Sample records for optically reconstructed surface

  1. 3D reconstruction of SEM images by use of optical photogrammetry software.

    PubMed

    Eulitz, Mona; Reiss, Gebhard

    2015-08-01

    Reconstruction of the three-dimensional (3D) surface of an object to be examined is widely used for structure analysis in science and many biological questions require information about their true 3D structure. For Scanning Electron Microscopy (SEM) there has been no efficient non-destructive solution for reconstruction of the surface morphology to date. The well-known method of recording stereo pair images generates a 3D stereoscope reconstruction of a section, but not of the complete sample surface. We present a simple and non-destructive method of 3D surface reconstruction from SEM samples based on the principles of optical close range photogrammetry. In optical close range photogrammetry a series of overlapping photos is used to generate a 3D model of the surface of an object. We adapted this method to the special SEM requirements. Instead of moving a detector around the object, the object itself was rotated. A series of overlapping photos was stitched and converted into a 3D model using the software commonly used for optical photogrammetry. A rabbit kidney glomerulus was used to demonstrate the workflow of this adaption. The reconstruction produced a realistic and high-resolution 3D mesh model of the glomerular surface. The study showed that SEM micrographs are suitable for 3D reconstruction by optical photogrammetry. This new approach is a simple and useful method of 3D surface reconstruction and suitable for various applications in research and teaching. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. In vivo bioluminescence tomography based on multi-view projection and 3D surface reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Wang, Kun; Leng, Chengcai; Deng, Kexin; Hu, Yifang; Tian, Jie

    2015-03-01

    Bioluminescence tomography (BLT) is a powerful optical molecular imaging modality, which enables non-invasive realtime in vivo imaging as well as 3D quantitative analysis in preclinical studies. In order to solve the inverse problem and reconstruct inner light sources accurately, the prior structural information is commonly necessary and obtained from computed tomography or magnetic resonance imaging. This strategy requires expensive hybrid imaging system, complicated operation protocol and possible involvement of ionizing radiation. The overall robustness highly depends on the fusion accuracy between the optical and structural information. In this study we present a pure optical bioluminescence tomographic system (POBTS) and a novel BLT method based on multi-view projection acquisition and 3D surface reconstruction. The POBTS acquired a sparse set of white light surface images and bioluminescent images of a mouse. Then the white light images were applied to an approximate surface model to generate a high quality textured 3D surface reconstruction of the mouse. After that we integrated multi-view luminescent images based on the previous reconstruction, and applied an algorithm to calibrate and quantify the surface luminescent flux in 3D.Finally, the internal bioluminescence source reconstruction was achieved with this prior information. A BALB/C mouse with breast tumor of 4T1-fLuc cells mouse model were used to evaluate the performance of the new system and technique. Compared with the conventional hybrid optical-CT approach using the same inverse reconstruction method, the reconstruction accuracy of this technique was improved. The distance error between the actual and reconstructed internal source was decreased by 0.184 mm.

  3. Structured light optical microscopy for three-dimensional reconstruction of technical surfaces

    NASA Astrophysics Data System (ADS)

    Kettel, Johannes; Reinecke, Holger; Müller, Claas

    2016-04-01

    In microsystems technology quality control of micro structured surfaces with different surface properties is playing an ever more important role. The process of quality control incorporates three-dimensional (3D) reconstruction of specularand diffusive reflecting technical surfaces. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution to solve this problem providing high vertical and lateral resolution. However, 3D reconstruction of specular reflecting technical surfaces still remains a challenge to optical measurement principles. In this paper we present a measurement principle based on structured light optical microscopy which enables 3D reconstruction of specular- and diffusive reflecting technical surfaces. It is realized using two light paths of a stereo microscope equipped with different magnification levels. The right optical path of the stereo microscope is used to project structured light onto the object surface. The left optical path is used to capture the structured illuminated object surface with a camera. Structured light patterns are generated by a Digital Light Processing (DLP) device in combination with a high power Light Emitting Diode (LED). Structured light patterns are realized as a matrix of discrete light spots to illuminate defined areas on the object surface. The introduced measurement principle is based on multiple and parallel processed point measurements. Analysis of the measured Point Spread Function (PSF) by pattern recognition and model fitting algorithms enables the precise calculation of 3D coordinates. Using exemplary technical surfaces we demonstrate the successful application of our measurement principle.

  4. Wavefront Reconstruction and Mirror Surface Optimizationfor Adaptive Optics

    DTIC Science & Technology

    2014-06-01

    TERMS Wavefront reconstruction, Adaptive optics , Wavelets, Atmospheric turbulence , Branch points, Mirror surface optimization, Space telescope, Segmented...contribution adapts the proposed algorithm to work when branch points are present from significant atmospheric turbulence . An analysis of vector spaces...estimate the distortion of the collected light caused by the atmosphere and corrected by adaptive optics . A generalized orthogonal wavelet wavefront

  5. Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients.

    PubMed

    Solano-Altamirano, Juan Manuel; Vázquez-Otero, Alejandro; Khikhlukha, Danila; Dormido, Raquel; Duro, Natividad

    2017-11-30

    In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts) from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2), wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i) a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii) runtime selection of the library in charge of performing the algebraic computations; (iii) a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features.

  6. Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients

    PubMed Central

    Solano-Altamirano, Juan Manuel; Khikhlukha, Danila

    2017-01-01

    In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts) from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2), wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i) a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii) runtime selection of the library in charge of performing the algebraic computations; (iii) a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features. PMID:29189722

  7. Cross-wind profiling based on the scattered wave scintillation in a telescope focus.

    PubMed

    Banakh, V A; Marakasov, D A; Vorontsov, M A

    2007-11-20

    The problem of wind profile reconstruction from scintillation of an optical wave scattered off a rough surface in a telescope focus plane is considered. Both the expression for the spatiotemporal correlation function and the algorithm of cross-wind velocity and direction profiles reconstruction based on the spatiotemporal spectrum of intensity of an optical wave scattered by a diffuse target in a turbulent atmosphere are presented. Computer simulations performed under conditions of weak optical turbulence show wind profiles reconstruction by the developed algorithm.

  8. Reconstructing 3-D skin surface motion for the DIET breast cancer screening system.

    PubMed

    Botterill, Tom; Lotz, Thomas; Kashif, Amer; Chase, J Geoffrey

    2014-05-01

    Digital image-based elasto-tomography (DIET) is a prototype system for breast cancer screening. A breast is imaged while being vibrated, and the observed surface motion is used to infer the internal stiffness of the breast, hence identifying tumors. This paper describes a computer vision system for accurately measuring 3-D surface motion. A model-based segmentation is used to identify the profile of the breast in each image, and the 3-D surface is reconstructed by fitting a model to the profiles. The surface motion is measured using a modern optical flow implementation customized to the application, then trajectories of points on the 3-D surface are given by fusing the optical flow with the reconstructed surfaces. On data from human trials, the system is shown to exceed the performance of an earlier marker-based system at tracking skin surface motion. We demonstrate that the system can detect a 10 mm tumor in a silicone phantom breast.

  9. Scattering-type scanning near-field optical microscopy with reconstruction of vertical interaction

    PubMed Central

    Wang, Le; Xu, Xiaoji G.

    2015-01-01

    Scattering-type scanning near-field optical microscopy provides access to super-resolution spectroscopic imaging of the surfaces of a variety of materials and nanostructures. In addition to chemical identification, it enables observations of nano-optical phenomena, such as mid-infrared plasmons in graphene and phonon polaritons in boron nitride. Despite the high lateral spatial resolution, scattering-type near-field optical microscopy is not able to provide characteristics of near-field responses in the vertical dimension, normal to the sample surface. Here, we present an accurate and fast reconstruction method to obtain vertical characteristics of near-field interactions. For its first application, we investigated the bound electromagnetic field component of surface phonon polaritons on the surface of boron nitride nanotubes and found that it decays within 20 nm with a considerable phase change in the near-field signal. The method is expected to provide characterization of the vertical field distribution of a wide range of nano-optical materials and structures. PMID:26592949

  10. Comparisons between real and complex Gauss wavelet transform methods of three-dimensional shape reconstruction

    NASA Astrophysics Data System (ADS)

    Xu, Luopeng; Dan, Youquan; Wang, Qingyuan

    2015-10-01

    The continuous wavelet transform (CWT) introduces an expandable spatial and frequency window which can overcome the inferiority of localization characteristic in Fourier transform and windowed Fourier transform. The CWT method is widely applied in the non-stationary signal analysis field including optical 3D shape reconstruction with remarkable performance. In optical 3D surface measurement, the performance of CWT for optical fringe pattern phase reconstruction usually depends on the choice of wavelet function. A large kind of wavelet functions of CWT, such as Mexican Hat wavelet, Morlet wavelet, DOG wavelet, Gabor wavelet and so on, can be generated from Gauss wavelet function. However, so far, application of the Gauss wavelet transform (GWT) method (i.e. CWT with Gauss wavelet function) in optical profilometry is few reported. In this paper, the method using GWT for optical fringe pattern phase reconstruction is presented first and the comparisons between real and complex GWT methods are discussed in detail. The examples of numerical simulations are also given and analyzed. The results show that both the real GWT method along with a Hilbert transform and the complex GWT method can realize three-dimensional surface reconstruction; and the performance of reconstruction generally depends on the frequency domain appearance of Gauss wavelet functions. For the case of optical fringe pattern of large phase variation with position, the performance of real GWT is better than that of complex one due to complex Gauss series wavelets existing frequency sidelobes. Finally, the experiments are carried out and the experimental results agree well with our theoretical analysis.

  11. FAST TRACK COMMUNICATION Spectral signatures of the surface reconstructions of Au(110)/electrolyte interfaces

    NASA Astrophysics Data System (ADS)

    Smith, C. I.; Bowfield, A.; Almond, N. J.; Mansley, C. P.; Convery, J. H.; Weightman, P.

    2010-10-01

    It is demonstrated that the (1 × 1) structure and the (1 × 2) and (1 × 3) surface reconstructions that occur at Au(110)/electrolyte interfaces have unique optical fingerprints. The optical fingerprints are potential, pH and anion dependent and have potential for use in monitoring dynamic changes at this interface. We also observe a specific reflection anisotropy spectroscopy signature that may arise from anions adsorbed on the (1 × 1) structure of Au(110).

  12. Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique.

    PubMed

    Liu, Rui; Milkie, Daniel E; Kerlin, Aaron; MacLennan, Bryan; Ji, Na

    2014-01-27

    In traditional zonal wavefront sensing for adaptive optics, after local wavefront gradients are obtained, the entire wavefront can be calculated by assuming that the wavefront is a continuous surface. Such an approach will lead to sub-optimal performance in reconstructing wavefronts which are either discontinuous or undersampled by the zonal wavefront sensor. Here, we report a new method to reconstruct the wavefront by directly measuring local wavefront phases in parallel using multidither coherent optical adaptive technique. This method determines the relative phases of each pupil segment independently, and thus produces an accurate wavefront for even discontinuous wavefronts. We implemented this method in an adaptive optical two-photon fluorescence microscopy and demonstrated its superior performance in correcting large or discontinuous aberrations.

  13. Spatio-temporal image-based parametric water surface reconstruction: a novel methodology based on refraction

    NASA Astrophysics Data System (ADS)

    Engelen, L.; Creëlle, S.; Schindfessel, L.; De Mulder, T.

    2018-03-01

    This paper presents a low-cost and easy-to-implement image-based reconstruction technique for laboratory experiments, which results in a temporal description of the water surface topography. The distortion due to refraction of a known pattern, located below the water surface, is used to fit a low parameter surface model that describes the time-dependent and three-dimensional surface variation. Instead of finding the optimal water depth for characteristic points on the surface, the deformation of the entire pattern is compared to its original shape. This avoids the need for feature tracking adopted in similar techniques, which improves the robustness to suboptimal optical conditions and small-scale, high-frequency surface perturbations. Experimental validation, by comparison with water depth measurements using a level gauge and pressure sensor, proves sub-millimetre accuracy for smooth and steady surface shapes. Although such accuracy cannot be achieved in case of highly dynamic surface phenomena, the low-frequency and large-scale free surface oscillations can still be measured with a temporal and spatial resolution mostly limited by the available optical set-up. The technique is initially intended for periodic surface phenomena, but the results presented in this paper indicate that also irregular surface shapes can robustly be reconstructed. Therefore, the presented technique is a promising tool for other research applications that require non-intrusive, low-cost surface measurements while maintaining visual access to the water below the surface. The latter ensures that the suggested surface reconstruction is compatible with simultaneous image-based velocity measurements, enabling a detailed study of the flow.

  14. Novel fusion for hybrid optical/microcomputed tomography imaging based on natural light surface reconstruction and iterated closest point

    NASA Astrophysics Data System (ADS)

    Ning, Nannan; Tian, Jie; Liu, Xia; Deng, Kexin; Wu, Ping; Wang, Bo; Wang, Kun; Ma, Xibo

    2014-02-01

    In mathematics, optical molecular imaging including bioluminescence tomography (BLT), fluorescence tomography (FMT) and Cerenkov luminescence tomography (CLT) are concerned with a similar inverse source problem. They all involve the reconstruction of the 3D location of a single/multiple internal luminescent/fluorescent sources based on 3D surface flux distribution. To achieve that, an accurate fusion between 2D luminescent/fluorescent images and 3D structural images that may be acquired form micro-CT, MRI or beam scanning is extremely critical. However, the absence of a universal method that can effectively convert 2D optical information into 3D makes the accurate fusion challengeable. In this study, to improve the fusion accuracy, a new fusion method for dual-modality tomography (luminescence/fluorescence and micro-CT) based on natural light surface reconstruction (NLSR) and iterated closest point (ICP) was presented. It consisted of Octree structure, exact visual hull from marching cubes and ICP. Different from conventional limited projection methods, it is 360° free-space registration, and utilizes more luminescence/fluorescence distribution information from unlimited multi-orientation 2D optical images. A mouse mimicking phantom (one XPM-2 Phantom Light Source, XENOGEN Corporation) and an in-vivo BALB/C mouse with implanted one luminescent light source were used to evaluate the performance of the new fusion method. Compared with conventional fusion methods, the average error of preset markers was improved by 0.3 and 0.2 pixels from the new method, respectively. After running the same 3D internal light source reconstruction algorithm of the BALB/C mouse, the distance error between the actual and reconstructed internal source was decreased by 0.19 mm.

  15. Enhanced magneto-optical imaging of internal stresses in the removed surface layer

    NASA Astrophysics Data System (ADS)

    Agalidi, Yuriy; Kozhukhar, Pavlo; Levyi, Sergii; Turbin, Dmitriy

    2015-10-01

    The paper describes a software method of reconstructing the state of the removed surface layer by visualising internal stresses in the underlying layers of the sample. Such a problem typically needs to be solved as part of forensic investigation that aims to reveal original marking of a sample with removed surface layer. For example, one may be interested in serial numbers of weapons or vehicles that had the surface layer of metal removed from the number plate. Experimental results of studying gradient internal stress fields in ferromagnetic sample using the NDI method of magneto-optical imaging (MOI) are presented. Numerical modelling results of internal stresses enclosed in the surface marking region are analysed and compared to the experimental results of magneto-optical imaging (MOI). MOI correction algorithm intended for reconstructing internal stress fields in the removed surface layer by extracting stresses retained by the underlying layers is described. Limiting ratios between parameters of a marking font are defined for the considered correction algorithm. Enhanced recognition properties for hidden stresses left by marking symbols are experimentally verified and confirmed.

  16. Structured light stereo catadioptric scanner based on a spherical mirror

    NASA Astrophysics Data System (ADS)

    Barone, S.; Neri, P.; Paoli, A.; Razionale, A. V.

    2018-08-01

    The present paper describes the development and characterization of a structured light stereo catadioptric scanner for the omnidirectional reconstruction of internal surfaces. The proposed approach integrates two digital cameras, a multimedia projector and a spherical mirror, which is used to project the structured light patterns generated by the light emitter and, at the same time, to reflect into the cameras the modulated fringe patterns diffused from the target surface. The adopted optical setup defines a non-central catadioptric system, thus relaxing any geometrical constraint in the relative placement between optical devices. An analytical solution for the reflection on a spherical surface is proposed with the aim at modelling forward and backward projection tasks for a non-central catadioptric setup. The feasibility of the proposed active catadioptric scanner has been verified by reconstructing various target surfaces. Results demonstrated a great influence of the target surface distance from the mirror's centre on the measurement accuracy. The adopted optical configuration allows the definition of a metrological 3D scanner for surfaces disposed within 120 mm from the mirror centre.

  17. Development of a three-dimensional correction method for optical distortion of flow field inside a liquid droplet.

    PubMed

    Gim, Yeonghyeon; Ko, Han Seo

    2016-04-15

    In this Letter, a three-dimensional (3D) optical correction method, which was verified by simulation, was developed to reconstruct droplet-based flow fields. In the simulation, a synthetic phantom was reconstructed using a simultaneous multiplicative algebraic reconstruction technique with three detectors positioned at the synthetic object (represented by the phantom), with offset angles of 30° relative to each other. Additionally, a projection matrix was developed using the ray tracing method. If the phantom is in liquid, the image of the phantom can be distorted since the light passes through a convex liquid-vapor interface. Because of the optical distortion effect, the projection matrix used to reconstruct a 3D field should be supplemented by the revision ray, instead of the original projection ray. The revision ray can be obtained from the refraction ray occurring on the surface of the liquid. As a result, the error on the reconstruction field of the phantom could be reduced using the developed optical correction method. In addition, the developed optical method was applied to a Taylor cone which was caused by the high voltage between the droplet and the substrate.

  18. Experimental evaluation of the optical quality of DMD SLM for its application as Fourier holograms displaying device

    NASA Astrophysics Data System (ADS)

    Molodtsov, D. Y.; Cheremkhin, P. A.; Krasnov, V. V.; Rodin, V. G.

    2016-04-01

    In this paper, the optical quality of micromirror DMD spatial light modulator (SLM) is evaluated and its applicability as an output device for holographic filters in dispersive correlators is analyzed. The possibility of using of DMD SLM extracted from consumer DLP-projector was experimentally evaluated by displaying of Fourier holograms. Software for displaying of holograms was developed. Experiments on holograms reconstruction was conducted with a different number of holograms pixels (and different placement on SLM). Reduction of number of pixels of output hologram (i.e. size of minimum resolvable element) led to improvement of reconstructed image quality. The evaluation shows that not every DMD-chip has acceptable optical quality for its application as display device for Fourier holograms. It was determined that major factor of reconstructed image quality degradation is a curvature of surface of SLM or its safety glass. Ranging hologram size allowed to estimate approximate size of sufficiently flat area of SLM matrix. For tested SLM it was about 1.5 mm. Further hologram size increase led to significant reconstructed image quality degradation. Developed and applied a technique allows to quickly estimate maximum size of holograms that can be displayed with specific SLM without significant degradation of reconstructed image. Additionally it allows to identify areas on the SLM with increased curvature of the surface.

  19. Real time 3D scanner: investigations and results

    NASA Astrophysics Data System (ADS)

    Nouri, Taoufik; Pflug, Leopold

    1993-12-01

    This article presents a concept of reconstruction of 3-D objects using non-invasive and touch loss techniques. The principle of this method is to display parallel interference optical fringes on an object and then to record the object under two angles of view. According to an appropriated treatment one reconstructs the 3-D object even when the object has no symmetrical plan. The 3-D surface data is available immediately in digital form for computer- visualization and for analysis software tools. The optical set-up for recording the 3-D object, the 3-D data extraction and treatment, as well as the reconstruction of the 3-D object are reported and commented on. This application is dedicated for reconstructive/cosmetic surgery, CAD, animation and research purposes.

  20. Phase compensation with fiber optic surface profile acquisition and reconstruction system

    NASA Astrophysics Data System (ADS)

    Bo, En; Duan, Fajie; Feng, Fan; Lv, Changrong; Xiao, Fu; Huang, Tingting

    2015-02-01

    A fiber-optic sinusoidal phase modulating (SPM) interferometer was proposed for the acquisition and reconstruction of three-dimensional (3-D) surface profile. Sinusoidal phase modulation was induced by controlling the injection current of light source. The surface profile was constructed on the basis of fringe projection. Fringe patterns are vulnerable to external disturbances such as mechanical vibration and temperature fluctuation, which cause phase drift in the interference signal and decrease measuring accuracy. A closed-loop feedback phase compensation system was built. In the subsystem, the initial phase of the interference signal, which was caused by the initial optical path difference between interference arms, could be demodulated using phase generated carrier (PGC) method and counted out using coordinated rotation digital computer (CORDIC) , then a compensation voltage was generated for the PZT driver. The bias value of external disturbances superimposed on fringe patterns could be reduced to about 50 mrad, and the phase stability for interference fringes was less than 6 mrad. The feasibility for real-time profile measurement has been verified.

  1. Design and verification of the miniature optical system for small object surface profile fast scanning

    NASA Astrophysics Data System (ADS)

    Chi, Sheng; Lee, Shu-Sheng; Huang, Jen, Jen-Yu; Lai, Ti-Yu; Jan, Chia-Ming; Hu, Po-Chi

    2016-04-01

    As the progress of optical technologies, different commercial 3D surface contour scanners are on the market nowadays. Most of them are used for reconstructing the surface profile of mold or mechanical objects which are larger than 50 mm×50 mm× 50 mm, and the scanning system size is about 300 mm×300 mm×100 mm. There are seldom optical systems commercialized for surface profile fast scanning for small object size less than 10 mm×10 mm×10 mm. Therefore, a miniature optical system has been designed and developed in this research work for this purpose. Since the most used scanning method of such system is line scan technology, we have developed pseudo-phase shifting digital projection technology by adopting projecting fringes and phase reconstruction method. A projector was used to project a digital fringe patterns on the object, and the fringes intensity images of the reference plane and of the sample object were recorded by a CMOS camera. The phase difference between the plane and object can be calculated from the fringes images, and the surface profile of the object was reconstructed by using the phase differences. The traditional phase shifting method was accomplished by using PZT actuator or precisely controlled motor to adjust the light source or grating and this is one of the limitations for high speed scanning. Compared with the traditional optical setup, we utilized a micro projector to project the digital fringe patterns on the sample. This diminished the phase shifting processing time and the controlled phase differences between the shifted phases become more precise. Besides, the optical path design based on a portable device scanning system was used to minimize the size and reduce the number of the system components. A screwdriver section about 7mm×5mm×5mm has been scanned and its surface profile was successfully restored. The experimental results showed that the measurement area of our system can be smaller than 10mm×10mm, the precision reached to +/-10μm, and the scanning time for each surface of an object was less than 15 seconds. This has proved that our system own the potential to be a fast scanning scanner for small object surface profile scanning.

  2. Reconstruction of perfect ZnO nanowires facets with high optical quality

    NASA Astrophysics Data System (ADS)

    Zehani, E.; Hassani, S.; Lusson, A.; Vigneron, J.; Etcheberry, A.; Galtier, P.; Sallet, V.

    2017-07-01

    ZnO nanowires were grown on sapphire substrates using metalorganic chemical vapor deposition. The samples were subsequently annealed under zinc pressure in a vacuum-sealed ampoule, at temperature ranging from 500 to 800 °C. The originality and the main motivation to provide a zinc-rich atmosphere were to prevent the out-diffusion of zinc from the nanowires. In doing so, the perfect structural properties and the morphology of the nanowires are kept. Interestingly, photoluminescence experiments performed on nanowires annealed in a narrow window of temperature [580-620 °C] show a spectacular improvement of the optical quality, as transitions commonly observable in high quality bulk samples are found. In addition, the intensity of the so-called "surface excitons" (SX) is strongly decreased. To accurately investigate the chemical modifications of the surface, XPS experiments were carried out and show that zinc hydroxide species and/or Zn(OH)2 sublayer were partially removed from the surface. These results suggest that the annealing process in zinc vapor helps to properly reconstruct the surface of ZnO nanowires, and improves the optical quality of their core. Such a thermal treatment at moderate temperature should be beneficial to nanodevices involving surface reaction, e.g. gas sensors.

  3. 3D quantitative photoacoustic image reconstruction using Monte Carlo method and linearization

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Tsujita, Kazuhiro; Kushibiki, Toshihiro; Ishihara, Miya

    2018-02-01

    To quantify the functional and structural information of peripheral blood vessels for diagnoses of diseases which affects peripheral blood vessels such as diabetes and peripheral vascular disease, a 3D quantitative photoacoustic tomography (QPAT) reconstructing the optical properties such as the absorption coefficient reflecting microvascular structures and hemoglobin concentration and oxygenation saturation is studied. QPAT image reconstruction algorithms based on radiative transfer equation (RTE) and photon diffusion equation (PDE) have been proposed. However, it is not easy to use RTE in the clinical practice because of the huge computational load and long calculation time. On the other hand, it is always considered problematic to use PDE, because it does not approximate RTE well near the illuminating position. In this study, we developed the 3D QPAT image reconstruction using Monte Carlo (MC) method which approximates RTE better than PDE to reconstruct the optical properties in the region near the illuminating surface. To reduce the calculation time, we applied linearization. The QPAT image reconstruction algorithm with MC method and linearization was examined in numerical simulations and phantom experiment by use of a scanning system with a single probe consisting of P(VDF-TrFE) piezo electric film and optical fiber.

  4. Surface profiling interferometer

    DOEpatents

    Takacs, Peter Z.; Qian, Shi-Nan

    1989-01-01

    The design of a long-trace surface profiler for the non-contact measurement of surface profile, slope error and curvature on cylindrical synchrotron radiation (SR) mirrors. The optical system is based upon the concept of a pencil-beam interferometer with an inherent large depth-of-field. The key feature of the optical system is the zero-path-difference beam splitter, which separates the laser beam into two colinear, variable-separation probe beams. A linear array detector is used to record the interference fringe in the image, and analysis of the fringe location as a function of scan position allows one to reconstruct the surface profile. The optical head is mounted on an air bearing slide with the capability to measure long aspheric optics, typical of those encountered in SR applications. A novel feature of the optical system is the use of a transverse "outrigger" beam which provides information on the relative alignment of the scan axis to the cylinder optic symmetry axis.

  5. Three-dimensional optical reconstruction of vocal fold kinematics using high-speed video with a laser projection system

    PubMed Central

    Luegmair, Georg; Mehta, Daryush D.; Kobler, James B.; Döllinger, Michael

    2015-01-01

    Vocal fold kinematics and its interaction with aerodynamic characteristics play a primary role in acoustic sound production of the human voice. Investigating the temporal details of these kinematics using high-speed videoendoscopic imaging techniques has proven challenging in part due to the limitations of quantifying complex vocal fold vibratory behavior using only two spatial dimensions. Thus, we propose an optical method of reconstructing the superior vocal fold surface in three spatial dimensions using a high-speed video camera and laser projection system. Using stereo-triangulation principles, we extend the camera-laser projector method and present an efficient image processing workflow to generate the three-dimensional vocal fold surfaces during phonation captured at 4000 frames per second. Initial results are provided for airflow-driven vibration of an ex vivo vocal fold model in which at least 75% of visible laser points contributed to the reconstructed surface. The method captures the vertical motion of the vocal folds at a high accuracy to allow for the computation of three-dimensional mucosal wave features such as vibratory amplitude, velocity, and asymmetry. PMID:26087485

  6. Three-dimensional measurement of small inner surface profiles using feature-based 3-D panoramic registration

    PubMed Central

    Gong, Yuanzheng; Seibel, Eric J.

    2017-01-01

    Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection. PMID:28286351

  7. Three-dimensional measurement of small inner surface profiles using feature-based 3-D panoramic registration

    NASA Astrophysics Data System (ADS)

    Gong, Yuanzheng; Seibel, Eric J.

    2017-01-01

    Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection.

  8. LASER APPLICATIONS IN MEDICINE: Analysis of distortions in the velocity profiles of suspension flows inside a light-scattering medium upon their reconstruction from the optical coherence Doppler tomograph signal

    NASA Astrophysics Data System (ADS)

    Bykov, A. V.; Kirillin, M. Yu; Priezzhev, A. V.

    2005-11-01

    Model signals from one and two plane flows of a particle suspension are obtained for an optical coherence Doppler tomograph (OCDT) by the Monte-Carlo method. The optical properties of particles mimic the properties of non-aggregating erythrocytes. The flows are considered in a stationary scattering medium with optical properties close to those of the skin. It is shown that, as the flow position depth increases, the flow velocity determined from the OCDT signal becomes smaller than the specified velocity and the reconstructed profile extends in the direction of the distant boundary, which is accompanied by the shift of its maximum. In the case of two flows, an increase in the velocity of the near-surface flow leads to the overestimated values of velocity of the reconstructed profile of the second flow. Numerical simulations were performed by using a multiprocessor parallel-architecture computer.

  9. Minimizing camera-eye optical aberrations during the 3D reconstruction of retinal structures

    NASA Astrophysics Data System (ADS)

    Aldana-Iuit, Javier; Martinez-Perez, M. Elena; Espinosa-Romero, Arturo; Diaz-Uribe, Rufino

    2010-05-01

    3D reconstruction of blood vessels is a powerful visualization tool for physicians, since it allows them to refer to qualitative representation of their subject of study. In this paper we propose a 3D reconstruction method of retinal vessels from fundus images. The reconstruction method propose herein uses images of the same retinal structure in epipolar geometry. Images are preprocessed by RISA system for segmenting blood vessels and obtaining feature points for correspondences. The correspondence points process is solved using correlation. The LMedS analysis and Graph Transformation Matching algorithm are used for outliers suppression. Camera projection matrices are computed with the normalized eight point algorithm. Finally, we retrieve 3D position of the retinal tree points by linear triangulation. In order to increase the power of visualization, 3D tree skeletons are represented by surfaces via generalized cylinders whose radius correspond to morphological measurements obtained by RISA. In this paper the complete calibration process including the fundus camera and the optical properties of the eye, the so called camera-eye system is proposed. On one hand, the internal parameters of the fundus camera are obtained by classical algorithms using a reference pattern. On the other hand, we minimize the undesirable efects of the aberrations induced by the eyeball optical system assuming that contact enlarging lens corrects astigmatism, spherical and coma aberrations are reduced changing the aperture size and eye refractive errors are suppressed adjusting camera focus during image acquisition. Evaluation of two self-calibration proposals and results of 3D blood vessel surface reconstruction are presented.

  10. Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism.

    PubMed

    Birkenfeld, Judith; de Castro, Alberto; Ortiz, Sergio; Pascual, Daniel; Marcos, Susana

    2013-06-28

    The optical properties of the crystalline lens are determined by its shape and refractive index distribution. However, to date, those properties have not been measured together in the same lens, and therefore their relative contributions to optical aberrations are not fully understood. The shape, the optical path difference, and the focal length of ten porcine lenses (age around 6 months) were measured in vitro using Optical Coherence Tomography and laser ray tracing. The 3D Gradient Refractive Index distribution (GRIN) was reconstructed by means of an optimization method based on genetic algorithms. The optimization method searched for the parameters of a 4-variable GRIN model that best fits the distorted posterior surface of the lens in 18 different meridians. Spherical aberration and astigmatism of the lenses were estimated using computational ray tracing, with the reconstructed GRIN lens and an equivalent homogeneous refractive index. For all lenses the posterior radius of curvature was systematically steeper than the anterior one, and the conic constant of both the anterior and posterior positive surfaces was positive. In average, the measured focal length increased with increasing pupil diameter, consistent with a crystalline lens negative spherical aberration. The refractive index of nucleus and surface was reconstructed to an average value of 1.427 and 1.364, respectively, for 633 nm. The results of the GRIN reconstruction showed a wide distribution of the index in all lens samples. The GRIN shifted spherical aberration towards negative values when compared to a homogeneous index. A negative spherical aberration with GRIN was found in 8 of the 10 lenses. The presence of GRIN also produced a decrease in the total amount of lens astigmatism in most lenses, while the axis of astigmatism was only little influenced by the presence of GRIN. To our knowledge, this study is the first systematic experimental study of the relative contribution of geometry and GRIN to the aberrations in a mammal lens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Method and apparatus for sensor fusion

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Inventor); Shaw, Scott (Inventor); Defigueiredo, Rui J. P. (Inventor)

    1991-01-01

    Method and apparatus for fusion of data from optical and radar sensors by error minimization procedure is presented. The method was applied to the problem of shape reconstruction of an unknown surface at a distance. The method involves deriving an incomplete surface model from an optical sensor. The unknown characteristics of the surface are represented by some parameter. The correct value of the parameter is computed by iteratively generating theoretical predictions of the radar cross sections (RCS) of the surface, comparing the predicted and the observed values for the RCS, and improving the surface model from results of the comparison. Theoretical RCS may be computed from the surface model in several ways. One RCS prediction technique is the method of moments. The method of moments can be applied to an unknown surface only if some shape information is available from an independent source. The optical image provides the independent information.

  12. Fluorescence laminar optical tomography for brain imaging: system implementation and performance evaluation.

    PubMed

    Azimipour, Mehdi; Sheikhzadeh, Mahya; Baumgartner, Ryan; Cullen, Patrick K; Helmstetter, Fred J; Chang, Woo-Jin; Pashaie, Ramin

    2017-01-01

    We present our effort in implementing a fluorescence laminar optical tomography scanner which is specifically designed for noninvasive three-dimensional imaging of fluorescence proteins in the brains of small rodents. A laser beam, after passing through a cylindrical lens, scans the brain tissue from the surface while the emission signal is captured by the epi-fluorescence optics and is recorded using an electron multiplication CCD sensor. Image reconstruction algorithms are developed based on Monte Carlo simulation to model light–tissue interaction and generate the sensitivity matrices. To solve the inverse problem, we used the iterative simultaneous algebraic reconstruction technique. The performance of the developed system was evaluated by imaging microfabricated silicon microchannels embedded inside a substrate with optical properties close to the brain as a tissue phantom and ultimately by scanning brain tissue in vivo. Details of the hardware design and reconstruction algorithms are discussed and several experimental results are presented. The developed system can specifically facilitate neuroscience experiments where fluorescence imaging and molecular genetic methods are used to study the dynamics of the brain circuitries.

  13. Giant (12 ×12 ) and (4 ×8 ) reconstructions of the 6 H -SiC(0001) surface obtained by progressive enrichment in Si atoms

    NASA Astrophysics Data System (ADS)

    Martrou, David; Leoni, Thomas; Chaumeton, Florian; Castanié, Fabien; Gauthier, Sébastien; Bouju, Xavier

    2018-02-01

    Silicon carbide (SiC) is nowadays a major material for applications in high power electronics, quantum optics, or nitride semiconductors growth. Mastering the surface of SiC substrate is crucial to obtain reproducible results. Previous studies on the 6 H -SiC(0001) surface have determined several reconstructions, including the (√{3 }×√{3 }) -R 30∘ and the (3 ×3 ) . Here, we introduce a process of progressive Si enrichment that leads to the formation of two reconstructions, the giant (12 ×12 ) and the (4 ×8 ) . From electron diffraction and tunneling microscopy completed by molecular dynamics simulations, we build models introducing a type of Si adatom bridging two Si surface atoms. Using these Si bridges, we also propose a structure for two other reconstructions, the (2 √{3 }×2 √{3 }) -R 30∘ and the (2 √{3 }×2 √{13 } ). We show that five reconstructions follow each other with Si coverage ranging from 1 and 1.444 monolayer. This result opens the way to greatly improve the control of 6 H -SiC(0001) at the atomic scale.

  14. Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses.

    PubMed

    de Castro, Alberto; Birkenfeld, Judith; Maceo, Bianca; Manns, Fabrice; Arrieta, Esdras; Parel, Jean-Marie; Marcos, Susana

    2013-09-11

    To estimate changes in surface shape and gradient refractive index (GRIN) profile in primate lenses as a function of accommodation. To quantify the contribution of surface shape and GRIN to spherical aberration changes with accommodation. Crystalline lenses from 15 cynomolgus monkeys were studied in vitro under different levels of accommodation produced by a stretching system. Lens shape was obtained from optical coherence tomography (OCT) cross-sectional images. The GRIN was reconstructed with a search algorithm using the optical path measured from OCT images and the measured back focal length. The spherical aberration of the lens was estimated as a function of accommodation using the reconstructed GRIN and a homogeneous refractive index. The lens anterior and posterior radii of curvature decreased with increasing lens power. Both surfaces exhibited negative asphericities in the unaccommodated state. The anterior surface conic constant shifted toward less negative values with accommodation, while the value of the posterior remained constant. GRIN parameters remained constant with accommodation. The lens spherical aberration with GRIN distribution was negative and higher in magnitude than that with a homogeneous equivalent refractive index (by 29% and 53% in the unaccommodated and fully accommodated states, respectively). Spherical aberration with the equivalent refractive index shifted with accommodation toward negative values (-0.070 μm/diopter [D]), but the reconstructed GRIN shifted it farther (-0.124 μm/D). When compared with the lens with the homogeneous equivalent refractive index, the reconstructed GRIN lens has more negative spherical aberration and a larger shift toward more negative values with accommodation.

  15. Reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Long, D.; Hong, Y.; Zeng, C.; Han, Z.

    2016-12-01

    Reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau Yaokui Cui, Di Long, Yang Hong, Chao Zeng, and Zhongying Han State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China Abstract: Soil moisture is a key variable in the exchange of water and energy between the land surface and the atmosphere, especially over the Tibetan Plateau (TP) which is climatically and hydrologically sensitive as the world's third pole. Large-scale consistent and continuous soil moisture datasets are of importance to meteorological and hydrological applications, such as weather forecasting and drought monitoring. The Fengyun-3B Microwave Radiation Imager (FY-3B/MWRI) soil moisture product is one of relatively new passive microwave products. The FY-3B/MWRI soil moisture product is reconstructed using the back-propagation neural network (BP-NN) based on reconstructed MODIS products, i.e., LST, NDVI, and albedo using different gap-filling methods. The reconstruction method of generating the soil moisture product not only considers the relationship between the soil moisture and the NDVI, LST, and albedo, but also the relationship between the soil moisture and the four-dimensional variation using the longitude, latitude, DEM and day of year (DOY). Results show that the soil moisture could be well reconstructed with R2 larger than 0.63, and RMSE less than 0.1 cm3 cm-3 and bias less than 0.07 cm3 cm-3 for both frozen and unfrozen periods, compared with in-situ measurements in the central TP. The reconstruction method is subsequently applied to generate spatially consistent and temporally continuous surface soil moisture over the TP. The reconstructed FY-3B/MWRI soil moisture product could be valuable in studying meteorology, hydrology, and agriculture over the TP. Keywords: FY-3B/MWRI; Soil moisture; Reconstruction; Tibetan Plateau

  16. Tomographic reconstruction of layered tissue structures

    NASA Astrophysics Data System (ADS)

    Hielscher, Andreas H.; Azeez-Jan, Mohideen; Bartel, Sebastian

    2001-11-01

    In recent years the interest in the determination of optical properties of layered tissue structure has resurfaced. Applications include, for example, studies on layered skin tissue and underlying muscles, imaging of the brain underneath layers of skin, skull, and meninges, and imaging of the fetal head in utero beneath the layered structures of the maternal abdomen. In this work we approach the problem of layered structures in the framework of model-based iterative image reconstruction schemes. These schemes are currently developed to determine the optical properties inside tissue from measurement on the surface. If applied to layered structure these techniques yield substantial improvements over currently available semi-analytical approaches.

  17. Measurement of the surface morphology of plasma facing components on the EAST tokamak by a laser speckle interferometry approach

    NASA Astrophysics Data System (ADS)

    Hongbei, WANG; Xiaoqian, CUI; Yuanbo, LI; Mengge, ZHAO; Shuhua, LI; Guangnan, LUO; Hongbin, DING

    2018-03-01

    The laser speckle interferometry approach provides the possibility of an in situ optical non-contacted measurement for the surface morphology of plasma facing components (PFCs), and the reconstruction image of the PFC surface morphology is computed by a numerical model based on a phase unwrapping algorithm. A remote speckle interferometry measurement at a distance of three meters for real divertor tiles retired from EAST was carried out in the laboratory to simulate a real detection condition on EAST. The preliminary surface morphology of the divertor tiles was well reproduced by the reconstructed geometric image. The feasibility and reliability of this approach for the real-time measurement of PFCs have been demonstrated.

  18. Image reconstruction of muon tomographic data using a density-based clustering method

    NASA Astrophysics Data System (ADS)

    Perry, Kimberly B.

    Muons are subatomic particles capable of reaching the Earth's surface before decaying. When these particles collide with an object that has a high atomic number (Z), their path of travel changes substantially. Tracking muon movement through shielded containers can indicate what types of materials lie inside. This thesis proposes using a density-based clustering algorithm called OPTICS to perform image reconstructions using muon tomographic data. The results show that this method is capable of detecting high-Z materials quickly, and can also produce detailed reconstructions with large amounts of data.

  19. Speckless head-up display on two spatial light modulators

    NASA Astrophysics Data System (ADS)

    Siemion, Andrzej; Ducin, Izabela; Kakarenko, Karol; Makowski, Michał; Siemion, Agnieszka; Suszek, Jarosław; Sypek, Maciej; Wojnowski, Dariusz; Jaroszewicz, Zbigniew; Kołodziejczyk, Andrzej

    2010-12-01

    There is a continuous demand for the computer generated holograms to give an almost perfect reconstruction with a reasonable cost of manufacturing. One method of improving the image quality is to illuminate a Fourier hologram with a quasi-random, but well known, light field phase distribution. It can be achieved with a lithographically produced phase mask. Up to date, the implementation of the lithographic technique is relatively complex and time and money consuming, which is why we have decided to use two Spatial Light Modulators (SLM). For the correctly adjusted light polarization a SLM acts as a pure phase modulator with 256 adjustable phase levels between 0 and 2π. The two modulators give us an opportunity to use the whole surface of the device and to reduce the size of the experimental system. The optical system with one SLM can also be used but it requires dividing the active surface into halves (one for the Fourier hologram and the second for the quasi-random diffuser), which implies a more complicated optical setup. A larger surface allows to display three Fourier holograms, each for one primary colour: red, green and blue. This allows to reconstruct almost noiseless colourful dynamic images. In this work we present the results of numerical simulations of image reconstructions with the use of two SLM displays.

  20. Surface Profile and Stress Field Evaluation using Digital Gradient Sensing Method

    DOE PAGES

    Miao, C.; Sundaram, B. M.; Huang, L.; ...

    2016-08-09

    Shape and surface topography evaluation from measured orthogonal slope/gradient data is of considerable engineering significance since many full-field optical sensors and interferometers readily output accurate data of that kind. This has applications ranging from metrology of optical and electronic elements (lenses, silicon wafers, thin film coatings), surface profile estimation, wave front and shape reconstruction, to name a few. In this context, a new methodology for surface profile and stress field determination based on a recently introduced non-contact, full-field optical method called digital gradient sensing (DGS) capable of measuring small angular deflections of light rays coupled with a robust finite-difference-based least-squaresmore » integration (HFLI) scheme in the Southwell configuration is advanced here. The method is demonstrated by evaluating (a) surface profiles of mechanically warped silicon wafers and (b) stress gradients near growing cracks in planar phase objects.« less

  1. Observer for a thick layer of solid deuterium-tritium using backlit optical shadowgraphy and interferometry.

    PubMed

    Choux, Alexandre; Busvelle, Eric; Gauthier, Jean Paul; Pascal, Ghislain

    2007-11-20

    Our work is in the context of the French "laser mégajoule" project, about fusion by inertial confinement. The project leads to the problem of characterizing the inner surface, of the approximately spherical target, by optical shadowgraphy techniques. Our work is entirely based on the basic idea that optical shadowgraphy produces "caustics" of systems of optical rays, which contain a great deal of 3D information about the surface to be characterized. We develop a method of 3D reconstruction based upon this idea plus a "small perturbations" technique. Although computations are made in the special "spherical" case, the method is in fact general and may be extended to several other situations.

  2. Three-dimensional optical topography of brain activity in infants watching videos of human movement

    NASA Astrophysics Data System (ADS)

    Correia, Teresa; Lloyd-Fox, Sarah; Everdell, Nick; Blasi, Anna; Elwell, Clare; Hebden, Jeremy C.; Gibson, Adam

    2012-03-01

    We present 3D optical topography images reconstructed from data obtained previously while infants observed videos of adults making natural movements of their eyes and hands. The optical topography probe was placed over the temporal cortex, which in adults is responsible for cognitive processing of similar stimuli. Increases in oxyhaemoglobin were measured and reconstructed using a multispectral imaging algorithm with spatially variant regularization to optimize depth discrimination. The 3D optical topography images suggest that similar brain regions are activated in infants and adults. Images were presented showing the distribution of activation in a plane parallel to the surface, as well as changes in activation with depth. The time-course of activation was followed in the pixel which demonstrated the largest change, showing that changes could be measured with high temporal resolution. These results suggest that infants a few months old have regions which are specialized for reacting to human activity, and that these subtle changes can be effectively analysed using 3D optical topography.

  3. Absolute surface reconstruction by slope metrology and photogrammetry

    NASA Astrophysics Data System (ADS)

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  4. Accuracy assessment of 3D bone reconstructions using CT: an intro comparison.

    PubMed

    Lalone, Emily A; Willing, Ryan T; Shannon, Hannah L; King, Graham J W; Johnson, James A

    2015-08-01

    Computed tomography provides high contrast imaging of the joint anatomy and is used routinely to reconstruct 3D models of the osseous and cartilage geometry (CT arthrography) for use in the design of orthopedic implants, for computer assisted surgeries and computational dynamic and structural analysis. The objective of this study was to assess the accuracy of bone and cartilage surface model reconstructions by comparing reconstructed geometries with bone digitizations obtained using an optical tracking system. Bone surface digitizations obtained in this study determined the ground truth measure for the underlying geometry. We evaluated the use of a commercially available reconstruction technique using clinical CT scanning protocols using the elbow joint as an example of a surface with complex geometry. To assess the accuracies of the reconstructed models (8 fresh frozen cadaveric specimens) against the ground truth bony digitization-as defined by this study-proximity mapping was used to calculate residual error. The overall mean error was less than 0.4 mm in the cortical region and 0.3 mm in the subchondral region of the bone. Similarly creating 3D cartilage surface models from CT scans using air contrast had a mean error of less than 0.3 mm. Results from this study indicate that clinical CT scanning protocols and commonly used and commercially available reconstruction algorithms can create models which accurately represent the true geometry. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Surface topography characterization using 3D stereoscopic reconstruction of SEM images

    NASA Astrophysics Data System (ADS)

    Vedantha Krishna, Amogh; Flys, Olena; Reddy, Vijeth V.; Rosén, B. G.

    2018-06-01

    A major drawback of the optical microscope is its limitation to resolve finer details. Many microscopes have been developed to overcome the limitations set by the diffraction of visible light. The scanning electron microscope (SEM) is one such alternative: it uses electrons for imaging, which have much smaller wavelength than photons. As a result high magnification with superior image resolution can be achieved. However, SEM generates 2D images which provide limited data for surface measurements and analysis. Often many research areas require the knowledge of 3D structures as they contribute to a comprehensive understanding of microstructure by allowing effective measurements and qualitative visualization of the samples under study. For this reason, stereo photogrammetry technique is employed to convert SEM images into 3D measurable data. This paper aims to utilize a stereoscopic reconstruction technique as a reliable method for characterization of surface topography. Reconstructed results from SEM images are compared with coherence scanning interferometer (CSI) results obtained by measuring a roughness reference standard sample. This paper presents a method to select the most robust/consistent surface texture parameters that are insensitive to the uncertainties involved in the reconstruction technique itself. Results from the two-stereoscopic reconstruction algorithms are also documented in this paper.

  6. Structured illumination assisted microdeflectometry with optical depth scanning capability

    PubMed Central

    Lu, Sheng-Huei; Hua, Hong

    2018-01-01

    Microdeflectometry is a powerful noncontact tool for measuring nanometer defects on a freeform surface. However, it requires a time-consuming process to take measurements at different depths for an extended depth of field (EDOF) and lacks surface information for integrating the measured gradient data to height. We propose an optical depth scanning technique to speed up the measurement process and introduce the structured illumination technique to efficiently determine the focused data among 3D observation and provide surface orientations for reconstructing an unknown surface shape. We demonstrated 3D measurements with an equivalent surface height sensitivity of 7.21 nm and an EDOF of at least 250 μm, which is 15 times that of the diffraction limited depth range. PMID:27607986

  7. Estimation of viscoelastic surface wave parameters using a low cost optical deflection method

    NASA Astrophysics Data System (ADS)

    Brum, J.; Balay, G.; Arzúa, A.; Núñez, I.; Negreira, C.

    2010-01-01

    In this work an optical deflection method was used to study surface vibrations created by a low frequency source placed on the sample's surface. The optical method consists in placing a laser beam perpendicularly the sample's surface (gelatine based phantom). A beam-splitter is placed between the laser and the sample to project the reflected beam into a screen. As the surface moves due to the action of the low frequency source the laser beam on the screen also moves. Recording this movement with a digital camera allow us to reconstruct de surface motion using the light reflection law. If the scattering of the surface is very strong (such the one in biological tissue) a lens is placed between the surface and the beam-splitter to collect the scattered light. As validation method the surface movement was measured using a 10 MHz ultrasonic transducer placed normal to the surface in pulse-eco mode. The optical measurements were in complete agreement with the acoustical measurements. The optical measurement has the following advantages over the acoustic: 2-dimensional motion could be recorded and it is low cost. Since the acquisition was synchronized and the source-laser beam distance is known, measuring the time of flight an estimation of the surface wave velocity is obtained in order to measure the elasticity of the sample. The authors conclude that a reliable optical, low cost method for obtaining surface wave parameters of biological tissue was developed and successfully validate.

  8. Microwave and video sensor fusion for the shape extraction of 3D space objects

    NASA Technical Reports Server (NTRS)

    Shaw, Scott W.; Defigueiredo, Rui J. P.; Krishen, Kumar

    1987-01-01

    A new system for the fusion of optical image data and polarized radar scattering cross-sections is presented. By considering the scattering data in conjunction with image data, the problem of ambiguity can be reduced. Only a small part of the surface needs to be reconstructed from the radar cross-sections; the remaining portion is constrained by the optical image.

