Jerome K.; Park, Hye Yoon; Cheong, Eunji; Yi, Gyu-Chul

    2017-04-01

    We report on scalable and position-controlled optical nanoprobe arrays using ZnO nanotube waveguides on graphene films for use in local optical excitation. For the waveguide fabrication, position-controlled and well-ordered ZnO nanotube arrays were grown on chemical vapor deposited graphene films with a submicron patterned mask layer and Au prepared between the interspace of nanotubes. Mammalian cells were cultured on the nanotube waveguide arrays and were locally excited by light illuminated through the nanotubes. Fluorescence and optogenetic signals could be excited through the optical nanoprobes. This method offers the ability to investigate cellular behavior with a high spatial resolution that surpasses the current limitation.

  4. Local density of optical states of an asymmetric waveguide grating at photonic band gap resonant wavelength

    NASA Astrophysics Data System (ADS)

    Alatas, Husin; Sumaryada, Tony I.; Ahmad, Faozan

    2015-01-01

    We have investigated the characteristics of local density of optical states (LDOS) at photonic band gap resonant wavelength of an asymmetric waveguide grating based on Green's function formulation. It is found that the LDOS of the considered structure exhibits different characteristics in its localization between the upper and lower resonant wavelengths of the corresponding photonic band gap edges.

  5. Research in high speed fiber optics local area networks

    NASA Technical Reports Server (NTRS)

    Tobagi, F. A.

    1986-01-01

    The design of high speed local area networks (HSLAN) for communication among distributed devices requires solving problems in three areas: the network medium and its topology, the medium access control, and the network interface. Considerable progress was already made in the first two areas. Accomplishments are divided into two groups according to their theoretical or experimental nature. A brief summary is given.

  6. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    PubMed

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-06-06

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  7. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System

    PubMed Central

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W.; Dong, Fengzhong

    2016-01-01

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges. PMID:27275822

  8. Improved passive optical network architectures to support local area network emulation and protection

    NASA Astrophysics Data System (ADS)

    Wong, Elaine; Nadarajah, Nishaanthan; Chae, Chang-Joon; Nirmalathas, Ampalavanapillai; Attygalle, Sanjeewa M.

    2006-01-01

    We describe two optical layer schemes which simultaneously facilitate local area network emulation and automatic protection switching against distribution fiber breaks in passive optical networks. One scheme employs a narrowband fiber Bragg grating placed close to the star coupler in the feeder fiber of the passive optical network, while the other uses an additional short length distribution fiber from the star coupler to each customer for the redirection of the customer traffic. Both schemes use RF subcarrier multiplexed transmission for intercommunication between customers in conjunction with upstream access to the central office at baseband. Failure detection and automatic protection switching are performed independently by each optical network unit that is located at the customer premises in a distributed manner. The restoration of traffic transported between the central office and an optical network unit in the event of the distribution fiber break is performed by interconnecting adjacent optical network units and carrying out signal transmissions via an independent but interconnected optical network unit. Such a protection mechanism enables multiple adjacent optical network units to be simultaneously protected by a single optical network unit utilizing its maximum available bandwidth. We experimentally verify the feasibility of both schemes with 1.25 Gb/s upstream baseband transmission to the central office and 155 Mb/s local area network data transmission on a RF subcarrier frequency. The experimental results obtained from both schemes are compared, and the power budgets are calculated to analyze the scalability of each scheme.

  9. Optics and magneto-optics of coexisting localized and free holes in GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    van der Meulen, H. P.; Páramo, J. Sanchez; Calleja, J. M.; Friedland, K. J.; Hey, R.; Ploog, K.

    2000-02-01

    The photoluminescence and photoluminescence excitation spectra have been studied in two twin GaAs quantum wells containing a two-dimensional electron gas with high density and high mobility. One of the wells includes a few Be acceptors in a δ-layer at the center of the well, which localize part of the photocreated holes. In the other well the holes are free. Comparison of the optical spectra of both samples shows that the Fermi-edge singularity in emission is only observed for localized holes, while in excitation spectra both Be-bound- and free holes display the same singularity. Thus, localization of holes appears to be relevant mainly by its effect on the final-state density. Magneto-optical measurements confirm the presence of the two kinds of holes and provide estimates of their apparent effective masses.

  10. Delivery of video-on-demand services using local storages within passive optical networks.

    PubMed

    Abeywickrama, Sandu; Wong, Elaine

    2013-01-28

    At present, distributed storage systems have been widely studied to alleviate Internet traffic build-up caused by high-bandwidth, on-demand applications. Distributed storage arrays located locally within the passive optical network were previously proposed to deliver Video-on-Demand services. As an added feature, a popularity-aware caching algorithm was also proposed to dynamically maintain the most popular videos in the storage arrays of such local storages. In this paper, we present a new dynamic bandwidth allocation algorithm to improve Video-on-Demand services over passive optical networks using local storages. The algorithm exploits the use of standard control packets to reduce the time taken for the initial request communication between the customer and the central office, and to maintain the set of popular movies in the local storage. We conduct packet level simulations to perform a comparative analysis of the Quality-of-Service attributes between two passive optical networks, namely the conventional passive optical network and one that is equipped with a local storage. Results from our analysis highlight that strategic placement of a local storage inside the network enables the services to be delivered with improved Quality-of-Service to the customer. We further formulate power consumption models of both architectures to examine the trade-off between enhanced Quality-of-Service performance versus the increased power requirement from implementing a local storage within the network.

  11. Understanding AGNs in the Local Universe through Optical Reverberation Mapping

    NASA Astrophysics Data System (ADS)

    Pei, Liuyi

    2016-01-01

    I present the results of observational projects aimed at measuring the mass of the black hole at the center of active galactic nuclei (AGNs) and understanding the structure and kinematics of the broad-line emitting gas within the black hole's sphere of influence.The first project aims to measure the black hole mass in the Kepler-field AGN KA1858. We obtained simultaneous spectroscopic data from the Lick Observatory 3-m telescope using the Kast Double Spectrograph and photometry data from five ground-based telescopes, and used reverberation mapping (RM) techniques to measure the emission-line light curves' lags relative to continuum variations. We obtained lags for H-beta, H-gamma, H-delta, and He II, and obtained the first black hole mass measurement for this object. Our results will serve as a reference point for future studies on relations between black hole mass and continuum variability characteristics using Kepler AGN light curves.The second project, in collaboration with the AGN STORM team, aims to understand the structure and dynamics of the broad line region (BLR) in NGC 5548 in both UV and optical wavelengths. To supplement 6 months of HST UV observations, we obtained simultaneous optical spectroscopic data from six ground-based observatories. We obtained emission-line lags for the optical H-beta and He II lines as well as velocity-resolved lag measurements for H-beta. We also compared the velocity-resolved lags for H-beta to the UV emission lines C IV and Ly-alpha and found similar lag profiles for all three lines.Finally, I will discuss my contributions to two other collaborations in AGN RM. A key component in RM is monitoring continuum variability, which is often done through ground-based photometry. I will present a pipeline that performs aperture photometry on any number of images of an AGN with WCS coordinates and immediately produces relative light curves. This pipeline enables quick looks of AGN variability in real time and has been used in the

  12. Intraoperative localization using a three-dimensional optical digitizer

    NASA Astrophysics Data System (ADS)

    Bucholz, Richard D.; Smith, Kurt R.; Henderson, Jaimie M.; McDurmont, Lee L.; Schulze, Dean W.

    1993-09-01

    Frame based stereotactic surgery allows the surgeon to precisely approach a predetermined target. Although useful for diagnostic and functional procedures, mechanical instruments fail to indicate position quickly during open craniotomy. We have developed a system employing an infrared optical digitizer to indicate position on either CT, MRI, or PET scans. The system consists of a base ring attached to the patient's head during surgery, hand held instruments of any type, a camera array, and a computer display. Light emitting diodes on the instruments and head ring are tracked by three linear CCDs suspended over the surgical field. The position of the surgical instrument relative to the patient's head is computed by a personal computer. Surgical position is indicated on an individual CT, MRI, or PET slice. A graphics workstation provides three dimensional display of position.

  13. Fabrication and characterization of disordered polymer optical fibers for transverse Anderson localization of light.

    PubMed

    Karbasi, Salman; Frazier, Ryan J; Mirr, Craig R; Koch, Karl W; Mafi, Arash

    2013-07-29

    We develop and characterize a disordered polymer optical fiber that uses transverse Anderson localization as a novel waveguiding mechanism. The developed polymer optical fiber is composed of 80,000 strands of poly (methyl methacrylate) (PMMA) and polystyrene (PS) that are randomly mixed and drawn into a square cross section optical fiber with a side width of 250 μm. Initially, each strand is 200 μm in diameter and 8-inches long. During the mixing process of the original fiber strands, the fibers cross over each other; however, a large draw ratio guarantees that the refractive index profile is invariant along the length of the fiber for several tens of centimeters. The large refractive index difference of 0.1 between the disordered sites results in a small localized beam radius that is comparable to the beam radius of conventional optical fibers. The input light is launched from a standard single mode optical fiber using the butt-coupling method and the near-field output beam from the disordered fiber is imaged using a 40X objective and a CCD camera. The output beam diameter agrees well with the expected results from the numerical simulations. The disordered optical fiber presented in this work is the first device-level implementation of 2D Anderson localization, and can potentially be used for image transport and short-haul optical communication systems.

  14. High speed fiber optics local area networks: Design and implementation

    NASA Technical Reports Server (NTRS)

    Tobagi, Fouad A.

    1988-01-01

    The design of high speed local area networks (HSLAN) for communication among distributed devices requires solving problems in three areas: (1) the network medium and its topology; (2) the medium access control; and (3) the network interface. Considerable progress has been made in all areas. Accomplishments are divided into two groups according to their theoretical or experimental nature. A brief summary is given in Section 2, including references to papers which appeared in the literature, as well as to Ph.D. dissertations and technical reports published at Stanford University.

  15. The local density of optical states of a metasurface

    PubMed Central

    Lunnemann, Per; Koenderink, A. Femius

    2016-01-01

    While metamaterials are often desirable for near-field functions, such as perfect lensing, or cloaking, they are often quantified by their response to plane waves from the far field. Here, we present a theoretical analysis of the local density of states near lattices of discrete magnetic scatterers, i.e., the response to near field excitation by a point source. Based on a pointdipole theory using Ewald summation and an array scanning method, we can swiftly and semi-analytically evaluate the local density of states (LDOS) for magnetoelectric point sources in front of an infinite two-dimensional (2D) lattice composed of arbitrary magnetoelectric dipole scatterers. The method takes into account radiation damping as well as all retarded electrodynamic interactions in a self-consistent manner. We show that a lattice of magnetic scatterers evidences characteristic Drexhage oscillations. However, the oscillations are phase shifted relative to the electrically scattering lattice consistent with the difference expected for reflection off homogeneous magnetic respectively electric mirrors. Furthermore, we identify in which source-surface separation regimes the metasurface may be treated as a homogeneous interface, and in which homogenization fails. A strong frequency and in-plane position dependence of the LDOS close to the lattice reveals coupling to guided modes supported by the lattice. PMID:26868601

  16. KEY COMPARISON: Bilateral comparison of the NRC and PTB local realizations of the ITS-90 between the silver point and 1700 °C using vacuum tungsten strip lamps as transfer standards

    NASA Astrophysics Data System (ADS)

    Hartmann, J.; Thomas, R.; Hill, K. D.; Steele, A. G.; Ma, C. K.

    2006-01-01

    At its 19th session in September 1996, the Consultative Committee for Thermometry (CCT) agreed to conduct an international key comparison of the local realizations of the International Temperature Scale (ITS) of 1990 above the silver point. High-stability tungsten-strip lamps were selected as transfer standards. The measurements began in 1997 and ended in July 1999. The comparison was piloted by the NMi-VSL and co-piloted by the NPL. The national metrology institutes of 12 countries participated in this key comparison and the initial Draft A report was circulated in October 1999. With the circulation of the report, some participants became aware of problems with their local scale realizations. To link their improved local scale realization to the CCT-K5 results, the NRC asked the PTB to pilot a bilateral comparison of the realization of the ITS-90 between the silver point and 1700 °C using a pair of tungsten-strip lamps as transfer standards. The measurements were carried out from June 2001 to October 2002. The results of the bilateral comparison presented in figures 1 and 2 clearly demonstrate that the NRC and PTB local scale realizations of the ITS-90 between the silver point and 1700 °C agree within the combined standard uncertainty. As the scale realization of the PTB remained unchanged since the measurements performed for the CCT-K5, this bilateral comparison has successfully linked the improved scale realization of the NRC to the results of the key comparison via the stable scale realization of the PTB. Figure 1 Figure 1. Differences between the radiance temperatures of lamp C598 measured at the NRC and the PTB. (NRC_I, NRC_II, NRC_average: temperature measured at the NRC for the first and second run, and average temperature measured at the NRC, respectively. Dotted line: combined standard uncertainty at k = 1.) Figure 2 Figure 2. Differences between the radiance temperatures of lamp 644C measured at the NRC and the PTB. (NRC_I, NRC_II, NRC

  17. Electro-optically modulated localized surface plasmon resonance biosensors with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Tzyy-Jiann; Lin, Wen-Shao

    2006-10-01

    An integrated-optic biosensor based on electro-optically modulated localized surface plasmon resonance (LSPR) is demonstrated. This biosensor utilizes the electro-optic effect to modulate the wave vector of incident lightwave used to excite localized surface plasmons. Electro-optically modulated LSPR results in the analyte-dependent variation of output intensity with the applied voltage. The linear regression slope of this relation is used to determine the analyte concentration. On the sensing region of LSPR biosensor, human serum albumin is self-assembled on gold nanoparticles in order to sense the beta-blocker concentration. The use of the presented biosensor has the features of no intensity drift problem, no absorption diversity problem in different sample media, and noise reduction by linear regression analysis.

  18. Non-invasive optical modulation of local vascular permeability

    NASA Astrophysics Data System (ADS)

    Choi, Myunghwan; Choi, Chulhee

    2011-03-01

    For a systemically administered drug to act, it first needs to cross the vascular wall. This step represents a bottleneck for drug development, especially in the brain or retina, where tight junctions between endothelial cells form physiological barriers. Here, we demonstrate that femtosecond pulsed laser irradiation focused on the blood vessel wall induces transient permeabilization of plasma. Nonlinear absorption of the pulsed laser enabled the noninvasive modulation of vascular permeability with high spatial selectivity in three dimensions. By combining this method with systemic injection, we could locally deliver molecular probes in various tissues, such as brain cortex, meninges, ear, striated muscle, and bone. We suggest this method as a novel delivery tool for molecular probes or drugs.

  19. Influence of localized surface plasmons on Pauli blocking and optical limiting in graphene under femtosecond pumping

    NASA Astrophysics Data System (ADS)

    Bongu, Sudhakara Reddy; Bisht, Prem B.; Namboodiri, Raman C. K.; Nayak, Pranati; Ramaprabhu, Sundara; Kelly, Thomas J.; Fallon, Colm; Costello, John T.

    2014-08-01

    The Pauli blocking limit and optical limiting threshold have been found to be modified following silver-nanoparticle decoration of functionalized hydrogen induced exfoliated graphene. Femtosecond Z-scan experiments have been used to measure the Pauli blocking range, optical limiting threshold, and the third order nonlinear susceptibility (χ(3)) values. The observed results have been explained by modified band structure of graphene in the presence of silver nanoparticles and their localized surface plasmon resonances.

  20. Spatiotemporal chaotic localized state in liquid crystal light valve experiments with optical feedback.

    PubMed

    Verschueren, N; Bortolozzo, U; Clerc, M G; Residori, S

    2013-03-08

    The existence, stability properties, and dynamical evolution of localized spatiotemporal chaos are studied. We provide evidence of spatiotemporal chaotic localized structures in a liquid crystal light valve experiment with optical feedback. The observations are supported by numerical simulations of the Lifshitz model describing the system. This model exhibits coexistence between a uniform state and a spatiotemporal chaotic pattern, which emerge as the necessary ingredients to obtain localized spatiotemporal chaos. In addition, we have derived a simplified model that allows us to unveil the front interaction mechanism at the origin of the localized spatiotemporal chaotic structures.

  1. Design and implementation of a fiber optic token-ring local area network

    NASA Astrophysics Data System (ADS)

    Bibeau, Gary

    1991-12-01

    This thesis describes the design and implementation of a fiber optic token-ring local area network (LAN). This design features fiber optic channels between stations on the network without the use of a wiring concentrator. The initial LAN electrical signal operating at 4 Mbps was provided by a LAN adapter card based on the TMS380 chipset developed for twisted pair copper wire. Since the physical characteristics of fiber and wire vary, use of this adapter necessitated that the design be able to deceive system initialization diagnostics and continuity checks designed for a wire system. Successful LAN communications over the fiber optic channels are described.

  2. Observations of regional and local variability in the optical properties of maritime clouds

    SciTech Connect

    White, A.B.

    1996-04-01

    White and Fairall (1995) calculated the optical properties of the marine boundary layer (MBL) clouds observed during the Atlantic Stratocumulus Transition Experiment (ASTEX) and compared their results with the results obtained by Fairall et al. for the MBL clouds observed during the First International Satellite Climatology Program (ISSCP) Regional Experiment (FIRE). They found a factor of two difference in the optical depth versus liquid water relationship that applies to the clouds observed in each case. In the present study, we present evidence to support this difference. We also investigate the local variability exhibited in the ASTEX optical properties using measurements of the boundary layer aerosol concentration.

  3. Local x-ray structure analysis of optically manipulated biological micro-objects

    SciTech Connect

    Cojoc, Dan; Ferrari, Enrico; Santucci, Silvia C.; Amenitsch, Heinz; Sartori, Barbara; Rappolt, Michael; Marmiroli, Benedetta; Burghammer, Manfred; Riekel, Christian

    2010-12-13

    X-ray diffraction using micro- and nanofocused beams is well suited for nanostructure analysis at different sites of a biological micro-object. To conduct in vitro studies without mechanical contact, we developed object manipulation by optical tweezers in a microfluidic cell. Here we report x-ray microdiffraction analysis of a micro-object optically trapped in three dimensions. We revealed the nanostructure of a single starch granule at different points and investigated local radiation damage induced by repeated x-ray exposures at the same position, demonstrating high stability and full control of the granule orientation by multiple optical traps.

  4. Enhancement of Optical Nonlinearities in Composite Media and Structures via Local Fields and Electromagnetic Coupling Effects

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2002-01-01

    This talk will review the linear and nonlinear optical properties of metal nanoparticles and dielectric microparticles, with an emphasis on local field effects, and whispering gallery modes (WGMs), as well as the conjunction of these two effects for enhanced Raman. In particular, enhanced optical properties that result from electromagnetic coupling effects will be discussed in the context of Mie scattering from concentric spheres and bispheres. Predictions of mode splitting and photonic bandgaps in micro-spheres will be presented and will be shown to be analogous to effects that occur in coupled resonator optical waveguides (CROW). Slow and fast light in SCISSOR / CROW configurations will also be discussed.

  5. Enhancement of Optical Nonlinearities in Composite Media and Structures via Local Fields and Electromagnetic Coupling Effects

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2002-01-01

    This talk will review the linear and nonlinear optical properties of metal nanoparticles and dielectric microparticles, with an emphasis on local field effects, and whispering gallery modes (WGMs), as well as the conjunction of these two effects for enhanced Raman. In particular, enhanced optical properties that result from electromagnetic coupling effects will be discussed in the context of Mie scattering from concentric spheres and bispheres. Predictions of mode splitting and photonic bandgaps in micro-spheres will be presented and will be shown to be analogous to effects that occur in coupled resonator optical waveguides (CROW). Slow and fast light in SCISSOR / CROW configurations will also be discussed.

  6. All-optical diode with photonic multilayers based on asymmetric light localization

    NASA Astrophysics Data System (ADS)

    Jin, Li; Zhou, Jun; Yang, Mingyang; Xue, Chunhua; He, Miao

    2011-03-01

    An all-optical diode (AOD) with structure (AB)m(BA)n(BBAA)k is proposed based on asymmetric light localization, and its optical bistability are numerically investigated by the nonlinear transfer matrix method. Research results show that the behavior of the AOD strongly depends on the period number m, n, and k, the transmission direction of the AOD is related to the values of m and n, while k affects the transmission contrast of the AOD. It is a significant reference for the design of all-optical signal processing devices.

  7. Non-local Optical Topological Transitions and Critical States in Electromagnetic Metamaterials

    PubMed Central

    Ishii, Satoshi; Narimanov, Evgenii

    2015-01-01

    Just as the topology of the Fermi surface defines the properties of the free electrons in metals and semiconductors, the geometry of the iso-frequency surface in the phase space of the propagating electromagnetic waves, determines the optical properties of the corresponding optical materials. Furthermore, in the direct analog to the Lifshitz transition in condensed matter physics, a change in the topology of iso-frequency surface has a dramatic effect on the emission, propagation and scattering of the electromagnetic waves. Here, we uncover a new class of such optical topological transitions in metamaterials, induced by the non-locality of the electromagnetic response inherent to these composites. PMID:26670600

  8. Optimization of nonlinear optical localization using electromagnetic surface fields (NOLES) imaging.

    PubMed

    Jarrett, Jeremy W; Chandra, Manabendra; Knappenberger, Kenneth L

    2013-06-07

    The use of plasmon amplification of nonlinear optical wave-mixing signals to generate optical images in which the position of the scattering point source can be determined with nanometer accuracy is described. Solid gold nanosphere dimers were used as a model system for the nonlinear medium, which converted the Ti:sapphire fundamental to its second harmonic frequency. Matching the fundamental wave energy to the localized surface plasmon resonance of the electromagnetically coupled nanospheres was critical for achieving the high localization accuracy. Our technique, named Nonlinear Optical Localization using Electromagnetic Surface fields (NOLES) imaging, routinely yielded nonlinear optical images with 1-nm localization accuracy at rates ≥2 fps and can also be used as a photo-switching localization contrast method. This high level of accuracy in pinpointing the signal point source position exceeded that made possible using conventional diffraction-limited far-field methods by 160×. The NOLES technique, with its high temporal resolution and spatial accuracy that far surpass the performance typical of fluorescence-based imaging, will be relevant for imaging dynamic chemical, biological, and material environments.

  9. Cryogenic optical localization provides 3D protein structure data with Angstrom resolution.

    PubMed

    Weisenburger, Siegfried; Boening, Daniel; Schomburg, Benjamin; Giller, Karin; Becker, Stefan; Griesinger, Christian; Sandoghdar, Vahid

    2017-02-01

    We introduce Cryogenic Optical Localization in 3D (COLD), a method to localize multiple fluorescent sites within a single small protein with Angstrom resolution. We demonstrate COLD by determining the conformational state of the cytosolic Per-ARNT-Sim domain from the histidine kinase CitA of Geobacillus thermodenitrificans and resolving the four biotin sites of streptavidin. COLD provides quantitative 3D information about small- to medium-sized biomolecules on the Angstrom scale and complements other techniques in structural biology.

  10. Self-localization of Bose–Einstein condensates in optical lattices

    NASA Astrophysics Data System (ADS)

    Kruse, Johannes; Fleischmann, Ragnar

    2017-03-01

    Mean field and beyond mean field model calculations of Bose–Einstein condensates trapped in optical lattices have shown that initially homogeneous condensates can evolve into self-trapped, strongly localized states in the presence of weak boundary dissipation, a phenomenon called self-localization. A dynamical phase transition from extended to localized states can be observed when the effective nonlinearity exceeds a critical threshold {{{Λ }}}{eff}{{c}}. We investigate this phase transition to self-localization in the mean field approximation of the discrete nonlinear Schrödinger equation. We quantitatively characterize the properties of the discrete breathers, i.e. the nonlinear localized solutions, at the phase transition. This leads us to propose and numerically verify an analytical lower bound {{{Λ }}}{eff}{{L}} for the critical nonlinearity based on the idea of self-induced Anderson localization.

  11. Photonic nanojets as a versatile optical tool for wave super-localization

    NASA Astrophysics Data System (ADS)

    Geints, Yu. E.; Zemlyanov, A. A.; Panina, E. K.

    2016-08-01

    The dimensional parameters and intensity of localized light structures (area "photonic nanojet"—PNJ) formed in the near field scattering of the optical wave by dielectric micron particles are studied. The difference between the PNJ characteristics of homogeneous quartz microparticles of different spatial shape and orientation are shown.

  12. Robust Non-Local TV-L1 Optical Flow Estimation with Occlusion Detection.

    PubMed

    Zhang, Congxuan; Chen, Zhen; Wang, Mingrun; Li, Ming; Jiang, Shaofeng

    2017-06-05

    In this paper, we propose a robust non-local TV-L1 optical flow method with occlusion detection to address the problem of weak robustness of optical flow estimation with motion occlusion. Firstly, a TV-L1 form for flow estimation is defined using a combination of the brightness constancy and gradient constancy assumptions in the data term and by varying the weight under the Charbonnier function in the smoothing term. Secondly, to handle the potential risk of the outlier in the flow field, a general non-local term is added in the TV-L1 optical flow model to engender the typical non-local TV-L1 form. Thirdly, an occlusion detection method based on triangulation is presented to detect the occlusion regions of the sequence. The proposed non-local TV-L1 optical flow model is performed in a linearizing iterative scheme using improved median filtering and a coarse-to-fine computing strategy. The results of the complex experiment indicate that the proposed method can overcome the significant influence of non-rigid motion, motion occlusion, and large displacement motion. Results of experiments comparing the proposed method and existing state-of-the-art methods by respectively using Middlebury and MPI Sintel database test sequences show that the proposed method has higher accuracy and better robustness.

  13. Accelerating simulation of ensembles of locally differing optical structures via a Schur complement domain decomposition.

    PubMed

    Verweij, Sacha; Liu, Victor; Fan, Shanhui

    2014-11-15

    We present a Schur complement domain decomposition method that can significantly accelerate simulation of ensembles of locally differing optical structures. We apply the method to design a multi-spatial-mode photonic crystal waveguide splitter that exhibits high transmission and preservation of modal content, showing design acceleration by more than a factor of 20.

  14. Photonic nanojets as a versatile optical tool for wave super-localization

    SciTech Connect

    Geints, Yu. E.; Zemlyanov, A. A.; Panina, E. K.

    2016-08-02

    The dimensional parameters and intensity of localized light structures (area “photonic nanojet”—PNJ) formed in the near field scattering of the optical wave by dielectric micron particles are studied. The difference between the PNJ characteristics of homogeneous quartz microparticles of different spatial shape and orientation are shown.

  15. Resolving phase information of the optical local density of state with scattering near-field probes

    NASA Astrophysics Data System (ADS)

    Prasad, R.; Vincent, R.

    2016-10-01

    We theoretically discuss the link between the phase measured using a scattering optical scanning near-field microscopy (s-SNOM) and the local density of optical states (LDOS). A remarkable result is that the LDOS information is directly included in the phase of the probe. Therefore by monitoring the spatial variation of the trans-scattering phase, we locally measure the phase modulation associated with the probe and the optical paths. We demonstrate numerically that a technique involving two-phase imaging of a sample with two different sized tips should allow to obtain the image the pLDOS. For this imaging method, numerical comparison with extinction probe measurement shows crucial qualitative and quantitative improvement.

  16. Goos-Hänchen shift and localization of optical modes in deformed microcavities.

    PubMed

    Unterhinninghofen, Julia; Wiersig, Jan; Hentschel, Martina

    2008-07-01

    Recently, an interesting phenomenon of spatial localization of optical modes along periodic ray trajectories near avoided resonance crossings has been observed [Wiersig, Phys. Rev. Lett. 97, 253901 (2006)]. For the case of a microdisk cavity with elliptical cross section, we use the Husimi function to analyze this localization in phase space. Moreover, we present a semiclassical explanation of this phenomenon in terms of the Goos-Hänchen shift, which works very well even deep in the wave regime. This semiclassical correction to the ray dynamics modifies the phase-space structure such that modes can localize either on stable islands or along unstable periodic ray trajectories.

  17. Optical Generation and Detection of Local Nonequilibrium Phonons in Suspended Graphene

    NASA Astrophysics Data System (ADS)

    Sullivan, Sean; Vallabhaneni, Ajit; Kholmanov, Iskandar; Ruan, Xiulin; Murthy, Jayathi; Shi, Li

    2017-03-01

    The measured frequencies and intensities of different first- and second- order Raman peaks of suspended graphene are used to show that optical phonons and different acoustic phonon polarizations are driven out of local equilibrium inside a sub-micron laser spot. The experimental results are correlated with a first principles-based multiple temperature model to suggest a considerably lower equivalent local temperature of the flexural phonons than those of other phonon polarizations. The finding reveals weak coupling between the flexural modes with hot electrons and optical phonons. Since the ultrahigh intrinsic thermal conductivity of graphene has been largely attributed to contributions from the flexural phonons, the observed local non-equilibrium phenomena have important implications for understanding energy dissipation processes in graphene-based electronic and optoelectronic devices, as well as in Raman measurements of thermal transport in graphene and other two-dimensional materials.

  18. Single potassium niobate nano/microsized particles as local mechano-optical Brownian probes

    NASA Astrophysics Data System (ADS)

    Mor, Flavio M.; Sienkiewicz, Andrzej; Magrez, Arnaud; Forró, László; Jeney, Sylvia

    2016-03-01

    Perovskite alkaline niobates, due to their strong nonlinear optical properties, including birefringence and the capability to produce second-harmonic generation (SHG) signals, attract a lot of attention as potential candidates for applications as local nano/microsized mechano-optical probes. Here, we report on an implementation of photonic force microscopy (PFM) to explore the Brownian motion and optical trappability of monocrystalline potassium niobate (KNbO3) nano/microsized particles having sizes within the range of 50 to 750 nm. In particular, we exploit the anisotropic translational diffusive regime of the Brownian motion to quantify thermal fluctuations and optical forces of singly-trapped KNbO3 particles within the optical trapping volume of a PFM microscope. We also show that, under near-infrared (NIR) excitation of the highly focused laser beam of the PFM microscope, a single optically-trapped KNbO3 particle reveals a strong SHG signal manifested by a narrow peak (λem = 532 nm) at half the excitation wavelength (λex = 1064 nm). Moreover, we demonstrate that the thus induced SHG emission can be used as a local light source that is capable of optically exciting molecules of an organic dye, Rose Bengal (RB), which adhere to the particle surface, through the mechanism of luminescence energy transfer (LET).Perovskite alkaline niobates, due to their strong nonlinear optical properties, including birefringence and the capability to produce second-harmonic generation (SHG) signals, attract a lot of attention as potential candidates for applications as local nano/microsized mechano-optical probes. Here, we report on an implementation of photonic force microscopy (PFM) to explore the Brownian motion and optical trappability of monocrystalline potassium niobate (KNbO3) nano/microsized particles having sizes within the range of 50 to 750 nm. In particular, we exploit the anisotropic translational diffusive regime of the Brownian motion to quantify thermal

  19. Localization of a Bose-Fermi mixture in a bichromatic optical lattice

    SciTech Connect

    Cheng Yongshan; Adhikari, S. K.

    2011-08-15

    We study the localization of a cigar-shaped superfluid Bose-Fermi mixture in a quasiperiodic bichromatic optical lattice (OL) for interspecies attraction and intraspecies repulsion. The mixture is described by the Gross-Pitaevskii equation for the bosons, coupled to a hydrodynamic mean-field equation for fermions at unitarity. We confirm the existence of the symbiotic localized states in the Bose-Fermi mixture and Anderson localization of the Bose component in the interacting Bose-Fermi mixture on a bichromatic OL. The phase diagram in boson and fermion numbers showing the regions of the symbiotic and Anderson localization of the Bose component is presented. Finally, the stability of symbiotic and Anderson localized states is established under small perturbations.

  20. Si dielectric function in a local basis representation: Optical properties, local field effects, excitons, and stopping power

    NASA Astrophysics Data System (ADS)

    Gómez, M.; González, P.; Ortega, J.; Flores, F.

    2014-11-01

    An atomiclike basis representation is used to analyze the dielectric function ɛ (q ⃗+G ⃗,q ⃗+G⃗';ω ) of Si. First, we show that a s p3d5 local basis set yields good results for the electronic band structure of this crystal and, then, we analyze the Si optical properties including local field and excitonic effects. In our formulation, we follow Hanke and Sham [W. Hanke and L. J. Sham, Phys. Rev. B 12, 4501 (1975), 10.1103/PhysRevB.12.4501; Phys. Rev. B 21, 4656 (1980), 10.1103/PhysRevB.21.4656], and introduce excitonic effects using a many-body formulation that incorporates a static screened electron-hole interaction. Dynamical effects in this interaction are also analyzed and shown to introduce non-negligible corrections in the optical spectrum. Our results are found in reasonable agreement with the experimental evidence and with other theoretical results calculated with the computationally more demanding plane-wave representation. Finally, calculations for the stopping power of Si are also presented.

  1. Broadband local service offerings using free-space optical links: a network business perspective

    NASA Astrophysics Data System (ADS)

    Britz, David M.; Dodley, J. P.; Barnickel, D. J.

    2001-02-01

    12 This paper describes a promising optical wireless broadband technology that will provide low cost broadband services to the local access `last mile' market. This paper examines the application, advantages and limitations of utilizing Free Space Optical Communications (FSOC) systems for broadband access markets. The service markets that would fully utilize FSOC technologies include metropolitan areas, BLECs (multi- tenant dwellings/business apartments), campuses, industrial parks and `pole-to-hole' neighborhood deployments. This paper will identify weather dependent link availability as being the primary consideration in defining and selecting suitable locations for FSOC-based systems. Link availability in turn determines link range, type of service, and the need for transmission diversity. This paper will describe the implications of telecom `five nines' last-mile access availability and its effect on the transparent integration of FSOC technologies into the existing fiber optic networks. This paper will also describe propagation losses and link budget requirements for broadband FSOC-based local service. During adverse weather conditions, stand-alone, FSOC-based optical wireless links typically offer path lengths of less than 200 meters while still meeting the `five nines' availability criteria. This paper will also consider `availability limited' services. These services may prove to be attractive to customers who are willing to accept broadband service on an `as available basis'. The use of availability-enhancing transmission diversity and the use of intelligent `roof-top' routing and optical wireless cross connects between buildings will also be discussed.

  2. Optically Thick H I Dominant in the Local Interstellar Medium: An Alternative Interpretation to "Dark Gas"

    NASA Astrophysics Data System (ADS)

    Fukui, Y.; Torii, K.; Onishi, T.; Yamamoto, H.; Okamoto, R.; Hayakawa, T.; Tachihara, K.; Sano, H.

    2015-01-01

    Dark gas in the interstellar medium (ISM) is believed to not be detectable either in CO or H I radio emission, but it is detectable by other means including γ rays, dust emission, and extinction traced outside the Galactic plane at |b| > 5°. In these analyses, the 21 cm H I emission is usually assumed to be completely optically thin. We have reanalyzed the H I emission from the whole sky at |b| > 15° by considering temperature stratification in the ISM inferred from the Planck/IRAS analysis of the dust properties. The results indicate that the H I emission is saturated with an optical depth ranging from 0.5 to 3 for 85% of the local H I gas. This optically thick H I is characterized by spin temperature in the range 10 K-60 K, significantly lower than previously postulated in the literature, whereas such low temperature is consistent with emission/absorption measurements of the cool H I toward radio continuum sources. The distribution and the column density of the H I are consistent with those of the dark gas suggested by γ rays, and it is possible that the dark gas in the Galaxy is dominated by optically thick cold H I gas. This result implies that the average density of H I is 2-2.5 times higher than that derived on the optically thin assumption in the local ISM. ), an ESA science mission with instruments and contributions directly funded by ESA Member States, NASA, and Canada.

  3. OPTICALLY THICK H I DOMINANT IN THE LOCAL INTERSTELLAR MEDIUM: AN ALTERNATIVE INTERPRETATION TO ''DARK GAS''

    SciTech Connect

    Fukui, Y.; Torii, K.; Yamamoto, H.; Okamoto, R.; Hayakawa, T.; Tachihara, K.; Sano, H.; Onishi, T.

    2015-01-01

    Dark gas in the interstellar medium (ISM) is believed to not be detectable either in CO or H I radio emission, but it is detectable by other means including γ rays, dust emission, and extinction traced outside the Galactic plane at |b| > 5°. In these analyses, the 21 cm H I emission is usually assumed to be completely optically thin. We have reanalyzed the H I emission from the whole sky at |b| > 15° by considering temperature stratification in the ISM inferred from the Planck/IRAS analysis of the dust properties. The results indicate that the H I emission is saturated with an optical depth ranging from 0.5 to 3 for 85% of the local H I gas. This optically thick H I is characterized by spin temperature in the range 10 K-60 K, significantly lower than previously postulated in the literature, whereas such low temperature is consistent with emission/absorption measurements of the cool H I toward radio continuum sources. The distribution and the column density of the H I are consistent with those of the dark gas suggested by γ rays, and it is possible that the dark gas in the Galaxy is dominated by optically thick cold H I gas. This result implies that the average density of H I is 2-2.5 times higher than that derived on the optically thin assumption in the local ISM.

  4. Nonlinear localized modes in PT-symmetric optical media with competing gain and loss

    SciTech Connect

    Midya, Bikashkali; Roychoudhury, Rajkumar

    2014-02-15

    The existence and stability of the nonlinear spatial localized modes are investigated in parity-time symmetric optical media characterized by a generic complex hyperbolic refractive index distribution with competing gain and loss profile. The exact analytical expression of the localized modes are found for all values of the competing parameter and in the presence of both the self-focusing and self-defocusing Kerr nonlinearity. The effects of competing gain/loss profile on the stability structure of these localized modes are discussed with the help of linear stability analysis followed by the direct numerical simulation of the governing equation. The spatial localized modes in two-dimensional geometry as well as the transverse power-flow density associated with these localized modes are also examined. -- Highlights: • Existence of localized modes is investigated in PT-symmetric complex potentials. • Exact analytical expression of the localized modes is obtained. • Effect of gain/loss profile on the stability of these localized modes is discussed. • Localized modes in 2D and associated transverse power-flow density are also examined.

  5. The optical theorem for local source excitation of a particle near a plane interface

    NASA Astrophysics Data System (ADS)

    Eremin, Yuri; Wriedt, Thomas

    2015-11-01

    Based on classic Maxwell's theory and the Gauss Theorem we extended the Optical Theorem to the case of a penetrable particle excited by a local source deposited near a plane interface. We demonstrate that the derived Extinction Cross-Section involves the total point source radiating cross-section and some definite integrals responsible for the scattering by the interface. The derived extinction cross-section can be employed to estimate the quantum yield and the optical antenna efficiency without computation of the absorption cross-section.

  6. Influence of Injection Molding Process on the Local Fluctuations of Magneto-Optical Signals

    NASA Astrophysics Data System (ADS)

    Umezawa, Tomokazu; Horiguchi, Toru; Tomie, Takashi

    2001-01-01

    The local fluctuations of magneto-optical (MO) signals were investigated in the vicinity of the preformat pits of polycarbonate (PC) substrates fabricated under different injection molding conditions and also using stampers which had different shapes of grooves and preformat pits. A strong correlation was observed between the substrate birefringence and the fluctuation of the MO signal. The rate-of-change of the fluctuations, as the phase shift of the optical head was varied, was attributed to the shapes of preformat pits and grooves. The fluctuation of the MO signal could be controlled by varying the injection molding conditions and the shapes of preformat pits and grooves.

  7. Gold nanoparticle-assisted all optical localized stimulation and monitoring of Ca2+ signaling in neurons

    PubMed Central

    Lavoie-Cardinal, Flavie; Salesse, Charleen; Bergeron, Éric; Meunier, Michel; De Koninck, Paul

    2016-01-01

    Light-assisted manipulation of cells to control membrane activity or intracellular signaling has become a major avenue in life sciences. However, the ability to perform subcellular light stimulation to investigate localized signaling has been limited. Here, we introduce an all optical method for the stimulation and the monitoring of localized Ca2+ signaling in neurons that takes advantage of plasmonic excitation of gold nanoparticles (AuNPs). We show with confocal microscopy that 800 nm laser pulse application onto a neuron decorated with a few AuNPs triggers a transient increase in free Ca2+, measured optically with GCaMP6s. We show that action potentials, measured electrophysiologically, can be induced with this approach. We demonstrate activation of local Ca2+ transients and Ca2+ signaling via CaMKII in dendritic domains, by illuminating a single or few functionalized AuNPs specifically targeting genetically-modified neurons. This NP-Assisted Localized Optical Stimulation (NALOS) provides a new complement to light-dependent methods for controlling neuronal activity and cell signaling. PMID:26857748

  8. Preparation and characterization WDM technique for linear disturbance localization in fibre optical sensor

    NASA Astrophysics Data System (ADS)

    Życzkowski, M.; Ciurapinski, W.; Szustakowski, M.

    2007-10-01

    Ordinary perimeter security systems consist of many individual sensors with detection range 200-300 meters. These limitations are connected with physical phenomena that are used in microwave and infrared barriers as well as in ground and fence cable sensors. On the contrary, fiber optic perimeter sensors can be applied in the range of many kilometers and zone length 200-300 meters is degradation of their possibilities. This paper presents investigation results of a new generation of the fiber optic perimeter sensor using WDM technique. These systems can detect a potential intruder and determine its position along a protected zone. The work presents a method of linear localization of disturbance point in the two-interferometer and modalmertic fiber optic sensors in one optical fiber. These sensors are in one fiber optic cable with two- interferometers (Sagnac) and in transmissive configuration. Using WDM technique makes it possible to obtain new technical properties that can broaden effectiveness and scope of application. Arrangement of a laboratory model of the sensors and its signal processing scheme is presented. During research of a laboratory model, it was possible to detect the position of the disturbance in one optical fiber with resolution of about 50m along a 10-km long sensor.

  9. Nano optical propeller based on localized field intensity enhancement of surface plasmons

    NASA Astrophysics Data System (ADS)

    Jiao, Jiao; Lin, En; Liang, Gaofeng; Zhao, Qing

    2017-05-01

    There is acting force that light has on any substances, but the force is too weak to be sensed. While the momentum transfer between light and substance can be greatly improved within nanoscales. Scientists have successfully captured and transported micro-particles by using focusing light in liquid state, which is called optical tweezers. However, this approach needs to be processed with removable powerful focal source and meanwhile in a state of liquid. These requirements seriously restrict its development from optical tweezers to optical propeller. This paper proposes a new method: to produce localized surface plasmons enhancement by asymmetric nanostructures so that a gradient optical field whose intensity is 70 times higher than that of incident light is formed on a nano orbit with a length of 200nm. The strong gradient force makes it possible for the small particles laid on nanostructure to get strong momentum at a certain direction without strong light sources, which breaks through the near field gravitation to move. Meanwhile, the nanostructure can be expanded into multistage accelerating structure, and expanded into an array, thus providing a plane thrust and forming an optical propeller in real sense. At last, electron beam lithography (EBL) is employed to prepare structures with only tens of nanometers in size. A series of better preparation technics are concluded to get samples with good shapes, which provides technical guarantee for the application of nano optical propeller in the future.

  10. Optical Storage Systems for Records and Information Management: Overview, Recommendations and Guidelines for Local Governments. Local Government Records Technical Information Series. Number 45.

    ERIC Educational Resources Information Center

    Schwartz, Stanley F.

    This publication discusses optical storage, a term encompassing technologies that use laser-produced light to record and store information in digital form. The booklet also discusses how optical storage systems relate to records management, in particular to the management of local government records in New York State. It describes components of…

  11. Localization of a spin-orbit-coupled Bose-Einstein condensate in a bichromatic optical lattice

    NASA Astrophysics Data System (ADS)

    Cheng, Yongshan; Tang, Gaohui; Adhikari, S. K.

    2014-06-01

    We study the localization of a noninteracting and weakly interacting Bose-Einstein condensate (BEC) with spin-orbit coupling loaded in a quasiperiodic bichromatic optical lattice potential using the numerical solution and variational approximation of a binary mean-field Gross-Pitaevskii equation with two pseudospin components. We confirm the existence of the stationary localized states in the presence of the spin-orbit and Rabi couplings for an equal distribution of atoms in the two components. We find that the interaction between the spin-orbit and Rabi couplings favors the localization or delocalization of the BEC depending on the phase difference between the components. We also studied the oscillation dynamics of the localized states for an initial population imbalance between the two components.

  12. Electromagneto-optical effects on local areas of a ferrite-garnet film

    NASA Astrophysics Data System (ADS)

    Koronovskyy, V. E.; Ryabchenko, S. M.; Kovalenko, V. F.

    2005-05-01

    The electromagneto-optical (EMO) effect from separate magnetic domains in the epitaxial films of yttrium-ferrite-garnet is investigated simultaneously with visual control of the film’s domain structure. The local EMO effect, both from single domain sites and from the sites with a domain wall is measured. These local effects are different from the EMO from the multidomain area of a film. It was revealed unexpectedly that a local value of the EMO effect for the domain magnetized along the applied magnetic field decreased drastically in the magnetization stage connected with vanishing of the domains with opposite sign of magnetization. In the homogeneously magnetized film, the EMO effect is practically absent. It is concluded that the electric field practically does not modify the film magnetization and the local EMO effect is connected with the influence of the electric field on the magnetic anisotropy parameter of the studied film.

  13. Dynamics of localization phenomena for hard-core bosons in optical lattices

    SciTech Connect

    Horstmann, Birger; Cirac, J. Ignacio; Roscilde, Tommaso

    2007-10-15

    We investigate the behavior of ultracold bosons in optical lattices with a disorder potential generated via a secondary species frozen in random configurations. The statistics of disorder is associated with the physical state in which the secondary species is prepared. The resulting random potential, albeit displaying algebraic correlations, is found to lead to localization of all single-particle states. We then investigate the real-time dynamics of localization for a hardcore gas of mobile bosons which are brought into sudden interaction with the random potential. Regardless of their initial state and for any disorder strength, the mobile particles are found to reach a steady state characterized by exponentially decaying off-diagonal correlations and by the absence of quasicondensation; when the mobile particles are initially confined in a tight trap and then released in the disorder potential, their expansion is stopped and the steady state is exponentially localized in real space, clearly revealing Anderson localization.

  14. Integral localized approximation description of ordinary Bessel beams and application to optical trapping forces

    PubMed Central

    Ambrosio, Leonardo A.; Hernández-Figueroa, Hugo E.

    2011-01-01

    Ordinary Bessel beams are described in terms of the generalized Lorenz-Mie theory (GLMT) by adopting, for what is to our knowledge the first time in the literature, the integral localized approximation for computing their beam shape coefficients (BSCs) in the expansion of the electromagnetic fields. Numerical results reveal that the beam shape coefficients calculated in this way can adequately describe a zero-order Bessel beam with insignificant difference when compared to other relative time-consuming methods involving numerical integration over the spherical coordinates of the GLMT coordinate system, or quadratures. We show that this fast and efficient new numerical description of zero-order Bessel beams can be used with advantage, for example, in the analysis of optical forces in optical trapping systems for arbitrary optical regimes. PMID:21750767

  15. Localization and fractal spectra of optical phonon modes in quasiperiodic structures

    NASA Astrophysics Data System (ADS)

    Anselmo, D. H. A. L.; Dantas, A. L.; Medeiros, S. K.; Albuquerque, E. L.; Freire, V. N.

    2005-04-01

    The dispersion relation and localization profile of confined optical phonon modes in quasiperiodic structures, made up of nitride semiconductor materials, are analyzed through a transfer-matrix approach. The quasiperiodic structures are characterized by the nature of their Fourier spectrum, which can be dense pure point (Fibonacci sequences) or singular continuous (Thue-Morse and Double-period sequences). These substitutional sequences are described in terms of a series of generations that obey peculiar recursion relations and/or inflation rules. We present a quantitative analysis of the localization and magnitude of the allowed band widths in the optical phonons spectra of these quasiperiodic structures, as well as how they scale as a function of the number of generations of the sequences.

  16. Non-linear non-local molecular electrodynamics with nano-optical fields.

    PubMed

    Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul

    2015-10-28

    The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields.

  17. Star Formation and Integrated Optical Colors from the Local Volume Legacy Survey

    NASA Astrophysics Data System (ADS)

    Minns, Cody; Shackleford, B. R.; van Zee, L.; Friberg, S.; Barnes, K. L.; Sakai, S.; LVL Team

    2011-01-01

    We present results of an optical imaging study of 73 galaxies from the Spitzer Local Volume Legacy (LVL) survey. The broadband and narrowband optical images were analyzed in order to determine information about global star formation rates, histories, and evolution of these nearby galaxies. The observed UBVR colors are consistent with the expected colors of star forming galaxies, with B-R colors ranging from 0.4 to 1.4. The blue, low mass galaxies appear to have a wider dispersion of current-to-past star formation rates than the more massive spiral galaxies in the sample. These results are discussed in the context of possible star formation histories for galaxies in the Local Volume.

  18. Measurement of biofilm growth and local hydrodynamics using optical coherence tomography

    PubMed Central

    Weiss, Nicolás; Obied, Khalid El Tayeb El; Kalkman, Jeroen; Lammertink, Rob G.H.; van Leeuwen, Ton G.

    2016-01-01

    We report on localized and simultaneous measurement of biofilm growth and local hydrodynamics in a microfluidic channel using optical coherence tomography. We measure independently with high spatio-temporal resolution the longitudinal flow velocity component parallel to the imaging beam and the transverse flow velocity component perpendicular to the imaging beam. Based on the measured velocities we calculate the shear-rates in the flow channel. We show the relation between the measured biofilm structure and flow velocities as biofilm growth progresses over the course of 48 hours. PMID:27699116

  19. Partially Strong Transparency Conditions and a Singular Localization Method In Geometric Optics

    NASA Astrophysics Data System (ADS)

    Lu, Yong; Zhang, Zhifei

    2016-10-01

    This paper focuses on the stability analysis of WKB approximate solutions in geometric optics with the absence of strong transparency conditions under the terminology of Joly, Métivier and Rauch. We introduce a compatible condition and a singular localization method which allows us to prove the stability of WKB solutions over long time intervals. This compatible condition is weaker than the strong transparency condition. The singular localization method allows us to do delicate analysis near resonances. As an application, we show the long time approximation of Klein-Gordon equations by Schrödinger equations in the non-relativistic limit regime.

  20. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna

    SciTech Connect

    Caselli, Niccolò; La China, Federico; Bao, Wei; Riboli, Francesco; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H.; Pagliano, Francesco; Fiore, Andrea; Schuck, P. James; Cabrini, Stefano; Weber-Bargioni, Alexander; Gurioli, Massimo; Intonti, Francesca

    2015-06-05

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magnetic intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. In conclusion, by exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.

  1. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna.

    PubMed

    Caselli, Niccolò; La China, Federico; Bao, Wei; Riboli, Francesco; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H; Pagliano, Francesco; Fiore, Andrea; Schuck, P James; Cabrini, Stefano; Weber-Bargioni, Alexander; Gurioli, Massimo; Intonti, Francesca

    2015-06-05

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magnetic intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the "campanile tip", a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. By exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.

  2. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna

    DOE PAGES

    Caselli, Niccolò; La China, Federico; Bao, Wei; ...

    2015-06-05

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magneticmore » intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. In conclusion, by exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.« less

  3. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna

    PubMed Central

    Caselli, Niccolò; La China, Federico; Bao, Wei; Riboli, Francesco; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H.; Pagliano, Francesco; Fiore, Andrea; Schuck, P. James; Cabrini, Stefano; Weber-Bargioni, Alexander; Gurioli, Massimo; Intonti, Francesca

    2015-01-01

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magnetic intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. By exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions. PMID:26045401

  4. A generalized non-local optical response theory for plasmonic nanostructures.

    PubMed

    Mortensen, N A; Raza, S; Wubs, M; Søndergaard, T; Bozhevolnyi, S I

    2014-05-02

    Metallic nanostructures exhibit a multitude of optical resonances associated with localized surface plasmon excitations. Recent observations of plasmonic phenomena at the sub-nanometre to atomic scale have stimulated the development of various sophisticated theoretical approaches for their description. Here instead we present a comparatively simple semiclassical generalized non-local optical response theory that unifies quantum pressure convection effects and induced charge diffusion kinetics, with a concomitant complex-valued generalized non-local optical response parameter. Our theory explains surprisingly well both the frequency shifts and size-dependent damping in individual metallic nanoparticles as well as the observed broadening of the crossover regime from bonding-dipole plasmons to charge-transfer plasmons in metal nanoparticle dimers, thus unravelling a classical broadening mechanism that even dominates the widely anticipated short circuiting by quantum tunnelling. We anticipate that our theory can be successfully applied in plasmonics to a wide class of conducting media, including doped semiconductors and low-dimensional materials such as graphene.

  5. Multi-link faults localization and restoration based on fuzzy fault set for dynamic optical networks.

    PubMed

    Zhao, Yongli; Li, Xin; Li, Huadong; Wang, Xinbo; Zhang, Jie; Huang, Shanguo

    2013-01-28

    Based on a distributed method of bit-error-rate (BER) monitoring, a novel multi-link faults restoration algorithm is proposed for dynamic optical networks. The concept of fuzzy fault set (FFS) is first introduced for multi-link faults localization, which includes all possible optical equipment or fiber links with a membership describing the possibility of faults. Such a set is characterized by a membership function which assigns each object a grade of membership ranging from zero to one. OSPF protocol extension is designed for the BER information flooding in the network. The BER information can be correlated to link faults through FFS. Based on the BER information and FFS, multi-link faults localization mechanism and restoration algorithm are implemented and experimentally demonstrated on a GMPLS enabled optical network testbed with 40 wavelengths in each fiber link. Experimental results show that the novel localization mechanism has better performance compared with the extended limited perimeter vector matching (LVM) protocol and the restoration algorithm can improve the restoration success rate under multi-link faults scenario.

  6. Narrowing of the linewidth of an optical parametric oscillator by an acousto-optic modulator for the realization of mid-IR noise-immune cavity-enhanced optical heterodyne molecular spectrometry down to 10⁻¹⁰ cm⁻¹ Hz⁻¹/².

    PubMed

    Hausmaninger, Thomas; Silander, Isak; Axner, Ove

    2015-12-28

    The linewidth of a singly resonant optical parametric oscillator (OPO) has been narrowed with respect to an external cavity by the use of an acousto-optic modulator (AOM). This made possible an improvement of the sensitivity of a previously realized OPO-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrument for the 3.2 - 3.9 µm mid-infrared region by one order of magnitude. The resulting system shows a detection sensitivity for methane of 2.4 × 10(-10) cm(-1) Hz(-1∕2) and 1.3 × 10(-10) cm(-1) at 20 s, which allows for detection of both the environmentally important (13)CH(4) and CH(3)D isotopologues in atmospheric samples.

  7. Fault localization and analysis in semiconductor devices with optical-feedback infrared confocal microscopy

    SciTech Connect

    Sarmiento, Raymund; Cemine, Vernon Julius; Tagaca, Imee Rose; Salvador, Arnel; Mar Blanca, Carlo; Saloma, Caesar

    2007-11-01

    We report on a cost-effective optical setup for characterizing light-emitting semiconductor devices with optical-feedback confocal infrared microscopy and optical beam-induced resistance change.We utilize the focused beam from an infrared laser diode to induce local thermal resistance changes across the surface of a biased integrated circuit (IC) sample. Variations in the multiple current paths are mapped by scanning the IC across the focused beam. The high-contrast current maps allow accurate differentiation of the functional and defective sites, or the isolation of the surface-emittingp-i-n devices in the IC. Optical beam-induced current (OBIC) is not generated since the incident beam energy is lower than the bandgap energy of the p-i-n device. Inhomogeneous current distributions in the IC become apparent without the strong OBIC background. They are located at a diffraction-limited resolution by referencing the current maps against the confocal reflectance image that is simultaneously acquired via optical-feedback detection. Our technique permits the accurate identification of metal and semiconductor sites as well as the classification of different metallic structures according to thickness, composition, or spatial inhomogeneity.

  8. Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation.

    PubMed

    Smithies, D J; Lindmo, T; Chen, Z; Nelson, J S; Milner, T E

    1998-10-01

    A Monte Carlo model has been developed for optical coherence tomography (OCT). A geometrical optics implementation of the OCT probe with low-coherence interferometric detection was combined with three-dimensional stochastic Monte Carlo modelling of photon propagation in the homogeneous sample medium. Optical properties of the sample were selected to simulate intralipid and blood, representing moderately (g = 0.7) and highly (g = 0.99) anisotropic scattering respectively. For shallow optical depths in simulated intralipid (<3 scattering mean free path (mfp) units), the number of detected backscattered photons followed the extinction-single-backscatter model, and OCT was found to detect only minimally scattered photons. Within this depth range the backscatter positions of detected photons corresponded well with the nominal focus position of the probe. For propagation to deeper positions in intralipid, localization of backscattering was quickly lost due to detection of stray photons, and the number of detected photons remained constant with increasing depth in the non-absorbing medium. For strongly forward-directed scattering in simulated blood, the number of detected photons approached the extinction-single-backscatter model only for very shallow depths (<2 mfp units). However, backscattering positions for detected photons correlated well with the nominal focus position of the probe even for optical depths greater than 40 mfp units.

  9. Characterization of the optical properties of hydrophobic coatings and realization of high performance AR coatings with dust- and water-repellent properties

    NASA Astrophysics Data System (ADS)

    Bruynooghe, S.; Spinzig, S.; Fliedner, M.; Hsu, G. J.

    2008-09-01

    Hydrophobic coatings enable the manufacture of easy-to-clean surfaces having dust- and water-repellent properties. In this work, a hydrophobic coating is deposited as a top layer on an antireflective (AR) multilayer system comprising a MgF2 upper layer to produce low reflectance optical surfaces at a normal incident angle in the visible spectrum with dust- and water-repellent properties for applications in precision optics. We report on the preparation and characterization of the optical properties of hydrophobic coatings deposited using a vacuum evaporation process and a commercially available water repellent substance. By means of a grazing incidence X-ray reflectometer it is shown that the hydrophobic coating can be considered, from an optical point of view, as two adjacent thin layers having specific thicknesses and densities. In fact, the hydrophobic layer is one monolayer comprising molecular chains with anchoring groups responsible for the chemical bond with the substrate material and functional groups responsible for the water- and oil-repellent properties. Optical constants are determined using a spectroscopic ellipsometer and are taken into account in the final multilayer system design. High performance AR coatings having an average reflectance of 0.14% at 7° incident angle in the 400-680nm spectral range together with a pleasing purple-red reflex color are produced. Coated lenses exhibit an excellent abrasion resistance, environmental stability, resistance to cleaning agents, homogeneity and water repellence with contact angles against water higher than 110°.

  10. An Aerosol Climatology at Kyoto: Observed Local Radiative Forcing and Columnar Optical Properties.

    NASA Astrophysics Data System (ADS)

    Yabe, Takahiro; Höller, Robert; Tohno, Susumu; Kasahara, Mikio

    2003-06-01

    In order to evaluate the radiative effect of the atmospheric aerosol at Kyoto, Japan, surface solar irradiance and columnar aerosol optical properties were observed in the period between September 1998 and December 2001. The aerosol optical thickness, which is an indicator of the columnar mass burden and the overall radiative effect of the aerosol, was on average 0.27 at a wavelength of 500 nm. Springtime aerosol optical thickness was generally higher primarily because of `yellow dust' from the Asian continent. The Ångström exponent had values ranging from 0.5 to 2.8, with an average value of 1.64, and was found to be low in periods during which the aerosol optical thickness was high. As a first step toward calculating the local climate impact of the atmospheric aerosol at Kyoto, the clear-sky direct radiative forcing is considered in this paper. For an evaluation of the surface aerosol radiative forcing, observed total surface fluxes measured by a pyranometer are subtracted from modeled surface fluxes derived from a non-aerosol-laden atmosphere. From the obtained relationship between the aerosol optical thickness and the surface aerosol radiative forcing, it is concluded that there is a high variability in the physical and chemical characteristics of the aerosol at this location. The surface radiative forcing efficiency, which is the radiative forcing for unit optical thickness, was 85.4 W m2 on average at Kyoto. This observed value is very similar to recently observed surface aerosol radiative forcings during the Indian Ocean Experiment (INDOEX) and the Asia Pacific Regional Aerosol Characterization Experiment (ACE-Asia) field campaigns. The aerosol radiative forcing at the top of the atmosphere (TOA) was calculated from measured in situ aerosol optical properties and retrieved properties from a comparison of measured and simulated ground solar irradiances. While employing average aerosol optical properties at Kyoto, comprehensive cooling at the TOA was found

  11. Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control.

    PubMed

    Iwakuni, Kana; Inaba, Hajime; Nakajima, Yoshiaki; Kobayashi, Takumi; Hosaka, Kazumoto; Onae, Atsushi; Hong, Feng-Lei

    2012-06-18

    We have developed an optical frequency comb using a mode-locked fiber ring laser with an intra-cavity waveguide electro-optic modulator controlling the optical length in the laser cavity. The mode-locking is achieved with a simple ring configuration and a nonlinear polarization rotation mechanism. The beat note between the laser and a reference laser and the carrier envelope offset frequency of the comb were simultaneously phase locked with servo bandwidths of 1.3 MHz and 900 kHz, respectively. We observed an out-of-loop beat between two identical combs, and obtained a coherent δ-function peak with a signal to noise ratio of 70 dB/Hz.

  12. Optical properties of surfaces with supercell ab initio calculations: Local-field effects

    NASA Astrophysics Data System (ADS)

    Tancogne-Dejean, Nicolas; Giorgetti, Christine; Véniard, Valérie

    2015-12-01

    Surface optical and electronic properties are crucial for material science and have implications in fields as various as nanotechnology, nonlinear optics, and spectroscopies. In particular, the huge variation of electronic density perpendicular to the surface is expected to play a key role in absorption due to local-field effects. Numerous state-of-the-art theoretical and numerical ab initio formalisms developed for studying these properties are based on supercell approaches, in reciprocal space, due to their efficiency. In this paper, we show that the standard scheme fails for the out-of-plane optical response of the surface. This response is interpreted using the "effective-medium theory" with vacuum and also in terms of interaction between replicas, as the supercell approach implies a periodicity which is absent in the real system. We propose an alternative formulation, also based on the supercell, for computing the macroscopic dielectric function. Application to the clean Si(001) 2 ×1 surface allows us to present the effect of the local fields for both peak positions and line shape on the bulk and surface contributions. It shows how local fields built up for the in-plane and out-of-plane dielectric responses of the surface. In addition to their conceptual impact, our results explain why the standard approach gives reliable predictions for the in-plane components, leading to correct reflectance anisotropy spectra. Our scheme can be further generalized to other low-dimensional geometries, such as clusters or nanowires, and open the way to nonlinear optics for surfaces.

  13. Magnons and Phonons Optically Driven out of Local Equilibrium in a Magnetic Insulator

    NASA Astrophysics Data System (ADS)

    An, Kyongmo; Olsson, Kevin S.; Weathers, Annie; Sullivan, Sean; Chen, Xi; Li, Xiang; Marshall, Luke G.; Ma, Xin; Klimovich, Nikita; Zhou, Jianshi; Shi, Li; Li, Xiaoqin

    2016-09-01

    The coupling and possible nonequilibrium between magnons and other energy carriers have been used to explain several recently discovered thermally driven spin transport and energy conversion phenomena. Here, we report experiments in which local nonequilibrium between magnons and phonons in a single crystalline bulk magnetic insulator, Y3Fe5O12 , has been created optically within a focused laser spot and probed directly via micro-Brillouin light scattering. Through analyzing the deviation in the magnon number density from the local equilibrium value, we obtain the diffusion length of thermal magnons. By explicitly establishing and observing local nonequilibrium between magnons and phonons, our studies represent an important step toward a quantitative understanding of various spin-heat coupling phenomena.

  14. Local field-induced optical properties of Ag-coated CdS quantum dots.

    PubMed

    Je, Koo-Chul; Ju, Honglyoul; Treguer, Mona; Cardinal, Thierry; Park, Seung-Han

    2006-08-21

    Local field-induced optical properties of Ag-coated CdS quantum dot structures are investigated. We experimentally observe a clear exciton peak due to the quantum confinement effect in uncoated CdS quantum dots, and surface plasmon resonance and red-shifted exciton peak in Ag-coated CdS composite quantum dot structures. We have calculated the Stark shift of the exciton peak as a function of the local field for different silver thicknesses and various sizes of quantum dots based on the effective-mass Hamiltonian using the numerical-matrix-diagonalization method. Our theoretical calculations strongly indicate that the exciton peak is red-shifted in the metal-semiconductor composite quantum dots due to a strong local field, i.e., the quantum confined Stark effect.

  15. Localization of atomic beams using standing wave optical quenching: Atom lithography and atomic imaging

    NASA Astrophysics Data System (ADS)

    Johnson, Kent Sherwood

    1998-11-01

    We have developed a novel technique for imaging the spatial distribution of metastable atoms hitting a surface and have used this technique to image Heisenberg- limited localization of atoms produced by an optical standing wave. This thesis reports the first direct nanometer-scale imaging of an atomic state distribution created by an optical pumping process. The spatially dependent de-excitation of a beam of metastable atoms, traveling through an optical standing wave, produced a periodic array of localized metastable atoms with position and momentum spreads approaching the limit stated by the Heisenberg uncertainty principle. Silicon and silicon dioxide substrates placed in the path of the atomic beam were patterned by the metastable atoms: the de-excitation of metastable atoms upon collision with the surface promoted the deposition of a carbonaceous film from a vapor-phase hydrocarbon precursor. The resulting patterns were imaged both directly and after chemical etching, thus demonstrating the first use of a quantum mechanical steady state distribution for sub-100- nanometer lithography.

  16. Glaucoma detection using novel optic disc localization, hybrid feature set and classification techniques.

    PubMed

    Akram, M Usman; Tariq, Anam; Khalid, Shehzad; Javed, M Younus; Abbas, Sarmad; Yasin, Ubaid Ullah

    2015-12-01

    Glaucoma is a chronic and irreversible neuro-degenerative disease in which the neuro-retinal nerve that connects the eye to the brain (optic nerve) is progressively damaged and patients suffer from vision loss and blindness. The timely detection and treatment of glaucoma is very crucial to save patient's vision. Computer aided diagnostic systems are used for automated detection of glaucoma that calculate cup to disc ratio from colored retinal images. In this article, we present a novel method for early and accurate detection of glaucoma. The proposed system consists of preprocessing, optic disc segmentation, extraction of features from optic disc region of interest and classification for detection of glaucoma. The main novelty of the proposed method lies in the formation of a feature vector which consists of spatial and spectral features along with cup to disc ratio, rim to disc ratio and modeling of a novel mediods based classier for accurate detection of glaucoma. The performance of the proposed system is tested using publicly available fundus image databases along with one locally gathered database. Experimental results using a variety of publicly available and local databases demonstrate the superiority of the proposed approach as compared to the competitors.

  17. Advances in cables and outside plant for cable television and optical fibre local networks

    NASA Astrophysics Data System (ADS)

    Bridle, Peter

    1986-11-01

    During 1985 Bristish Telecom commenced the installation of a number of cable television systems in the United Kingdom. One of these systems, in Westminster, London, is of the Switched Star type, developed by the British Telecom Research Laboratories. The network comprises optical fiber cable between the head-end and the cabinet-mounted switch, and coaxial cable between the switch and the customer. A number of new outside plant products have been developed to meet the special requirements of the Westminister installation. This earlier work, together with the experience gained from the installation of optical fibers in the British Telecom trunk and junction networks, formed an ideal basis for evolving the line plant necessary to enable BT to introduce singlemode optical fiber into the local network. A range of cables is being developed by UK companies, suitable for installing in the harsh environment of the local network. Joint organizers and flexibility nodes are being introduced, both for underground application and for within the exchange and customer's premises. In addition blown-fiber techniques are being used to introduce fiber into these networks.

  18. Probing Local Energy Transfer in Self-Assembled Polyelectrolyte Films using Near-Field Optics

    NASA Astrophysics Data System (ADS)

    Lowman, Geoffrey; Daoud, Natalie; Carson, Paul; Buratto, Steven

    2002-03-01

    Polyelectrolyte layer-by-layer (LbL) self-assembly constructs thin films with predictable overall thickness, but the internal layer structure is far less distinct. Radiationless energy transfer between chromophores incorporated into specific layers in LbL films has been employed as an optical tool for characterizing this internal layer structure. We present near-field scanning optical microscopy (NSOM) measurements of local energy transfer in an LbL film consisting of poly(p-phenylene vinylene) (PPV) and poly(allylamine hydrochloride) (PAH) doped with Texas Red (Sulforhodamine 101 acid chloride) (TR-PAH) as donor and acceptor layers respectively. We observe drastic differences in ET efficiency in localized regions of LbL films. We also track the average energy transfer efficiency as the donor and acceptor layers are separated by varying the thickness of optically inactive polycation layers of PAH and polyanion layers of poly(styrene sulfonate) (PSS). In addition, we present preliminary results in isolating single dye molecules in LbL films, as well as films incorporating monolayers of CdSe nanocrystals.

  19. Local-field enhancement of optical nonlinearities in the AGZO nano-triangle array

    NASA Astrophysics Data System (ADS)

    Long, Hua; Bao, Lijiao; Wang, Kai; Liu, Shuhui; Wang, Bing

    2016-10-01

    Enhancement of the third order optical nonlinearities in Ga and Al co-doped ZnO (AGZO) nano-triangle array was investigated by performing a Z-scan method with a femtosecond laser (800 nm, 40 fs). The AGZO nano-triangle array was fabricated on silica substrates by nanosphere lithography (NSL) method, showing a surface plasmon resonance (SPR) peak around 3 μm. The two photon absorption (TPA) coefficient and nonlinear refractive index of the AGZO nano-triangle array were determined to be 340 cm/GW and 3.22 × 10-2 cm2/GW under an excitation intensity of 26 GW/cm2. It shows a 3.4-fold enhancement of the nonlinear refraction in the AGZO array with respect to that in the AGZO film, which attributes to the local field enhancement effect. The finite-difference time-domain (FDTD) simulation was in agreement with the experimental results. It indicates that the AGZO nano-triangle arrays have potential applications for nonlinear optical devices like all-optical switching, optical limiting and other types of signal processing.

  20. Local measurement in Freon R123 two-phase vertical upflow using bi-optical probe

    SciTech Connect

    Saito, T.; Matsutani, K.; Iwase, T.; Sunami, T.; Tomomatsu, K.; Ueno, T.; Osaki, T.

    1995-12-31

    In the U-bend region of steam generator of PWR plant, the authors have experienced some tube failures due to flow induced vibration. In this project, the thermal hydraulic and flow induced vibration tests are planned using the model steam generator equipped with the large scale U-bend tube bundle and the Freon two-phase flow loop. The objectives of this project are to verify the reliability of U-bend tubes and to upgrade the technologies to evaluate the thermal hydraulic behaviors in U-bend region and the flow induced vibration of U-bend tubes. The void fraction and interfacial velocity are key parameters for the flow induced vibration phenomena. So, it is important to measure the void fraction and interfacial velocity precisely. In order to confirm the capability of bi-optical probe for the measurement of those key parameters in the Freon two-phase flow, the authors performed the verification test of bi-optical probe. This paper describes the results of the verification test of bi-optical probe. The verification test has been performed using a single pipe. The void fractions and interfacial velocities have been measured at some local positions in the single pipe using bi-optical probe.