  9. Description and recognition of faces from 3D data

    NASA Astrophysics Data System (ADS)

    Coombes, Anne M.; Richards, Robin; Linney, Alfred D.; Bruce, Vicki; Fright, Rick

    1992-12-01

    A method based on differential geometry, is presented for mathematically describing the shape of the facial surface. Three-dimensional data for the face are collected by optical surface scanning. The method allows the segmentation of the face into regions of a particular `surface type,' according to the surface curvature. Eight different surface types are produced which all have perceptually meaningful interpretations. The correspondence of the surface type regions to the facial features are easily visualized, allowing a qualitative assessment of the face. A quantitative description of the face in terms of the surface type regions can be produced and the variation of the description between faces is demonstrated. A set of optical surface scans can be registered together and averages to produce an average male and average female face. Thus an assessment of how individuals vary from the average can be made as well as a general statement about the differences between male and female faces. This method will enable an investigation to be made as to how reliably faces can be individuated by their surface shape which, if feasible, may be the basis of an automatic system for recognizing faces. It also has applications in physical anthropology, for classification of the face, facial reconstructive surgery, to quantify the changes in a face altered by reconstructive surgery and growth, and in visual perception, to assess the recognizability of faces. Examples of some of these applications are presented.

  10. Influence of Shape and Gradient Refractive Index in the Accommodative Changes of Spherical Aberration in Nonhuman Primate Crystalline Lenses

    PubMed Central

    de Castro, Alberto; Birkenfeld, Judith; Maceo, Bianca; Manns, Fabrice; Arrieta, Esdras; Parel, Jean-Marie; Marcos, Susana

    2013-01-01

    Purpose. To estimate changes in surface shape and gradient refractive index (GRIN) profile in primate lenses as a function of accommodation. To quantify the contribution of surface shape and GRIN to spherical aberration changes with accommodation. Methods. Crystalline lenses from 15 cynomolgus monkeys were studied in vitro under different levels of accommodation produced by a stretching system. Lens shape was obtained from optical coherence tomography (OCT) cross-sectional images. The GRIN was reconstructed with a search algorithm using the optical path measured from OCT images and the measured back focal length. The spherical aberration of the lens was estimated as a function of accommodation using the reconstructed GRIN and a homogeneous refractive index. Results. The lens anterior and posterior radii of curvature decreased with increasing lens power. Both surfaces exhibited negative asphericities in the unaccommodated state. The anterior surface conic constant shifted toward less negative values with accommodation, while the value of the posterior remained constant. GRIN parameters remained constant with accommodation. The lens spherical aberration with GRIN distribution was negative and higher in magnitude than that with a homogeneous equivalent refractive index (by 29% and 53% in the unaccommodated and fully accommodated states, respectively). Spherical aberration with the equivalent refractive index shifted with accommodation toward negative values (−0.070 μm/diopter [D]), but the reconstructed GRIN shifted it farther (−0.124 μm/D). Conclusions. When compared with the lens with the homogeneous equivalent refractive index, the reconstructed GRIN lens has more negative spherical aberration and a larger shift toward more negative values with accommodation. PMID:23927893

  11. Optics. Observation of optical polarization Möbius strips.

    PubMed

    Bauer, Thomas; Banzer, Peter; Karimi, Ebrahim; Orlov, Sergej; Rubano, Andrea; Marrucci, Lorenzo; Santamato, Enrico; Boyd, Robert W; Leuchs, Gerd

    2015-02-27

    Möbius strips are three-dimensional geometrical structures, fascinating for their peculiar property of being surfaces with only one "side"—or, more technically, being "nonorientable" surfaces. Despite being easily realized artificially, the spontaneous emergence of these structures in nature is exceedingly rare. Here, we generate Möbius strips of optical polarization by tightly focusing the light beam emerging from a q-plate, a liquid crystal device that modifies the polarization of light in a space-variant manner. Using a recently developed method for the three-dimensional nanotomography of optical vector fields, we fully reconstruct the light polarization structure in the focal region, confirming the appearance of Möbius polarization structures. The preparation of such structured light modes may be important for complex light beam engineering and optical micro- and nanofabrication. Copyright © 2015, American Association for the Advancement of Science.

  12. Optics of the human cornea influence the accuracy of stereo eye-tracking methods: a simulation study.

    PubMed

    Barsingerhorn, A D; Boonstra, F N; Goossens, H H L M

    2017-02-01

    Current stereo eye-tracking methods model the cornea as a sphere with one refractive surface. However, the human cornea is slightly aspheric and has two refractive surfaces. Here we used ray-tracing and the Navarro eye-model to study how these optical properties affect the accuracy of different stereo eye-tracking methods. We found that pupil size, gaze direction and head position all influence the reconstruction of gaze. Resulting errors range between ± 1.0 degrees at best. This shows that stereo eye-tracking may be an option if reliable calibration is not possible, but the applied eye-model should account for the actual optics of the cornea.

  13. Ambience-sensitive optical refraction in ferroelectric nanofilms of NaNbO3.

    PubMed

    Tyunina, Marina; Chvostova, Dagmar; Pacherova, Oliva; Kocourek, Tomas; Jelinek, Miroslav; Jastrabik, Lubomir; Dejneka, Alexander

    2014-08-01

    Optical index of refraction n is studied by spectroscopic ellipsometry in epitaxial nanofilms of NaNbO 3 with thickness ∼10 nm grown on different single-crystal substrates. The index n in the transparency spectral range ( n  ≈ 2.1 - 2.2) exhibits a strong sensitivity to atmospheric-pressure gas ambience. The index n in air exceeds that in an oxygen ambience by δn  ≈ 0.05 - 0.2. The thermo-optical behaviour n ( T ) indicates ferroelectric state in the nanofilms. The ambience-sensitive optical refraction is discussed in terms of fundamental connection between refraction and ferroelectric polarization in perovskites, screening of depolarizing field on surfaces of the nanofilms, and thermodynamically stable surface reconstructions of NaNbO 3 .

  14. Notes on Experiments.

    ERIC Educational Resources Information Center

    Physics Education, 1989

    1989-01-01

    Described are the purposes, laboratory set-ups, and procedures of four classroom experiments: ultrasound speedometer; vibrating-bar depth gauge; folding three-dimensional model of equipotential surfaces; and a simple optical system for the reconstruction of images from computer-generated holograms. Diagrams and pictures are provided. (YP)

  15. Investigation of the relative orientation of the system of optical sensors to monitor the technosphere objects

    NASA Astrophysics Data System (ADS)

    Petrochenko, Andrey; Konyakhin, Igor

    2017-06-01

    In connection with the development of robotics have become increasingly popular variety of three-dimensional reconstruction of the system mapping and image-set received from the optical sensors. The main objective of technical and robot vision is the detection, tracking and classification of objects of the space in which these systems and robots operate [15,16,18]. Two-dimensional images sometimes don't contain sufficient information to address those or other problems: the construction of the map of the surrounding area for a route; object identification, tracking their relative position and movement; selection of objects and their attributes to complement the knowledge base. Three-dimensional reconstruction of the surrounding space allows you to obtain information on the relative positions of objects, their shape, surface texture. Systems, providing training on the basis of three-dimensional reconstruction of the results of the comparison can produce two-dimensional images of three-dimensional model that allows for the recognition of volume objects on flat images. The problem of the relative orientation of industrial robots with the ability to build threedimensional scenes of controlled surfaces is becoming actual nowadays.

  16. Segmented Mirror Telescope Model and Simulation

    DTIC Science & Technology

    2011-06-01

    mirror surface is treated as a grid of masses and springs. The actuators have surface normal forces applied to individual masses. The equation to...are not widely treated in the literature. The required modifications for the wavefront reconstruction algorithm of a circular aperture to correctly...Zernike polynomials, which are particularly suitable to describe the common optical character- izations of astigmatism , coma, defocus and others [9

  17. Reconstruction of the optical system of personalized eye models by using magnetic resonance imaging.

    PubMed

    Sun, Han-Yin; Lee, Chi-Hung; Chuang, Chun-Chao

    2016-11-10

    This study presents a practical method for reconstructing the optical system of personalized eye models by using magnetic resonance imaging (MRI). Monocular images were obtained from a young (20-year-old) healthy subject viewing at a near point (10 cm). Each magnetic resonance image was first analyzed using several commercial software to capture the profile of each optical element of the human eye except for the anterior lens surface, which could not be determined because it overlapped the ciliary muscle. The missing profile was substituted with a modified profile from a generic eye model. After the data-including the refractive indices from a generic model-were input in ZEMAX, we obtained a reasonable initial layout. By further considering the resolution of the MRI, the model was optimized to match the optical performance of a healthy eye. The main benefit of having a personalized eye model is the ability to quantitatively identify wide-angle ocular aberrations, which were corrected by the designed free-form spectacle lens.

  18. Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing.

    PubMed

    Huang, Jie; Hua, Lei; Lan, Xinwei; Wei, Tao; Xiao, Hai

    2013-07-29

    This paper reports a distributed fiber optic sensing technique through microwave assisted separation and reconstruction of optical interferograms in spectrum domain. The approach involves sending a microwave-modulated optical signal through cascaded fiber optic interferometers. The microwave signal was used to resolve the position and reflectivity of each sensor along the optical fiber. By sweeping the optical wavelength and detecting the modulation signal, the optical spectrum of each sensor can be reconstructed. Three cascaded fiber optic extrinsic Fabry-Perot interferometric sensors were used to prove the concept. Their microwave-reconstructed interferogram matched well with those recorded individually using an optical spectrum analyzer. The application in distributed strain measurement has also been demonstrated.

  19. On differential photometric reconstruction for unknown, isotropic BRDFs.

    PubMed

    Chandraker, Manmohan; Bai, Jiamin; Ramamoorthi, Ravi

    2013-12-01

    This paper presents a comprehensive theory of photometric surface reconstruction from image derivatives in the presence of a general, unknown isotropic BRDF. We derive precise topological classes up to which the surface may be determined and specify exact priors for a full geometric reconstruction. These results are the culmination of a series of fundamental observations. First, we exploit the linearity of chain rule differentiation to discover photometric invariants that relate image derivatives to the surface geometry, regardless of the form of isotropic BRDF. For the problem of shape-from-shading, we show that a reconstruction may be performed up to isocontours of constant magnitude of the gradient. For the problem of photometric stereo, we show that just two measurements of spatial and temporal image derivatives, from unknown light directions on a circle, suffice to recover surface information from the photometric invariant. Surprisingly, the form of the invariant bears a striking resemblance to optical flow; however, it does not suffer from the aperture problem. This photometric flow is shown to determine the surface up to isocontours of constant magnitude of the surface gradient, as well as isocontours of constant depth. Further, we prove that specification of the surface normal at a single point completely determines the surface depth from these isocontours. In addition, we propose practical algorithms that require additional initial or boundary information, but recover depth from lower order derivatives. Our theoretical results are illustrated with several examples on synthetic and real data.

  20. Implementation of a rapid correction algorithm for adaptive optics using a plenoptic sensor

    NASA Astrophysics Data System (ADS)

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2016-09-01

    Adaptive optics relies on the accuracy and speed of a wavefront sensor in order to provide quick corrections to distortions in the optical system. In weaker cases of atmospheric turbulence often encountered in astronomical fields, a traditional Shack-Hartmann sensor has proved to be very effective. However, in cases of stronger atmospheric turbulence often encountered near the surface of the Earth, atmospheric turbulence no longer solely causes small tilts in the wavefront. Instead, lasers passing through strong or "deep" atmospheric turbulence encounter beam breakup, which results in interference effects and discontinuities in the incoming wavefront. In these situations, a Shack-Hartmann sensor can no longer effectively determine the shape of the incoming wavefront. We propose a wavefront reconstruction and correction algorithm based around the plenoptic sensor. The plenoptic sensor's design allows it to match and exceed the wavefront sensing capabilities of a Shack-Hartmann sensor for our application. Novel wavefront reconstruction algorithms can take advantage of the plenoptic sensor to provide a rapid wavefront reconstruction necessary for real time turbulence. To test the integrity of the plenoptic sensor and its reconstruction algorithms, we use artificially generated turbulence in a lab scale environment to simulate the structure and speed of outdoor atmospheric turbulence. By analyzing the performance of our system with and without the closed-loop plenoptic sensor adaptive optics system, we can show that the plenoptic sensor is effective in mitigating real time lab generated atmospheric turbulence.

  1. Functional imaging of small tissue volumes with diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Klose, Alexander D.; Hielscher, Andreas H.

    2006-03-01

    Imaging of dynamic changes in blood parameters, functional brain imaging, and tumor imaging are the most advanced application areas of diffuse optical tomography (DOT). When dealing with the image reconstruction problem one is faced with the fact that near-infrared photons, unlike X-rays, are highly scattered when they traverse biological tissue. Image reconstruction schemes are required that model the light propagation inside biological tissue and predict measurements on the tissue surface. By iteratively changing the tissue-parameters until the predictions agree with the real measurements, a spatial distribution of optical properties inside the tissue is found. The optical properties can be related to the tissue oxygenation, inflammation, or to the fluorophore concentration of a biochemical marker. If the model of light propagation is inaccurate, the reconstruction process will lead to an inaccurate result as well. Here, we focus on difficulties that are encountered when DOT is employed for functional imaging of small tissue volumes, for example, in cancer studies involving small animals, or human finger joints for early diagnosis of rheumatoid arthritis. Most of the currently employed image reconstruction methods rely on the diffusion theory that is an approximation to the equation of radiative transfer. But, in the cases of small tissue volumes and tissues that contain low scattering regions diffusion theory has been shown to be of limited applicability Therefore, we employ a light propagation model that is based on the equation of radiative transfer, which promises to overcome the limitations.

  2. Scalar wave-optical reconstruction of plenoptic camera images.

    PubMed

    Junker, André; Stenau, Tim; Brenner, Karl-Heinz

    2014-09-01

    We investigate the reconstruction of plenoptic camera images in a scalar wave-optical framework. Previous publications relating to this topic numerically simulate light propagation on the basis of ray tracing. However, due to continuing miniaturization of hardware components it can be assumed that in combination with low-aperture optical systems this technique may not be generally valid. Therefore, we study the differences between ray- and wave-optical object reconstructions of true plenoptic camera images. For this purpose we present a wave-optical reconstruction algorithm, which can be run on a regular computer. Our findings show that a wave-optical treatment is capable of increasing the detail resolution of reconstructed objects.

  3. Three-dimensional surface contouring of macroscopic objects by means of phase-difference images.

    PubMed

    Velásquez Prieto, Daniel; Garcia-Sucerquia, Jorge

    2006-09-01

    We report a technique to determine the 3D contour of objects with dimensions of at least 4 orders of magnitude larger than the illumination optical wavelength. Our proposal is based on the numerical reconstruction of the optical wave field of digitally recorded holograms. The required modulo 2pi phase map in any contouring process is obtained by means of the direct subtraction of two phase-contrast images under different illumination angles to create a phase-difference image of a still object. Obtaining the phase-difference images is only possible by using the capability of numerical reconstruction of the complex optical field provided by digital holography. This unique characteristic leads us to a robust, reliable, and fast procedure that requires only two images. A theoretical analysis of the contouring system is shown, with verification by means of numerical and experimental results.

  4. Ambience-sensitive optical refraction in ferroelectric nanofilms of NaNbO3

    PubMed Central

    Tyunina, Marina; Chvostova, Dagmar; Pacherova, Oliva; Kocourek, Tomas; Jelinek, Miroslav; Jastrabik, Lubomir; Dejneka, Alexander

    2014-01-01

    Optical index of refraction n is studied by spectroscopic ellipsometry in epitaxial nanofilms of NaNbO3 with thickness ∼10 nm grown on different single-crystal substrates. The index n in the transparency spectral range (n ≈ 2.1 – 2.2) exhibits a strong sensitivity to atmospheric-pressure gas ambience. The index n in air exceeds that in an oxygen ambience by δn ≈ 0.05 – 0.2. The thermo-optical behaviour n(T) indicates ferroelectric state in the nanofilms. The ambience-sensitive optical refraction is discussed in terms of fundamental connection between refraction and ferroelectric polarization in perovskites, screening of depolarizing field on surfaces of the nanofilms, and thermodynamically stable surface reconstructions of NaNbO3. PMID:27877702

  5. Multi-modal molecular diffuse optical tomography system for small animal imaging

    PubMed Central

    Guggenheim, James A.; Basevi, Hector R. A.; Frampton, Jon; Styles, Iain B.; Dehghani, Hamid

    2013-01-01

    A multi-modal optical imaging system for quantitative 3D bioluminescence and functional diffuse imaging is presented, which has no moving parts and uses mirrors to provide multi-view tomographic data for image reconstruction. It is demonstrated that through the use of trans-illuminated spectral near infrared measurements and spectrally constrained tomographic reconstruction, recovered concentrations of absorbing agents can be used as prior knowledge for bioluminescence imaging within the visible spectrum. Additionally, the first use of a recently developed multi-view optical surface capture technique is shown and its application to model-based image reconstruction and free-space light modelling is demonstrated. The benefits of model-based tomographic image recovery as compared to 2D planar imaging are highlighted in a number of scenarios where the internal luminescence source is not visible or is confounding in 2D images. The results presented show that the luminescence tomographic imaging method produces 3D reconstructions of individual light sources within a mouse-sized solid phantom that are accurately localised to within 1.5mm for a range of target locations and depths indicating sensitivity and accurate imaging throughout the phantom volume. Additionally the total reconstructed luminescence source intensity is consistent to within 15% which is a dramatic improvement upon standard bioluminescence imaging. Finally, results from a heterogeneous phantom with an absorbing anomaly are presented demonstrating the use and benefits of a multi-view, spectrally constrained coupled imaging system that provides accurate 3D luminescence images. PMID:24954977

  6. Three-dimensional scanner based on fringe projection

    NASA Astrophysics Data System (ADS)

    Nouri, Taoufik

    1995-07-01

    This article presents a way of scanning 3D objects using noninvasive and contact loss techniques. The principle is to project parallel fringes on an object and then to record the object at two viewing angles. With an appropriate treatment one can reconstruct the 3D object even when it has no symmetry planes. The 3D surface data are available immediately in digital form for computer visualization and for analysis software tools. The optical setup for recording the object, the data extraction and treatment, and the reconstruction of the object are reported and commented on. Application is proposed for reconstructive/cosmetic surgery, CAD, animation, and research.

  7. All-optical photoacoustic imaging and detection of early-stage dental caries

    NASA Astrophysics Data System (ADS)

    Sampathkumar, Ashwin; Hughes, David A.; Longbottom, Chris; Kirk, Katherine J.

    2015-02-01

    Dental caries remain one of the most common oral diseases in the world. Current detection methods, such as dental explorer and X-ray radiography, suffer from poor sensitivity and specificity at the earliest (and reversible) stages of the disease because of the small size (< 100 microns) of early-stage lesions. We have developed a fine-resolution (480 nm), ultra-broadband (1 GHz), all-optical photoacoustic imaging (AOPAI) system to image and detect early stages of tooth decay. This AOPAI system provides a non-contact, non-invasive and non-ionizing means of detecting early-stage dental caries. Ex-vivo teeth exhibiting early-stage, white-spot lesions were imaged using AOPAI. Experimental scans targeted each early-stage lesion and a reference healthy enamel region. Photoacoustic (PA) signals were generated in the tooth using a 532-nm pulsed laser and the light-induced broadband ultrasound signal was detected at the surface of the tooth with an optical path-stabilized Michelson interferometer operating at 532 nm. The measured time-domain signal was spatially resolved and back-projected to form 2D and 3D maps of the lesion using k-wave reconstruction methods. Experimental data collected from areas of healthy and diseased enamel indicate that the lesion generated a larger PA response compared to healthy enamel. The PA-signal amplitude alone was able to detect a lesion on the surface of the tooth. However, time- reversal reconstructions of the PA scans also quantitatively depicted the depth of the lesion. 3D PA reconstruction of the diseased tooth indicated a sub-surface lesion at a depth of 0.6 mm, in addition to the surface lesion. These results suggest that our AOPAI system is well suited for rapid clinical assessment of early-stage dental caries. An overview of the AOPAI system, fine-resolution PA and histology results of diseased and healthy teeth will be presented.

  8. VIRTOPSY--scientific documentation, reconstruction and animation in forensic: individual and real 3D data based geo-metric approach including optical body/object surface and radiological CT/MRI scanning.

    PubMed

    Thali, Michael J; Braun, Marcel; Buck, Ursula; Aghayev, Emin; Jackowski, Christian; Vock, Peter; Sonnenschein, Martin; Dirnhofer, Richard

    2005-03-01

    Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.

  9. Surface rupture and slip distribution of the 2016 Mw7.8 Kaikoura earthquake (New Zealand) from optical satellite image correlation using MicMac

    NASA Astrophysics Data System (ADS)

    Champenois, Johann; Klinger, Yann; Grandin, Raphaël; Satriano, Claudio; Baize, Stéphane; Delorme, Arthur; Scotti, Oona

    2017-04-01

    Remote sensing techniques, like optical satellite image correlation, are very efficient methods to localize and quantify surface displacements due to earthquakes. In this study, we use the french sub-pixel correlator MicMac (Multi Images Correspondances par Méthodes Automatiques de Corrélation). This free open-source software, developed by IGN, was recently adapted to process satellite images. This correlator uses regularization, and that provides good results especially in near-fault area with a high spatial resolution. We use co-seismic pair of ortho-images to measure the horizontal displacement field during the recent 2016 Mw7.8 Kaikoura earthquake. Optical satellite images from different satellites are processed (Sentinel-2A, Landsat8, etc.) to present a dense map of the surface ruptures and to analyze high density slip distribution along all major ruptures. We also provide a detail pattern of deformation along these main surface ruptures. Moreover, 2D displacement from optical correlation is compared to co-seismic measurements from GPS, static displacement from accelerometric records, geodetic marks and field investigations. Last but not least, we investigate the reconstruction of 3D displacement from combining InSAR, GPS and optic.

  10. Combining freeform optics and curved detectors for wide field imaging: a polynomial approach over squared aperture.

    PubMed

    Muslimov, Eduard; Hugot, Emmanuel; Jahn, Wilfried; Vives, Sebastien; Ferrari, Marc; Chambion, Bertrand; Henry, David; Gaschet, Christophe

    2017-06-26

    In the recent years a significant progress was achieved in the field of design and fabrication of optical systems based on freeform optical surfaces. They provide a possibility to build fast, wide-angle and high-resolution systems, which are very compact and free of obscuration. However, the field of freeform surfaces design techniques still remains underexplored. In the present paper we use the mathematical apparatus of orthogonal polynomials defined over a square aperture, which was developed before for the tasks of wavefront reconstruction, to describe shape of a mirror surface. Two cases, namely Legendre polynomials and generalization of the Zernike polynomials on a square, are considered. The potential advantages of these polynomials sets are demonstrated on example of a three-mirror unobscured telescope with F/# = 2.5 and FoV = 7.2x7.2°. In addition, we discuss possibility of use of curved detectors in such a design.

  11. Backward-gazing method for measuring solar concentrators shape errors.

    PubMed

    Coquand, Mathieu; Henault, François; Caliot, Cyril

    2017-03-01

    This paper describes a backward-gazing method for measuring the optomechanical errors of solar concentrating surfaces. It makes use of four cameras placed near the solar receiver and simultaneously recording images of the sun reflected by the optical surfaces. Simple data processing then allows reconstructing the slope and shape errors of the surfaces. The originality of the method is enforced by the use of generalized quad-cell formulas and approximate mathematical relations between the slope errors of the mirrors and their reflected wavefront in the case of sun-tracking heliostats at high-incidence angles. Numerical simulations demonstrate that the measurement accuracy is compliant with standard requirements of solar concentrating optics in the presence of noise or calibration errors. The method is suited to fine characterization of the optical and mechanical errors of heliostats and their facets, or to provide better control for real-time sun tracking.

  12. Reconstruction of solar spectral surface UV irradiances using radiative transfer simulations.

    PubMed

    Lindfors, Anders; Heikkilä, Anu; Kaurola, Jussi; Koskela, Tapani; Lakkala, Kaisa

    2009-01-01

    UV radiation exerts several effects concerning life on Earth, and spectral information on the prevailing UV radiation conditions is needed in order to study each of these effects. In this paper, we present a method for reconstruction of solar spectral UV irradiances at the Earth's surface. The method, which is a further development of an earlier published method for reconstruction of erythemally weighted UV, relies on radiative transfer simulations, and takes as input (1) the effective cloud optical depth as inferred from pyranometer measurements of global radiation (300-3000 nm); (2) the total ozone column; (3) the surface albedo as estimated from measurements of snow depth; (4) the total water vapor column; and (5) the altitude of the location. Reconstructed daily cumulative spectral irradiances at Jokioinen and Sodankylä in Finland are, in general, in good agreement with measurements. The mean percentage difference, for instance, is mostly within +/-8%, and the root mean square of the percentage difference is around 10% or below for wavelengths over 310 nm and daily minimum solar zenith angles (SZA) less than 70 degrees . In this study, we used pseudospherical radiative transfer simulations, which were shown to improve the performance of our method under large SZA (low Sun).

  13. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Reconstruction of vector physical fields by optical tomography

    NASA Astrophysics Data System (ADS)

    Kulchin, Yurii N.; Vitrik, O. B.; Kamenev, O. T.; Kirichenko, O. V.; Petrov, Yu S.

    1995-10-01

    Reconstruction of vector physical fields by optical tomography, with the aid of a system of fibre-optic measuring lines, is considered. The reported experimental results are used to reconstruct the distribution of the square of the gradient of transverse displacements of a flat membrane.

  14. Three-dimensional ghost imaging using acoustic transducer

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Guo, Shuxu; Guan, Jian; Cao, Junsheng; Gao, Fengli

    2016-06-01

    We propose a novel three-dimensional (3D) ghost imaging method using unfocused ultrasonic transducer, where the transducer is used as the bucket detector to collect the total photoacoustic signal intensity from spherical surfaces with different radius circling the transducer. This collected signal is a time sequence corresponding to the optic absorption information on the spherical surfaces, and the values at the same moments in all the sequences are used as the bucket signals to restore the corresponding spherical images, which are assembled as the object 3D reconstruction. Numerical experiments show this method can effectively accomplish the 3D reconstruction and by adding up each sequence on time domain as a bucket signal it can also realize two dimensional (2D) ghost imaging. The influence of the measurement times on the 3D and 2D reconstruction is analyzed with Peak Signal to Noise Ratio (PSNR) as the yardstick, and the transducer as a bucket detector is also discussed.

  15. Dynamic metrology and data processing for precision freeform optics fabrication and testing

    NASA Astrophysics Data System (ADS)

    Aftab, Maham; Trumper, Isaac; Huang, Lei; Choi, Heejoo; Zhao, Wenchuan; Graves, Logan; Oh, Chang Jin; Kim, Dae Wook

    2017-06-01

    Dynamic metrology holds the key to overcoming several challenging limitations of conventional optical metrology, especially with regards to precision freeform optical elements. We present two dynamic metrology systems: 1) adaptive interferometric null testing; and 2) instantaneous phase shifting deflectometry, along with an overview of a gradient data processing and surface reconstruction technique. The adaptive null testing method, utilizing a deformable mirror, adopts a stochastic parallel gradient descent search algorithm in order to dynamically create a null testing condition for unknown freeform optics. The single-shot deflectometry system implemented on an iPhone uses a multiplexed display pattern to enable dynamic measurements of time-varying optical components or optics in vibration. Experimental data, measurement accuracy / precision, and data processing algorithms are discussed.

  16. Indoor calibration for stereoscopic camera STC: a new method

    NASA Astrophysics Data System (ADS)

    Simioni, E.; Re, C.; Da Deppo, V.; Naletto, G.; Borrelli, D.; Dami, M.; Ficai Veltroni, I.; Cremonese, G.

    2017-11-01

    In the framework of the ESA-JAXA BepiColombo mission to Mercury, the global mapping of the planet will be performed by the on-board Stereo Camera (STC), part of the SIMBIO-SYS suite [1]. In this paper we propose a new technique for the validation of the 3D reconstruction of planetary surface from images acquired with a stereo camera. STC will provide a three-dimensional reconstruction of Mercury surface. The generation of a DTM of the observed features is based on the processing of the acquired images and on the knowledge of the intrinsic and extrinsic parameters of the optical system. The new stereo concept developed for STC needs a pre-flight verification of the actual capabilities to obtain elevation information from stereo couples: for this, a stereo validation setup to get an indoor reproduction of the flight observing condition of the instrument would give a much greater confidence to the developed instrument design. STC is the first stereo satellite camera with two optical channels converging in a unique sensor. Its optical model is based on a brand new concept to minimize mass and volume and to allow push-frame imaging. This model imposed to define a new calibration pipeline to test the reconstruction method in a controlled ambient. An ad-hoc indoor set-up has been realized for validating the instrument designed to operate in deep space, i.e. in-flight STC will have to deal with source/target essentially placed at infinity. This auxiliary indoor setup permits on one side to rescale the stereo reconstruction problem from the operative distance in-flight of 400 km to almost 1 meter in lab; on the other side it allows to replicate different viewing angles for the considered targets. Neglecting for sake of simplicity the Mercury curvature, the STC observing geometry of the same portion of the planet surface at periherm corresponds to a rotation of the spacecraft (SC) around the observed target by twice the 20° separation of each channel with respect to nadir. The indoor simulation of the SC trajectory can therefore be provided by two rotation stages to generate a dual system of the real one with same stereo parameters but different scale. The set of acquired images will be used to get a 3D reconstruction of the target: depth information retrieved from stereo reconstruction and the known features of the target will allow to get an evaluation of the stereo system performance both in terms of horizontal resolution and vertical accuracy. To verify the 3D reconstruction capabilities of STC by means of this stereo validation set-up, the lab target surface should provide a reference, i.e. should be known with an accuracy better than that required on the 3D reconstruction itself. For this reason, the rock samples accurately selected to be used as lab targets have been measured with a suitable accurate 3D laser scanner. The paper will show this method in detail analyzing all the choices adopted to lead back a so complex system to the indoor solution for calibration.

  17. Indoor Calibration for Stereoscopic Camera STC, A New Method

    NASA Astrophysics Data System (ADS)

    Simioni, E.; Re, C.; Da Deppo, V.; Naletto, G.; Borrelli, D.; Dami, M.; Ficai Veltroni, I.; Cremonese, G.

    2014-10-01

    In the framework of the ESA-JAXA BepiColombo mission to Mercury, the global mapping of the planet will be performed by the on-board Stereo Camera (STC), part of the SIMBIO-SYS suite [1]. In this paper we propose a new technique for the validation of the 3D reconstruction of planetary surface from images acquired with a stereo camera. STC will provide a three-dimensional reconstruction of Mercury surface. The generation of a DTM of the observed features is based on the processing of the acquired images and on the knowledge of the intrinsic and extrinsic parameters of the optical system. The new stereo concept developed for STC needs a pre-flight verification of the actual capabilities to obtain elevation information from stereo couples: for this, a stereo validation setup to get an indoor reproduction of the flight observing condition of the instrument would give a much greater confidence to the developed instrument design. STC is the first stereo satellite camera with two optical channels converging in a unique sensor. Its optical model is based on a brand new concept to minimize mass and volume and to allow push-frame imaging. This model imposed to define a new calibration pipeline to test the reconstruction method in a controlled ambient. An ad-hoc indoor set-up has been realized for validating the instrument designed to operate in deep space, i.e. in-flight STC will have to deal with source/target essentially placed at infinity. This auxiliary indoor setup permits on one side to rescale the stereo reconstruction problem from the operative distance in-flight of 400 km to almost 1 meter in lab; on the other side it allows to replicate different viewing angles for the considered targets. Neglecting for sake of simplicity the Mercury curvature, the STC observing geometry of the same portion of the planet surface at periherm corresponds to a rotation of the spacecraft (SC) around the observed target by twice the 20° separation of each channel with respect to nadir. The indoor simulation of the SC trajectory can therefore be provided by two rotation stages to generate a dual system of the real one with same stereo parameters but different scale. The set of acquired images will be used to get a 3D reconstruction of the target: depth information retrieved from stereo reconstruction and the known features of the target will allow to get an evaluation of the stereo system performance both in terms of horizontal resolution and vertical accuracy. To verify the 3D reconstruction capabilities of STC by means of this stereo validation set-up, the lab target surface should provide a reference, i.e. should be known with an accuracy better than that required on the 3D reconstruction itself. For this reason, the rock samples accurately selected to be used as lab targets have been measured with a suitable accurate 3D laser scanner. The paper will show this method in detail analyzing all the choices adopted to lead back a so complex system to the indoor solution for calibration.

  18. Topography reconstruction of specular surfaces

    NASA Astrophysics Data System (ADS)

    Kammel, Soren; Horbach, Jan

    2005-01-01

    Specular surfaces are used in a wide variety of industrial and consumer products like varnished or chrome plated parts of car bodies, dies, molds or optical components. Shape deviations of these products usually reduce their quality regarding visual appearance and/or technical performance. One reliable method to inspect such surfaces is deflectometry. It can be employed to obtain highly accurate values representing the local curvature of the surfaces. In a deflectometric measuring system, a series of illumination patterns is reflected at the specular surface and is observed by a camera. The distortions of the patterns in the acquired images contain information about the shape of the surface. This information is suited for the detection and measurement of surface defects like bumps, dents and waviness with depths in the range of a few microns. However, without additional information about the distances between the camera and each observed surface point, a shape reconstruction is only possible in some special cases. Therefore, the reconstruction approach described in this paper uses data observed from at least two different camera positions. The data obtained is used separately to estimate the local surface curvature for each camera position. From the curvature values, the epipolar geometry for the different camera positions is recovered. Matching the curvature values along the epipolar lines yields an estimate of the 3d position of the corresponding surface points. With this additional information, the deflectometric gradient data can be integrated to represent the surface topography.

  19. Fluorescence molecular imaging based on the adjoint radiative transport equation

    NASA Astrophysics Data System (ADS)

    Asllanaj, Fatmir; Addoum, Ahmad; Rodolphe Roche, Jean

    2018-07-01

    A new reconstruction algorithm for fluorescence diffuse optical tomography of biological tissues is proposed. The radiative transport equation in the frequency domain is used to model light propagation. The adjoint method studied in this work provides an efficient way for solving the inverse problem. The methodology is applied to a 2D tissue-like phantom subjected to a collimated laser beam. Indocyanine Green is used as fluorophore. Reconstructed images of the spatial fluorophore absorption distribution is assessed taking into account the residual fluorescence in the medium. We show that illuminating the tissue surface from a collimated centered direction near the inclusion gaves a better reconstruction quality. Two closely positioned inclusions can be accurately localized. Additionally, their fluorophore absorption coefficients can be quantified. However, the algorithm failes to reconstruct smaller or deeper inclusions. This is due to light attenuation in the medium. Reconstructions with noisy data are also achieved with a reasonable accuracy.

  20. Structured light imaging system for structural and optical characterization of 3D tissue-simulating phantoms

    NASA Astrophysics Data System (ADS)

    Liu, Songde; Smith, Zach; Xu, Ronald X.

    2016-10-01

    There is a pressing need for a phantom standard to calibrate medical optical devices. However, 3D printing of tissue-simulating phantom standard is challenged by lacking of appropriate methods to characterize and reproduce surface topography and optical properties accurately. We have developed a structured light imaging system to characterize surface topography and optical properties (absorption coefficient and reduced scattering coefficient) of 3D tissue-simulating phantoms. The system consisted of a hyperspectral light source, a digital light projector (DLP), a CMOS camera, two polarizers, a rotational stage, a translation stage, a motion controller, and a personal computer. Tissue-simulating phantoms with different structural and optical properties were characterized by the proposed imaging system and validated by a standard integrating sphere system. The experimental results showed that the proposed system was able to achieve pixel-level optical properties with a percentage error of less than 11% for absorption coefficient and less than 7% for reduced scattering coefficient for phantoms without surface curvature. In the meanwhile, 3D topographic profile of the phantom can be effectively reconstructed with an accuracy of less than 1% deviation error. Our study demonstrated that the proposed structured light imaging system has the potential to characterize structural profile and optical properties of 3D tissue-simulating phantoms.

  1. High-speed optical 3D sensing and its applications

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshihiro

    2016-12-01

    This paper reviews high-speed optical 3D sensing technologies for obtaining the 3D shape of a target using a camera. The focusing speed is from 100 to 1000 fps, exceeding normal camera frame rates, which are typically 30 fps. In particular, contactless, active, and real-time systems are introduced. Also, three example applications of this type of sensing technology are introduced, including surface reconstruction from time-sequential depth images, high-speed 3D user interaction, and high-speed digital archiving.

  2. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yidong, E-mail: yidongyang@med.miami.edu; Wang, Ken Kang-Hsin; Wong, John W.

    2015-04-15

    Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is tomore » develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3.0% difference between simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. Conclusions: A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems.« less

  3. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    PubMed Central

    Yang, Yidong; Wang, Ken Kang-Hsin; Eslami, Sohrab; Iordachita, Iulian I.; Patterson, Michael S.; Wong, John W.

    2015-01-01

    Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is to develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3.0% difference between simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. Conclusions: A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems. PMID:25832060

  4. Three-dimensional reconstruction of highly complex microscopic samples using scanning electron microscopy and optical flow estimation.

    PubMed

    Baghaie, Ahmadreza; Pahlavan Tafti, Ahmad; Owen, Heather A; D'Souza, Roshan M; Yu, Zeyun

    2017-01-01

    Scanning Electron Microscope (SEM) as one of the major research and industrial equipment for imaging of micro-scale samples and surfaces has gained extensive attention from its emerge. However, the acquired micrographs still remain two-dimensional (2D). In the current work a novel and highly accurate approach is proposed to recover the hidden third-dimension by use of multi-view image acquisition of the microscopic samples combined with pre/post-processing steps including sparse feature-based stereo rectification, nonlocal-based optical flow estimation for dense matching and finally depth estimation. Employing the proposed approach, three-dimensional (3D) reconstructions of highly complex microscopic samples were achieved to facilitate the interpretation of topology and geometry of surface/shape attributes of the samples. As a byproduct of the proposed approach, high-definition 3D printed models of the samples can be generated as a tangible means of physical understanding. Extensive comparisons with the state-of-the-art reveal the strength and superiority of the proposed method in uncovering the details of the highly complex microscopic samples.

  5. Correction of phase-shifting error in wavelength scanning digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Wang, Jie; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian

    2018-05-01

    Digital holographic microscopy is a promising method for measuring complex micro-structures with high slopes. A quasi-common path interferometric apparatus is adopted to overcome environmental disturbances, and an acousto-optic tunable filter is used to obtain multi-wavelength holograms. However, the phase shifting error caused by the acousto-optic tunable filter reduces the measurement accuracy and, in turn, the reconstructed topographies are erroneous. In this paper, an accurate reconstruction approach is proposed. It corrects the phase-shifting errors by minimizing the difference between the ideal interferograms and the recorded ones. The restriction on the step number and uniformity of the phase shifting is relaxed in the interferometry, and the measurement accuracy for complex surfaces can also be improved. The universality and superiority of the proposed method are demonstrated by practical experiments and comparison to other measurement methods.

  6. 4D cone beam CT phase sorting using high frequency optical surface measurement during image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Price, G. J.; Marchant, T. E.; Parkhurst, J. M.; Sharrock, P. J.; Whitfield, G. A.; Moore, C. J.

    2011-03-01

    In image guided radiotherapy (IGRT) two of the most promising recent developments are four dimensional cone beam CT (4D CBCT) and dynamic optical metrology of patient surfaces. 4D CBCT is now becoming commercially available and finds use in treatment planning and verification, and whilst optical monitoring is a young technology, its ability to measure during treatment delivery without dose consequences has led to its uptake in many institutes. In this paper, we demonstrate the use of dynamic patient surfaces, simultaneously captured during CBCT acquisition using an optical sensor, to phase sort projection images for 4D CBCT volume reconstruction. The dual modality approach we describe means that in addition to 4D volumetric data, the system provides correlated wide field measurements of the patient's skin surface with high spatial and temporal resolution. As well as the value of such complementary data in verification and motion analysis studies, it introduces flexibility into the acquisition of the signal required for phase sorting. The specific technique used may be varied according to individual patient circumstances and the imaging target. We give details of three different methods of obtaining a suitable signal from the optical surfaces: simply following the motion of triangulation spots used to calibrate the surfaces' absolute height; monitoring the surface height in a single, arbitrarily selected, camera pixel; and tracking, in three dimensions, the movement of a surface feature. In addition to describing the system and methodology, we present initial results from a case study oesophageal cancer patient.

  7. Optical Breast Shape Capture and Finite Element Mesh Generation for Electrical Impedance Tomography

    PubMed Central

    Forsyth, J.; Borsic, A.; Halter, R.J.; Hartov, A.; Paulsen, K.D.

    2011-01-01

    X-Ray mammography is the standard for breast cancer screening. The development of alternative imaging modalities is desirable because Mammograms expose patients to ionizing radiation. Electrical Impedance Tomography (EIT) may be used to determine tissue conductivity, a property which is an indicator of cancer presence. EIT is also a low-cost imaging solution and does not involve ionizing radiation. In breast EIT, impedance measurements are made using electrodes placed on the surface of the patient’s breast. The complex conductivity of the volume of the breast is estimated by a reconstruction algorithm. EIT reconstruction is a severely ill-posed inverse problem. As a result, noisy instrumentation and incorrect modelling of the electrodes and domain shape produce significant image artefacts. In this paper, we propose a method that has the potential to reduce these errors by accurately modelling the patient breast shape. A 3D hand-held optical scanner is used to acquire the breast geometry and electrode positions. We develop methods for processing the data from the scanner and producing volume meshes accurately matching the breast surface and electrode locations, which can be used for image reconstruction. We demonstrate this method for a plaster breast phantom and a human subject. Using this approach will allow patient-specific finite element meshes to be generated which has the potential to improve the clinical value of EIT for breast cancer diagnosis. PMID:21646711

  8. Modeling of light distribution in the brain for topographical imaging

    NASA Astrophysics Data System (ADS)

    Okada, Eiji; Hayashi, Toshiyuki; Kawaguchi, Hiroshi

    2004-07-01

    Multi-channel optical imaging system can obtain a topographical distribution of the activated region in the brain cortex by a simple mapping algorithm. Near-infrared light is strongly scattered in the head and the volume of tissue that contributes to the change in the optical signal detected with source-detector pair on the head surface is broadly distributed in the brain. This scattering effect results in poor resolution and contrast in the topographic image of the brain activity. We report theoretical investigations on the spatial resolution of the topographic imaging of the brain activity. The head model for the theoretical study consists of five layers that imitate the scalp, skull, subarachnoid space, gray matter and white matter. The light propagation in the head model is predicted by Monte Carlo simulation to obtain the spatial sensitivity profile for a source-detector pair. The source-detector pairs are one dimensionally arranged on the surface of the model and the distance between the adjoining source-detector pairs are varied from 4 mm to 32 mm. The change in detected intensity caused by the absorption change is obtained by Monte Carlo simulation. The position of absorption change is reconstructed by the conventional mapping algorithm and the reconstruction algorithm using the spatial sensitivity profiles. We discuss the effective interval between the source-detector pairs and the choice of reconstruction algorithms to improve the topographic images of brain activity.

  9. ESO/ST-ECF Data Analysis Workshop, 5th, Garching, Germany, Apr. 26, 27, 1993, Proceedings

    NASA Astrophysics Data System (ADS)

    Grosbol, Preben; de Ruijsscher, Resy

    1993-01-01

    Various papers on astronomical data analysis are presented. Individual optics addressed include: surface photometry of early-type galaxies, wavelet transform and adaptive filtering, package for surface photometry of galaxies, calibration of large-field mosaics, surface photometry of galaxies with HST, wavefront-supported image deconvolution, seeing effects on elliptical galaxies, multiple algorithms deconvolution program, enhancement of Skylab X-ray images, MIDAS procedures for the image analysis of E-S0 galaxies, photometric data reductions under MIDAS, crowded field photometry with deconvolved images, the DENIS Deep Near Infrared Survey. Also discussed are: analysis of astronomical time series, detection of low-amplitude stellar pulsations, new SOT method for frequency analysis, chaotic attractor reconstruction and applications to variable stars, reconstructing a 1D signal from irregular samples, automatic analysis for time series with large gaps, prospects for content-based image retrieval, redshift survey in the South Galactic Pole Region.

  10. Dynamic Reconstruction and Multivariable Control for Force-Actuated, Thin Facesheet Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Grocott, Simon C. O.; Miller, David W.

    1997-01-01

    The Multiple Mirror Telescope (MMT) under development at the University of Arizona takes a new approach in adaptive optics placing a large (0.65 m) force-actuated, thin facesheet deformable mirror at the secondary of an astronomical telescope, thus reducing the effects of emissivity which are important in IR astronomy. However, The large size of the mirror and low stiffness actuators used drive the natural frequencies of the mirror down into the bandwidth of the atmospheric distortion. Conventional adaptive optics takes a quasi-static approach to controlling the, deformable mirror. However, flexibility within the control bandwidth calls for a new approach to adaptive optics. Dynamic influence functions are used to characterize the influence of each actuator on the surface of the deformable mirror. A linearized model of atmospheric distortion is combined with dynamic influence functions to produce a dynamic reconstructor. This dynamic reconstructor is recognized as an optimal control problem. Solving the optimal control problem for a system with hundreds of actuators and sensors is formidable. Exploiting the circularly symmetric geometry of the mirror, and a suitable model of atmospheric distortion, the control problem is divided into a number of smaller decoupled control problems using circulant matrix theory. A hierarchic control scheme which seeks to emulate the quasi-static control approach that is generally used in adaptive optics is compared to the proposed dynamic reconstruction technique. Although dynamic reconstruction requires somewhat more computational power to implement, it achieves better performance with less power usage, and is less sensitive than the hierarchic technique.

  11. Dynamic calibration of higher eigenmode parameters of a cantilever in atomic force microscopy by using tip–surface interactions

    DOE PAGES

    Borysov, Stanislav S.; Forchheimer, Daniel; Haviland, David B.

    2014-10-29

    Here we present a theoretical framework for the dynamic calibration of the higher eigenmode parameters (stiffness and optical lever inverse responsivity) of a cantilever. The method is based on the tip–surface force reconstruction technique and does not require any prior knowledge of the eigenmode shape or the particular form of the tip–surface interaction. The calibration method proposed requires a single-point force measurement by using a multimodal drive and its accuracy is independent of the unknown physical amplitude of a higher eigenmode.

  12. Dual-modality endoscopic probe for tissue surface shape reconstruction and hyperspectral imaging enabled by deep neural networks.

    PubMed

    Lin, Jianyu; Clancy, Neil T; Qi, Ji; Hu, Yang; Tatla, Taran; Stoyanov, Danail; Maier-Hein, Lena; Elson, Daniel S

    2018-06-15

    Surgical guidance and decision making could be improved with accurate and real-time measurement of intra-operative data including shape and spectral information of the tissue surface. In this work, a dual-modality endoscopic system has been proposed to enable tissue surface shape reconstruction and hyperspectral imaging (HSI). This system centers around a probe comprised of an incoherent fiber bundle, whose fiber arrangement is different at the two ends, and miniature imaging optics. For 3D reconstruction with structured light (SL), a light pattern formed of randomly distributed spots with different colors is projected onto the tissue surface, creating artificial texture. Pattern decoding with a Convolutional Neural Network (CNN) model and a customized feature descriptor enables real-time 3D surface reconstruction at approximately 12 frames per second (FPS). In HSI mode, spatially sparse hyperspectral signals from the tissue surface can be captured with a slit hyperspectral imager in a single snapshot. A CNN based super-resolution model, namely "super-spectral-resolution" network (SSRNet), has also been developed to estimate pixel-level dense hypercubes from the endoscope cameras standard RGB images and the sparse hyperspectral signals, at approximately 2 FPS. The probe, with a 2.1 mm diameter, enables the system to be used with endoscope working channels. Furthermore, since data acquisition in both modes can be accomplished in one snapshot, operation of this system in clinical applications is minimally affected by tissue surface movement and deformation. The whole apparatus has been validated on phantoms and tissue (ex vivo and in vivo), while initial measurements on patients during laryngeal surgery show its potential in real-world clinical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Spatial profile reconstruction of individual componentsof the nonlinear susceptibility tensors {chi}-circumflex {sup (3)}(z, {omega}', {omega}' -{omega}, {omega}) and {chi}-circumflex {sup (3)}(z, 2{omega}{+-}{omega}', {+-}{omega}', {omega}, {omega}) of a one-dimensionally inhomogeneous medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golubkov, A A; Makarov, Vladimir A

    We have proved for the first time and proposed an algorithm of unique spatial profile reconstruction of the components {chi}-circumflex {sup (3)}{sub yyyy} of complex tensors {chi}-circumflex {sup (3)}(z, {omega}', {omega}', -{omega}, {omega}) and {chi}-circumflex {sup (3)}(z, 2{omega}{+-}{omega}', {+-}{omega}', {omega}, {omega}), describing four-photon interaction of light waves in a one-dimensionally inhomogeneous plate, whose medium has a symmetry plane m{sub y} that is perpendicular to its surface. For the media with an additional symmetry axis 2{sub z}, 4{sub z}, 6{sub z} or {infinity}{sub z} that is perpendicular to the plate surface, the proposed method can be used to reconstruct about one-fifthmore » of all independent components of the above tensors. (nonlinear optical phenomena)« less

  14. Quantification and Reconstruction in Photoacoustic Tomography

    NASA Astrophysics Data System (ADS)

    Guo, Zijian

    Optical absorption is closely associated with many physiological important parameters, such as the concentration and oxygen saturation of hemoglobin. Conventionally, accurate quantification in PAT requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. We demonstrate the method using the optical-resolution photoacoustic microscopy (OR-PAM) and the acoustical-resolution photoacoustic microscopy (AR-PAM) in the optical ballistic regime and in the optical diffusive regime, respectively. The data acquisition speed in photoacoustic computed tomography (PACT) is limited by the laser repetition rate and the number of parallel ultrasound detecting channels. Reconstructing an image with fewer measurements can effectively accelerate the data acquisition and reduce the system cost. We adapted Compressed Sensing (CS) for the reconstruction in PACT. CS-based PACT was implemented as a non-linear conjugate gradient descent algorithm and tested with both phantom and in vivo experiments. Speckles have been considered ubiquitous in all scattering-based coherent imaging technologies. As a coherent imaging modality based on optical absorption, photoacoustic (PA) tomography (PAT) is generally devoid of speckles. PAT suppresses speckles by building up prominent boundary signals, via a mechanism similar to that of specular reflection. When imaging smooth boundary absorbing targets, the speckle visibility in PAT, which is defined as the ratio of the square root of the average power of speckles to that of boundaries, is inversely proportional to the square root of the absorber density. If the surfaces of the absorbing targets have uncorrelated height fluctuations, however, the boundary features may become fully developed speckles. The findings were validated by simulations and experiments. The first- and second-order statistics of PAT speckles were also studied experimentally. While the amplitude of the speckles follows a Gaussian distribution, the autocorrelation of the speckle patterns tracks that of the system point spread function.

  15. Experimental and simulation study of growth of TiO2 films on different substrates and its applications

    NASA Astrophysics Data System (ADS)

    Ghogare, Trupti T.; Kartha, Moses J.; Kendre, Subhash D.; Pathan, Habib M.

    2018-04-01

    Monte-Carlo Ballistic Deposition simulations have done on substrates with different initial roughness. The grown films were observed to be porous. The initial growths of the films with seed like initiations are observed for substrate with high initial roughness. In order to confirm this effect TiO2 films were deposited on different substrates using chemical bath deposition. The surface morphological and optical properties were measured using scanning electron microscopy and a UV-Vis spectrophotometer. Flower like porous structure are obtained on glass substrate and continuous porous morphology is formed on ITO substrate. The morphology of the surfaces was successfully reconstructed and the surface porosity was calculated after digitalising images and reconstructed the surfaces. The TiO2 film formed on ITO is observed to be 10% more porous than on the film formed on glass substrate. Diffusion Limited Aggregation simulations with multiple seeds confirms that the observed flower like structure formed are due to the screening effects of the diffusing ion by already deposited particles.

  16. Intraoperative on-the-fly organ-mosaicking for laparoscopic surgery

    PubMed Central

    Reichard, Daniel; Bodenstedt, Sebastian; Suwelack, Stefan; Mayer, Benjamin; Preukschas, Anas; Wagner, Martin; Kenngott, Hannes; Müller-Stich, Beat; Dillmann, Rüdiger; Speidel, Stefanie

    2015-01-01

    Abstract. The goal of computer-assisted surgery is to provide the surgeon with guidance during an intervention, e.g., using augmented reality. To display preoperative data, soft tissue deformations that occur during surgery have to be taken into consideration. Laparoscopic sensors, such as stereo endoscopes, can be used to create a three-dimensional reconstruction of stereo frames for registration. Due to the small field of view and the homogeneous structure of tissue, reconstructing just one frame, in general, will not provide enough detail to register preoperative data, since every frame only contains a part of an organ surface. A correct assignment to the preoperative model is possible only if the patch geometry can be unambiguously matched to a part of the preoperative surface. We propose and evaluate a system that combines multiple smaller reconstructions from different viewpoints to segment and reconstruct a large model of an organ. Using graphics processing unit-based methods, we achieved four frames per second. We evaluated the system with in silico, phantom, ex vivo, and in vivo (porcine) data, using different methods for estimating the camera pose (optical tracking, iterative closest point, and a combination). The results indicate that the proposed method is promising for on-the-fly organ reconstruction and registration. PMID:26693166

  17. Cortical surface shift estimation using stereovision and optical flow motion tracking via projection image registration

    PubMed Central

    Ji, Songbai; Fan, Xiaoyao; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2014-01-01

    Stereovision is an important intraoperative imaging technique that captures the exposed parenchymal surface noninvasively during open cranial surgery. Estimating cortical surface shift efficiently and accurately is critical to compensate for brain deformation in the operating room (OR). In this study, we present an automatic and robust registration technique based on optical flow (OF) motion tracking to compensate for cortical surface displacement throughout surgery. Stereo images of the cortical surface were acquired at multiple time points after dural opening to reconstruct three-dimensional (3D) texture intensity-encoded cortical surfaces. A local coordinate system was established with its z-axis parallel to the average surface normal direction of the reconstructed cortical surface immediately after dural opening in order to produce two-dimensional (2D) projection images. A dense displacement field between the two projection images was determined directly from OF motion tracking without the need for feature identification or tracking. The starting and end points of the displacement vectors on the two cortical surfaces were then obtained following spatial mapping inversion to produce the full 3D displacement of the exposed cortical surface. We evaluated the technique with images obtained from digital phantoms and 18 surgical cases – 10 of which involved independent measurements of feature locations acquired with a tracked stylus for accuracy comparisons, and 8 others of which 4 involved stereo image acquisitions at three or more time points during surgery to illustrate utility throughout a procedure. Results from the digital phantom images were very accurate (0.05 pixels). In the 10 surgical cases with independently digitized point locations, the average agreement between feature coordinates derived from the cortical surface reconstructions was 1.7–2.1 mm relative to those determined with the tracked stylus probe. The agreement in feature displacement tracking was also comparable to tracked probe data (difference in displacement magnitude was <1 mm on average). The average magnitude of cortical surface displacement was 7.9 ± 5.7 mm (range 0.3–24.4 mm) in all patient cases with the displacement components along gravity being 5.2 ± 6.0 mm relative to the lateral movement of 2.4 ± 1.6 mm. Thus, our technique appears to be sufficiently accurate and computationally efficiency (typically ~15 s), for applications in the OR. PMID:25077845

  18. A time-domain fluorescence diffusion optical tomography system for breast tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Gao, Feng; Wu, LinHui; Ma, Wenjuan; Yang, Fang; Zhou, Zhongxing; Zhang, Limin; Zhao, Huijuan

    2011-02-01

    A prototype time-domain fluorescence diffusion optical tomography (FDOT) system using near-infrared light is presented. The system employs two pulsed light sources, 32 source fibers and 32 detection channels, working separately for acquiring the temporal distribution of the photon flux on the tissue surface. The light sources are provided by low power picosecond pulsed diode lasers at wavelengths of 780 nm and 830 nm, and a 1×32-fiber-optic-switch sequentially directs light sources to the object surface through 32 source fibers. The light signals re-emitted from the object are collected by 32 detection fibers connected to four 8×1 fiber-optic-switch and then routed to four time-resolved measuring channels, each of which consists of a collimator, a filter wheel, a photomultiplier tube (PMT) photon-counting head and a time-correlated single photon counting (TCSPC) channel. The performance and efficacy of the designed multi-channel PMT-TCSPC system are assessed by reconstructing the fluorescent yield and lifetime images of a solid phantom.

  19. Stereovision-based integrated system for point cloud reconstruction and simulated brain shift validation.

    PubMed

    Yang, Xiaochen; Clements, Logan W; Luo, Ma; Narasimhan, Saramati; Thompson, Reid C; Dawant, Benoit M; Miga, Michael I

    2017-07-01

    Intraoperative soft tissue deformation, referred to as brain shift, compromises the application of current image-guided surgery navigation systems in neurosurgery. A computational model driven by sparse data has been proposed as a cost-effective method to compensate for cortical surface and volumetric displacements. We present a mock environment developed to acquire stereoimages from a tracked operating microscope and to reconstruct three-dimensional point clouds from these images. A reconstruction error of 1 mm is estimated by using a phantom with a known geometry and independently measured deformation extent. The microscope is tracked via an attached tracking rigid body that facilitates the recording of the position of the microscope via a commercial optical tracking system as it moves during the procedure. Point clouds, reconstructed under different microscope positions, are registered into the same space to compute the feature displacements. Using our mock craniotomy device, realistic cortical deformations are generated. When comparing our tracked microscope stereo-pair measure of mock vessel displacements to that of the measurement determined by the independent optically tracked stylus marking, the displacement error was [Formula: see text] on average. These results demonstrate the practicality of using tracked stereoscopic microscope as an alternative to laser range scanners to collect sufficient intraoperative information for brain shift correction.

  20. Shack-Hartmann reflective micro profilometer

    NASA Astrophysics Data System (ADS)

    Gong, Hai; Soloviev, Oleg; Verhaegen, Michel; Vdovin, Gleb

    2018-01-01

    We present a quantitative phase imaging microscope based on a Shack-Hartmann sensor, that directly reconstructs the optical path difference (OPD) in reflective mode. Comparing with the holographic or interferometric methods, the SH technique needs no reference beam in the setup, which simplifies the system. With a preregistered reference, the OPD image can be reconstructed from a single shot. Also, the method has a rather relaxed requirement on the illumination coherence, thus a cheap light source such as a LED is feasible in the setup. In our previous research, we have successfully verified that a conventional transmissive microscope can be transformed into an optical path difference microscope by using a Shack-Hartmann wavefront sensor under incoherent illumination. The key condition is that the numerical aperture of illumination should be smaller than the numerical aperture of imaging lens. This approach is also applicable to characterization of reflective and slightly scattering surfaces.

  1. Wide-field fluorescence diffuse optical tomography with epi-illumination of sinusoidal pattern

    NASA Astrophysics Data System (ADS)

    Li, Tongxin; Gao, Feng; Chen, Weiting; Qi, Caixia; Yan, Panpan; Zhao, Huijuan

    2017-02-01

    We present a wide-field fluorescence tomography with epi-illumination of sinusoidal pattern. In this scheme, a DMD projector is employed as a spatial light modulator to generate independently wide-field sinusoidal illumination patterns at varying spatial frequencies on a sample, and then the emitted photons at the sample surface were captured with a EM-CCD camera. This method results in a significantly reduced number of the optical field measurements as compared to the point-source-scanning ones and thereby achieves a fast data acquisition that is desired for a dynamic imaging application. Fluorescence yield images are reconstructed using the normalized-Born formulated inversion of the diffusion model. Experimental reconstructions are presented on a phantom embedding the fluorescent targets and compared for a combination of the multiply frequencies. The results validate the ability of the method to determine the target relative depth and quantification with an increasing accuracy.

  2. X-ray luminescence computed tomography imaging via multiple intensity weighted narrow beam irradiation

    NASA Astrophysics Data System (ADS)

    Feng, Bo; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing

    2018-02-01

    The purpose of this work is to introduce and study a novel x-ray beam irradiation pattern for X-ray Luminescence Computed Tomography (XLCT), termed multiple intensity-weighted narrow-beam irradiation. The proposed XLCT imaging method is studied through simulations of x-ray and diffuse lights propagation. The emitted optical photons from X-ray excitable nanophosphors were collected by optical fiber bundles from the right-side surface of the phantom. The implementation of image reconstruction is based on the simulated measurements from 6 or 12 angular projections in terms of 3 or 5 x-ray beams scanning mode. The proposed XLCT imaging method is compared against the constant intensity weighted narrow-beam XLCT. From the reconstructed XLCT images, we found that the Dice similarity and quantitative ratio of targets have a certain degree of improvement. The results demonstrated that the proposed method can offer simultaneously high image quality and fast image acquisition.

  3. Transverse Pupil Shifts for Adaptive Optics Non-Common Path Calibration

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.

    2011-01-01

    A simple new way of obtaining absolute wavefront measurements with a laboratory Fizeau interferometer was recently devised. In that case, the observed wavefront map is the difference of two cavity surfaces, those of the mirror under test and of an unknown reference surface on the Fizeau s transmission flat. The absolute surface of each can be determined by applying standard wavefront reconstruction techniques to two grids of absolute surface height differences of the mirror under test, obtained from pairs of measurements made with slight transverse shifts in X and Y. Adaptive optics systems typically provide an actuated periscope between wavefront sensor (WFS) and commonmode optics, used for lateral registration of deformable mirror (DM) to WFS. This periscope permits independent adjustment of either pupil or focal spot incident on the WFS. It would be used to give the required lateral pupil motion between common and non-common segments, analogous to the lateral shifts of the two phase contributions in the lab Fizeau. The technique is based on a completely new approach to calibration of phase. It offers unusual flexibility with regard to the transverse spatial frequency scales probed, and will give results quite quickly, making use of no auxiliary equipment other than that built into the adaptive optics system. The new technique may be applied to provide novel calibration information about other optical systems in which the beam may be shifted transversely in a controlled way.

  4. Accurate reconstruction in digital holographic microscopy using antialiasing shift-invariant contourlet transform

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian

    2018-03-01

    The measurement of microstructured components is a challenging task in optical engineering. Digital holographic microscopy has attracted intensive attention due to its remarkable capability of measuring complex surfaces. However, speckles arise in the recorded interferometric holograms, and they will degrade the reconstructed wavefronts. Existing speckle removal methods suffer from the problems of frequency aliasing and phase distortions. A reconstruction method based on the antialiasing shift-invariant contourlet transform (ASCT) is developed. Salient edges and corners have sparse representations in the transform domain of ASCT, and speckles can be recognized and removed effectively. As subsampling in the scale and directional filtering schemes is avoided, the problems of frequency aliasing and phase distortions occurring in the conventional multiscale transforms can be effectively overcome, thereby improving the accuracy of wavefront reconstruction. As a result, the proposed method is promising for the digital holographic measurement of complex structures.

  5. A 3D visualization and guidance system for handheld optical imaging devices

    NASA Astrophysics Data System (ADS)

    Azar, Fred S.; de Roquemaurel, Benoit; Cerussi, Albert; Hajjioui, Nassim; Li, Ang; Tromberg, Bruce J.; Sauer, Frank

    2007-03-01

    We have developed a novel 3D visualization and guidance system for handheld optical imaging devices. In this paper, the system is applied to measurements of breast/cancerous tissue optical properties using a handheld diffuse optical spectroscopy (DOS) instrument. The combined guidance system/DOS instrument becomes particularly useful for monitoring neoadjuvant chemotherapy in breast cancer patients and for longitudinal studies where measurement reproducibility is critical. The system uses relatively inexpensive hardware components and comprises a 6 degrees-of-freedom (DOF) magnetic tracking device including a DC field generator, three sensors, and a PCI card running on a PC workstation. A custom-built virtual environment combined with a well-defined workflow provide the means for image-guided measurements, improved longitudinal studies of breast optical properties, 3D reconstruction of optical properties within the anatomical map, and serial data registration. The DOS instrument characterizes tissue function such as water, lipid and total hemoglobin concentration. The patient lies on her back at a 45-degrees angle. Each spectral measurement requires consistent contact with the skin, and lasts about 5-10 seconds. Therefore a limited number of positions may be studied. In a reference measurement session, the physician acquires surface points on the breast. A Delaunay-based triangulation algorithm is used to build the virtual breast surface from the acquired points. 3D locations of all DOS measurements are recorded. All subsequently acquired surfaces are automatically registered to the reference surface, thus allowing measurement reproducibility through image guidance using the reference measurements.

  6. Chirped or time modulated excitation compared to short pulses for photoacoustic imaging in acoustic attenuating media

    NASA Astrophysics Data System (ADS)

    Burgholzer, P.; Motz, C.; Lang, O.; Berer, T.; Huemer, M.

    2018-02-01

    In photoacoustic imaging, optically generated acoustic waves transport the information about embedded structures to the sample surface. Usually, short laser pulses are used for the acoustic excitation. Acoustic attenuation increases for higher frequencies, which reduces the bandwidth and limits the spatial resolution. One could think of more efficient waveforms than single short pulses, such as pseudo noise codes, chirped, or harmonic excitation, which could enable a higher information-transfer from the samples interior to its surface by acoustic waves. We used a linear state space model to discretize the wave equation, such as the Stoke's equation, but this method could be used for any other linear wave equation. Linear estimators and a non-linear function inversion were applied to the measured surface data, for onedimensional image reconstruction. The proposed estimation method allows optimizing the temporal modulation of the excitation laser such that the accuracy and spatial resolution of the reconstructed image is maximized. We have restricted ourselves to one-dimensional models, as for higher dimensions the one-dimensional reconstruction, which corresponds to the acoustic wave without attenuation, can be used as input for any ultrasound imaging method, such as back-projection or time-reversal method.

  7. Diffuse Optical Tomography for Brain Imaging: Continuous Wave Instrumentation and Linear Analysis Methods

    NASA Astrophysics Data System (ADS)

    Giacometti, Paolo; Diamond, Solomon G.

    Diffuse optical tomography (DOT) is a functional brain imaging technique that measures cerebral blood oxygenation and blood volume changes. This technique is particularly useful in human neuroimaging measurements because of the coupling between neural and hemodynamic activity in the brain. DOT is a multichannel imaging extension of near-infrared spectroscopy (NIRS). NIRS uses laser sources and light detectors on the scalp to obtain noninvasive hemodynamic measurements from spectroscopic analysis of the remitted light. This review explains how NIRS data analysis is performed using a combination of the modified Beer-Lambert law (MBLL) and the diffusion approximation to the radiative transport equation (RTE). Laser diodes, photodiode detectors, and optical terminals that contact the scalp are the main components in most NIRS systems. Placing multiple sources and detectors over the surface of the scalp allows for tomographic reconstructions that extend the individual measurements of NIRS into DOT. Mathematically arranging the DOT measurements into a linear system of equations that can be inverted provides a way to obtain tomographic reconstructions of hemodynamics in the brain.

  8. Non-contact biomedical photoacoustic and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Rousseau, Guy; Gauthier, Bruno; Blouin, Alain; Monchalin, Jean-Pierre

    2012-06-01

    The detection of ultrasound in photoacoustic tomography (PAT) usually relies on ultrasonic transducers in contact with the biological tissue through a coupling medium. This is a major drawback for important potential applications such as surgery. Here we report the use of a remote optical method, derived from industrial laser-ultrasonics, to detect ultrasound in tissues. This approach enables non-contact PAT (NCPAT) without exceeding laser exposure safety limits. The sensitivity of the method is based on the use of suitably shaped detection laser pulses and a confocal Fabry-Perot interferometer in differential configuration. Reliable image reconstruction is obtained by measuring remotely the surface profile of the tissue with an optical coherence tomography system. The proposed method also allows non-contact ultrasound imaging (US) by applying a second reconstruction algorithm to the data acquired for NCPAT. Endogenous and exogenous inclusions exhibiting optical and acoustic contrasts were detected ex vivo in chicken breast and calf brain specimens. Inclusions down to 0.3 mm in size were detected at depths exceeding 1 cm. The method could expand the scope of photoacoustic and US to in-vivo biomedical applications where contact is impractical.

  9. Synchromodal optical in vivo imaging employing microlens array optics: a complete framework

    NASA Astrophysics Data System (ADS)

    Peter, Joerg

    2013-03-01

    A complete mathematical framework for preclinical optical imaging (OI) support comprising bioluminescence imaging (BLI), fluorescence surface imaging (FSI) and fluorescence optical tomography (FOT) is presented in which optical data is acquired by means of a microlens array (MLA) based light detector (MLA-D). The MLA-D has been developed to enable unique OI, especially in synchromodal operation with secondary imaging modalities (SIM) such as positron emission tomography (PET) or magnetic resonance imaging (MRI). An MLA-D consists of a (large-area) photon sensor array, a matched MLA for field-of-view definition, and a septum mask of specific geometry made of anodized aluminum that is positioned between the sensor and the MLA to suppresses light cross-talk and to shield the sensor's radiofrequency interference signal (essential when used inside an MRI system). The software framework, while freely parameterizable for any MLA-D, is tailored towards an OI prototype system for preclinical SIM application comprising a multitude of cylindrically assembled, gantry-mounted, simultaneously operating MLA-D's. Besides the MLA-D specificity, the framework incorporates excitation and illumination light-source declarations of large-field and point geometry to facilitate multispectral FSI and FOT as well as three-dimensional object recognition. When used in synchromodal operation, reconstructed tomographic SIM volume data can be used for co-modal image fusion and also as a prior for estimating the imaged object's 3D surface by means of gradient vector flow. Superimposed planar (without object prior) or surface-aligned inverse mapping can be performed to estimate and to fuse the emission light map with the boundary of the imaged object. Triangulation and subsequent optical reconstruction (FOT) or constrained flow estimation (BLI), both including the possibility of SIM priors, can be performed to estimate the internal three-dimensional emission light distribution. The framework is susceptible to a number of variables controlling convergence and computational speed. Utilization and performance is illustrated on experimentally acquired data employing the OI prototype system in stand-alone operation, and when integrated into an unmodified preclinical PET system performing synchromodal BLI-PET in vivo imaging.

  10. Performance of different reflectance and diffuse optical imaging tomographic approaches in fluorescence molecular imaging of small animals

    NASA Astrophysics Data System (ADS)

    Dinten, Jean-Marc; Petié, Philippe; da Silva, Anabela; Boutet, Jérôme; Koenig, Anne; Hervé, Lionel; Berger, Michel; Laidevant, Aurélie; Rizo, Philippe

    2006-03-01

    Optical imaging of fluorescent probes is an essential tool for investigation of molecular events in small animals for drug developments. In order to get localization and quantification information of fluorescent labels, CEA-LETI has developed efficient approaches in classical reflectance imaging as well as in diffuse optical tomographic imaging with continuous and temporal signals. This paper presents an overview of the different approaches investigated and their performances. High quality fluorescence reflectance imaging is obtained thanks to the development of an original "multiple wavelengths" system. The uniformity of the excitation light surface area is better than 15%. Combined with the use of adapted fluorescent probes, this system enables an accurate detection of pathological tissues, such as nodules, beneath the animal's observed area. Performances for the detection of ovarian nodules on a nude mouse are shown. In order to investigate deeper inside animals and get 3D localization, diffuse optical tomography systems are being developed for both slab and cylindrical geometries. For these two geometries, our reconstruction algorithms are based on analytical expression of light diffusion. Thanks to an accurate introduction of light/matter interaction process in the algorithms, high quality reconstructions of tumors in mice have been obtained. Reconstruction of lung tumors on mice are presented. By the use of temporal diffuse optical imaging, localization and quantification performances can be improved at the price of a more sophisticated acquisition system and more elaborate information processing methods. Such a system based on a pulsed laser diode and a time correlated single photon counting system has been set up. Performances of this system for localization and quantification of fluorescent probes are presented.

  11. Acoustic Inversion in Optoacoustic Tomography: A Review

    PubMed Central

    Rosenthal, Amir; Ntziachristos, Vasilis; Razansky, Daniel

    2013-01-01

    Optoacoustic tomography enables volumetric imaging with optical contrast in biological tissue at depths beyond the optical mean free path by the use of optical excitation and acoustic detection. The hybrid nature of optoacoustic tomography gives rise to two distinct inverse problems: The optical inverse problem, related to the propagation of the excitation light in tissue, and the acoustic inverse problem, which deals with the propagation and detection of the generated acoustic waves. Since the two inverse problems have different physical underpinnings and are governed by different types of equations, they are often treated independently as unrelated problems. From an imaging standpoint, the acoustic inverse problem relates to forming an image from the measured acoustic data, whereas the optical inverse problem relates to quantifying the formed image. This review focuses on the acoustic aspects of optoacoustic tomography, specifically acoustic reconstruction algorithms and imaging-system practicalities. As these two aspects are intimately linked, and no silver bullet exists in the path towards high-performance imaging, we adopt a holistic approach in our review and discuss the many links between the two aspects. Four classes of reconstruction algorithms are reviewed: time-domain (so called back-projection) formulae, frequency-domain formulae, time-reversal algorithms, and model-based algorithms. These algorithms are discussed in the context of the various acoustic detectors and detection surfaces which are commonly used in experimental studies. We further discuss the effects of non-ideal imaging scenarios on the quality of reconstruction and review methods that can mitigate these effects. Namely, we consider the cases of finite detector aperture, limited-view tomography, spatial under-sampling of the acoustic signals, and acoustic heterogeneities and losses. PMID:24772060

  12. Reconstructing the Surface Permittivity Distribution from Data Measured by the CONSERT Instrument aboard Rosetta: Method and Simulations

    NASA Astrophysics Data System (ADS)

    Plettemeier, D.; Statz, C.; Hegler, S.; Herique, A.; Kofman, W. W.

    2014-12-01

    One of the main scientific objectives of the Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) aboard Rosetta is to perform a dielectric characterization of comet 67P/Chuyurmov-Gerasimenko's nucleus by means of a bi-static sounding between the lander Philae launched onto the comet's surface and the orbiter Rosetta. For the sounding, the lander part of CONSERT will receive and process the radio signal emitted by the orbiter part of the instrument and transmit a signal to the orbiter to be received by CONSERT. CONSERT will also be operated as bi-static RADAR during the descent of the lander Philae onto the comet's surface. From data measured during the descent, we aim at reconstructing a surface permittivity map of the comet at the landing site and along the path below the descent trajectory. This surface permittivity map will give information on the bulk material right below and around the landing site and the surface roughness in areas covered by the instrument along the descent. The proposed method to estimate the surface permittivity distribution is based on a least-squares based inversion approach in frequency domain. The direct problem of simulating the wave-propagation between lander and orbiter at line-of-sight and the signal reflected on the comet's surface is modelled using a dielectric physical optics approximation. Restrictions on the measurement positions by the descent orbitography and limitations on the instrument dynamic range will be dealt with by application of a regularization technique where the surface permittivity distribution and the gradient with regard to the permittivity is projected in a domain defined by a viable model of the spatial material and roughness distribution. The least-squares optimization step of the reconstruction is performed in such domain on a reduced set of parameters yielding stable results. The viability of the proposed method is demonstrated by reconstruction results based on simulated data.

  13. Color selectivity of surface-plasmon holograms illuminated with white light.

    PubMed

    Ozaki, Miyu; Kato, Jun-ichi; Kawata, Satoshi

    2013-09-20

    By using the optical frequency dependence of surface-plasmon polaritons, color images can be reconstructed from holograms illuminated with white light. We report details on the color selectivity of the color holograms. The selectivity is tuned by the thickness of a dielectric film covering a plasmonic metal film. When the dielectric is SiO(2) and the metal is silver, the appropriate thicknesses are 25 and 55 nm, respectively. In terms of spatial color uniformity, holograms made of silver-film corrugations are better than holograms recorded on photographic film on a flat silver surface.

  14. Tracking and shape errors measurement of concentrating heliostats

    NASA Astrophysics Data System (ADS)

    Coquand, Mathieu; Caliot, Cyril; Hénault, François

    2017-09-01

    In solar tower power plants, factors such as tracking accuracy, facets misalignment and surface shape errors of concentrating heliostats are of prime importance on the efficiency of the system. At industrial scale, one critical issue is the time and effort required to adjust the different mirrors of the faceted heliostats, which could take several months using current techniques. Thus, methods enabling quick adjustment of a field with a huge number of heliostats are essential for the rise of solar tower technology. In this communication is described a new method for heliostat characterization that makes use of four cameras located near the solar receiver and simultaneously recording images of the sun reflected by the optical surfaces. From knowledge of a measured sun profile, data processing of the acquired images allows reconstructing the slope and shape errors of the heliostats, including tracking and canting errors. The mathematical basis of this shape reconstruction process is explained comprehensively. Numerical simulations demonstrate that the measurement accuracy of this "backward-gazing method" is compliant with the requirements of solar concentrating optics. Finally, we present our first experimental results obtained at the THEMIS experimental solar tower plant in Targasonne, France.

  15. Optical aperture synthesis with electronically connected telescopes

    PubMed Central

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.

    2015-01-01

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705

  16. One step linear reconstruction method for continuous wave diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Ukhrowiyah, N.; Yasin, M.

    2017-09-01

    The method one step linear reconstruction method for continuous wave diffuse optical tomography is proposed and demonstrated for polyvinyl chloride based material and breast phantom. Approximation which used in this method is selecting regulation coefficient and evaluating the difference between two states that corresponding to the data acquired without and with a change in optical properties. This method is used to recovery of optical parameters from measured boundary data of light propagation in the object. The research is demonstrated by simulation and experimental data. Numerical object is used to produce simulation data. Chloride based material and breast phantom sample is used to produce experimental data. Comparisons of results between experiment and simulation data are conducted to validate the proposed method. The results of the reconstruction image which is produced by the one step linear reconstruction method show that the image reconstruction almost same as the original object. This approach provides a means of imaging that is sensitive to changes in optical properties, which may be particularly useful for functional imaging used continuous wave diffuse optical tomography of early diagnosis of breast cancer.

  17. Error analysis and system optimization of non-null aspheric testing system

    NASA Astrophysics Data System (ADS)

    Luo, Yongjie; Yang, Yongying; Liu, Dong; Tian, Chao; Zhuo, Yongmo

    2010-10-01

    A non-null aspheric testing system, which employs partial null lens (PNL for short) and reverse iterative optimization reconstruction (ROR for short) technique, is proposed in this paper. Based on system modeling in ray tracing software, the parameter of each optical element is optimized and this makes system modeling more precise. Systematic error of non-null aspheric testing system is analyzed and can be categorized into two types, the error due to surface parameters of PNL in the system modeling and the rest from non-null interferometer by the approach of error storage subtraction. Experimental results show that, after systematic error is removed from testing result of non-null aspheric testing system, the aspheric surface is precisely reconstructed by ROR technique and the consideration of systematic error greatly increase the test accuracy of non-null aspheric testing system.

  18. Optical impedance spectroscopy with single-mode electro-active-integrated optical waveguides.

    PubMed

    Han, Xue; Mendes, Sergio B

    2014-02-04

    An optical impedance spectroscopy (OIS) technique based on a single-mode electro-active-integrated optical waveguide (EA-IOW) was developed to investigate electron-transfer processes of redox adsorbates. A highly sensitive single-mode EA-IOW device was used to optically follow the time-dependent faradaic current originated from a submonolayer of cytochrome c undergoing redox exchanges driven by a harmonic modulation of the electric potential at several dc bias potentials and at several frequencies. To properly retrieve the faradaic current density from the ac-modulated optical signal, we introduce here a mathematical formalism that (i) accounts for intrinsic changes that invariably occur in the optical baseline of the EA-IOW device during potential modulation and (ii) provides accurate results for the electro-chemical parameters. We are able to optically reconstruct the faradaic current density profile against the dc bias potential in the working electrode, identify the formal potential, and determine the energy-width of the electron-transfer process. In addition, by combining the optically reconstructed faradaic signal with simple electrical measurements of impedance across the whole electrochemical cell and the capacitance of the electric double-layer, we are able to determine the time-constant connected to the redox reaction of the adsorbed protein assembly. For cytochrome c directly immobilized onto the indium tin oxide (ITO) surface, we measured a reaction rate constant of 26.5 s(-1). Finally, we calculate the charge-transfer resistance and pseudocapacitance associated with the electron-transfer process and show that the frequency dependence of the redox reaction of the protein submonolayer follows as expected the electrical equivalent of an RC-series admittance diagram. Above all, we show here that OIS with single-mode EA-IOW's provide strong analytical signals that can be readily monitored even for small surface-densities of species involved in the redox process (e.g., fmol/cm(2), 0.1% of a full protein monolayer). This experimental approach, when combined with the analytical formalism described here, brings additional sensitivity, accuracy, and simplicity to electro-chemical analysis and is expected to become a useful tool in investigations of redox processes.

  19. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matenine, Dmitri, E-mail: dmitri.matenine.1@ulaval.ca; Mascolo-Fortin, Julia, E-mail: julia.mascolo-fortin.1@ulaval.ca; Goussard, Yves, E-mail: yves.goussard@polymtl.ca

    Purpose: The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. Methods: This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numericalmore » simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. Results: The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. Conclusions: The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can potentially improve the rendering of spatial features and reduce cone-beam optical CT artifacts.« less

  20. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT.

    PubMed

    Matenine, Dmitri; Mascolo-Fortin, Julia; Goussard, Yves; Després, Philippe

    2015-11-01

    The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can potentially improve the rendering of spatial features and reduce cone-beam optical CT artifacts.

  1. Design and experimental validation of novel 3D optical scanner with zoom lens unit

    NASA Astrophysics Data System (ADS)

    Huang, Jyun-Cheng; Liu, Chien-Sheng; Chiang, Pei-Ju; Hsu, Wei-Yan; Liu, Jian-Liang; Huang, Bai-Hao; Lin, Shao-Ru

    2017-10-01

    Optical scanners play a key role in many three-dimensional (3D) printing and CAD/CAM applications. However, existing optical scanners are generally designed to provide either a wide scanning area or a high 3D reconstruction accuracy from a lens with a fixed focal length. In the former case, the scanning area is increased at the expense of the reconstruction accuracy, while in the latter case, the reconstruction performance is improved at the expense of a more limited scanning range. In other words, existing optical scanners compromise between the scanning area and the reconstruction accuracy. Accordingly, the present study proposes a new scanning system including a zoom-lens unit, which combines both a wide scanning area and a high 3D reconstruction accuracy. In the proposed approach, the object is scanned initially under a suitable low-magnification setting for the object size (setting 1), resulting in a wide scanning area but a poor reconstruction resolution in complicated regions of the object. The complicated regions of the object are then rescanned under a high-magnification setting (setting 2) in order to improve the accuracy of the original reconstruction results. Finally, the models reconstructed after each scanning pass are combined to obtain the final reconstructed 3D shape of the object. The feasibility of the proposed method is demonstrated experimentally using a laboratory-built prototype. It is shown that the scanner has a high reconstruction accuracy over a large scanning area. In other words, the proposed optical scanner has significant potential for 3D engineering applications.

  2. Diffuse optical tomography using semiautomated coregistered ultrasound measurements

    NASA Astrophysics Data System (ADS)

    Mostafa, Atahar; Vavadi, Hamed; Uddin, K. M. Shihab; Zhu, Quing

    2017-12-01

    Diffuse optical tomography (DOT) has demonstrated huge potential in breast cancer diagnosis and treatment monitoring. DOT image reconstruction guided by ultrasound (US) improves the diffused light localization and lesion reconstruction accuracy. However, DOT reconstruction depends on tumor geometry provided by coregistered US. Experienced operators can manually measure these lesion parameters; however, training and measurement time are needed. The wide clinical use of this technique depends on its robustness and faster imaging reconstruction capability. This article introduces a semiautomated procedure that automatically extracts lesion information from US images and incorporates it into the optical reconstruction. An adaptive threshold-based image segmentation is used to obtain tumor boundaries. For some US images, posterior shadow can extend to the chest wall and make the detection of deeper lesion boundary difficult. This problem can be solved using a Hough transform. The proposed procedure was validated from data of 20 patients. Optical reconstruction results using the proposed procedure were compared with those reconstructed using extracted tumor information from an experienced user. Mean optical absorption obtained from manual measurement was 0.21±0.06 cm-1 for malignant and 0.12±0.06 cm-1 for benign cases, whereas for the proposed method it was 0.24±0.08 cm-1 and 0.12±0.05 cm-1, respectively.

  3. A combined reconstruction-classification method for diffuse optical tomography.

    PubMed

    Hiltunen, P; Prince, S J D; Arridge, S

    2009-11-07

    We present a combined classification and reconstruction algorithm for diffuse optical tomography (DOT). DOT is a nonlinear ill-posed inverse problem. Therefore, some regularization is needed. We present a mixture of Gaussians prior, which regularizes the DOT reconstruction step. During each iteration, the parameters of a mixture model are estimated. These associate each reconstructed pixel with one of several classes based on the current estimate of the optical parameters. This classification is exploited to form a new prior distribution to regularize the reconstruction step and update the optical parameters. The algorithm can be described as an iteration between an optimization scheme with zeroth-order variable mean and variance Tikhonov regularization and an expectation-maximization scheme for estimation of the model parameters. We describe the algorithm in a general Bayesian framework. Results from simulated test cases and phantom measurements show that the algorithm enhances the contrast of the reconstructed images with good spatial accuracy. The probabilistic classifications of each image contain only a few misclassified pixels.

  4. SU-D-210-03: Limited-View Multi-Source Quantitative Photoacoustic Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, J; Gao, H

    2015-06-15

    Purpose: This work is to investigate a novel limited-view multi-source acquisition scheme for the direct and simultaneous reconstruction of optical coefficients in quantitative photoacoustic tomography (QPAT), which has potentially improved signal-to-noise ratio and reduced data acquisition time. Methods: Conventional QPAT is often considered in two steps: first to reconstruct the initial acoustic pressure from the full-view ultrasonic data after each optical illumination, and then to quantitatively reconstruct optical coefficients (e.g., absorption and scattering coefficients) from the initial acoustic pressure, using multi-source or multi-wavelength scheme.Based on a novel limited-view multi-source scheme here, We have to consider the direct reconstruction of opticalmore » coefficients from the ultrasonic data, since the initial acoustic pressure can no longer be reconstructed as an intermediate variable due to the incomplete acoustic data in the proposed limited-view scheme. In this work, based on a coupled photo-acoustic forward model combining diffusion approximation and wave equation, we develop a limited-memory Quasi-Newton method (LBFGS) for image reconstruction that utilizes the adjoint forward problem for fast computation of gradients. Furthermore, the tensor framelet sparsity is utilized to improve the image reconstruction which is solved by Alternative Direction Method of Multipliers (ADMM). Results: The simulation was performed on a modified Shepp-Logan phantom to validate the feasibility of the proposed limited-view scheme and its corresponding image reconstruction algorithms. Conclusion: A limited-view multi-source QPAT scheme is proposed, i.e., the partial-view acoustic data acquisition accompanying each optical illumination, and then the simultaneous rotations of both optical sources and ultrasonic detectors for next optical illumination. Moreover, LBFGS and ADMM algorithms are developed for the direct reconstruction of optical coefficients from the acoustic data. Jing Feng and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less

  5. Tomographic reconstruction of melanin structures of optical coherence tomography via the finite-difference time-domain simulation

    NASA Astrophysics Data System (ADS)

    Huang, Shi-Hao; Wang, Shiang-Jiu; Tseng, Snow H.

    2015-03-01

    Optical coherence tomography (OCT) provides high resolution, cross-sectional image of internal microstructure of biological tissue. We use the Finite-Difference Time-Domain method (FDTD) to analyze the data acquired by OCT, which can help us reconstruct the refractive index of the biological tissue. We calculate the refractive index tomography and try to match the simulation with the data acquired by OCT. Specifically, we try to reconstruct the structure of melanin, which has complex refractive indices and is the key component of human pigment system. The results indicate that better reconstruction can be achieved for homogenous sample, whereas the reconstruction is degraded for samples with fine structure or with complex interface. Simulation reconstruction shows structures of the Melanin that may be useful for biomedical optics applications.

  6. Laser electro-optic system for rapid three-dimensional /3-D/ topographic mapping of surfaces

    NASA Technical Reports Server (NTRS)

    Altschuler, M. D.; Altschuler, B. R.; Taboada, J.

    1981-01-01

    It is pointed out that the generic utility of a robot in a factory/assembly environment could be substantially enhanced by providing a vision capability to the robot. A standard videocamera for robot vision provides a two-dimensional image which contains insufficient information for a detailed three-dimensional reconstruction of an object. Approaches which supply the additional information needed for the three-dimensional mapping of objects with complex surface shapes are briefly considered and a description is presented of a laser-based system which can provide three-dimensional vision to a robot. The system consists of a laser beam array generator, an optical image recorder, and software for controlling the required operations. The projection of a laser beam array onto a surface produces a dot pattern image which is viewed from one or more suitable perspectives. Attention is given to the mathematical method employed, the space coding technique, the approaches used for obtaining the transformation parameters, the optics for laser beam array generation, the hardware for beam array coding, and aspects of image acquisition.

  7. A small animal time-resolved optical tomography platform using wide-field excitation

    NASA Astrophysics Data System (ADS)

    Venugopal, Vivek

    Small animal imaging plays a critical role in present day biomedical research by filling an important gap in the translation of research from the bench to the bedside. Optical techniques constitute an emerging imaging modality which have tremendous potential in preclinical applications. Optical imaging methods are capable of non-invasive assessment of the functional and molecular characteristics of biological tissue. The three-dimensional optical imaging technique, referred to as diffuse optical tomography, provides an approach for the whole-body imaging of small animal models and can provide volumetric maps of tissue functional parameters (e.g. blood volume, oxygen saturation etc.) and/or provide 3D localization and quantification of fluorescence-based molecular markers in vivo. However, the complex mathematical reconstruction problem associated with optical tomography and the cumbersome instrumental designs limits its adoption as a high-throughput quantitative whole-body imaging modality in current biomedical research. The development of new optical imaging paradigms is thus necessary for a wide-acceptance of this new technology. In this thesis, the design, development, characterization and optimization of a small animal optical tomography system is discussed. Specifically, the platform combines a highly sensitive time-resolved imaging paradigm with multi-spectral excitation capability and CCD-based detection to provide a system capable of generating spatially, spectrally and temporally dense measurement datasets. The acquisition of such data sets however can take long and translate to often unrealistic acquisition times when using the classical point source based excitation scheme. The novel approach in the design of this platform is the adoption of a wide-field excitation scheme which employs extended excitation sources and in the process allows an estimated ten-fold reduction in the acquisition time. The work described herein details the design of the imaging platform employing DLP-based excitation and time-gated intensified CCD detection and the optimal system operation parameters are determined. The feasibility this imaging approach and accuracy of the system in reconstructing functional parameters and fluorescence markers based on lifetime contrast is established through phantom studies. As a part of the system characterization, the effect of noise in time-resolved optical tomography is investigated and propagation of system noise in optical reconstructions is established. Furthermore, data processing and measurement calibration techniques aimed at reducing the effect of noise in reconstructions are defined. The optimization of excitation pattern selection is established through a novel measurement-guided iterative pattern correction scheme. This technique referred to as Adaptive Full-Field Optical Tomography was shown to improve reconstruction performances in murine models by reducing the dynamic range in photon flux measurements on the surface. Lastly, the application of the unique attributes of this platform to a biologically relevant imaging application, referred to as Forster Resonance Energy Transfer is described. The tomographic imaging of FRET interaction in vivo on a whole-body scale is achieved using the wide-field imaging approach based on lifetime contrast. This technique represents the first demonstration of tomographic FRET imaging in small animals and has significant potential in the development of optical imaging techniques in varied applications ranging from drug discovery to in vivo study of protein-protein interaction.

  8. Optical configuration with fixed transverse magnification for self-interference incoherent digital holography.

    PubMed

    Imbe, Masatoshi

    2018-03-20

    The optical configuration proposed in this paper consists of a 4-f optical setup with the wavefront modulation device on the Fourier plane, such as a concave mirror and a spatial light modulator. The transverse magnification of reconstructed images with the proposed configuration is independent of locations of an object and an image sensor; therefore, reconstructed images of object(s) at different distances can be scaled with a fixed transverse magnification. It is yielded based on Fourier optics and mathematically verified with the optical matrix method. Numerical simulation results and experimental results are also given to confirm the fixity of the reconstructed images.

  9. [An experimental research on the fabrication of the fused porcelain to CAD/CAM molar crown].

    PubMed

    Dai, Ning; Zhou, Yongyao; Liao, Wenhe; Yu, Qing; An, Tao; Jiao, Yiqun

    2007-02-01

    This paper introduced the fabrication process of the fused porcelain to molar crown with CAD/CAM technology. Firstly, preparation teeth data was retrieved by the 3D-optical measuring system. Then, we have reconstructed the inner surface designed the outer surface shape with the computer aided design software. Finally, the mini high-speed NC milling machine was used to produce the fused porcelain to CAD/CAM molar crown. The result has proved that the fabrication process is reliable and efficient. The dental restoration quality is steady and precise.

  10. Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Pogue, Brian W.; Springett, Roger; Leussler, Christoph; Mazurkewitz, Peter; Tuttle, Stephen B.; Gibbs-Strauss, Summer L.; Jiang, Shudong S.; Dehghani, Hamid; Paulsen, Keith D.

    2008-06-01

    A multichannel spectrally resolved optical tomography system to image molecular targets in small animals from within a clinical MRI is described. Long source/detector fibers operate in contact mode and couple light from the tissue surface in the magnet bore to 16 spectrometers, each containing two optical gratings optimized for the near infrared wavelength range. High sensitivity, cooled charge coupled devices connected to each spectrograph provide detection of the spectrally resolved signal, with exposure times that are automated for acquisition at each fiber. The design allows spectral fitting of the remission light, thereby separating the fluorescence signal from the nonspecific background, which improves the accuracy and sensitivity when imaging low fluorophore concentrations. Images of fluorescence yield are recovered using a nonlinear reconstruction approach based on the diffusion approximation of photon propagation in tissue. The tissue morphology derived from the MR images serves as an imaging template to guide the optical reconstruction algorithm. Sensitivity studies show that recovered values of indocyanine green fluorescence yield are linear to concentrations of 1nM in a 70mm diameter homogeneous phantom, and detection is feasible to near 10pM. Phantom data also demonstrate imaging capabilities of imperfect fluorophore uptake in tissue volumes of clinically relevant sizes. A unique rodent MR coil provides optical fiber access for simultaneous optical and MR data acquisition of small animals. A pilot murine study using an orthotopic glioma tumor model demonstrates optical-MRI imaging of an epidermal growth factor receptor targeted fluorescent probe in vivo.

  11. Xenogeneic Acellular Conjunctiva Matrix as a Scaffold of Tissue-Engineered Corneal Epithelium

    PubMed Central

    Zhao, Haifeng; Qu, Mingli; Wang, Yao; Wang, Zhenyu; Shi, Weiyun

    2014-01-01

    Amniotic membrane-based tissue-engineered corneal epithelium has been widely used in the reconstruction of the ocular surface. However, it often degrades too early to ensure the success of the transplanted corneal epithelium when treating patients with severe ocular surface disorders. In the present study, we investigated the preparation of xenogeneic acellular conjunctiva matrix (aCM) and evaluated its efficacy and safety as a scaffold of tissue-engineered corneal epithelium. Native porcine conjunctiva was decellularized with 0.1% sodium dodecyl sulfate (SDS) for 12 h at 37°C and sterilized via γ-irradiation. Compared with native conjunctiva, more than 92% of the DNA was removed, and more than 90% of the extracellular matrix components (glycosaminoglycan and collagen) remained after the decellularization treatment. Compared with denuded amniotic membrane (dAM), the aCM possessed favorable optical transmittance, tensile strength, stability and biocompatibility as well as stronger resistance to degradation both in vitro and in vivo. The corneal epithelial cells seeded on aCM formed a multilayered epithelial structure and endured longer than did those on dAM. The aCM-based tissue-engineered corneal epithelium was more effective in the reconstruction of the ocular surface in rabbits with limbal stem cell deficiency. These findings support the application of xenogeneic acellular conjunctiva matrix as a scaffold for reconstructing the ocular surface. PMID:25375996

  12. A novel craniotomy simulation system for evaluation of stereo-pair reconstruction fidelity and tracking

    NASA Astrophysics Data System (ADS)

    Yang, Xiaochen; Clements, Logan W.; Conley, Rebekah H.; Thompson, Reid C.; Dawant, Benoit M.; Miga, Michael I.

    2016-03-01

    Brain shift compensation using computer modeling strategies is an important research area in the field of image-guided neurosurgery (IGNS). One important source of available sparse data during surgery to drive these frameworks is deformation tracking of the visible cortical surface. Possible methods to measure intra-operative cortical displacement include laser range scanners (LRS), which typically complicate the clinical workflow, and reconstruction of cortical surfaces from stereo pairs acquired with the operating microscopes. In this work, we propose and demonstrate a craniotomy simulation device that permits simulating realistic cortical displacements designed to measure and validate the proposed intra-operative cortical shift measurement systems. The device permits 3D deformations of a mock cortical surface which consists of a membrane made of a Dragon Skin® high performance silicone rubber on which vascular patterns are drawn. We then use this device to validate our stereo pair-based surface reconstruction system by comparing landmark positions and displacements measured with our systems to those positions and displacements as measured by a stylus tracked by a commercial optical system. Our results show a 1mm average difference in localization error and a 1.2mm average difference in displacement measurement. These results suggest that our stereo-pair technique is accurate enough for estimating intra-operative displacements in near real-time without affecting the surgical workflow.

  13. On distributed wavefront reconstruction for large-scale adaptive optics systems.

    PubMed

    de Visser, Cornelis C; Brunner, Elisabeth; Verhaegen, Michel

    2016-05-01

    The distributed-spline-based aberration reconstruction (D-SABRE) method is proposed for distributed wavefront reconstruction with applications to large-scale adaptive optics systems. D-SABRE decomposes the wavefront sensor domain into any number of partitions and solves a local wavefront reconstruction problem on each partition using multivariate splines. D-SABRE accuracy is within 1% of a global approach with a speedup that scales quadratically with the number of partitions. The D-SABRE is compared to the distributed cumulative reconstruction (CuRe-D) method in open-loop and closed-loop simulations using the YAO adaptive optics simulation tool. D-SABRE accuracy exceeds CuRe-D for low levels of decomposition, and D-SABRE proved to be more robust to variations in the loop gain.

  14. Fabrication of planar optical waveguides by 6.0 MeV silicon ion implantation in Nd-doped phosphate glasses

    NASA Astrophysics Data System (ADS)

    Shen, Xiao-Liang; Dai, Han-Qing; Zhang, Liao-Lin; Wang, Yue; Zhu, Qi-Feng; Guo, Hai-Tao; Li, Wei-Nan; Liu, Chun-Xiao

    2018-04-01

    We report the fabrication of a planar optical waveguide by silicon ion implantation into Nd-doped phosphate glass at an energy of 6.0 MeV and a dose of 5.0 × 1014 ions/cm2. The change in the surface morphology of the glass after the implantation can be clearly observed by scanning electron microscopy. The measurement of the dark mode spectrum of the waveguide is conducted using a prism coupler at 632.8 nm. The refractive index distribution of the waveguide is reconstructed by the reflectivity calculation method. The near-field optical intensity profile of the waveguide is measured using an end-face coupling system. The waveguide with good optical properties on the glass matrix may be valuable for the application of the Nd-doped phosphate glass in integrated optical devices.

  15. Organo/Zn-Al LDH Nanocomposites for Cationic Dye Removal from Aqueous Media

    NASA Astrophysics Data System (ADS)

    Starukh, G.; Rozovik, O.; Oranska, O.

    2016-04-01

    Cationic dye sorption by Zn-Al-layered double hydroxides (LDHs) modified with anionic surfactants was examined using methylene blue (MB) dye as a compound model in aqueous solutions. The modification of Zn-Al LDHs was performed by reconstruction method using dodecyl sulfate anion (DS) solutions. DS contained Zn-Al LDHs were characterized by XRD, FTIR, thermogravimetric, and SEM analysis. The reconstructed organo/Zn-Al LDHs comprise the crystalline phases (DS-intercalated LDHs, hydrotalcite), and the amorphous phase. The intercalation of DS ions into the interlayer galleries and DS adsorption on the surface of the LDHs occurred causing the MB adsorption on the external and its sorption in the internal surfaces of modified LDHs. The presence of DS greatly increased the affinity of organo/Zn-Al LDHs for MB due to hydrophobic interactions between the surfactants and the dye molecules. The optical properties of sorbed MB were studied.

  16. Sensor fusion III: 3-D perception and recognition; Proceedings of the Meeting, Boston, MA, Nov. 5-8, 1990

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S. (Editor)

    1991-01-01

    The volume on data fusion from multiple sources discusses fusing multiple views, temporal analysis and 3D motion interpretation, sensor fusion and eye-to-hand coordination, and integration in human shape perception. Attention is given to surface reconstruction, statistical methods in sensor fusion, fusing sensor data with environmental knowledge, computational models for sensor fusion, and evaluation and selection of sensor fusion techniques. Topics addressed include the structure of a scene from two and three projections, optical flow techniques for moving target detection, tactical sensor-based exploration in a robotic environment, and the fusion of human and machine skills for remote robotic operations. Also discussed are K-nearest-neighbor concepts for sensor fusion, surface reconstruction with discontinuities, a sensor-knowledge-command fusion paradigm for man-machine systems, coordinating sensing and local navigation, and terrain map matching using multisensing techniques for applications to autonomous vehicle navigation.