  1. Visualizing the local optical response to extreme-ultraviolet radiation with a resolution of λ/380

    NASA Astrophysics Data System (ADS)

    Tamasaku, Kenji; Sawada, Kei; Nishibori, Eiji; Ishikawa, Tetsuya

    2011-09-01

    Scientists have continually tried to improve the spatial resolution of imaging ever since the invention of the optical microscope in around 1610 by Galileo. Recently, a spatial resolution near λ/10 was achieved in a near-field scheme by using surface plasmon polaritons. However, further improvement in this direction is hindered by the size of metallic nanostructures. Here we show that atom-scale resolution is achievable in the extreme-ultraviolet region by using X-ray parametric down-conversion, which detaches the achievable resolution from the wavelength of the probe light. We visualize three-dimensionally the local optical response of diamond at wavelengths between 103 and 206Å with a resolution as fine as 0.54Å. This corresponds to a resolution from λ/190 to λ/380, an order of magnitude better than ever achieved. Although the present study focuses on the relatively high-energy optical regions, our method could be extended into the visible region using advanced X-ray sources, and would open a new window into the optical properties of solids.

  2. The viscoelastic properties of the vitreous humor measured using an optically trapped local probe

    NASA Astrophysics Data System (ADS)

    Watts, Fiona; Tan, Lay Ean; Tassieri, Manlio; McAlinden, Niall; Wilson, Clive G.; Girkin, John M.; Wright, Amanda J.

    2011-10-01

    We present results demonstrating for the first time that an optically trapped bead can be used as a local probe to measure the variation in the viscoelastic properties of the vitreous humor of a rabbit eye. The Brownian motion of the optically trapped bead was monitored on a fast CCD camera on the millisecond timescale. Analysis of the bead trajectory provides local information about the viscoelastic properties of the medium surrounding the particle. Previous, bulk, methods for measuring the viscoelastic properties of the vitreous destroy the sample and allow only a single averaged measurement to be taken per eye. Whereas, with our approach, we were able to observe local behaviour typical of non-Newtonian and gel-like materials, along with the homogenous and in-homogeneous nature of different regions of the dissected vitreous humor. The motivation behind these measurements is to gain a better understanding of the structure of the vitreous humor in order to design effective drug delivery techniques. In particular, we are interested in methods for delivering drug to the retina of the eye in order to treat sight threatening diseases such as age related macular degeneration.

  3. Method for the three-dimensional localization of intramyocardial excitation centers using optical imaging.

    PubMed

    Khait, Vadim D; Bernus, Olivier; Mironov, Sergey F; Pertsov, Arkady M

    2006-01-01

    This study explores the possibility of localizing the excitation centers of electrical waves inside the heart wall using voltage-sensitive dyes (fluorescent or absorptive). In the present study, we propose a method for the 3-D localization of excitation centers from pairs of 2-D images obtained in two modes of observation: reflection and transillumination. Such images can be obtained using high-speed charge-coupled device (CCD) cameras and photodiode arrays with time resolution up to 0.5 ms. To test the method, we simulate optical signals produced by point sources and propagating ellipsoidal waves in 1-cm-thick slabs of myocardial tissue. Solutions of the optical diffusion equation are constructed by employing the method of images with Robin boundary conditions. The coordinates of point sources as well as of the centers of expanding waves can be accurately determined using the proposed algorithm. The method can be extended to depth estimations of the outer boundaries of the expanding wave. The depth estimates are based on ratios of spatially integrated images. The method shows high tolerance to noise and can give accurate results even at relatively low signal-to-noise ratios. In conclusion, we propose a novel and efficient algorithm for the localization of excitation centers in 3-D cardiac tissue.

  4. Localization and quantification of reflective events along an optical fiber using a bi-directional TRA technique.

    PubMed

    Cen, Min; Moeyaert, Véronique; Mégret, Patrice; Wuilpart, Marc

    2014-04-21

    We report on the theory and the implementation of a novel approach for the detection and localization of a reflective event along a fiber link. By launching a continuous-wave signal into both fiber ends and by analyzing the transmitted and reflected/backscattered optical powers, it is possible to localize an optical event and to quantify the induced insertion and return losses simultaneously. The novel idea of utilizing bi-directional measurement allows the localization of both reflective and non-reflective events. Theoretical and experimental studies show that for a 10 km-long single mode fiber, the localization accuracy can be in the range of 5.0 m.

  5. Design and implementation of a fiber optic link for a token ring local area network

    NASA Astrophysics Data System (ADS)

    Doran, Thomas J.

    1992-09-01

    This thesis describes the design and implementation of a fiber optic link for a token ring local area network (LAN). It features the use of fiber optic channels as the transmission medium between a computer system and a wiring concentrator to convert a physical ring design into a starwired configuration. The LAN was controlled by the TMS380 LAN Adapter chipset, which provided all diagnostic and network management features to include the 4 Mb/s electrical signal for operation. Since this adapter was developed for systems using twisted wire pair adapter cables, design modifications required that the fiber link be able to simulate impedance and current characteristics of copper wire link. This allows the use of adapter diagnostic checks for ring continuity and proper ring operation. Design evaluations using test signals and adapter signals from within the computer-concentrator link showed mixed results. All transmission objectives were met but the circuit loaded down the LAN adapter causing hardware error messages.

  6. Enhanced Optical Transmission Mediated by Localized Plasmons in Anisotropic, 3D Nanohole Arrays

    PubMed Central

    Yang, Jiun-Chan; Gao, Hanwei; Suh, Jae Yong; Zhou, Wei; Lee, Min Hyung; Odom, Teri W.

    2010-01-01

    This paper describes 3D nanohole arrays whose high optical transmission is mediated more by localized surface plasmon (LSP) excitations than by surface plasmon polaritons (SPPs). First, LSPs on 3D hole arrays lead to optical transmission an order of magnitude higher than 2D planar hole arrays. Second, LSP-mediated transmission is broadband and more tunable than SPP-enhanced transmission which is restricted by Bragg coupling. Third, for the first time, two types of surface plasmons can be selectively excited and manipulated on the same plasmonic substrate. This new plasmonic substrate fabricated by high-throughput nanolithography techniques paves the way for cutting-edge optoelectronic and biomedical applications. PMID:20698633

  7. H(alpha) and Optical Imaging of Local Volume Galaxies in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Sakai, Shoko; van Zee, Liese; Lee, Janice C.; Kennicutt, Robert C.; Funes, Jose G.

    2010-02-01

    We propose H(alpha) and B,R imaging observations of 33 galaxies in the Local Volume Legacy (LVL) survey to measure current star formation activity and derive emission-line corrected optical colors throughout the stellar disk. The proposed imaging observations will be combined with existing UV and IR observations, and will serve to nearly complete the optical imaging coverage of the full LVL sample of 258 galaxies. The observed surface photometry and radial trace of the star formation activity will allow us to study the photometric properties, the morphology, and spatial distributions of different stellar populations in these nearby galaxies. These images will also form the basis for a definitive multiwavelength dataset for studies of star formation in nearby galaxies.

  8. Cavity solitons and localized patterns in a finite-size optical cavity

    NASA Astrophysics Data System (ADS)

    Kozyreff, G.; Gelens, L.

    2011-08-01

    In appropriate ranges of parameters, laser-driven nonlinear optical cavities can support a wide variety of optical patterns, which could be used to carry information. The intensity peaks appearing in these patterns are called cavity solitons and are individually addressable. Using the Lugiato-Lefever equation to model a perfectly homogeneous cavity, we show that cavity solitons can only be located at discrete points and at a minimal distance from the edges. Other localized states which are attached to the edges are identified. By interpreting these patterns in an information coding frame, the information capacity of this dynamical system is evaluated. The results are explained analytically in terms of the the tail characteristics of the cavity solitons. Finally, the influence of boundaries and of cavity imperfections on cavity solitons are compared.

  9. AIS wavefront sensor: a robust optical test of exposure tools using localized wavefront curvature

    NASA Astrophysics Data System (ADS)

    Miyakawa, Ryan; Zhou, Xibin; Goldstein, Michael; Ashworth, Dominic; Cummings, Kevin; Fan, Yu-Jen; Shroff, Yashesh; Denbeaux, Greg; Kandel, Yudhi; Naulleau, Patrick

    2014-04-01

    We present an update of the AIS wavefront sensor, a diagnostic sensor set for insertion in the upgraded 0.5 NA SEMATECH Albany and Berkeley METs. AIS works by using offset monopole illumination to probe localized regions of the test optic pupil. Variations in curvature manifest as focus shifts, which are measured using a photodiode- based grating-on- grating contrast monitor, and the wavefront aberrations are reconstructed using a least-squares approach. We present results from an optical prototype of AIS demonstrating an accuracy of better than λ/30 rms for Zernike polynomials Z4 through Z10. We also discuss integration strategies and requirements as well as specifications on system alignment.

  10. Tissue motion tracking at the edges of a radiation treatment field using local optical flow analysis

    NASA Astrophysics Data System (ADS)

    Teo, P. T.; Pistorius, S.

    2014-03-01

    This paper investigates the feasibility and accuracy of tracking the motion of an intruding organ-at-risk (OAR) at the edges of a treatment field using a local optical flow analysis of electronic portal images. An intruding OAR was simulated by modifying the portal images obtained by irradiating a programmable phantom's lung tumour. A rectangular treatment aperture was assumed and the edges of the beam's eye view (BEV) were partitioned into clusters/grids according to the width of the multi-leaf collimators (MLC). The optical flow velocities were calculated and the motion accuracy in these clusters was analysed. A velocity error of 0.4 ± 1.4 mm/s with a linearity of 1.04 for tracking an object intruding at 10mm/s (max) was obtained.

  11. Optical bullet-tracking algorithms for weapon localization in urban environments

    SciTech Connect

    Roberts, R S; Breitfeller, E F

    2006-03-31

    Localization of the sources of small-arms fire, mortars, and rocket propelled grenades is an important problem in urban combat. Weapons of this type produce characteristic signatures, such as muzzle flashes, that are visible in the infrared. Indeed, several systems have been developed that exploit the infrared signature of muzzle flash to locate the positions of shooters. However, systems based on muzzle flash alone can have difficulty localizing weapons if the muzzle flash is obscured or suppressed. Moreover, optical clutter can be problematic to systems that rely on muzzle flash alone. Lawrence Livermore National Laboratory (LLNL) has developed a projectile tracking system that detects and localizes sources of small-arms fire, mortars and similar weapons using the thermal signature of the projectile rather than a muzzle flash. The thermal signature of a projectile, caused by friction as the projectile travels along its trajectory, cannot be concealed and is easily discriminated from optical clutter. The LLNL system was recently demonstrated at the MOUT facility of the Aberdeen Test Center [1]. In the live-fire demonstration, shooters armed with a variety of small-arms, including M-16s, AK-47s, handguns, mortars and rockets, were arranged at several positions in around the facility. Experiments ranged from a single-weapon firing a single-shot to simultaneous fire of all weapons on full automatic. The LLNL projectile tracking system was demonstrated to localize multiple shooters at ranges up to 400m, far greater than previous demonstrations. Furthermore, the system was shown to be immune to optical clutter that is typical in urban combat. This paper describes the image processing and localization algorithms designed to exploit the thermal signature of projectiles for shooter localization. The paper begins with a description of the image processing that extracts projectile information from a sequence of infrared images. Key to the processing is an adaptive spatio

  12. Local surface plasmon mediated extraordinary optical transmission of multi-spatial-mode quantum noise reduction

    SciTech Connect

    Lawrie, Benjamin J; Evans, Philip G; Pooser, Raphael C

    2013-01-01

    We demonstrate the coherent transduction of quantum noise reduction, or squeezed light, by Ag localized surface plasmons (LSPs). Squeezed light, generated through four-wave-mixing in Rb vapor, is coupled to a Ag nanohole array designed to exhibit LSP mediated extraordinary-optical transmission (EOT) spectrally coincident with the squeezed light source at 795 nm. We demonstrate that quantum noise reduction as a function of transmission is found to match closely with linear attenuation models, thus demonstrating that the photon-LSP-photon transduction process is coherent near the LSP resonance.

  13. A photonic-crystal optical antenna for extremely large local-field enhancement.

    PubMed

    Chang, Hyun-Joo; Kim, Se-Heon; Lee, Yong-Hee; Kartalov, Emil P; Scherer, Axel

    2010-11-08

    We propose a novel design of an all-dielectric optical antenna based on photonic-band-gap confinement. Specifically, we have engineered the photonic-crystal dipole mode to have broad spectral response (Q~70) and well-directed vertical-radiation by introducing a plane mirror below the cavity. Considerably large local electric-field intensity enhancement~4,500 is expected from the proposed design for a normally incident planewave. Furthermore, an analytic model developed based on coupled-mode theory predicts that the electric-field intensity enhancement can easily be over 100,000 by employing reasonably high-Q (~10,000) resonators.

  14. Defect modes of a Bose-Einstein condensate in an optical lattice with a localized impurity

    SciTech Connect

    Brazhnyi, Valeriy A.; Konotop, Vladimir V.; Perez-Garcia, Victor M.

    2006-08-15

    We study defect modes of a Bose-Einstein condensate in an optical lattice with a localized defect within the framework of the one-dimensional Gross-Pitaevskii equation. It is shown that for a significant range of parameters the defect modes can be accurately described by an expansion over Wannier functions, whose envelope is governed by the coupled nonlinear Schroedinger equations with a {delta} impurity. The stability of the defect modes is verified by direct numerical simulations of the underlying Gross-Pitaevskii equation with a periodic and defect potentials. We also discuss possibilities of driving defect modes through the lattice and suggest ideas for their experimental generation.

  15. Localization and delocalization of ultracold bosonic atoms in finite optical lattices

    SciTech Connect

    Luehmann, Dirk-Soeren; Pfannkuche, Daniela; Bongs, Kai; Sengstock, Klaus

    2008-02-15

    We study bosonic atoms in small optical lattices by exact diagonalization and observe a striking similarity to the superfluid to Mott insulator transition in macroscopic systems. The momentum distribution, the formation of an energy gap, and the pair correlation function show only a weak size dependence. For noncommensurate filling we reveal in deep lattices a mixture of localized and delocalized particles, which is sensitive to lattice imperfections. Breaking the lattice symmetry causes a Bose-glass-like behavior. We discuss the nature of excited states and orbital effects by using an exact diagonalization technique that includes higher bands.

  16. Reflective Optical and Microwave Limiters based on Non-Linear Localized Modes

    NASA Astrophysics Data System (ADS)

    Makri, Eleana; Ramezani, Hamidreza; Kottos, Tsampikos; Vitebskiy, Ilya

    2014-03-01

    A limiter is a structure that controls signal transport by allowing the transmission of low intensity signals while blocking signals with excessively high intensity. Existing designs lead to the absorption of excessive high intensity which can cause their overheating and eventually their (self-)destruction. We introduce the concept of reflective limiter which is based on resonance transmission via a non-linear localized mode. Such a limiter does not absorb the high level radiation, but rather reflects it back to space. Importantly, the total reflection occurs within a broad frequency range and for any direction of incidence. The proposed concept can be applied to optical and microwave frequencies.

  17. Investigating the micro-rheology of the vitreous humor using an optically trapped local probe

    NASA Astrophysics Data System (ADS)

    Watts, Fiona; Ean Tan, Lay; Wilson, Clive G.; Girkin, John M.; Tassieri, Manlio; Wright, Amanda J.

    2014-01-01

    We demonstrate that an optically trapped silica bead can be used as a local probe to measure the micro-rheology of the vitreous humor. The Brownian motion of the bead was observed using a fast camera and the micro-rheology determined by analysis of the time-dependent mean-square displacement of the bead. We observed regions of the vitreous that showed different degrees of viscoelasticity, along with the homogeneous and inhomogeneous nature of different regions. The motivation behind this study is to understand the vitreous structure, in particular changes due to aging, allowing more confident prediction of pharmaceutical drug behavior and delivery within the vitreous humor.

  18. A synchronous fiber optic ring local area network for multigigabit/s mixed-traffic communication

    NASA Technical Reports Server (NTRS)

    Bergman, L. A.; Eng, S. T.

    1985-01-01

    A synchronous-ring fiber optic local area network is reported that facilitates the simultaneous transmission of packet and real-time traffic at gigabit/s rates, minimizes the amount of high-speed logic, and simplifies the user interface to the network. The novelty of the technique is based on (1) suspending in transit around the ring's circumference an integral number of data frames and (2) achieving this condition by skewing the frame clock rate a small amount. Rather than use the whole data frame as one packet destined to a specific user, many individual channels are instead time-multiplexed into the data frame. This technique only becomes feasible for local networks as data rates approach the Gbit/s range. This departure from other synchronous rings results in several advantages both in terms of system performance and hardware simplicity.

  19. Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation

    SciTech Connect

    Fedotov, I. V.; Doronina-Amitonova, L. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Anokhin, K. V.; Kilin, S. Ya.; Sakoda, K.; Zheltikov, A. M.

    2014-02-24

    Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogen–vacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laser–fiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.

  20. A fiber optic strain measurement and quench localization system for use in superconducting accelerator dipole magnets

    SciTech Connect

    van Oort, J.M.; Scanlan, R.M.; ten Kate, H.H.J.

    1994-10-17

    A novel fiber-optic measurement system for superconducting accelerator magnets is described. The principal component is an extrinsic Fabry-Perot Interferometer to determine localized strain and stress in coil windings. The system can be used either as a sensitive relative strain measurement system or as an absolute strain detector. Combined, one can monitor the mechanical behaviour of the magnet system over time during construction, long time storage and operation. The sensing mechanism is described, together with various tests in laboratory environments. The test results of a multichannel test matrix to be incorporated first in the dummy coils and then in the final version of a 13T Nb{sub 3}Sn accelerator dipole magnet are presented. Finally, the possible use of this system as a quench localization system is proposed.

  1. Stationary and traveling solitons via local dissipation in Bose-Einstein condensates in ring optical lattices

    NASA Astrophysics Data System (ADS)

    Campbell, Russell; Oppo, Gian-Luca

    2016-10-01

    A model of a Bose-Einstein condensate in a ring optical lattice with atomic dissipations applied at a stationary or at a moving location on the ring is presented. The localized dissipation is shown to generate and stabilize both stationary and traveling lattice solitons. Among many localized solutions, we have generated spatially stationary quasiperiodic lattice solitons and a family of traveling lattice solitons with two intensity peaks per potential well with no counterpart in the discrete case. Collisions between traveling and stationary lattice solitons as well as between two traveling lattice solitons display a critical dependence from the lattice depth. Stable counterpropagating solitons in ring lattices can find applications in gyroscope interferometers with ultracold gases.

  2. Itinerant-localized dual character of a strongly correlated superfluid Bose gas in an optical lattice

    SciTech Connect

    Ohashi, Y.; Kitaura, M.; Matsumoto, H.

    2006-03-15

    We investigate a strongly correlated Bose gas in an optical lattice. Extending the standard-basis operator method developed by Haley and Erdoes to a boson Hubbard model, we calculate excitation spectra in the superfluid phase, as well as in the Mott insulating phase, at T=0. In the Mott phase, the excitation spectrum has a finite energy gap, reflecting the localized character of atoms. In the superfluid phase, the excitation spectrum is shown to have an itinerant-localized dual structure, where the gapless Bogoliubov mode (which describes the itinerant character of superfluid atoms) and a band with a finite energy gap coexist. We also show that the rf-tunneling current measurement would give useful information about the duality of a strongly correlated superfluid Bose gas near the superfluid-insulator transition.

  3. A Sagnac-Michelson fibre optic interferometer: Signal processing for disturbance localization

    NASA Astrophysics Data System (ADS)

    Kondrat, M.; Szustakowski, M.; Pałka, N.; Ciurapiński, W.; Życzkowski, M.

    2007-09-01

    We present numerical and experimental results on a new generation fibre optic perimeter sensor based on a Sagnac and Michelson interferometers configuration. In particular, an original signal processing scheme is presented. The sensor can detect a potential intruder and determine its position along a protected zone. We propose a localization method that offers the inherent properties of both interferometers. After demodulation of the signals from both interferometers, the obtained amplitude characteristic of the Sagnac interferometer depends on a position of a disturbance along the interferometer, while amplitude characteristic of the Michelson interferometer does not depend on this position. So, quotient of both demodulated characteristics makes it possible to localize the disturbance. During investigations of a laboratory model of the sensor, it was possible to detect the position of the disturbance with a resolution of about 40 m along the 6-km-long sensor.

  4. Optical Switching of Nematic Liquid Crystal Film based on Localized Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Quint, Makiko; Delgado, Silverio; Nuno, Zachary; Hirst, Linda; Ghosh, Sayantani

    2015-03-01

    We have demonstrated an all-optical technique to reversibly switch the spatial orientation of nematic liquid crystal molecules from homeotropic to planar in a few micron thick films. Our method leverages the highly localized electric fields that are generated in the near-field of a densely packed gold nanoparticle layer when the samples are excited by light resonant with the localized surface plasmon absorption. We present simulations and control measurements for off-resonance excitation, where the switching behavior is not observed. Using polarized microscopy and transmission measurements, we observe this switching over a temperature range starting several degrees below and up to the isotropic transition, and at on-resonance excitation power less than 10 μW. In addition, we controllably vary the in-plane directionality of the liquid crystal molecules in the planar state by altering the linear polarization of the incident excitation. This work is supported by NSF Grant No. DMR-1056860 and ECC-1227034.

  5. Technique of fiber optics used to localize epidural space in piglets.

    PubMed

    Ting, Chien-Kun; Chang, Yin

    2010-05-24

    Technique of loss-of-resistance in epidural block is commonly used for epidural anesthesia in humans with approximately 90% successful rate. However, it may be one of the most difficult procedures to learn for anesthesia residents in hospital. A two-wavelength (650 nm and 532 nm) fiber-optical method has been developed according to the characteristic reflectance spectra of ex-vivo porcine tissues, which are associated with the needle insertion to localize the epidural space (ES). In an in-vivo study in piglets showed that the reflected lights from ES and its surrounding tissue ligamentum flavum (LF) are highly distinguishable. This indicates that this technique has potential to localize the ES on the spot without the help of additional guiding assistance.

  6. Taking local optics outreach abroad for IYL 2015: administrative and logistical challenges and strategies

    NASA Astrophysics Data System (ADS)

    Wong, Nicholas H. L.; Posner, Matthew T.; Mittal, Vinita; Gray, David R.; John, Pearl V.

    2016-09-01

    The Lightwave Roadshow is an outreach program run by research students at the University of Southampton, UK, that seeks to educate and inspire young students with optics, through conducting workshops in local schools and exhibiting at local and regional educational fairs. Adopting a hands-on philosophy enabled by an extensive collection of experimental optical demonstrations, Lightwave aims to promote scientific interest and indirectly address the global STEM skills shortage. While Lightwave has become a well-established program in local schools since its inception in 1998, 2015 included an unprecedented number of overseas activities. Inspired by the In- ternational Year of Light and Light-based Technologies (IYL 2015), Lightwave organized a school workshop in a foreign country (Singapore) as well as exhibited at major events, including the IYL 2015 opening ceremony in France, which marked the first time that the roadshow used UK school students to deliver outreach activities beyond the UK. These recent successful overseas projects have encouraged the outreach team to continue expand- ing the reach of the roadshow internationally. Of particular note is the involvement of Lightwave at academic conferences, where experiences and best practices can be shared among outreach ambassadors from different programs, student chapters, universities, and organizations. This paper provides a review of these activities, and identifies the administrative and practical challenges of bringing a local outreach program abroad and some strategies to overcome them. We also outline our travel suite of experimental demonstration kit, a portable selection from our main equipment inventory. This won the recent OSA `IYL-To-Go' student competition.

  7. Graphene-Silver-Induced Self-Polarized PVDF-Based Flexible Plasmonic Nanogenerator Toward the Realization for New Class of Self Powered Optical Sensor.

    PubMed

    Sinha, Tridib Kumar; Ghosh, Sujoy Kumar; Maiti, Rishi; Jana, Santanu; Adhikari, Basudam; Mandal, Dipankar; Ray, Samit K

    2016-06-22

    Plasmonic characteristics of graphene-silver (GAg) nanocomposite coupled with piezoelectric property of Poly(vinylidene fluoride) (PVDF) have been utilized to realize a new class of self-powered flexible plasmonic nanogenerator (PNG). A few layer graphene has been prepared in a facile and cost-effective method and GAg doped PVDF hybrid nanocomposite (PVGAg) is synthesized in a one-pot method. The PNG exhibits superior piezoelectric energy conversion efficiency (∼15%) under the dark condition. The plasmonic behavior of GAg nanocomposite makes the PNG highly responsive to the visible light illumination that leads to ∼50% change in piezo-voltage and ∼70% change in piezo-current, leading to enhanced energy conversion efficiency up to ∼46.6%. The piezoelectric throughput of PNG (e.g., capacitor charging performance) has been monitored during the detection of the different wavelengths of visible light illumination and showed maximum selectivity to the green light. The simultaneous mechanical energy harvesting and visible-light detection capabilities of the PNG are attractive for futuristic self-powered optoelectronic smart sensors and devices.

  8. Manipulation of the coherent spatial and angular shifts of Goos-Hänchen effect to realize the digital optical switch in silicon-on-insulator waveguide corner

    NASA Astrophysics Data System (ADS)

    Sun, DeGui

    2016-11-01

    In this work, based on the quantum process of the Goos-Hänchen (GH) spatial shift, a quantum process of the GH angular shift is also theoretically investigated. Then, the coherence between spatial and angular shifts in the GH effect is discovered and developed to manipulate the final total displacement for a digital optical switch. It is found that a waveguide corner structure always makes the reflected guide-mode have a GH angular shift in the minus direction when the incident beam is in the Brewster angle vicinity, while it always makes the spatial shift in the plus direction. Meanwhile, the coherence of these two GH shifts has an interesting distribution with the incident angle, and only in the common linear response area to the incident angle, the two GH shifts are mutually enhancing, and then a mini refractive index modulation of the guided-mode at the reflecting interface can create a great stable jump of reflected beam displacement at an eigenstate under the GH effect. As a result, on the 220 nm CMOS-compatible silicon-on-insulator waveguide platform, with a tapered multimode interference (MMI) waveguide, a 5 × 1018cm-3 concentration variation of free carriers can create an absolute digital total displacement of 8-25 μm of the reflected beam on the MMI waveguide output end, leading to a 1 × 5 scale digital optical switching function.

  9. In Vivo Confocal Intrinsic Optical Signal Identification of Localized Retinal Dysfunction

    PubMed Central

    Zhang, Qiu-Xiang; Lu, Rong-Wen; Curcio, Christine A.; Yao, Xin-Cheng

    2012-01-01

    Purpose. The purposes of this study were to investigate the physiological mechanism of stimulus-evoked fast intrinsic optical signals (IOSs) recorded in dynamic confocal imaging of the retina, and to demonstrate the feasibility of in vivo confocal IOS mapping of localized retinal dysfunctions. Methods. A rapid line-scan confocal ophthalmoscope was constructed to achieve in vivo confocal IOS imaging of frog (Rana pipiens) retinas at cellular resolution. In order to investigate the physiological mechanism of confocal IOS, comparative IOS and electroretinography (ERG) measurements were made using normal frog eyes activated by variable-intensity stimuli. A dynamic spatiotemporal filtering algorithm was developed to reject the contamination of hemodynamic changes on fast IOS recording. Laser-injured frog eyes were employed to test the potential of confocal IOS mapping of localized retinal dysfunctions. Results. Comparative IOS and ERG experiments revealed a close correlation between the confocal IOS and retinal ERG, particularly the ERG a-wave, which has been widely used to evaluate photoreceptor function. IOS imaging of laser-injured frog eyes indicated that the confocal IOS could unambiguously detect localized (30 μm) functional lesions in the retina before a morphological abnormality is detectable. Conclusions. The confocal IOS predominantly results from retinal photoreceptors, and can be used to map localized photoreceptor lesion in laser-injured frog eyes. We anticipate that confocal IOS imaging can provide applications in early detection of age-related macular degeneration, retinitis pigmentosa, and other retinal diseases that can cause pathological changes in the photoreceptors. PMID:23150616

  10. In vivo confocal intrinsic optical signal identification of localized retinal dysfunction.

    PubMed

    Zhang, Qiu-Xiang; Lu, Rong-Wen; Curcio, Christine A; Yao, Xin-Cheng

    2012-12-13

    The purposes of this study were to investigate the physiological mechanism of stimulus-evoked fast intrinsic optical signals (IOSs) recorded in dynamic confocal imaging of the retina, and to demonstrate the feasibility of in vivo confocal IOS mapping of localized retinal dysfunctions. A rapid line-scan confocal ophthalmoscope was constructed to achieve in vivo confocal IOS imaging of frog (Rana pipiens) retinas at cellular resolution. In order to investigate the physiological mechanism of confocal IOS, comparative IOS and electroretinography (ERG) measurements were made using normal frog eyes activated by variable-intensity stimuli. A dynamic spatiotemporal filtering algorithm was developed to reject the contamination of hemodynamic changes on fast IOS recording. Laser-injured frog eyes were employed to test the potential of confocal IOS mapping of localized retinal dysfunctions. Comparative IOS and ERG experiments revealed a close correlation between the confocal IOS and retinal ERG, particularly the ERG a-wave, which has been widely used to evaluate photoreceptor function. IOS imaging of laser-injured frog eyes indicated that the confocal IOS could unambiguously detect localized (30 μm) functional lesions in the retina before a morphological abnormality is detectable. The confocal IOS predominantly results from retinal photoreceptors, and can be used to map localized photoreceptor lesion in laser-injured frog eyes. We anticipate that confocal IOS imaging can provide applications in early detection of age-related macular degeneration, retinitis pigmentosa, and other retinal diseases that can cause pathological changes in the photoreceptors.

  11. Fast localization of the optic disc using projection of image features.

    PubMed

    Mahfouz, Ahmed E; Fahmy, Ahmed S

    2010-12-01

    Optic Disc (OD) localization is an important pre-processing step that significantly simplifies subsequent segmentation of the OD and other retinal structures. Current OD localization techniques suffer from impractically-high computation times (few minutes per image). In this work, we present a fast technique that requires less than a second to localize the OD. The technique is based upon obtaining two projections of certain image features that encode the x- and y- coordinates of the OD. The resulting 1-D projections are then searched to determine the location of the OD. This avoids searching the 2-D image space and, thus, enhances the speed of the OD localization process. Image features such as retinal vessels orientation and the OD brightness are used in the current method. Four publicly-available databases, including STARE and DRIVE, are used to evaluate the proposed technique. The OD was successfully located in 330 images out of 340 images (97%) with an average computation time of 0.65 s.

  12. A study of topologies and protocols for fiber optic local area network

    NASA Technical Reports Server (NTRS)

    Yeh, C.; Gerla, M.; Rodrigues, P.

    1985-01-01

    The emergence of new applications requiring high data traffic necessitates the development of high speed local area networks. Optical fiber is selected as the transmission medium due to its inherent advantages over other possible media and the dual optical bus architecture is shown to be the most suitable topology. Asynchronous access protocols, including token, random, hybrid random/token, and virtual token schemes, are developed and analyzed. Exact expressions for insertion delay and utilization at light and heavy load are derived, and intermediate load behavior is investigated by simulation. A new tokenless adaptive scheme whose control depends only on the detection of activity on the channel is shown to outperform round-robin schemes under uneven loads and multipacket traffic and to perform optimally at light load. An approximate solution to the queueing delay for an oscillating polling scheme under chaining is obtained and results are compared with simulation. Solutions to the problem of building systems with a large number of stations are presented, including maximization of the number of optical couplers, and the use of passive star/bus topologies, bridges and gateways.

  13. Design of a Base Station for MEMS CCR Localization in an Optical Sensor Network

    PubMed Central

    Park, Chan Gook; Jeon, Hyun Cheol; Kim, Hyoun Jin; Kim, Jae Yoon

    2014-01-01

    This paper introduces a design and implementation of a base station, capable of positioning sensor nodes using an optical scheme. The base station consists of a pulse laser module, optical detectors and beam splitter, which are mounted on a rotation-stage, and a Time to Digital Converter (TDC). The optical pulse signal transmitted to the sensor node with a Corner Cube Retro-reflector (CCR) is reflected to the base station, and the Time of Flight (ToF) data can be obtained from the two detectors. With the angle and flight time data, the position of the sensor node can be calculated. The performance of the system is evaluated by using a commercial CCR. The sensor nodes are placed at different angles from the base station and scanned using the laser. We analyze the node position error caused by the rotation and propose error compensation methods, namely the outlier sample exception and decreasing the confidence factor steadily using the recursive least square (RLS) methods. Based on the commercial CCR results, the MEMS CCR is also tested to demonstrate the compatibility between the base station and the proposed methods. The result shows that the localization performance of the system can be enhanced with the proposed compensation method using the MEMS CCR. PMID:24815681

  14. Interaction of electrons with optical phonons localized in a quantum well

    SciTech Connect

    Pozela, J. Pozela, K.; Juciene, V.; Suziedelis, A.; Shkolnik, A. S.; Mikhrin, S. S.; Mikhrin, V. S.

    2009-12-15

    The scattering rate of electrons in a quantum well by localized polar optical and interface phonons is considered. The dependence of the force of the electron-phonon interaction on the frequency of optical phonons in materials of the heterostructure forming the electron and phonon quantum wells is determined. It is shown that, by varying the composition of semiconductors forming the quantum well and its barriers, it is possible to vary the scattering rates of electrons by a factor of several times. The scattering rates of electrons by polar optical phonons are calculated depending on the fractions In{sub x} and In{sub y} in the composition of semiconductors forming the In{sub x}Al{sub 1-x}As/In{sub y}Ga{sub 1-y}As quantum wells. Dependences of the mobility and saturated drift velocity of electrons in high electric fields and quantum wells In{sub y}Ga{sub 1-y}As on the composition of the In{sub x}Al{sub 1-x}As barriers introduced into quantum wells are determined experimentally. The electron mobility increases, while the saturated drift velocity decreases as the fraction of In{sub x} in the composition of barriers is increased.

  15. 1 Hz linewidth Ti:sapphire laser as local oscillator for (40)Ca(+) optical clocks.

    PubMed

    Bian, Wu; Huang, Yao; Guan, Hua; Liu, Peiliang; Ma, Longsheng; Gao, Kelin

    2016-06-01

    A Ti:sapphire laser at 729 nm is frequency stabilized to an ultra-stable ultra-low thermal expansion coefficient (ULE) cavity by means of Pound-Drever-Hall method. An acousto-optic modulator is used as the fast frequency feedback component. 1 Hz linewidth and 2 × 10(-15) frequency stability at 1-100 s are characterized by optical beating with a separated Fabry-Perot cavity stabilized diode laser. Compared to the universal method that the error signal feedback to inject current of a diode laser, this scheme is demonstrated to be simple and also effective for linewidth narrowing. The temperature of zero coefficient of the thermal expansion of the ULE cavity is measured with the help of a femto-second frequency comb. And the performance of the laser is well defined by locking it to the unperturbed clock transition line-center of 4 S1/2-3 D5/2 clock transition of a single laser cooled (40)Ca(+) ion. A Fourier-transform limited resonance of 6 Hz (Δv/v = 1.5 × 10(-14)) is observed. This laser is also used as the local oscillator for the comparison experiment of two (40)Ca(+) ion optical clocks and improves the stability of comparison for an order of magnitude better than the previous results.

  16. 1 Hz linewidth Ti:sapphire laser as local oscillator for 40Ca+ optical clocks

    NASA Astrophysics Data System (ADS)

    Bian, Wu; Huang, Yao; Guan, Hua; Liu, Peiliang; Ma, Longsheng; Gao, Kelin

    2016-06-01

    A Ti:sapphire laser at 729 nm is frequency stabilized to an ultra-stable ultra-low thermal expansion coefficient (ULE) cavity by means of Pound-Drever-Hall method. An acousto-optic modulator is used as the fast frequency feedback component. 1 Hz linewidth and 2 × 10-15 frequency stability at 1-100 s are characterized by optical beating with a separated Fabry-Perot cavity stabilized diode laser. Compared to the universal method that the error signal feedback to inject current of a diode laser, this scheme is demonstrated to be simple and also effective for linewidth narrowing. The temperature of zero coefficient of the thermal expansion of the ULE cavity is measured with the help of a femto-second frequency comb. And the performance of the laser is well defined by locking it to the unperturbed clock transition line-center of 4 S1/2-3 D5/2 clock transition of a single laser cooled 40Ca+ ion. A Fourier-transform limited resonance of 6 Hz (Δv/v = 1.5 × 10-14) is observed. This laser is also used as the local oscillator for the comparison experiment of two 40Ca+ ion optical clocks and improves the stability of comparison for an order of magnitude better than the previous results.