  17. Quantitative detection of multiple fluorophore sites as a tool for diagnosis and monitoring disease progression in salivary glands

    NASA Astrophysics Data System (ADS)

    Gannot, Israel; Bonner, Robert F.; Gannot, Gallya; Fox, Philip C.; You, Joon S.; Waynant, Ronald W.; Gandjbakhche, Amir H.

    1997-08-01

    A series of fluorescent surface images were obtained from physical models of localized fluorophores embedded at various depths and separations in tissue phantoms. Our random walk theory was applied to create an analytical model of multiple flurophores embedded in tissue-like phantom. Using this model, from acquired set of surface images, the location of the fluorophores was reconstructed and compared it to their known 3-D distributions. A good correlation was found, and the ability to resolve fluorophores as a function of depth and separation was determined. In parallel in in-vitro study, specific coloring of sections of minor salivary glands was also demonstrated. These results demonstrate the possibility of using inverse methods to reconstruct unknown locations and concentrations of optical probes specifically bound to infiltrating lymphocytes in minor salivary glands of patients with Sjogren's syndrome.

  18. Wave-optics description of self-healing mechanism in Bessel beams.

    PubMed

    Aiello, Andrea; Agarwal, Girish S

    2014-12-15

    Bessel beams' great importance in optics lies in that these propagate without spreading and can reconstruct themselves behind an obstruction placed across their path. However, a rigorous wave-optics explanation of the latter property is missing. In this work, we study the reconstruction mechanism by means of a wave-optics description. We obtain expressions for the minimum distance beyond the obstruction at which the beam reconstructs itself, which are in close agreement with the traditional one determined from geometrical optics. Our results show that the physics underlying the self-healing mechanism can be entirely explained in terms of the propagation of plane waves with radial wave vectors lying on a ring.

  19. Estimation of polarization distribution on gold nanorods system from hierarchical features of optical near-field

    NASA Astrophysics Data System (ADS)

    Uchiyama, Kazuharu; Nishikawa, Naoki; Nakagomi, Ryo; Kobayashi, Kiyoshi; Hori, Hirokazu

    2018-02-01

    To design optoelectronic functionalities in nanometer scale based on interactions of electronic system with optical near-fields, it is essential to evaluate the relationship between optical near-fields and their sources. Several theoretical studies have been performed, so far, to analyze such complex relationship to design the interaction fields of several specific scales. In this study, we have performed detailed and high-precision measurements of optical near-field structures woven by a large number of independent polarizations generated in the gold nanorods array under laser light irradiation at the resonant frequency. We have accumulated the multi-layered data of optical near-field imaging at different heights above the planar surface with the resolution of several nm by a STM-assisted scanning near-field optical microscope. Based on these data, we have performed an inverse calculation to estimate the position, direction, and strength of the local polarization buried under the flat surface of the sample. As a result of the inverse operation, we have confirmed that the complexities in the nanometer scale optical near-fields could be reconstructed by combinations of induced polarization in each gold nanorod. We have demonstrated the hierarchical properties of optical near-fields based on spatial frequency expansion and superposition of dipole fields to provide insightful information for applications such for secure multi-layered information storage.

  20. Real time 3D visualization of intraoperative organ deformations using structured dictionary.

    PubMed

    Wang, Dan; Tewfik, Ahmed H

    2012-04-01

    Restricted visualization of the surgical field is one of the most critical challenges for minimally invasive surgery (MIS). Current intraoperative visualization systems are promising. However, they can hardly meet the requirements of high resolution and real time 3D visualization of the surgical scene to support the recognition of anatomic structures for safe MIS procedures. In this paper, we present a new approach for real time 3D visualization of organ deformations based on optical imaging patches with limited field-of-view and a single preoperative scan of magnetic resonance imaging (MRI) or computed tomography (CT). The idea for reconstruction is motivated by our empirical observation that the spherical harmonic coefficients corresponding to distorted surfaces of a given organ lie in lower dimensional subspaces in a structured dictionary that can be learned from a set of representative training surfaces. We provide both theoretical and practical designs for achieving these goals. Specifically, we discuss details about the selection of limited optical views and the registration of partial optical images with a single preoperative MRI/CT scan. The design proposed in this paper is evaluated with both finite element modeling data and ex vivo experiments. The ex vivo test is conducted on fresh porcine kidneys using 3D MRI scans with 1.2 mm resolution and a portable laser scanner with an accuracy of 0.13 mm. Results show that the proposed method achieves a sub-3 mm spatial resolution in terms of Hausdorff distance when using only one preoperative MRI scan and the optical patch from the single-sided view of the kidney. The reconstruction frame rate is between 10 frames/s and 39 frames/s depending on the complexity of the test model.

  1. Automated retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis.

    PubMed

    Kammen, Alexandra; Law, Meng; Tjan, Bosco S; Toga, Arthur W; Shi, Yonggang

    2016-01-15

    Diffusion MRI tractography provides a non-invasive modality to examine the human retinofugal projection, which consists of the optic nerves, optic chiasm, optic tracts, the lateral geniculate nuclei (LGN) and the optic radiations. However, the pathway has several anatomic features that make it particularly challenging to study with tractography, including its location near blood vessels and bone-air interface at the base of the cerebrum, crossing fibers at the chiasm, somewhat-tortuous course around the temporal horn via Meyer's Loop, and multiple closely neighboring fiber bundles. To date, these unique complexities of the visual pathway have impeded the development of a robust and automated reconstruction method using tractography. To overcome these challenges, we develop a novel, fully automated system to reconstruct the retinofugal visual pathway from high-resolution diffusion imaging data. Using multi-shell, high angular resolution diffusion imaging (HARDI) data, we reconstruct precise fiber orientation distributions (FODs) with high order spherical harmonics (SPHARM) to resolve fiber crossings, which allows the tractography algorithm to successfully navigate the complicated anatomy surrounding the retinofugal pathway. We also develop automated algorithms for the identification of ROIs used for fiber bundle reconstruction. In particular, we develop a novel approach to extract the LGN region of interest (ROI) based on intrinsic shape analysis of a fiber bundle computed from a seed region at the optic chiasm to a target at the primary visual cortex. By combining automatically identified ROIs and FOD-based tractography, we obtain a fully automated system to compute the main components of the retinofugal pathway, including the optic tract and the optic radiation. We apply our method to the multi-shell HARDI data of 215 subjects from the Human Connectome Project (HCP). Through comparisons with post-mortem dissection measurements, we demonstrate the retinotopic organization of the optic radiation including a successful reconstruction of Meyer's loop. Then, using the reconstructed optic radiation bundle from the HCP cohort, we construct a probabilistic atlas and demonstrate its consistency with a post-mortem atlas. Finally, we generate a shape-based representation of the optic radiation for morphometry analysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Pixel-based absolute surface metrology by three flat test with shifted and rotated maps

    NASA Astrophysics Data System (ADS)

    Zhai, Dede; Chen, Shanyong; Xue, Shuai; Yin, Ziqiang

    2018-03-01

    In traditional three flat test, it only provides the absolute profile along one surface diameter. In this paper, an absolute testing algorithm based on shift-rotation with three flat test has been proposed to reconstruct two-dimensional surface exactly. Pitch and yaw error during shift procedure is analyzed and compensated in our method. Compared with multi-rotation method proposed before, it only needs a 90° rotation and a shift, which is easy to carry out especially in condition of large size surface. It allows pixel level spatial resolution to be achieved without interpolation or assumption to the test surface. In addition, numerical simulations and optical tests are implemented and show the high accuracy recovery capability of the proposed method.

  3. Reference-free Shack-Hartmann wavefront sensor.

    PubMed

    Zhao, Liping; Guo, Wenjiang; Li, Xiang; Chen, I-Ming

    2011-08-01

    The traditional Shack-Hartmann wavefront sensing (SHWS) system measures the wavefront slope by calculating the centroid shift between the sample and a reference piece, and then the wavefront is reconstructed by a suitable iterative reconstruction method. Because of the necessity of a reference, many issues are brought up, which limit the system in most applications. This Letter proposes a reference-free wavefront sensing (RFWS) methodology, and an RFWS system is built up where wavefront slope changes are measured by introducing a lateral disturbance to the sampling aperture. By using Southwell reconstruction two times to process the measured data, the form of the wavefront at the sampling plane can be well reconstructed. A theoretical simulation platform of RFWS is established, and various surface forms are investigated. Practical measurements with two measurement systems-SHWS and our RFWS-are conducted, analyzed, and compared. All the simulation and measurement results prove and demonstrate the correctness and effectiveness of the method. © 2011 Optical Society of America

  4. Novel asymmetric cryptosystem based on distorted wavefront beam illumination and double-random phase encoding.

    PubMed

    Yu, Honghao; Chang, Jun; Liu, Xin; Wu, Chuhan; He, Yifan; Zhang, Yongjian

    2017-04-17

    Herein, we propose a new security enhancing method that employs wavefront aberrations as optical keys to improve the resistance capabilities of conventional double-random phase encoding (DRPE) optical cryptosystems. This study has two main innovations. First, we exploit a special beam-expander afocal-reflecting to produce different types of aberrations, and the wavefront distortion can be altered by changing the shape of the afocal-reflecting system using a deformable mirror. Then, we reconstruct the wavefront aberrations via the surface fitting of Zernike polynomials and use the reconstructed aberrations as novel asymmetric vector keys. The ideal wavefront and the distorted wavefront obtained by wavefront sensing can be regarded as a pair of private and public keys. The wavelength and focal length of the Fourier lens can be used as additional keys to increase the number of degrees of freedom. This novel cryptosystem can enhance the resistance to various attacks aimed at DRPE systems. Finally, we conduct ZEMAX and MATLAB simulations to demonstrate the superiority of this method.

  5. Coherent noise reduction in digital holographic microscopy by averaging multiple holograms recorded with a multimode laser.

    PubMed

    Pan, Feng; Yang, Lizhi; Xiao, Wen

    2017-09-04

    In digital holographic microscopy (DHM), it is undesirable to observe coherent noise in the reconstructed images. The sources of the noise are mainly the parasitic interference fringes caused by multiple reflections and the speckle pattern caused by the optical scattering on the object surface. Here we propose a noise reduction approach in DHM by averaging multiple holograms recorded with a multimode laser. Based on the periodicity of the temporal coherence of a multimode semiconductor laser, we acquire a series of holograms by changing the optical path length difference between the reference beam and object beam. Because of the use of low coherence light, we can remove the parasitic interference fringes caused by multiple reflections in the holograms. In addition, the coherent noise patterns change in this process due to the different optical paths. Therefore, the coherent noise can be reduced by averaging the multiple reconstructions with uncorrelated noise patterns. Several experiments have been carried out to validate the effectiveness of the proposed approach for coherent noise reduction in DHM. It is shown a remarkable improvement both in amplitude imaging quality and phase measurement accuracy.

  6. X-ray luminescence computed tomography using a focused x-ray beam.

    PubMed

    Zhang, Wei; Lun, Michael C; Nguyen, Alex Anh-Tu; Li, Changqing

    2017-11-01

    Due to the low x-ray photon utilization efficiency and low measurement sensitivity of the electron multiplying charge coupled device camera setup, the collimator-based narrow beam x-ray luminescence computed tomography (XLCT) usually requires a long measurement time. We, for the first time, report a focused x-ray beam-based XLCT imaging system with measurements by a single optical fiber bundle and a photomultiplier tube (PMT). An x-ray tube with a polycapillary lens was used to generate a focused x-ray beam whose x-ray photon density is 1200 times larger than a collimated x-ray beam. An optical fiber bundle was employed to collect and deliver the emitted photons on the phantom surface to the PMT. The total measurement time was reduced to 12.5 min. For numerical simulations of both single and six fiber bundle cases, we were able to reconstruct six targets successfully. For the phantom experiment, two targets with an edge-to-edge distance of 0.4 mm and a center-to-center distance of 0.8 mm were successfully reconstructed by the measurement setup with a single fiber bundle and a PMT. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  7. Theoretical limit of spatial resolution in diffuse optical tomography using a perturbation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konovalov, A B; Vlasov, V V

    2014-03-28

    We have assessed the limit of spatial resolution of timedomain diffuse optical tomography (DOT) based on a perturbation reconstruction model. From the viewpoint of the structure reconstruction accuracy, three different approaches to solving the inverse DOT problem are compared. The first approach involves reconstruction of diffuse tomograms from straight lines, the second – from average curvilinear trajectories of photons and the third – from total banana-shaped distributions of photon trajectories. In order to obtain estimates of resolution, we have derived analytical expressions for the point spread function and modulation transfer function, as well as have performed a numerical experiment onmore » reconstruction of rectangular scattering objects with circular absorbing inhomogeneities. It is shown that in passing from reconstruction from straight lines to reconstruction using distributions of photon trajectories we can improve resolution by almost an order of magnitude and exceed the accuracy of reconstruction of multi-step algorithms used in DOT. (optical tomography)« less

  8. Three-dimension reconstruction based on spatial light modulator

    NASA Astrophysics Data System (ADS)

    Deng, Xuejiao; Zhang, Nanyang; Zeng, Yanan; Yin, Shiliang; Wang, Weiyu

    2011-02-01

    Three-dimension reconstruction, known as an important research direction of computer graphics, is widely used in the related field such as industrial design and manufacture, construction, aerospace, biology and so on. Via such technology we can obtain three-dimension digital point cloud from a two-dimension image, and then simulate the three-dimensional structure of the physical object for further study. At present, the obtaining of three-dimension digital point cloud data is mainly based on the adaptive optics system with Shack-Hartmann sensor and phase-shifting digital holography. Referring to surface fitting, there are also many available methods such as iterated discrete fourier transform, convolution and image interpolation, linear phase retrieval. The main problems we came across in three-dimension reconstruction are the extraction of feature points and arithmetic of curve fitting. To solve such problems, we can, first of all, calculate the relevant surface normal vector information of each pixel in the light source coordinate system, then these vectors are to be converted to the coordinates of image through the coordinate conversion, so the expectant 3D point cloud get arise. Secondly, after the following procedures of de-noising, repairing, the feature points can later be selected and fitted to get the fitting function of the surface topography by means of Zernike polynomial, so as to reconstruct the determinand's three-dimensional topography. In this paper, a new kind of three-dimension reconstruction algorithm is proposed, with the assistance of which, the topography can be estimated from its grayscale at different sample points. Moreover, the previous stimulation and the experimental results prove that the new algorithm has a strong capability to fit, especially for large-scale objects .

  9. Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties

    PubMed Central

    Naser, Mohamed A.; Patterson, Michael S.

    2010-01-01

    Reconstruction algorithms are presented for a two-step solution of the bioluminescence tomography (BLT) problem. In the first step, a priori anatomical information provided by x-ray computed tomography or by other methods is used to solve the continuous wave (cw) diffuse optical tomography (DOT) problem. A Taylor series expansion approximates the light fluence rate dependence on the optical properties of each region where first and second order direct derivatives of the light fluence rate with respect to scattering and absorption coefficients are obtained and used for the reconstruction. In the second step, the reconstructed optical properties at different wavelengths are used to calculate the Green’s function of the system. Then an iterative minimization solution based on the L1 norm shrinks the permissible regions where the sources are allowed by selecting points with higher probability to contribute to the source distribution. This provides an efficient BLT reconstruction algorithm with the ability to determine relative source magnitudes and positions in the presence of noise. PMID:21258486

  10. Optical properties reconstruction using the adjoint method based on the radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Addoum, Ahmad; Farges, Olivier; Asllanaj, Fatmir

    2018-01-01

    An efficient algorithm is proposed to reconstruct the spatial distribution of optical properties in heterogeneous media like biological tissues. The light transport through such media is accurately described by the radiative transfer equation in the frequency-domain. The adjoint method is used to efficiently compute the objective function gradient with respect to optical parameters. Numerical tests show that the algorithm is accurate and robust to retrieve simultaneously the absorption μa and scattering μs coefficients for lowly and highly absorbing medium. Moreover, the simultaneous reconstruction of μs and the anisotropy factor g of the Henyey-Greenstein phase function is achieved with a reasonable accuracy. The main novelty in this work is the reconstruction of g which might open the possibility to image this parameter in tissues as an additional contrast agent in optical tomography.

  11. Optical tomographic imaging for breast cancer detection

    NASA Astrophysics Data System (ADS)

    Cong, Wenxiang; Intes, Xavier; Wang, Ge

    2017-09-01

    Diffuse optical breast imaging utilizes near-infrared (NIR) light propagation through tissues to assess the optical properties of tissues for the identification of abnormal tissue. This optical imaging approach is sensitive, cost-effective, and does not involve any ionizing radiation. However, the image reconstruction of diffuse optical tomography (DOT) is a nonlinear inverse problem and suffers from severe illposedness due to data noise, NIR light scattering, and measurement incompleteness. An image reconstruction method is proposed for the detection of breast cancer. This method splits the image reconstruction problem into the localization of abnormal tissues and quantification of absorption variations. The localization of abnormal tissues is performed based on a well-posed optimization model, which can be solved via a differential evolution optimization method to achieve a stable reconstruction. The quantification of abnormal absorption is then determined in localized regions of relatively small extents, in which a potential tumor might be. Consequently, the number of unknown absorption variables can be greatly reduced to overcome the underdetermined nature of DOT. Numerical simulation experiments are performed to verify merits of the proposed method, and the results show that the image reconstruction method is stable and accurate for the identification of abnormal tissues, and robust against the measurement noise of data.

  12. Label-free tomographic reconstruction of optically thick structures using GLIM (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kandel, Mikhail E.; Kouzehgarani, Ghazal N.; Ngyuen, Tan H.; Gillette, Martha U.; Popescu, Gabriel

    2017-02-01

    Although the contrast generated in transmitted light microscopy is due to the elastic scattering of light, multiple scattering scrambles the image and reduces overall visibility. To image both thin and thick samples, we turn to gradient light interference microscopy (GLIM) to simultaneously measure morphological parameters such as cell mass, volume, and surfaces as they change through time. Because GLIM combines multiple intensity images corresponding to controlled phase offsets between laterally sheared beams, incoherent contributions from multiple scattering are implicitly cancelled during the phase reconstruction procedure. As the interfering beams traverse near identical paths, they remain comparable in power and interfere with optimal contrast. This key property lets us obtain tomographic parameters from wide field z-scans after simple numerical processing. Here we show our results on reconstructing tomograms of bovine embryos, characterizing the time-lapse growth of HeLa cells in 3D, and preliminary results on imaging much larger specimen such as brain slices.

  13. Optical CT imaging of solid radiochromic dosimeters in mismatched refractive index solutions using a scanning laser and large area detector.

    PubMed

    Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2016-08-01

    The practical use of the PRESAGE® solid plastic dosimeter is limited by the inconvenience of immersing it in high-viscosity oils to achieve refractive index matching for optical computed tomography (CT) scanning. The oils are slow to mix and difficult to clean from surfaces, and the dosimeter rotation can generate dynamic Schlieren inhomogeneity patterns in the reference liquid, limiting the rotational and overall scan speed. Therefore, it would be beneficial if lower-viscosity, water-based solutions with slightly unmatched refractive index could be used instead. The purpose of this work is to demonstrate the feasibility of allowing mismatched conditions when using a scanning laser system with a large acceptance angle detector. A fiducial-based ray path measurement technique is combined with an iterative CT reconstruction algorithm to reconstruct images. A water based surrounding liquid with a low viscosity was selected for imaging PRESAGE® solid dosimeters. Liquid selection was optimized to achieve as high a refractive index as possible while avoiding rotation-induced Schlieren effects. This led to a refractive index mismatch of 6% between liquid and dosimeters. Optical CT scans were performed with a fan-beam scanning-laser optical CT system with a large area detector to capture most of the refracted rays. A fiducial marker placed on the wall of a cylindrical sample occludes a given light ray twice. With knowledge of the rotation angle and the radius of the cylindrical object, the actual internal path of each ray through the dosimeter can be calculated. Scans were performed with 1024 projections of 512 data samples each, and rays were rebinned to form 512 parallel-beam projections. Reconstructions were performed on a 512 × 512 grid using 100 iterations of the SIRT iterative CT algorithm. Proof of concept was demonstrated with a uniformly attenuating solution phantom. PRESAGE® dosimeters (11 cm diameter) were irradiated with Cobalt-60 irradiator to achieve either a uniform dose or a 2-level "step-dose" pattern. With 6% refractive index mismatching, a circular field of view of 85% of the diameter of a cylindrical sample can be reconstructed accurately. Reconstructed images of the test solution phantom were uniform (within 3%) inside this radius. However, the dose responses of the PRESAGE® samples were not spatially uniform, with variations of at least 5% in sensitivity. The variation appears as a "cupping" artifact with less sensitivity in the middle than at the periphery of the PRESAGE® cylinder. Polarization effects were also detected for these samples. The fiducial-based ray path measurement scheme, coupled with an iterative reconstruction algorithm, enabled optical CT scanning of PRESAGE® dosimeters immersed in mismatched refractive index solutions. However, improvements to PRESAGE® dose response uniformity are required.

  14. Development of a low-cost, 11 µm spectral domain optical coherence tomography surface profilometry prototype

    NASA Astrophysics Data System (ADS)

    Suliali, Nyasha J.; Baricholo, Peter; Neethling, Pieter H.; Rohwer, Erich G.

    2017-06-01

    A spectral-domain Optical Coherence Tomography (OCT) surface profilometry prototype has been developed for the purpose of surface metrology of optical elements. The prototype consists of a light source, spectral interferometer, sample fixture and software currently running on Microsoft® Windows platforms. In this system, a broadband light emitting diode beam is focused into a Michelson interferometer with a plane mirror as its sample fixture. At the interferometer output, spectral interferograms of broadband sources were measured using a Czerny-Turner mount monochromator with a 2048-element complementary metal oxide semiconductor linear array as the detector. The software performs importation and interpolation of interferometer spectra to pre-condition the data for image computation. One dimensional axial OCT images were computed by Fourier transformation of the measured spectra. A first reflection surface profilometry (FRSP) algorithm was then formulated to perform imaging of step-function-surfaced samples. The algorithm re-constructs two dimensional colour-scaled slice images by concatenation of 21 and 13 axial scans to form a 10 mm and 3.0 mm slice respectively. Measured spectral interferograms, computed interference fringe signals and depth reflectivity profiles were comparable to simulations and correlated to displacements of a single reflector linearly translated about the arm null-mismatch point. Surface profile images of a double-step-function-surfaced sample, embedded with inclination and crack detail were plotted with an axial resolution of 11 μm. The surface shape, defects and misalignment relative to the incident beam were detected to the order of a micron, confirming high resolution of the developed system as compared to electro-mechanical surface profilometry techniques.

  15. Integrated system for point cloud reconstruction and simulated brain shift validation using tracked surgical microscope

    NASA Astrophysics Data System (ADS)

    Yang, Xiaochen; Clements, Logan W.; Luo, Ma; Narasimhan, Saramati; Thompson, Reid C.; Dawant, Benoit M.; Miga, Michael I.

    2017-03-01

    Intra-operative soft tissue deformation, referred to as brain shift, compromises the application of current imageguided surgery (IGS) navigation systems in neurosurgery. A computational model driven by sparse data has been used as a cost effective method to compensate for cortical surface and volumetric displacements. Stereoscopic microscopes and laser range scanners (LRS) are the two most investigated sparse intra-operative imaging modalities for driving these systems. However, integrating these devices in the clinical workflow to facilitate development and evaluation requires developing systems that easily permit data acquisition and processing. In this work we present a mock environment developed to acquire stereo images from a tracked operating microscope and to reconstruct 3D point clouds from these images. A reconstruction error of 1 mm is estimated by using a phantom with a known geometry and independently measured deformation extent. The microscope is tracked via an attached tracking rigid body that facilitates the recording of the position of the microscope via a commercial optical tracking system as it moves during the procedure. Point clouds, reconstructed under different microscope positions, are registered into the same space in order to compute the feature displacements. Using our mock craniotomy device, realistic cortical deformations are generated. Our experimental results report approximately 2mm average displacement error compared with the optical tracking system. These results demonstrate the practicality of using tracked stereoscopic microscope as an alternative to LRS to collect sufficient intraoperative information for brain shift correction.

  16. Detection of flat colorectal polyps at screening CT colonography in comparison with conventional polypoid lesions.

    PubMed

    Sakamoto, Takashi; Mitsuzaki, Katsuhiko; Utsunomiya, Daisuke; Matsuda, Katsuhiko; Yamamura, Sadahiro; Urata, Joji; Kawakami, Megumi; Yamashita, Yasuyuki

    2012-09-01

    Although the screening of small, flat polyps is clinically important, the role of CT colonography (CTC) screening in their detection has not been thoroughly investigated. To evaluate the detection capability and usefulness of CTC in the screening of flat and polypoid lesions by comparing CTC with optic colonoscopy findings as the gold standard. We evaluated the CTC detection capability for flat colorectal polyps with a flat surface and a height not exceeding 3 mm (n = 42) by comparing to conventional polypoid lesions (n = 418) according to the polyp diameter. Four types of reconstruction images including multiplanar reconstruction, volume rendering, virtual gross pathology, and virtual endoscopic images were used for visual analysis. We compared the abilities of the four reconstructions for polyp visualization. Detection sensitivity for flat polyps was 31.3%, 44.4%, and 87.5% for lesions measuring 2-3 mm, 4-5 mm, and ≥6 mm, respectively; the corresponding sensitivity for polypoid lesions was 47.6%, 79.0%, and 91.7%. The overall sensitivity for flat lesions (47.6%) was significantly lower than polypoid lesions (64.1%). Virtual endoscopic imaging showed best visualization among the four reconstructions. Colon cancers were detected in eight patients by optic colonoscopy, and CTC detected colon cancers in all eight patients. CTC using 64-row multidetector CT is useful for colon cancer screening to detect colorectal polyps while the detection of small, flat lesions is still challenging.

  17. The assessment of orthodontic bonding defects: optical coherence tomography followed by three-dimensional reconstruction

    NASA Astrophysics Data System (ADS)

    Rominu, R.; Sinescu, C.; Rominu, M.; Negrutiu, M.; Petrescu, E.; Pop, D.; Podoleanu, A. Gh.

    2011-10-01

    Orthodontic bonding is a simple yet important procedure that can influence the outcome of treatment in case it is performed incorrectly. An orthodontic treatment shadowed by repeated bonding failures can become unduly long and will decrease patient trust and compliance. Optical coherence tomography has been widely used in ophtalmology but is relatively new to dentistry. Using OCT one can detect aerial inclusions within the orthodontic adhesive or even identify incongruence between the bracket base and the tooth surface. The aim of our study was to identify bonding defects and reconstruct them three-dimensionally in order to be able to characterize them more accurately. We bonded 30 sound human permanent teeth with ceramic orthodontic brackets using a no-mix self-curing orthodontic adhesive. Prior to bonding all teeth were stored in tap water at 4°C and then professionally cleaned with rotary brushes and pumice. The samples were processed by the same person and the rotary brushes were changed after every fifth tooth. All interfaces were investigated by means of OCT and 4 defects were found. Subsequently, the defects were reconstructed threedimensionally using an open-source program. By identifying and reconstructing bonding defects we could assess the quality of the bonding procedure. Since bonding tends to be more accurate in vitro where the environmental conditions are close to ideal, it is probable that defects found in vivo be even greater in number, which leads to the conclusion that this type of investigation is potentially valuable.

  18. Fast calculation of tissue optical properties using MC and the experimental evaluation for diagnosis of cervical cancer

    NASA Astrophysics Data System (ADS)

    Zhang, Shuying; Zhou, Xiaoqing; Qin, Zhuanping; Zhao, Huijuan

    2011-02-01

    This article aims at the development of the fast inverse Monte Carlo (MC) simulation for the reconstruction of optical properties (absorption coefficient μs and scattering coefficient μs) of cylindrical tissue, such as a cervix, from the measurement of near infrared diffuse light on frequency domain. Frequency domain information (amplitude and phase) is extracted from the time domain MC with a modified method. To shorten the computation time in reconstruction of optical properties, efficient and fast forward MC has to be achieved. To do this, firstly, databases of the frequency-domain information under a range of μa and μs were pre-built by combining MC simulation with Lambert-Beer's law. Then, a double polynomial model was adopted to quickly obtain the frequency-domain information in any optical properties. Based on the fast forward MC, the optical properties can be quickly obtained in a nonlinear optimization scheme. Reconstruction resulting from simulated data showed that the developed inverse MC method has the advantages in both the reconstruction accuracy and computation time. The relative errors in reconstruction of the μs and μs are less than +/-6% and +/-12% respectively, while another coefficient (μs or μs) is in a fixed value. When both μs and μs are unknown, the relative errors in reconstruction of the reduced scattering coefficient and absorption coefficient are mainly less than +/-10% in range of 45< μs <80 cm-1 and 0.25< a μ <0.55 cm-1. With the rapid reconstruction strategy developed in this article the computation time for reconstructing one set of the optical properties is less than 0.5 second. Endoscopic measurement on two tubular solid phantoms were also carried out to evaluate the system and the inversion scheme. The results demonstrated that less than 20% relative error can be achieved.

  19. Intensity Interferometry: Imaging Stars with Kilometer Baselines

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis

    2018-04-01

    Microarcsecond imaging will reveal stellar surfaces but requires kilometer-scale interferometers. Intensity interferometry circumvents atmospheric turbulence by correlating intensity fluctuations between independent telescopes. Telescopes connect only electronically, and the error budget relates to electronic timescales of nanoseconds (light-travel distances on the order of a meter), enabling the use of imperfect optics in a turbulent atmosphere. Once pioneered by Hanbury Brown and Twiss, digital versions have now been demonstrated in the laboratory, reconstructing diffraction-limited images from hundreds of optical baselines. Arrays of Cherenkov telescopes (primarily erected for gamma-ray studies) will extend over a few km, enabling an optical equivalent of radio interferometers. Resolutions in the tens of microarcseconds will resolve rotationally flattened stars with their circumstellar disks and winds, or possibly even the silhouettes of transiting exoplanets. Applying the method to mirror segments in extremely large telescopes (even with an incompletely filled main mirror, poor seeing, no adaptive optics), the diffraction limit in the blue may be reached.

  20. Characterizing Spatial Organization of Cell Surface Receptors in Human Breast Cancer with STORM

    NASA Astrophysics Data System (ADS)

    Lyall, Evan; Chapman, Matthew R.; Sohn, Lydia L.

    2012-02-01

    Regulation and control of complex biological functions are dependent upon spatial organization of biological structures at many different length scales. For instance Eph receptors and their ephrin ligands bind when opposing cells come into contact during development, resulting in spatial organizational changes on the nanometer scale that lead to changes on the macro scale, in a process known as organ morphogenesis. One technique able to probe this important spatial organization at both the nanometer and micrometer length scales, including at cell-cell junctions, is stochastic optical reconstruction microscopy (STORM). STORM is a technique that localizes individual fluorophores based on the centroids of their point spread functions and then reconstructs a composite image to produce super resolved structure. We have applied STORM to study spatial organization of the cell surface of human breast cancer cells, specifically the organization of tyrosine kinase receptors and chemokine receptors. A better characterization of spatial organization of breast cancer cell surface proteins is necessary to fully understand the tumorigenisis pathways in the most common malignancy in United States women.

  1. Element sensitive reconstruction of nanostructured surfaces with finite elements and grazing incidence soft X-ray fluorescence.

    PubMed

    Soltwisch, Victor; Hönicke, Philipp; Kayser, Yves; Eilbracht, Janis; Probst, Jürgen; Scholze, Frank; Beckhoff, Burkhard

    2018-03-29

    The geometry of a Si3N4 lamellar grating was investigated experimentally with reference-free grazing-incidence X-ray fluorescence analysis. While simple layered systems are usually treated with the matrix formalism to determine the X-ray standing-wave field, this approach fails for laterally structured surfaces. Maxwell solvers based on finite elements are often used to model electrical field strengths for any 2D or 3D structures in the optical spectral range. We show that this approach can also be applied in the field of X-rays. The electrical field distribution obtained with the Maxwell solver can subsequently be used to calculate the fluorescence intensities in full analogy to the X-ray standing-wave field obtained by the matrix formalism. Only the effective 1D integration for the layer system has to be replaced by a 2D integration of the finite elements, taking into account the local excitation conditions. We will show that this approach is capable of reconstructing the geometric line shape of a structured surface with high elemental sensitivity. This combination of GIXRF and finite-element simulations paves the way for a versatile characterization of nanoscale-structured surfaces.

  2. Validation of luminescent source reconstruction using spectrally resolved bioluminescence images

    NASA Astrophysics Data System (ADS)

    Virostko, John M.; Powers, Alvin C.; Jansen, E. D.

    2008-02-01

    This study examines the accuracy of the Living Image® Software 3D Analysis Package (Xenogen, Alameda, CA) in reconstruction of light source depth and intensity. Constant intensity light sources were placed in an optically homogeneous medium (chicken breast). Spectrally filtered images were taken at 560, 580, 600, 620, 640, and 660 nanometers. The Living Image® Software 3D Analysis Package was employed to reconstruct source depth and intensity using these spectrally filtered images. For sources shallower than the mean free path of light there was proportionally higher inaccuracy in reconstruction. For sources deeper than the mean free path, the average error in depth and intensity reconstruction was less than 4% and 12%, respectively. The ability to distinguish multiple sources decreased with increasing source depth and typically required a spatial separation of twice the depth. The constant intensity light sources were also implanted in mice to examine the effect of optical inhomogeneity. The reconstruction accuracy suffered in inhomogeneous tissue with accuracy influenced by the choice of optical properties used in reconstruction.

  3. Simplified projection technique to correct geometric and chromatic lens aberrations using plenoptic imaging.

    PubMed

    Dallaire, Xavier; Thibault, Simon

    2017-04-01

    Plenoptic imaging has been used in the past decade mainly for 3D reconstruction or digital refocusing. It was also shown that this technology has potential for correcting monochromatic aberrations in a standard optical system. In this paper, we present an algorithm for reconstructing images using a projection technique while correcting defects present in it that can apply to chromatic aberrations and wide-angle optical systems. We show that the impact of noise on the reconstruction procedure is minimal. Trade-offs between the sampling of the optical system needed for characterization and image quality are presented. Examples are shown for aberrations in a classic optical system and for chromatic aberrations. The technique is also applied to a wide-angle full field of view of 140° (FFOV 140°) optical system. This technique could be used in order to further simplify or minimize optical systems.

  4. Parallel programming of gradient-based iterative image reconstruction schemes for optical tomography.

    PubMed

    Hielscher, Andreas H; Bartel, Sebastian

    2004-02-01

    Optical tomography (OT) is a fast developing novel imaging modality that uses near-infrared (NIR) light to obtain cross-sectional views of optical properties inside the human body. A major challenge remains the time-consuming, computational-intensive image reconstruction problem that converts NIR transmission measurements into cross-sectional images. To increase the speed of iterative image reconstruction schemes that are commonly applied for OT, we have developed and implemented several parallel algorithms on a cluster of workstations. Static process distribution as well as dynamic load balancing schemes suitable for heterogeneous clusters and varying machine performances are introduced and tested. The resulting algorithms are shown to accelerate the reconstruction process to various degrees, substantially reducing the computation times for clinically relevant problems.

  5. Feasibility of 3D Reconstruction of Neural Morphology Using Expansion Microscopy and Barcode-Guided Agglomeration

    PubMed Central

    Yoon, Young-Gyu; Dai, Peilun; Wohlwend, Jeremy; Chang, Jae-Byum; Marblestone, Adam H.; Boyden, Edward S.

    2017-01-01

    We here introduce and study the properties, via computer simulation, of a candidate automated approach to algorithmic reconstruction of dense neural morphology, based on simulated data of the kind that would be obtained via two emerging molecular technologies—expansion microscopy (ExM) and in-situ molecular barcoding. We utilize a convolutional neural network to detect neuronal boundaries from protein-tagged plasma membrane images obtained via ExM, as well as a subsequent supervoxel-merging pipeline guided by optical readout of information-rich, cell-specific nucleic acid barcodes. We attempt to use conservative imaging and labeling parameters, with the goal of establishing a baseline case that points to the potential feasibility of optical circuit reconstruction, leaving open the possibility of higher-performance labeling technologies and algorithms. We find that, even with these conservative assumptions, an all-optical approach to dense neural morphology reconstruction may be possible via the proposed algorithmic framework. Future work should explore both the design-space of chemical labels and barcodes, as well as algorithms, to ultimately enable routine, high-performance optical circuit reconstruction. PMID:29114215

  6. Feasibility of 3D Reconstruction of Neural Morphology Using Expansion Microscopy and Barcode-Guided Agglomeration.

    PubMed

    Yoon, Young-Gyu; Dai, Peilun; Wohlwend, Jeremy; Chang, Jae-Byum; Marblestone, Adam H; Boyden, Edward S

    2017-01-01

    We here introduce and study the properties, via computer simulation, of a candidate automated approach to algorithmic reconstruction of dense neural morphology, based on simulated data of the kind that would be obtained via two emerging molecular technologies-expansion microscopy (ExM) and in-situ molecular barcoding. We utilize a convolutional neural network to detect neuronal boundaries from protein-tagged plasma membrane images obtained via ExM, as well as a subsequent supervoxel-merging pipeline guided by optical readout of information-rich, cell-specific nucleic acid barcodes. We attempt to use conservative imaging and labeling parameters, with the goal of establishing a baseline case that points to the potential feasibility of optical circuit reconstruction, leaving open the possibility of higher-performance labeling technologies and algorithms. We find that, even with these conservative assumptions, an all-optical approach to dense neural morphology reconstruction may be possible via the proposed algorithmic framework. Future work should explore both the design-space of chemical labels and barcodes, as well as algorithms, to ultimately enable routine, high-performance optical circuit reconstruction.

  7. Imaging and reconstruction of cell cortex structures near the cell surface

    NASA Astrophysics Data System (ADS)

    Jin, Luhong; Zhou, Xiaoxu; Xiu, Peng; Luo, Wei; Huang, Yujia; Yu, Feng; Kuang, Cuifang; Sun, Yonghong; Liu, Xu; Xu, Yingke

    2017-11-01

    Total internal reflection fluorescence microscopy (TIRFM) provides high optical sectioning capability and superb signal-to-noise ratio for imaging of cell cortex structures. The development of multi-angle (MA)-TIRFM permits high axial resolution imaging and reconstruction of cellular structures near the cell surface. Cytoskeleton is composed of a network of filaments, which are important for maintenance of cell function. The high-resolution imaging and quantitative analysis of filament organization would contribute to our understanding of cytoskeleton regulation in cell. Here, we used a custom-developed MA-TIRFM setup, together with stochastic photobleaching and single molecule localization method, to enhance the lateral resolution of TIRFM imaging to about 100 nm. In addition, we proposed novel methods to perform filament segmentation and 3D reconstruction from MA-TIRFM images. Furthermore, we applied these methods to study the 3D localization of cortical actin and microtubule structures in U373 cancer cells. Our results showed that cortical actins localize ∼ 27 nm closer to the plasma membrane when compared with microtubules. We found that treatment of cells with chemotherapy drugs nocodazole and cytochalasin B disassembles cytoskeletal network and induces the reorganization of filaments towards the cell periphery. In summary, this study provides feasible approaches for 3D imaging and analyzing cell surface distribution of cytoskeletal network. Our established microscopy platform and image analysis toolkits would facilitate the study of cytoskeletal network in cells.

  8. Optical Estimation of the 3D Shape of a Solar Illuminated, Reflecting Satellite Surface

    NASA Astrophysics Data System (ADS)

    Antolin, J.; Yu, Z.; Prasad, S.

    2016-09-01

    The spatial distribution of the polarized component of the power reflected by a macroscopically smooth but microscopically roughened curved surface under highly directional illumination, as characterized by an appropriate bi-directional reflectance distribution function (BRDF), carries information about the three-dimensional (3D) shape of the surface. This information can be exploited to recover the surface shape locally under rather general conditions whenever power reflectance data for at least two different illumination or observation directions can be obtained. We present here two different parametric approaches for surface reconstruction, amounting to the recovery of the surface parameters that are either the global parameters of the family to which the surface is known a priori to belong or the coefficients of a low-order polynomial that can be employed to characterize a smoothly varying surface locally over the observed patch.

  9. Rapid matching of stereo vision based on fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Zhang, Ruihua; Xiao, Yi; Cao, Jian; Guo, Hongwei

    2016-09-01

    As the most important core part of stereo vision, there are still many problems to solve in stereo matching technology. For smooth surfaces on which feature points are not easy to extract, this paper adds a projector into stereo vision measurement system based on fringe projection techniques, according to the corresponding point phases which extracted from the left and right camera images are the same, to realize rapid matching of stereo vision. And the mathematical model of measurement system is established and the three-dimensional (3D) surface of the measured object is reconstructed. This measurement method can not only broaden application fields of optical 3D measurement technology, and enrich knowledge achievements in the field of optical 3D measurement, but also provide potential possibility for the commercialized measurement system in practical projects, which has very important scientific research significance and economic value.

  10. Model dielectric function for 2D semiconductors including substrate screening

    NASA Astrophysics Data System (ADS)

    Trolle, Mads L.; Pedersen, Thomas G.; Véniard, Valerie

    2017-01-01

    Dielectric screening of excitons in 2D semiconductors is known to be a highly non-local effect, which in reciprocal space translates to a strong dependence on momentum transfer q. We present an analytical model dielectric function, including the full non-linear q-dependency, which may be used as an alternative to more numerically taxing ab initio screening functions. By verifying the good agreement between excitonic optical properties calculated using our model dielectric function, and those derived from ab initio methods, we demonstrate the versatility of this approach. Our test systems include: Monolayer hBN, monolayer MoS2, and the surface exciton of a 2 × 1 reconstructed Si(111) surface. Additionally, using our model, we easily take substrate screening effects into account. Hence, we include also a systematic study of the effects of substrate media on the excitonic optical properties of MoS2 and hBN.

  11. Non-overlap subaperture interferometric testing for large optics

    NASA Astrophysics Data System (ADS)

    Wu, Xin; Yu, Yingjie; Zeng, Wenhan; Qi, Te; Chen, Mingyi; Jiang, Xiangqian

    2017-08-01

    It has been shown that the number of subapertures and the amount of overlap has a significant influence on the stitching accuracy. In this paper, a non-overlap subaperture interferometric testing method (NOSAI) is proposed to inspect large optical components. This method would greatly reduce the number of subapertures and the influence of environmental interference while maintaining the accuracy of reconstruction. A general subaperture distribution pattern of NOSAI is also proposed for the large rectangle surface. The square Zernike polynomial is employed to fit such wavefront. The effect of the minimum fitting terms on the accuracy of NOSAI and the sensitivities of NOSAI to subaperture's alignment error, power systematic error, and random noise are discussed. Experimental results validate the feasibility and accuracy of the proposed NOSAI in comparison with wavefront obtained by a large aperture interferometer and stitching surface by multi-aperture overlap-scanning technique (MAOST).

  12. Observation of three-dimensional internal structure of steel materials by means of serial sectioning with ultrasonic elliptical vibration cutting.

    PubMed

    Fujisaki, K; Yokota, H; Nakatsuchi, H; Yamagata, Y; Nishikawa, T; Udagawa, T; Makinouchi, A

    2010-01-01

    A three-dimensional (3D) internal structure observation system based on serial sectioning was developed from an ultrasonic elliptical vibration cutting device and an optical microscope combined with a high-precision positioning device. For bearing steel samples, the cutting device created mirrored surfaces suitable for optical metallography, even for long-cutting distances during serial sectioning of these ferrous materials. Serial sectioning progressed automatically by means of numerical control. The system was used to observe inclusions in steel materials on a scale of several tens of micrometers. Three specimens containing inclusions were prepared from bearing steels. These inclusions could be detected as two-dimensional (2D) sectional images with resolution better than 1 mum. A three-dimensional (3D) model of each inclusion was reconstructed from the 2D serial images. The microscopic 3D models had sharp edges and complicated surfaces.

  13. Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging.

    PubMed

    Chaudhari, Abhijit J; Darvas, Felix; Bading, James R; Moats, Rex A; Conti, Peter S; Smith, Desmond J; Cherry, Simon R; Leahy, Richard M

    2005-12-07

    For bioluminescence imaging studies in small animals, it is important to be able to accurately localize the three-dimensional (3D) distribution of the underlying bioluminescent source. The spectrum of light produced by the source that escapes the subject varies with the depth of the emission source because of the wavelength-dependence of the optical properties of tissue. Consequently, multispectral or hyperspectral data acquisition should help in the 3D localization of deep sources. In this paper, we describe a framework for fully 3D bioluminescence tomographic image acquisition and reconstruction that exploits spectral information. We describe regularized tomographic reconstruction techniques that use semi-infinite slab or FEM-based diffusion approximations of photon transport through turbid media. Singular value decomposition analysis was used for data dimensionality reduction and to illustrate the advantage of using hyperspectral rather than achromatic data. Simulation studies in an atlas-mouse geometry indicated that sub-millimeter resolution may be attainable given accurate knowledge of the optical properties of the animal. A fixed arrangement of mirrors and a single CCD camera were used for simultaneous acquisition of multispectral imaging data over most of the surface of the animal. Phantom studies conducted using this system demonstrated our ability to accurately localize deep point-like sources and show that a resolution of 1.5 to 2.2 mm for depths up to 6 mm can be achieved. We also include an in vivo study of a mouse with a brain tumour expressing firefly luciferase. Co-registration of the reconstructed 3D bioluminescent image with magnetic resonance images indicated good anatomical localization of the tumour.

  14. Surface reflectance anisotropy of indium-terminated GaAs(100) surfaces

    NASA Astrophysics Data System (ADS)

    Springer, C.; Resch-Esser, U.; Goletti, C.; Richter, W.; Fimland, B. O.

    1997-04-01

    The growth of thin indium-layers on the GaAs(100) As-rich {(2 × 4)}/{c(2 × 8) } surface has been investigated by reflectance anisotropy spectroscopy (RAS), LEED and AES. Clean surfaces of the {(2 × 4)}/{c(2 × 8) } reconstruction were prepared in UHV by thermal desorption of a protective arsenic layer deposited on homoepitaxially grown MBE layers. Room temperature deposition of indium on the {(2 × 4)}/{c(2 × 8) } surface and subsequent annealing at 450°C leads to a 90° rotation of symmetry in the LEED pattern at a threshold coverage of 0.5 monolayers, i.e. a change from the {(2 × 4)}/{c(2 × 8) } to the {(4 × 2)}/{c(8 × 2) } reconstruction. The RAS spectra show the evolution of a distinct negative feature at 1.8 eV, that shifts to 2.1 eV after annealing, corresponding to optical transitions attributed to In-dimers orientated along the [011]-direction. AES analysis shows a change in growth mode beyond 0.5 ML indicating saturation of all available adsorption sites at this coverage and RAS spectra show a contribution from additional disordered In. The AES spectra display no evidence of a surface exchange reaction between gallium and arsenic atoms, thus indicating a surface termination by In-dimers adsorbed on a layer of As.

  15. Muon reconstruction in the Daya Bay water pools

    DOE PAGES

    Hackenburg, R. W.

    2017-08-12

    Muon reconstruction in the Daya Bay water pools would serve to verify the simulated muon fluxes and offer the possibility of studying cosmic muons in general. This reconstruction is, however, complicated by many optical obstacles and the small coverage of photomultiplier tubes (PMTs) as compared to other large water Cherenkov detectors. The PMTs’ timing information is useful only in the case of direct, unreflected Cherenkov light. This requires PMTs to be added and removed as an hypothesized muon trajectory is iteratively improved, to account for the changing effects of obstacles and direction of light. Therefore, muon reconstruction in the Dayamore » Bay water pools does not lend itself to a general fitting procedure employing smoothly varying functions with continuous derivatives. Here, we describe an algorithm which overcomes these complications. It employs the method of Least Mean Squares to determine an hypothesized trajectory from the PMTs’ charge-weighted positions. This initially hypothesized trajectory is then iteratively refined using the PMTs’ timing information. Reconstructions with simulated data reproduce the simulated trajectory to within about 5° in direction and about 45 cm in position at the pool surface, with a bias that tends to pull tracks away from the vertical by about 3°.« less

  16. Muon reconstruction in the Daya Bay water pools

    NASA Astrophysics Data System (ADS)

    Hackenburg, R. W.

    2017-11-01

    Muon reconstruction in the Daya Bay water pools would serve to verify the simulated muon fluxes and offer the possibility of studying cosmic muons in general. This reconstruction is, however, complicated by many optical obstacles and the small coverage of photomultiplier tubes (PMTs) as compared to other large water Cherenkov detectors. The PMTs' timing information is useful only in the case of direct, unreflected Cherenkov light. This requires PMTs to be added and removed as an hypothesized muon trajectory is iteratively improved, to account for the changing effects of obstacles and direction of light. Therefore, muon reconstruction in the Daya Bay water pools does not lend itself to a general fitting procedure employing smoothly varying functions with continuous derivatives. Here, an algorithm is described which overcomes these complications. It employs the method of Least Mean Squares to determine an hypothesized trajectory from the PMTs' charge-weighted positions. This initially hypothesized trajectory is then iteratively refined using the PMTs' timing information. Reconstructions with simulated data reproduce the simulated trajectory to within about 5°in direction and about 45 cm in position at the pool surface, with a bias that tends to pull tracks away from the vertical by about 3°.

  17. Accident or homicide--virtual crime scene reconstruction using 3D methods.

    PubMed

    Buck, Ursula; Naether, Silvio; Räss, Beat; Jackowski, Christian; Thali, Michael J

    2013-02-10

    The analysis and reconstruction of forensically relevant events, such as traffic accidents, criminal assaults and homicides are based on external and internal morphological findings of the injured or deceased person. For this approach high-tech methods are gaining increasing importance in forensic investigations. The non-contact optical 3D digitising system GOM ATOS is applied as a suitable tool for whole body surface and wound documentation and analysis in order to identify injury-causing instruments and to reconstruct the course of event. In addition to the surface documentation, cross-sectional imaging methods deliver medical internal findings of the body. These 3D data are fused into a whole body model of the deceased. Additional to the findings of the bodies, the injury inflicting instruments and incident scene is documented in 3D. The 3D data of the incident scene, generated by 3D laser scanning and photogrammetry, is also included into the reconstruction. Two cases illustrate the methods. In the fist case a man was shot in his bedroom and the main question was, if the offender shot the man intentionally or accidentally, as he declared. In the second case a woman was hit by a car, driving backwards into a garage. It was unclear if the driver drove backwards once or twice, which would indicate that he willingly injured and killed the woman. With this work, we demonstrate how 3D documentation, data merging and animation enable to answer reconstructive questions regarding the dynamic development of patterned injuries, and how this leads to a real data based reconstruction of the course of event. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Jones matrix polarization-correlation mapping of biological crystals networks

    NASA Astrophysics Data System (ADS)

    Ushenko, O. G.; Ushenko, Yu. O.; Pidkamin, L. Y.; Sidor, M. I.; Vanchuliak, O.; Motrich, A. V.; Gorsky, M. P.; Meglinskiy, I.; Marchuk, Yu. F.