  17. Gabor filter based optical image recognition using Fractional Power Polynomial model based common discriminant locality preserving projection with kernels

    NASA Astrophysics Data System (ADS)

    Li, Jun-Bao

    2012-09-01

    This paper presents Gabor filter based optical image recognition using Fractional Power Polynomial model based Common Kernel Discriminant Locality Preserving Projection. This method tends to solve the nonlinear classification problem endured by optical image recognition owing to the complex illumination condition in practical applications, such as face recognition. The first step is to apply Gabor filter to extract desirable textural features characterized by spatial frequency, spatial locality and orientation selectivity to cope with the variations in illumination. In the second step we propose Class-wise Locality Preserving Projection through creating the nearest neighbor graph guided by the class labels for the textural features reduction. Finally we present Common Kernel Discriminant Vector with Fractional Power Polynomial model to reduce the dimensions of the textural features for recognition. For the performance evaluation on optical image recognition, we test the proposed method on a challenging optical image recognition problem, face recognition.

  18. Broadband optical mammography instrument for depth-resolved imaging and local dynamic measurements

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Nishanth; Kainerstorfer, Jana M.; Sassaroli, Angelo; Anderson, Pamela G.; Fantini, Sergio

    2016-02-01

    We present a continuous-wave instrument for non-invasive diffuse optical imaging of the breast in a parallel-plate transmission geometry. The instrument measures continuous spectra in the wavelength range 650-1000 nm, with an intensity noise level <1.5% and a spatial sampling rate of 5 points/cm in the x- and y-directions. We collect the optical transmission at four locations, one collinear and three offset with respect to the illumination optical fiber, to recover the depth of optical inhomogeneities in the tissue. We imaged a tissue-like, breast shaped, silicone phantom (6 cm thick) with two embedded absorbing structures: a black circle (1.7 cm in diameter) and a black stripe (3 mm wide), designed to mimic a tumor and a blood vessel, respectively. The use of a spatially multiplexed detection scheme allows for the generation of on-axis and off-axis projection images simultaneously, as opposed to requiring multiple scans, thus decreasing scan-time and motion artifacts. This technique localizes detected inhomogeneities in 3D and accurately assigns their depth to within 1 mm in the ideal conditions of otherwise homogeneous tissue-like phantoms. We also measured induced hemodynamic changes in the breast of a healthy human subject at a selected location (no scanning). We applied a cyclic, arterial blood pressure perturbation by alternating inflation (to a pressure of 200 mmHg) and deflation of a pneumatic cuff around the subject's thigh at a frequency of 0.05 Hz, and measured oscillations with amplitudes up to 1 μM and 0.2 μM in the tissue concentrations of oxyhemoglobin and deoxyhemoglobin, respectively. These hemodynamic oscillations provide information about the vascular structure and functional integrity in tissue, and may be used to assess healthy or abnormal perfusion in a clinical setting.

  19. Successful product realization strategies

    NASA Technical Reports Server (NTRS)

    Peeples, John; Boulton, William R.

    1995-01-01

    Product realization is the process of defining, designing, developing, and delivering products to the market. While the main thrust of this JTEC panel was to conduct a complete investigation of the state of Japanese low-cost electronic packaging technologies, it is very difficult to totally separate the development of technology and products from the product realization process. Japan's electronics firms adhere to a product realization strategy based on a strong customer focus, a consistent commitment to excellence in design, and a cost-effective approach to technology commercialization. The Japanese product-pull strategy has been a successful driver and influencing factor in every aspect of the product development cycle.

  20. Experimental demonstration of a novel indoor optical wireless localization system for high-speed personal area networks.

    PubMed

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios

    2015-04-01

    In this Letter, we propose a novel indoor localization system based on optical wireless technology. By using the same architecture as the high-speed full-duplex indoor optical wireless communication system, the "search and scan" process, and the added transmission power and beam footprint information in the "search and scan" message, indoor localization functionality is achieved. Proof-of-concept experiments are carried out, and results show that an average error of <15  cm is achieved with a localization beam size of 1 m. In addition, the major localization-accuracy-limiting factors are analyzed both theoretically and experimentally. When incorporated with the optical wireless communication system, high-speed indoor wireless personal area networks can be achieved.

  1. Dynamic localization in optical and Zeeman lattices in the presence of spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Kartashov, Yaroslav V.; Konotop, Vladimir V.; Zezyulin, Dmitry A.; Torner, Lluis

    2016-12-01

    The dynamic localization of a two-level atom in a periodic potential under the action of spin-orbit coupling and a weak harmonically varying linear force is studied. We consider optical and Zeeman potentials that are either in phase or out of phase in two spinor components, respectively. The expectation value for the position of the atom after one oscillation period of the linear force is recovered in authentic resonances or in pseudoresonances. The frequencies of the linear force corresponding to authentic resonances are determined by the band structure of the periodic potential and are affected by the spin-orbit coupling. The width or dispersion of the wave packet in authentic resonances is usually minimal. The frequencies corresponding to pseudoresonances do not depend on the type of potential and on the strength of the spin-orbit coupling, while the evolution of excitations at the corresponding frequencies is usually accompanied by significant dispersion. Pseudoresonances are determined by the initial phase of the linear force and by the quasimomentum of the wave packet. Due to the spinor nature of the system, the motion of the atom is accompanied by periodic, but not harmonic, spin oscillations. Under the action of spin-orbit coupling the oscillations of the wave packet can be nearly completely suppressed in optical lattices. Dynamic localization in Zeeman lattices is characterized by doubling of the resonant oscillation periods due to band crossing at the boundary of the Brillouin zone. We also show that higher harmonics in the Fourier expansion of the energy band lead to effective dispersion, which can be strong enough to prevent dynamic localization of the Bloch wave packet.

  2. Fast left ventricle tracking in CMR images using localized anatomical affine optical flow

    NASA Astrophysics Data System (ADS)

    Queirós, Sandro; Vilaça, João. L.; Morais, Pedro; Fonseca, Jaime C.; D'hooge, Jan; Barbosa, Daniel

    2015-03-01

    In daily cardiology practice, assessment of left ventricular (LV) global function using non-invasive imaging remains central for the diagnosis and follow-up of patients with cardiovascular diseases. Despite the different methodologies currently accessible for LV segmentation in cardiac magnetic resonance (CMR) images, a fast and complete LV delineation is still limitedly available for routine use. In this study, a localized anatomically constrained affine optical flow method is proposed for fast and automatic LV tracking throughout the full cardiac cycle in short-axis CMR images. Starting from an automatically delineated LV in the end-diastolic frame, the endocardial and epicardial boundaries are propagated by estimating the motion between adjacent cardiac phases using optical flow. In order to reduce the computational burden, the motion is only estimated in an anatomical region of interest around the tracked boundaries and subsequently integrated into a local affine motion model. Such localized estimation enables to capture complex motion patterns, while still being spatially consistent. The method was validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. The proposed approach proved to be robust and efficient, with an average distance error of 2.1 mm and a correlation with reference ejection fraction of 0.98 (1.9 +/- 4.5%). Moreover, it showed to be fast, taking 5 seconds for the tracking of a full 4D dataset (30 ms per image). Overall, a novel fast, robust and accurate LV tracking methodology was proposed, enabling accurate assessment of relevant global function cardiac indices, such as volumes and ejection fraction

  3. Local delivery of fluorescent dye for fiber-optics confocal microscopy of the living heart

    PubMed Central

    Huang, Chao; Kaza, Aditya K.; Hitchcock, Robert W.; Sachse, Frank B.

    2014-01-01

    Fiber-optics confocal microscopy (FCM) is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption, and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio (SNR) of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release vs. foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5–9 lines, which is comparable to 4–8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery. PMID:25309455

  4. Local delivery of fluorescent dye for fiber-optics confocal microscopy of the living heart.

    PubMed

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2014-01-01

    Fiber-optics confocal microscopy (FCM) is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption, and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio (SNR) of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release vs. foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5-9 lines, which is comparable to 4-8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery.

  5. Nonlinear localized modes in dipolar Bose-Einstein condensates in optical lattices

    SciTech Connect

    Rojas-Rojas, S.; Vicencio, R. A.; Molina, M. I.; Abdullaev, F. Kh.

    2011-09-15

    Modulational instability and discrete matter wave solitons in dipolar BECs, loaded into a deep optical lattice, are investigated analytically and numerically. The process of modulational instability of nonlinear plane matter waves in a dipolar nonlinear lattice is studied and the regions of instability are established. The existence and stability of bulk discrete solitons are analyzed analytically and confirmed by numerical simulations. In marked contrast with the usual discrete nonlinear Schroedinger behavior (no dipolar interactions), we found a region where the two fundamental modes are simultaneously unstable, allowing enhanced mobility across the lattice for large norm values. To study the existence and properties of surface discrete solitons, an analysis of the dimer configuration is performed. The properties of symmetric and antisymmetric modes including stability diagrams and bifurcations are investigated in closed form. For the case of a bulk medium, properties of fundamental on-site and intersite localized modes are analyzed. On-site and intersite surface localized modes are studied, and we find that they do not exist when nonlocal interactions predominate with respect to local ones.

  6. Non-local effects in dual-probe-sideband Brillouin optical time domain analysis.

    PubMed

    Dominguez-Lopez, Alejandro; Angulo-Vinuesa, Xabier; Lopez-Gil, Alexia; Martin-Lopez, Sonia; Gonzalez-Herraez, Miguel

    2015-04-20

    According to recent models, non-local effects in dual-probe-sideband Brillouin Optical Time Domain Analysis (BOTDA) systems should be essentially negligible whenever the probe power is below the Stimulated Brillouin Scattering (SBS) threshold. This paper shows that actually there appear non-local effects in this type of systems before the SBS threshold. To explain these effects it is necessary to take into account a full spectral description of the SBS process. The pump pulse experiences a frequency-dependent spectral deformation that affects the readout process differently in the gain and loss configurations. This paper provides a simple analytical model of this phenomenon, which is validated against compelling experimental data, showing good agreement. The main conclusion of our study is that the measurements in gain configuration are more robust to this non-local effect than the loss configuration. Experimental and theoretical results show that, for a total probe wave power of ~1 mW (500 μW on each sideband), there is an up-shifting of ~1 MHz in the Brillouin Frequency Shift (BFS) retrieved from the Brillouin Loss Spectrum, whereas the BFS extracted from the measured Brillouin Gain Spectrum is up-shifted only ~0.6 MHz. These results are of particular interest for manufacturers of long-range BOTDA systems.

  7. Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds

    NASA Astrophysics Data System (ADS)

    Jia, Yali; Bagnaninchi, Pierre O.; Yang, Ying; Haj, Alicia El; Hinds, Monica T.; Kirkpatrick, Sean J.; Wang, Ruikang K.

    2009-05-01

    Establishing a relationship between perfusion rate and fluid shear stress in a 3D cell culture environment is an ongoing and challenging task faced by tissue engineers. We explore Doppler optical coherence tomography (DOCT) as a potential imaging tool for in situ monitoring of local fluid flow profiles inside porous chitosan scaffolds. From the measured fluid flow profiles, the fluid shear stresses are evaluated. We examine the localized fluid flow and shear stress within low- and high-porosity chitosan scaffolds, which are subjected to a constant input flow rate of 0.5 ml.min-1. The DOCT results show that the behavior of the fluid flow and shear stress in micropores is strongly dependent on the micropore interconnectivity, porosity, and size of pores within the scaffold. For low-porosity and high-porosity chitosan scaffolds examined, the measured local fluid flow and shear stress varied from micropore to micropore, with a mean shear stress of 0.49+/-0.3 dyn.cm-2 and 0.38+/-0.2 dyn.cm-2, respectively. In addition, we show that the scaffold's porosity and interconnectivity can be quantified by combining analyses of the 3D structural and flow images obtained from DOCT.

  8. Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds

    PubMed Central

    Jia, Yali; Bagnaninchi, Pierre O.; Yang, Ying; Haj, Alicia El; Hinds, Monica T.; Kirkpatrick, Sean J.; Wang, Ruikang K.

    2009-01-01

    Establishing a relationship between perfusion rate and fluid shear stress in a 3-dimensional cell culture environment is an ongoing and challenging task faced by tissue engineers. In this study, we explore Doppler optical coherence tomography (DOCT) as a potential imaging tool for in situ monitoring of local fluid flow profiles inside porous chitosan scaffolds. From the measured fluid flow profiles, the fluid shear stresses are evaluated. We examine the localized fluid flow and shear stress within low and high porosity chitosan scaffolds, which are subjected to a constant input flow rate of 0.5 ml·min-1. The DOCT results show that the behaviour of the fluid flow and shear stress in micropores is strongly dependent on the micropore interconnectivity, porosity, and size of pores within the scaffold. For low porosity and high porosity chitosan scaffolds examined, the measured local fluid flow and shear stress varied from micropore to micropore with a mean shear stress of 0.49±0.3 dyn·cm-2 and 0.38±0.2 dyn·cm-2, respectively. In addition, we show that the scaffold’s porosity and interconnectivity can be quantified by combining analyses of the 3-dimensional structural and flow images obtained from DOCT. PMID:19566307

  9. Concentric circular ring and nanodisk optical antenna enhanced multispectral quantum dot infrared photodetector with spectral localization

    NASA Astrophysics Data System (ADS)

    Zhang, Yingjie; Kemsri, Thitikorn; Li, Lin; Gu, Guiru; Lu, Xuejun

    2017-10-01

    In this paper, we report a concentric circular ring and nanodisk plasmonic optical antenna (POA) enhanced multispectral quantum dot infrared photodetector (QDIP). The circular ring and the nanodisk POA structures are designed to have plasmonic resonant wavelengths in the longwave infrared (LWIR) and the midwave infrared (MWIR) spectral regimes, respectively. The electric field (E-field) distributions are simulated and show spectral localization due to the distinct plasmonic resonant wavelengths of the POA structures. The circular ring is found to enhance the E-fields in the nanodisk regions due to the mutual coupling. A concentric circular ring and nanodisk POA enhanced multispectral QDIP was fabricated and tested. Multispectral enhancement was observed. The enhancement is compared to that of a QDIP with only the circular ring POA structure. The experiment data agree with the simulation. The concentric circular ring and nanodisk POA provides a compact planar structure for multispectral QDIP enhancement.

  10. Full optical characterization of autostereoscopic 3D displays using local viewing angle and imaging measurements

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Leroux, Thierry; Bignon, Thibault; Collomb-Patton, Véronique

    2012-03-01

    Two commercial auto-stereoscopic 3D displays are characterized a using Fourier optics viewing angle system and an imaging video-luminance-meter. One display has a fixed emissive configuration and the other adapts its emission to the observer position using head tracking. For a fixed emissive condition, three viewing angle measurements are performed at three positions (center, right and left). Qualified monocular and binocular viewing spaces in front of the display are deduced as well as the best working distance. The imaging system is then positioned at this working distance and crosstalk homogeneity on the entire surface of the display is measured. We show that the crosstalk is generally not optimized on all the surface of the display. Display aspect simulation using viewing angle measurements allows understanding better the origin of those crosstalk variations. Local imperfections like scratches and marks generally increase drastically the crosstalk, demonstrating that cleanliness requirements for this type of display are quite critical.

  11. Itinerant vs local moment approaches to Fe-pnictides: insight from optical spectroscopy study

    NASA Astrophysics Data System (ADS)

    Wang, Nan Lin

    2010-03-01

    I present optical spectroscopy investigations on single crystal samples of 4 different Fe-based systems: 1111, 122, 111, and 11. For all FeAs-based parent compounds we observed common spectral features: partial energy-gaps formation along with a removal of a large part of free-carrier spectral weight and a steep reduction of the carrier scattering rate in the magnetic ordered state. However, the 11-type FeTe behaves very differently. No energy gap opens in the magnetic ordered state. We proposed that both the itinerancy and local moment interactions of Fe 3d electrons are present, but they contribute differently to the magnetic instabilities in different systems. Work done with W. Z. Hu, G. Li, Z. G. Chen, J. Dong, P. Zheng, G. F. Chen, and J. L. Luo.

  12. Decoherence dynamics of interacting qubits coupled to a bath of local optical phonons

    NASA Astrophysics Data System (ADS)

    Lone, Muzaffar Qadir; Yarlagadda, S.

    2016-04-01

    We study decoherence in an interacting qubit system described by infinite range Heisenberg model (IRHM) in a situation where the system is coupled to a bath of local optical phonons. Using perturbation theory in polaron frame of reference, we derive an effective Hamiltonian that is valid in the regime of strong spin-phonon coupling under nonadiabatic conditions. It is shown that the effective Hamiltonian commutes with the IRHM upto leading orders of perturbation and thus has the same eigenstates as the IRHM. Using a quantum master equation with Markovian approximation of dynamical evolution, we show that the off-diagonal elements of the density matrix do not decay in the energy eigen basis of IRHM.

  13. Measuring binding kinetics of biomolecular interactions using a localized surface plasmon couple fluorescence fiber optic biosensor

    NASA Astrophysics Data System (ADS)

    Chang, Ying-Feng; Hsieh, Jo-Ping; Su, Li-Chen; Li, Ying-Chang; Lee, Cheng-Chung; Chou, Chien

    2010-08-01

    In this study, we describe a novel method for analyzing protein-protein binding kinetics at ultra-low concentration (1 pg/mL) using a localized surface plasmon coupled fluorescence fiber-optic biosensor (LSPCF-FOB). The association and dissociation rate constants, ka and kd, respectively, for the binding kinetics of the mouse IgG/ anti-mouse IgG interaction have been calculated to be ka = (5.9928+/-3.1540)x106 M-1s-1 and kd = (1.0587+/-0.5572)x10-3 s-1. The theoretical basis of this analytical approach is a rapid-mixing model integrated with a two-compartment model; has been experimentally verified in this study as well. The LSPCF-FOB provides a potentially alternative option for characterizing the interaction of biomolecules at ultra-low concentrations.

  14. Local aerosol concentrations and optical characteristics influenced by the Indonesian forest fire

    NASA Astrophysics Data System (ADS)

    Ru, Jianfei; Minomura, Mitsuo; Kuze, Hiroaki; Takeuchi, Nobuo

    1998-08-01

    Indonesian forest fire took place on Kalimantan and Sumatera islands in 1997 and continuously influenced the atmospheric conditions of South-East Asia nearly throughout the last half of that year. The color composed images of visible, near IR and IR channels from NOAA AVHRR daily data, arbitrarily assigned to red, green and blue respectively, were synthesized for distinguishing the smoke area. The data of three periods, the beginning, mid, and ending parts of the fire, were collected and analyzed in order to show the variation of atmosphere with the development of fire. A retrieval algorithm was established by use of Mie theory calculation and the radiative transfer codes. Local aerosol concentrations and properties over ocean parts between the two islands were derived. It is found that the aerosol optical thickness increased in accordance with the exacerbation of the fires. The changes of angstrom exponents show that smaller particle amounts were raised by the effects of burning.

  15. Optical studies of the charge localization and delocalization in conducting polymers

    NASA Astrophysics Data System (ADS)

    Kim, Youngmin

    A systematic charge transport study on the thermochromism of polyaniline (PAN) doped with a plasticizing dopant, and on a field effect device using conducting poly (3,4-ethylenedioxythiophene) (PEDOT) as its active material, was made at optical (20--45,000 cm-1) frequencies to probe the charge localization and delocalization phenomena and the insulator to metal transition (IMT) in the inhomogeneous conducting polymer system. Temperature dependent reflectance [20--8000 cm -1 (2.5 meV--1eV)] of the PAN sample, together with absorbance and do transport study done by Dr. Pron at the Laboratoire de Physique des Metaux Synthetiques in Grenoble, France, shows spectral weight loss in the infrared region but the reflectance in the very low frequency (below 100 cm-1) remains unaffected. There are two localization transitions. The origin of the 200 K localization transition that affect >˜15% of the electrons is the glass transition emanating from the dopants. The transition principally affects the IR response in the range of 200--8000 cm -1. The low temperature (<75K) localization transition affects the few electrons that provide the high conductivity. It is suggested that these electrons are localized by disorder at the lowest temperature and become delocalized through phonon induced delocalization as the temperature increases to 75K. It is noted that this temperature is typical of a Debye temperature in many organic materials. The thermocromism is attributed to the weak localization to strong localization transition through the glass transition temperature. Below the glass transition temperature (Tg), the lattice is "frozen" in configuration that reduces the charge delocalization and lead to cause increase of strongly localized polarons. Time variation of source-drain current, real-time IR reflectance [20--8000 cm-1 (2.5 meV--1eV)] modulation, and real-time UV/VIS/NIR absorbance [380--2400 nm (0.5--3.3 eV)] modulation were measured to investigate the field induced charge

  16. Protection Switching and Local Area Network Emulation in Passive Optical Networks

    NASA Astrophysics Data System (ADS)

    Nadarajah, Nishaanthan; Wong, Elaine; Attygalle, Manik; Nirmalathas, Ampalavanapillai Thas

    2006-05-01

    This paper proposes and experimentally demonstrates an automatic-protection-switching (APS) mechanism against distribution fiber breaks in passive optical networks (PONs). The protection of optical-network units (ONUs) that are located at the customer premises is carried out by monitoring the distribution fiber using the traffic that is transported among the customers in the PON. This configuration emulates a local area network (LAN) over the existing PON while facilitating the switching of signal transmissions to a predetermined protection path in an event of a distribution fiber break. As failure detection and APS are performed independently by each ONU in a distributed manner, the processing complexities and delays are reduced at the central office (CO). The restoration of the traffic transported between the CO and an ONU in the event of the distribution fiber break is performed by interconnecting adjacent ONUs and carrying out signal transmissions via an independent but interconnected ONU. Such a protection mechanism enables multiple adjacent ONUs to be simultaneously protected by a single ONU utilizing its maximum available bandwidth. This paper experimentally verifies the feasibility of the proposed protection mechanism in conjunction with two different LAN-emulation schemes with a 1.25-Gb/s upstream baseband transmission to the CO and a 155-Mb/s LAN data transmission on a radio-frequency carrier. The experimental results obtained from both schemes are compared, and the power budgets are calculated to analyze the scalability of each scheme.

  17. Local structure and optical absorption characteristic investigation on Fe doped TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhao, Tian-Xing; Feng, Ya-Juan; Huang, Jun-Heng; He, Jin-Fu; Liu, Qing-Hua; Pan, Zhi-Yun; Wu, Zi-Yu

    2015-02-01

    The local structures and optical absorption characteristics of Fe doped TiO2 nanoparticles synthesized by the sol-gel method were characterized by X-ray diffraction (XRD), X-ray absorption fine structure spectroscopy (XAFS) and ultraviolet-visible absorption spectroscopy (UV-Vis). XRD patterns show that all Fe-doped TiO2 samples have the characteristic anatase structure. Accurate Fe and Ti K-edge EXAFS analysis further reveal that all Fe atoms replace Ti atoms in the anatase lattice. The analysis of UV-Vis data shows a red shift to the visible range. According to the above results, we claim that substitutional Fe atoms lead to the formation of structural defects and new intermediate energy levels appear, narrowing the band gap and extending the optical absorption edge towards the visible region. Supported by National Basic Research Program of China (2012CB825801), Science Fund for Creative Research Groups of NSFC (11321503), National Natural Science Foundation of China (11321503, 11179004) and Guangdong Natural Science Foundation (S2011040003985)

  18. A Fibrous Localized Drug Delivery Platform with NIR-Triggered and Optically Monitored Drug Release

    PubMed Central

    Liu, Heng; Fu, Yike; Li, Yangyang; Ren, Zhaohui; Li, Xiang; Han, Gaorong; Mao, Chuanbin

    2016-01-01

    Implantable localized drug delivery systems (LDDSs) with intelligent functionalities have emerged as a powerful chemotherapeutic platform in curing cancer. Developing LDDSs with rationally controlled drug release and real-time monitoring functionalities holds promise for personalized therapeutic protocols but suffers daunting challenges. To overcome such challenges, a series of porous Yb3+/Er3+ codoped CaTiO3 (CTO:Yb,Er) nanofibers, with specifically designed surface functionalization, were synthesized for doxorubicin (DOX) delivery. The content of DOX released could be optically monitored by increase in the intensity ratio of green to red emission (I550/I660) of upconversion photoluminescent nanofibers under 980 nm near-infrared (NIR) excitation owing to the fluorescence resonance energy transfer (FRET) effect between DOX molecules and the nanofibers. More importantly, the 808 nm NIR irradiation enabled markedly accelerated DOX release, confirming representative NIR-triggered drug release properties. In consequence, such CTO:Yb,Er nanofibers presented significantly enhanced in vitro anticancer efficacy under NIR irradiation. This study has thus inspired another promising fibrous LDDS platform with NIR-triggered and optics-monitored DOX releasing for personalized tumor chemotherapy. PMID:27557281

  19. Imaging fenestrations in liver sinusoidal endothelial cells by optical localization microscopy.

    PubMed

    Mönkemöller, Viola; Schüttpelz, Mark; McCourt, Peter; Sørensen, Karen; Smedsrød, Bård; Huser, Thomas

    2014-06-28

    Liver sinusoidal endothelial cells (LSEC) are an important class of endothelial cells facilitating the translocation of lipoproteins and small molecules between the liver and blood. A number of clinical conditions, especially metabolic and aging-related disorders, are implicated by improper function of LSECs. Despite their importance, research into these cells is limited because the primary ultrastructures involved in their function are transcellular pores, called fenestrations, with diameters in a size range between 50-200 nm, i.e. well below the optical diffraction limit. Here, we show that we are able to resolve fenestrations with a spatial resolution of ∼20 nm by direct stochastic optical reconstruction microscopy (dSTORM). The cellular plasma membrane was labeled at high fluorophore density with CellMask Deep Red and imaged using a reducing buffer system. We compare the higher degree of structural detail that dSTORM provides to results obtained by 3D structured illumination microscopy (3D-SIM). Our results open up a path to image these physiologically important cells in vitro using highly resolving localization microscopy techniques that could be implemented on non-specialized fluorescence microscopes, enabling their investigation in most biomedical laboratories without the need for electron microscopy.

  20. Fiber surface modification technology for fiber-optic localized surface plasmon resonance biosensors.

    PubMed

    Zhang, Qiang; Xue, Chenyang; Yuan, Yanling; Lee, Junyang; Sun, Dong; Xiong, Jijun

    2012-01-01

    Considerable studies have been performed on the development of optical fiber sensors modified by gold nanoparticles based on the localized surface plasmon resonance (LSPR) technique. The current paper presents a new approach in fiber surface modification technology for biosensors. Star-shaped gold nanoparticles obtained through the seed-mediated solution growth method were found to self-assemble on the surface of tapered optical fibers via amino- and mercapto-silane coupling agents. Transmitted power spectra of 3-aminopropyltrimethoxy silane (APTMS)-modified fiber were obtained, which can verify that the silane coupling agent surface modification method is successful. Transmission spectra are characterized in different concentrations of ethanol and gentian violet solutions to validate the sensitivity of the modified fiber. Assembly using star-shaped gold nanoparticles and amino/mercapto silane coupling agent are analyzed and compared. The transmission spectra of the gold nanoparticles show that the nanoparticles are sensitive to the dielectric properties of the surrounding medium. After the fibers are treated in t-dodecylmercaptan to obtain their transmission spectra, APTMS-modified fiber becomes less sensitive to different media, except that modified by 3-mercaptopropyltrimethoxy silane (MPTMS). Experimental results of the transmission spectra show that the surface modified by the gold nanoparticles using MPTMS is firmer compared to that obtained using APTMS.

  1. A Fibrous Localized Drug Delivery Platform with NIR-Triggered and Optically Monitored Drug Release.

    PubMed

    Liu, Heng; Fu, Yike; Li, Yangyang; Ren, Zhaohui; Li, Xiang; Han, Gaorong; Mao, Chuanbin

    2016-09-06

    Implantable localized drug delivery systems (LDDSs) with intelligent functionalities have emerged as a powerful chemotherapeutic platform in curing cancer. Developing LDDSs with rationally controlled drug release and real-time monitoring functionalities holds promise for personalized therapeutic protocols but suffers daunting challenges. To overcome such challenges, a series of porous Yb(3+)/Er(3+) codoped CaTiO3 (CTO:Yb,Er) nanofibers, with specifically designed surface functionalization, were synthesized for doxorubicin (DOX) delivery. The content of DOX released could be optically monitored by increase in the intensity ratio of green to red emission (I550/I660) of upconversion photoluminescent nanofibers under 980 nm near-infrared (NIR) excitation owing to the fluorescence resonance energy transfer (FRET) effect between DOX molecules and the nanofibers. More importantly, the 808 nm NIR irradiation enabled markedly accelerated DOX release, confirming representative NIR-triggered drug release properties. In consequence, such CTO:Yb,Er nanofibers presented significantly enhanced in vitro anticancer efficacy under NIR irradiation. This study has thus inspired another promising fibrous LDDS platform with NIR-triggered and optics-monitored DOX releasing for personalized tumor chemotherapy.

  2. Underwater Threat Source Localization: Processing Sensor Network TDOAs with a Terascale Optical Core Device

    SciTech Connect

    Barhen, Jacob; Imam, Neena

    2007-01-01

    Revolutionary computing technologies are defined in terms of technological breakthroughs, which leapfrog over near-term projected advances in conventional hardware and software to produce paradigm shifts in computational science. For underwater threat source localization using information provided by a dynamical sensor network, one of the most promising computational advances builds upon the emergence of digital optical-core devices. In this article, we present initial results of sensor network calculations that focus on the concept of signal wavefront time-difference-of-arrival (TDOA). The corresponding algorithms are implemented on the EnLight processing platform recently introduced by Lenslet Laboratories. This tera-scale digital optical core processor is optimized for array operations, which it performs in a fixed-point-arithmetic architecture. Our results (i) illustrate the ability to reach the required accuracy in the TDOA computation, and (ii) demonstrate that a considerable speed-up can be achieved when using the EnLight 64a prototype processor as compared to a dual Intel XeonTM processor.

  3. Multi-wavelength coherent transmission using an optical frequency comb as a local oscillator.

    PubMed

    Kemal, Juned N; Pfeifle, Joerg; Marin-Palomo, Pablo; Pascual, M Deseada Gutierrez; Wolf, Stefan; Smyth, Frank; Freude, Wolfgang; Koos, Christian

    2016-10-31

    Steadily increasing data rates of optical interfaces require spectrally efficient coherent transmission using higher-order modulation formats in combination with scalable wavelength-division multiplexing (WDM) schemes. At the transmitter, optical frequency combs (OFC) lend themselves to particularly precise multi-wavelength sources for WDM transmission. In this work we demonstrate that these advantages can also be leveraged at the receiver by using an OFC as a highly scalable multi-wavelength local oscillator (LO) for coherent detection. In our experiments, we use a pair of OFC that rely on gain switching of injection-locked semiconductor lasers both for WDM transmission and intradyne reception. We synchronize the center frequency and the free spectral range of the receiver comb to the transmitter, keeping the intradyne frequencies for all data channels below 15 MHz. Using 13 WDM channels, we transmit an aggregate line rate (net data rate) of 1.104 Tbit/s (1.032 Tbit/s) over a 10 km long standard single mode fiber at a spectral efficiency of 5.16 bit/s/Hz. To the best of our knowledge, this is the first demonstration of coherent WDM transmission using synchronized frequency combs as light source at the transmitter and as multi-wavelength LO at the receiver.

  4. Improved optical limiting performance of laser-ablation-generated metal nanoparticles due to silica-microsphere-induced local field enhancement.

    PubMed

    Du, Zheren; Chen, Lianwei; Kao, Tsung-Sheng; Wu, Mengxue; Hong, Minghui

    2015-01-01

    For practical application, optical limiting materials must exhibit a fast response and a low threshold in order to be used for the protection of the human eye and electro-optical sensors against intense light. Many nanomaterials have been found to exhibit optical limiting properties. Laser ablation offers the possibility of fabricating nanoparticles from a wide range of target materials. For practical use of these materials, their optical limiting performance, including optical limiting threshold and the ability to efficiently attenuate high intensity light, needs to be improved. In this paper, we fabricate nanoparticles of different metals by laser ablation in liquid. We study the optical nonlinear properties of the laser-generated nanoparticle dispersion. Silica microspheres are used to enhance the optical limiting performance of the nanoparticle dispersion. The change in the optical nonlinear properties of the laser-generated nanoparticle dispersion caused by silica microspheres is studied. It is found that the incident laser beam is locally focused by the microspheres, leading to an increased optical nonlinearity of the nanoparticle dispersion.

  5. Localized Retinal Nerve Fiber Layer Defects Detected by Optical Coherence Tomography: The Beijing Eye Study

    PubMed Central

    Zhao, Liang; Wang, Ya Xing; Zhang, Wei; Zhang, Jing Shang; Chen, Chang Xi; Xu, Liang; Jonas, Jost B.

    2013-01-01

    Objective To assess the prevalence of localized retinal nerve fiber layer defects (LRNFLD) and associated factors in adult Chinese. Methods The population-based Beijing Eye Study 2011 included 3468 individuals (mean age: 64.6±9.8 years (range: 50–93 years)). The study participants underwent a detailed ophthalmological examination including spectral-domain optical coherence tomography (SpectralisR-OCT) assisted measurement of the RNFL. A LRNFLD was defined as a sector in which the RNFL contour line dipped into the red zone for a length of <180°. Results Readable OCT images were available for 3242 (93.5%) subjects. LRNFLDs were detected in 640 eyes (9.9±0.4%) of 479 subjects (14.8±0.6%). In the age groups of 50–59 years, 60–69 years, 70–79 years, and 80+ years, the prevalence of LRNFLD per person increased from 9.9±0.9%, 11.6±1.0% and 20.6±1.4% to 33.0±3.2%, respectively. In multivariate analysis, prevalence of LRNFLDs was significantly associated with older age (P = 0.001; Odds Ratio (OR): 1.03; 95% Confidence Interval (CI): 1.01,1.05), myopic refractive error (P<0.001;OR:0.79;95%CI:0.74,0.85), larger beta zone of parapapillary atrophy (P<0.001; OR:1.34;95%CI:1.20,1.50), presence of glaucomatous optic neuropathy (P<0.001;OR:7.02;95%CI:3.87,12.7), presence of non-glaucomatous optic nerve damage (P = 0.001;OR:43.3;95%CI:8.24,227.1), and presence of diabetic retinopathy (P = 0.003;OR:2.79;95%CI:1.43,5.44). Conclusions OCT-defined LRNFLDs were present in a prevalence of 14.8±0.6% in a population-based study sample of subjects aged 50+ years. Prevalence of LRNFLDs increased with higher age, myopic refractive error, and larger parapapillary beta zone. Major ocular diseases associated with LRNFLs were glaucoma, non-glaucomatous optic nerve damage and diabetic retinopathy. These data may be helpful for a semiautomatic assessment of the RNFL. PMID:23894392

  6. Improving the light quantification of near infrared (NIR) diffused light optical tomography with ultrasound localization

    NASA Astrophysics Data System (ADS)

    Ardeshirpour, Yasaman

    According to the statistics published by the American Cancer Society, currently breast cancer is the second most common cancer after skin cancer and the second cause of cancer death after lung cancer in the female population. Diffuse optical tomography (DOT) using near-infrared (NIR) light, guided by ultrasound localization, has shown great promise in distinguishing benign from malignant breast tumors and in assessing the response of breast cancer to chemotherapy. Our ultrasound-guided DOT system is based on reflection geometry, with patients scanned in supine position using a hand-held probe. For patients with chest-wall located at a depth shallower than 1 to 2cm, as in about 10% of our clinical cases, the semi-infinite imaging medium is not a valid assumption and the chest-wall effect needs to be considered in the imaging reconstruction procedure. In this dissertation, co-registered ultrasound images were used to model the breast-tissue and chest-wall as a two-layer medium. The effect of the chest wall on breast lesion reconstruction was systematically investigated. The performance of the two-layer model-based reconstruction, using the Finite Element Method, was evaluated by simulation, phantom experiments and clinical studies. The results show that the two-layer model can improve the accuracy of estimated background optical properties, the reconstructed absorption map and the total hemoglobin concentration of the lesion. For patients' data affected by chest wall, the perturbation, which is the difference between measurements obtained at lesion and normal reference sites, may include the information of background mismatch between these two sites. Because the imaging reconstruction is based on the perturbation approach, the effect of this mismatch between the optical properties at the two sites on reconstructed optical absorption was studied and a guideline for imaging procedure was developed to reduce these effects during data capturing. To reduce the artifacts

  7. Bulk and Local Electron Transport and Optical Properties of Aluminum-doped Zinc Oxide

    NASA Astrophysics Data System (ADS)

    Likovich, Edward Michael

    ZnO is a promising transparent conducting oxide (TCO) because its components are naturally abundant and inexpensive; and ZnO can be synthesized by several methods as thin films and nanostructures. Doping ZnO with Al (to form what is called AZO) significantly increases electrical conductivity while retaining high optical transparency, making AZO ideal for use as transparent electrodes in optoelectronic devices. However, the electrical conductivity of AZO has not exceeded that of indium tin oxide (ITO), the most widely-utilized TCO. A systematic study of bulk and local electrical and optical properties of AZO is needed to improve conductivity while maintaining transparency. To this end, we conducted bulk magnetotransport measurements on AZO, which indicated that its electron mobility was significantly lower than that of single-crystal ZnO, primarily due to electron scattering at AZO grain boundaries. To further understand this detrimental effect, we directly probed these grain boundaries with a scanning tunneling microscope. These measurements are the first investigation of a broad spectrum of grain boundary traps in AZO, which include shallow states near the conduction band edge that may limit electron mobility, and deeper states that may deplete carriers. Because optical properties can affect transparency in devices, we characterized AZO through a combination of photoluminescence and scanning tunneling microscope cathodoluminescence (STM-CL). STM-CL, which probes only the surface, shows a dramatic narrowing of emission lines compared to bulk photoluminescence. We attribute this to different charge states of oxygen vacancies preferentially located near the surface. This observed difference is especially of interest in understanding transport across interfaces. Finally, we present one application of AZO: a monolayer quantum dot (QD) light-emitting device with AZO electrodes that uses atomic layer deposited insulating oxide to fill the interstices among QDs. This

  8. Optical antenna of comb-shaped split ring architecture for increased field localization in NIR and MIR.

    PubMed

    Kilic, Veli Tayfun; Erturk, Vakur B; Demir, Hilmi Volkan

    2013-12-02

    We propose and demonstrate novel designs of optical antennas based on comb-shaped split ring architecture that display multi resonance field intensity enhancement spectrum. These nanoantennas achieve substantially increased field localization at longer wavelengths than that of a single or an array of dipoles with the same side length. With these optical antennas, localizing near infrared (NIR) and mid infrared (MIR) lights within a region of tens of nanometers at an intensity enhancement level of the order of thousands of magnitude can be accomplished.

  9. Theoretical evaluation of Brillouin dynamic grating length localized by optical correlation domain technique through reflection spectrum simulation

    NASA Astrophysics Data System (ADS)

    Kendy Yamashita, Rodrigo; Kishi, Masato; Hotate, Kazuo

    2017-04-01

    We derive formulae based on Fourier transformation to calculate the reflection spectrum of a Brillouin dynamic grating (BDG), which is localized along an optical fiber by an optical correlation domain technique. First, we calculate the typical reflection spectra of the BDG localized by the technique and confirm the validity of the formulae by showing coincidence with previous theoretical or experimental works. Next, we evaluate theoretically the spatial resolution in the BDG distributed measurement by the technique, through simulations considering different strained fiber lengths. It is confirmed theoretically, for the first time, that the resolution in the BDG measurement is worse than that for the Brillouin gain spectrum.

  10. Scalable Electro-Optic Control of Localized Bistable Switching in Broad-Area VCSELs Using Reconfigurable Funnel Waveguides

    NASA Astrophysics Data System (ADS)

    Martínez-Lorente, R.; Parravicini, J.; Brambilla, M.; Columbo, L.; Prati, F.; Rizza, C.; Agranat, A. J.; DelRe, E.

    2017-06-01

    We demonstrate a steplike optical modulation based on the activation and deactivation of a bistable localized structure using a photoinduced and reconfigurable miniaturized 30 ×30 μ m electroactivated funnel waveguide. Control of a single 10 -μ m -diameter spot in a 200 -μ m -diameter vertical-cavity surface-emitting laser at 980 nm is achieved modulating the phase of an exciting beam in the specific position of the spot in the cavity. This localized on-off response can be scaled into arrays and offer a possible route to fast integrated optical logical functions and memory at low intensities at near-infrared wavelengths.

  11. Realizing Their Potential.

    ERIC Educational Resources Information Center

    Orloff, Jeffrey H., Ed.

    The report contains the proceedings of the Third Annual Northern Virginia Conference on Gifted/Talented Education. Titles and authors of papers presented include "Realizing Your Potential" (H. Lyon), "Developing the Gifts of All Children" (W. Barbe), "What is Leadership Training for the Gifted?" (D. Sisk), "Theoretic Foundations of Differential…

  12. Realizability Is Controllability

    NASA Astrophysics Data System (ADS)

    Lohmann, Niels; Wolf, Karsten

    A choreography describes the interaction between services. It may be used for specification purposes, for instance serving as a contract in the design of an inter-organizational business process. Typically, not all describable interactions make sense which motivates the study of the realizability problem for a given choreography.

  13. Realizing Their Potential.

    ERIC Educational Resources Information Center

    Orloff, Jeffrey H., Ed.

    The report contains the proceedings of the Third Annual Northern Virginia Conference on Gifted/Talented Education. Titles and authors of papers presented include "Realizing Your Potential" (H. Lyon), "Developing the Gifts of All Children" (W. Barbe), "What is Leadership Training for the Gifted?" (D. Sisk), "Theoretic Foundations of Differential…

  14. In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy

    NASA Astrophysics Data System (ADS)

    Amelink, Arjen; Sterenborg, Henricus J. C. M.; Bard, Martin P. L.; Burgers, Sjaak A.

    2004-05-01

    We demonstrate the capability of differential path-length spectroscopy (DPS) to determine the local optical properties of tissue in vivo. DPS measurements on bronchial mucosa are analyzed and yield information on the local blood oxygenation, blood content, average microvessel diameter, and wavelength dependence of the reduced scattering coefficient. Our data collected to date show that cancerous bronchial mucosa has a lower capillary oxygenation and a larger average capillary diameter than normal bronchial mucosa.

  15. Localized Surface Plasmon Resonance with Five-Branched Gold Nanostars in a Plastic Optical Fiber for Bio-Chemical Sensor Implementation

    PubMed Central

    Cennamo, Nunzio; D'Agostino, Girolamo; Donà, Alice; Dacarro, Giacomo; Pallavicini, Piersandro; Pesavento, Maria; Zeni, Luigi

    2013-01-01

    In this paper a refractive index sensor based on localized surface plasmon resonance (LSPR) in a Plastic Optical Fiber (POF), is presented and experimentally tested. LSPR is achieved exploiting five-branched gold nanostars (GNS) obtained using Triton X-100 in a seed-growth synthesis. They have the uncommon feature of three localized surface plasmon resonances. The strongest LSPRs fall in two ranges, one in the 600–900 nm range (LSPR 2) and the other one in the 1,100–1,600 nm range (LSPR 3), both sensible to refractive index changes. Anyway, due to the extremely strong attenuation (>102 dB/m) of the employed POF in the 1,100–1,600 nm range, only LSPR 2 will be exploited for refractive index change measurements, useful for bio-chemical sensing applications, as a proof of principle of the possibility of realizing a compact, low cost and easy-to-use GNS based device. PMID:24172284

  16. Realizing Controllable Quantum States

    NASA Astrophysics Data System (ADS)

    Takayanagi, Hideaki; Nitta, Junsaku

    -- 4. Mesoscopic superconductivity with unconventional superconductor or ferromagnet. Ultraefficient microrefrigerators realized with ferromagnet-superconductor junctions / F. Giazotto et al. Anomalous charge transport in triplet superconductor junctions by the synergy effect of the proximity effect and the mid gap Andreev resonant states / Y. Tanaka and S. Kashiwaya. Paramagnetic and glass states in superconductive YBa[symbol]Cu[symbol]O[symbol] ceramics of sub-micron scale grains / H. Deguchi et al. Quantum properties of single-domain triplet superconductors / A. M. Gulian and K. S. Wood. A numerical study of Josephson current in p wave superconducting junctions / Y. Asano et al. Tilted bi-crystal sapphire substrates improve properties of grain boundary YBa[symbol]Cu[symbol]O[symbol] junctions and extend their Josephson response to THZ frequencies / E. Stepantsov et al. Circuit theory analysis of AB-plane tunnel junctions of unconventional superconductor Bi[symbol]Sr[symbol]Ca[symbol]Cu[symbol]O[symbol] / I. Shigeta et al. Transport properties of normal metal/anisotropic superconductor junctions in the eutectic system Sr[symbol]RuO[symbol]Ru / M. Kawamura et al. Macroscopic quantum tunneling in d-wave superconductor Josephson / S. Kawabata et al. Quasiparticle states of high-T[symbol] oxides observed by a Zeeman magnetic field response / S. Kashiwaya et al. Experimentally realizable devices for controlling the motion of magnetic flux quanta in anisotropic superconductors: vortex lenses, vortex diodes and vortex pumps / S. Savel'ev and F. Nori. Stability of vortex-antivortex "molecules" in mesoscopic superconducting triangles / V. R. Misko et al. Superconducting network with magnetic decoration - Hofstadter butterfly in spatially modulated magnetic field / Y. Iye et al. Observation of paramagnetic supercurrent in mesoscopic superconducting rings and disks using multiple-small-tunnel-junction method / A. Kanda et al. Guidance of vortices in high

  17. A first principle approach using Maximally Localized Wannier Functions for computing and understanding elasto-optic reponse

    NASA Astrophysics Data System (ADS)

    Liang, Xin; Ismail-Beigi, Sohrab

    Strain-induced changes of optical properties are of use in the design and functioning of devices that couple photons and phonons. The elasto-optic (or photo-elastic) effect describes a general materials property where strain induces a change in the dielectric tensor. Despite a number of experimental and computational works, it is fair to say that a basic physical understanding of the effect and its materials dependence is lacking: e.g., we know of no materials design rule for enhancing or suppressing elasto-optic response. Based on our previous work, we find that a real space representation, as opposed to a k-space description, is a promising way to understand this effect. We have finished the development of a method of computing the dielectric and elasto-optic tensors using Maximally Localized Wannier Functions (MLWFs). By analyzing responses to uniaxial strain, we find that both tensors respond in a localized manner to the perturbation: the dominant optical transitions are between local electronic states on nearby bonds. We describe the method, the resulting physical picture and computed results for semiconductors. This work is supported by the National Science Foundation through Grant NSF DMR-1104974.

  18. A 250-Mbit/s ring local computer network using 1.3-microns single-mode optical fibers

    NASA Technical Reports Server (NTRS)

    Eng, S. T.; Tell, R.; Andersson, T.; Eng, B.

    1985-01-01

    A 250-Mbit/s three-station fiber-optic ring local computer network was built and successfully demonstrated. A conventional token protocol was employed for bus arbitration to maximize the bus efficiency under high loading conditions, and a non-return-to-zero (NRS) data encoding format was selected for simplicity and maximum utilization of the ECL-circuit bandwidth.

  19. A 250-Mbit/s ring local computer network using 1.3-microns single-mode optical fibers

    NASA Technical Reports Server (NTRS)

    Eng, S. T.; Tell, R.; Andersson, T.; Eng, B.

    1985-01-01

    A 250-Mbit/s three-station fiber-optic ring local computer network was built and successfully demonstrated. A conventional token protocol was employed for bus arbitration to maximize the bus efficiency under high loading conditions, and a non-return-to-zero (NRS) data encoding format was selected for simplicity and maximum utilization of the ECL-circuit bandwidth.

  20. Anomalous Above-Gap Photoexcitations and Optical Signatures of Localized Charge Puddles in Monolayer Molybdenum Disulfide.

    PubMed

    Borys, Nicholas J; Barnard, Edward S; Gao, Shiyuan; Yao, Kaiyuan; Bao, Wei; Buyanin, Alexander; Zhang, Yingjie; Tongay, Sefaattin; Ko, Changhyun; Suh, Joonki; Weber-Bargioni, Alexander; Wu, Junqiao; Yang, Li; Schuck, P James

    2017-02-28

    Broadband optoelectronics such as artificial light harvesting technologies necessitate efficient and, ideally, tunable coupling of excited states over a wide range of energies. In monolayer MoS2, a prototypical two-dimensional layered semiconductor, the excited state manifold spans the visible electromagnetic spectrum and is comprised of an interconnected network of excitonic and free-carrier excitations. Here, photoluminescence excitation spectroscopy is used to reveal the energetic and spatial dependence of broadband excited state coupling to the ground-state luminescent excitons of monolayer MoS2. Photoexcitation of the direct band gap excitons is found to strengthen with increasing energy, demonstrating that interexcitonic coupling across the Brillouin zone is more efficient than previously reported, and thus bolstering the import and appeal of these materials for broadband optoelectronic applications. Narrow excitation resonances that are superimposed on the broadband photoexcitation spectrum are identified and coincide with the energetic positions of the higher-energy excitons and the electronic band gap as predicted by first-principles calculations. Identification of such features outlines a facile route to measure the optical and electronic band gaps and thus the exciton binding energy in the more sophisticated device architectures that are necessary for untangling the rich many-body phenomena and complex photophysics of these layered semiconductors. In as-grown materials, the excited states exhibit microscopic spatial variations that are characteristic of local carrier density fluctuations, similar to charge puddling phenomena in graphene. Such variations likely arise from substrate inhomogeneity and demonstrate the possibility to use substrate patterning to tune local carrier density and dynamically control excited states for designer optoelectronics.

  1. Characterization of optical turbulence at the GREGOR solar telescope: temporal and local behavior and its influence on the solar observations

    NASA Astrophysics Data System (ADS)

    Sprung, D.; Sucher, E.; Stein, K.; von der Lühe, O.; Berkefeld, Th.

    2016-10-01

    Local atmospheric turbulence at the telescope level is regarded as a major reason for affecting the performance of the adaptive optics systems using wavelengths in the visible and infrared for solar observations. During the day the air masses around the telescope dome are influenced by flow distortions. Additionally heating of the infrastructure close to telescope causes thermal turbulence. Thereby optical turbulence is produced and leads to quality changes in the local seeing throughout the day. Image degradation will be yielded affecting the performance of adaptive optical systems. The spatial resolution of the solar observations will be reduced. For this study measurements of the optical turbulence, represented by the structure function parameter of the refractive index Cn2 were performed on several locations at the GREGOR telescope at the Teide observatory at Tenerife at the Canary Islands / Spain. Since September 2012 measurements of Cn2 were carried out between the towers of the Vacuum Tower Telescope (VTT) and of GREGOR with a laser-scintillometer. The horizontal distance of the measurement path was about 75 m. Additional from May 2015 up to March 2016 the optical turbulence was determined at three additional locations close to the solar telescope GREGOR. The optical turbulence is derived from sonic anemometer measurements. Time series of the sonic temperature are analyzed and compared to the direct measurements of the laser scintillometer. Meteorological conditions are investigated, especially the influence of the wind direction. Turbulence of upper atmospheric layers is not regarded. The measured local turbulence is compared to the system performance of the GREGOR telescopes. It appears that the mountain ridge effects on turbulence are more relevant than any local causes of seeing close to the telescope. Results of these analyses and comparison of nearly one year of measurements are presented and discussed.

  2. Probability-based non-local means filter for speckle noise suppression in optical coherence tomography images.

    PubMed

    Yu, Hancheng; Gao, Jianlin; Li, Aiting

    2016-03-01

    In this Letter, a probability-based non-local means filter is proposed for speckle reduction in optical coherence tomography (OCT). Originally developed for additive white Gaussian noise, the non-local means filter is not suitable for multiplicative speckle noise suppression. This Letter presents a two-stage non-local means algorithm using the uncorrupted probability of each pixel to effectively reduce speckle noise in OCT. Experiments on real OCT images demonstrate that the proposed filter is competitive with other state-of-the-art speckle removal techniques and able to accurately preserve edges and structural details with small computational cost.

  3. PARAMETRIC STUDY OF TISSUE OPTICAL CLEARING BY LOCALIZED MECHANICAL COMPRESSION USING COMBINED FINITE ELEMENT AND MONTE CARLO SIMULATION.

    PubMed

    Vogt, William C; Shen, Haiou; Wang, Ge; Rylander, Christopher G

    2010-07-01

    Tissue Optical Clearing Devices (TOCDs) have been shown to increase light transmission through mechanically compressed regions of naturally turbid biological tissues. We hypothesize that zones of high compressive strain induced by TOCD pins produce localized water displacement and reversible changes in tissue optical properties. In this paper, we demonstrate a novel combined mechanical finite element model and optical Monte Carlo model which simulates TOCD pin compression of an ex vivo porcine skin sample and modified spatial photon fluence distributions within the tissue. Results of this simulation qualitatively suggest that light transmission through the skin can be significantly affected by changes in compressed tissue geometry as well as concurrent changes in tissue optical properties. The development of a comprehensive multi-domain model of TOCD application to tissues such as skin could ultimately be used as a framework for optimizing future design of TOCDs.

  4. Nonlinear optical conductivity resulting from the local energy spectrum at the M point in graphene

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Zhang, Chao; Cao, J. C.

    2017-07-01

    Based on the tight-binding model we construct a nonlinear Hamiltonian to describe the effective electric system around the M point for the single layer graphene. The local energy spectrum at the M point is approximated by the perfect hyperbolic geometry, and the modification by the screening effect from the substrate is taken into account. With the method based on the concept of the Floquet states and quasienergies (FSQ) we investigate the third order nonlinear conductivity σ3(ω ) ,σ3(3 ω ) for the different frequency ranges, respectively, in which only the π -π* bands are involved. A positive cusplike peak arises at ℏ ω =ɛgap(M) /3 for σ3(3 ω ) which originates from the three-photon processes. Also, there is a peak at ɛgap(M) /2 for σ3(ω ) resulting from two-photon-resonant processes. The analysis of the pole processes indicates that a self-energy-like term transition process plays a role in the nonlinear optical response, and the different transition processes interact with each other during the response to the external field. These interactions can be influenced by the polarization of the external field.

  5. Method for optical coherence tomography image classification using local features and earth mover's distance

    NASA Astrophysics Data System (ADS)

    Sun, Yankui; Lei, Ming

    2009-09-01

    Optical coherence tomography (OCT) is a recent imaging method that allows high-resolution, cross-sectional imaging through tissues and materials. Over the past 18 years, OCT has been successfully used in disease diagnosis, biomedical research, material evaluation, and many other domains. As OCT is a recent imaging method, until now surgeons have limited experience using it. In addition, the number of images obtained from the imaging device is too large, so we need an automated method to analyze them. We propose a novel method for automated classification of OCT images based on local features and earth mover's distance (EMD). We evaluated our algorithm using an OCT image set which contains two kinds of skin images, normal skin and nevus flammeus. Experimental results demonstrate the effectiveness of our method, which achieved classification accuracy of 0.97 for an EMD+KNN scheme and 0.99 for an EMD+SVM (support vector machine) scheme, much higher than the previous method. Our approach is especially suitable for nonhomogeneous images and could be applied to a wide range of OCT images.

  6. Typicality approach to the optical conductivity in thermal and many-body localized phases

    NASA Astrophysics Data System (ADS)

    Steinigeweg, Robin; Herbrych, Jacek; Pollmann, Frank; Brenig, Wolfram

    2016-11-01

    We study the frequency dependence of the optical conductivity Reσ (ω ) of the Heisenberg spin-1/2 chain in the thermal and near the transition to the many-body localized phase induced by the strength of a random z -directed magnetic field. Using the method of dynamical quantum typicality, we calculate the real-time dynamics of the spin-current autocorrelation function and obtain the Fourier transform Reσ (ω ) for system sizes much larger than accessible to standard exact-diagonalization approaches. We find that the low-frequency behavior of Reσ (ω ) is well described by Reσ (ω ) ≈σdc+a |ω| α , with α ≈1 in a wide range within the thermal phase and close to the transition. We particularly detail the decrease of σdc in the thermal phase as a function of increasing disorder for strong exchange anisotropies. We further find that the temperature dependence of σdc is consistent with the existence of a mobility edge.

  7. Enhanced Kondo Effect in an Electron System Dynamically Coupled with Local Optical Phonon

    NASA Astrophysics Data System (ADS)

    Hotta, Takashi

    2007-08-01

    We discuss Kondo behavior of a conduction electron system coupled with local optical phonon by analyzing the Anderson-Holstein model with the use of a numerical renormalization group (NRG) method. There appear three typical regions due to the balance between Coulomb interaction Uee and phonon-mediated attraction Uph. For Uee>Uph, we observe the standard Kondo effect concerning spin degree of freedom. Since the Coulomb interaction is effectively reduced as Uee-Uph, the Kondo temperature TK is increased when Uph is increased. On the other hand, for Uee

  8. Spiking cortical model based non-local means method for despeckling multiframe optical coherence tomography data

    NASA Astrophysics Data System (ADS)

    Gu, Yameng; Zhang, Xuming

    2017-05-01

    Optical coherence tomography (OCT) images are severely degraded by speckle noise. Existing methods for despeckling multiframe OCT data cannot deliver sufficient speckle suppression while preserving image details well. To address this problem, the spiking cortical model (SCM) based non-local means (NLM) method has been proposed in this letter. In the proposed method, the considered frame and two neighboring frames are input into three SCMs to generate the temporal series of pulse outputs. The normalized moment of inertia (NMI) of the considered patches in the pulse outputs is extracted to represent the rotational and scaling invariant features of the corresponding patches in each frame. The pixel similarity is computed based on the Euclidean distance between the NMI features and used as the weight. Each pixel in the considered frame is restored by the weighted averaging of all pixels in the pre-defined search window in the three frames. Experiments on the real multiframe OCT data of the pig eye demonstrate the advantage of the proposed method over the frame averaging method, the multiscale sparsity based tomographic denoising method, the wavelet-based method and the traditional NLM method in terms of visual inspection and objective metrics such as signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), equivalent number of looks (ENL) and cross-correlation (XCOR).

  9. THE LOCAL ENVIRONMENT OF ULTRALUMINOUS X-RAY SOURCES VIEWED BY XMM-NEWTON's OPTICAL MONITOR

    SciTech Connect

    Berghea, C. T.; Dudik, R. P.; Tincher, J.; Winter, L. M. E-mail: rachel.dudik@usno.navy.mil

    2013-10-20

    We have used XMM-Newton's Optical Monitor (OM) images to study the local environment of a sample of 27 ultraluminous X-ray sources (ULXs) in nearby galaxies. UVW1 fluxes were extracted from 100 pc regions centered on the ULX positions. We find that at least 4 ULXs (out of 10 published) have spectral types that are consistent with previous literature values. In addition, the colors are similar to those of young stars. For the highest-luminosity ULXs, the UVW1 fluxes may have an important contribution from the accretion disk. We find that the majority of ULXs are associated with recent star formation. Many of the ULXs in our sample are located inside young OB associations or star-forming regions (SFRs). Based on their colors, we estimated ages and masses for SFRs located within 1 kpc from the ULXs in our sample. The resolution of the OM was insufficient to detect young dense superclusters, but some of these SFRs are massive enough to contain such clusters. Only three ULXs have no associated SFRs younger than ∼50 Myr. The age and mass estimates for clusters were used to test runaway scenarios. The data are, in general, compatible with stellar-mass binaries accreting at super-Eddington rates and ejected by natal kicks. We also tested the hypothesis that ULXs are sub-Eddington accreting intermediate mass black holes ejected by three-body interactions; however, this is not supported well by the data.

  10. Reconstruction of local frequencies for recovering the unwrapped phase in optical interferometry.

    PubMed

    Estrada, Julio C; Marroquin, Jose L; Medina, Orlando M

    2017-07-27

    In optics, when interferograms or digital holograms are recorded and their phase is recovered, it is common to obtain a wrapped phase with some errors, noise and artifacts such as singularities due to the non linearities of the demodulation process. This paper shows how to reconstruct the frequency field of the wrapped phase by using adaptive Gabor filters. Gabor filters are Gaussian quadrature filters tuned in at a certain frequency. We adapt these Gabor filters by tuning them locally and estimating the frequency using wrapped finite differences of the estimated phase. Doing this process iteratively, the frequency estimation is refined and smoothed. The unwrapped phase is easily recovered by integrating the recovered frequency field using, for example, a simple line raster integration. We don't have problems with phase inconsistencies or residues while integrating the phase, because these are removed. The obtained unwrapped phase is clean, consistent and practically error-free. We show estimation errors with simulated data and the performance of the proposed method using real-world recorded wavefronts.

  11. Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation.

    PubMed

    Liu, Baoan; Wang, Dongxing; Shi, Chuan; Crozier, Kenneth B; Yang, Tian

    2011-05-23

    We propose a device for reproducible achievement of enormous enhancement of local electric field intensities. In each device, a metallic spiral ring grating is employed for efficient excitation of local surface plasmon resonance in the tiny gap of a vertically oriented optical antenna. Radiation from the optical antenna is collimated by the ring grating which facilitates efficient collection. As a numerical example, for a gold nanosphere placed one nanometer above the center of a gold spiral ring grating, our simulations predict an increase in local electric field intensity of up to seven orders of magnitude compared to planewave illumination, and collection efficiencies of up to 68% by an objective with a numerical aperture of 0.7. Single molecule SERS application is discussed.

  12. Localization and segmentation of optic disc in retinal images using circular Hough transform and grow-cut algorithm.

    PubMed

    Abdullah, Muhammad; Fraz, Muhammad Moazam; Barman, Sarah A

    2016-01-01

    Automated retinal image analysis has been emerging as an important diagnostic tool for early detection of eye-related diseases such as glaucoma and diabetic retinopathy. In this paper, we have presented a robust methodology for optic disc detection and boundary segmentation, which can be seen as the preliminary step in the development of a computer-assisted diagnostic system for glaucoma in retinal images. The proposed method is based on morphological operations, the circular Hough transform and the grow-cut algorithm. The morphological operators are used to enhance the optic disc and remove the retinal vasculature and other pathologies. The optic disc center is approximated using the circular Hough transform, and the grow-cut algorithm is employed to precisely segment the optic disc boundary. The method is quantitatively evaluated on five publicly available retinal image databases DRIVE, DIARETDB1, CHASE_DB1, DRIONS-DB, Messidor and one local Shifa Hospital Database. The method achieves an optic disc detection success rate of 100% for these databases with the exception of 99.09% and 99.25% for the DRIONS-DB, Messidor, and ONHSD databases, respectively. The optic disc boundary detection achieved an average spatial overlap of 78.6%, 85.12%, 83.23%, 85.1%, 87.93%, 80.1%, and 86.1%, respectively, for these databases. This unique method has shown significant improvement over existing methods in terms of detection and boundary extraction of the optic disc.

  13. Localization and segmentation of optic disc in retinal images using circular Hough transform and grow-cut algorithm

    PubMed Central

    Abdullah, Muhammad; Barman, Sarah A.

    2016-01-01

    Automated retinal image analysis has been emerging as an important diagnostic tool for early detection of eye-related diseases such as glaucoma and diabetic retinopathy. In this paper, we have presented a robust methodology for optic disc detection and boundary segmentation, which can be seen as the preliminary step in the development of a computer-assisted diagnostic system for glaucoma in retinal images. The proposed method is based on morphological operations, the circular Hough transform and the grow-cut algorithm. The morphological operators are used to enhance the optic disc and remove the retinal vasculature and other pathologies. The optic disc center is approximated using the circular Hough transform, and the grow-cut algorithm is employed to precisely segment the optic disc boundary. The method is quantitatively evaluated on five publicly available retinal image databases DRIVE, DIARETDB1, CHASE_DB1, DRIONS-DB, Messidor and one local Shifa Hospital Database. The method achieves an optic disc detection success rate of 100% for these databases with the exception of 99.09% and 99.25% for the DRIONS-DB, Messidor, and ONHSD databases, respectively. The optic disc boundary detection achieved an average spatial overlap of 78.6%, 85.12%, 83.23%, 85.1%, 87.93%, 80.1%, and 86.1%, respectively, for these databases. This unique method has shown significant improvement over existing methods in terms of detection and boundary extraction of the optic disc. PMID:27190713

  14. Effect of deviation from local thermodynamic equilibrium on the Goldberg-Unno method. [turbulence effects on optical density in the solar photosphere

    NASA Technical Reports Server (NTRS)

    Troyan, V. I.

    1974-01-01

    The dependence of turbulent velocity on optical depth was studied by use of the Goldberg-Unno method, with allowance made for the influence of deviation from the local thermodynamic equilibrium. It was found that allowance for deviation from local thermodynamic equilibrium displaces the curve of dependence of turbulent velocity on optical depth along two axes.

  15. Subtilisin-like Proprotein Convertase Expression, Localization, and Activity in the Human Retina and Optic Nerve Head

    PubMed Central

    Fuller, John A.; Brun-Zinkernagel, Anne-Marie; Clark, Abbot F.; Wordinger, Robert J.

    2014-01-01

    Purpose Subtilisin-like proprotein convertases (SPCs) are a family of calcium-dependent cleavage enzymes that act on dibasic sites of various peptide/protein substrates. The purpose of this study was to investigate the expression, localization, and activity of SPCs in the human retina and optic nerve head. Methods mRNA expression of the SPC family in the human retina and optic nerve head tissues was evaluated by quantitative reverse transcription polymerase chain reaction (QRT-PCR). Double immunofluorescence staining was performed on paraffin-embedded human posterior sections to localize SPC family members. Western blot analysis was used to identify PACE4 isoform expression within the optic nerve head and retina. In addition, a fluorogenic SPC substrate-based assay was used to elucidate SPC enzyme activity within human retina and optic nerve head (ONH) tissues. Results QPCR results indicated that PC1 and PC2 were expressed 4.1- and 5.7-fold higher in retina compared to optic nerve head, whereas PACE4 was expressed 4.1-fold higher in the ONH. PC1 and PC2 were localized primarily in neuronal cells, whereas PACE4 and PC5 were limited to the glia of the retina and optic nerve head. SPC activity in ONH lysate was significantly higher than that of retinal lysate; however, when an SPC inhibitor was added, activity in ONH decreased more than that in retina. Conclusions These results indicate that the SPCs are expressed in distinct patterns throughout the human retina and ONH. PC1 and PC2 were primarily expressed in neurons, whereas PACE4 appeared to be largely restricted to glia. Thus, elevated PACE4 may modulate the bioactivity of proteins secreted in the ONH and retina. PMID:19339735

  16. Optical protocols for terabit networks

    NASA Technical Reports Server (NTRS)

    Chua, P. L.; Lambert, J. L.; Morookian, J. M.; Bergman, L. A.

    1991-01-01

    This paper describes a new fiber-optic local area network technology providing 100X improvement over current technology, has full crossbar funtionality, and inherent data security. Based on optical code-division multiple access (CDMA), using spectral phase encoding/decoding of optical pulses, networking protocols are implemented entirely in the optical domain and thus conventional networking bottlenecks are avoided. Component and system issues for a proof-of-concept demonstration are discussed, as well as issues for a more practical and commercially exploitable system. Possible terrestrial and aerospace applications of this technology, and its impact on other technologies are explored. Some initial results toward realization of this concept are also included.

  17. Health Rights and Realization

    PubMed Central

    Rushton, Simon

    2016-01-01

    In their hypothesis published in IJHPM, Lisa Forman and colleagues examined the prominence of the right to health and sexual and reproductive health rights (as well as related language) in four of the key reports that fed into the process of negotiating the Sustainable Development Goals (SDGs). Now that the SDGs have been formally adopted, this comment builds on some of the insights of Forman and colleagues to examine the extent to which those rights have been incorporated in SDGs 3 and 5. I argue that sexual and reproductive health rights are relatively well-covered within the SDGs. In terms of the right to health, however, the picture is much less clear. Some of the elements that make up that right are present and correct, but the SDGs have delivered no coherent vision of how a ‘right to health’ might actually be realized. An important task facing global health and human rights advocates is to continue pushing human rights framings so that progress is made both on meeting the SDGs and on realizing the right to health. PMID:27239886

  18. Local domains of motor cortical activity revealed by fiber-optic calcium recordings in behaving nonhuman primates

    PubMed Central

    Adelsberger, Helmuth; Zainos, Antonio; Alvarez, Manuel; Romo, Ranulfo; Konnerth, Arthur

    2014-01-01

    Brain mapping experiments involving electrical microstimulation indicate that the primary motor cortex (M1) directly regulates muscle contraction and thereby controls specific movements. Possibly, M1 contains a small circuit “map” of the body that is formed by discrete local networks that code for specific movements. Alternatively, movements may be controlled by distributed, larger-scale overlapping circuits. Because of technical limitations, it remained unclear how movement-determining circuits are organized in M1. Here we introduce a method that allows the functional mapping of small local neuronal circuits in awake behaving nonhuman primates. For this purpose, we combined optic-fiber–based calcium recordings of neuronal activity and cortical microstimulation. The method requires targeted bulk loading of synthetic calcium indicators (e.g., OGB-1 AM) for the staining of neuronal microdomains. The tip of a thin (200 µm) optical fiber can detect the coherent activity of a small cluster of neurons, but is insensitive to the asynchronous activity of individual cells. By combining such optical recordings with microstimulation at two well-separated sites of M1, we demonstrate that local cortical activity was tightly associated with distinct and stereotypical simple movements. Increasing stimulation intensity increased both the amplitude of the movements and the level of neuronal activity. Importantly, the activity remained local, without invading the recording domain of the second optical fiber. Furthermore, there was clear response specificity at the two recording sites in a trained behavioral task. Thus, the results provide support for movement control in M1 by local neuronal clusters that are organized in discrete cortical domains. PMID:24344287

  19. Local domains of motor cortical activity revealed by fiber-optic calcium recordings in behaving nonhuman primates.

    PubMed

    Adelsberger, Helmuth; Zainos, Antonio; Alvarez, Manuel; Romo, Ranulfo; Konnerth, Arthur

    2014-01-07

    Brain mapping experiments involving electrical microstimulation indicate that the primary motor cortex (M1) directly regulates muscle contraction and thereby controls specific movements. Possibly, M1 contains a small circuit "map" of the body that is formed by discrete local networks that code for specific movements. Alternatively, movements may be controlled by distributed, larger-scale overlapping circuits. Because of technical limitations, it remained unclear how movement-determining circuits are organized in M1. Here we introduce a method that allows the functional mapping of small local neuronal circuits in awake behaving nonhuman primates. For this purpose, we combined optic-fiber-based calcium recordings of neuronal activity and cortical microstimulation. The method requires targeted bulk loading of synthetic calcium indicators (e.g., OGB-1 AM) for the staining of neuronal microdomains. The tip of a thin (200 µm) optical fiber can detect the coherent activity of a small cluster of neurons, but is insensitive to the asynchronous activity of individual cells. By combining such optical recordings with microstimulation at two well-separated sites of M1, we demonstrate that local cortical activity was tightly associated with distinct and stereotypical simple movements. Increasing stimulation intensity increased both the amplitude of the movements and the level of neuronal activity. Importantly, the activity remained local, without invading the recording domain of the second optical fiber. Furthermore, there was clear response specificity at the two recording sites in a trained behavioral task. Thus, the results provide support for movement control in M1 by local neuronal clusters that are organized in discrete cortical domains.

  20. Integrated local binary pattern texture features for classification of breast tissue imaged by optical coherence microscopy.