    2017-08-01

    It has been proposed the optical model of Jones-matrix description of mechanisms of optical anisotropy of polycrystalline films of human bile, namely optical activity and birefringence. The algorithm of reconstruction of distributions of parameters - optical rotation angles and phase shifts of the indicated anisotropy types has been elaborated. The objective criteria of differentiation of bile films taken from healthy donors and patients with cholelithiasis by means of statistic analysis of such distributions have been determined. The operational characteristics (sensitivity, specificity and accuracy) of Jones-matrix reconstruction method of optical anisotropy parameters were defined.

  19. Wave optics theory and 3-D deconvolution for the light field microscope

    PubMed Central

    Broxton, Michael; Grosenick, Logan; Yang, Samuel; Cohen, Noy; Andalman, Aaron; Deisseroth, Karl; Levoy, Marc

    2013-01-01

    Light field microscopy is a new technique for high-speed volumetric imaging of weakly scattering or fluorescent specimens. It employs an array of microlenses to trade off spatial resolution against angular resolution, thereby allowing a 4-D light field to be captured using a single photographic exposure without the need for scanning. The recorded light field can then be used to computationally reconstruct a full volume. In this paper, we present an optical model for light field microscopy based on wave optics, instead of previously reported ray optics models. We also present a 3-D deconvolution method for light field microscopy that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported. To accomplish this, we take advantage of the dense spatio-angular sampling provided by a microlens array at axial positions away from the native object plane. This dense sampling permits us to decode aliasing present in the light field to reconstruct high-frequency information. We formulate our method as an inverse problem for reconstructing the 3-D volume, which we solve using a GPU-accelerated iterative algorithm. Theoretical limits on the depth-dependent lateral resolution of the reconstructed volumes are derived. We show that these limits are in good agreement with experimental results on a standard USAF 1951 resolution target. Finally, we present 3-D reconstructions of pollen grains that demonstrate the improvements in fidelity made possible by our method. PMID:24150383

  20. Image reconstruction

    NASA Astrophysics Data System (ADS)

    Vasilenko, Georgii Ivanovich; Taratorin, Aleksandr Markovich

    Linear, nonlinear, and iterative image-reconstruction (IR) algorithms are reviewed. Theoretical results are presented concerning controllable linear filters, the solution of ill-posed functional minimization problems, and the regularization of iterative IR algorithms. Attention is also given to the problem of superresolution and analytical spectrum continuation, the solution of the phase problem, and the reconstruction of images distorted by turbulence. IR in optical and optical-digital systems is discussed with emphasis on holographic techniques.

  1. Shape-based reconstruction for transrectal diffuse optical tomography monitoring of photothermal focal therapy of prostate cancer: simulation studies

    NASA Astrophysics Data System (ADS)

    Weersink, Robert A.; Chaudhary, Sahil; Mayo, Kenwrick; He, Jie; Wilson, Brian C.

    2017-04-01

    We develop and demonstrate a simple shape-based approach for diffuse optical tomographic reconstruction of coagulative lesions generated during interstitial photothermal therapy (PTT) of the prostate. The shape-based reconstruction assumes a simple ellipsoid shape, matching the general dimensions of a cylindrical diffusing fiber used for light delivery in current clinical studies of PTT in focal prostate cancer. The specific requirement is to accurately define the border between the photothermal lesion and native tissue as the photothermal lesion grows, with an accuracy of ≤1 mm, so treatment can be terminated before there is damage to the rectal wall. To demonstrate the feasibility of the shape-based diffuse optical tomography reconstruction, simulated data were generated based on forward calculations in known geometries that include the prostate, rectum, and lesions of varying dimensions. The only source of optical contrast between the lesion and prostate was increased scattering in the lesion, as is typically observed with coagulation. With noise added to these forward calculations, lesion dimensions were reconstructed using the shape-based method. This approach for reconstruction is shown to be feasible and sufficiently accurate for lesions that are within 4 mm from the rectal wall. The method was also robust for irregularly shaped lesions.

  2. Registration of planar bioluminescence to magnetic resonance and x-ray computed tomography images as a platform for the development of bioluminescence tomography reconstruction algorithms.

    PubMed

    Beattie, Bradley J; Klose, Alexander D; Le, Carl H; Longo, Valerie A; Dobrenkov, Konstantine; Vider, Jelena; Koutcher, Jason A; Blasberg, Ronald G

    2009-01-01

    The procedures we propose make possible the mapping of two-dimensional (2-D) bioluminescence image (BLI) data onto a skin surface derived from a three-dimensional (3-D) anatomical modality [magnetic resonance (MR) or computed tomography (CT)] dataset. This mapping allows anatomical information to be incorporated into bioluminescence tomography (BLT) reconstruction procedures and, when applied using sources visible to both optical and anatomical modalities, can be used to evaluate the accuracy of those reconstructions. Our procedures, based on immobilization of the animal and a priori determined fixed projective transforms, should be more robust and accurate than previously described efforts, which rely on a poorly constrained retrospectively determined warping of the 3-D anatomical information. Experiments conducted to measure the accuracy of the proposed registration procedure found it to have a mean error of 0.36+/-0.23 mm. Additional experiments highlight some of the confounds that are often overlooked in the BLT reconstruction process, and for two of these confounds, simple corrections are proposed.

  3. Soft, Transparent, Electronic Skin for Distributed and Multiple Pressure Sensing

    PubMed Central

    Levi, Alessandro; Piovanelli, Matteo; Furlan, Silvano; Mazzolai, Barbara; Beccai, Lucia

    2013-01-01

    In this paper we present a new optical, flexible pressure sensor that can be applied as smart skin to a robot or to consumer electronic devices. We describe a mechano-optical transduction principle that can allow the encoding of information related to an externally applied mechanical stimulus, e.g., contact, pressure and shape of contact. The physical embodiment that we present in this work is an electronic skin consisting of eight infrared emitters and eight photo-detectors coupled together and embedded in a planar PDMS waveguide of 5.5 cm diameter. When a contact occurs on the sensing area, the optical signals reaching the peripheral detectors experience a loss because of the Frustrated Total Internal Reflection and deformation of the material. The light signal is converted to electrical signal through an electronic system and a reconstruction algorithm running on a computer reconstructs the pressure map. Pilot experiments are performed to validate the tactile sensing principle by applying external pressures up to 160 kPa. Moreover, the capabilities of the electronic skin to detect contact pressure at multiple subsequent positions, as well as its function on curved surfaces, are validated. A weight sensitivity of 0.193 gr−1 was recorded, thus making the electronic skin suitable to detect pressures in the order of few grams. PMID:23686140

  4. Increasing signal-to-noise ratio of swept-source optical coherence tomography by oversampling in k-space

    NASA Astrophysics Data System (ADS)

    Nagib, Karim; Mezgebo, Biniyam; Thakur, Rahul; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-03-01

    Optical coherence tomography systems suffer from noise that could reduce ability to interpret reconstructed images correctly. We describe a method to increase the signal-to-noise ratio of swept-source optical coherence tomography (SSOCT) using oversampling in k-space. Due to this oversampling, information redundancy would be introduced in the measured interferogram that could be used to reduce white noise in the reconstructed A-scan. We applied our novel scaled nonuniform discrete Fourier transform to oversampled SS-OCT interferograms to reconstruct images of a salamander egg. The peak-signal-to-noise (PSNR) between the reconstructed images using interferograms sampled at 250MS/s andz50MS/s demonstrate that this oversampling increased the signal-to-noise ratio by 25.22 dB.

  5. Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters.

    PubMed

    Manjappa, Rakesh; Makki S, Sharath; Kumar, Rajesh; Kanhirodan, Rajan

    2015-02-01

    Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob's ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results.

  6. Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manjappa, Rakesh; Makki S, Sharath; Kanhirodan, Rajan, E-mail: rajan@physics.iisc.ernet.in

    2015-02-15

    Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at themore » inhomogeneities. Jacob’s ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results.« less

  7. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy†

    PubMed Central

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-soo; Torelli, Marco D.; Hamers, Robert J.; Murhpy, Catherine J.; Orr, Galya

    2015-01-01

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate eficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells. PMID:24816810

  8. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localizationmore » patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.« less

  9. Intraoperative spatial frequency domain diffuse optical tomography with indo-cyanine green (ICG) fluorescence contrast (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chong, Sang Hoon; Parthasarathy, Ashwin B.; Kavuri, Venkaiah C.; Moscatelli, Frank A.; Singhal, Sunil; Yodh, Arjun G.

    2017-02-01

    Surgical resection is the most effective treatment strategy for solid tumors, but complete removal of the tumor is critical for post-surgical recovery/long-term survival and is dependent on correct identification of the tumor margin and accurate excision of microscopic residual tumor in the surgical field. Fluorescence image guided surgery is an emerging technique that has shown promise for intraoperative location of tumors and tumor margins. Current versions of such intraoperative fluorescence imaging, however, are generally limited to 2D near-surface images, i.e., without information about tumor depth. Here we present an intraoperative fluorescence imaging system for 3D volumetric imaging of tumors; the system uses spatial frequency domain diffuse optical tomography with an analytic inversion reconstruction method. The new instrument can derive depth-sensitive 3D tumor images at depths up to 1 cm, and it employs compact epi-imaging and illumination suitable for the operating room, with quasi-real-time image reconstruction for surgical visualization. We present experimental results with FDA-approved Indocynanine Green using an extensive array of tissue phantoms and in a pilot in-vivo study.

  10. Two-dimensional and 3-D images of thick tissue using time-constrained times-of-flight and absorbance spectrophotometry

    NASA Astrophysics Data System (ADS)

    Benaron, David A.; Lennox, M.; Stevenson, David K.

    1992-05-01

    Reconstructing deep-tissue images in real time using spectrophotometric data from optically diffusing thick tissues has been problematic. Continuous wave applications (e.g., pulse oximetry, regional cerebral saturation) ignore both the multiple paths traveled by the photons through the tissue and the effects of scattering, allowing scalar measurements but only under limited conditions; interferometry works poorly in thick, highly-scattering media; frequency- modulated approaches may not allow full deconvolution of scattering and absorbance; and pulsed-light techniques allow for preservation of information regarding the multiple paths taken by light through the tissue, but reconstruction is both computation intensive and limited by the relative surface area available for detection of photons. We have developed a picosecond times-of-flight and absorbance (TOFA) optical system, time-constrained to measure only photons with a narrow range of path lengths and arriving within a narrow angel of the emitter-detector axis. The delay until arrival of the earliest arriving photons is a function of both the scattering and absorbance of the tissues in a direct line between the emitter and detector, reducing the influence of surrounding tissues. Measurement using a variety of emitter and detector locations produces spatial information which can be analyzed in a standard 2-D grid, or subject to computer reconstruction to produce tomographic images representing 3-D structure. Using such a technique, we have been able to demonstrate the principles of tc-TOFA, detect and localize diffusive and/or absorptive objects suspended in highly scattering media (such as blood admixed with yeast), and perform simple 3-D reconstructions using phantom objects. We are now attempting to obtain images in vivo. Potential future applications include use as a research tool, and as a continuous, noninvasive, nondestructive monitor in diagnostic imaging, fetal monitoring, neurologic and cardiac assessment. The technique may lead to real-time optical imaging and quantitation of tissues oxygen delivery.

  11. Live event reconstruction in an optically read out GEM-based TPC

    NASA Astrophysics Data System (ADS)

    Brunbauer, F. M.; Galgóczi, G.; Gonzalez Diaz, D.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.

    2018-04-01

    Combining strong signal amplification made possible by Gaseous Electron Multipliers (GEMs) with the high spatial resolution provided by optical readout, highly performing radiation detectors can be realized. An optically read out GEM-based Time Projection Chamber (TPC) is presented. The device permits 3D track reconstruction by combining the 2D projections obtained with a CCD camera with timing information from a photomultiplier tube. Owing to the intuitive 2D representation of the tracks in the images and to automated control, data acquisition and event reconstruction algorithms, the optically read out TPC permits live display of reconstructed tracks in three dimensions. An Ar/CF4 (80/20%) gas mixture was used to maximize scintillation yield in the visible wavelength region matching the quantum efficiency of the camera. The device is integrated in a UHV-grade vessel allowing for precise control of the gas composition and purity. Long term studies in sealed mode operation revealed a minor decrease in the scintillation light intensity.

  12. Stereo multiplexed holographic particle image velocimeter

    DOEpatents

    Adrian, Ronald J.; Barnhart, Donald H.; Papen, George A.

    1996-01-01

    A holographic particle image velocimeter employs stereoscopic recording of particle images, taken from two different perspectives and at two distinct points in time for each perspective, on a single holographic film plate. The different perspectives are provided by two optical assemblies, each including a collecting lens, a prism and a focusing lens. Collimated laser energy is pulsed through a fluid stream, with elements carried in the stream scattering light, some of which is collected by each collecting lens. The respective focusing lenses are configured to form images of the scattered light near the holographic plate. The particle images stored on the plate are reconstructed using the same optical assemblies employed in recording, by transferring the film plate and optical assemblies as a single integral unit to a reconstruction site. At the reconstruction site, reconstruction beams, phase conjugates of the reference beams used in recording the image, are directed to the plate, then selectively through either one of the optical assemblies, to form an image reflecting the chosen perspective at the two points in time.

  13. Stereo multiplexed holographic particle image velocimeter

    DOEpatents

    Adrian, R.J.; Barnhart, D.H.; Papen, G.A.

    1996-08-20

    A holographic particle image velocimeter employs stereoscopic recording of particle images, taken from two different perspectives and at two distinct points in time for each perspective, on a single holographic film plate. The different perspectives are provided by two optical assemblies, each including a collecting lens, a prism and a focusing lens. Collimated laser energy is pulsed through a fluid stream, with elements carried in the stream scattering light, some of which is collected by each collecting lens. The respective focusing lenses are configured to form images of the scattered light near the holographic plate. The particle images stored on the plate are reconstructed using the same optical assemblies employed in recording, by transferring the film plate and optical assemblies as a single integral unit to a reconstruction site. At the reconstruction site, reconstruction beams, phase conjugates of the reference beams used in recording the image, are directed to the plate, then selectively through either one of the optical assemblies, to form an image reflecting the chosen perspective at the two points in time. 13 figs.

  14. Stochastic Optical Reconstruction Microscopy (STORM).

    PubMed

    Xu, Jianquan; Ma, Hongqiang; Liu, Yang

    2017-07-05

    Super-resolution (SR) fluorescence microscopy, a class of optical microscopy techniques at a spatial resolution below the diffraction limit, has revolutionized the way we study biology, as recognized by the Nobel Prize in Chemistry in 2014. Stochastic optical reconstruction microscopy (STORM), a widely used SR technique, is based on the principle of single molecule localization. STORM routinely achieves a spatial resolution of 20 to 30 nm, a ten-fold improvement compared to conventional optical microscopy. Among all SR techniques, STORM offers a high spatial resolution with simple optical instrumentation and standard organic fluorescent dyes, but it is also prone to image artifacts and degraded image resolution due to improper sample preparation or imaging conditions. It requires careful optimization of all three aspects-sample preparation, image acquisition, and image reconstruction-to ensure a high-quality STORM image, which will be extensively discussed in this unit. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  15. Optical flow versus retinal flow as sources of information for flight guidance

    NASA Technical Reports Server (NTRS)

    Cutting, James E.

    1991-01-01

    The appropriate description is considered of visual information for flight guidance, optical flow vs. retinal flow. Most descriptions in the psychological literature are based on the optical flow. However, human eyes move and this movement complicates the issues at stake, particularly when movement of the observer is involved. The question addressed is whether an observer, whose eyes register only retinal flow, use information in optical flow. It is suggested that the observer cannot and does not reconstruct the image in optical flow; instead they use retinal flow. Retinal array is defined as the projections of a three space onto a point and beyond to a movable, nearly hemispheric sensing device, like the retina. Optical array is defined as the projection of a three space environment to a point within that space. And flow is defined as global motion as a field of vectors, best placed on a spherical projection surface. Specifically, flow is the mapping of the field of changes in position of corresponding points on objects in three space onto a point, where that point has moved in position.

  16. Recent progress in the NDE of cast ship propulsion components

    NASA Astrophysics Data System (ADS)

    Spies, Martin; Rieder, Hans; Dillhöfer, Alexander; Rauhut, Markus; Taeubner, Kai; Kreier, Peter

    2014-02-01

    The failure of propulsion components of ships and ferries can lead to serious environmental and economic damage or even the loss of lives. For ultrasonic inspection of such large components we employ mechanized scanning and defect reconstruction using the Synthetic Aperture Focusing Technique (SAFT). We report on results obtained in view of the detection of defects with different inspection techniques. Also, we address the issue of Probability of Detection by reporting results obtained in POD and MAPOD-studies (Model-Assisted POD) using experimental and simulated data. Finally, we show recent results of surface and sub-surface inspection using optical and eddy current techniques.

  17. Combined magnetic resonance, fluorescence, and histology imaging strategy in a human breast tumor xenograft model

    PubMed Central

    Jiang, Lu; Greenwood, Tiffany R.; Amstalden van Hove, Erika R.; Chughtai, Kamila; Raman, Venu; Winnard, Paul T.; Heeren, Ron; Artemov, Dmitri; Glunde, Kristine

    2014-01-01

    Applications of molecular imaging in cancer and other diseases frequently require combining in vivo imaging modalities, such as magnetic resonance and optical imaging, with ex vivo optical, fluorescence, histology, and immunohistochemical (IHC) imaging, to investigate and relate molecular and biological processes to imaging parameters within the same region of interest. We have developed a multimodal image reconstruction and fusion framework that accurately combines in vivo magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI), ex vivo brightfield and fluorescence microscopic imaging, and ex vivo histology imaging. Ex vivo brightfield microscopic imaging was used as an intermediate modality to facilitate the ultimate link between ex vivo histology and in vivo MRI/MRSI. Tissue sectioning necessary for optical and histology imaging required generation of a three-dimensional (3D) reconstruction module for 2D ex vivo optical and histology imaging data. We developed an external fiducial marker based 3D reconstruction method, which was able to fuse optical brightfield and fluorescence with histology imaging data. Registration of 3D tumor shape was pursued to combine in vivo MRI/MRSI and ex vivo optical brightfield and fluorescence imaging data. This registration strategy was applied to in vivo MRI/MRSI, ex vivo optical brightfield/fluorescence, as well as histology imaging data sets obtained from human breast tumor models. 3D human breast tumor data sets were successfully reconstructed and fused with this platform. PMID:22945331

  18. Plasma effect on weld pool surface reconstruction by shape-from-polarization analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coniglio, N.; Mathieu, A., E-mail: alexandre.mathieu@u-bourgogne.fr; Aubreton, O.

    2014-03-31

    The polarimetric state of the thermal radiations emitted by the weld metal contains geometric information about the emitting surface. Even though the analysed thermal radiation has a wavelength corresponding to a blind spectral window of the arc plasma, the physical presence of the arc plasma itself interferes with the rays radiated by the weld pool surface before attaining the polarimeter, thus modifying the geometric information transported by the ray. In the present work, the effect of the arc plasma-surrounding zone on the polarimetric state and propagation direction of the radiated ray is analyzed. The interaction with the arc plasma zonemore » induces a drop in ray intensity and a refraction of ray optical path.« less

  19. Coupled optics reconstruction from TBT data using MAD-X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexahin, Y.; Gianfelice-Wendt, E.; /Fermilab

    2007-06-01

    Turn-by-turn BPM data provide immediate information on the coupled optics functions at BPM locations. In the case of small deviations from the known (design) uncoupled optics some cognizance of the sources of perturbation, BPM calibration errors and tilts can also be inferred without detailed lattice modeling. In practical situations, however, fitting the lattice model with the help of some optics code would lead to more reliable results. We present an algorithm for coupled optics reconstruction from TBT data on the basis of MAD-X and give examples of its application for the Fermilab Tevatron accelerator.

  20. Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mancosu, Pietro; Fogliata, Antonella, E-mail: Antonella.Fogliata@humanitas.it; Stravato, Antonella

    2016-07-01

    Frameless stereotactic radiosurgery (SRS) requires dedicated systems to monitor the patient position during the treatment to avoid target underdosage due to involuntary shift. The optical surface monitoring system (OSMS) is here evaluated in a phantom-based study. The new EDGE linear accelerator from Varian (Varian, Palo Alto, CA) integrates, for cranial lesions, the common cone beam computed tomography (CBCT) and kV-MV portal images to the optical surface monitoring system (OSMS), a device able to detect real-time patient's face movements in all 6 couch axes (vertical, longitudinal, lateral, rotation along the vertical axis, pitch, and roll). We have evaluated the OSMS imagingmore » capability in checking the phantoms' position and monitoring its motion. With this aim, a home-made cranial phantom was developed to evaluate the OSMS accuracy in 4 different experiments: (1) comparison with CBCT in isocenter location, (2) capability to recognize predefined shifts up to 2° or 3 cm, (3) evaluation at different couch angles, (4) ability to properly reconstruct the surface when the linac gantry visually block one of the cameras. The OSMS system showed, with a phantom, to be accurate for positioning in respect to the CBCT imaging system with differences of 0.6 ± 0.3 mm for linear vector displacement, with a maximum rotational inaccuracy of 0.3°. OSMS presented an accuracy of 0.3 mm for displacement up to 1 cm and 1°, and 0.5 mm for larger displacements. Different couch angles (45° and 90°) induced a mean vector uncertainty < 0.4 mm. Coverage of 1 camera produced an uncertainty < 0.5 mm. Translations and rotations of a phantom can be accurately detect with the optical surface detector system.« less

  1. Full statistical mode reconstruction of a light field via a photon-number-resolved measurement

    NASA Astrophysics Data System (ADS)

    Burenkov, I. A.; Sharma, A. K.; Gerrits, T.; Harder, G.; Bartley, T. J.; Silberhorn, C.; Goldschmidt, E. A.; Polyakov, S. V.

    2017-05-01

    We present a method to reconstruct the complete statistical mode structure and optical losses of multimode conjugated optical fields using an experimentally measured joint photon-number probability distribution. We demonstrate that this method evaluates classical and nonclassical properties using a single measurement technique and is well suited for quantum mesoscopic state characterization. We obtain a nearly perfect reconstruction of a field comprised of up to ten modes based on a minimal set of assumptions. To show the utility of this method, we use it to reconstruct the mode structure of an unknown bright parametric down-conversion source.

  2. White light-informed optical properties improve ultrasound-guided fluorescence tomography of photoactive protoporphyrin IX

    NASA Astrophysics Data System (ADS)

    Flynn, Brendan P.; DSouza, Alisha V.; Kanick, Stephen C.; Davis, Scott C.; Pogue, Brian W.

    2013-04-01

    Subsurface fluorescence imaging is desirable for medical applications, including protoporphyrin-IX (PpIX)-based skin tumor diagnosis, surgical guidance, and dosimetry in photodynamic therapy. While tissue optical properties and heterogeneities make true subsurface fluorescence mapping an ill-posed problem, ultrasound-guided fluorescence-tomography (USFT) provides regional fluorescence mapping. Here USFT is implemented with spectroscopic decoupling of fluorescence signals (auto-fluorescence, PpIX, photoproducts), and white light spectroscopy-determined bulk optical properties. Segmented US images provide a priori spatial information for fluorescence reconstruction using region-based, diffuse FT. The method was tested in simulations, tissue homogeneous and inclusion phantoms, and an injected-inclusion animal model. Reconstructed fluorescence yield was linear with PpIX concentration, including the lowest concentration used, 0.025 μg/ml. White light spectroscopy informed optical properties, which improved fluorescence reconstruction accuracy compared to the use of fixed, literature-based optical properties, reduced reconstruction error and reconstructed fluorescence standard deviation by factors of 8.9 and 2.0, respectively. Recovered contrast-to-background error was 25% and 74% for inclusion phantoms without and with a 2-mm skin-like layer, respectively. Preliminary mouse-model imaging demonstrated system feasibility for subsurface fluorescence measurement in vivo. These data suggest that this implementation of USFT is capable of regional PpIX mapping in human skin tumors during photodynamic therapy, to be used in dosimetric evaluations.

  3. Contrast improvement of continuous wave diffuse optical tomography reconstruction by hybrid approach using least square and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Patra, Rusha; Dutta, Pranab K.

    2015-07-01

    Reconstruction of the absorption coefficient of tissue with good contrast is of key importance in functional diffuse optical imaging. A hybrid approach using model-based iterative image reconstruction and a genetic algorithm is proposed to enhance the contrast of the reconstructed image. The proposed method yields an observed contrast of 98.4%, mean square error of 0.638×10-3, and object centroid error of (0.001 to 0.22) mm. Experimental validation of the proposed method has also been provided with tissue-like phantoms which shows a significant improvement in image quality and thus establishes the potential of the method for functional diffuse optical tomography reconstruction with continuous wave setup. A case study of finger joint imaging is illustrated as well to show the prospect of the proposed method in clinical diagnosis. The method can also be applied to the concentration measurement of a region of interest in a turbid medium.

  4. Optical CT imaging of solid radiochromic dosimeters in mismatched refractive index solutions using a scanning laser and large area detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dekker, Kurtis H., E-mail: kdekker2@uwo.ca

    Purpose: The practical use of the PRESAGE® solid plastic dosimeter is limited by the inconvenience of immersing it in high-viscosity oils to achieve refractive index matching for optical computed tomography (CT) scanning. The oils are slow to mix and difficult to clean from surfaces, and the dosimeter rotation can generate dynamic Schlieren inhomogeneity patterns in the reference liquid, limiting the rotational and overall scan speed. Therefore, it would be beneficial if lower-viscosity, water-based solutions with slightly unmatched refractive index could be used instead. The purpose of this work is to demonstrate the feasibility of allowing mismatched conditions when using amore » scanning laser system with a large acceptance angle detector. A fiducial-based ray path measurement technique is combined with an iterative CT reconstruction algorithm to reconstruct images. Methods: A water based surrounding liquid with a low viscosity was selected for imaging PRESAGE® solid dosimeters. Liquid selection was optimized to achieve as high a refractive index as possible while avoiding rotation-induced Schlieren effects. This led to a refractive index mismatch of 6% between liquid and dosimeters. Optical CT scans were performed with a fan-beam scanning-laser optical CT system with a large area detector to capture most of the refracted rays. A fiducial marker placed on the wall of a cylindrical sample occludes a given light ray twice. With knowledge of the rotation angle and the radius of the cylindrical object, the actual internal path of each ray through the dosimeter can be calculated. Scans were performed with 1024 projections of 512 data samples each, and rays were rebinned to form 512 parallel-beam projections. Reconstructions were performed on a 512 × 512 grid using 100 iterations of the SIRT iterative CT algorithm. Proof of concept was demonstrated with a uniformly attenuating solution phantom. PRESAGE® dosimeters (11 cm diameter) were irradiated with Cobalt-60 irradiator to achieve either a uniform dose or a 2-level “step-dose” pattern. Results: With 6% refractive index mismatching, a circular field of view of 85% of the diameter of a cylindrical sample can be reconstructed accurately. Reconstructed images of the test solution phantom were uniform (within 3%) inside this radius. However, the dose responses of the PRESAGE® samples were not spatially uniform, with variations of at least 5% in sensitivity. The variation appears as a “cupping” artifact with less sensitivity in the middle than at the periphery of the PRESAGE® cylinder. Polarization effects were also detected for these samples. Conclusions: The fiducial-based ray path measurement scheme, coupled with an iterative reconstruction algorithm, enabled optical CT scanning of PRESAGE® dosimeters immersed in mismatched refractive index solutions. However, improvements to PRESAGE® dose response uniformity are required.« less

  5. Measurement methods and accuracy analysis of Chang'E-5 Panoramic Camera installation parameters

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Ren, Xin; Liu, Jianjun; Tan, Xu; Wang, Wenrui; Chen, Wangli; Zhang, Xiaoxia; Li, Chunlai

    2016-04-01

    Chang'E-5 (CE-5) is a lunar probe for the third phase of China Lunar Exploration Project (CLEP), whose main scientific objectives are to implement lunar surface sampling and to return the samples back to the Earth. To achieve these goals, investigation of lunar surface topography and geological structure within sampling area seems to be extremely important. The Panoramic Camera (PCAM) is one of the payloads mounted on CE-5 lander. It consists of two optical systems which installed on a camera rotating platform. Optical images of sampling area can be obtained by PCAM in the form of a two-dimensional image and a stereo images pair can be formed by left and right PCAM images. Then lunar terrain can be reconstructed based on photogrammetry. Installation parameters of PCAM with respect to CE-5 lander are critical for the calculation of exterior orientation elements (EO) of PCAM images, which is used for lunar terrain reconstruction. In this paper, types of PCAM installation parameters and coordinate systems involved are defined. Measurement methods combining camera images and optical coordinate observations are studied for this work. Then research contents such as observation program and specific solution methods of installation parameters are introduced. Parametric solution accuracy is analyzed according to observations obtained by PCAM scientifically validated experiment, which is used to test the authenticity of PCAM detection process, ground data processing methods, product quality and so on. Analysis results show that the accuracy of the installation parameters affects the positional accuracy of corresponding image points of PCAM stereo images within 1 pixel. So the measurement methods and parameter accuracy studied in this paper meet the needs of engineering and scientific applications. Keywords: Chang'E-5 Mission; Panoramic Camera; Installation Parameters; Total Station; Coordinate Conversion

  6. Monitoring of breathing motion in image-guided PBS proton therapy: comparative analysis of optical and electromagnetic technologies.

    PubMed

    Fattori, Giovanni; Safai, Sairos; Carmona, Pablo Fernández; Peroni, Marta; Perrin, Rosalind; Weber, Damien Charles; Lomax, Antony John

    2017-03-31

    Motion monitoring is essential when treating non-static tumours with pencil beam scanned protons. 4D medical imaging typically relies on the detected body surface displacement, considered as a surrogate of the patient's anatomical changes, a concept similarly applied by most motion mitigation techniques. In this study, we investigate benefits and pitfalls of optical and electromagnetic tracking, key technologies for non-invasive surface motion monitoring, in the specific environment of image-guided, gantry-based proton therapy. Polaris SPECTRA optical tracking system and the Aurora V3 electromagnetic tracking system from Northern Digital Inc. (NDI, Waterloo, CA) have been compared both technically, by measuring tracking errors and system latencies under laboratory conditions, and clinically, by assessing their practicalities and sensitivities when used with imaging devices and PBS treatment gantries. Additionally, we investigated the impact of using different surrogate signals, from different systems, on the reconstructed 4D CT images. Even though in controlled laboratory conditions both technologies allow for the localization of static fiducials with sub-millimetre jitter and low latency (31.6 ± 1 msec worst case), significant dynamic and environmental distortions limit the potential of the electromagnetic approach in a clinical setting. The measurement error in case of close proximity to a CT scanner is up to 10.5 mm and precludes its use for the monitoring of respiratory motion during 4DCT acquisitions. Similarly, the motion of the treatment gantry distorts up to 22 mm the tracking result. Despite the line of sight requirement, the optical solution offers the best potential, being the most robust against environmental factors and providing the highest spatial accuracy. The significant difference in the temporal location of the reconstructed phase points is used to speculate on the need to apply the same monitoring system for imaging and treatment to ensure the consistency of detected phases.

  7. The algorithm of central axis in surface reconstruction

    NASA Astrophysics Data System (ADS)

    Zhao, Bao Ping; Zhang, Zheng Mei; Cai Li, Ji; Sun, Da Ming; Cao, Hui Ying; Xing, Bao Liang

    2017-09-01

    Reverse engineering is an important technique means of product imitation and new product development. Its core technology -- surface reconstruction is the current research for scholars. In the various algorithms of surface reconstruction, using axis reconstruction is a kind of important method. For the various reconstruction, using medial axis algorithm was summarized, pointed out the problems existed in various methods, as well as the place needs to be improved. Also discussed the later surface reconstruction and development of axial direction.

  8. Shape reconstruction of irregular bodies with multiple complementary data sources

    NASA Astrophysics Data System (ADS)

    Kaasalainen, M.; Viikinkoski, M.

    2012-07-01

    We discuss inversion methods for shape reconstruction with complementary data sources. The current main sources are photometry, adaptive optics or other images, occultation timings, and interferometry, and the procedure can readily be extended to include range-Doppler radar and thermal infrared data as well. We introduce the octantoid, a generally applicable shape support that can be automatically used for surface types encountered in planetary research, including strongly nonconvex or non-starlike shapes. We present models of Kleopatra and Hermione from multimodal data as examples of this approach. An important concept in this approach is the optimal weighting of the various data modes. We define the maximum compatibility estimate, a multimodal generalization of the maximum likelihood estimate, for this purpose. We also present a specific version of the procedure for asteroid flyby missions, with which one can reconstruct the complete shape of the target by using the flyby-based map of a part of the surface together with other available data. Finally, we show that the relative volume error of a shape solution is usually approximately equal to the relative shape error rather than its multiple. Our algorithms are trivially parallelizable, so running the code on a CUDA-enabled graphics processing unit is some two orders of magnitude faster than the usual single-processor mode.

  9. 3D skin surface reconstruction from a single image by merging global curvature and local texture using the guided filtering for 3D haptic palpation.

    PubMed

    Lee, K; Kim, M; Kim, K

    2018-05-11

    Skin surface evaluation has been studied using various imaging techniques. However, all these studies had limited impact because they were performed using visual exam only. To improve on this scenario with haptic feedback, we propose 3D reconstruction of the skin surface using a single image. Unlike extant 3D skin surface reconstruction algorithms, we utilize the local texture and global curvature regions, combining the results for reconstruction. The first entails the reconstruction of global curvature, achieved by bilateral filtering that removes noise on the surface while maintaining the edge (ie, furrow) to obtain the overall curvature. The second entails the reconstruction of local texture, representing the fine wrinkles of the skin, using an advanced form of bilateral filtering. The final image is then composed by merging the two reconstructed images. We tested the curvature reconstruction part by comparing the resulting curvatures with measured values from real phantom objects while local texture reconstruction was verified by measuring skin surface roughness. Then, we showed the reconstructed result of our proposed algorithm via the reconstruction of various real skin surfaces. The experimental results demonstrate that our approach is a promising technology to reconstruct an accurate skin surface with a single skin image. We proposed 3D skin surface reconstruction using only a single camera. We highlighted the utility of global curvature, which has not been considered important in the past. Thus, we proposed a new method for 3D reconstruction that can be used for 3D haptic palpation, dividing the concepts of local and global regions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Experimental method for testing diffraction properties of reflection waveguide holograms.

    PubMed

    Xie, Yi; Kang, Ming-Wu; Wang, Bao-Ping

    2014-07-01

    Waveguide holograms' diffraction properties include peak wavelength and diffraction efficiency, which play an important role in determining their display performance. Based on the record and reconstruction theory of reflection waveguide holograms, a novel experimental method for testing diffraction properties is introduced and analyzed in this paper, which uses a plano-convex lens optically contacted to the surface of the substrate plate of the waveguide hologram, so that the diffracted light beam can be easily detected. Then an experiment is implemented. The designed reconstruction wavelength of the test sample is 530 nm, and its diffraction efficiency is 100%. The experimental results are a peak wavelength of 527.7 nm and a diffraction efficiency of 94.1%. It is shown that the tested value corresponds well with the designed value.

  11. Calibration of RGBD camera and cone-beam CT for 3D intra-operative mixed reality visualization.

    PubMed

    Lee, Sing Chun; Fuerst, Bernhard; Fotouhi, Javad; Fischer, Marius; Osgood, Greg; Navab, Nassir

    2016-06-01

    This work proposes a novel algorithm to register cone-beam computed tomography (CBCT) volumes and 3D optical (RGBD) camera views. The co-registered real-time RGBD camera and CBCT imaging enable a novel augmented reality solution for orthopedic surgeries, which allows arbitrary views using digitally reconstructed radiographs overlaid on the reconstructed patient's surface without the need to move the C-arm. An RGBD camera is rigidly mounted on the C-arm near the detector. We introduce a calibration method based on the simultaneous reconstruction of the surface and the CBCT scan of an object. The transformation between the two coordinate spaces is recovered using Fast Point Feature Histogram descriptors and the Iterative Closest Point algorithm. Several experiments are performed to assess the repeatability and the accuracy of this method. Target registration error is measured on multiple visual and radio-opaque landmarks to evaluate the accuracy of the registration. Mixed reality visualizations from arbitrary angles are also presented for simulated orthopedic surgeries. To the best of our knowledge, this is the first calibration method which uses only tomographic and RGBD reconstructions. This means that the method does not impose a particular shape of the phantom. We demonstrate a marker-less calibration of CBCT volumes and 3D depth cameras, achieving reasonable registration accuracy. This design requires a one-time factory calibration, is self-contained, and could be integrated into existing mobile C-arms to provide real-time augmented reality views from arbitrary angles.

  12. Optical fringe-reflection deflectometry with sparse representation

    NASA Astrophysics Data System (ADS)

    Xiao, Yong-Liang; Li, Sikun; Zhang, Qican; Zhong, Jianxin; Su, Xianyu; You, Zhisheng

    2018-05-01

    Optical fringe-reflection deflectometry is a surprisingly attractive scratch detection technique for specular surfaces owing to its unparalleled local sensibility. Full-field surface topography is obtained from a measured normal field using gradient integration. However, there may not be an ideal measured gradient field for deflectometry reconstruction in practice. Both the non-integrability condition and various kinds of image noise distributions, which are present in the indirect measured gradient field, may lead to ambiguity about the scratches on specular surfaces. In order to reduce misjudgment of scratches, sparse representation is introduced into the Southwell curl equation for deflectometry. The curl can be represented as a linear combination of the given redundant dictionary for curl and the sparsest solution for gradient refinement. The non-integrability condition and noise permutation can be overcome with sparse representation for gradient refinement. Numerical simulations demonstrate that the accuracy rate of judgment of scratches can be enhanced with sparse representation compared to the standard least-squares integration. Preliminary experiments are performed with the application of practical measured deflectometric data to verify the validity of the algorithm.

  13. Microlaser-based compact optical neuro-processors (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Paek, Eung Gi; Chan, Winston K.; Zah, Chung-En; Cheung, Kwok-wai; Curtis, L.; Chang-Hasnain, Constance J.

    1992-10-01

    This paper reviews the recent progress in the development of holographic neural networks using surface-emitting laser diode arrays (SELDAs). Since the previous work on ultrafast holographic memory readout system and a robust incoherent correlator, progress has been made in several areas: the use of an array of monolithic `neurons' to reconstruct holographic memories; two-dimensional (2-D) wavelength-division multiplexing (WDM) for image transmission through a single-mode fiber; and finally, an associative memory using time- division multiplexing (TDM). Experimental demonstrations on these are presented.

  14. 3D digitization methods based on laser excitation and active triangulation: a comparison

    NASA Astrophysics Data System (ADS)

    Aubreton, Olivier; Mériaudeau, Fabrice; Truchetet, Frédéric

    2016-04-01

    3D reconstruction of surfaces is an important topic in computer vision and corresponds to a large field of applications: industrial inspection, reverse engineering, object recognition, biometry, archeology… Because of the large varieties of applications, one can find in the literature a lot of approaches which can be classified into two families: passive and active [1]. Certainly because of their reliability, active approaches, using imaging system with an additional controlled light source, seem to be the most commonly used in the industrial field. In this domain, the 3D digitization approach based on active 3D triangulation has had important developments during the last ten years [2] and seems to be mature today if considering the important number of systems proposed by manufacturers. Unfortunately, the performances of active 3D scanners depend on the optical properties of the surface to digitize. As an example, on Fig 1.a, a 3D shape with a diffuse surface has been digitized with Comet V scanner (Steinbichler). The 3D reconstruction is presented on Fig 1.b. The same experiment was carried out on a similar object (same shape) but presenting a specular surface (Fig 1.c and Fig 1.d) ; it can clearly be observed, that the specularity influences of the performance of the digitization.

  15. Optical tomography by means of regularized MLEM

    NASA Astrophysics Data System (ADS)

    Majer, Charles L.; Urbanek, Tina; Peter, Jörg

    2015-09-01

    To solve the inverse problem involved in fluorescence mediated tomography a regularized maximum likelihood expectation maximization (MLEM) reconstruction strategy is proposed. This technique has recently been applied to reconstruct galaxy clusters in astronomy and is adopted here. The MLEM algorithm is implemented as Richardson-Lucy (RL) scheme and includes entropic regularization and a floating default prior. Hence, the strategy is very robust against measurement noise and also avoids converging into noise patterns. Normalized Gaussian filtering with fixed standard deviation is applied for the floating default kernel. The reconstruction strategy is investigated using the XFM-2 homogeneous mouse phantom (Caliper LifeSciences Inc., Hopkinton, MA) with known optical properties. Prior to optical imaging, X-ray CT tomographic data of the phantom were acquire to provide structural context. Phantom inclusions were fit with various fluorochrome inclusions (Cy5.5) for which optical data at 60 projections over 360 degree have been acquired, respectively. Fluorochrome excitation has been accomplished by scanning laser point illumination in transmission mode (laser opposite to camera). Following data acquisition, a 3D triangulated mesh is derived from the reconstructed CT data which is then matched with the various optical projection images through 2D linear interpolation, correlation and Fourier transformation in order to assess translational and rotational deviations between the optical and CT imaging systems. Preliminary results indicate that the proposed regularized MLEM algorithm, when driven with a constant initial condition, yields reconstructed images that tend to be smoother in comparison to classical MLEM without regularization. Once the floating default prior is included this bias was significantly reduced.

  16. Partial null astigmatism-compensated interferometry for a concave freeform Zernike mirror

    NASA Astrophysics Data System (ADS)

    Dou, Yimeng; Yuan, Qun; Gao, Zhishan; Yin, Huimin; Chen, Lu; Yao, Yanxia; Cheng, Jinlong

    2018-06-01

    Partial null interferometry without using any null optics is proposed to measure a concave freeform Zernike mirror. Oblique incidence on the freeform mirror is used to compensate for astigmatism as the main component in its figure, and to constrain the divergence of the test beam as well. The phase demodulated from the partial nulled interferograms is divided into low-frequency phase and high-frequency phase by Zernike polynomial fitting. The low-frequency surface figure error of the freeform mirror represented by the coefficients of Zernike polynomials is reconstructed from the low-frequency phase, applying the reverse optimization reconstruction technology in the accurate model of the interferometric system. The high-frequency surface figure error of the freeform mirror is retrieved from the high-frequency phase adopting back propagating technology, according to the updated model in which the low-frequency surface figure error has been superimposed on the sag of the freeform mirror. Simulations verified that this method is capable of testing a wide variety of astigmatism-dominated freeform mirrors due to the high dynamic range. The experimental result using our proposed method for a concave freeform Zernike mirror is consistent with the null test result employing the computer-generated hologram.

  17. Fusion of intraoperative force sensoring, surface reconstruction and biomechanical modeling

    NASA Astrophysics Data System (ADS)

    Röhl, S.; Bodenstedt, S.; Küderle, C.; Suwelack, S.; Kenngott, H.; Müller-Stich, B. P.; Dillmann, R.; Speidel, S.

    2012-02-01

    Minimally invasive surgery is medically complex and can heavily benefit from computer assistance. One way to help the surgeon is to integrate preoperative planning data into the surgical workflow. This information can be represented as a customized preoperative model of the surgical site. To use it intraoperatively, it has to be updated during the intervention due to the constantly changing environment. Hence, intraoperative sensor data has to be acquired and registered with the preoperative model. Haptic information which could complement the visual sensor data is still not established. In addition, biomechanical modeling of the surgical site can help in reflecting the changes which cannot be captured by intraoperative sensors. We present a setting where a force sensor is integrated into a laparoscopic instrument. In a test scenario using a silicone liver phantom, we register the measured forces with a reconstructed surface model from stereo endoscopic images and a finite element model. The endoscope, the instrument and the liver phantom are tracked with a Polaris optical tracking system. By fusing this information, we can transfer the deformation onto the finite element model. The purpose of this setting is to demonstrate the principles needed and the methods developed for intraoperative sensor data fusion. One emphasis lies on the calibration of the force sensor with the instrument and first experiments with soft tissue. We also present our solution and first results concerning the integration of the force sensor as well as accuracy to the fusion of force measurements, surface reconstruction and biomechanical modeling.

  18. Accuracy analysis for triangulation and tracking based on time-multiplexed structured light.

    PubMed

    Wagner, Benjamin; Stüber, Patrick; Wissel, Tobias; Bruder, Ralf; Schweikard, Achim; Ernst, Floris

    2014-08-01

    The authors' research group is currently developing a new optical head tracking system for intracranial radiosurgery. This tracking system utilizes infrared laser light to measure features of the soft tissue on the patient's forehead. These features are intended to offer highly accurate registration with respect to the rigid skull structure by means of compensating for the soft tissue. In this context, the system also has to be able to quickly generate accurate reconstructions of the skin surface. For this purpose, the authors have developed a laser scanning device which uses time-multiplexed structured light to triangulate surface points. The accuracy of the authors' laser scanning device is analyzed and compared for different triangulation methods. These methods are given by the Linear-Eigen method and a nonlinear least squares method. Since Microsoft's Kinect camera represents an alternative for fast surface reconstruction, the authors' results are also compared to the triangulation accuracy of the Kinect device. Moreover, the authors' laser scanning device was used for tracking of a rigid object to determine how this process is influenced by the remaining triangulation errors. For this experiment, the scanning device was mounted to the end-effector of a robot to be able to calculate a ground truth for the tracking. The analysis of the triangulation accuracy of the authors' laser scanning device revealed a root mean square (RMS) error of 0.16 mm. In comparison, the analysis of the triangulation accuracy of the Kinect device revealed a RMS error of 0.89 mm. It turned out that the remaining triangulation errors only cause small inaccuracies for the tracking of a rigid object. Here, the tracking accuracy was given by a RMS translational error of 0.33 mm and a RMS rotational error of 0.12°. This paper shows that time-multiplexed structured light can be used to generate highly accurate reconstructions of surfaces. Furthermore, the reconstructed point sets can be used for high-accuracy tracking of objects, meeting the strict requirements of intracranial radiosurgery.

  19. Observation of Structure of Surfaces and Interfaces by Synchrotron X-ray Diffraction: Atomic-Scale Imaging and Time-Resolved Measurements

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Yusuke; Shirasawa, Tetsuroh; Voegeli, Wolfgang; Takahashi, Toshio

    2018-06-01

    The recent developments in synchrotron optics, X-ray detectors, and data analysis algorithms have enhanced the capability of the surface X-ray diffraction technique. This technique has been used to clarify the atomic arrangement around surfaces in a non-contact and nondestructive manner. An overview of surface X-ray diffraction, from the historical development to recent topics, is presented. In the early stage of this technique, surface reconstructions of simple semiconductors or metals were studied. Currently, the surface or interface structures of complicated functional materials are examined with sub-Å resolution. As examples, the surface structure determination of organic semiconductors and of a one-dimensional structure on silicon are presented. A new frontier is time-resolved interfacial structure analysis. A recent observation of the structure and dynamics of the electric double layer of ionic liquids, and an investigation of the structural evolution in the wettability transition on a TiO2 surface that utilizes a newly designed time-resolved surface diffractometer, are presented.

  20. Iterative reconstruction methods in atmospheric tomography: FEWHA, Kaczmarz and Gradient-based algorithm

    NASA Astrophysics Data System (ADS)

    Ramlau, R.; Saxenhuber, D.; Yudytskiy, M.

    2014-07-01

    The problem of atmospheric tomography arises in ground-based telescope imaging with adaptive optics (AO), where one aims to compensate in real-time for the rapidly changing optical distortions in the atmosphere. Many of these systems depend on a sufficient reconstruction of the turbulence profiles in order to obtain a good correction. Due to steadily growing telescope sizes, there is a strong increase in the computational load for atmospheric reconstruction with current methods, first and foremost the MVM. In this paper we present and compare three novel iterative reconstruction methods. The first iterative approach is the Finite Element- Wavelet Hybrid Algorithm (FEWHA), which combines wavelet-based techniques and conjugate gradient schemes to efficiently and accurately tackle the problem of atmospheric reconstruction. The method is extremely fast, highly flexible and yields superior quality. Another novel iterative reconstruction algorithm is the three step approach which decouples the problem in the reconstruction of the incoming wavefronts, the reconstruction of the turbulent layers (atmospheric tomography) and the computation of the best mirror correction (fitting step). For the atmospheric tomography problem within the three step approach, the Kaczmarz algorithm and the Gradient-based method have been developed. We present a detailed comparison of our reconstructors both in terms of quality and speed performance in the context of a Multi-Object Adaptive Optics (MOAO) system for the E-ELT setting on OCTOPUS, the ESO end-to-end simulation tool.

  1. Simulation study on compressive laminar optical tomography for cardiac action potential propagation

    PubMed Central

    Harada, Takumi; Tomii, Naoki; Manago, Shota; Kobayashi, Etsuko; Sakuma, Ichiro

    2017-01-01

    To measure the activity of tissue at the microscopic level, laminar optical tomography (LOT), which is a microscopic form of diffuse optical tomography, has been developed. However, obtaining sufficient recording speed to determine rapidly changing dynamic activity remains major challenges. For a high frame rate of the reconstructed data, we here propose a new LOT method using compressed sensing theory, called compressive laminar optical tomography (CLOT), in which novel digital micromirror device-based illumination and data reduction in a single reconstruction are applied. In the simulation experiments, the reconstructed volumetric images of the action potentials that were acquired from 5 measured images with random pattern featured a wave border at least to a depth of 2.5 mm. Consequently, it was shown that CLOT has potential for over 200 fps required for the cardiac electrophysiological phenomena. PMID:28736675

  2. Wear Distribution Detection of Knee Joint Prostheses by Means of 3D Optical Scanners

    PubMed Central

    Affatato, Saverio; Valigi, Maria Cristina; Logozzo, Silvia

    2017-01-01

    The objective of this study was to examine total knee polyethylene inserts from in vitro simulation to evaluate and display—using a 3D optical scanner—wear patterns and wear rates of inserts exposed to wear by means of simulators. Various sets of tibial inserts have been reconstructed by using optical scanners. With this in mind, the wear behavior of fixed and mobile bearing polyethylene knee configurations was investigated using a knee wear joint simulator. After the completion of the wear test, the polyethylene menisci were analyzed by an innovative 3D optical scanners in order to evaluate the 3D wear distribution on the prosthesis surface. This study implemented a new procedure for evaluating polyethylene bearings of joint prostheses obtained after in vitro wear tests and the proposed new approach allowed quantification of the contact zone on the geometry of total knee prostheses. The results of the present study showed that mobile TKPs (total knee prosthesis) have lower wear resistance with respect to fixed TKPs. PMID:28772725

  3. Iris reconstruction combined with iris-claw intraocular lens implantation for the management of iris-lens injured patients.

    PubMed

    Hu, Shufang; Wang, Mingling; Xiao, Tianlin; Zhao, Zhenquan

    2016-03-01

    To study the efficiency and safety of iris reconstruction combined with iris-claw intraocular lens (IOL) implantation in the patients with iris-lens injuries. Retrospective, noncomparable consecutive case series study. Eleven patients (11 eyes) following iris-lens injuries underwent iris reconstructions combined with iris-claw IOL implantations. Clinical data, such as cause and time of injury, visual acuity (VA), iris and lens injuries, surgical intervention, follow-up period, corneal endothelial cell count, and optical coherence tomography, were collected. Uncorrected VA (UCVA) in all injured eyes before combined surgery was equal to or <20/1000. Within a 1.1-4.2-year follow-up period, a significant increase, equal to or better than 20/66, in UCVA was observed in six (55%) cases, and in best-corrected VA (BCVA) was observed in nine (82%) cases. Postoperative BCVA was 20/40 or better in seven cases (64%). After combined surgery, the iris returned to its natural round shape or smaller pupil, and the iris-claw IOLs in the 11 eyes were well-positioned on the anterior surface of reconstructed iris. No complications occurred in those patients. Iris reconstruction combined with iris-claw IOL implantation is a safe and efficient procedure for an eye with iris-lens injury in the absence of capsular support.

  4. Analysis and demonstration of vibration waveform reconstruction in distributed optical fiber vibration sensing system

    NASA Astrophysics Data System (ADS)

    Zhu, Hui; Shan, Xuekang; Sun, Xiaohan

    2017-10-01

    A method for reconstructing the vibration waveform from the optical time-domain backscattering pulses in the distributed optical fiber sensing system (DOFSS) is proposed, which allows for extracting and recovering the external vibration signal from the tested pulses by analog signal processing, so that can obtain vibration location and waveform simultaneously. We establish the response model of DOFSS to the external vibration and analyze the effects of system parameters on the operational performance. The main parts of the DOFSS are optimized, including delay fiber length and wavelength, to improve the sensitivity of the system. The experimental system is set up and the vibration amplitudes and reconstructed waveforms are fit well with the original driving signal. The experimental results demonstrate that the performance of vibration waveform reconstruction is good with SNR of 15 dB whenever the external vibrations with different intensities and frequencies exert on the sensing fiber.

  5. A handheld optical device for skin profile measurement

    NASA Astrophysics Data System (ADS)

    Sun, Jiuai; Liu, Xiaojin

    2018-04-01

    This paper describes a portable optical scanning device designed for skin surface measurement on both colour and 3D geometry through a relative easy and cost effective multiple light source photometric stereo method. The validation of colour recovered had been verified through its application on skin lesion segmentation in our early work. This paper focuses on the reconstructed topographic data which are subject to further evaluation and advancement. The evaluation work takes the skin in vitro as an application scenario and compares the experimental result to that obtained by using a commercial product. The experiments show that this handheld device can measure the skin profile significantly closer to that of the ground truth and have the additional function of skin colour recovery.

  6. Ultra Small Integrated Optical Fiber Sensing System

    PubMed Central

    Van Hoe, Bram; Lee, Graham; Bosman, Erwin; Missinne, Jeroen; Kalathimekkad, Sandeep; Maskery, Oliver; Webb, David J.; Sugden, Kate; Van Daele, Peter; Van Steenberge, Geert

    2012-01-01

    This paper introduces a revolutionary way to interrogate optical fiber sensors based on fiber Bragg gratings (FBGs) and to integrate the necessary driving optoelectronic components with the sensor elements. Low-cost optoelectronic chips are used to interrogate the optical fibers, creating a portable dynamic sensing system as an alternative for the traditionally bulky and expensive fiber sensor interrogation units. The possibility to embed these laser and detector chips is demonstrated resulting in an ultra thin flexible optoelectronic package of only 40 μm, provided with an integrated planar fiber pigtail. The result is a fully embedded flexible sensing system with a thickness of only 1 mm, based on a single Vertical-Cavity Surface-Emitting Laser (VCSEL), fiber sensor and photodetector chip. Temperature, strain and electrodynamic shaking tests have been performed on our system, not limited to static read-out measurements but dynamically reconstructing full spectral information datasets.

  7. Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE)

    PubMed Central

    Grover, Ginni; DeLuca, Keith; Quirin, Sean; DeLuca, Jennifer; Piestun, Rafael

    2012-01-01

    Super-resolution imaging with photo-activatable or photo-switchable probes is a promising tool in biological applications to reveal previously unresolved intra-cellular details with visible light. This field benefits from developments in the areas of molecular probes, optical systems, and computational post-processing of the data. The joint design of optics and reconstruction processes using double-helix point spread functions (DH-PSF) provides high resolution three-dimensional (3D) imaging over a long depth-of-field. We demonstrate for the first time a method integrating a Fisher information efficient DH-PSF design, a surface relief optical phase mask, and an optimal 3D localization estimator. 3D super-resolution imaging using photo-switchable dyes reveals the 3D microtubule network in mammalian cells with localization precision approaching the information theoretical limit over a depth of 1.2 µm. PMID:23187521

  8. Refocusing-range and image-quality enhanced optical reconstruction of 3-D objects from integral images using a principal periodic δ-function array

    NASA Astrophysics Data System (ADS)

    Ai, Lingyu; Kim, Eun-Soo

    2018-03-01

    We propose a method for refocusing-range and image-quality enhanced optical reconstruction of three-dimensional (3-D) objects from integral images only by using a 3 × 3 periodic δ-function array (PDFA), which is called a principal PDFA (P-PDFA). By directly convolving the elemental image array (EIA) captured from 3-D objects with the P-PDFAs whose spatial periods correspond to each object's depth, a set of spatially-filtered EIAs (SF-EIAs) are extracted, and from which 3-D objects can be reconstructed to be refocused on their real depth. convolutional operations are performed directly on each of the minimum 3 × 3 EIs of the picked-up EIA, the capturing and refocused-depth ranges of 3-D objects can be greatly enhanced, as well as 3-D objects much improved in image quality can be reconstructed without any preprocessing operations. Through ray-optical analysis and optical experiments with actual 3-D objects, the feasibility of the proposed method has been confirmed.

  9. Reading from Scratch - A Vision-System for Reading Data on Micro-structured Surfaces

    NASA Astrophysics Data System (ADS)

    Dragon, Ralf; Becker, Christian; Rosenhahn, Bodo; Ostermann, Jörn

    Labeling and marking industrial manufactured objects gets increasingly important nowadays because of novel material properties and plagiarism. As part of the Collaborative Research Center 653 which investigates micro-structured metallic surfaces for inherent mechanical data storage, we research into a stable and reliable optical readout of the written data. Since this comprises a qualitative surface reconstruction, we use directed illumination to make the micro structures visible. Then we apply a spectral analysis to obtain image partitioning and perform signal tracking enhanced by a customized Hidden Markov Model. In this paper, we derive the algorithms used and demonstrate reading data from a surface with 1.6kbit/cm2 from a micro-structured groove which varies by only 3μ m in depth (thus a “scratch”). We demonstrate the system’s robustness with experiments with real and artificially-rendered surfaces.

  10. Assessment of using ultrasound images as prior for diffuse optical tomography regularization matrix

    NASA Astrophysics Data System (ADS)

    Althobaiti, Murad; Vavadi, Hamed; Zhu, Quing

    2017-02-01

    Imaging of tissue with Ultrasound-guided diffuse optical tomography (DOT) is a rising imaging technique to map hemoglobin concentrations within tissue for breast cancer detection and diagnosis. Near-infrared optical imaging received a lot of attention in research as a possible technique to be used for such purpose especially for breast tumors. Since DOT images contrast is closely related to oxygenation and deoxygenating of the hemoglobin, which is an important factor in differentiating malignant and benign tumors. One of the optical imaging modalities used is the diffused optical tomography (DOT); which probes deep scattering tissue (1-5cm) by NIR optical source-detector probe and detects NIR photons in the diffusive regime. The photons in the diffusive regime usually reach the detector without significant information about their source direction and the propagation path. Because of that, the optical reconstruction problem of the medium characteristics is ill-posed even with the tomography and Back-projection techniques. The accurate recovery of images requires an effective image reconstruction method. Here, we illustrate a method in which ultrasound images are encoded as prior for regularization of the inversion matrix. Results were evaluated using phantom experiments of low and high absorption contrasts. This method improves differentiation between the low and the high contrasts targets. Ultimately, this method could improve malignant and benign cases by increasing reconstructed absorption ratio of malignant to benign. Besides that, the phantom results show improvements in target shape as well as the spatial resolution of the DOT reconstructed images.

  11. Micro-CT images reconstruction and 3D visualization for small animal studying

    NASA Astrophysics Data System (ADS)

    Gong, Hui; Liu, Qian; Zhong, Aijun; Ju, Shan; Fang, Quan; Fang, Zheng

    2005-01-01

    A small-animal x-ray micro computed tomography (micro-CT) system has been constructed to screen laboratory small animals and organs. The micro-CT system consists of dual fiber-optic taper-coupled CCD detectors with a field-of-view of 25x50 mm2, a microfocus x-ray source, a rotational subject holder. For accurate localization of rotation center, coincidence between the axis of rotation and centre of image was studied by calibration with a polymethylmethacrylate cylinder. Feldkamp"s filtered back-projection cone-beam algorithm is adopted for three-dimensional reconstruction on account of the effective corn-beam angle is 5.67° of the micro-CT system. 200x1024x1024 matrix data of micro-CT is obtained with the magnification of 1.77 and pixel size of 31x31μm2. In our reconstruction software, output image size of micro-CT slices data, magnification factor and rotation sample degree can be modified in the condition of different computational efficiency and reconstruction region. The reconstructed image matrix data is processed and visualization by Visualization Toolkit (VTK). Data parallelism of VTK is performed in surface rendering of reconstructed data in order to improve computing speed. Computing time of processing a 512x512x512 matrix datasets is about 1/20 compared with serial program when 30 CPU is used. The voxel size is 54x54x108 μm3. The reconstruction and 3-D visualization images of laboratory rat ear are presented.

  12. Application of optical longitudinal tomography for dental introscopy

    NASA Astrophysics Data System (ADS)

    Levin, Gennady G.; Burgansky, Alexander A.; Levandovski, Alexei G.

    1997-08-01

    A new method of dental introscopy in-vitro is suggested by the authors. This method implies the usage of longitudinal tomography techniques and is characterized by non-invasive and non-harmful diagnostics features, as well as interactive regime of image reconstruction which lets an operator (doctor) to control the diagnostics process in real time. He-Ne laser emission is used for obtaining of the projections. By the means of longitudinal tomography, images of different sections of an object (tooth) can be reconstructed. An experiment was held by the authors in which 100 projections of a tooth (premolar) were obtained and images of 10 different sections were reconstructed. These images were later compared to real sections of the tooth. This experiment proved that optical longitudinal tomography can be successfully used for dental introscopy. Authors claim that optical tomographic methods can be used for diagnostics of other biological objects as well. Such objects are characterized by spatial geometrical anisotropy (tubular bones, phalanxes of fingers, penis, etc.). It is especially promising to use this method for children's dentistry. the authors discuss some features of the data acquisition system for optical longitudinal tomography. Reconstruction algorithms are described. The results of experimental reconstruction are presented and advantages of this diagnostics method are discussed.

  13. Three-dimensional image display system using stereogram and holographic optical memory techniques

    NASA Astrophysics Data System (ADS)

    Kim, Cheol S.; Kim, Jung G.; Shin, Chang-Mok; Kim, Soo-Joong

    2001-09-01

    In this paper, we implemented a three dimensional image display system using stereogram and holographic optical memory techniques which can store many images and reconstruct them automatically. In this system, to store and reconstruct stereo images, incident angle of reference beam must be controlled in real time, so we used BPH (binary phase hologram) and LCD (liquid crystal display) for controlling reference beam. And input images are represented on the LCD without polarizer/analyzer for maintaining uniform beam intensities regardless of the brightness of input images. The input images and BPHs are edited using application software with having the same recording scheduled time interval in storing. The reconstructed stereo images are acquired by capturing the output images with CCD camera at the behind of the analyzer which transforms phase information into brightness information of images. The reference beams are acquired by Fourier transform of BPH which designed with SA (simulated annealing) algorithm, and represented on the LCD with the 0.05 seconds time interval using application software for reconstructing the stereo images. In output plane, we used a LCD shutter that is synchronized to a monitor that displays alternate left and right eye images for depth perception. We demonstrated optical experiment which store and reconstruct four stereo images in BaTiO3 repeatedly using holographic optical memory techniques.

  14. Scanning dimensional measurement using laser-trapped microsphere with optical standing-wave scale

    NASA Astrophysics Data System (ADS)

    Michihata, Masaki; Ueda, Shin-ichi; Takahashi, Satoru; Takamasu, Kiyoshi; Takaya, Yasuhiro

    2017-06-01

    We propose a laser trapping-based scanning dimensional measurement method for free-form surfaces. We previously developed a laser trapping-based microprobe for three-dimensional coordinate metrology. This probe performs two types of measurements: a tactile coordinate and a scanning measurement in the same coordinate system. The proposed scanning measurement exploits optical interference. A standing-wave field is generated between the laser-trapped microsphere and the measured surface because of the interference from the retroreflected light. The standing-wave field produces an effective length scale, and the trapped microsphere acts as a sensor to read this scale. A horizontal scan of the trapped microsphere produces a phase shift of the standing wave according to the surface topography. This shift can be measured from the change in the microsphere position. The dynamics of the trapped microsphere within the standing-wave field was estimated using a harmonic model, from which the measured surface can be reconstructed. A spherical lens was measured experimentally, yielding a radius of curvature of 2.59 mm, in agreement with the nominal specification (2.60 mm). The difference between the measured points and a spherical fitted curve was 96 nm, which demonstrates the scanning function of the laser trapping-based microprobe for free-form surfaces.

  15. Real-time implementing wavefront reconstruction for adaptive optics

    NASA Astrophysics Data System (ADS)

    Wang, Caixia; Li, Mei; Wang, Chunhong; Zhou, Luchun; Jiang, Wenhan

    2004-12-01

    The capability of real time wave-front reconstruction is important for an adaptive optics (AO) system. The bandwidth of system and the real-time processing ability of the wave-front processor is mainly affected by the speed of calculation. The system requires enough number of subapertures and high sampling frequency to compensate atmospheric turbulence. The number of reconstruction operation is increased accordingly. Since the performance of AO system improves with the decrease of calculation latency, it is necessary to study how to increase the speed of wavefront reconstruction. There are two methods to improve the real time of the reconstruction. One is to convert the wavefront reconstruction matrix, such as by wavelet or FFT. The other is enhancing the performance of the processing element. Analysis shows that the latency cutting is performed with the cost of reconstruction precision by the former method. In this article, the latter method is adopted. From the characteristic of the wavefront reconstruction algorithm, a systolic array by FPGA is properly designed to implement real-time wavefront reconstruction. The system delay is reduced greatly by the utilization of pipeline and parallel processing. The minimum latency of reconstruction is the reconstruction calculation of one subaperture.

  16. Feasibility of interstitial diffuse optical tomography using cylindrical diffusing fiber for prostate PDT

    PubMed Central

    Liang, Xing; Wang, Ken Kang-Hsin; Zhu, Timothy C.

    2013-01-01

    Interstitial diffuse optical tomography (DOT) has been used to characterize spatial distribution of optical properties for prostate photodynamic therapy (PDT) dosimetry. We have developed an interstitial DOT method using cylindrical diffuse fibers (CDFs) as light sources, so that the same light sources can be used for both DOT measurement and PDT treatment. In this novel interstitial CDF-DOT method, absolute light fluence per source strength (in unit of 1/cm2) is used to separate absorption and scattering coefficients. A mathematical phantom and a solid prostate phantom including anomalies with known optical properties were used, respectively, to test the feasibility of reconstructing optical properties using interstitial CDF-DOT. Three dimension spatial distributions of the optical properties were reconstructed for both scenarios. Our studies show that absorption coefficient can be reliably extrapolated while there are some cross talks between absorption and scattering properties. Even with the suboptimal reduced scattering coefficients, the reconstructed light fluence rate agreed with the measured values to within ±10%, thus the proposed CDF-DOT allows greatly improved light dosimetry calculation for interstitial PDT. PMID:23629149

  17. Photoacoustic projection imaging using an all-optical detector array

    NASA Astrophysics Data System (ADS)

    Bauer-Marschallinger, J.; Felbermayer, K.; Berer, T.

    2018-02-01

    We present a prototype for all-optical photoacoustic projection imaging. By generating projection images, photoacoustic information of large volumes can be retrieved with less effort compared to common photoacoustic computed tomography where many detectors and/or multiple measurements are required. In our approach, an array of 60 integrating line detectors is used to acquire photoacoustic waves. The line detector array consists of fiber-optic MachZehnder interferometers, distributed on a cylindrical surface. From the measured variation of the optical path lengths of the interferometers, induced by photoacoustic waves, a photoacoustic projection image can be reconstructed. The resulting images represent the projection of the three-dimensional spatial light absorbance within the imaged object onto a two-dimensional plane, perpendicular to the line detector array. The fiber-optic detectors achieve a noise-equivalent pressure of 24 Pascal at a 10 MHz bandwidth. We present the operational principle, the structure of the array, and resulting images. The system can acquire high-resolution projection images of large volumes within a short period of time. Imaging large volumes at high frame rates facilitates monitoring of dynamic processes.

  18. 3D Surface Reconstruction and Automatic Camera Calibration

    NASA Technical Reports Server (NTRS)

    Jalobeanu, Andre

    2004-01-01

    Illustrations in this view-graph presentation are presented on a Bayesian approach to 3D surface reconstruction and camera calibration.Existing methods, surface analysis and modeling,preliminary surface reconstruction results, and potential applications are addressed.

  19. Hyperspectral optical tomography of intrinsic signals in the rat cortex

    PubMed Central

    Konecky, Soren D.; Wilson, Robert H.; Hagen, Nathan; Mazhar, Amaan; Tkaczyk, Tomasz S.; Frostig, Ron D.; Tromberg, Bruce J.

    2015-01-01

    Abstract. We introduce a tomographic approach for three-dimensional imaging of evoked hemodynamic activity, using broadband illumination and diffuse optical tomography (DOT) image reconstruction. Changes in diffuse reflectance in the rat somatosensory cortex due to stimulation of a single whisker were imaged at a frame rate of 5 Hz using a hyperspectral image mapping spectrometer. In each frame, images in 38 wavelength bands from 484 to 652 nm were acquired simultaneously. For data analysis, we developed a hyperspectral DOT algorithm that used the Rytov approximation to quantify changes in tissue concentration of oxyhemoglobin (ctHbO2) and deoxyhemoglobin (ctHb) in three dimensions. Using this algorithm, the maximum changes in ctHbO2 and ctHb were found to occur at 0.29±0.02 and 0.66±0.04  mm beneath the surface of the cortex, respectively. Rytov tomographic reconstructions revealed maximal spatially localized increases and decreases in ctHbO2 and ctHb of 321±53 and 555±96  nM, respectively, with these maximum changes occurring at 4±0.2  s poststimulus. The localized optical signals from the Rytov approximation were greater than those from modified Beer–Lambert, likely due in part to the inability of planar reflectance to account for partial volume effects. PMID:26835483

  20. Identification of nodal tissue in the living heart using rapid scanning fiber-optics confocal microscopy and extracellular fluorophores.

    PubMed

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2013-09-01

    Risks associated with pediatric reconstructive heart surgery include injury of the sinoatrial node (SAN) and atrioventricular node (AVN), requiring cardiac rhythm management using implantable pacemakers. These injuries are the result of difficulties in identifying nodal tissues intraoperatively. Here we describe an approach based on confocal microscopy and extracellular fluorophores to quantify tissue microstructure and identify nodal tissue. Using conventional 3-dimensional confocal microscopy we investigated the microstructural arrangement of SAN, AVN, and atrial working myocardium (AWM) in fixed rat heart. AWM exhibited a regular striated arrangement of the extracellular space. In contrast, SAN and AVN had an irregular, reticulated arrangement. AWM, SAN, and AVN tissues were beneath a thin surface layer of tissue that did not obstruct confocal microscopic imaging. Subsequently, we imaged tissues in living rat hearts with real-time fiber-optics confocal microscopy. Fiber-optics confocal microscopy images resembled images acquired with conventional confocal microscopy. We investigated spatial regularity of tissue microstructure from Fourier analysis and second-order image moments. Fourier analysis of fiber-optics confocal microscopy images showed that the spatial regularity of AWM was greater than that of nodal tissues (37.5 ± 5.0% versus 24.3 ± 3.9% for SAN and 23.8 ± 3.7% for AVN; P<0.05). Similar differences of spatial regularities were revealed from second-order image moments (50.0 ± 7.3% for AWM versus 29.3 ± 6.7% for SAN and 27.3 ± 5.5% for AVN; P<0.05). The study demonstrates feasibility of identifying nodal tissue in living heart using extracellular fluorophores and fiber-optics confocal microscopy. Application of the approach in pediatric reconstructive heart surgery may reduce risks of injuring nodal tissues.

  1. Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part I--Theory and simulations.

    PubMed

    Pogue, Brian W; Song, Xiaomei; Tosteson, Tor D; McBride, Troy O; Jiang, Shudong; Paulsen, Keith D

    2002-07-01

    Near-infrared (NIR) diffuse tomography is an emerging method for imaging the interior of tissues to quantify concentrations of hemoglobin and exogenous chromophores non-invasively in vivo. It often exploits an optical diffusion model-based image reconstruction algorithm to estimate spatial property values from measurements of the light flux at the surface of the tissue. In this study, mean-squared error (MSE) over the image is used to evaluate methods for regularizing the ill-posed inverse image reconstruction problem in NIR tomography. Estimates of image bias and image standard deviation were calculated based upon 100 repeated reconstructions of a test image with randomly distributed noise added to the light flux measurements. It was observed that the bias error dominates at high regularization parameter values while variance dominates as the algorithm is allowed to approach the optimal solution. This optimum does not necessarily correspond to the minimum projection error solution, but typically requires further iteration with a decreasing regularization parameter to reach the lowest image error. Increasing measurement noise causes a need to constrain the minimum regularization parameter to higher values in order to achieve a minimum in the overall image MSE.

  2. Energy functions for regularization algorithms

    NASA Technical Reports Server (NTRS)

    Delingette, H.; Hebert, M.; Ikeuchi, K.

    1991-01-01

    Regularization techniques are widely used for inverse problem solving in computer vision such as surface reconstruction, edge detection, or optical flow estimation. Energy functions used for regularization algorithms measure how smooth a curve or surface is, and to render acceptable solutions these energies must verify certain properties such as invariance with Euclidean transformations or invariance with parameterization. The notion of smoothness energy is extended here to the notion of a differential stabilizer, and it is shown that to void the systematic underestimation of undercurvature for planar curve fitting, it is necessary that circles be the curves of maximum smoothness. A set of stabilizers is proposed that meet this condition as well as invariance with rotation and parameterization.

  3. Wavelet methods in multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Helin, T.; Yudytskiy, M.

    2013-08-01

    The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory.

  4. A new fabrication technique for complex refractive micro-optical systems

    NASA Astrophysics Data System (ADS)

    Tormen, Massimo; Carpentiero, Alessandro; Ferrari, Enrico; Cabrini, Stefano; Cojoc, Dan; Di Fabrizio, Enzo

    2006-01-01

    We present a new method that allows to fabricate structures with tightly controlled three-dimensional profiles in the 10 nm to 100 μm scale range. This consists of a sequence of lithographic steps such as Electron Beam (EB) or Focused Ion Beam (FIB) lithography, alternated with isotropic wet etching processes performed on a quartz substrate. Morphological characterization by SEM and AFM shows that 3D structures with very accurate shape control and nanometer scale surface roughness can be realized. Quartz templates have been employed as complex system of micromirrors after metal coating of the patterned surface or used as stamps in nanoimprint, hot embossing or casting processes to shape complex plastic elements. Compared to other 3D micro and nanostructuring methods, in which a hard material is directly "sculptured" by energetic beams, our technique requires a much less intensive use of expensive lithographic equipments, for comparable volumes of structured material, resulting in dramatic increase of throughput. Refractive micro-optical elements have been fabricated and characterized in transmission and reflection modes with white and monochromatic light. The elements produce a distribution of sharp focal spots and lines in the three dimensional space, opening the route for applications of image reconstruction based on refractive optics.

  5. The measurement of an aspherical mirror by three-dimensional nanoprofiler

    NASA Astrophysics Data System (ADS)

    Tokuta, Yusuke; Okita, Kenya; Okuda, Kohei; Kitayama, Takao; Nakano, Motohiro; Nakatani, Shun; Kudo, Ryota; Yamamura, Kazuya; Endo, Katsuyoshi

    2015-09-01

    Aspherical optical elements with high accuracy are important in several fields such as third-generation synchrotron radiation and extreme-ultraviolet lithography. Then the demand of measurement method for aspherical or free-form surface with nanometer resolution is rising. Our purpose is to develop a non-contact profiler to measure free-form surfaces directly with repeatability of figure error of less than 1 nm PV. To achieve this purpose we have developed three-dimensional Nanoprofiler which traces normal vectors of sample surface. The measurement principle is based on the straightness of LASER light and the accuracy of a rotational goniometer. This machine consists of four rotational stages, one translational stage and optical head which has the quadrant photodiode (QPD) and LASER head at optically equal position. In this measurement method, we conform the incident light beam to reflect the beam by controlling five stages and determine the normal vectors and the coordinates of the surface from signal of goniometers, translational stage and QPD. We can obtain three-dimensional figure from the normal vectors and the coordinates by a reconstruction algorithm. To evaluate performance of this machine we measure a concave aspherical mirror ten times. From ten results we calculate measurement repeatability, and we evaluate measurement uncertainty to compare the result with that measured by an interferometer. In consequence, the repeatability of measurement was 2.90 nm (σ) and the difference between the two profiles was +/-20 nm. We conclude that the two profiles was correspondent considering systematic errors of each machine.

  6. Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging.

    PubMed

    de Castro, Alberto; Ortiz, Sergio; Gambra, Enrique; Siedlecki, Damian; Marcos, Susana

    2010-10-11

    We present an optimization method to retrieve the gradient index (GRIN) distribution of the in-vitro crystalline lens from optical path difference data extracted from OCT images. Three-dimensional OCT images of the crystalline lens are obtained in two orientations (with the anterior surface up and posterior surface up), allowing to obtain the lens geometry. The GRIN reconstruction method is based on a genetic algorithm that searches for the parameters of a 4-variable GRIN model that best fits the distorted posterior surface of the lens. Computer simulations showed that, for noise of 5 μm in the surface elevations, the GRIN is recovered with an accuracy of 0.003 and 0.010 in the refractive indices of the nucleus and surface of the lens, respectively. The method was applied to retrieve three-dimensionally the GRIN of a porcine crystalline lens in vitro. We found a refractive index ranging from 1.362 in the surface to 1.443 in the nucleus of the lens, an axial exponential decay of the GRIN profile of 2.62 and a meridional exponential decay ranging from 3.56 to 5.18. The effect of GRIN on the aberrations of the lens also studied. The estimated spherical aberration of the measured porcine lens was 2.87 μm assuming a homogenous equivalent refractive index, and the presence of GRIN shifted the spherical aberration toward negative values (-0.97 μm), for a 6-mm pupil.

  7. Speckle contrast optical tomography: A new method for deep tissue three-dimensional tomography of blood flow

    PubMed Central

    Varma, Hari M.; Valdes, Claudia P.; Kristoffersen, Anna K.; Culver, Joseph P.; Durduran, Turgut

    2014-01-01

    A novel tomographic method based on the laser speckle contrast, speckle contrast optical tomography (SCOT) is introduced that allows us to reconstruct three dimensional distribution of blood flow in deep tissues. This method is analogous to the diffuse optical tomography (DOT) but for deep tissue blood flow. We develop a reconstruction algorithm based on first Born approximation to generate three dimensional distribution of flow using the experimental data obtained from tissue simulating phantoms. PMID:24761306

  8. Cross-talk free selective reconstruction of individual objects from multiplexed optical field data

    NASA Astrophysics Data System (ADS)

    Zea, Alejandro Velez; Barrera, John Fredy; Torroba, Roberto

    2018-01-01

    In this paper we present a data multiplexing method for simultaneous storage in a single package composed by several optical fields of tridimensional (3D) objects, and their individual cross-talk free retrieval. Optical field data are extracted from off axis Fourier holograms, and then sampled by multiplying them with random binary masks. The resulting sampled optical fields can be used to reconstruct the original objects. Sampling causes a loss of quality that can be controlled by the number of white pixels in the binary masks and by applying a padding procedure on the optical field data. This process can be performed using a different binary mask for each optical field, and then added to form a multiplexed package. With the adequate choice of sampling and padding, we can achieve a volume reduction in the multiplexed package over the addition of all individual optical fields. Moreover, the package can be multiplied by a binary mask to select a specific optical field, and after the reconstruction procedure, the corresponding 3D object is recovered without any cross-talk. We demonstrate the effectiveness of our proposal for data compression with a comparison with discrete cosine transform filtering. Experimental results confirm the validity of our proposal.

  9. Noncontact holographic detection for photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Buj, Christian; Münter, Michael; Schmarbeck, Benedikt; Horstmann, Jens; Hüttmann, Gereon; Brinkmann, Ralf

    2017-10-01

    A holographic method for high-speed, noncontact photoacoustic tomography is introduced and evaluated. Relative changes of the object's topography, induced by the impact of thermoelastic pressure waves, were determined at nanometer sensitivity without physical contact. The object's surface was illuminated with nanosecond laser pulses and imaged with a high-speed CMOS camera. From two interferograms measured before and after excitation of the acoustic wave, surface displacement was calculated and then used as the basis for a tomographic reconstruction of the initial pressure caused by optical absorption. The holographic detection scheme enables variable sampling rates of the photoacoustic signal of up to 50 MHz. The total acquisition times for complete volumes with 230 MVoxel is far below 1 s. Measurements of silicone and porcine skin tissue phantoms with embedded artificial absorbers, which served as a model for human subcutaneous vascular networks, were possible. Three-dimensional reconstructions of the absorbing structures show details with a diameter of 310 μm up to a depth of 2.5 mm. Theoretical limitations and the experimental sensitivity, as well as the potential for in vivo imaging depending on the detection repetition rate, are analyzed and discussed.

  10. Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array.

    PubMed

    Xia, Jun; Huang, Chao; Maslov, Konstantin; Anastasio, Mark A; Wang, Lihong V

    2013-08-15

    Photoacoustic computed tomography (PACT) is a hybrid technique that combines optical excitation and ultrasonic detection to provide high-resolution images in deep tissues. In the image reconstruction, a constant speed of sound (SOS) is normally assumed. This assumption, however, is often not strictly satisfied in deep tissue imaging, due to acoustic heterogeneities within the object and between the object and the coupling medium. If these heterogeneities are not accounted for, they will cause distortions and artifacts in the reconstructed images. In this Letter, we incorporated ultrasonic computed tomography (USCT), which measures the SOS distribution within the object, into our full-ring array PACT system. Without the need for ultrasonic transmitting electronics, USCT was performed using the same laser beam as for PACT measurement. By scanning the laser beam on the array surface, we can sequentially fire different elements. As a first demonstration of the system, we studied the effect of acoustic heterogeneities on photoacoustic vascular imaging. We verified that constant SOS is a reasonable approximation when the SOS variation is small. When the variation is large, distortion will be observed in the periphery of the object, especially in the tangential direction.

  11. Digital holographic interferometry for characterizing deformable mirrors in aero-optics

    NASA Astrophysics Data System (ADS)

    Trolinger, James D.; Hess, Cecil F.; Razavi, Payam; Furlong, Cosme

    2016-08-01

    Measuring and understanding the transient behavior of a surface with high spatial and temporal resolution are required in many areas of science. This paper describes the development and application of a high-speed, high-dynamic range, digital holographic interferometer for high-speed surface contouring with fractional wavelength precision and high-spatial resolution. The specific application under investigation here is to characterize deformable mirrors (DM) employed in aero-optics. The developed instrument was shown capable of contouring a deformable mirror with extremely high-resolution at frequencies exceeding 40 kHz. We demonstrated two different procedures for characterizing the mechanical response of a surface to a wide variety of input forces, one that employs a high-speed digital camera and a second that employs a low-speed, low-cost digital camera. The latter is achieved by cycling the DM actuators with a step input, producing a transient that typically lasts up to a millisecond before reaching equilibrium. Recordings are made at increasing times after the DM initiation from zero to equilibrium to analyze the transient. Because the wave functions are stored and reconstructable, they can be compared with each other to produce contours including absolute, difference, and velocity. High-speed digital cameras recorded the wave functions during a single transient at rates exceeding 40 kHz. We concluded that either method is fully capable of characterizing a typical DM to the extent required by aero-optical engineers.

  12. Shape reconstruction of irregular bodies with multiple complementary data sources

    NASA Astrophysics Data System (ADS)

    Kaasalainen, M.; Viikinkoski, M.; Carry, B.; Durech, J.; Lamy, P.; Jorda, L.; Marchis, F.; Hestroffer, D.

    2011-10-01

    Irregularly shaped bodies with at most partial in situ data are a particular challenge for shape reconstruction and mapping. We have created an inversion algorithm and software package for complementary data sources, with which it is possible to create shape and spin models with feature details even when only groundbased data are available. The procedure uses photometry, adaptive optics or other images, occultation timings, and interferometry as main data sources, and we are extending it to include range-Doppler radar and thermal infrared data as well. The data sources are described as generalized projections in various observable spaces [2], which allows their uniform handling with essentially the same techniques, making the addition of new data sources inexpensive in terms of computation time or software development. We present a generally applicable shape support that can be automatically used for all surface types, including strongly nonconvex or non-starlike shapes. New models of Kleopatra (from photometry, adaptive optics, and interferometry) and Hermione are examples of this approach. When using adaptive optics images, the main information from these is extracted from the limb and terminator contours that can be determined much more accurately than the image pixel brightnesses that inevitably contain large errors for most targets. We have shown that the contours yield a wealth of information independent of the scattering properties of the surface [3]. Their use also facilitates a very fast and robustly converging algorithm. An important concept in the inversion is the optimal weighting of the various data modes. We have developed a mathematicallly rigorous scheme for this purpose. The resulting maximum compatibility estimate [3], a multimodal generalization of the maximum likelihood estimate, ensures that the actual information content of each source is properly taken into account, and that the resolution scale of the ensuing model can be reliably estimated. We have applied our procedure to several asteroids, and the ground truth from the Rosetta/Lutetia flyby confirmed the ability of the approach to recover shape details [1] (see also Carry et al., this meeting). We have created a general flyby-version of the procedure to construct full models of planetary targets for which probe images are only available of a part of the surface (a typical setup for many planetary missions). We have successfully combined flyby images with photometry (Steins [4]) and adaptive optics images (Lutetia); the portion of the surface accurately determined by the flyby constrains the shape solution of the "dark side" efficiently.

  13. Fast optical transillumination tomography with large-size projection acquisition.

    PubMed

    Huang, Hsuan-Ming; Xia, Jinjun; Haidekker, Mark A

    2008-10-01

    Techniques such as optical coherence tomography and diffuse optical tomography have been shown to effectively image highly scattering samples such as tissue. An additional modality has received much less attention: Optical transillumination (OT) tomography, a modality that promises very high acquisition speed for volumetric scans. With the motivation to image tissue-engineered blood vessels for possible biomechanical testing, we have developed a fast OT device using a collimated, noncoherent beam with a large diameter together with a large-size CMOS camera that has the ability to acquire 3D projections in a single revolution of the sample. In addition, we used accelerated iterative reconstruction techniques to improve image reconstruction speed, while at the same time obtaining better image quality than through filtered backprojection. The device was tested using ink-filled polytetrafluorethylene tubes to determine geometric reconstruction accuracy and recovery of absorbance. Even in the presence of minor refractive index mismatch, the weighted error of the measured radius was <5% in all cases, and a high linear correlation of ink absorbance determined with a photospectrometer of R(2) = 0.99 was found, although the OT device systematically underestimated absorbance. Reconstruction time was improved from several hours (standard arithmetic reconstruction) to 90 s per slice with our optimized algorithm. Composed of only a light source, two spatial filters, a sample bath, and a CMOS camera, this device was extremely simple and cost-efficient to build.

  14. Determining the coordinate dependence of some components of the cubic susceptibility tensor {chi}-hat{sub yyyy}{sup (3)}(z, {omega}, -{omega}, {omega}, {omega}) of a one-dimensionally inhomogeneous absorbing plate at an arbitrary frequency dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golubkov, A A; Makarov, Vladimir A

    The possibility of unique reconstruction of the spatial profile of the cubic nonlinear susceptibility tensor component {chi}-hat{sub yyyy}{sup (3)}(z, {omega}, -{omega}, {omega}, {omega}) of a one-dimensionally inhomogeneous plate whose medium has a symmetry plane m{sub y} perpendicular to its surface is proved for the first time and the unique reconstruction algorithm is proposed. The amplitude complex coefficients of reflection and transmission (measured in some range of angles of incidence) as well as of conversion of an s-polarised plane signal monochromatic wave into two waves propagating on both sides of the plate make it possible to reconstruct the profile. These twomore » waves result from nonlinear interaction of a signal wave with an intense plane wave incident normally on the plate. All the waves under consideration have the same frequency {omega}, and so its variation helps study the frequency dispersion of the cubic nonlinear susceptibility tensor component {chi}-hat{sub yyyy}{sup (3)}(z, {omega}, -{omega}, {omega}, {omega}). For media with additional symmetry axes 2{sub z}, 4{sub z}, 6{sub z}, or {infinity}{sub z} that are perpendicular to the plate surface, the proposed method can be used to reconstruct the profile and to examine the frequency dispersion of about one third of all independent complex components of the tensor {chi}-hat{sup (3)}. (nonlinear-optics phenomena)« less

  15. Optical rotation compensation for a holographic 3D display with a 360 degree horizontal viewing zone.

    PubMed

    Sando, Yusuke; Barada, Daisuke; Yatagai, Toyohiko

    2016-10-20

    A method for a continuous optical rotation compensation in a time-division-based holographic three-dimensional (3D) display with a rotating mirror is presented. Since the coordinate system of wavefronts after the mirror reflection rotates about the optical axis along with the rotation angle, compensation or cancellation is absolutely necessary to fix the reconstructed 3D object. In this study, we address this problem by introducing an optical image rotator based on a right-angle prism that rotates synchronously with the rotating mirror. The optical and continuous compensation reduces the occurrence of duplicate images, which leads to the improvement of the quality of reconstructed images. The effect of the optical rotation compensation is experimentally verified and a demonstration of holographic 3D display with the optical rotation compensation is presented.

  16. Feature-constrained surface reconstruction approach for point cloud data acquired with 3D laser scanner

    NASA Astrophysics Data System (ADS)

    Wang, Yongbo; Sheng, Yehua; Lu, Guonian; Tian, Peng; Zhang, Kai

    2008-04-01

    Surface reconstruction is an important task in the field of 3d-GIS, computer aided design and computer graphics (CAD & CG), virtual simulation and so on. Based on available incremental surface reconstruction methods, a feature-constrained surface reconstruction approach for point cloud is presented. Firstly features are extracted from point cloud under the rules of curvature extremes and minimum spanning tree. By projecting local sample points to the fitted tangent planes and using extracted features to guide and constrain the process of local triangulation and surface propagation, topological relationship among sample points can be achieved. For the constructed models, a process named consistent normal adjustment and regularization is adopted to adjust normal of each face so that the correct surface model is achieved. Experiments show that the presented approach inherits the convenient implementation and high efficiency of traditional incremental surface reconstruction method, meanwhile, it avoids improper propagation of normal across sharp edges, which means the applicability of incremental surface reconstruction is greatly improved. Above all, appropriate k-neighborhood can help to recognize un-sufficient sampled areas and boundary parts, the presented approach can be used to reconstruct both open and close surfaces without additional interference.

  17. Digital reconstruction of Young's fringes using Fresnel transformation

    NASA Astrophysics Data System (ADS)

    Kulenovic, Rudi; Song, Yaozu; Renninger, P.; Groll, Manfred

    1997-11-01

    This paper deals with the digital numerical reconstruction of Young's fringes from laser speckle photography by means of the Fresnel-transformation. The physical model of the optical reconstruction of a specklegram is a near-field Fresnel-diffraction phenomenon which can be mathematically described by the Fresnel-transformation. Therefore, the interference phenomena can be directly calculated by a microcomputer.If additional a CCD-camera is used for specklegram recording the measurement procedure and evaluation process can be completely carried out in a digital way. Compared with conventional laser speckle photography no holographic plates, no wet development process and no optical specklegram reconstruction are needed. These advantages reveal a wide future in scientific and engineering applications. The basic principle of the numerical reconstruction is described, the effects of experimental parameters of Young's fringes are analyzed and representative results are presented.

  18. 360° Fourier transform profilometry in surface reconstruction for fluorescence molecular tomography.

    PubMed

    Shi, Bi'er; Zhang, Bin; Liu, Fei; Luo, Jianwen; Bai, Jing

    2013-05-01

    Fluorescence molecular tomography (FMT) is an emerging tool in the observation of diseases. A fast and accurate surface reconstruction of the experimental object is needed as a boundary constraint for FMT reconstruction. In this paper, an automatic, noncontact, and 3-D surface reconstruction method named 360◦ Fourier transform profilometry (FTP) is proposed to reconstruct 3-D surface profiles for FMT system. This method can reconstruct 360◦ integrated surface profiles utilizing the single-frame FTP at different angles. Results show that the relative mean error of the surface reconstruction of this method is less than 1.4% in phantom experiments, and is no more than 2.9% in mouse experiments in vivo. Compared with the Radon transform method, the proposed method reduces the computation time by more than 90% with a minimal error increase. At last, a combined 360◦ FTP/FMT experiment is conducted on a nude mouse. Not only can the 360◦ FTP system operate with the FMT system simultaneously, but it can also help to monitor the status of animals. Moreover, the 360◦ FTP system is independent of FMT system and can be performed to reconstruct the surface by itself.

  19. Multimodal Diffuse Optical Imaging

    NASA Astrophysics Data System (ADS)

    Intes, Xavier; Venugopal, Vivek; Chen, Jin; Azar, Fred S.

    Diffuse optical imaging, particularly diffuse optical tomography (DOT), is an emerging clinical modality capable of providing unique functional information, at a relatively low cost, and with nonionizing radiation. Multimodal diffuse optical imaging has enabled a synergistic combination of functional and anatomical information: the quality of DOT reconstructions has been significantly improved by incorporating the structural information derived by the combined anatomical modality. In this chapter, we will review the basic principles of diffuse optical imaging, including instrumentation and reconstruction algorithm design. We will also discuss the approaches for multimodal imaging strategies that integrate DOI with clinically established modalities. The merit of the multimodal imaging approaches is demonstrated in the context of optical mammography, but the techniques described herein can be translated to other clinical scenarios such as brain functional imaging or muscle functional imaging.

  20. Imaging of voids by means of a physical-optics-based shape-reconstruction algorithm.

    PubMed

    Liseno, Angelo; Pierri, Rocco

    2004-06-01

    We analyze the performance of a shape-reconstruction algorithm for the retrieval of voids starting from the electromagnetic scattered field. Such an algorithm exploits the physical optics (PO) approximation to obtain a linear unknown-data relationship and performs inversions by means of the singular-value-decomposition approach. In the case of voids, in addition to a geometrical optics reflection, the presence of the lateral wave phenomenon must be considered. We analyze the effect of the presence of lateral waves on the reconstructions. For the sake of shape reconstruction, we can regard the PO algorithm as one of assuming the electric and magnetic field on the illuminated side as constant in amplitude and linear in phase, as far as the dependence on the frequency is concerned. Therefore we analyze how much the lateral wave phenomenon impairs such an assumption, and we show inversions for both one single and two circular voids, for different values of the background permittivity.

  1. Advanced Imaging Methods for Long-Baseline Optical Interferometry

    NASA Astrophysics Data System (ADS)

    Le Besnerais, G.; Lacour, S.; Mugnier, L. M.; Thiebaut, E.; Perrin, G.; Meimon, S.

    2008-11-01

    We address the data processing methods needed for imaging with a long baseline optical interferometer. We first describe parametric reconstruction approaches and adopt a general formulation of nonparametric image reconstruction as the solution of a constrained optimization problem. Within this framework, we present two recent reconstruction methods, Mira and Wisard, representative of the two generic approaches for dealing with the missing phase information. Mira is based on an implicit approach and a direct optimization of a Bayesian criterion while Wisard adopts a self-calibration approach and an alternate minimization scheme inspired from radio-astronomy. Both methods can handle various regularization criteria. We review commonly used regularization terms and introduce an original quadratic regularization called ldquosoft support constraintrdquo that favors the object compactness. It yields images of quality comparable to nonquadratic regularizations on the synthetic data we have processed. We then perform image reconstructions, both parametric and nonparametric, on astronomical data from the IOTA interferometer, and discuss the respective roles of parametric and nonparametric approaches for optical interferometric imaging.

  2. Microoptical compound lens

    DOEpatents

    Sweatt, William C.; Gill, David D.

    2007-10-23

    An apposition microoptical compound lens comprises a plurality of lenslets arrayed around a segment of a hollow, three-dimensional optical shell. The lenslets collect light from an object and focus the light rays onto the concentric, curved front surface of a coherent fiber bundle. The fiber bundle transports the light rays to a planar detector, forming a plurality of sub-images that can be reconstructed as a full image. The microoptical compound lens can have a small size (millimeters), wide field of view (up to 180.degree.), and adequate resolution for object recognition and tracking.

  3. Nanodiamonds: Their Structure and Optical Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raty, J.-Y.; van Buuren, T.; Galli, G.

    2002-05-14

    Nanometer sized diamond is a constituent of diverse systems ranging from interstellar dusts and meteorites [1] to carbonaceous residues of detonations [2] and diamond-like films [3-5]. Many of the properties of bulk diamond have been well understood for decades, those of nanodiamond are mostly unexplored. We present a combined theoretical and experimental study showing that diamond has unique properties not only as a bulk material but also at the nanoscale, where size reduction and surface reconstruction effects are fundamentally different from those found, e.g. in Si and Ge.

  4. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering.

    PubMed

    Ertsgaard, Christopher T; McKoskey, Rachel M; Rich, Isabel S; Lindquist, Nathan C

    2014-10-28

    In this paper, we demonstrate dynamic placement of locally enhanced plasmonic fields using holographic laser illumination of a silver nanohole array. To visualize these focused "hotspots", the silver surface was coated with various biological samples for surface-enhanced Raman spectroscopy (SERS) imaging. Due to the large field enhancements, blinking behavior of the SERS hotspots was observed and processed using a stochastic optical reconstruction microscopy algorithm enabling super-resolution localization of the hotspots to within 10 nm. These hotspots were then shifted across the surface in subwavelength (<100 nm for a wavelength of 660 nm) steps using holographic illumination from a spatial light modulator. This created a dynamic imaging and sensing surface, whereas static illumination would only have produced stationary hotspots. Using this technique, we also show that such subwavelength shifting and localization of plasmonic hotspots has potential for imaging applications. Interestingly, illuminating the surface with randomly shifting SERS hotspots was sufficient to completely fill in a wide field of view for super-resolution chemical imaging.

  5. Ray tracing method for the evaluation of grazing incidence x-ray telescopes described by spatially sampled surfaces.

    PubMed

    Yu, Jun; Shen, Zhengxiang; Sheng, Pengfeng; Wang, Xiaoqiang; Hailey, Charles J; Wang, Zhanshan

    2018-03-01

    The nested grazing incidence telescope can achieve a large collecting area in x-ray astronomy, with a large number of closely packed, thin conical mirrors. Exploiting the surface metrological data, the ray tracing method used to reconstruct the shell surface topography and evaluate the imaging performance is a powerful tool to assist iterative improvement in the fabrication process. However, current two-dimensional (2D) ray tracing codes, especially when utilized with densely sampled surface shape data, may not provide sufficient accuracy of reconstruction and are computationally cumbersome. In particular, 2D ray tracing currently employed considers coplanar rays and thus simulates only these rays along the meridional plane. This captures axial figure errors but leaves other important errors, such as roundness errors, unaccounted for. We introduce a semianalytic, three-dimensional (3D) ray tracing approach for x-ray optics that overcomes these shortcomings. And the present method is both computationally fast and accurate. We first introduce the principles and the computational details of this 3D ray tracing method. Then the computer simulations of this approach compared to 2D ray tracing are demonstrated, using an ideal conic Wolter-I telescope for benchmarking. Finally, the present 3D ray tracing is used to evaluate the performance of a prototype x-ray telescope fabricated for the enhanced x-ray timing and polarization mission.

  6. Multi-modal diffuse optical techniques for breast cancer neoadjuvant chemotherapy monitoring (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cochran, Jeffrey M.; Busch, David R.; Ban, Han Y.; Kavuri, Venkaiah C.; Schweiger, Martin J.; Arridge, Simon R.; Yodh, Arjun G.