    PubMed

    Wan, Sunhua; Lee, Hsiang-Chieh; Huang, Xiaolei; Xu, Ting; Xu, Tao; Zeng, Xianxu; Zhang, Zhan; Sheikine, Yuri; Connolly, James L; Fujimoto, James G; Zhou, Chao

    2017-03-08

    This paper proposes a texture analysis technique that can effectively classify different types of human breast tissue imaged by Optical Coherence Microscopy (OCM). OCM is an emerging imaging modality for rapid tissue screening and has the potential to provide high resolution microscopic images that approach those of histology. OCM images, acquired without tissue staining, however, pose unique challenges to image analysis and pattern classification. We examined multiple types of texture features and found Local Binary Pattern (LBP) features to perform better in classifying tissues imaged by OCM. In order to improve classification accuracy, we propose novel variants of LBP features, namely average LBP (ALBP) and block based LBP (BLBP). Compared with the classic LBP feature, ALBP and BLBP features provide an enhanced encoding of the texture structure in a local neighborhood by looking at intensity differences among neighboring pixels and among certain blocks of pixels in the neighborhood. Fourty-six freshly excised human breast tissue samples, including 27 benign (e.g. fibroadenoma, fibrocystic disease and usual ductal hyperplasia) and 19 breast carcinoma (e.g. invasive ductal carcinoma, ductal carcinoma in situ and lobular carcinoma in situ) were imaged with large field OCM with an imaging area of 10 × 10 mm(2) (10, 000 × 10, 000 pixels) for each sample. Corresponding H&E histology was obtained for each sample and used to provide ground truth diagnosis. 4310 small OCM image blocks (500 × 500 pixels) each paired with corresponding H&E histology was extracted from large-field OCM images and labeled with one of the five different classes: adipose tissue (n = 347), fibrous stroma (n = 2,065), breast lobules (n = 199), carcinomas (pooled from all sub-types, n = 1,127), and background (regions outside of the specimens, n = 572). Our experiments show that by integrating a selected set of LBP and the two new variant (ALBP and BLBP) features at multiple scales, the

  1. Determination of local optical properties of the rat barrel cortex during neural activation: Monte-Carlo approach to light propagation

    NASA Astrophysics Data System (ADS)

    Migacheva, E. V.; Chamot, S. R.; Seydoux, O.; Weber, B.; Depeursinge, C.; Marquet, P.; Magistretti, P. J.

    2010-04-01

    Spatially-spectrally-resolved reflectance measurements allow in vivo measuring the optical coefficients of absorption and scattering within the cortical tissue. This method, if applied to neural tissue during enhanced activity, could allow a straightforward monitoring of the blood oxygen saturation changes occurring in the brain cortex during hemodynamic responses. Furthermore, it may provide valuable information on possible absorption and scattering changes occurring during stimulation. The feasibility of such measurements was investigated by carrying a preliminary numerical study using a Monte-Carlo light propagation routine. Experimental parameters such as the geometry of the optical probe, baseline cortex optical coefficients retrieved from the literature and anatomical characteristics of the rat barrel cortex were used as an input for the simulations. The sensitivity of the probe to the local variations of optical coefficients was investigated with this numerical approach. Additionally, the influence of the barrel cortex dimensions and the probe positioning relatively to the activated region were studied for instrumental optimization purpose. It was found that typical variations of optical coefficients can be detected if the activated region of barrel cortex has a volume of typically 1 mm3 or larger. The decay of the probe sensitivity to changes was studied as a function of the depth of the activated region. The results showed that the best sensitivity is achieved by placing the light injection fiber of the optical probe aligned onto the center of the cylindrical barrel.

  2. Local multipoint distribution system (LDMS) versus free-space optical (FSO) networks

    NASA Astrophysics Data System (ADS)

    Willebrand, Heinz A.; Clark, Gerald R.; Willson, Bryan; Andreu von Euw, Christian G.; Roy, Joe; Mayhew, Laurel M.

    2001-11-01

    This paper compares two emerging broadband access methodologies, Free Space Optics (FSO) and Local Multipoint Distribution System (LMDS) and the atmospheric propagation characteristics of each when exposed to a dynamically changing channel. The comparison focuses on bandwidth, availability, and distance requirements for the new broadband market and how LMDS and FSO can be used to meet these requirements. Possible network topologies and their associated costs are examined. This comparison takes into account the total cost of deployment, including equipment costs, installation fees, access fees, and spectrum licensing fees. LMDS and FSO are compared on speed of deployment, scalability, aggregate bandwidth, and bandwidth per customer. Present and projected capabilities of each technology are considered for their suitability in different locations in the network, from the Wide Area Network (WAN), to the Metropolitan Area Network (MAN), all the way to Last Mile Access. There is a discussion on the relative performance of LMDS and FSO, focusing on the different factors that can affect link availability. Since network design is a large factor in assuring overall reliability, the flexibility of each technology with regard to network design is compared. LMDS and FSO are both line of sight, space-propagated technologies, and as such, they are both susceptible to path impediments and atmospheric attenuation, dispersion, scattering, and absorption. LMDS and FSO are affected very differently by different meteorological phenomena. Problematic atmospheric conditions are, specifically scintillation, rainfall, and fog, are examined. In addition to a discussion of these conditions, various techniques for minimizing atmospheric and environmental effects are investigated. The paper concludes with a summary of findings and recommendations for a number of broadband wireless applications.

  3. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation

    NASA Astrophysics Data System (ADS)

    Coceano, G.; Yousafzai, M. S.; Ma, W.; Ndoye, F.; Venturelli, L.; Hussain, I.; Bonin, S.; Niemela, J.; Scoles, G.; Cojoc, D.; Ferrari, E.

    2016-02-01

    Investigating the mechanical properties of cells could reveal a potential source of label-free markers of cancer progression, based on measurable viscoelastic parameters. The Young’s modulus has proved to be the most thoroughly studied so far, however, even for the same cell type, the elastic modulus reported in different studies spans a wide range of values, mainly due to the application of different experimental conditions. This complicates the reliable use of elasticity for the mechanical phenotyping of cells. Here we combine two complementary techniques, atomic force microscopy (AFM) and optical tweezer microscopy (OTM), providing a comprehensive mechanical comparison of three human breast cell lines: normal myoepithelial (HBL-100), luminal breast cancer (MCF-7) and basal breast cancer (MDA-MB-231) cells. The elastic modulus was measured locally by AFM and OTM on single cells, using similar indentation approaches but different measurement parameters. Peak force tapping AFM was employed at nanonewton forces and high loading rates to draw a viscoelastic map of each cell and the results indicated that the region on top of the nucleus provided the most meaningful results. OTM was employed at those locations at piconewton forces and low loading rates, to measure the elastic modulus in a real elastic regime and rule out the contribution of viscous forces typical of AFM. When measured by either AFM or OTM, the cell lines’ elasticity trend was similar for the aggressive MDA-MB-231 cells, which were found to be significantly softer than the other two cell types in both measurements. However, when comparing HBL-100 and MCF-7 cells, we found significant differences only when using OTM.

  4. Receiver power penalty due to localized distortion induced by transmission-type optical antenna in inter-satellite laser communications

    NASA Astrophysics Data System (ADS)

    Tan, Liying; Yang, Yuqiang; Ma, Jing; Yu, Jianjie

    2009-05-01

    Based on a truncated ellipse Gaussian model for localized distortion in transmission-type optical antenna, the receiver power penalty due to localized wavefront deformation is researched. It is shown that the receiver power depends on distortion deepness h, radii a and b, and position d, and changes regularly with them. Localized distortion has the greatest influence on receiver power at a depth of h~1.45λ, which does not depend on other deformation parameters. The maxima of the receiver power penalty for different distortion radii are given. To reduce the impact of localized distortion on the receiver power, the machining precision of lenses should be better than 1.45λ. We hope the results can be used in the design of intersatellite laser communication systems.

  5. Nematicons and Their Electro-Optic Control: Light Localization and Signal Readdressing via Reorientation in Liquid Crystals

    PubMed Central

    Piccardi, Armando; Alberucci, Alessandro; Assanto, Gaetano

    2013-01-01

    Liquid crystals in the nematic phase exhibit substantial reorientation when the molecules are driven by electric fields of any frequencies. Exploiting such a response at optical frequencies, self-focusing supports transverse localization of light and the propagation of self-confined beams and waveguides, namely “nematicons”. Nematicons can guide other light signals and interact with inhomogeneities and other beams. Moreover, they can be effectively deviated by using the electro-optic response of the medium, leading to several strategies for voltage-controlled reconfiguration of light-induced guided-wave circuits and signal readdressing. Hereby, we outline the main features of nematicons and review the outstanding progress achieved in the last twelve years on beam self-trapping and electro-optic readdressing. PMID:24108367

  6. Anderson localization of cold atomic gases with effective spin-orbit interaction in a quasiperiodic optical lattice

    NASA Astrophysics Data System (ADS)

    Zhou, Lu; Pu, Han; Zhang, Weiping

    2013-02-01

    We theoretically investigate the localization properties of a spin-orbit-coupled spin-1/2 particle moving in a one-dimensional quasiperiodic potential, which can be experimentally implemented using cold atoms trapped in a quasiperiodic optical lattice potential and external laser fields. We present the phase diagram in the parameter space of the disorder strength and those related to the spin-orbit coupling. The phase diagram is verified via multifractal analysis of the atomic wave functions and the numerical simulation of diffusion dynamics. We found that spin-orbit coupling can lead to spectra mixing (coexistence of extended and localized states) and the appearance of mobility edges.

  7. Feasibility of quantitative determination of local optical absorbances in tissue-mimicking phantoms using acousto-optic sensing

    NASA Astrophysics Data System (ADS)

    Bratchenia, A.; Molenaar, R.; Kooyman, R. P. H.

    2008-03-01

    We have investigated the application of ultrasound modulation of coherent light for quantitative determination of local absorbances in tissue-mimicking phantoms. An Intralipid-based phantom model, which mimics a blood vessel in human tissue, was used. The detection technique was based on homodyne parallel speckle detection in transmission mode. Based on a comparison of experimental data and Monte Carlo simulations, a quantitative correlation between local absorbances of the phantom and the measured signal has been shown. The use of microsecond pulses of ultrasound and laser light resulted in a spatial resolution of the system of a few millimeters.

  8. Local ab initio methods for calculating optical bandgaps in periodic systems. II. Periodic density fitted local configuration interaction singles method for solids.

    PubMed

    Lorenz, Marco; Maschio, Lorenzo; Schütz, Martin; Usvyat, Denis

    2012-11-28

    We present a density fitted local configuration interaction singles (CIS) method for calculating optical bandgaps in 3D-periodic systems. We employ an Ewald technique to carry out infinite lattice summations for the exciton-exciton interaction, and robust product-density specific local density fitting in direct space for the electron-hole interaction. Moreover, we propose an alternative to the usual cyclic model with Born-von Karman periodic boundary conditions, the so called Wigner-Seitz supercell truncated infinite model, which exhibits much improved convergence of the CIS excitation energy with respect to the size of the supercell. Test calculations on a series of prototypical systems demonstrate that the method at the present stage can be used to calculate the excitonic bandgaps of 3D periodic systems with up to a dozen atoms in the unit cell, ranging from wide-gap insulators to semiconductors.

  9. SU-E-J-78: Enhance Patient Positioning Accuracy with Optically Guided Frameless Target Localization Technique for Intracranial Radiation Therapy.

    PubMed

    Zhu, J; Crossan, P

    2012-06-01

    To make use of the optical guided frameless stereotactic target localization technique to detect the interfraction and intrafraction patient positioning errors and correct the patient position for fractional intracranial therapy, therefore, to enhance the patient positioning accuracy. Four patients who underwent fractionated intracranial intensity modulated radiation therapy (IMRT) were studied. For each patient, in addition to the thermoplastic head mask, frameless array and bite-block were used for patient positioning. Optical guided frameless planning was utilized to define the coordinates of the isocenter during the treatment planning procedure. In each treatment fraction, the patient was first set up by matching the room lasers to the BB markers attached on the mask. The optical guided frameless system then captured the patient position and reported displacements of the current patient position to the planned patient position. These displacements were called interfraction errors. The treatment plan was designed to have up to 8 non-coplanar fields. Dose delivery of the non-coplanar fields required couch rotation which introduced isocenter displacements called intrafraction errors. Population statistics of interfraction and intrafraction errors (4 patient, 110 fractions) were calculated. The optical guided frameless system monitored the patient positioning errors and provided guidance for correction prior to the dose delivery. Among all patients and radiation treatment fractions, the overall detected interfraction error was 3.6±1.3 mm (mean ±SD) and the intrafraction error was 1.4±0.8 mm. Both types of errors were online corrected with the guidance of optical guided frameless system. Conventional laser guided thermoplastic mask patient position for intracranial therapy has interfraction and intrafraction errors. The optical guided frameless target localization technique allows clinicians to dectect and correct these errors online, therefore, to enhance the

  10. Design and implementation of interface units for high speed fiber optics local area networks and broadband integrated services digital networks

    NASA Technical Reports Server (NTRS)

    Tobagi, Fouad A.; Dalgic, Ismail; Pang, Joseph

    1990-01-01

    The design and implementation of interface units for high speed Fiber Optic Local Area Networks and Broadband Integrated Services Digital Networks are discussed. During the last years, a number of network adapters that are designed to support high speed communications have emerged. This approach to the design of a high speed network interface unit was to implement package processing functions in hardware, using VLSI technology. The VLSI hardware implementation of a buffer management unit, which is required in such architectures, is described.

  11. On the local field method with the account of spatial dispersion. Application to the optical activity theory

    NASA Astrophysics Data System (ADS)

    Tyu, N. S.; Ekhilevsky, S. G.

    1992-07-01

    For the perfect molecular crystals the equations of the local field method (LFM) with the account of spatial dispersion are formulated. They are used to derive the expression for the crystal polarizability tensor. For the first time within the framework of this method the formula for the gyrotropy tensor of an arbitrary optically active molecular crystal is obtained. This formula is analog of well known relationships of Lorentz-Lorenz.

  12. Rapid localized heating of graphene coating on a silicon mold by induction for precision molding of polymer optics.

    PubMed

    Zhang, Lin; Zhou, Wenchen; Yi, Allen Y

    2017-04-01

    In compression molding of polymer optical components with micro/nanoscale surface features, rapid heating of the mold surface is critical for the implementation of this technology for large-scale applications. In this Letter, a novel method of a localized rapid heating process is reported. This process is based on induction heating of a thin conductive coating deposited on a silicon mold. Since the graphene coating is very thin (∼45  nm), a high heating rate of 10∼20°C/s can be achieved by employing a 1200 W 30 kHz electrical power unit. Under this condition, the graphene-coated surface and the polymer substrate can be heated above the polymer's glass transition temperature within 30 s and subsequently cooled down to room temperature within several tens of seconds after molding, resulting in an overall thermal cycle of about 3 min or shorter. The feasibility of this process was validated by fabrication of optical gratings, micropillar matrices, and microlens arrays on polymethylmethacrylate (PMMA) substrates with very high precision. The uniformity and surface geometries of the replicated optical elements are evaluated using an optical profilometer, a diffraction test setup, and a Shack-Hartmann wavefront sensor built with a molded PMMA microlens array. Compared with the conventional bulk heating molding process, this novel rapid localized induction heating process could improve replication efficiency with better geometrical fidelity.

  13. Local motion compensation in image sequences degraded by atmospheric turbulence: a comparative analysis of optical flow vs. block matching methods

    NASA Astrophysics Data System (ADS)

    Huebner, Claudia S.

    2016-10-01

    As a consequence of fluctuations in the index of refraction of the air, atmospheric turbulence causes scintillation, spatial and temporal blurring as well as global and local image motion creating geometric distortions. To mitigate these effects many different methods have been proposed. Global as well as local motion compensation in some form or other constitutes an integral part of many software-based approaches. For the estimation of motion vectors between consecutive frames simple methods like block matching are preferable to more complex algorithms like optical flow, at least when challenged with near real-time requirements. However, the processing power of commercially available computers continues to increase rapidly and the more powerful optical flow methods have the potential to outperform standard block matching methods. Therefore, in this paper three standard optical flow algorithms, namely Horn-Schunck (HS), Lucas-Kanade (LK) and Farnebäck (FB), are tested for their suitability to be employed for local motion compensation as part of a turbulence mitigation system. Their qualitative performance is evaluated and compared with that of three standard block matching methods, namely Exhaustive Search (ES), Adaptive Rood Pattern Search (ARPS) and Correlation based Search (CS).

  14. Laser-optical method of visualization the local net of tissue blood vessels and its biomedical applications

    NASA Astrophysics Data System (ADS)

    Asimov, M. M.; Asimov, R. M.; Rubinov, A. N.

    2007-06-01

    New approach in laser-optical diagnostic methods of cell metabolism based on visualization the local net of tissue blood vessels is proposed. Optical model of laser - tissue interaction and algorithm of mathematical calculation of optical signals is developed. Novel technology of local tissue hypoxia elimination based on laser-induced photodissosiation of oxyhemoglobin in cutaneous blood vessels is developed. Method of determination of oxygen diffusion coefficient into tissue on the base of kinetics of tissue oxygenation TcPO II under the laser irradiation is proposed. The results of mathematical modeling the kinetic of oxygen distribution into tissue from arterial blood are presented. The possibility of calculation and determination of the level of TcPO II in zones with the disturbed blood microcirculation is demonstrated. The increase of the value of oxygen release rate more than for times under the irradiation by laser light is obtained. It is shown that the efficiency of laser-induced oxygenation by means of increasing oxygen concentration in blood plasma is comparable with the method of hyperbaric oxygenation (HBO) at the same time gaining advantages in local action. Different biomedical applications of developing method are discussed.

  15. The UV-optical colour dependence of galaxy clustering in the local universe

    NASA Astrophysics Data System (ADS)

    Loh, Yeong-Shang; Rich, R. Michael; Heinis, Sébastien; Scranton, Ryan; Mallery, Ryan P.; Salim, Samir; Martin, D. Christopher; Wyder, Ted; Arnouts, Stéphane; Barlow, Tom A.; Forster, Karl; Friedman, Peter G.; Morrissey, Patrick; Neff, Susan G.; Schiminovich, David; Seibert, Mark; Bianchi, Luciana; Donas, Jose; Heckman, Timothy M.; Lee, Young-Wook; Madore, Barry F.; Milliard, Bruno; Szalay, Alex S.; Welsh, Barry Y.

    2010-09-01

    We measure the UV-optical colour dependence of galaxy clustering in the local Universe. Using the clean separation of the red and blue sequences made possible by the NUV - r colour-magnitude diagram, we segregate the galaxies into red, blue and intermediate `green' classes. We explore the clustering as a function of this segregation by removing the dependence on luminosity and by excluding edge-on galaxies as a means of a non-model dependent veto of highly extincted galaxies. We find that ξ(rp, π) for both red and green galaxies shows strong redshift-space distortion on small scales - the `finger-of-God' effect, with green galaxies having a lower amplitude than is seen for the red sequence, and the blue sequence showing almost no distortion. On large scales, ξ(rp, π) for all three samples show the effect of large-scale streaming from coherent infall. On scales of 1h-1Mpc < rp < 10h-1Mpc, the projected auto-correlation function wp(rp) for red and green galaxies fits a power law with slope γ ~ 1.93 and amplitude r0 ~ 7.5 and 5.3, compared with γ ~ 1.75 and r0 ~ 3.9 h-1 Mpc for blue sequence galaxies. Compared to the clustering of a fiducial L* galaxy, the red, green and blue have a relative bias of 1.5, 1.1 and 0.9, respectively. The wp(rp) for blue galaxies display an increase in convexity at ~ 1 h-1 Mpc, with an excess of large-scale clustering. Our results suggest that the majority of blue galaxies are likely central galaxies in less massive haloes, while red and green galaxies have larger satellite fractions, and preferentially reside in virialized structures. If blue sequence galaxies migrate to the red sequence via processes like mergers or quenching that take them through the green valley, such a transformation may be accompanied by a change in environment in addition to any change in luminosity and colour.

  16. Realizing topological Mott insulators from the RKKY interaction

    NASA Astrophysics Data System (ADS)

    Liu, Tianhan; Douçot, Benoît; Le Hur, Karyn

    2016-05-01

    We engineer topological insulating phases in a fermion-fermion mixture on the honeycomb lattice, without resorting to artificial gauge fields or spin-orbit couplings and considering only local interactions. Essentially, upon integrating out the fast component (characterized by a larger hopping amplitude) in a finite region of dopings, we obtain an effective interaction between the slow fermions at half-filling, which acquires a Haldane mass with opposite parity in the two valleys of the Dirac cones, thus triggering a quantum anomalous Hall effect. We carefully analyze the competition between the induced Semenoff-type mass (producing charge density wave orders in real space) versus the Haldane mass (quantum anomalous Hall phase), as a function of the chemical potential of the fast fermions. If the second species involves spin-1/2 particles, this interaction may induce a quantum spin Hall phase. Such fermion-fermion mixtures can be realized in optical lattices or in graphene heterostructures.

  17. High-efficiency localization of Na+-K+ ATPases on the cytoplasmic side by direct stochastic optical reconstruction microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Jiazhen; Gao, Jing; Qi, Miao; Wang, Jianzhong; Cai, Mingjun; Liu, Shuheng; Hao, Xian; Jiang, Junguang; Wang, Hongda

    2013-11-01

    We describe a concise and effective strategy towards precisely mapping Na+-K+ ATPases on the cytoplasmic side of cell membranes by direct stochastic optical reconstruction microscopy (dSTORM). We found that most Na+-K+ ATPases are localized in different sizes of clusters on human red blood cell (hRBC) membranes, revealed by Ripley's K-function analysis. Further evidence that cholesterol depletion causes the dispersion of Na+-K+ ATPase clusters indicates that such clusters could be localized in cholesterol-enriched domains. Our results suggest that Na+-K+ ATPases might aggregate within the lipid rafts to fulfill their functions.We describe a concise and effective strategy towards precisely mapping Na+-K+ ATPases on the cytoplasmic side of cell membranes by direct stochastic optical reconstruction microscopy (dSTORM). We found that most Na+-K+ ATPases are localized in different sizes of clusters on human red blood cell (hRBC) membranes, revealed by Ripley's K-function analysis. Further evidence that cholesterol depletion causes the dispersion of Na+-K+ ATPase clusters indicates that such clusters could be localized in cholesterol-enriched domains. Our results suggest that Na+-K+ ATPases might aggregate within the lipid rafts to fulfill their functions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03665k

  18. Nonautonomous spatiotemporal localized structures in the inhomogeneous optical fibers: Interaction and control

    SciTech Connect

    Dai Chaoqing; Wang Xiaogang; Zhang Jiefang

    2011-03-15

    Research Highlights: > The similarity transformation of (n + 1)-dimensional inhomogeneous NLSE are found. > From transformation, analytical self-similar waves and rogue waves are obtained. > Dynamical behaviors of self-similar waves in DDF are discussed. > The propagation and control of spatiotemporal self-similar waves are presented. - Abstract: We develop a systematic way to find the similarity transformation and investigate nonautonomous optical similariton dynamics for (n + 1)-dimensional nonlinear Schroedinger equation in the inhomogeneous optical fibers. A condition between the parameters of the mediums, which hints a exact balance between the dispersion/diffraction, nonlinearity and the gain/loss, has been obtained. Under this condition the optical similariton transmission in the dispersion-decreasing fibers (DDF) can be exactly controlled by proper dispersion management. Moreover, novel propagation dynamics of bright and dark similaritons on the background waves and optical rogue waves (rogons) in DDF are investigated too.

  19. Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity.

    PubMed

    Louvion, N; Gérard, D; Mouette, J; de Fornel, F; Seassal, C; Letartre, X; Rahmani, A; Callard, S

    2005-03-25

    We report the direct, room-temperature, near-field mapping and spectroscopy of the optical modes of a photonic-crystal microcavity containing quantum wells. We use a near-field optical probe to reveal the imprint of the cavity mode structure on the quantum-well emission. Furthermore, near-field spectroscopy allows us to demonstrate the strong spatial and spectral dependence of the coupling between the sources and the microcavity. This knowledge will be essential in devising future nanophotonic devices.

  20. Time reversal optical tomography and decomposition methods for detection and localization of targets in highly scattering turbid media

    NASA Astrophysics Data System (ADS)

    Wu, Binlin

    New near-infrared (NIR) diffuse optical tomography (DOT) approaches were developed to detect, locate, and image small targets embedded in highly scattering turbid media. The first approach, referred to as time reversal optical tomography (TROT), is based on time reversal (TR) imaging and multiple signal classification (MUSIC). The second approach uses decomposition methods of non-negative matrix factorization (NMF) and principal component analysis (PCA) commonly used in blind source separation (BSS) problems, and compare the outcomes with that of optical imaging using independent component analysis (OPTICA). The goal is to develop a safe, affordable, noninvasive imaging modality for detection and characterization of breast tumors in early growth stages when those are more amenable to treatment. The efficacy of the approaches was tested using simulated data, and experiments involving model media and absorptive, scattering, and fluorescent targets, as well as, "realistic human breast model" composed of ex vivo breast tissues with embedded tumors. The experimental arrangements realized continuous wave (CW) multi-source probing of samples and multi-detector acquisition of diffusely transmitted signal in rectangular slab geometry. A data matrix was generated using the perturbation in the transmitted light intensity distribution due to the presence of absorptive or scattering targets. For fluorescent targets the data matrix was generated using the diffusely transmitted fluorescence signal distribution from the targets. The data matrix was analyzed using different approaches to detect and characterize the targets. The salient features of the approaches include ability to: (a) detect small targets; (b) provide three-dimensional location of the targets with high accuracy (~within a millimeter or 2); and (c) assess optical strength of the targets. The approaches are less computation intensive and consequently are faster than other inverse image reconstruction methods that

  1. Optical Imaging of Local Group Galaxy Candidates from the ALFALFA Survey

    NASA Astrophysics Data System (ADS)

    Adams, Elizabeth; Cannon, John; Giovanelli, Riccardo; Haynes, Martha; Rhode, Katherine; Salzer, John

    2013-02-01

    Giovanelli etal (2010) identified within the dataset of the ALFALFA HI survey a small set of ultra-compact high velocity clouds (UCHVCs). If placed at distances of 1 Mpc, these clouds show the structural characteristics of the gas-bearing ``minihalos'' proposed by Sternberg et al. (2002) but could easily be too optically faint and distant to have been discovered by existing optical surveys. It was recently discovered (Giovanelli etal 2012; Rhode etal 2012) that a low velocity (cz +260 km/s), narrow line width, compact HI cloud detected by the ALFALFA survey is, in fact, a very nearby (0.5 Mpc textless D textless 1.5 Mpc), optically faint but star-forming, low mass galaxy, termed Leo P. This validates the hypothesis that some of the ALFALFA UCHVCs may be such isolated, very low mass dark matter halos. Too faint and distant to have been detected in existing optical surveys, Leo P is the first ultrafaint dwarf galaxy discovered by its HI signature, and its existence strongly argues that other very low mass and (nearly) starless objects are included among the ALFALFA UCHVCs. This proposal requests deep optical observations of the very best ALFALFA candidate low mass galaxies to search for optical counterparts to constrain their distance and stellar populations.

  2. Diffractive-optical-element-based glossmeter and low coherence interferometer in assessment of local surface quality of paper

    NASA Astrophysics Data System (ADS)

    Peiponen, Kai-Erik; Alarousu, Erkki; Juuti, M.; Silvennoinen, Raimo V. J.; Oksman, A.; Myllylä, Risto A.; Prykäri, Tuukka

    2006-04-01

    The surface microroughness of paper has an important role on its gloss. Unfortunately, commercial glossmeters do not provide information on the local gloss of paper. In this study a low-coherence interferometer was employed for the assessment of the average surface roughness of fine, supercalendered, and Xerox papers by means of recorded topography maps. Furthermore, the local and average gloss were measured by a diffractive-optical-element-based glossmeter. This is the first time that the measurement of the local gloss of paper has been accomplished. The information on both surface roughness and gloss, obtained by the two devices in this study, should help papermakers in their research and development of optimal paper surface quality, which is crucial to optimal ink absorption in printing.

  3. Fiber-connected position localization sensor networks

    NASA Astrophysics Data System (ADS)

    Pan, Shilong; Zhu, Dan; Fu, Jianbin; Yao, Tingfeng

    2014-11-01

    Position localization has drawn great attention due to its wide applications in radars, sonars, electronic warfare, wireless communications and so on. Photonic approaches to realize position localization can achieve high-resolution, which also provides the possibility to move the signal processing from each sensor node to the central station, thanks to the low loss, immunity to electromagnetic interference (EMI) and broad bandwidth brought by the photonic technologies. In this paper, we present a review on the recent works of position localization based on photonic technologies. A fiber-connected ultra-wideband (UWB) sensor network using optical time-division multiplexing (OTDM) is proposed to realize high-resolution localization and moving the signal processing to the central station. A 3.9-cm high spatial resolution is achieved. A wavelength-division multiplexed (WDM) fiber-connected sensor network is also demonstrated to realize location which is independent of the received signal format.

  4. Optimal ordering of realizations for visualization and presentation

    NASA Astrophysics Data System (ADS)

    de Barros, George; Deutsch, Clayton V.

    2017-06-01

    In geostatistical simulation, a realization represents one possible outcome of the spatial uncertainty model. Tens to hundreds of realizations are generated in order to understand response property variation. There are ways to summarize local uncertainty, but visualizing all realizations is important to understand joint uncertainty between multiple locations. There is no straightforward manner to visualize all realizations at the same time or in sequence. This paper presents a new method to sequentially display multiple geostatistical realizations. The proposed algorithm performs an ordering of the visible portion of the realizations (images), according to the distance between realizations. The concept of distance corresponds to the differences computed cell by cell for every realization pair or to the differences computed from a moving window filtering applied to each realization. To define an optimal sequence of realizations, the shortest path route through the realizations is established by a simulated annealing technique. The gradual transition between realizations is enhanced by an image morphing technique where intermediate images are introduced between the original images. The final result consists of an animation that shows the sequence of realizations and allows better understanding of the uncertainty model.

  5. The role of codeine phosphate premedication in fibre-optic bronchoscopy under insufficient local anaesthesia and midazolam sedation.

    PubMed

    Tsunezuka, Y; Sato, H; Tsukioka, T; Nakamura, Y; Watanabe, Y

    1999-06-01

    Midazolam is widely used as a sedative agent to produce amnesia in patients undergoing fibre-optic bronchoscopy. However, if a patient does not receive sufficient local anaesthesia, continuous severe cough and physical movement may interrupt the procedure and reduce its safety. We therefore examined whether codeine phosphate is a useful premedication for bronchoscopy. The study design was a randomized comparison between codeine phosphate and a placebo in patients undergoing light local anaesthesia and midazolam sedation. We used low dose local anaesthesia (5 ml of nebulized 2% xylocaine) on the assumption of insufficient local anaesthesia. Patients were allocated to receive codeine phosphate 0.4 mg kg-1 or a saline placebo 60 min before they were sedated with i.v. midazolam. If the patients exhibited severe cough during bronchoscopy, intrabronchial supplemental local anaesthesia (2% xylocaine solution in 1 ml increments) was instilled via a bronchoscope to the trachea and segmental bronchi to suppress the cough. The dose of supplemental xylocaine was assessed and the requirements were significantly lower in the codeine group compared to the placebo group: 36.4 +/- 10.2 mg vs. 95.1 +/- 24.6 mg, respectively. After bronchoscopy, patients were interviewed by a doctor to assess their willingness to undergo a repeat procedure if one was clinically indicated, but no significant difference was observed between the two groups. If local anaesthesia is insufficient, midazolam together with codeine phosphate premedication is useful for both the patient and the bronchoscopist.

  6. Extranodal right-optic nerve Rosai–Dorfman disease: A rare localization case report

    PubMed Central

    Nemir, Jakob; Trninic, Ines; Duric, Kresimir S.; Jakovcevic, Antonia; Mrak, Goran; Paladino, Josip

    2016-01-01

    Background: Rosai–Dorfman is a rare disease that usually occurs in young adults. It is characterized with massive painless cervical lymphadenopathy and histiocyte proliferation. Isolated intracranial involvement is extremely rare. Our aim is to present a new rare case of extranodal Rosai–Dorfman disease that involved the right optic nerve in a 4-year-old boy. Case Description: A 4-year-old boy with right-sided convergent strabismus and amblyopia lasting for 1 year was treated at the Department of pediatric ophthalmology. Initial optical fundus examination was normal. Examination repeated after 1 year noted the atrophy of the optic nerve papilla. Visual evoked potentials of the right eye showed normal findings of prechiasmatic visual pathway with severe dysfunction of the right optic nerve. Magnetic resonance imaging (MRI) of the brain and orbits showed expansive changed and elongated right optic nerve with contrast enhancement, and smaller lesion in the right temporal operculum region visible in T2 and fluid-attenuated inversion recovery sequence. Through small eyebrow “keyhole” osteoplastic frontoorbital craniotomy the fusiform enlarged (to 2 cm) right optic nerve was identified, resected between the eyeball and optic chiasm, and transferred for pathohistological analysis. Early postoperative course had no complications. Histological, immunohistochemical, and ultrastructural analyses revealed extranodal Rosai–Dorfman disease. Right periorbital edema was verified on the 7th postoperative day and regressed to supportive therapy. Control multi slice computed tomography (MSCT) and MRI of endocranium and orbits showed total tumor removal with no signs of complications. Conclusion: Although rare, extranodular intracranial Rosai–Dorfman disease should be taken into account in the differential diagnosis of intracranial and intraorbital lesions, especially in the pediatric age group. PMID:28194305

  7. Diffuse Optical Spectroscopy Evaluation of Treatment Response in Women with Locally Advanced Breast Cancer Receiving Neoadjuvant Chemotherapy1

    PubMed Central

    Falou, Omar; Soliman, Hany; Sadeghi-Naini, Ali; Iradji, Sara; Lemon-Wong, Sharon; Zubovits, Judit; Spayne, Jacqueline; Dent, Rebecca; Trudeau, Maureen; Boileau, Jean Francois; Wright, Frances C; Yaffe, Martin J.; Czarnota, Gregory J

    2012-01-01

    The aim of this study was to investigate the potential of diffuse optical spectroscopy for monitoring of patients with locally advanced breast cancer (LABC) undergoing neoadjuvant chemotherapy. Fifteen women receiving treatment for LABC had the affected breast scanned before; 1 week, 4 weeks, and 8 weeks after treatment initiation; and before surgery. Optical properties related to tissue microstructure and biochemical composition were obtained. Clinical and pathologic tumor response was evaluated using whole-mount pathology after mastectomy. Patients who responded to treatment demonstrated an initial increase followed by a drop in optical parameters measured in the whole breast, whereas nonresponding patients demonstrated only a drop in the same parameters 1 week after treatment initiation. Responding patients demonstrated a significant increase of 17% ± 7%, 8% ± 8%, 10% ± 7%, 11% ± 11%, and 16% ± 15% in deoxygenated hemoglobin, oxygenated hemoglobin, total hemoglobin concentrations, water percentage, and tissue optical index, 1 week after treatment initiation, respectively. In contrast, nonresponding patients had a decrease of 14% ± 9%, 18% ± 7%, 17% ± 7%, 29% ± 7%, and 32% ± 9% in their corresponding optical parameters. Deoxygenated hemoglobin concentration (with 100% sensitivity, 83% specificity) and water percentage (with 75% sensitivity, 100% specificity) were found to be the best predictors of treatment response at 1 week after starting treatment. The results of this study suggest that optical parameters can be potentially used to predict and monitor patients' responses to neoadjuvant chemotherapy and can form a basis for the customization of treatments in which inefficacious treatments can be switched to more efficacious therapies. PMID:22937175

  8. Algorithm for localized adaptive diffuse optical tomography and its application in bioluminescence tomography

    NASA Astrophysics Data System (ADS)

    Naser, Mohamed A.; Patterson, Michael S.; Wong, John W.

    2014-04-01

    A reconstruction algorithm for diffuse optical tomography based on diffusion theory and finite element method is described. The algorithm reconstructs the optical properties in a permissible domain or region-of-interest to reduce the number of unknowns. The algorithm can be used to reconstruct optical properties for a segmented object (where a CT-scan or MRI is available) or a non-segmented object. For the latter, an adaptive segmentation algorithm merges contiguous regions with similar optical properties thereby reducing the number of unknowns. In calculating the Jacobian matrix the algorithm uses an efficient direct method so the required time is comparable to that needed for a single forward calculation. The reconstructed optical properties using segmented, non-segmented, and adaptively segmented 3D mouse anatomy (MOBY) are used to perform bioluminescence tomography (BLT) for two simulated internal sources. The BLT results suggest that the accuracy of reconstruction of total source power obtained without the segmentation provided by an auxiliary imaging method such as x-ray CT is comparable to that obtained when using perfect segmentation.

  9. Performance evaluation of data center service localization based on virtual resource migration in software defined elastic optical network.

    PubMed

    Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tan, Yuanlong; Lin, Yi; Han, Jianrui; Lee, Young

    2015-09-07

    Data center interconnection with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate data center services. In view of this, this study extends the data center resources to user side to enhance the end-to-end quality of service. We propose a novel data center service localization (DCSL) architecture based on virtual resource migration in software defined elastic data center optical network. A migration evaluation scheme (MES) is introduced for DCSL based on the proposed architecture. The DCSL can enhance the responsiveness to the dynamic end-to-end data center demands, and effectively reduce the blocking probability to globally optimize optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of our OpenFlow-based enhanced SDN testbed. The performance of MES scheme under heavy traffic load scenario is also quantitatively evaluated based on DCSL architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning scheme.

  10. Optical switching of nematic liquid crystal film arising from induced electric field of localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Quint, Makiko T.; Delgado, Silverio; Paredes, John H.; Hirst, Linda S.; Ghosh, Sayantani

    2015-08-01

    We have developed an all-optical method to control the in- and out-of-plane spatial orientation of nematic liquid crystal (NLC) molecules by leveraging the highly localized electric fields produced in the near-field regime of gold nanoparticle (AuNP) layers. A 1-2 micron thick NLC film is deposited on a close-packed drop-cast AuNP layer, excited with tunable optical sources and the transmission of white light through it analyzed using polarization optics as a function of incident light wavelength, excitation power and sample temperature. Our findings, supported by simulations using discrete-dipole approximations, establish the optical switching effect to be repeatable, reversible, spectrally-selective, operational over a broad temperature range, including room temperature, and requiring very small on-resonance excitation intensity (0.3 W/cm2). For the case of the in-plane switching we have additionally demonstrated that controlling the incident excitation polarization can continuously vary the alignment of the NLC molecules, allowing for grayscale transmission.

  11. All-optical code-division-multiplexing technique supporting multirate data communications and local-area-network interconnections.

    PubMed

    Zhang, Jian-Guo; Sharma, Awnashilal B; Kwong, Wing C

    2002-02-10

    An efficient all-optical code-division-multiplexing (AOCDM) technique is proposed to support multirate data communications and local-area-network (LAN) interconnections with multiple protocols. To achieve this goal, we use a strict optical orthogonal code (OOC) in multirate AOCDM systems to guarantee that both cross- and autocorrelation constraints are minimum (i.e., 1) for incoherent optical processing. In contrast, the use of a conventional OOC may result in correlation constraints of 2, which in turn can degrade system performance. Moreover, implementation issues on AOCDM systems are discussed. These include the design of low-cost optical transmitters and the trade-off among coherence time, spectral width, and pulse width for AOCDM systems. It is shown that multirate AOCDM systems have a high operation flexibility to support data communications and LAN interconnections of both equal and multiple bit rates. For multirate data transmissions, the proposed system can have a better bandwidth efficiency and a lower bit error rate than a system that uses a conventional OOC.

  12. Local control of light polarization with low-temperature fiber optics.

    PubMed

    Mack, A H; Riordon, J; Dean, C R; Talbot, R; Gervais, G

    2007-06-01

    A fiber-optic-based polarization control system that uses a backreflection measurement scheme at low temperatures has been developed. This provides a stringent test of the light polarization state at the output of the fiber, allowing for determination and control of the degree of circular polarization; i.e., it can generate linear, right, or left circular polarization with cryogenic fibers. This polarization controller is paving the way toward the control and manipulation of nuclear spins in semiconductors via the optical Overhauser effect and could be used, for example, for the purpose of quantum information processing with the large nuclear spins of GaAs.

  13. Minimal invasive localization of the germinal disc in ovo for subsequent chicken sexing using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Burkhardt, Anke; Geissler, Stefan; Cimalla, Peter; Walther, Julia; Koch, Edmund

    2010-02-01

    Reason for using optical coherence tomography (OCT) to locate the germinal disc is the questionable and ethically alarming killing of male layer chickens because for the layer line only the females are necessary. To avoid this and to protect the animal rights, the sex of the fertilized chicken egg has to be determined as early as possible in the unincubated state. Because the information whether the chick becomes male or female can be found in the germinal disc an accurate localization for sexing is essential. The germinal disc is located somewhere on top of the yolk and has a diameter of approximately 4 - 5 mm. Different imaging methods like ultrasonography, 3D-X-ray micro computed tomography and magnetic resonance imaging were used for localization until now, but found to be impractical. The goal of this study is to prove if OCT can be a moderate approach for the precise in ovo localization. Because the eggshell is an impenetrable barrier for OCT and to minimize the penetration of germs a very small hole is placed in the eggshell and a fan-shaped optical scanning pattern is used.

  14. Acoustic Source Localization via Time Difference of Arrival Estimation for Distributed Sensor Networks Using Tera-Scale Optical Core Devices

    DOE PAGES

    Imam, Neena; Barhen, Jacob

    2009-01-01

    For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. These sensors rely heavily on battery-operated system components to achieve highly functional automation in signal and information processing. In order to keep communication requirements minimal, it is desirable to perform as much processing on the receiver platforms as possible. However, the complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot bemore » readily met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on the optical-core digital processing platform recently introduced by Lenslet Inc. This demonstration of considerably faster signal processing capability should be of substantial significance to the design and innovation of future generations of distributed sensor networks.« less

  15. Magnetic, optical, and electron transport properties of n -type CeO2: Small polarons versus Anderson localization

    NASA Astrophysics Data System (ADS)

    Kolodiazhnyi, Taras; Charoonsuk, Thitirat; Seo, Yu-Seong; Chang, Suyong; Vittayakorn, Naratip; Hwang, Jungseek

    2017-01-01

    We report magnetic susceptibility, electrical conductivity and optical absorption of Ce1 -xMxO2 where M = Nb,Ta and 0 ≤x ≤0.03 . The dc conductivity follows a simple thermally activated Arrhenius-type behavior in the T =70 -700 K range with a change in slope at T*≈155 K. The high-temperature activation energy shows gradual increase from ≈170 to 220 meV as the dopant concentration increases. The activation energy of the low-temperature conductivity shows a broad minimum of ≈77 meV at x ≈0.01 . Electron transport and localization mechanisms are analyzed in the framework of the Holstein small polaron, Anderson localization, and Jahn-Teller distortion models. The fit to the small polaron mobility is dramatically improved when, instead of the longitudinal phonons, the transverse optical phonons are considered in the phonon-assisted electron transport. This serves as an indirect evidence of a strong 4 f1 orbital interaction with the oxygen ligands, similar to the case of PrO2. Based on comparison of the experimental data to the models, it is proposed that the defect-induced random electric fields make the dominant contribution to the electron localization in donor-doped ceria.

  16. Effect of rolling motion on local characteristics of gas-liquid two-phase flow using an optical probe

    NASA Astrophysics Data System (ADS)

    Tian, Daogui; Sun, Licheng; Yan, Changqi; Liu, Jingyu; Sun, Bo

    2013-07-01

    In order to get more local interfacial information as well as to further comprehend the intrinsic mechanism of two-phase flow under rolling condition to improve and extend the two-fluid model in rolling condition, an experimental investigation of two-phase flow under rolling as well as vertical steady condition was conducted by using double-sensor optical probe fabricated by the authors. The experimental loop is fixed on a rolling platform, which can simulate the rolling movement of a ship with the rolling period and rolling angle in the ranges of 0-20s and 0-45°, respectively. An optical probe driven by a mechanical traverser is installed on the test section, wherein making it move diametrically. Experimental investigations were conducted on this experimental loop for air-water two-phase flow under rolling and steady conditions. Local void fraction, interfacial area concentration (IAC) and bubble velocity were obtained for further improving the interface transportation equation. Both the measured void fraction and IAC demonstrated wall peak or core peak distributions under vertical condition. The typical distribution of IAC under vertical conditions showed that IAC changes from wall peak to core peak with the gas flow rate increasing; while as the liquid flow rate increases, the distribution changes inversely. In the case of rolling conditions, despite similar to the distribution under vertical condition, the local time-averaged void fraction and IAC have lower value in centerline and high value near wall region. The results also indicated that the rolling amplitude has an influence on the local bubble frequency, void fraction and IAC, except interface velocity, while rolling period almost has no effect on the local characteristics.

  17. Anomalous optical diffraction by a phase grating induced by a local field effect in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Mitsumori, Yasuyoshi; Watanuki, Tetsuya; Sato, Yuki; Edamatsu, Keiichi; Akahane, Kouichi; Yamamoto, Naokatsu

    2017-04-01

    We demonstrate the use of laser-induced phase gratings to control the emission characteristics of self-assembled semiconductor quantum dots. The microscopic Coulomb interaction between the photoinduced charge densities in a dot, referred to as the local field effect, affects the macroscopic optical properties of a dot ensemble even with inhomogeneous broadening, and forms a phase grating by spatially modulating the exciton resonant frequency. In the low excitation regime, the diffracted light intensity (observed using photon echoes) gradually rose with time delay—a result very different from the conventional instantaneous response to pulse excitation. With increasing excitation intensity, the response of the diffracted signal became more immediate and exhibited a biexponential decay. The change in the temporal profile can be systematically explained by analyzing the dynamics of the phase grating. Our findings suggest an optical switching mechanism using this intrinsic property of semiconductor quantum dots.

  18. Optical properties of local surface plasmon resonance in Ag/ITO sliced nanosphere by the discrete dipole approximation

    NASA Astrophysics Data System (ADS)

    Haiwei, Mu; Jingwei, Lv; Zhaoting, Liu; Shijie, Zheng; Lin, Yang; Tao, Sun; Qiang, Liu; Chao, Liu

    2016-04-01

    Optical properties of localized surface plasmon resonances (LSPR) of Ag/ITO sliced nanosphere have been studied using discrete dipole approximation and plasmon hybridization theory. It is found that different morphologies of sliced nanosphere can induce distinctive features in the extinction spectra. In the meanwhile, gap distances and refractive index of the surrounding medium could modulate the plasmon hybridization and the LSPR shifting. At large separation, the shift of LSPR peaks for the nanosphere sliced in halves consisting of ITO and Ag is small and insensitive to the gap distance in the weak coupling, whereas smaller separation exhibits a distinct red shift. Additionally, multiple resonance peaks are excited for the nanosphere sliced in quarters consisting of ITO and Ag. In this situation, electric field is mainly distributed in the gap region of sliced nanosphere and the central point. These results indicate that different morphologies of sliced nanosphere could create abundant tunable LSPR modes, which provides potential for multiplex optical sensing.

  19. Brillouin optical time-domain analysis sensor with amplification of pump pulses and tolerant to non-local effects

    NASA Astrophysics Data System (ADS)

    Mompó, Juan José; Urricelqui, Javier; Loayssa, Alayn

    2016-05-01

    We demonstrate a simple technique to provide conventional Brillouin optical time-domain analysis sensor with compensation for pump pulse attenuation and tolerance to non-local effects. The technique is based on operating the sensor in loss configuration so that energy is transferred from the probe wave to the pump pulse that becomes amplified as it counter-propagates with the probe wave. Furthermore, the optical frequency of the probe wave is modulated along the fiber so that the pump pulse experiences a flat gain spectrum that equally amplifies all the spectral components of the pulse, hence, preventing distortion. The method is experimentally demonstrated in a 100-km fiber link, obtaining a measurement uncertainty of 1 MHz at the worst-contrast position.

  20. Fermi polaron in a one-dimensional quasiperiodic optical lattice: The simplest many-body localization challenge

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Wang, An-Bang; Yi, Su; Liu, Xia-Ji

    2016-05-01

    We theoretically investigate the behavior of a moving impurity immersed in a sea of fermionic atoms that are confined in a quasiperiodic (bichromatic) optical lattice within a standard variational approach. We consider both repulsive and attractive contact interactions for such a simple many-body localization problem of Fermi polarons. The variational approach enables us to access relatively large systems and therefore may be used to understand many-body localization in the thermodynamic limit. The energy and wave function of the polaron states are found to be strongly affected by the quasirandom lattice potential and their experimental measurements (i.e., via radio-frequency spectroscopy or quantum gas microscope) therefore provide a sensitive way to underpin the localization transition. We determine a phase diagram by calculating two critical quasirandom disorder strengths, which correspond to the onset of the localization of the ground-state polaron state and the many-body localization of all polaron states, respectively. Our predicted phase diagram could be straightforwardly examined in current cold-atom experiments.

  1. Moving object localization using optical flow for pedestrian detection from a moving vehicle.

    PubMed

    Hariyono, Joko; Hoang, Van-Dung; Jo, Kang-Hyun

    2014-01-01

    This paper presents a pedestrian detection method from a moving vehicle using optical flows and histogram of oriented gradients (HOG). A moving object is extracted from the relative motion by segmenting the region representing the same optical flows after compensating the egomotion of the camera. To obtain the optical flow, two consecutive images are divided into grid cells 14 × 14 pixels; then each cell is tracked in the current frame to find corresponding cell in the next frame. Using at least three corresponding cells, affine transformation is performed according to each corresponding cell in the consecutive images, so that conformed optical flows are extracted. The regions of moving object are detected as transformed objects, which are different from the previously registered background. Morphological process is applied to get the candidate human regions. In order to recognize the object, the HOG features are extracted on the candidate region and classified using linear support vector machine (SVM). The HOG feature vectors are used as input of linear SVM to classify the given input into pedestrian/nonpedestrian. The proposed method was tested in a moving vehicle and also confirmed through experiments using pedestrian dataset. It shows a significant improvement compared with original HOG using ETHZ pedestrian dataset.

  2. Understanding local forces in electrophoretic ink systems: utilizing optical tweezers to explore electrophoretic display devices

    NASA Astrophysics Data System (ADS)

    Wei, David L.; Dickinson, Mark R.; Smith, N.; Gleeson, Helen F.

    2016-09-01

    Optical tweezers can be used as a valuable tool to characterize electrophoretic display (EPD) systems. EPDs are ubiquitous with e-readers and are becoming a commonplace technology where reflective, low-power displays are required; yet the physics of some features crucial to their operation remains poorly defined. We utilize optical tweezers as a tool to understand the motion of charged ink particles within the devices and show that the response of optically trapped electrophoretic particles can be used to characterize electric fields within these devices. This technique for mapping the force can be compared to simulations of the electric field in our devices, thus demonstrating that the electric field itself is the sole governor of the particle motion in an individual-particle regime. By studying the individual-particle response to the electric field, we can then begin to characterize particle motion in `real' systems with many particles. Combining optical tweezing with particle tracking techniques, we can investigate deviations in many particle systems from the single-particle case.

  3. Moving Object Localization Using Optical Flow for Pedestrian Detection from a Moving Vehicle

    PubMed Central

    Hoang, Van-Dung; Jo, Kang-Hyun

    2014-01-01

    This paper presents a pedestrian detection method from a moving vehicle using optical flows and histogram of oriented gradients (HOG). A moving object is extracted from the relative motion by segmenting the region representing the same optical flows after compensating the egomotion of the camera. To obtain the optical flow, two consecutive images are divided into grid cells 14 × 14 pixels; then each cell is tracked in the current frame to find corresponding cell in the next frame. Using at least three corresponding cells, affine transformation is performed according to each corresponding cell in the consecutive images, so that conformed optical flows are extracted. The regions of moving object are detected as transformed objects, which are different from the previously registered background. Morphological process is applied to get the candidate human regions. In order to recognize the object, the HOG features are extracted on the candidate region and classified using linear support vector machine (SVM). The HOG feature vectors are used as input of linear SVM to classify the given input into pedestrian/nonpedestrian. The proposed method was tested in a moving vehicle and also confirmed through experiments using pedestrian dataset. It shows a significant improvement compared with original HOG using ETHZ pedestrian dataset. PMID:25114955

  4. Identification and localization of multiple intrastromal foreign bodies with anterior segment optical coherence tomography and ocular Pentacam.

    PubMed

    Al-Ghadeer, Huda A; Al-Assiri, Abdullah

    2014-04-01

    To report the clinical aspects and the imaging of a patient with intrastromal glass foreign bodies after a road traffic accident using both anterior segment optical coherence tomography (OCT) and ocular Pentacam. A detailed case report was made of the use of anterior segment OCT (AS-OCT) and ocular Pentacam to evaluate intrastromal foreign bodies. AS-OCT and Pentacam were valuable non-invasive tools in identification, localization and monitoring patients with intrastromal foreign bodies. This report demonstrates that AS-OCT and ocular Pentacam are effective and necessary procedures for both the diagnosis and follow-up of intracorneal foreign bodies.

  5. A Proposal to Localize Fermi GBM GRBs Through Coordinated Scanning of the GBM Error Circle via Optical Telescopes

    NASA Technical Reports Server (NTRS)

    Ukwatta, T. N.; Linnemann, J. T.; Tollefson, K.; Abeysekara, A. U.; Bhat, P. N.; Sonbas, E.; Gehrels, N.

    2011-01-01

    We investigate the feasibility of implementing a system that will coordinate ground-based optical telescopes to cover the Fermi GBM Error Circle (EC). The aim of the system is to localize GBM detected GRBs and facilitate multi-wavelength follow-up from space and ground. This system will optimize the observing locations in the GBM EC based on individual telescope location, Field of View (FoV) and sensitivity. The proposed system will coordinate GBM EC scanning by professional as well as amateur astronomers around the world. The results of a Monte Carlo simulation to investigate the feasibility of the project are presented.

  6. A new optimization approach for the calibration of an ultrasound probe using a 3D optical localizer.

    PubMed

    Dardenne, G; Cano, J D Gil; Hamitouche, C; Stindel, E; Roux, C

    2007-01-01

    This paper describes a fast procedure for the calibration of an ultrasound (US) probe using a 3D optical localizer. This calibration step allows us to obtain the 3D position of any point located on the 2D ultrasonic (US) image. To carry out correctly this procedure, a phantom of known geometric properties is probed and these geometries are found in the US images. A segmentation step is applied in order to obtain automatically the needed information in the US images and then, an optimization approach is performed to find the optimal calibration parameters. A new optimization method to estimate the calibration parameters for an ultrasound (US) probe is developed.

  7. Optical meta-atom for localization of light with quantized energy

    NASA Astrophysics Data System (ADS)

    Lannebère, Sylvain; Silveirinha, Mário G.

    2015-10-01

    The capacity to confine light into a small region of space is of paramount importance in many areas of modern science. Here we suggest a mechanism to store a quantized `bit' of light--with a very precise amount of energy--in an open core-shell plasmonic structure (`meta-atom') with a nonlinear optical response. Notwithstanding the trapped light state is embedded in the radiation continuum, its lifetime is not limited by the radiation loss. Interestingly, it is shown that the interplay between the nonlinear response and volume plasmons enables breaking fundamental reciprocity restrictions, and coupling very efficiently an external light source to the meta-atom. The collision of an incident optical pulse with the meta-atom may be used to release the trapped light `bit'.

  8. Optical meta-atom for localization of light with quantized energy

    PubMed Central

    Lannebère, Sylvain; Silveirinha, Mário G.

    2015-01-01

    The capacity to confine light into a small region of space is of paramount importance in many areas of modern science. Here we suggest a mechanism to store a quantized ‘bit' of light—with a very precise amount of energy—in an open core-shell plasmonic structure (‘meta-atom') with a nonlinear optical response. Notwithstanding the trapped light state is embedded in the radiation continuum, its lifetime is not limited by the radiation loss. Interestingly, it is shown that the interplay between the nonlinear response and volume plasmons enables breaking fundamental reciprocity restrictions, and coupling very efficiently an external light source to the meta-atom. The collision of an incident optical pulse with the meta-atom may be used to release the trapped light ‘bit'. PMID:26515977

  9. Probe-sample optical interaction: size and wavelength dependence in localized plasmon near-field imaging.

    PubMed

    Habteyes, Terefe G; Dhuey, Scott; Kiesow, Karissa I; Vold, Alexander

    2013-09-09

    The probe-sample optical interaction in apertureless near-field optical microscopy is studied at 633 nm and 808 nm excitation wavelengths using gold nanodisks as model systems. The near-field distributions of the dipolar and quadrupolar surface plasmon modes have been mapped successfully using metal coated probes with different polarization combinations of excitation and detection except when the incident and the scattered light polarizations are chosen to be parallel to the probe axis. For the parallel polarization of the incident and the scattered light, the pattern of the near-field distribution differs from the inherent plasmon mode structures of the sample, depending sensitively on the sample size and excitation energy. For a given excitation energy, the near-field amplitude shifts from one pole to the other as the sample size increases, having nearly equal amplitude at the two poles when the plasmon resonance peak spectrally overlaps with the excitation energy.

  10. Discrimination of atherosclerotic plaque constituents based on local measurements of optical attenuation coefficents by OCT

    NASA Astrophysics Data System (ADS)

    van der Meer, Freek J.; Perree, Jop; Faber, Dirk J.; Baraznji Sassoon, David M.; Aalders, Maurice C. G.; van Leeuwen, Ton G.

    2005-04-01

    Imaging of human autopsy samples was performed from the luminal side with a high (3.5 μm axial and 7 μm lateral) resolution OCT system (around 800 nm) or a regular (15-20 μm axial and 20 μm lateral resolution) OCT system (around 1300 nm). For each sample, dimensions were measured by histomorphometry and OCT and the optical attenuation was measured. Quantitative analysis showed a strong and significant correlation between OCT and histology cap thickness measurements for both OCT systems. For both systems, the measured attenuation coefficients of diffuse intimal thickening and lipid-rich regions differed significantly from media and calcifications. Both the high and regular resolution OCT systems can precisely image the atherosclerotic plaques. Quantitative analysis of the OCT signals allowed in situ determination of the intrinsic optical attenuation coefficient of atherosclerotic tissue components within regions of interest, which can further help to discriminate the plaque and arterial wall components.

  11. Discrimination of atherosclerotic plaque constituents based on local measurements of optical attenuation coefficients by OCT

    NASA Astrophysics Data System (ADS)

    van der Meer, Freek J.; Perree, Jop; Faber, Dirk J.; Baraznji Bassoon, David M.; Aalders, Maurice C. G.; van Leeuwen, Ton G.

    2005-04-01

    Imaging of human autopsy samples was performed from the luminal side with a high (3.5 μm axial and 7 μm lateral) resolution OCT system (around 800 nm) or a regular (15-20 μm axial and 20 μm lateral resolution) OCT system (around 1300 nm). For each sample, dimensions were measured by histomorphometry and OCT and the optical attenuation was measured. Quantitative analysis showed a strong and significant correlation between OCT and histology cap thickness measurements for both OCT systems. For both systems, the measured attenuation coefficients of diffuse intimal thickening and lipid-rich regions differed significantly from media and calcifications. Both the high and regular resolution OCT systems can precisely image the atherosclerotic plaques. Quantitative analysis of the OCT signals allowed in situ determination of the intrinsic optical attenuation coefficient of atherosclerotic tissue components within regions of interest, which can further help to discriminate the plaque and arterial wall components.

  12. Sequential and selective localized optical heating in water via on-chip dielectric nanopatterning.

    PubMed

    Morsy, Ahmed M; Biswas, Roshni; Povinelli, Michelle L

    2017-07-24

    We study the use of nanopatterned silicon membranes to obtain optically-induced heating in water. We show that by varying the detuning between an absorptive optical resonance of the patterned membrane and an illumination laser, both the magnitude and response time of the temperature rise can be controlled. This allows for either sequential or selective heating of different patterned areas on chip. We obtain a steady-state temperature of approximately 100 °C for a 805.5nm CW laser power density of 66 µW/μm(2) and observe microbubble formation. The ability to spatially and temporally control temperature on the microscale should enable the study of heat-induced effects in a variety of chemical and biological lab-on-chip applications.

  13. Large area and low power dielectrowetting optical shutter with local deterministic fluid film breakup

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Cumby, B.; Russell, A.; Heikenfeld, J.

    2013-11-01

    A large area (>10 cm2) and low-power (0.1-10 Hz AC voltage, ˜10's μW/cm2) dielectrowetting optical shutter requiring no pixelation is demonstrated. The device consists of 40 μm interdigitated electrodes covered by fluid splitting features and a hydrophobic fluoropolymer. When voltage is removed, the fluid splitting features initiate breakup of the fluid film into small droplets resulting in ˜80% transmission. Both the dielectrowetting and fluid splitting follow theory, allowing prediction of alternate designs and further improved performance. Advantages include scalability, optical polarization independence, high contrast ratio, fast response, and simple construction, which could be of use in switchable windows or transparent digital signage.

  14. Selective broadcast interconnection - A novel scheme for fiber-optic local-area networks

    NASA Technical Reports Server (NTRS)

    Marhic, M. E.; Birk, Y.; Tobagi, F. A.

    1985-01-01

    A passive, unswitched scheme is introduced for directly interconnecting N stations, each of which has C transmitters and receivers. Implementations using fiber optics with spatial multiplexing and optionally wavelength multiplexing are discussed. This scheme utilizes the same resources as standard topologies with C parallel buses but outperforms them in two respects: (1) the aggregate throughput is proportional to C squared rather than to C; and (2) the power of each transmitter need reach only N/C, instead of N, receivers.

  15. Optimal local expansion of W states using linear optics and Fock states

    SciTech Connect

    Ikuta, Rikizo; Tashima, Toshiyuki; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki

    2011-01-15

    We derive the maximum success probability of circuits with passive linear optics for postselectively expanding an N-photon W state to an (N+n)-photon W state, by accessing only one photon of the initial W state and adding n photons in a Fock state. We show that the maximum success probability is achieved by a polarization-dependent beamsplitter and n-1 polarization-independent beamsplitters.

  16. Realization of a primary spectrophotometric system

    NASA Astrophysics Data System (ADS)

    Škerović, V.; Vukadin, P.; Zarubica, V.; Zeković, Lj

    2008-08-01

    The first step in establishing measurement uniformity in spectrophotometry is the realization of a versatile, fully evaluated and documented measurement system, which may, after metrological validation, be upheld as the primary spectrophotometric standard. In this paper, the development and realization of the spectrophotometer—primary standard in the Laboratory for Photometry of Bureau of Measures and Precious Metals—are presented. The construction of the system, as well as its metrological characterization, is shown. Evaluation of systematic errors due to various influential quantities and physical effects, such as light beam geometry effects, inter-reflections, nonlinearities and others, is presented. The results of measurements of spectral transmittance made with neutral optical filters and the evaluation of total measurement uncertainty are presented. Validation of the results was preformed according to National Institute for Standards and Technologies (NIST) certified standards of spectral transmittance.

  17. A Crowd-Sourcing Indoor Localization Algorithm via Optical Camera on a Smartphone Assisted by Wi-Fi Fingerprint RSSI

    PubMed Central

    Chen, Wei; Wang, Weiping; Li, Qun; Chang, Qiang; Hou, Hongtao

    2016-01-01

    Indoor positioning based on existing Wi-Fi fingerprints is becoming more and more common. Unfortunately, the Wi-Fi fingerprint is susceptible to multiple path interferences, signal attenuation, and environmental changes, which leads to low accuracy. Meanwhile, with the recent advances in charge-coupled device (CCD) technologies and the processing speed of smartphones, indoor positioning using the optical camera on a smartphone has become an attractive research topic; however, the major challenge is its high computational complexity; as a result, real-time positioning cannot be achieved. In this paper we introduce a crowd-sourcing indoor localization algorithm via an optical camera and orientation sensor on a smartphone to address these issues. First, we use Wi-Fi fingerprint based on the K Weighted Nearest Neighbor (KWNN) algorithm to make a coarse estimation. Second, we adopt a mean-weighted exponent algorithm to fuse optical image features and orientation sensor data as well as KWNN in the smartphone to refine the result. Furthermore, a crowd-sourcing approach is utilized to update and supplement the positioning database. We perform several experiments comparing our approach with other positioning algorithms on a common smartphone to evaluate the performance of the proposed sensor-calibrated algorithm, and the results demonstrate that the proposed algorithm could significantly improve accuracy, stability, and applicability of positioning. PMID:27007379

  18. A Crowd-Sourcing Indoor Localization Algorithm via Optical Camera on a Smartphone Assisted by Wi-Fi Fingerprint RSSI.

    PubMed

    Chen, Wei; Wang, Weiping; Li, Qun; Chang, Qiang; Hou, Hongtao

    2016-03-19

    Indoor positioning based on existing Wi-Fi fingerprints is becoming more and more common. Unfortunately, the Wi-Fi fingerprint is susceptible to multiple path interferences, signal attenuation, and environmental changes, which leads to low accuracy. Meanwhile, with the recent advances in charge-coupled device (CCD) technologies and the processing speed of smartphones, indoor positioning using the optical camera on a smartphone has become an attractive research topic; however, the major challenge is its high computational complexity; as a result, real-time positioning cannot be achieved. In this paper we introduce a crowd-sourcing indoor localization algorithm via an optical camera and orientation sensor on a smartphone to address these issues. First, we use Wi-Fi fingerprint based on the K Weighted Nearest Neighbor (KWNN) algorithm to make a coarse estimation. Second, we adopt a mean-weighted exponent algorithm to fuse optical image features and orientation sensor data as well as KWNN in the smartphone to refine the result. Furthermore, a crowd-sourcing approach is utilized to update and supplement the positioning database. We perform several experiments comparing our approach with other positioning algorithms on a common smartphone to evaluate the performance of the proposed sensor-calibrated algorithm, and the results demonstrate that the proposed algorithm could significantly improve accuracy, stability, and applicability of positioning.

  19. Fiber-optic localization by geometric space coding with a two-dimensional gray code

    NASA Astrophysics Data System (ADS)

    Zheng, Yunhui; Brady, David J.; Sullivan, Michaell E.; Guenther, Bob D.

    2005-07-01

    With the objective of monitoring motion within a room, we segment the two-dimensional (2D) floor space into discrete cells and encode each cell with a binary code word generated by a fiber. We design a set of k-neighbor-local codes to localize an extended object and, particularly when k=2, employ a 2D gray code to localize a human by tracking his or her footsteps. Methods for implementing the codes in a fiber web are discussed, and we demonstrate the experimental result with the fiber mat. The observed system performance confirms the theoretical analysis. The space coding technique is a promising low-cost candidate not only for human tracking but also for other applications such as human gait analysis.

  20. Spin Localization of a Fermi Polaron in a Quasirandom Optical Lattice

    NASA Astrophysics Data System (ADS)

    Duncan, C. W.; Loft, N. J. S.; Öhberg, P.; Zinner, N. T.; Valiente, M.

    2017-03-01

    Recently, the topics of many-body localization (MBL) and one-dimensional strongly interacting few-body systems have received a lot of interest. These two topics have been largely developed separately. However, the generality of the latter as far as external potentials are concerned—including random and quasirandom potentials—and their shared spatial dimensionality, makes it an interesting way of dealing with MBL in the strongly interacting regime. Utilising tools developed for few-body systems we look to gain insight into the localization properties of the spin in a Fermi gas with strong interactions. We observe a delocalized-localized transition over a range of fillings of a quasirandom lattice. We find this transition to be of a different nature for low and high fillings, due to the diluteness of the system for low fillings.

  1. Localized and propagating surface plasmon resonance based fiber optic sensor for the detection of tetracycline using molecular imprinting

    NASA Astrophysics Data System (ADS)

    Shrivastav, Anand M.; Mishra, Satyendra K.; Gupta, Banshi D.

    2015-03-01

    In the present study we report a novel approach for the fabrication of localized and propagating surface plasmon resonance based fiber optic sensor for the detection of tetracycline using molecular imprinting (MIP) technique. The sensor is fabricated by coating layers of silver film, silver nanoparticles and MIP film prepared using tetracycline molecule as template over an unclad core of the multimode optical fiber. Nanoparticles of sizes in the range 10-30 nm are synthesized by hydrothermal process. A polychromatic light source is used to launch the light from one end of the fiber and the absorption spectrum for a given concentration of the tetracycline solution around the probe is measured at the other end of the fiber using a spectrometer interfaced with a computer. The absorption spectra are recorded for the concentration range of tetracycline from 10-8 M to 10-5 M. A shift of 102 nm in peak absorbance wavelength is obtained for this concentration range. The sensor works in the promising concentration range of tetracycline found in foods etc. The sensor has various advantages such as high sensitivity, low cost, fast response and capability of online monitoring and remote sensing. Further, the sensitivity of the sensor is about double the sensor based on localized surface plasmon resonance and molecular imprinting.

  2. Simultaneous determination of optical constants, local thickness and roughness of ZnSe thin films by imaging spectroscopic reflectometry

    NASA Astrophysics Data System (ADS)

    Nečas, D.; Ohlídal, I.; Franta, D.; Ohlídal, M.; Vodák, J.

    2016-01-01

    A rough non-uniform ZnSe thin film on a GaAs substrate is optically characterised using imaging spectroscopic reflectometry (ISR) in the visible, UV and near IR region, applied as a standalone technique. A global-local data processing algorithm is used to fit spectra from all pixels together and simultaneously determine maps of the local film thickness, roughness and overlayer thickness as well as spectral dependencies of film optical constants determined for the sample as a whole. The roughness of the film upper boundary is modelled using scalar diffraction theory (SDT), for which an improved calculation method is developed to process the large quantities of experimental data produced by ISR efficiently. This method avoids expensive operations by expressing the series obtained from SDT using a double recurrence relation and it is shown that it essentially eliminates the necessity for any speed-precision trade-offs in the SDT calculations. Comparison of characterisation results with the literature and other techniques shows the ability of multi-pixel processing to improve the stability and reliability of least-squares data fitting and demonstrates that standalone ISR, coupled with suitable data processing methods, is viable as a characterisation technique, even for thin films that are relatively far from ideal and require complex modelling.

  3. Manipulation of local optical properties and structures in molybdenum-disulfide monolayers using electric field-assisted near-field techniques

    PubMed Central

    Nozaki, Junji; Fukumura, Musashi; Aoki, Takaaki; Maniwa, Yutaka; Yomogida, Yohei; Yanagi, Kazuhiro

    2017-01-01

    Remarkable optical properties, such as quantum light emission and large optical nonlinearity, have been observed in peculiar local sites of transition metal dichalcogenide monolayers, and the ability to tune such properties is of great importance for their optoelectronic applications. For that purpose, it is crucial to elucidate and tune their local optical properties simultaneously. Here, we develop an electric field-assisted near-field technique. Using this technique we can clarify and tune the local optical properties simultaneously with a spatial resolution of approximately 100 nm due to the electric field from the cantilever. The photoluminescence at local sites in molybdenum-disulfide (MoS2) monolayers is reversibly modulated, and the inhomogeneity of the charge neutral points and quantum yields is suggested. We successfully etch MoS2 crystals and fabricate nanoribbons using near-field techniques in combination with an electric field. This study creates a way to tune the local optical properties and to freely design the structural shapes of atomic monolayers using near-field optics. PMID:28378804

  4. Tagging photons with gold nanoparticles as localized absorbers in optical measurements in turbid media

    PubMed Central

    Grabtchak, Serge; Callaghan, Kristen B.; Whelan, William M.