    2017-02-01

    We present high spatial density, multi-modal, parallel-plate Diffuse Optical Tomography (DOT) imaging systems for the purpose of breast tumor detection. One hybrid instrument provides time domain (TD) and continuous wave (CW) DOT at 64 source fiber positions. The TD diffuse optical spectroscopy with PMT- detection produces low-resolution images of absolute tissue scattering and absorption while the spatially dense array of CCD-coupled detector fibers (108 detectors) provides higher-resolution CW images of relative tissue optical properties. Reconstruction of the tissue optical properties, along with total hemoglobin concentration and tissue oxygen saturation, is performed using the TOAST software suite. Comparison of the spatially-dense DOT images and MR images allows for a robust validation of DOT against an accepted clinical modality. Additionally, the structural information from co-registered MR images is used as a spatial prior to improve the quality of the functional optical images and provide more accurate quantification of the optical and hemodynamic properties of tumors. We also present an optical-only imaging system that provides frequency domain (FD) DOT at 209 source positions with full CCD detection and incorporates optical fringe projection profilometry to determine the breast boundary. This profilometry serves as a spatial constraint, improving the quality of the DOT reconstructions while retaining the benefits of an optical-only device. We present initial images from both human subjects and phantoms to display the utility of high spatial density data and multi-modal information in DOT reconstruction with the two systems.

  7. Improving diffuse optical tomography with structural a priori from fluorescence diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Ma, Wenjuan; Gao, Feng; Duan, Linjing; Zhu, Qingzhen; Wang, Xin; Zhang, Wei; Wu, Linhui; Yi, Xi; Zhao, Huijuan

    2012-03-01

    We obtain absorption and scattering reconstructed images by incorporating a priori information of target location obtained from fluorescence diffuse optical tomography (FDOT) into the diffuse optical tomography (DOT). The main disadvantage of DOT lies in the low spatial resolution resulting from highly scattering nature of tissue in the near-infrared (NIR), but one can use it to monitor hemoglobin concentration and oxygen saturation simultaneously, as well as several other cheomphores such as water, lipids, and cytochrome-c-oxidase. Up to date, extensive effort has been made to integrate DOT with other imaging modalities such as MRI, CT, to obtain accurate optical property maps of the tissue. However, the experimental apparatus is intricate. In this study, DOT image reconstruction algorithm that incorporates a prior structural information provided by FDOT is investigated in an attempt to optimize recovery of a simulated optical property distribution. By use of a specifically designed multi-channel time-correlated single photon counting system, the proposed scheme in a transmission mode is experimentally validated to achieve simultaneous reconstruction of the fluorescent yield, lifetime, absorption and scattering coefficient. The experimental results demonstrate that the quantitative recovery of the tumor optical properties has doubled and the spatial resolution improves as well by applying the new improved method.

  8. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Guoyan

    2010-04-15

    Purpose: The aim of this article is to investigate the feasibility of using a statistical shape model (SSM)-based reconstruction technique to derive a scaled, patient-specific surface model of the pelvis from a single standard anteroposterior (AP) x-ray radiograph and the feasibility of estimating the scale of the reconstructed surface model by performing a surface-based 3D/3D matching. Methods: Data sets of 14 pelvises (one plastic bone, 12 cadavers, and one patient) were used to validate the single-image based reconstruction technique. This reconstruction technique is based on a hybrid 2D/3D deformable registration process combining a landmark-to-ray registration with a SSM-based 2D/3D reconstruction.more » The landmark-to-ray registration was used to find an initial scale and an initial rigid transformation between the x-ray image and the SSM. The estimated scale and rigid transformation were used to initialize the SSM-based 2D/3D reconstruction. The optimal reconstruction was then achieved in three stages by iteratively matching the projections of the apparent contours extracted from a 3D model derived from the SSM to the image contours extracted from the x-ray radiograph: Iterative affine registration, statistical instantiation, and iterative regularized shape deformation. The image contours are first detected by using a semiautomatic segmentation tool based on the Livewire algorithm and then approximated by a set of sparse dominant points that are adaptively sampled from the detected contours. The unknown scales of the reconstructed models were estimated by performing a surface-based 3D/3D matching between the reconstructed models and the associated ground truth models that were derived from a CT-based reconstruction method. Such a matching also allowed for computing the errors between the reconstructed models and the associated ground truth models. Results: The technique could reconstruct the surface models of all 14 pelvises directly from the landmark-based initialization. Depending on the surface-based matching techniques, the reconstruction errors were slightly different. When a surface-based iterative affine registration was used, an average reconstruction error of 1.6 mm was observed. This error was increased to 1.9 mm, when a surface-based iterative scaled rigid registration was used. Conclusions: It is feasible to reconstruct a scaled, patient-specific surface model of the pelvis from single standard AP x-ray radiograph using the present approach. The unknown scale of the reconstructed model can be estimated by performing a surface-based 3D/3D matching.« less

  9. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    NASA Astrophysics Data System (ADS)

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-10-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SAREF) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SAPSD) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SAINV1) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SAINV2) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SAPSD was 0.7-1.8 times higher and SAINV1 and SAINV2 were 2.2-8 times higher than SAREF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SAREF. However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SAREF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SAPSD) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  10. Phase discrepancy induced from least squares wavefront reconstruction of wrapped phase measurements with high noise or large localized wavefront gradients

    NASA Astrophysics Data System (ADS)

    Steinbock, Michael J.; Hyde, Milo W.

    2012-10-01

    Adaptive optics is used in applications such as laser communication, remote sensing, and laser weapon systems to estimate and correct for atmospheric distortions of propagated light in real-time. Within an adaptive optics system, a reconstruction process interprets the raw wavefront sensor measurements and calculates an estimate for the unwrapped phase function to be sent through a control law and applied to a wavefront correction device. This research is focused on adaptive optics using a self-referencing interferometer wavefront sensor, which directly measures the wrapped wavefront phase. Therefore, its measurements must be reconstructed for use on a continuous facesheet deformable mirror. In testing and evaluating a novel class of branch-point- tolerant wavefront reconstructors based on the post-processing congruence operation technique, an increase in Strehl ratio compared to a traditional least squares reconstructor was noted even in non-scintillated fields. To investigate this further, this paper uses wave-optics simulations to eliminate many of the variables from a hardware adaptive optics system, so as to focus on the reconstruction techniques alone. The simulation results along with a discussion of the physical reasoning for this phenomenon are provided. For any applications using a self-referencing interferometer wavefront sensor with low signal levels or high localized wavefront gradients, understanding this phenomena is critical when applying a traditional least squares wavefront reconstructor.

  11. Fully 3D refraction correction dosimetry system.

    PubMed

    Manjappa, Rakesh; Makki, S Sharath; Kumar, Rajesh; Vasu, Ram Mohan; Kanhirodan, Rajan

    2016-02-21

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched medium is 71.8%, an increase of 6.4% compared to that achieved using conventional ART algorithm. Smaller diameter dosimeters are scanned with dry air scanning by using a wide-angle lens that collects refracted light. The images reconstructed using cone beam geometry is seen to deteriorate in some planes as those regions are not scanned. Refraction correction is important and needs to be taken in to consideration to achieve quantitatively accurate dose reconstructions. Refraction modeling is crucial in array based scanners as it is not possible to identify refracted rays in the sinogram space.

  12. Iris reconstruction combined with iris-claw intraocular lens implantation for the management of iris-lens injured patients

    PubMed Central

    Hu, Shufang; Wang, Mingling; Xiao, Tianlin; Zhao, Zhenquan

    2016-01-01

    Aim: To study the efficiency and safety of iris reconstruction combined with iris-claw intraocular lens (IOL) implantation in the patients with iris-lens injuries. Settings and Design: Retrospective, noncomparable consecutive case series study. Materials and Methods: Eleven patients (11 eyes) following iris-lens injuries underwent iris reconstructions combined with iris-claw IOL implantations. Clinical data, such as cause and time of injury, visual acuity (VA), iris and lens injuries, surgical intervention, follow-up period, corneal endothelial cell count, and optical coherence tomography, were collected. Results: Uncorrected VA (UCVA) in all injured eyes before combined surgery was equal to or <20/1000. Within a 1.1–4.2-year follow-up period, a significant increase, equal to or better than 20/66, in UCVA was observed in six (55%) cases, and in best-corrected VA (BCVA) was observed in nine (82%) cases. Postoperative BCVA was 20/40 or better in seven cases (64%). After combined surgery, the iris returned to its natural round shape or smaller pupil, and the iris-claw IOLs in the 11 eyes were well-positioned on the anterior surface of reconstructed iris. No complications occurred in those patients. Conclusions: Iris reconstruction combined with iris-claw IOL implantation is a safe and efficient procedure for an eye with iris-lens injury in the absence of capsular support. PMID:27146932

  13. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    NASA Astrophysics Data System (ADS)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  14. Optical magnetic imaging of living cells

    PubMed Central

    Le Sage, D.; Arai, K.; Glenn, D. R.; DeVience, S. J.; Pham, L. M.; Rahn-Lee, L.; Lukin, M. D.; Yacoby, A.; Komeili, A.; Walsworth, R. L.

    2013-01-01

    Magnetic imaging is a powerful tool for probing biological and physical systems. However, existing techniques either have poor spatial resolution compared to optical microscopy and are hence not generally applicable to imaging of sub-cellular structure (e.g., magnetic resonance imaging [MRI]1), or entail operating conditions that preclude application to living biological samples while providing sub-micron resolution (e.g., scanning superconducting quantum interference device [SQUID] microscopy2, electron holography3, and magnetic resonance force microscopy [MRFM]4). Here we demonstrate magnetic imaging of living cells (magnetotactic bacteria) under ambient laboratory conditions and with sub-cellular spatial resolution (400 nm), using an optically-detected magnetic field imaging array consisting of a nanoscale layer of nitrogen-vacancy (NV) colour centres implanted at the surface of a diamond chip. With the bacteria placed on the diamond surface, we optically probe the NV quantum spin states and rapidly reconstruct images of the vector components of the magnetic field created by chains of magnetic nanoparticles (magnetosomes) produced in the bacteria, and spatially correlate these magnetic field maps with optical images acquired in the same apparatus. Wide-field sCMOS acquisition allows parallel optical and magnetic imaging of multiple cells in a population with sub-micron resolution and >100 micron field-of-view. Scanning electron microscope (SEM) images of the bacteria confirm that the correlated optical and magnetic images can be used to locate and characterize the magnetosomes in each bacterium. The results provide a new capability for imaging bio-magnetic structures in living cells under ambient conditions with high spatial resolution, and will enable the mapping of a wide range of magnetic signals within cells and cellular networks5, 6. PMID:23619694

  15. AOF LTAO mode: reconstruction strategy and first test results

    NASA Astrophysics Data System (ADS)

    Oberti, Sylvain; Kolb, Johann; Le Louarn, Miska; La Penna, Paolo; Madec, Pierre-Yves; Neichel, Benoit; Sauvage, Jean-François; Fusco, Thierry; Donaldson, Robert; Soenke, Christian; Suárez Valles, Marcos; Arsenault, Robin

    2016-07-01

    GALACSI is the Adaptive Optics (AO) system serving the instrument MUSE in the framework of the Adaptive Optics Facility (AOF) project. Its Narrow Field Mode (NFM) is a Laser Tomography AO (LTAO) mode delivering high resolution in the visible across a small Field of View (FoV) of 7.5" diameter around the optical axis. From a reconstruction standpoint, GALACSI NFM intends to optimize the correction on axis by estimating the turbulence in volume via a tomographic process, then projecting the turbulence profile onto one single Deformable Mirror (DM) located in the pupil, close to the ground. In this paper, the laser tomographic reconstruction process is described. Several methods (virtual DM, virtual layer projection) are studied, under the constraint of a single matrix vector multiplication. The pseudo-synthetic interaction matrix model and the LTAO reconstructor design are analysed. Moreover, the reconstruction parameter space is explored, in particular the regularization terms. Furthermore, we present here the strategy to define the modal control basis and split the reconstruction between the Low Order (LO) loop and the High Order (HO) loop. Finally, closed loop performance obtained with a 3D turbulence generator will be analysed with respect to the most relevant system parameters to be tuned.

  16. Numerical analysis of residual stresses reconstruction for axisymmetric glass components

    NASA Astrophysics Data System (ADS)

    Tao, Bo; Xu, Shuang; Yao, Honghui

    2018-01-01

    A non-destructive measurement method for 3D stress state in a glass cylinder using photoelasticity has been analyzed by simulation in this research. Based on simulated stresses in a glass cylinder, intensity of the cylinder in a circular polariscope can be calculated by Jones calculus. Therefore, the isoclinic angle and optical retardation can be obtained by six steps phase shifting technique. Through the isoclinic angle and optical retardation, the magnitude and distribution of residual stresses inside the glass cylinder in cylindrical coordinate system can be reconstructed. Comparing the reconstructed stresses with numerical simulated stresses, the results verify this non-destructive method can be used to reconstruct the 3D stresses. However, there are some mismatches in axial stress, radial stress and circumferential stress.

  17. Reconstructing the vibro-acoustic quantities on a highly non-spherical surface using the Helmholtz equation least squares method.

    PubMed

    Natarajan, Logesh Kumar; Wu, Sean F

    2012-06-01

    This paper presents helpful guidelines and strategies for reconstructing the vibro-acoustic quantities on a highly non-spherical surface by using the Helmholtz equation least squares (HELS). This study highlights that a computationally simple code based on the spherical wave functions can produce an accurate reconstruction of the acoustic pressure and normal surface velocity on planar surfaces. The key is to select the optimal origin of the coordinate system behind the planar surface, choose a target structural wavelength to be reconstructed, set an appropriate stand-off distance and microphone spacing, use a hybrid regularization scheme to determine the optimal number of the expansion functions, etc. The reconstructed vibro-acoustic quantities are validated rigorously via experiments by comparing the reconstructed normal surface velocity spectra and distributions with the benchmark data obtained by scanning a laser vibrometer over the plate surface. Results confirm that following the proposed guidelines and strategies can ensure the accuracy in reconstructing the normal surface velocity up to the target structural wavelength, and produce much more satisfactory results than a straight application of the original HELS formulations. Experiment validations on a baffled, square plate were conducted inside a fully anechoic chamber.

  18. An automatic markerless registration method for neurosurgical robotics based on an optical camera.

    PubMed

    Meng, Fanle; Zhai, Fangwen; Zeng, Bowei; Ding, Hui; Wang, Guangzhi

    2018-02-01

    Current markerless registration methods for neurosurgical robotics use the facial surface to match the robot space with the image space, and acquisition of the facial surface usually requires manual interaction and constrains the patient to a supine position. To overcome these drawbacks, we propose a registration method that is automatic and does not constrain patient position. An optical camera attached to the robot end effector captures images around the patient's head from multiple views. Then, high coverage of the head surface is reconstructed from the images through multi-view stereo vision. Since the acquired head surface point cloud contains color information, a specific mark that is manually drawn on the patient's head prior to the capture procedure can be extracted to automatically accomplish coarse registration rather than using facial anatomic landmarks. Then, fine registration is achieved by registering the high coverage of the head surface without relying solely on the facial region, thus eliminating patient position constraints. The head surface was acquired by the camera with a good repeatability accuracy. The average target registration error of 8 different patient positions measured with targets inside a head phantom was [Formula: see text], while the mean surface registration error was [Formula: see text]. The method proposed in this paper achieves automatic markerless registration in multiple patient positions and guarantees registration accuracy inside the head. This method provides a new approach for establishing the spatial relationship between the image space and the robot space.

  19. Evaluation of algorithms for point cloud surface reconstruction through the analysis of shape parameters

    NASA Astrophysics Data System (ADS)

    Cao, Lu; Verbeek, Fons J.

    2012-03-01

    In computer graphics and visualization, reconstruction of a 3D surface from a point cloud is an important research area. As the surface contains information that can be measured, i.e. expressed in features, the application of surface reconstruction can be potentially important for application in bio-imaging. Opportunities in this application area are the motivation for this study. In the past decade, a number of algorithms for surface reconstruction have been proposed. Generally speaking, these methods can be separated into two categories: i.e., explicit representation and implicit approximation. Most of the aforementioned methods are firmly based in theory; however, so far, no analytical evaluation between these methods has been presented. The straightforward way of evaluation has been by convincing through visual inspection. Through evaluation we search for a method that can precisely preserve the surface characteristics and that is robust in the presence of noise. The outcome will be used to improve reliability in surface reconstruction of biological models. We, therefore, use an analytical approach by selecting features as surface descriptors and measure these features in varying conditions. We selected surface distance, surface area and surface curvature as three major features to compare quality of the surface created by the different algorithms. Our starting point has been ground truth values obtained from analytical shapes such as the sphere and the ellipsoid. In this paper we present four classical surface reconstruction methods from the two categories mentioned above, i.e. the Power Crust, the Robust Cocone, the Fourier-based method and the Poisson reconstruction method. The results obtained from our experiments indicate that Poisson reconstruction method performs the best in the presence of noise.

  20. Distributed wavefront reconstruction with SABRE for real-time large scale adaptive optics control

    NASA Astrophysics Data System (ADS)

    Brunner, Elisabeth; de Visser, Cornelis C.; Verhaegen, Michel

    2014-08-01

    We present advances on Spline based ABerration REconstruction (SABRE) from (Shack-)Hartmann (SH) wavefront measurements for large-scale adaptive optics systems. SABRE locally models the wavefront with simplex B-spline basis functions on triangular partitions which are defined on the SH subaperture array. This approach allows high accuracy through the possible use of nonlinear basis functions and great adaptability to any wavefront sensor and pupil geometry. The main contribution of this paper is a distributed wavefront reconstruction method, D-SABRE, which is a 2 stage procedure based on decomposing the sensor domain into sub-domains each supporting a local SABRE model. D-SABRE greatly decreases the computational complexity of the method and removes the need for centralized reconstruction while obtaining a reconstruction accuracy for simulated E-ELT turbulences within 1% of the global method's accuracy. Further, a generalization of the methodology is proposed making direct use of SH intensity measurements which leads to an improved accuracy of the reconstruction compared to centroid algorithms using spatial gradients.

  1. Capturing the Surface Texture and Shape of Pollen: A Comparison of Microscopy Techniques

    PubMed Central

    Sivaguru, Mayandi; Mander, Luke; Fried, Glenn; Punyasena, Surangi W.

    2012-01-01

    Research on the comparative morphology of pollen grains depends crucially on the application of appropriate microscopy techniques. Information on the performance of microscopy techniques can be used to inform that choice. We compared the ability of several microscopy techniques to provide information on the shape and surface texture of three pollen types with differing morphologies. These techniques are: widefield, apotome, confocal and two-photon microscopy (reflected light techniques), and brightfield and differential interference contrast microscopy (DIC) (transmitted light techniques). We also provide a first view of pollen using super-resolution microscopy. The three pollen types used to contrast the performance of each technique are: Croton hirtus (Euphorbiaceae), Mabea occidentalis (Euphorbiaceae) and Agropyron repens (Poaceae). No single microscopy technique provided an adequate picture of both the shape and surface texture of any of the three pollen types investigated here. The wavelength of incident light, photon-collection ability of the optical technique, signal-to-noise ratio, and the thickness and light absorption characteristics of the exine profoundly affect the recovery of morphological information by a given optical microscopy technique. Reflected light techniques, particularly confocal and two-photon microscopy, best capture pollen shape but provide limited information on very fine surface texture. In contrast, transmitted light techniques, particularly differential interference contrast microscopy, can resolve very fine surface texture but provide limited information on shape. Texture comprising sculptural elements that are spaced near the diffraction limit of light (∼250 nm; NDL) presents an acute challenge to optical microscopy. Super-resolution structured illumination microscopy provides data on the NDL texture of A. repens that is more comparable to textural data from scanning electron microscopy than any other optical microscopy technique investigated here. Maximizing the recovery of morphological information from pollen grains should lead to more robust classifications, and an increase in the taxonomic precision with which ancient vegetation can be reconstructed. PMID:22720050

  2. Laboratory demonstration of image reconstruction for coherent optical system of modular imaging collectors (COSMIC)

    NASA Technical Reports Server (NTRS)

    Traub, W. A.

    1984-01-01

    The first physical demonstration of the principle of image reconstruction using a set of images from a diffraction-blurred elongated aperture is reported. This is an optical validation of previous theoretical and numerical simulations of the COSMIC telescope array (coherent optical system of modular imaging collectors). The present experiment utilizes 17 diffraction blurred exposures of a laboratory light source, as imaged by a lens covered by a narrow-slit aperture; the aperture is rotated 10 degrees between each exposure. The images are recorded in digitized form by a CCD camera, Fourier transformed, numerically filtered, and added; the sum is then filtered and inverse Fourier transformed to form the final image. The image reconstruction process is found to be stable with respect to uncertainties in values of all physical parameters such as effective wavelength, rotation angle, pointing jitter, and aperture shape. Future experiments will explore the effects of low counting rates, autoguiding on the image, various aperture configurations, and separated optics.

  3. Measurement of aspheric mirror by nanoprofiler using normal vector tracing

    NASA Astrophysics Data System (ADS)

    Kitayama, Takao; Shiraji, Hiroki; Yamamura, Kazuya; Endo, Katsuyoshi

    2016-09-01

    Aspheric or free-form optics with high accuracy are necessary in many fields such as third-generation synchrotron radiation and extreme-ultraviolet lithography. Therefore the demand of measurement method for aspherical or free-form surface with nanometer accuracy increases. Purpose of our study is to develop a non-contact measurement technology for aspheric or free-form surfaces directly with high repeatability. To achieve this purpose we have developed threedimensional Nanoprofiler which detects normal vectors of sample surface. The measurement principle is based on the straightness of laser light and the accurate motion of rotational goniometers. This machine consists of four rotational stages, one translational stage and optical head which has the quadrant photodiode (QPD) and laser source. In this measurement method, we conform the incident light beam to reflect the beam by controlling five stages and determine the normal vectors and the coordinates of the surface from signal of goniometers, translational stage and QPD. We can obtain three-dimensional figure from the normal vectors and their coordinates by surface reconstruction algorithm. To evaluate performance of this machine we measure a concave aspheric mirror with diameter of 150 mm. As a result we achieve to measure large area of 150mm diameter. And we observe influence of systematic errors which the machine has. Then we simulated the influence and subtracted it from measurement result.

  4. Predicting supramolecular self-assembly on reconstructed metal surfaces

    NASA Astrophysics Data System (ADS)

    Roussel, Thomas J.; Barrena, Esther; Ocal, Carmen; Faraudo, Jordi

    2014-06-01

    The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern.The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern. GA image adapted from refs: (a) Phys. Chem. Chem. Phys., 2001, 3, 3399-3404, with permission from the PCCP Owner Societies, and (b) J. Phys. Chem. C, 2008, 112 (18), 7168-7172, reprinted with permission from the American Chemical Society, copyright © 2008.

  5. Simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Dubey, Satish Kumar; Singh Mehta, Dalip; Anand, Arun; Shakher, Chandra

    2008-01-01

    We demonstrate simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography (OCT). The swept-source OCT system comprises a superluminescent diode (SLD) as broad-band light source, an acousto-optic tunable filter (AOTF) as frequency tuning device, and a compact, nearly common-path interferometer. Both the amplitude and the phase map of the interference fringe signal are reconstructed. Optical sectioning of the latent fingerprint sample is obtained by selective Fourier filtering and the topography is retrieved from the phase map. Interferometry, selective filtering, low coherence and hence better resolution are some of the advantages of the proposed system over the conventional fingerprint detection techniques. The present technique is non-invasive in nature and does not require any physical or chemical processing. Therefore, the quality of the sample does not alter and hence the same fingerprint can be used for other types of forensic test. Exploitation of low-coherence interferometry for fingerprint detection itself provides an edge over other existing techniques as fingerprints can even be lifted from low-reflecting surfaces. The proposed system is very economical and compact.

  6. Optical manifestation of the Stoner ferromagnetic transition in two-dimensional electron systems

    NASA Astrophysics Data System (ADS)

    Van'kov, A. B.; Kaysin, B. D.; Kukushkin, I. V.

    2017-12-01

    We perform a magneto-optical study of a two-dimensional electron systems in the regime of the Stoner ferromagnetic instability for even quantum Hall filling factors on MgxZn1 -xO /ZnO heterostructures. Under conditions of Landau-level crossing, caused by enhanced spin susceptibility in combination with the tilting of the magnetic field, the transition between two rivaling phases, paramagnetic and ferromagnetic, is traced in terms of optical spectra reconstruction. Synchronous sharp transformations are observed both in the photoluminescence structure and parameters of collective excitations upon transition from paramagnetic to ferromagnetic ordering. Based on these measurements, a phase diagram is constructed in terms of the two-dimensional electron density and tilt angle of the magnetic field. Apart from stable paramagnetic and ferromagnetic phases, an instability region is found at intermediate parameters with the Stoner transition occurring at ν ≈2 . The spin configuration in all cases is unambiguously determined by means of inelastic light scattering by spin-sensitive collective excitations. One indicator of the spin ordering is the intra-Landau-level spin exciton, which acquires a large spectral weight in the ferromagnetic phases. The other is an abrupt energy shift of the intersubband charge density excitation due to reconstruction of the many-particle energy contribution. From our analysis of photoluminescence and light scattering data, we estimate the ratio of surface areas occupied by the domains of the two phases in the vicinity of a transition point. In addition, the thermal smearing of a phase transition is characterized.

  7. Continuous-wave terahertz digital holography by use of a pyroelectric array camera.

    PubMed

    Ding, Sheng-Hui; Li, Qi; Li, Yun-Da; Wang, Qi

    2011-06-01

    Terahertz (THz) digital holography is realized based on a 2.52 THz far-IR gas laser and a commercial 124 × 124 pyroelectric array camera. Off-axis THz holograms are obtained by recording interference patterns between light passing through the sample and the reference wave. A numerical reconstruction process is performed to obtain the field distribution at the object surface. Different targets were imaged to test the system's imaging capability. Compared with THz focal plane images, the image quality of the reconstructed images are improved a lot. The results show that the system's imaging resolution can reach at least 0.4 mm. The system also has the potential for real-time imaging application. This study confirms that digital holography is a promising technique for real-time, high-resolution THz imaging, which has extensive application prospects. © 2011 Optical Society of America

  8. Subsurface PpIX imaging in vivo with ultrasound-guided tomographic spectroscopy: reconstruction vs. born-normalized data

    NASA Astrophysics Data System (ADS)

    Flynn, Brendan P.; D'Souza, Alisha V.; Kanick, Stephen C.; Maytin, Edward; Hasan, Tayyaba; Pogue, Brian W.

    2013-03-01

    Aminolevulinic acid (ALA)-induced Protoporphyrin IX (PpIX)-based photodynamic therapy (PDT) is an effective treatment for skin cancers including basal cell carcinoma (BCC). Topically applied ALA promotes PpIX production preferentially in tumors, and many strategies have been developed to increase PpIX distribution and PDT treatment efficacy at depths > 1mm is not fully understood. While surface imaging techniques provide useful diagnosis, dosimetry, and efficacy information for superficial tumors, these methods cannot interrogate deeper tumors to provide in situ insight into spatial PpIX distributions. We have developed an ultrasound-guided, white-light-informed, tomographics spectroscopy system for the spatial measurement of subsurface PpIX. Detailed imaging system specifications, methodology, and optical-phantom-based characterization will be presented separately. Here we evaluate preliminary in vivo results using both full tomographic reconstruction and by plotting individual tomographic source-detector pair data against US images.

  9. Relationship between position of brain activity and change in optical density for NIR imaging

    NASA Astrophysics Data System (ADS)

    Kashio, Yoshihiko; Ono, Muneo; Firbank, Michael; Schweiger, Martin; Arridge, Simon R.; Okada, Eiji

    2000-11-01

    Multi-channel NIR system can obtain the topographic image of brain activity. Since the image is reconstructed from the change in optical density measured with the source-detector pairs, it is important to reveal the volume of tissue sampled by each source-detector pair. In this study, the light propagation in three-dimensional adult head model is calculated by hybrid radiosity-diffusion method. The model is a layered slab which mimics the extra cerebral tissue (skin, skull), CSF and brain. The change in optical density caused by the absorption change in a small cylindrical region of 10 mm in diameter at various positions in the brain is calculated. The greatest change in optical density can be observed when the absorber is located in the middle of the source and detector. When the absorber is located just below the source or detector, the change in optical density is almost half of that caused by the same absorber in the midpoint. The light propagation in the brain is strongly affected by the presence of non-scattering layer and consequently sensitive region is broadly distributed on the brain surface.

  10. Surface reconstruction of InAs (001) depending on the pressure and temperature examined by density functional thermodynamics.

    PubMed

    Yeu, In Won; Park, Jaehong; Han, Gyuseung; Hwang, Cheol Seong; Choi, Jung-Hae

    2017-09-06

    A detailed understanding of the atomic configuration of the compound semiconductor surface, especially after reconstruction, is very important for the device fabrication and performance. While there have been numerous experimental studies using the scanning probe techniques, further theoretical studies on surface reconstruction are necessary to promote the clear understanding of the origins and development of such subtle surface structures. In this work, therefore, a pressure-temperature surface reconstruction diagram was constructed for the model case of the InAs (001) surface considering both the vibrational entropy and configurational entropy based on the density functional theory. Notably, the equilibrium fraction of various reconstructions was determined as a function of the pressure and temperature, not as a function of the chemical potential, which largely facilitated the direct comparison with the experiments. By taking into account the entropy effects, the coexistence of the multiple reconstructions and the fractional change of each reconstruction by the thermodynamic condition were predicted and were in agreement with the previous experimental observations. This work provides the community with a useful framework for such type of theoretical studies.

  11. Computer-assisted polyp matching between optical colonoscopy and CT colonography: a phantom study

    NASA Astrophysics Data System (ADS)

    Roth, Holger R.; Hampshire, Thomas E.; Helbren, Emma; Hu, Mingxing; Vega, Roser; Halligan, Steve; Hawkes, David J.

    2014-03-01

    Potentially precancerous polyps detected with CT colonography (CTC) need to be removed subsequently, using an optical colonoscope (OC). Due to large colonic deformations induced by the colonoscope, even very experienced colonoscopists find it difficult to pinpoint the exact location of the colonoscope tip in relation to polyps reported on CTC. This can cause unduly prolonged OC examinations that are stressful for the patient, colonoscopist and supporting staff. We developed a method, based on monocular 3D reconstruction from OC images, that automatically matches polyps observed in OC with polyps reported on prior CTC. A matching cost is computed, using rigid point-based registration between surface point clouds extracted from both modalities. A 3D printed and painted phantom of a 25 cm long transverse colon segment was used to validate the method on two medium sized polyps. Results indicate that the matching cost is smaller at the correct corresponding polyp between OC and CTC: the value is 3.9 times higher at the incorrect polyp, comparing the correct match between polyps to the incorrect match. Furthermore, we evaluate the matching of the reconstructed polyp from OC with other colonic endoluminal surface structures such as haustral folds and show that there is a minimum at the correct polyp from CTC. Automated matching between polyps observed at OC and prior CTC would facilitate the biopsy or removal of true-positive pathology or exclusion of false-positive CTC findings, and would reduce colonoscopy false-negative (missed) polyps. Ultimately, such a method might reduce healthcare costs, patient inconvenience and discomfort.

  12. Study of image reconstruction for terahertz indirect holography with quasi-optics receiver.

    PubMed

    Gao, Xiang; Li, Chao; Fang, Guangyou

    2013-06-01

    In this paper, an indirect holographic image reconstruction algorithm was studied for terahertz imaging with a quasi-optics receiver. Based on the combination of the reciprocity principle and modified quasi-optics theory, analytical expressions of the received spatial power distribution and its spectrum are obtained for the interference pattern of target wave and reference wave. These results clearly give the quantitative relationship between imaging quality and the parameters of a Gaussian beam, which provides a good criterion for terahertz quasi-optics transceivers design in terahertz off-axis holographic imagers. To validate the effectiveness of the proposed analysis method, some imaging results with a 0.3 THz prototype system are shown based on electromagnetic simulation.

  13. Mapping of polycrystalline films of biological fluids utilizing the Jones-matrix formalism

    NASA Astrophysics Data System (ADS)

    Ushenko, Vladimir A.; Dubolazov, Alexander V.; Pidkamin, Leonid Y.; Sakchnovsky, Michael Yu; Bodnar, Anna B.; Ushenko, Yuriy A.; Ushenko, Alexander G.; Bykov, Alexander; Meglinski, Igor

    2018-02-01

    Utilizing a polarized light approach, we reconstruct the spatial distribution of birefringence and optical activity in polycrystalline films of biological fluids. The Jones-matrix formalism is used for an accessible quantitative description of these types of optical anisotropy. We demonstrate that differentiation of polycrystalline films of biological fluids can be performed based on a statistical analysis of the distribution of rotation angles and phase shifts associated with the optical activity and birefringence, respectively. Finally, practical operational characteristics, such as sensitivity, specificity and accuracy of the Jones-matrix reconstruction of optical anisotropy, were identified with special emphasis on biomedical application, specifically for differentiation of bile films taken from healthy donors and from patients with cholelithiasis.

  14. Azimuth-invariant mueller-matrix differentiation of the optical anisotropy of biological tissues

    NASA Astrophysics Data System (ADS)

    Ushenko, V. A.; Sidor, M. I.; Marchuk, Yu. F.; Pashkovskaya, N. V.; Andreichuk, D. R.

    2014-07-01

    A Mueller-matrix model is proposed for analysis of the optical anisotropy of protein networks of optically thin nondepolarizing layers of biological tissues with allowance for birefringence and dichroism. The model is used to construct algorithms for reconstruction of coordinate distributions of phase shifts and coefficient of linear dichroism. Objective criteria for differentiation of benign and malignant tissues of female genitals are formulated in the framework of the statistical analysis of such distributions. Approaches of evidence-based medicine are used to determine the working characteristics (sensitivity, specificity, and accuracy) of the Mueller-matrix method for the reconstruction of the parameters of optical anisotropy and show its efficiency in the differentiation of benign and malignant tumors.

  15. Lens-free imaging of magnetic particles in DNA assays.

    PubMed

    Colle, Frederik; Vercruysse, Dries; Peeters, Sara; Liu, Chengxun; Stakenborg, Tim; Lagae, Liesbet; Del-Favero, Jurgen

    2013-11-07

    We present a novel opto-magnetic system for the fast and sensitive detection of nucleic acids. The system is based on a lens-free imaging approach resulting in a compact and cheap optical readout of surface hybridized DNA fragments. In our system magnetic particles are attracted towards the detection surface thereby completing the labeling step in less than 1 min. An optimized surface functionalization combined with magnetic manipulation was used to remove all nonspecifically bound magnetic particles from the detection surface. A lens-free image of the specifically bound magnetic particles on the detection surface was recorded by a CMOS imager. This recorded interference pattern was reconstructed in software, to represent the particle image at the focal distance, using little computational power. As a result we were able to detect DNA concentrations down to 10 pM with single particle sensitivity. The possibility of integrated sample preparation by manipulation of magnetic particles, combined with the cheap and highly compact lens-free detection makes our system an ideal candidate for point-of-care diagnostic applications.

  16. Flip-avoiding interpolating surface registration for skull reconstruction.

    PubMed

    Xie, Shudong; Leow, Wee Kheng; Lee, Hanjing; Lim, Thiam Chye

    2018-03-30

    Skull reconstruction is an important and challenging task in craniofacial surgery planning, forensic investigation and anthropological studies. Existing methods typically reconstruct approximating surfaces that regard corresponding points on the target skull as soft constraints, thus incurring non-zero error even for non-defective parts and high overall reconstruction error. This paper proposes a novel geometric reconstruction method that non-rigidly registers an interpolating reference surface that regards corresponding target points as hard constraints, thus achieving low reconstruction error. To overcome the shortcoming of interpolating a surface, a flip-avoiding method is used to detect and exclude conflicting hard constraints that would otherwise cause surface patches to flip and self-intersect. Comprehensive test results show that our method is more accurate and robust than existing skull reconstruction methods. By incorporating symmetry constraints, it can produce more symmetric and normal results than other methods in reconstructing defective skulls with a large number of defects. It is robust against severe outliers such as radiation artifacts in computed tomography due to dental implants. In addition, test results also show that our method outperforms thin-plate spline for model resampling, which enables the active shape model to yield more accurate reconstruction results. As the reconstruction accuracy of defective parts varies with the use of different reference models, we also study the implication of reference model selection for skull reconstruction. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor.

    PubMed

    Murphy, Kevin; Burke, Daniel; Devaney, Nicholas; Dainty, Chris

    2010-07-19

    Laboratory experiments are carried out to detect optical vortices in conditions typical of those experienced when a laser beam is propagated through the atmosphere. A Spatial Light Modulator (SLM) is used to mimic atmospheric turbulence and a Shack-Hartmann wavefront sensor is utilised to measure the slopes of the wavefront surface. A matched filter algorithm determines the positions of the Shack-Hartmann spot centroids more robustly than a centroiding algorithm. The slope discrepancy is then obtained by taking the slopes measured by the wavefront sensor away from the slopes calculated from a least squares reconstruction of the phase. The slope discrepancy field is used as an input to the branch point potential method to find if a vortex is present, and if so to give its position and sign. The use of the slope discrepancy technique greatly improves the detection rate of the branch point potential method. This work shows the first time the branch point potential method has been used to detect optical vortices in an experimental setup.

  18. Coupling reconstruction and motion estimation for dynamic MRI through optical flow constraint

    NASA Astrophysics Data System (ADS)

    Zhao, Ningning; O'Connor, Daniel; Gu, Wenbo; Ruan, Dan; Basarab, Adrian; Sheng, Ke

    2018-03-01

    This paper addresses the problem of dynamic magnetic resonance image (DMRI) reconstruction and motion estimation jointly. Because of the inherent anatomical movements in DMRI acquisition, reconstruction of DMRI using motion estimation/compensation (ME/MC) has been explored under the compressed sensing (CS) scheme. In this paper, by embedding the intensity based optical flow (OF) constraint into the traditional CS scheme, we are able to couple the DMRI reconstruction and motion vector estimation. Moreover, the OF constraint is employed in a specific coarse resolution scale in order to reduce the computational complexity. The resulting optimization problem is then solved using a primal-dual algorithm due to its efficiency when dealing with nondifferentiable problems. Experiments on highly accelerated dynamic cardiac MRI with multiple receiver coils validate the performance of the proposed algorithm.

  19. MO-FG-BRA-08: A Preliminary Study of Gold Nanoparticles Enhanced Diffuse Optical Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, K; Dogan, N; Yang, Y

    2015-06-15

    Purpose: To develop an imaging method by using gold nanoparticles (GNP) to enhance diffuse optical tomography (DOT) for better tumor detection. Methods: Experiments were performed on a tissue-simulating cylindrical optical phantom (30mm diameter, 60mm length). The GNP used are gold nanorods (10nm diameter, 44nm length) with peak light absorption at 840nm. 0.085ml GNP colloid of 96nM concentration was loaded into a 6mm diameter cylindrical hole in the phantom. An 856nm laser beam (14mW) was used as light source to irradiate the phantom at multiple locations through rotating and elevating the phantom. A CCD camera captured the light transmission through themore » phantom for each irradiation with total 40 projections (8 rotation angles in 45degree steps and 5 elevations with 3mm apart). Cone beam CT of the phantom was used to generate the three-dimensional mesh for DOT reconstruction and to identify the true location of the GNP volume. A forward simulation was performed with known phantom optical properties to establish a relationship between the absorption coefficient and concentration of the GNP by matching the simulated and measured transmission. DOT image reconstruction was performed to restore the GNP within the phantom. In addition, a region-constrained reconstruction was performed by confining the solutions within the GNP volume detected from CT. Results: The position of the GNP volume was reconstructed with <2mm error. The reconstructed average GNP concentration within an identical volume was 104nM, 8% difference from the truth. When the CT was used as “a priori”, the reconstructed average GNP concentration was 239nM, about 2.5 times of the true concentration. Conclusion: This study is the first to demonstrate GNP enhanced DOT with phantom imaging. The GNP can be differentiated from their surrounding background. However, the reconstruction methods needs to be improved for better spatial and quantification accuracy.« less

  20. Remote Sensing of Clouds for Solar Forecasting Applications

    NASA Astrophysics Data System (ADS)

    Mejia, Felipe

    A method for retrieving cloud optical depth (tauc) using a UCSD developed ground- based Sky Imager (USI) is presented. The Radiance Red-Blue Ratio (RRBR) method is motivated from the analysis of simulated images of various tauc produced by a Radiative Transfer Model (RTM). From these images the basic parameters affecting the radiance and RBR of a pixel are identified as the solar zenith angle (SZA), tau c , solar pixel an- gle/scattering angle (SPA), and pixel zenith angle/view angle (PZA). The effects of these parameters are described and the functions for radiance, Ilambda (tau c ,SZA,SPA,PZA) , and the red-blue ratio, RBR(tauc ,SZA,SPA,PZA) , are retrieved from the RTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for tau c , where RBR increases with tauc up to about tauc = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured Imeaslambda (SPA,PZA) , in addition to RBRmeas (SPA,PZA ) to obtain a unique solution for tauc . The RRBR method is applied to images of liquid water clouds taken by a USI at the Oklahoma Atmospheric Radiation Measurement program (ARM) site over the course of 220 days and compared against measurements from a microwave radiometer (MWR) and output from the Min [ MH96a ] method for overcast skies. tau c values ranged from 0-80 with values over 80 being capped and registered as 80. A tauc RMSE of 2.5 between the Min method [ MH96b ] and the USI are observed. The MWR and USI have an RMSE of 2.2 which is well within the uncertainty of the MWR. The procedure developed here provides a foundation to test and develop other cloud detection algorithms. Using the RRBR tauc estimate as an input we then explore the potential of using tomographic techniques for 3-D cloud reconstruction. The Algebraic Reconstruction Technique (ART) is applied to optical depth maps from sky images to reconstruct 3-D cloud extinction coefficients. Reconstruction accuracy is explored for different products, including surface irradiance, extinction coefficients and Liquid Water Path, as a function of the number of available sky imagers (SIs) and setup distance. Increasing the number of cameras improves the accuracy of the 3-D reconstruction: For surface irradiance, the error decreases significantly up to four imagers at which point the improvements become marginal while k error continues to decrease with more cameras. The ideal distance between imagers was also explored: For a cloud height of 1 km, increasing distance up to 3 km (the domain length) improved the 3-D reconstruction for surface irradiance, while k error continued to decrease with increasing decrease. An iterative reconstruction technique was also used to improve the results of the ART by minimizing the error between input images and reconstructed simulations. For the best case of a nine imager deployment, the ART and iterative method resulted in 53.4% and 33.6% mean average error (MAE) for the extinction coefficients, respectively. The tomographic methods were then tested on real world test cases in the Uni- versity of California San Diego's (UCSD) solar testbed. Five UCSD sky imagers (USI) were installed across the testbed based on the best performing distances in simulations. Topographic obstruction is explored as a source of error by analyzing the increased error with obstruction in the field of view of the horizon. As more of the horizon is obstructed the error increases. If at least a field of view of 70° is available for the camera the accuracy is within 2% of the full field of view. Errors caused by stray light are also explored by removing the circumsolar region from images and comparing the cloud reconstruction to a full image. Removing less than 30% of the circumsolar region image and GHI errors were within 0.2% of the full image while errors in k increased 1%. Removing more than 30° around the sun resulted in inaccurate cloud reconstruction. Using four of the five USI a 3D cloud is reconstructed and compared to the fifth camera. The image of the fifth camera (excluded from the reconstruction) was then simulated and found to have a 22.9% error compared to the ground truth.

  1. THz - ToF Optical Layer Analysis (OLA) to determine optical properties of dielectric materials

    NASA Astrophysics Data System (ADS)

    Spranger, Holger; Beckmann, Jörg

    2017-02-01

    Electromagnetic waves with frequencies between 0.1 and 10 THz are described as THz-radiation (T-ray). The ability to penetrate dielectric materials makes T-rays attractive to reveal discontinuities in polymer and ceramic materials. THz-Time Domain Spectroscopy Systems (THz-TDS) are available on the market today which operates with THz-pulses transmitted and received by optically pumped semiconductor antennas. In THz-TDS the travelling time (ToF) and shape of the pulse is changed if it interacts with the dielectric material and its inherent discontinuities. A tomogram of the object under the test can be reconstructed from time of flight diffraction (ToFD) scans if a synthetic focusing aperture (SAFT) algorithm is applied. The knowledge of the base materials shape and optical properties is essential for a proper reconstruction result. To obtain these properties a model is assumed which describes the device under the test as multilayer structure composed of thin layers with different dielectric characteristics. The Optical Layer Analysis (OLA) is able to fulfill these requirements. A short description why the optical properties are crucial for meaningful SAFT reconstruction results will be given first. Afterwards the OLA will be derived and applied on representative samples to discuss and evaluate its benefits and limits.

  2. The structure of reconstructed chalcopyrite surfaces

    NASA Astrophysics Data System (ADS)

    Thinius, Sascha; Islam, Mazharul M.; Bredow, Thomas

    2018-03-01

    Chalcopyrite (CuFeS2) surfaces are of major interest for copper exploitation in aqueous solution, called leaching. Since leaching is a surface process knowledge of the surface structure, bonding pattern and oxidation states is important for improving the efficiency. At present such information is not available from experimental studies. Therefore a detailed computational study of chalcopyrite surfaces is performed. The structures of low-index stoichiometric chalcopyrite surfaces {hkl} h, k, l ∈ {0, 1, 2} have been studied with density functional theory (DFT) and global optimization strategies. We have applied ab initio molecular dynamics (MD) in combination with simulated annealing (SA) in order to explore possible reconstructions via a minima hopping (MH) algorithm. In almost all cases reconstruction involving substantial rearrangement has occurred accompanied by reduction of the surface energy. The analysis of the change in the coordination sphere and migration during reconstruction reveals that S-S dimers are formed on the surface. Further it was observed that metal atoms near the surface move toward the bulk forming metal alloys passivated by sulfur. The obtained surface energies of reconstructed surfaces are in the range of 0.53-0.95 J/m2.

  3. Effects of self-absorption on simultaneous estimation of temperature distribution and concentration fields of soot and metal-oxide nanoparticles in nanofluid fuel flames using a spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Guannan; Liu, Dong

    2018-06-01

    An improved inverse reconstruction model with consideration of self-absorption effect for the temperature distribution and concentration fields of soot and metal-oxide nanoparticles in nanofluid fuel flames was proposed based on the flame emission spectrometry. The effects of self-absorption on the temperature profile and concentration fields were investigated for various measurement errors, flame optical thicknesses and detecting lines numbers. The model neglecting the self-absorption caused serious reconstruction errors especially in the nanofluid fuel flames with large optical thicknesses, while the improved model was used to successfully recover the temperature distribution and concentration fields of soot and metal-oxide nanoparticles for the flames regardless of the optical thickness. Through increasing detecting lines number, the reconstruction accuracy can be greatly improved due to more flame emission information received by the spectrometer. With the adequate detecting lines number, the estimations for the temperature distribution and concentration fields of soot and metal-oxide nanoparticles in flames with large optical thicknesses were still satisfying even from the noisy radiation intensities with signal to noise ratio (SNR) as low as 46 dB. The results showed that the improved reconstruction model was effective and robust to concurrently retrieve the temperature distribution and volume fraction fields of soot and metal-oxide nanoparticles for the exact and noisy data in nanofluid fuel sooting flames with different optical thicknesses.

  4. Reconstruction 3-dimensional image from 2-dimensional image of status optical coherence tomography (OCT) for analysis of changes in retinal thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arinilhaq,; Widita, Rena

    2014-09-30

    Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arraysmore » are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.« less

  5. Wavefront reconstruction method based on wavelet fractal interpolation for coherent free space optical communication

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Zhao, Qi; Wang, Lei; Wan, Xiongfeng

    2018-03-01

    Existing wavefront reconstruction methods are usually low in resolution, restricted by structure characteristics of the Shack Hartmann wavefront sensor (SH WFS) and the deformable mirror (DM) in the adaptive optics (AO) system, thus, resulting in weak homodyne detection efficiency for free space optical (FSO) communication. In order to solve this problem, we firstly validate the feasibility of liquid crystal spatial light modulator (LC SLM) using in an AO system. Then, wavefront reconstruction method based on wavelet fractal interpolation is proposed after self-similarity analysis of wavefront distortion caused by atmospheric turbulence. Fast wavelet decomposition is operated to multiresolution analyze the wavefront phase spectrum, during which soft threshold denoising is carried out. The resolution of estimated wavefront phase is then improved by fractal interpolation. Finally, fast wavelet reconstruction is taken to recover wavefront phase. Simulation results reflect the superiority of our method in homodyne detection. Compared with minimum variance estimation (MVE) method based on interpolation techniques, the proposed method could obtain superior homodyne detection efficiency with lower operation complexity. Our research findings have theoretical significance in the design of coherent FSO communication system.

  6. Two schemes for quantitative photoacoustic tomography based on Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yubin; Yuan, Zhen, E-mail: zhenyuan@umac.mo

    Purpose: The aim of this study was to develop novel methods for photoacoustically determining the optical absorption coefficient of biological tissues using Monte Carlo (MC) simulation. Methods: In this study, the authors propose two quantitative photoacoustic tomography (PAT) methods for mapping the optical absorption coefficient. The reconstruction methods combine conventional PAT with MC simulation in a novel way to determine the optical absorption coefficient of biological tissues or organs. Specifically, the authors’ two schemes were theoretically and experimentally examined using simulations, tissue-mimicking phantoms, ex vivo, and in vivo tests. In particular, the authors explored these methods using several objects withmore » different absorption contrasts embedded in turbid media and by using high-absorption media when the diffusion approximation was not effective at describing the photon transport. Results: The simulations and experimental tests showed that the reconstructions were quantitatively accurate in terms of the locations, sizes, and optical properties of the targets. The positions of the recovered targets were accessed by the property profiles, where the authors discovered that the off center error was less than 0.1 mm for the circular target. Meanwhile, the sizes and quantitative optical properties of the targets were quantified by estimating the full width half maximum of the optical absorption property. Interestingly, for the reconstructed sizes, the authors discovered that the errors ranged from 0 for relatively small-size targets to 26% for relatively large-size targets whereas for the recovered optical properties, the errors ranged from 0% to 12.5% for different cases. Conclusions: The authors found that their methods can quantitatively reconstruct absorbing objects of different sizes and optical contrasts even when the diffusion approximation is unable to accurately describe the photon propagation in biological tissues. In particular, their methods are able to resolve the intrinsic difficulties that occur when quantitative PAT is conducted by combining conventional PAT with the diffusion approximation or with radiation transport modeling.« less

  7. Fluorescence Diffusion in the Presence of Optically Clear Tissues in a Mouse Head Model.

    PubMed

    Ancora, Daniele; Zacharopoulos, Athanasios; Ripoll, Jorge; Zacharakis, Giannis

    2017-05-01

    Diffuse Optical Tomography commonly neglects or assumes as insignificant the presence of optically clear regions in biological tissues, estimating their contribution as a small perturbation to light transport. The inaccuracy introduced by this practice is examined in detail in the context of a complete, based on realistic geometry, virtual fluorescence Diffuse Optical Tomography experiment where a mouse head is imaged in the presence of cerebral spinal fluid. Despite the small thickness of such layer, we point out that an error is introduced when neglecting it from the model with possibly reduction in the accuracy of the reconstruction and localization of the fluorescence distribution within the brain. The results obtained in the extensive study presented here suggest that fluorescence diffuse neuroimaging studies can be improved in terms of quantitative and qualitative reconstruction by accurately taking into account optically transparent regions especially in the cases where the reconstruction is aided by the prior knowledge of the structural geometry of the specimen. Thus, this has only recently become an affordable choice, thanks to novel computation paradigms that allow to run Monte Carlo photon propagation on a simple graphic card, hence speeding up the process a thousand folds compared to CPU-based solutions.