    2013-01-01

    We analyze a role of a localized inclusion as a probe for spatial distributions of migrating photons in turbid media. We present new experimental data and two-dimensional analysis of radiance detection of a localized absorptive inclusion formed by gold nanoparticles in Intralipid-1% when the target is translated along the line connecting the light source and detector. Data are analyzed using the novel analytical expression for the relative angular photon distribution function for radiance developed by extending the perturbation approach for fluence. Obtained photon maps allow predicting conditions for detectability of inclusions for which proximity to the detector is essential. PMID:24409396

  5. Radial localization of edge modes in Alcator C-Mod pedestals using optical diagnostics

    NASA Astrophysics Data System (ADS)

    Theiler, C.; Terry, J. L.; Edlund, E.; Cziegler, I.; Churchill, R. M.; Hughes, J. W.; LaBombard, B.; Golfinopoulos, T.; the Alcator C-Mod Team

    2017-02-01

    Dedicated experiments in ion cyclotron range heated enhanced D-alpha (EDA) H-mode and I-mode plasmas have been performed on Alcator C-Mod to identify the location of edge fluctuations inside the pedestal and to determine their plasma frame phase velocity. For this purpose, measurements from gas puff imaging (GPI) and gas puff charge exchange recombination spectroscopy (GP-CXRS) have been collected using the same optical views. The data suggest that the EDA H-mode-specific quasi-coherent mode (QCM) is centered near the radial electric field (E r) well minimum and propagates along the ion diamagnetic drift direction in the plasma frame. The weakly coherent mode (WCM) and the geodesic acoustic mode observed in I-mode, on the other hand, are found to be located around the outer shear layer of the E r well. This results in a weak plasma frame phase velocity mostly along the electron diamagnetic drift direction for the WCM. The findings in these EDA H-mode plasmas differ from probe measurements in ohmic EDA H-mode (LaBombard et al 2014 Phys. Plasmas 21 056108), where the QCM was identified as an electron drift-wave located several mm outside the E r well minimum in a region of positive E r. To explore if instrumental effects of the optical diagnostics could be the cause of the difference, a synthetic diagnostic for GPI is introduced. This diagnostic reproduces amplitude ratios and relative radial shifts of the mode profiles determined from poloidally and toroidally oriented optics and, if instrumental effects related to GP-CXRS are also included, indicates that the measured location of the QCM and WCM relative to the E r well reported here is only weakly affected by instrumental effects.

  6. Localized optical states in a liquid-crystal structure adjacent to a metal

    NASA Astrophysics Data System (ADS)

    Pyatnov, M. V.; Vetrov, S. Ya.; Timofeev, I. V.

    2017-08-01

    The spectrum of light transmission through a structure consisting of a metallic layer and a cholesteric liquid crystal with an induced planar defect is calculated. The possibility of existence of localized states at the metal-dielectric interface of this system is demonstrated. The transmission spectra at different positions of the defect in the structure are studied.

  7. Electronic and optical properties of free standing Pt nanowires using localized basis sets

    NASA Astrophysics Data System (ADS)

    Kumar, Arun; Kumar, Ashok; Ahluwalia, P. K.

    2012-06-01

    In this paper we have investigated structural, electronic and optical properties of free standing ultrathin NWs of Pt with different topologies using ab-initio SIESTA code. Dimer and ladder chains have found smallest and largest cohesive energy respectively. Electronic band structure and DOS calculations finds more bands and states respectively around Fermi level in ladder topology of Pt chains. It is found that linear and dimer chains act as a good reflector as compared to ladder and zig-zag topologies of Pt chains. Plasmonic frequency of zig-zag and ladder chains are found largest and smallest respectively.

  8. Dynamic measurement of local displacements within curing resin-based dental composite using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Tomlins, Peter H.; Rahman, Mohammed Wahidur; Donnan, Robert S.

    2016-04-01

    This study aimed to determine the feasibility of using optical coherence elastography to measure internal displacements during the curing phase of a light-activated, resin-based composite material. Displacement vectors were spatially mapped over time within a commercial dental composite. Measurements revealed that the orientation of cure-induced displacement vectors varied spatially in a complex manner; however, each vector showed a systematic evolution with time. Precision of individual displacements was estimated to be ˜1 to 2 μm, enabling submicrometer time-varying displacements to be detected.

  9. Mapping local optical densities of states in silicon photonic structures with nanoscale electron spectroscopy

    SciTech Connect

    Cha, Judy J.; Couillard, Martin; Muller, David A.; Yu Zongfu; Fan Shanhui; Smith, Eric

    2010-03-15

    Relativistic electrons in a structured medium generate radiative losses such as Cherenkov and transition radiation that act as a virtual light source, coupling to the photonic densities of states. The effect is most pronounced when the imaginary part of the dielectric function is zero, a regime where in a nonretarded treatment no loss or coupling can occur. Maps of the resultant energy losses as a sub-5 nm electron probe scans across finite waveguide structures reveal spatial distributions of optical modes in a spectral domain ranging from near infrared to far ultraviolet.

  10. Three-dimensional localization of fluorescent targets in turbid media using time reversal optical tomography

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Cai, W.; Gayen, S. K.

    2012-12-01

    An optical tomography approach for locating fluorescent targets embedded inside a turbid medium is introduced. It uses multi-source probing and multi-detector signal acquisition to collect diffuse fluorescence signal, and time reversal matrix formalism with subspace based signal processing for image reconstruction. It could provide three-dimensional position co-ordinates of two small fluorescent targets embedded in Intralipid-20% suspension of thickness ˜60 times the transport mean free path with an accuracy of ˜1 mm. Fast reconstruction and high spatial resolution make the approach potentially suited for detecting and locating contrast-enhanced breast tumor at early stages of growth.

  11. Looking for natural patterns in analytical data. 2. Tracing local density with OPTICS.

    PubMed

    Daszykowski, M; Walczak, B; Massart, D L

    2002-01-01

    The main principles and the algorithm of a density-based clustering approach, OPTICS, are described, and its unique properties, such as the ability to reveal clusters of arbitrary shapes and different densities, are illustrated on simulated and real spectral and chromatographic data sets. A "reachability plot" visualizing density fluctuations of data in multivariate space and a "color map" relating the original and/or descriptive features with data clustering allow a deeper insight into the data structure and its interpretation in chemical terms.

  12. Bright-field Nanoscopy: Visualizing Nano-structures with Localized Optical Contrast Using a Conventional Microscope

    PubMed Central

    Suran, Swathi; Bharadwaj, Krishna; Raghavan, Srinivasan; Varma, Manoj M.

    2016-01-01

    Most methods for optical visualization beyond the diffraction limit rely on fluorescence emission by molecular tags. Here, we report a method for visualization of nanostructures down to a few nanometers using a conventional bright-field microscope without requiring additional molecular tags such as fluorophores. The technique, Bright-field Nanoscopy, is based on the strong thickness dependent color of ultra-thin germanium on an optically thick gold film. We demonstrate the visualization of grain boundaries in chemical vapour deposited single layer graphene and the detection of single 40 nm Ag nanoparticles. We estimate a size detection limit of about 2 nm using this technique. In addition to visualizing nano-structures, this technique can be used to probe fluid phenomena at the nanoscale, such as transport through 2D membranes. We estimated the water transport rate through a 1 nm thick polymer film using this technique, as an illustration. Further, the technique can also be extended to study the transport of specific ions in the solution. It is anticipated that this technique will find use in applications ranging from single-nanoparticles resolved sensing to studying nanoscale fluid-solid interface phenomena. PMID:27112966

  13. Afocal optical flow sensor for reducing vertical height sensitivity in indoor robot localization and navigation.

    PubMed

    Yi, Dong-Hoon; Lee, Tae-Jae; Cho, Dong-Il Dan

    2015-05-13

    This paper introduces a novel afocal optical flow sensor (OFS) system for odometry estimation in indoor robotic navigation. The OFS used in computer optical mouse has been adopted for mobile robots because it is not affected by wheel slippage. Vertical height variance is thought to be a dominant factor in systematic error when estimating moving distances in mobile robots driving on uneven surfaces. We propose an approach to mitigate this error by using an afocal (infinite effective focal length) system. We conducted experiments in a linear guide on carpet and three other materials with varying sensor heights from 30 to 50 mm and a moving distance of 80 cm. The same experiments were repeated 10 times. For the proposed afocal OFS module, a 1 mm change in sensor height induces a 0.1% systematic error; for comparison, the error for a conventional fixed-focal-length OFS module is 14.7%. Finally, the proposed afocal OFS module was installed on a mobile robot and tested 10 times on a carpet for distances of 1 m. The average distance estimation error and standard deviation are 0.02% and 17.6%, respectively, whereas those for a conventional OFS module are 4.09% and 25.7%, respectively.

  14. Afocal Optical Flow Sensor for Reducing Vertical Height Sensitivity in Indoor Robot Localization and Navigation

    PubMed Central

    Yi, Dong-Hoon; Lee, Tae-Jae; Cho, Dong-Il “Dan”

    2015-01-01

    This paper introduces a novel afocal optical flow sensor (OFS) system for odometry estimation in indoor robotic navigation. The OFS used in computer optical mouse has been adopted for mobile robots because it is not affected by wheel slippage. Vertical height variance is thought to be a dominant factor in systematic error when estimating moving distances in mobile robots driving on uneven surfaces. We propose an approach to mitigate this error by using an afocal (infinite effective focal length) system. We conducted experiments in a linear guide on carpet and three other materials with varying sensor heights from 30 to 50 mm and a moving distance of 80 cm. The same experiments were repeated 10 times. For the proposed afocal OFS module, a 1 mm change in sensor height induces a 0.1% systematic error; for comparison, the error for a conventional fixed-focal-length OFS module is 14.7%. Finally, the proposed afocal OFS module was installed on a mobile robot and tested 10 times on a carpet for distances of 1 m. The average distance estimation error and standard deviation are 0.02% and 17.6%, respectively, whereas those for a conventional OFS module are 4.09% and 25.7%, respectively. PMID:25985164

  15. Bright-field Nanoscopy: Visualizing Nano-structures with Localized Optical Contrast Using a Conventional Microscope

    NASA Astrophysics Data System (ADS)

    Suran, Swathi; Bharadwaj, Krishna; Raghavan, Srinivasan; Varma, Manoj M.

    2016-04-01

    Most methods for optical visualization beyond the diffraction limit rely on fluorescence emission by molecular tags. Here, we report a method for visualization of nanostructures down to a few nanometers using a conventional bright-field microscope without requiring additional molecular tags such as fluorophores. The technique, Bright-field Nanoscopy, is based on the strong thickness dependent color of ultra-thin germanium on an optically thick gold film. We demonstrate the visualization of grain boundaries in chemical vapour deposited single layer graphene and the detection of single 40 nm Ag nanoparticles. We estimate a size detection limit of about 2 nm using this technique. In addition to visualizing nano-structures, this technique can be used to probe fluid phenomena at the nanoscale, such as transport through 2D membranes. We estimated the water transport rate through a 1 nm thick polymer film using this technique, as an illustration. Further, the technique can also be extended to study the transport of specific ions in the solution. It is anticipated that this technique will find use in applications ranging from single-nanoparticles resolved sensing to studying nanoscale fluid-solid interface phenomena.

  16. Fluorescent Photoswitchable Diarylethenes for Biolabeling and Single-Molecule Localization Microscopies with Optical Superresolution.

    PubMed

    Roubinet, Benoît; Weber, Michael; Shojaei, Heydar; Bates, Mark; Bossi, Mariano L; Belov, Vladimir N; Irie, Masahiro; Hell, Stefan W

    2017-05-17

    A modular assembly of water-soluble diarylethenes (DAEs), applicable as biomarkers for optical nanoscopy, is reported. Reversibly photoswitchable 1,2-bis(2-alkyl-6-phenyl-1-benzothiophene-1,1-dioxide-3-yl)perfluorocyclopentenes possessing a fluorescent "closed" form were decorated with one or two methoxy group(s) attached to the para-position(s) of phenyl ring(s) and two, four, or eight carboxylic acid groups. Antibody conjugates of these DAEs feature low aggregation, efficient photoswitching in aqueous buffers, specific staining of cellular structures, and photophysical properties (high emission efficiencies and low cycloreversion quantum yields) enabling their application in superresolution microscopy. Images of tubulin, vimentin, and nuclear pore complexes are presented. The superresolution images can also be acquired by using solely 488 nm light without additional photoactivation with UV light. These DAEs exhibit reversible photoswitching without requiring any additives to the imaging media and open new paths toward the modular design of fluorescent dyes for bioimaging with optical superresolution.

  17. Local electric fields in optical glasses during field-assisted ionic exchanges

    NASA Astrophysics Data System (ADS)

    Lupascu, Alexandru I.; Kevorkian, Antoine P.; Cristescu, Constantin P.; Popescu, Ion M.

    2000-02-01

    We study the phenomena connected with high concentration of incoming ions emerging during field-assisted migration in otpical glass. We find that ion dynamics are very different at concentrations higher and lower than a certain parameter called the transition concentration. To explain anomalies at high ionic concentrations, we introduce a supplementary local electric field. This field opposes to the field E0 existing in the glass at all concentrations of incoming ions and is connected with a local space charge. We investigate its dependence on concentration and on E0. These effects are studied using a model with concentration-dependent diffusion coefficients and mobilities. We present a method to obtain the concentration dependence of the relevant quantities. Theoretical curves are compared with experimental results measured in usual silicate glasses, during Ag+-Na+ exchanges.

  18. A sub wavelength localization scheme in optical imaging using conical diffraction.

    PubMed

    Rosen, Shani; Sirat, Gabriel Y; Ilan, Har'el; Agranat, Aharon J

    2013-04-22

    In this paper we present a scheme for the acquisition of high temporal resolution images of single particles with enhanced lateral localization accuracy. The scheme, which is implementable as a part of the illumination system of a standard confocal microscope, is based on the generation of a vector beam that is manipulated by polarimetry techniques to create a set of illumination PSFs with different spatial profiles. The combination of data collected in different illumination states enables the extraction of spatial information obscured by diffraction in the standard imaging system. An implementation of the scheme based on the utilization of the unique phenomenon of conical diffraction is presented, and the basic strategy it provides for enhanced localization in the diffraction limited region is demonstrated.

  19. Cavity light bullets: three-dimensional localized structures in a nonlinear optical resonator.

    PubMed

    Brambilla, Massimo; Maggipinto, Tommaso; Patera, Giuseppe; Columbo, Lorenzo

    2004-11-12

    We consider the paraxial model for a nonlinear resonator with a saturable absorber beyond the mean-field limit. For accessible parametric domains we observe total radiation confinement and the formation of 3D localized bright structures. Different from freely propagating light bullets, here the self-organization proceeds from the resonator feedback, combined with diffraction and nonlinearity. Such "cavity" light bullets can be independently excited and erased by appropriate pulses, and once created, they endlessly travel the cavity round-trip.

  20. Topology, Localization, and Quantum Information in Atomic, Molecular and Optical Systems

    DTIC Science & Technology

    2014-05-07

    consider the application of a single qubit rotation S at the mth qubit and desired propagation to an effective rotation S on the first qubit according... effectively utilizes one to create a bound- ary for the other, hence allowing for locally controlled SWAP gates between any qubit pair. Since our array...contains a two-dimensional field gradient and standing waves can be implemented with nodes along either rows or columns, we have effectively shown

  1. Optical coherence tomography as approach for the minimal invasive localization of the germinal disc in ovo before chicken sexing

    NASA Astrophysics Data System (ADS)

    Burkhardt, Anke; Geissler, Stefan; Koch, Edmund

    2010-04-01

    In most industrial states a huge amount of newly hatched male layer chickens are usually killed immediately after hatching by maceration or gassing. The reason for killing most of the male chickens of egg producing races is their slow growth rate compared to races specialized on meat production. When the egg has been laid, the egg contains already a small disc of cells on the surface of the yolk known as the blastoderm. This region is about 4 - 5 mm in diameter and contains the information whether the chick becomes male or female and hence allows sexing of the chicks by spectroscopy and other methods in the unincubated state. Different imaging methods like sonography, 3D-X-ray micro computed tomography and magnetic resonance imaging were used for localization of the blastoderm until now, but found to be impractical for different reasons. Optical coherence tomography (OCT) enables micrometer-scale, subsurface imaging of biological tissue and could therefore be a suitable technique for an accurate localization. The intention of this study is to prove if OCT can be an appropriate approach for the precise in ovo localization.

  2. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy

    SciTech Connect

    Via, Riccardo Fassi, Aurora; Fattori, Giovanni; Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Ciocca, Mario; Riboldi, Marco; Baroni, Guido; Orecchia, Roberto

    2015-05-15

    Purpose: External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Methods: Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Results: Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. Conclusions: A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring

  3. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy.

    PubMed

    Via, Riccardo; Fassi, Aurora; Fattori, Giovanni; Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Riboldi, Marco; Ciocca, Mario; Orecchia, Roberto; Baroni, Guido

    2015-05-01

    External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring during ocular radiotherapy treatments. The

  4. Challenges in realizing ultraflat materials surfaces

    PubMed Central

    Nomura, Wataru; Stehlin, Fabrice; Soppera, Olivier; Naruse, Makoto; Ohtsu, Motoichi

    2013-01-01

    Summary Ultraflat surface substrates are required to achieve an optimal performance of future optical, electronic, or optoelectronic devices for various applications, because such surfaces reduce the scattering loss of photons, electrons, or both at the surfaces and interfaces. In this paper, we review recent progress toward the realization of ultraflat materials surfaces. First, we review the development of surface-flattening techniques. Second, we briefly review the dressed photon–phonon (DPP), a nanometric quasiparticle that describes the coupled state of a photon, an electron, and a multimode-coherent phonon. Then, we review several recent developments based on DPP-photochemical etching and desorption processes, which have resulted in angstrom-scale flat surfaces. To confirm that the superior flatness of these surfaces that originated from the DPP process, we also review a simplified mathematical model that describes the scale-dependent effects of optical near-fields. Finally, we present the future outlook for these technologies. PMID:24367757

  5. Local differences in calretinin immunoreactivity in the optic tectum of the ocellated dragonet.

    PubMed

    Ulama, Tim; Hofmann, Michael H

    2016-11-01

    The optic tectum of the ocellated dragonet (Synchiropus ocellatus) was studied with immunohistochemistry. Antibodies raised against the calcium binding protein calretinin (CR) revealed a lamination similar to that already reported for other ray finned fish. Most immunoreactive fibers could be observed in those layers receiving retinal afferents and most immunoreactive cells occur in the stratum periventriculare. However, there are marked differences in the presence of other calretinin-positive cell types and immunoreactive lamina between the dorsomedial and ventrolateral parts of the tectum. Synchiropus is a bottom dwelling fish with strong functional subdivisions of the visual system into dorsal and lateral visual fields. The differences in calretinin-positive cell bodies and fibers may be a sensitive indicator of functional differences of tectal circuitry.

  6. Optical bullets in (2+1)D photonic structures and their interaction with localized defects

    NASA Astrophysics Data System (ADS)

    Dohnal, Tomas

    2005-11-01

    This dissertation studies light propagation in Kerr-nonlinear two dimensional waveguides with a Bragg resonant, periodic structure in the propagation direction. The model describing evolution of the electric field envelopes is the system of 2D Nonlinear Coupled Mode Equations (2D CME). The periodic structure induces a range of frequencies (frequency gap) in which linear waves do not propagate. It is shown that, similarly to the ID case of a fiber grating, the 2D nonlinear system supports localized solitary wave solutions, referred to as 2D gap solitons, which have frequencies inside the linear gap and can travel at, any speed smaller than or equal to the speed of light in the corresponding homogeneous medium. Such solutions are constructed numerically via Newton's iteration. Convergence is obtained only near the upper edge of the gap. Gap solitons with a nonzero velocity are constructed by numerically following a bifurcation curve parameterized by the velocity v. It is shown that gap solitons are saddle points of the corresponding Hamiltonian functional and that no (constrained) local minima of the Hamiltonian exist. The linear stability problem is formulated and reasons for the failure of the standard Hamiltonian PDE approach for determining linear stability are discussed. In the second part of the dissertation interaction of 2D gap solitons with localized defects is studied and trapping of slow enough 2D gap solitons is demonstrated. This study builds on [JOSA B 19, 1635 (2002)], where such trapping of 1D gap solitons is considered. Analogously to this 1D problem trapping in the 2D model is explained as a resonant energy transfer into one or more defect modes existent for the particular defect. For special localized defects exact linear modes are found explicitly via the separation of variables. Numerical computation of linear defect modes is used for more general defects. Corresponding nonlinear modes are then constructed via Newton's iteration by following a

  7. Localized dynamic light scattering: a new approach to dynamic measurements in optical microscopy.

    PubMed

    Meller, A; Bar-Ziv, R; Tlusty, T; Moses, E; Stavans, J; Safran, S A

    1998-03-01

    We present a new approach to probing single-particle dynamics that uses dynamic light scattering from a localized region. By scattering a focused laser beam from a micron-size particle, we measure its spatial fluctuations via the temporal autocorrelation of the scattered intensity. We demonstrate the applicability of this approach by measuring the three-dimensional force constants of a single bead and a pair of beads trapped by laser tweezers. The scattering equations that relate the scattered intensity autocorrelation to the particle position correlation function are derived. This technique has potential applications for measurement of biomolecular force constants and probing viscoelastic properties of complex media.

  8. Comparison of optical coherence tomography and scanning laser polarimetry for detection of localized retinal nerve fiber layer defects.

    PubMed

    Yoo, Young Cheol; Park, Ki Ho

    2010-01-01

    To compare the ability of Stratus optical coherence tomography (Stratus OCT) and scanning laser polarimetry with variable corneal compensator (GDx VCC) in recognizing a localized retinal nerve fiber layer (RNFL) defect identified on red-free fundus photography. Fifty-three patients with only 1 localized RNFL defect in either eye were taken RNFL thickness analysis using Stratus OCT and GDx VCC. Thirty-nine healthy subjects were used as controls and only 1 eye per subject was considered. Using red-free photography as the standard reference test, sensitivity and specificity for photographic defects, and topographic correlation with photographic defects were compared between Stratus OCT (sector average graph) and GDx VCC (deviation from normal map). Abnormal sectors at P<5% compared with their internal normative database were evaluated. After excluding eyes with unacceptable scan images, 38 healthy eyes and 47 glaucomatous eyes were finally included. Stratus OCT and GDx VCC showed moderate sensitivity (78.7%) and high specificity (94.7% and 89.5%, respectively), and there was no significant difference (P=1.00 and P=0.69, respectively). RNFL defects determined by Stratus OCT and GDx VCC were correlated well with photographic RNFL defects in terms of peripapillary localization and clock-hour size, and there was no significant difference between 2 imaging devices (P=0.20 and P=0.27, respectively). In recognizing a localized RNFL defect, overall diagnostic performance of Stratus OCT and GDx VCC with regard to their internal normative database was not significantly different. As both Stratus OCT and GDx VCC showed only moderate sensitivity, these imaging devices may not substitute red-free fundus photography in clinical practice of glaucoma diagnosis.

  9. Local heat treatment of high strength steels with zoom-optics and 10kW-diode laser

    NASA Astrophysics Data System (ADS)

    Baumann, Markus; Krause, Volker; Bergweiler, Georg; Flaischerowitz, Martin; Banik, Janko

    2012-03-01

    High strength steels enable new solutions for weight optimized car bodies without sacrificing crash safety. However, cold forming of these steels is limited due to the need of high press capacity, increased tool wear, and limitations in possible geometries. One can compensate for these drawbacks by local heat treatment of the blanks. In high-deformation areas the strength of the material is reduced and the plasticity is increased by diode laser irradiation. Local heat treatment with diode laser radiation could also yield key benefits for the applicability of press hardened parts. High strength is not desired all over the part. Joint areas or deformation zones for requested crash properties require locally reduced strength. In the research project "LOKWAB" funded by the German Federal Ministry of Education and Research (BMBF), heat treatment of high strength steels was investigated in cooperation with Audi, BMW, Daimler, ThyssenKrupp, Fraunhofer- ILT, -IWU and others. A diode laser with an output power of 10 kW was set up to achieve acceptable process speed. Furthermore a homogenizing zoom-optics was developed, providing a rectangular focus with homogeneous power density. The spot size in x- and y-direction can be changed independently during operation. With pyrometer controlled laser power the surface temperature is kept constant, thus the laser treated zone can be flexibly adapted to the needs. Deep-drawing experiments show significant improvement in formability. With this technique, parts can be manufactured, which can conventionally only be made of steel with lower strength. Locally reduced strength of press hardened serial parts was demonstrated.

  10. Distribution of high-stability 10 GHz local oscillator over 100 km optical fiber with accurate phase-correction system.

    PubMed

    Wang, Siwei; Sun, Dongning; Dong, Yi; Xie, Weilin; Shi, Hongxiao; Yi, Lilin; Hu, Weisheng

    2014-02-15

    We have developed a radio-frequency local oscillator remote distribution system, which transfers a phase-stabilized 10.03 GHz signal over 100 km optical fiber. The phase noise of the remote signal caused by temperature and mechanical stress variations on the fiber is compensated by a high-precision phase-correction system, which is achieved using a single sideband modulator to transfer the phase correction from intermediate frequency to radio frequency, thus enabling accurate phase control of the 10 GHz signal. The residual phase noise of the remote 10.03 GHz signal is measured to be -70  dBc/Hz at 1 Hz offset, and long-term stability of less than 1×10⁻¹⁶ at 10,000 s averaging time is achieved. Phase error is less than ±0.03π.

  11. Simultaneous and co-localized acousto-optic measurements of spectral and temporal properties of diffusive media

    NASA Astrophysics Data System (ADS)

    Balberg, Michal; Shechter, Revital; Girshovitz, Pinhas; Breskin, Ilan; Fantini, Sergio

    2017-02-01

    Acousto-optic (AO) modulation of light is used to extract both temporal and spectral information of diffusive media such as biological tissue, where they provide measures of blood flow and oxygen saturation of hemoglobin, respectively. The temporal information is extracted from the width of the power spectrum of the light intensity, whereas the spectral information is calculated from the spatial decay of the cross correlation between the light intensity and the generated ultrasonic signal. The ultrasonic signal is a coded phase modulated signal with a narrow autocorrelation, enabling localization of the measurement volume. Two different liquid phantoms are used, with similar scattering but different absorption properties. The difference in absorption calculated with the AO signal is compared to calculations based on the modified Beer Lambert law. As the same AO signal is used to extract both modalities, it might be used to extract hemodynamic related changes in the brain for diagnostic and functional assessment.

  12. Accessing Extreme Spatiotemporal Localization of High-Power Laser Radiation through Transformation Optics and Scalar Wave Equations.

    PubMed

    Fedorov, V Yu; Chanal, M; Grojo, D; Tzortzakis, S

    2016-07-22

    Although tightly focused intense ultrashort laser pulses are used in many applications from nano-processing to warm dense matter physics, their nonparaxial propagation implies the use of numerical simulations with vectorial wave equations or exact Maxwell solvers that have serious limitations and thus have hindered progress in this important field up to now. Here we present an elegant and robust solution that allows one to map the problem on one that can be addressed by simple scalar wave equations. The solution is based on a transformation optics approach and its validity is demonstrated in both the linear and the nonlinear regime. Our solution allows accessing challenging problems of extreme spatiotemporal localization of high power laser radiation that remain almost unexplored theoretically until now.

  13. Mixed-symmetry localized modes and breathers in binary mixtures of Bose-Einstein condensates in optical lattices

    SciTech Connect

    Cruz, H. A.; Brazhnyi, V. A.; Konotop, V. V.; Alfimov, G. L.; Salerno, M.

    2007-07-15

    We study localized modes in binary mixtures of Bose-Einstein condensates embedded in one-dimensional optical lattices. We report a diversity of asymmetric modes and investigate their dynamics. We concentrate on the cases where one of the components is dominant, i.e., has a much larger number of atoms than the other one, and where both components have the numbers of atoms of the same order but different symmetries. In the first case we propose a method of systematically obtaining the modes, considering the 'small' component as bifurcating from the continuum spectrum. A generalization of this approach combined with the use of the symmetry of the coupled Gross-Pitaevskii equations allows for obtaining breather modes, which are also presented.

  14. Hematoporphyrin-derivative optical-fluorescence-detection instrument for localization of bladder and bronchous carcinoma in situ

    NASA Astrophysics Data System (ADS)

    Mattiello, James; Hetzel, Fred W.

    1986-09-01

    The use of hematoporphyrin derivative (HpD), a drug which concentrates in cancer cells, causes a cytotoxic effect on these cells when irradiated with the appropriate wavelength of light. The HpD will fluoresce at a wavelength of 630 nm when excited by 405-nm light. Instruments which are able to cause and detect this fluorescence will assist the surgeon to locate regions of neoplasms which contain HpD. Once the neoplastic region is located, the surgeon can treat this region destroying the neoplastic cells. The recent construction and successful operation of a photodetection instrument for the localization of early carcinoma in situ of the bladder and bronchous in humans is discussed. This instrument is in some ways similar to previously described devices with major improvements due to the use of available electro-optical equipment and elimination of the need for modification or manufacture of special surgical ``scopes,'' thereby minimizing construction costs.

  15. Local SDSS galaxies in the Herschel Stripe 82 survey: a critical assessment of optically derived star formation rates

    NASA Astrophysics Data System (ADS)

    Rosario, D. J.; Mendel, J. T.; Ellison, S. L.; Lutz, D.; Trump, J. R.

    2016-04-01

    We study a set of 3319 galaxies in the redshift interval 0.04 < z < 0.15 with far-infrared (FIR) coverage from the Herschel Stripe 82 survey (HerS), and emission-line measurements, redshifts, stellar masses and star formation rates (SFRs) from the Sloan Digital Sky Survey (SDSS) (DR7) MPA/JHU data base. About 40 per cent of the sample are detected in the Herschel/SPIRE 250 μm band. Total infrared (TIR) luminosities derived from HerS and Wide-field Infrared Survey Explorer (WISE) photometry allow us to compare infrared and optical estimates of SFR with unprecedented statistics for diverse classes of galaxies. We find excellent agreement between TIR-derived and emission line-based SFRs for H II galaxies. Other classes, such as active galaxies and evolved galaxies, exhibit systematic discrepancies between optical and TIR SFRs. We demonstrate that these offsets are attributable primarily to survey biases and the large intrinsic uncertainties of the Dn4000- and colour-based optical calibrations used to estimate the SDSS SFRs of these galaxies. Using a classification scheme which expands upon popular emission-line methods, we demonstrate that emission-line galaxies with uncertain classifications include a population of massive, dusty, metal-rich star-forming systems that are frequently neglected in existing studies. We also study the capabilities of infrared selection of star-forming galaxies. FIR selection reveals a substantial population of galaxies dominated by cold dust which are missed by the long-wavelength WISE bands. Our results demonstrate that Herschel large-area surveys offer the means to construct large, relatively complete samples of local star-forming galaxies with accurate estimates of SFR that can be used to study the interplay between nuclear activity and star formation.

  16. Structural and optical characterization of the local environment of Er3+ ions in PbO-ZnO tellurite glasses.

    PubMed

    Ramamoorthy, R K; Bhatnagar, A K; Rocca, F; Mattarelli, M; Montagna, M

    2012-12-19

    Erbium activated PbO-ZnO tellurite glasses ((70TeO(2)-(30-x)ZnO-xPbO)(0.99)-(Er(2)O(3))(0.01) (TZPE), (x = 5, 10, 15, 20)) were prepared by a melt quenching process and studied by optical absorption, luminescence, Raman and x-ray absorption spectroscopy measurements as a function of the PbO/ZnO ratio. The glass structure, as monitored by Raman scattering, shows important changes with the PbO/ZnO ratio, attributed to a glass former action of PbO. The local environment of Er(3+) ions, as measured by extended x-ray absorption spectroscopy, does not appreciably change as regards the first oxygen shell. However, the intensity of the optical transitions is quite sensitive to the PbO/ZnO ratio, indicating a progressive increase of the site symmetry with the PbO content. The emission probability and radiative lifetime of several excited states of Er(3+) ions were calculated using Judd-Ofelt analysis.

  17. A non-iterative treatment of the non-local exchange terms in the Complex Optical Potential method

    NASA Astrophysics Data System (ADS)

    Stauffer, Allan; McEachran, Robert

    2016-09-01

    Non-local exchange terms in atomic scattering equations are usually treated iteratively. This method normally works well but there can be problems with convergence, either requiring a large number of iterations or converging to a spurious value. It has long been known that these terms can be treated non-iteratively but at the cost of expanding the number of equations needed to be solved. With the vastly increased memory and speed of modern computers, this approach is now feasible even for heavier targets. We have decided to implement this method in our calculations of electron elastic scattering from atoms using the Complex Optical Potential (COP) method which is based on the relativistic Dirac equations. This method accounts for incident flux lost to the elastic channels through inelastic processes (excitation and ionization) via the imaginary part of the optical potential and also provides a value for the total cross section for these processes. The basis for the method will be given along with sample calculations where the iterative method fails.

  18. Channel access schemes and fiber optic configurations for integrated-services local area networks. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Nassehi, M. Mehdi

    1987-01-01

    Local Area Networks are in common use for data communications and have enjoyed great success. Recently, there is a growing interest in using a single network to support many applications in addition to traditional data traffic. These additional applications introduce new requirements in terms of volume of traffic and real-time delivery of data which are not met by existing networks. To satisfy these requirements, a high-bandwidth tranmission medium, such as fiber optics, and a distributed channel access scheme for the efficient sharing of the bandwidth among the various applications are needed. As far as the throughput-delay requirements of the various application are concerned, a network structure along with a distributed channel access are proposed which incorporate appropriate scheduling policies for the transmission of outstanding messages on the network. A dynamic scheduling policy was devised which outperforms all existing policies in terms of minimizing the expected cost per message. A broadcast mechanism was devised for the efficient dissemination of all relevant information. Fiber optic technology is considered for the high-bandwidth transmisison medium.

  19. Temperature dependences of line widths and peak positions of optical absorption peaks due to localized vibration of hydrogen Si

    NASA Astrophysics Data System (ADS)

    Suezawa, M.; Fukata, N.; Saito, M.; Yamada-Kaneta, H.

    2001-12-01

    We studied the temperature dependences of line widths and peak positions of optical absorptions due to the hydrogen bound to point defects and acceptors in Si. Specimens were prepared from floating-zone-grown Si crystals of high-purity and of p-type, doped with group III acceptors. They were doped with H by heating at 1300°C in H 2 gas followed by quenching. The former specimen was then irradiated with 3 MeV electrons at RT to form complexes of H and point defects and the latter specimens were annealed at 150°C to form H-acceptor pairs. We measured their optical absorption spectra by an FT-IR spectrometer in the temperature range of 6 K and RT. Peaks due to localized vibrational modes of H bound to acceptors and point defects were well fitted with Lorentzian line shapes. The temperature dependences of those line widths and peak positions were analyzed with the dephasing model proposed by Persson and Ryberg.

  20. Localized Surface Plasmon Resonance (LSPR)-Coupled Fiber-Optic Nanoprobe for the Detection of Protein Biomarkers.

    PubMed

    Wei, Jianjun; Zeng, Zheng; Lin, Yongbin

    2017-01-01

    Here is presented a miniaturized, fiber-optic (FO) nanoprobe biosensor based on the localized surface plasmon resonance (LSPR) at the reusable dielectric-metallic hybrid interface with a robust, gold nano-disk array at the fiber end facet. The nanodisk array is directly fabricated using electron beam lithography (EBL) and metal lift-off process. The free prostate-specific antigen (f-PSA) has been detected with a mouse anti-human prostate-specific antigen (PSA) monoclonal antibody (mAb) as a specific receptor linked with a self-assembled monolayer (SAM) at the LSPR-FO facet surfaces. Experimental investigation and data analysis found near field refractive index (RI) sensitivity at ~226 nm/RIU with the LSPR-FO nanoprobe, and demonstrated the lowest limit of detection (LOD) at 100 fg/mL (~3 fM) of f-PSA in PBS solutions. The SAM shows insignificant nonspecific binding to the target biomarkers in the solution. The control experimentation using 5 mg/mL bovine serum albumin in PBS and nonspecific surface test shows the excellent specificity and selectivity in the detection of f-PSA in PBS. These results indicate important progress toward a miniaturized, multifunctional fiber-optic technology that integrates informational communication and sensing function for developing a high-performance, label-free, point-of-care (POC) device.