  8. Holographic memory system based on projection recording of computer-generated 1D Fourier holograms.

    PubMed

    Betin, A Yu; Bobrinev, V I; Donchenko, S S; Odinokov, S B; Evtikhiev, N N; Starikov, R S; Starikov, S N; Zlokazov, E Yu

    2014-10-01

    Utilization of computer generation of holographic structures significantly simplifies the optical scheme that is used to record the microholograms in a holographic memory record system. Also digital holographic synthesis allows to account the nonlinear errors of the record system to improve the microholograms quality. The multiplexed record of holograms is a widespread technique to increase the data record density. In this article we represent the holographic memory system based on digital synthesis of amplitude one-dimensional (1D) Fourier transform holograms and the multiplexed record of these holograms onto the holographic carrier using optical projection scheme. 1D Fourier transform holograms are very sensitive to orientation of the anamorphic optical element (cylindrical lens) that is required for encoded data object reconstruction. The multiplex record of several holograms with different orientation in an optical projection scheme allowed reconstruction of the data object from each hologram by rotating the cylindrical lens on the corresponding angle. Also, we discuss two optical schemes for the recorded holograms readout: a full-page readout system and line-by-line readout system. We consider the benefits of both systems and present the results of experimental modeling of 1D Fourier holograms nonmultiplex and multiplex record and reconstruction.

  9. Creation of 3D Multi-Body Orthodontic Models by Using Independent Imaging Sensors

    PubMed Central

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2013-01-01

    In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients' mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning. PMID:23385416

  10. Creation of 3D multi-body orthodontic models by using independent imaging sensors.

    PubMed

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2013-02-05

    In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients' mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning.

  11. Single-layer TiO x reconstructions on SrTiO 3 (111): (√7 × √7)R19.1°, (√13 × √13)R13.9°, and related structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Tassie K.; Wang, Shuqiu; Castell, Martin R.

    The atomic structures of two reconstructions, (√7 × √7)R19.1° and (√13 × √13)R13.9°, on the SrTiO 3 (111) surface were determined using a combination of density functional theory and scanning tunneling microscopy data and simulations. The combination of these methods allows for potential surface structures to be generated and verified in the absence of diffraction data, providing another tool for solving surface reconstructions. These reconstructions belong to the same stoichiometric, nSrTiO 3 • mTiO 2, structural family made up of an interconnected, single layer of edge-sharing TiO 6 and TiO 5[] octahedra. This family is found to include the previously-solvedmore » (2 × 2)a reconstruction as its smallest unit-cell sized member and serves as a tool for better understanding and predicting the structure of other reconstructions of arbitrary surface unit-cell size on SrTiO 3 (111). This reconstruction family and the calculations of surface energies for different hypothesis structures also shed light on the structure of Schottky defects observed on these reconstructed SrTO 3 (111) surfaces.« less

  12. An innovative approach for investigating the ceramic bracket-enamel interface - optical coherence tomography and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Romînu, Roxana Otilia; Sinescu, Cosmin; Romînu, Mihai; Negrutiu, Meda; Laissue, Philippe; Mihali, Sorin; Cuc, Lavinia; Hughes, Michael; Bradu, Adrian; Podoleanu, Adrian

    2008-09-01

    Bonding has become a routine procedure in several dental specialties - from prosthodontics to conservative dentistry and even orthodontics. In many of these fields it is important to be able to investigate the bonded interfaces to assess their quality. All currently employed investigative methods are invasive, meaning that samples are destroyed in the testing procedure and cannot be used again. We have investigated the interface between human enamel and bonded ceramic brackets non-invasively, introducing a combination of new investigative methods - optical coherence tomography (OCT) and confocal microscopy (CM). Brackets were conventionally bonded on conditioned buccal surfaces of teeth The bonding was assessed using these methods. Three dimensional reconstructions of the detected material defects were developed using manual and semi-automatic segmentation. The results clearly prove that OCT and CM are useful in orthodontic bonding investigations.

  13. Superficial Macromolecular Arrays on the Cell Wall of Spirillum putridiconchylium

    PubMed Central

    Beveridge, T. J.; Murray, R. G. E.

    1974-01-01

    Electron microscopy of the cell envelope of Spirillum putridiconchylium, using negatively stained, thin-sectioned, and replicated freeze-etched preparations, showed two superficial wall layers forming a complex macromolecular pattern on the external surface. The outer structured layer was a linear array of particles overlying an inner tetragonal array of larger subunits. They were associated in a very regular fashion, and the complex was bonded to the outer, pitted surface of the lipopolysaccharide tripartite layer of the cell wall. The relationship of the components of the two structured layers was resolved with the aid of optical diffraction, combined with image filtering and reconstruction and linear and rotary integration techniques. The outer structural layer consisted of spherical 1.5-nm units set in double lines determined by the size and arrangement of 6- by 3-nm inner structural layer subunits, which bore one outer structural layer unit on each outer corner. The total effect of this arrangement was a double-ridged linear structure that was evident in surface replicas and negatively stained fragments of the whole wall. The packing of these units was not square but skewed by 2° off the perpendicular so that the “unit array” described by optical diffraction and linear integration appeared to be a deformed tetragon. The verity of the model was checked by using a photographically reduced image to produce an optical diffraction pattern for comparison with that of the actual layers. The correspondence was nearly perfect. Images PMID:4137219

  14. Improved bioluminescence and fluorescence reconstruction algorithms using diffuse optical tomography, normalized data, and optimized selection of the permissible source region

    PubMed Central

    Naser, Mohamed A.; Patterson, Michael S.

    2011-01-01

    Reconstruction algorithms are presented for two-step solutions of the bioluminescence tomography (BLT) and the fluorescence tomography (FT) problems. In the first step, a continuous wave (cw) diffuse optical tomography (DOT) algorithm is used to reconstruct the tissue optical properties assuming known anatomical information provided by x-ray computed tomography or other methods. Minimization problems are formed based on L1 norm objective functions, where normalized values for the light fluence rates and the corresponding Green’s functions are used. Then an iterative minimization solution shrinks the permissible regions where the sources are allowed by selecting points with higher probability to contribute to the source distribution. Throughout this process the permissible region shrinks from the entire object to just a few points. The optimum reconstructed bioluminescence and fluorescence distributions are chosen to be the results of the iteration corresponding to the permissible region where the objective function has its global minimum This provides efficient BLT and FT reconstruction algorithms without the need for a priori information about the bioluminescence sources or the fluorophore concentration. Multiple small sources and large distributed sources can be reconstructed with good accuracy for the location and the total source power for BLT and the total number of fluorophore molecules for the FT. For non-uniform distributed sources, the size and magnitude become degenerate due to the degrees of freedom available for possible solutions. However, increasing the number of data points by increasing the number of excitation sources can improve the accuracy of reconstruction for non-uniform fluorophore distributions. PMID:21326647

  15. [Graphic reconstruction of anatomic surfaces].

    PubMed

    Ciobanu, O

    2004-01-01

    The paper deals with the graphic reconstruction of anatomic surfaces in a virtual 3D setting. Scanning technologies and soft provides a greater flexibility in the digitization of surfaces and a higher resolution and accuracy. An alternative cheap method for the reconstruction of 3D anatomic surfaces is presented in connection with some studies and international projects developed by Medical Design research team.

  16. Combining energy and Laplacian regularization to accurately retrieve the depth of brain activity of diffuse optical tomographic data

    NASA Astrophysics Data System (ADS)

    Chiarelli, Antonio M.; Maclin, Edward L.; Low, Kathy A.; Mathewson, Kyle E.; Fabiani, Monica; Gratton, Gabriele

    2016-03-01

    Diffuse optical tomography (DOT) provides data about brain function using surface recordings. Despite recent advancements, an unbiased method for estimating the depth of absorption changes and for providing an accurate three-dimensional (3-D) reconstruction remains elusive. DOT involves solving an ill-posed inverse problem, requiring additional criteria for finding unique solutions. The most commonly used criterion is energy minimization (energy constraint). However, as measurements are taken from only one side of the medium (the scalp) and sensitivity is greater at shallow depths, the energy constraint leads to solutions that tend to be small and superficial. To correct for this bias, we combine the energy constraint with another criterion, minimization of spatial derivatives (Laplacian constraint, also used in low resolution electromagnetic tomography, LORETA). Used in isolation, the Laplacian constraint leads to solutions that tend to be large and deep. Using simulated, phantom, and actual brain activation data, we show that combining these two criteria results in accurate (error <2 mm) absorption depth estimates, while maintaining a two-point spatial resolution of <24 mm up to a depth of 30 mm. This indicates that accurate 3-D reconstruction of brain activity up to 30 mm from the scalp can be obtained with DOT.

  17. Optical Studies of model binary miscibility gap system

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Witherow, W. K.; Facemire, B. R.; Nishioka, G. M.

    1982-01-01

    In order to develop a better understanding of separation processes in binary miscibility gap metal alloys, model transparent fluid systems were studied. The system selected was diethylene glycol-ethyl salicylate which has convenient working temperatures (288 to 350 K), low toxicity, and is relatively easy to purify. The system is well characterized with respect to its phase diagram, density, surface and interfacial tensions, viscosity and other pertinent physical properties. Studies of migration of the dispersed phase in a thermal gradient were performed using conventional photomicroscopy. Velocities of the droplets of the dispersed phase were measured and compared to calculated rates which included both Stokes and thermal components. A holographic microscopy system was used to study growth, coalescence, and particle motions. Sequential holograms allowed determination of particle size distribution changes with respect to time and temperature. Holographic microscopy is capable of recording particle densities up to 10 to the 7th power particles/cu cm and is able to resolve particles of the order of 2 to 3 microns in diameter throughout the entire volume of the test cell. The reconstructed hologram produces a wavefront that is identical to the original wavefront as it existed when the hologram was made. The reconstructed wavefront is analyzed using a variety of conventional optical methods.

  18. Electronic structure studies of a clock-reconstructed Al/Pd(1 0 0) surface alloy

    NASA Astrophysics Data System (ADS)

    Kirsch, Janet E.; Tainter, Craig J.

    We have employed solid-state Fenske-Hall band structure calculations to examine the electronic structure of Al/Pd(1 0 0), a surface alloy that undergoes a reconstruction, or rearrangement, of the atoms in the top few surface layers. Surface alloys are materials that consist primarily of a single elemental metal, but which have a bimetallic surface composition that is only a few atomic layers in thickness. The results of this study indicate that reconstruction into a clock configuration simultaneously optimizes the intralayer bonding within the surface plane and the bonding between the first and second atomic layers. These results also allow us to examine the fundamental relationship between the electronic and physical structures of this reconstructed surface alloy.

  19. Optimal Magnetic Sensor Vests for Cardiac Source Imaging

    PubMed Central

    Lau, Stephan; Petković, Bojana; Haueisen, Jens

    2016-01-01

    Magnetocardiography (MCG) non-invasively provides functional information about the heart. New room-temperature magnetic field sensors, specifically magnetoresistive and optically pumped magnetometers, have reached sensitivities in the ultra-low range of cardiac fields while allowing for free placement around the human torso. Our aim is to optimize positions and orientations of such magnetic sensors in a vest-like arrangement for robust reconstruction of the electric current distributions in the heart. We optimized a set of 32 sensors on the surface of a torso model with respect to a 13-dipole cardiac source model under noise-free conditions. The reconstruction robustness was estimated by the condition of the lead field matrix. Optimization improved the condition of the lead field matrix by approximately two orders of magnitude compared to a regular array at the front of the torso. Optimized setups exhibited distributions of sensors over the whole torso with denser sampling above the heart at the front and back of the torso. Sensors close to the heart were arranged predominantly tangential to the body surface. The optimized sensor setup could facilitate the definition of a standard for sensor placement in MCG and the development of a wearable MCG vest for clinical diagnostics. PMID:27231910

  20. Optical Sensors and Methods for Underwater 3D Reconstruction

    PubMed Central

    Massot-Campos, Miquel; Oliver-Codina, Gabriel

    2015-01-01

    This paper presents a survey on optical sensors and methods for 3D reconstruction in underwater environments. The techniques to obtain range data have been listed and explained, together with the different sensor hardware that makes them possible. The literature has been reviewed, and a classification has been proposed for the existing solutions. New developments, commercial solutions and previous reviews in this topic have also been gathered and considered. PMID:26694389

  1. Optical asymmetric cryptography based on elliptical polarized light linear truncation and a numerical reconstruction technique.

    PubMed

    Lin, Chao; Shen, Xueju; Wang, Zhisong; Zhao, Cheng

    2014-06-20

    We demonstrate a novel optical asymmetric cryptosystem based on the principle of elliptical polarized light linear truncation and a numerical reconstruction technique. The device of an array of linear polarizers is introduced to achieve linear truncation on the spatially resolved elliptical polarization distribution during image encryption. This encoding process can be characterized as confusion-based optical cryptography that involves no Fourier lens and diffusion operation. Based on the Jones matrix formalism, the intensity transmittance for this truncation is deduced to perform elliptical polarized light reconstruction based on two intensity measurements. Use of a quick response code makes the proposed cryptosystem practical, with versatile key sensitivity and fault tolerance. Both simulation and preliminary experimental results that support theoretical analysis are presented. An analysis of the resistance of the proposed method on a known public key attack is also provided.

  2. Study of Huizhou architecture component point cloud in surface reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Runmei; Wang, Guangyin; Ma, Jixiang; Wu, Yulu; Zhang, Guangbin

    2017-06-01

    Surface reconfiguration softwares have many problems such as complicated operation on point cloud data, too many interaction definitions, and too stringent requirements for inputing data. Thus, it has not been widely popularized so far. This paper selects the unique Huizhou Architecture chuandou wooden beam framework as the research object, and presents a complete set of implementation in data acquisition from point, point cloud preprocessing and finally implemented surface reconstruction. Firstly, preprocessing the acquired point cloud data, including segmentation and filtering. Secondly, the surface’s normals are deduced directly from the point cloud dataset. Finally, the surface reconstruction is studied by using Greedy Projection Triangulation Algorithm. Comparing the reconstructed model with the three-dimensional surface reconstruction softwares, the results show that the proposed scheme is more smooth, time efficient and portable.

  3. Correlation between surface reconstruction and polytypism in InAs nanowire selective area epitaxy

    NASA Astrophysics Data System (ADS)

    Liu, Ziyang; Merckling, Clement; Rooyackers, Rita; Richard, Olivier; Bender, Hugo; Mols, Yves; Vila, María; Rubio-Zuazo, Juan; Castro, Germán R.; Collaert, Nadine; Thean, Aaron; Vandervorst, Wilfried; Heyns, Marc

    2017-12-01

    The mechanism of widely observed intermixing of wurtzite and zinc-blende crystal structures in InAs nanowire (NW) grown by selective area epitaxy (SAE) is studied. We demonstrate that the crystal structure in InAs NW grown by SAE can be controlled using basic growth parameters, and wurtzitelike InAs NWs are achieved. We link the polytypic InAs NWs SAE to the reconstruction of the growth front (111)B surface. Surface reconstruction study of InAs (111) substrate and the following homoepitaxy experiment suggest that (111) planar defect nucleation is related to the (1 × 1) reconstruction of InAs (111)B surface. In order to reveal it more clearly, a model is presented to correlate growth temperature and arsenic partial pressure with InAs NW crystal structure. This model considers the transition between (1 × 1) and (2 × 2) surface reconstructions in the frame of adatom atoms adsorption/desorption, and the polytypism is thus linked to reconstruction quantitatively. The experimental data fit well with the model, which highly suggests that surface reconstruction plays an important role in the polytypism phenomenon in InAs NWs SAE.

  4. 3D Surface Reconstruction for Lower Limb Prosthetic Model using Radon Transform

    NASA Astrophysics Data System (ADS)

    Sobani, S. S. Mohd; Mahmood, N. H.; Zakaria, N. A.; Razak, M. A. Abdul

    2018-03-01

    This paper describes the idea to realize three-dimensional surfaces of objects with cylinder-based shapes where the techniques adopted and the strategy developed for a non-rigid three-dimensional surface reconstruction of an object from uncalibrated two-dimensional image sequences using multiple-view digital camera and turntable setup. The surface of an object is reconstructed based on the concept of tomography with the aid of performing several digital image processing algorithms on the two-dimensional images captured by a digital camera in thirty-six different projections and the three-dimensional structure of the surface is analysed. Four different objects are used as experimental models in the reconstructions and each object is placed on a manually rotated turntable. The results shown that the proposed method has successfully reconstruct the three-dimensional surface of the objects and practicable. The shape and size of the reconstructed three-dimensional objects are recognizable and distinguishable. The reconstructions of objects involved in the test are strengthened with the analysis where the maximum percent error obtained from the computation is approximately 1.4 % for the height whilst 4.0%, 4.79% and 4.7% for the diameters at three specific heights of the objects.

  5. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenyang; Cheung, Yam; Sawant, Amit

    2016-05-15

    Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparsemore » regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. Conclusions: The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications.« less

  6. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system.

    PubMed

    Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan

    2016-05-01

    To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications.

  7. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system

    PubMed Central

    Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan

    2016-01-01

    Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. Conclusions: The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications. PMID:27147347

  8. Ferrate (IV) as a Possible Oxidant on the Martian Surface

    NASA Astrophysics Data System (ADS)

    Tsapin, Alexandre; Goldfeld, M. G.; McDonald, G. D.; Nealson, K. H.; Mohnke, J.; Moskovitz, B.; Solheid, P.; Kemner, K. H.; Orlandini, K.

    Viking experiments showed that Martian soil has a very strong oxidant, which could be responsible for the results of experiments performed on Viking landers. These experiments were designed specifically to detect life on Mars. The nature of that oxidant was not determined during Viking mission. Later several groups tried to reconstruct Viking experiments and find out the nature of Martian oxidant. None of these attempts were completely successful. The general perception was that there are several chemically different oxidants on Martian surface. In this study we suggested that potassium ferrate K_2FeO_4 can be Martian oxidant responsible at least partially for the results of experiments on Viking landers. We characterized liquid and powder preparation of Fe (VI) with EPR, optical spectroscopy, Mossbauer spectroscopy, and by Fe-XANES. All properties of our preparations of (FeVI) are consistent with the proposal role of that compound as a strong oxidant on Martian surface.

  9. Surface modes and reconstruction of diamond structure crystals

    NASA Astrophysics Data System (ADS)

    Goldammer, W.; Ludwig, W.; Zierau, W.

    1986-08-01

    Applying our recently proposed Green function method we calculate the surface phonon spectra for the (111) surfaces of the diamond structure crystals C, Si, Ge and α-Sn on the basis of a phenomenological force constant model. Allowing for changes in the surface force constants we investigate the possibility of a surface phonon softening. Relating these soft modes to surface reconstructions we find evidence for a Si (7 × 7), Ge (8 × 8) and α-Sn (3 × 3) reconstruction, while diamond does not exhibit a soft mode behavior at all. We can thus explain the occurrence of different surface structures in these geometrically identical crystals as being determined to a great extent already by bulk properties. Finally, we derive models of the reconstructed surfaces and discuss our model for the Si (7 × 7) surface with respect to experimental TED patterns.

  10. Implementation of a computationally efficient least-squares algorithm for highly under-determined three-dimensional diffuse optical tomography problems.

    PubMed

    Yalavarthy, Phaneendra K; Lynch, Daniel R; Pogue, Brian W; Dehghani, Hamid; Paulsen, Keith D

    2008-05-01

    Three-dimensional (3D) diffuse optical tomography is known to be a nonlinear, ill-posed and sometimes under-determined problem, where regularization is added to the minimization to allow convergence to a unique solution. In this work, a generalized least-squares (GLS) minimization method was implemented, which employs weight matrices for both data-model misfit and optical properties to include their variances and covariances, using a computationally efficient scheme. This allows inversion of a matrix that is of a dimension dictated by the number of measurements, instead of by the number of imaging parameters. This increases the computation speed up to four times per iteration in most of the under-determined 3D imaging problems. An analytic derivation, using the Sherman-Morrison-Woodbury identity, is shown for this efficient alternative form and it is proven to be equivalent, not only analytically, but also numerically. Equivalent alternative forms for other minimization methods, like Levenberg-Marquardt (LM) and Tikhonov, are also derived. Three-dimensional reconstruction results indicate that the poor recovery of quantitatively accurate values in 3D optical images can also be a characteristic of the reconstruction algorithm, along with the target size. Interestingly, usage of GLS reconstruction methods reduces error in the periphery of the image, as expected, and improves by 20% the ability to quantify local interior regions in terms of the recovered optical contrast, as compared to LM methods. Characterization of detector photo-multiplier tubes noise has enabled the use of the GLS method for reconstructing experimental data and showed a promise for better quantification of target in 3D optical imaging. Use of these new alternative forms becomes effective when the ratio of the number of imaging property parameters exceeds the number of measurements by a factor greater than 2.

  11. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system.

    PubMed

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J; Sawant, Amit; Ruan, Dan

    2015-11-01

    To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. On phantom point clouds, their method achieved submillimeter reconstruction RMSE under different configurations, demonstrating quantitatively the faith of the proposed method in preserving local structural properties of the underlying surface in the presence of noise and missing measurements, and its robustness toward variations of such characteristics. On point clouds from the human subject, the proposed method successfully reconstructed all patient surfaces, filling regions where raw point coordinate readings were missing. Within two comparable regions of interest in the chest area, similar mean curvature distributions were acquired from both their reconstructed surface and CT surface, with mean and standard deviation of (μrecon=-2.7×10(-3) mm(-1), σrecon=7.0×10(-3) mm(-1)) and (μCT=-2.5×10(-3) mm(-1), σCT=5.3×10(-3) mm(-1)), respectively. The agreement of local geometry properties between the reconstructed surfaces and the CT surface demonstrated the ability of the proposed method in faithfully representing the underlying patient surface. The authors have integrated and developed an accurate level-set based continuous surface reconstruction method on point clouds acquired by a 3D surface photogrammetry system. The proposed method has generated a continuous representation of the underlying phantom and patient surfaces with good robustness against noise and missing measurements. It serves as an important first step for further development of motion tracking methods during radiotherapy.

  12. Fourier plane imaging microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, Daniel, E-mail: daniel.dominguez@ttu.edu; Peralta, Luis Grave de; Nano Tech Center, Texas Tech University, Lubbock, Texas 79409

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonicmore » crystals.« less

  13. Singularity detection in FOG-based pavement data by wavelet transform

    NASA Astrophysics Data System (ADS)

    Yang, Dandan; Wang, Lixin; Hu, Wenbin; Zhang, Zhen; Fu, Jinghua; Gan, Weibing

    2017-04-01

    The angular velocity data of Fiber-Optic Gyro (FOG) has been analyzed to locate the singularity by the wavelet transform (WT) method. By using WT analysis method to decompose and reconstruct the signal of pavement data collecting by the FOG, the different types of pavement singularities can be extracted. The experiments are conducted on different road surfaces. The experimental results show that the locations of bumps and expansion joints have been obtained, with a relative precision of 0.5 m and an absolute precision of 2 m over 2.4 km. The characteristic of the pavement roughness can also be identified.

  14. Using refraction in thick glass plates for optical path length modulation in low coherence interferometry.

    PubMed

    Kröger, Niklas; Schlobohm, Jochen; Pösch, Andreas; Reithmeier, Eduard

    2017-09-01

    In Michelson interferometer setups the standard way to generate different optical path lengths between a measurement arm and a reference arm relies on expensive high precision linear stages such as piezo actuators. We present an alternative approach based on the refraction of light at optical interfaces using a cheap stepper motor with high gearing ratio to control the rotation of a glass plate. The beam path is examined and a relation between angle of rotation and change in optical path length is devised. As verification, an experimental setup is presented, and reconstruction results from a measurement standard are shown. The reconstructed step height from this setup lies within 1.25% of the expected value.

  15. Wavefront sensing with all-digital Stokes measurements

    NASA Astrophysics Data System (ADS)

    Dudley, Angela; Milione, Giovanni; Alfano, Robert R.; Forbes, Andrew

    2014-09-01

    A long-standing question in optics has been to efficiently measure the phase (or wavefront) of an optical field. This has led to numerous publications and commercial devices such as phase shift interferometry, wavefront reconstruction via modal decomposition and Shack-Hartmann wavefront sensors. In this work we develop a new technique to extract the phase which in contrast to previously mentioned methods is based on polarization (or Stokes) measurements. We outline a simple, all-digital approach using only a spatial light modulator and a polarization grating to exploit the amplitude and phase relationship between the orthogonal states of polarization to determine the phase of an optical field. We implement this technique to reconstruct the phase of static and propagating optical vortices.

  16. Comparison of Reconstruction and Control algorithms on the ESO end-to-end simulator OCTOPUS

    NASA Astrophysics Data System (ADS)

    Montilla, I.; Béchet, C.; Lelouarn, M.; Correia, C.; Tallon, M.; Reyes, M.; Thiébaut, É.

    Extremely Large Telescopes are very challenging concerning their Adaptive Optics requirements. Their diameters, the specifications demanded by the science for which they are being designed for, and the planned use of Extreme Adaptive Optics systems, imply a huge increment in the number of degrees of freedom in the deformable mirrors. It is necessary to study new reconstruction algorithms to implement the real time control in Adaptive Optics at the required speed. We have studied the performance, applied to the case of the European ELT, of three different algorithms: the matrix-vector multiplication (MVM) algorithm, considered as a reference; the Fractal Iterative Method (FrIM); and the Fourier Transform Reconstructor (FTR). The algorithms have been tested on ESO's OCTOPUS software, which simulates the atmosphere, the deformable mirror, the sensor and the closed-loop control. The MVM is the default reconstruction and control method implemented in OCTOPUS, but it scales in O(N2) operations per loop so it is not considered as a fast algorithm for wave-front reconstruction and control on an Extremely Large Telescope. The two other methods are the fast algorithms studied in the E-ELT Design Study. The performance, as well as their response in the presence of noise and with various atmospheric conditions, has been compared using a Single Conjugate Adaptive Optics configuration for a 42 m diameter ELT, with a total amount of 5402 actuators. Those comparisons made on a common simulator allow to enhance the pros and cons of the various methods, and give us a better understanding of the type of reconstruction algorithm that an ELT demands.

  17. Learning-based 3D surface optimization from medical image reconstruction

    NASA Astrophysics Data System (ADS)

    Wei, Mingqiang; Wang, Jun; Guo, Xianglin; Wu, Huisi; Xie, Haoran; Wang, Fu Lee; Qin, Jing

    2018-04-01

    Mesh optimization has been studied from the graphical point of view: It often focuses on 3D surfaces obtained by optical and laser scanners. This is despite the fact that isosurfaced meshes of medical image reconstruction suffer from both staircases and noise: Isotropic filters lead to shape distortion, while anisotropic ones maintain pseudo-features. We present a data-driven method for automatically removing these medical artifacts while not introducing additional ones. We consider mesh optimization as a combination of vertex filtering and facet filtering in two stages: Offline training and runtime optimization. In specific, we first detect staircases based on the scanning direction of CT/MRI scanners, and design a staircase-sensitive Laplacian filter (vertex-based) to remove them; and then design a unilateral filtered facet normal descriptor (uFND) for measuring the geometry features around each facet of a given mesh, and learn the regression functions from a set of medical meshes and their high-resolution reference counterparts for mapping the uFNDs to the facet normals of the reference meshes (facet-based). At runtime, we first perform staircase-sensitive Laplacian filter on an input MC (Marching Cubes) mesh, and then filter the mesh facet normal field using the learned regression functions, and finally deform it to match the new normal field for obtaining a compact approximation of the high-resolution reference model. Tests show that our algorithm achieves higher quality results than previous approaches regarding surface smoothness and surface accuracy.

  18. Muscle Activity Map Reconstruction from High Density Surface EMG Signals With Missing Channels Using Image Inpainting and Surface Reconstruction Methods.

    PubMed

    Ghaderi, Parviz; Marateb, Hamid R

    2017-07-01

    The aim of this study was to reconstruct low-quality High-density surface EMG (HDsEMG) signals, recorded with 2-D electrode arrays, using image inpainting and surface reconstruction methods. It is common that some fraction of the electrodes may provide low-quality signals. We used variety of image inpainting methods, based on partial differential equations (PDEs), and surface reconstruction methods to reconstruct the time-averaged or instantaneous muscle activity maps of those outlier channels. Two novel reconstruction algorithms were also proposed. HDsEMG signals were recorded from the biceps femoris and brachial biceps muscles during low-to-moderate-level isometric contractions, and some of the channels (5-25%) were randomly marked as outliers. The root-mean-square error (RMSE) between the original and reconstructed maps was then calculated. Overall, the proposed Poisson and wave PDE outperformed the other methods (average RMSE 8.7 μV rms ± 6.1 μV rms and 7.5 μV rms ± 5.9 μV rms ) for the time-averaged single-differential and monopolar map reconstruction, respectively. Biharmonic Spline, the discrete cosine transform, and the Poisson PDE outperformed the other methods for the instantaneous map reconstruction. The running time of the proposed Poisson and wave PDE methods, implemented using a Vectorization package, was 4.6 ± 5.7 ms and 0.6 ± 0.5 ms, respectively, for each signal epoch or time sample in each channel. The proposed reconstruction algorithms could be promising new tools for reconstructing muscle activity maps in real-time applications. Proper reconstruction methods could recover the information of low-quality recorded channels in HDsEMG signals.

  19. Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekavec, Patrick F.; Dyke, Thomas R.; Marcus, Andrew H.

    2006-11-21

    Studies of wave packet dynamics often involve phase-selective measurements of coherent optical signals generated from sequences of ultrashort laser pulses. In wave packet interferometry (WPI), the separation between the temporal envelopes of the pulses must be precisely monitored or maintained. Here we introduce a new (and easy to implement) experimental scheme for phase-selective measurements that combines acousto-optic phase modulation with ultrashort laser excitation to produce an intensity-modulated fluorescence signal. Synchronous detection, with respect to an appropriately constructed reference, allows the signal to be simultaneously measured at two phases differing by 90 deg. Our method effectively decouples the relative temporal phasemore » from the pulse envelopes of a collinear train of optical pulse pairs. We thus achieve a robust and high signal-to-noise scheme for WPI applications, such as quantum state reconstruction and electronic spectroscopy. The validity of the method is demonstrated, and state reconstruction is performed, on a model quantum system - atomic Rb vapor. Moreover, we show that our measurements recover the correct separation between the absorptive and dispersive contributions to the system susceptibility.« less

  20. Multiplexed phase-space imaging for 3D fluorescence microscopy.

    PubMed

    Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura

    2017-06-26

    Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.

  1. Modeling of light propagation in the human neck for diagnoses of thyroid cancers by diffuse optical tomography.

    PubMed

    Fujii, H; Yamada, Y; Kobayashi, K; Watanabe, M; Hoshi, Y

    2017-05-01

    Diffuse optical tomography using near-infrared light in a wavelength range from 700 to 1000 nm has the potential to enable non-invasive diagnoses of thyroid cancers; some of which are difficult to detect by conventional methods such as ultrasound tomography. Diffuse optical tomography needs to be based on a physically accurate model of light propagation in the neck, because it reconstructs tomographic images of the optical properties in the human neck by inverse analysis. Our objective here was to investigate the effects of three factors on light propagation in the neck using the 2D time-dependent radiative transfer equation: (1) the presence of the trachea, (2) the refractive-index mismatch at the trachea-tissue interface, and (3) the effect of neck organs other than the trachea (spine, spinal cord, and blood vessels). There was a significant influence of reflection and refraction at the trachea-tissue interface on the light intensities in the region between the trachea and the front of the neck surface. Organs other than the trachea showed little effect on the light intensities measured at the front of the neck surface although these organs affected the light intensities locally. These results indicated the necessity of modeling the refractive-index mismatch at the trachea-tissue interface and the possibility of modeling other neck organs simply as a homogeneous medium when the source and detectors were far from large blood vessels. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Accelerated gradient based diffuse optical tomographic image reconstruction.

    PubMed

    Biswas, Samir Kumar; Rajan, K; Vasu, R M

    2011-01-01

    Fast reconstruction of interior optical parameter distribution using a new approach called Broyden-based model iterative image reconstruction (BMOBIIR) and adjoint Broyden-based MOBIIR (ABMOBIIR) of a tissue and a tissue mimicking phantom from boundary measurement data in diffuse optical tomography (DOT). DOT is a nonlinear and ill-posed inverse problem. Newton-based MOBIIR algorithm, which is generally used, requires repeated evaluation of the Jacobian which consumes bulk of the computation time for reconstruction. In this study, we propose a Broyden approach-based accelerated scheme for Jacobian computation and it is combined with conjugate gradient scheme (CGS) for fast reconstruction. The method makes explicit use of secant and adjoint information that can be obtained from forward solution of the diffusion equation. This approach reduces the computational time many fold by approximating the system Jacobian successively through low-rank updates. Simulation studies have been carried out with single as well as multiple inhomogeneities. Algorithms are validated using an experimental study carried out on a pork tissue with fat acting as an inhomogeneity. The results obtained through the proposed BMOBIIR and ABMOBIIR approaches are compared with those of Newton-based MOBIIR algorithm. The mean squared error and execution time are used as metrics for comparing the results of reconstruction. We have shown through experimental and simulation studies that Broyden-based MOBIIR and adjoint Broyden-based methods are capable of reconstructing single as well as multiple inhomogeneities in tissue and a tissue-mimicking phantom. Broyden MOBIIR and adjoint Broyden MOBIIR methods are computationally simple and they result in much faster implementations because they avoid direct evaluation of Jacobian. The image reconstructions have been carried out with different initial values using Newton, Broyden, and adjoint Broyden approaches. These algorithms work well when the initial guess is close to the true solution. However, when initial guess is far away from true solution, Newton-based MOBIIR gives better reconstructed images. The proposed methods are found to be stable with noisy measurement data.

  3. Crisis DSM Generation To Support Refugee Camp Management

    NASA Astrophysics Data System (ADS)

    Gstaiger, Veronika; d'Angelo, Pablo; Schneiderhan, Tobais; Krauss, Thomas

    2013-12-01

    The extraction of high resolution surface information from satellite data has become an important area of research. One of the numerous fields of application is disaster management. Detailed information about the affected terrain is not only needed for analyses during the emergency relief phase, but also for reconstruction and prevention activities. In this paper the authors present the generation of a Digital Surface Model (DSM) based on three very high resolution optical satellite images. The DSM was produced to supplement a flood mapping activity in Jordan and serves as example for the implementation of scientific results during an emergency request. The flood affected the Zaatari refugee camp in Jordan and was mapped by the Center for Satellite Based Crisis Information (ZKI) at the German Aerospace Center (DLR) in January 2013 under emergency mapping conditions.

  4. Reconstruction of Laser-Induced Surface Topography from Electron Backscatter Diffraction Patterns.

    PubMed

    Callahan, Patrick G; Echlin, McLean P; Pollock, Tresa M; De Graef, Marc

    2017-08-01

    We demonstrate that the surface topography of a sample can be reconstructed from electron backscatter diffraction (EBSD) patterns collected with a commercial EBSD system. This technique combines the location of the maximum background intensity with a correction from Monte Carlo simulations to determine the local surface normals at each point in an EBSD scan. A surface height map is then reconstructed from the local surface normals. In this study, a Ni sample was machined with a femtosecond laser, which causes the formation of a laser-induced periodic surface structure (LIPSS). The topography of the LIPSS was analyzed using atomic force microscopy (AFM) and reconstructions from EBSD patterns collected at 5 and 20 kV. The LIPSS consisted of a combination of low frequency waviness due to curtaining and high frequency ridges. The morphology of the reconstructed low frequency waviness and high frequency ridges matched the AFM data. The reconstruction technique does not require any modification to existing EBSD systems and so can be particularly useful for measuring topography and its evolution during in situ experiments.

  5. The Effects of Surface Reconstruction and Electron-Positron Correlation on the Annihilation Characteristics of Positrons Trapped at Semiconductor Surfaces

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Jung, E.; Weiss, A. H.

    2009-03-01

    Experimental positron annihilation induced Auger electron spectroscopy (PAES) data from Ge(100) and Ge(111) surfaces display several strong Auger peaks corresponding to M4,5N1N2,3, M2,3M4,5M4,5, M2,3M4,5V, and M1M4,5M4,5 Auger transitions. The integrated peak intensities of Auger transitions have been used to obtain experimental annihilation probabilities for the Ge 3d and 3p core electrons. The experimental data were analyzed by performing theoretical studies of the effects of surface reconstructions and electron-positron correlations on image potential induced surface states and annihilation characteristics of positrons trapped at the reconstructed Ge(100) and Ge(111) surfaces. Calculations of positron surface states and annihilation characteristics have been performed for Ge(100) surface with (2×1), (2×2), and (4×2) reconstructions, and for Ge(111) surface with c(2×8) reconstruction. Estimates of the positron binding energy and annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of the semiconductor and to the approximations used to describe electron-positron correlations. The results of these theoretical studies are compared with the ones obtained for the reconstructed Si(100)-(2×1) and Si(111)-(7×7) surfaces.

  6. Improving the light quantification of near infrared (NIR) diffused light optical tomography with ultrasound localization

    NASA Astrophysics Data System (ADS)

    Ardeshirpour, Yasaman

    According to the statistics published by the American Cancer Society, currently breast cancer is the second most common cancer after skin cancer and the second cause of cancer death after lung cancer in the female population. Diffuse optical tomography (DOT) using near-infrared (NIR) light, guided by ultrasound localization, has shown great promise in distinguishing benign from malignant breast tumors and in assessing the response of breast cancer to chemotherapy. Our ultrasound-guided DOT system is based on reflection geometry, with patients scanned in supine position using a hand-held probe. For patients with chest-wall located at a depth shallower than 1 to 2cm, as in about 10% of our clinical cases, the semi-infinite imaging medium is not a valid assumption and the chest-wall effect needs to be considered in the imaging reconstruction procedure. In this dissertation, co-registered ultrasound images were used to model the breast-tissue and chest-wall as a two-layer medium. The effect of the chest wall on breast lesion reconstruction was systematically investigated. The performance of the two-layer model-based reconstruction, using the Finite Element Method, was evaluated by simulation, phantom experiments and clinical studies. The results show that the two-layer model can improve the accuracy of estimated background optical properties, the reconstructed absorption map and the total hemoglobin concentration of the lesion. For patients' data affected by chest wall, the perturbation, which is the difference between measurements obtained at lesion and normal reference sites, may include the information of background mismatch between these two sites. Because the imaging reconstruction is based on the perturbation approach, the effect of this mismatch between the optical properties at the two sites on reconstructed optical absorption was studied and a guideline for imaging procedure was developed to reduce these effects during data capturing. To reduce the artifacts caused by the background mismatch between the lesion and reference sites, two solutions were introduced. The first solution uses a model-based approach and the second method uses an exogenous contrast agent. The results of phantom and animal studies show that both methods can significantly reduce artifacts generated by the background mismatch.

  7. [Correction of light refraction and reflection in medical transmission optical tomography].

    PubMed

    Tereshchenko, S A; Potapov, D A

    2002-01-01

    The effects of light refraction and reflection on the quality of image reconstruction in medical transmission optical tomography of high-scattering media are considered. It has been first noted that light refraction not only distorts the geometric scheme of measurements, but may lead to the appearance of object areas that cannot be scanned. Some ways of decreasing the effect of refraction on the reconstruction of spatial distribution of the extinction coefficient are stated.

  8. 3D shape measurement of automotive glass by using a fringe reflection technique

    NASA Astrophysics Data System (ADS)

    Skydan, O. A.; Lalor, M. J.; Burton, D. R.

    2007-01-01

    In automotive and glass making industries, there is a need for accurately measuring the 3D shapes of reflective surfaces to speed up and ensure product development and manufacturing quality by using non-contact techniques. This paper describes a technique for the measurement of non-full-field reflective surfaces of automotive glass by using a fringe reflection technique. Physical properties of the measurement surfaces do not allow us to apply optical geometries used in existing techniques for surface measurement based upon direct fringe pattern illumination. However, this property of surface reflectivity can be used to implement similar ideas from existing techniques in a new improved method. In other words, the reflective surface can be used as a mirror to reflect illuminated fringe patterns onto a screen behind. It has been found that in the case of implementing the reflective fringe technique, the phase-shift distribution depends not only on the height of the object but also on the slope at each measurement point. This requires the solving of differential equations to find the surface slope and height distributions in the x and y directions and development of the additional height reconstruction algorithms. The main focus has been made on developing a mathematical model of the optical sub-system and discussing ways for its practical implementation including calibration procedures. A number of implemented image processing algorithms for system calibration and data analysis are discussed and two experimental results are given for automotive glass surfaces with different shapes and defects. The proposed technique showed the ability to provide accurate non-destructive measurement of 3D shapes of the reflective automotive glass surfaces and can be used as a key element for a glass shape quality control system on-line or in a laboratory environment.

  9. Evaluating Contextual Processing in Diffusion MRI: Application to Optic Radiation Reconstruction for Epilepsy Surgery

    PubMed Central

    Tax, Chantal M. W.; Duits, Remco; Vilanova, Anna; ter Haar Romeny, Bart M.; Hofman, Paul; Wagner, Louis; Leemans, Alexander; Ossenblok, Pauly

    2014-01-01

    Diffusion MRI and tractography allow for investigation of the architectural configuration of white matter in vivo, offering new avenues for applications like presurgical planning. Despite the promising outlook, there are many pitfalls that complicate its use for (clinical) application. Amongst these are inaccuracies in the geometry of the diffusion profiles on which tractography is based, and poor alignment with neighboring profiles. Recently developed contextual processing techniques, including enhancement and well-posed geometric sharpening, have shown to result in sharper and better aligned diffusion profiles. However, the research that has been conducted up to now is mainly of theoretical nature, and so far these techniques have only been evaluated by visual inspection of the diffusion profiles. In this work, the method is evaluated in a clinically relevant application: the reconstruction of the optic radiation for epilepsy surgery. For this evaluation we have developed a framework in which we incorporate a novel scoring procedure for individual pathways. We demonstrate that, using enhancement and sharpening, the extraction of an anatomically plausible reconstruction of the optic radiation from a large amount of probabilistic pathways is greatly improved in three healthy controls, where currently used methods fail to do so. Furthermore, challenging reconstructions of the optic radiation in three epilepsy surgery candidates with extensive brain lesions demonstrate that it is beneficial to integrate these methods in surgical planning. PMID:25077946

  10. Evaluating contextual processing in diffusion MRI: application to optic radiation reconstruction for epilepsy surgery.

    PubMed

    Tax, Chantal M W; Duits, Remco; Vilanova, Anna; ter Haar Romeny, Bart M; Hofman, Paul; Wagner, Louis; Leemans, Alexander; Ossenblok, Pauly

    2014-01-01

    Diffusion MRI and tractography allow for investigation of the architectural configuration of white matter in vivo, offering new avenues for applications like presurgical planning. Despite the promising outlook, there are many pitfalls that complicate its use for (clinical) application. Amongst these are inaccuracies in the geometry of the diffusion profiles on which tractography is based, and poor alignment with neighboring profiles. Recently developed contextual processing techniques, including enhancement and well-posed geometric sharpening, have shown to result in sharper and better aligned diffusion profiles. However, the research that has been conducted up to now is mainly of theoretical nature, and so far these techniques have only been evaluated by visual inspection of the diffusion profiles. In this work, the method is evaluated in a clinically relevant application: the reconstruction of the optic radiation for epilepsy surgery. For this evaluation we have developed a framework in which we incorporate a novel scoring procedure for individual pathways. We demonstrate that, using enhancement and sharpening, the extraction of an anatomically plausible reconstruction of the optic radiation from a large amount of probabilistic pathways is greatly improved in three healthy controls, where currently used methods fail to do so. Furthermore, challenging reconstructions of the optic radiation in three epilepsy surgery candidates with extensive brain lesions demonstrate that it is beneficial to integrate these methods in surgical planning.

  11. Digital imaging mass spectrometry.

    PubMed

    Bamberger, Casimir; Renz, Uwe; Bamberger, Andreas

    2011-06-01

    Methods to visualize the two-dimensional (2D) distribution of molecules by mass spectrometric imaging evolve rapidly and yield novel applications in biology, medicine, and material surface sciences. Most mass spectrometric imagers acquire high mass resolution spectra spot-by-spot and thereby scan the object's surface. Thus, imaging is slow and image reconstruction remains cumbersome. Here we describe an imaging mass spectrometer that exploits the true imaging capabilities by ion optical means for the time of flight mass separation. The mass spectrometer is equipped with the ASIC Timepix chip as an array detector to acquire the position, mass, and intensity of ions that are imaged by matrix-assisted laser desorption/ionization (MALDI) directly from the target sample onto the detector. This imaging mass spectrometer has a spatial resolving power at the specimen of (84 ± 35) μm with a mass resolution of 45 and locates atoms or organic compounds on a surface area up to ~2 cm(2). Extended laser spots of ~5 mm(2) on structured specimens allows parallel imaging of selected masses. The digital imaging mass spectrometer proves high hit-multiplicity, straightforward image reconstruction, and potential for high-speed readout at 4 kHz or more. This device demonstrates a simple way of true image acquisition like a digital photographic camera. The technology may enable a fast analysis of biomolecular samples in near future.

  12. Pseudodynamic systems approach based on a quadratic approximation of update equations for diffuse optical tomography.

    PubMed

    Biswas, Samir Kumar; Kanhirodan, Rajan; Vasu, Ram Mohan; Roy, Debasish

    2011-08-01

    We explore a pseudodynamic form of the quadratic parameter update equation for diffuse optical tomographic reconstruction from noisy data. A few explicit and implicit strategies for obtaining the parameter updates via a semianalytical integration of the pseudodynamic equations are proposed. Despite the ill-posedness of the inverse problem associated with diffuse optical tomography, adoption of the quadratic update scheme combined with the pseudotime integration appears not only to yield higher convergence, but also a muted sensitivity to the regularization parameters, which include the pseudotime step size for integration. These observations are validated through reconstructions with both numerically generated and experimentally acquired data.

  13. Haptics in forensics: the possibilities and advantages in using the haptic device for reconstruction approaches in forensic science.

    PubMed

    Buck, Ursula; Naether, Silvio; Braun, Marcel; Thali, Michael

    2008-09-18

    Non-invasive documentation methods such as surface scanning and radiological imaging are gaining in importance in the forensic field. These three-dimensional technologies provide digital 3D data, which are processed and handled in the computer. However, the sense of touch gets lost using the virtual approach. The haptic device enables the use of the sense of touch to handle and feel digital 3D data. The multifunctional application of a haptic device for forensic approaches is evaluated and illustrated in three different cases: the representation of bone fractures of the lower extremities, by traffic accidents, in a non-invasive manner; the comparison of bone injuries with the presumed injury-inflicting instrument; and in a gunshot case, the identification of the gun by the muzzle imprint, and the reconstruction of the holding position of the gun. The 3D models of the bones are generated from the Computed Tomography (CT) images. The 3D models of the exterior injuries, the injury-inflicting tools and the bone injuries, where a higher resolution is necessary, are created by the optical surface scan. The haptic device is used in combination with the software FreeForm Modelling Plus for touching the surface of the 3D models to feel the minute injuries and the surface of tools, to reposition displaced bone parts and to compare an injury-causing instrument with an injury. The repositioning of 3D models in a reconstruction is easier, faster and more precisely executed by means of using the sense of touch and with the user-friendly movement in the 3D space. For representation purposes, the fracture lines of bones are coloured. This work demonstrates that the haptic device is a suitable and efficient application in forensic science. The haptic device offers a new way in the handling of digital data in the virtual 3D space.

  14. Application of the sequential quadratic programming algorithm for reconstructing the distribution of optical parameters based on the time-domain radiative transfer equation.

    PubMed

    Qi, Hong; Qiao, Yao-Bin; Ren, Ya-Tao; Shi, Jing-Wen; Zhang, Ze-Yu; Ruan, Li-Ming

    2016-10-17

    Sequential quadratic programming (SQP) is used as an optimization algorithm to reconstruct the optical parameters based on the time-domain radiative transfer equation (TD-RTE). Numerous time-resolved measurement signals are obtained using the TD-RTE as forward model. For a high computational efficiency, the gradient of objective function is calculated using an adjoint equation technique. SQP algorithm is employed to solve the inverse problem and the regularization term based on the generalized Gaussian Markov random field (GGMRF) model is used to overcome the ill-posed problem. Simulated results show that the proposed reconstruction scheme performs efficiently and accurately.

  15. [Application of Fourier transform profilometry in 3D-surface reconstruction].

    PubMed

    Shi, Bi'er; Lu, Kuan; Wang, Yingting; Li, Zhen'an; Bai, Jing

    2011-08-01

    With the improvement of system frame and reconstruction methods in fluorescent molecules tomography (FMT), the FMT technology has been widely used as an important experimental tool in biomedical research. It is necessary to get the 3D-surface profile of the experimental object as the boundary constraints of FMT reconstruction algorithms. We proposed a new 3D-surface reconstruction method based on Fourier transform profilometry (FTP) method under the blue-purple light condition. The slice images were reconstructed using proper image processing methods, frequency spectrum analysis and filtering. The results of experiment showed that the method properly reconstructed the 3D-surface of objects and has the mm-level accuracy. Compared to other methods, this one is simple and fast. Besides its well-reconstructed, the proposed method could help monitor the behavior of the object during the experiment to ensure the correspondence of the imaging process. Furthermore, the method chooses blue-purple light section as its light source to avoid the interference towards fluorescence imaging.

  16. Non-destructive 3D shape measurement of transparent and black objects with thermal fringes

    NASA Astrophysics Data System (ADS)

    Brahm, Anika; Rößler, Conrad; Dietrich, Patrick; Heist, Stefan; Kühmstedt, Peter; Notni, Gunther

    2016-05-01

    Fringe projection is a well-established optical method for the non-destructive contactless three-dimensional (3D) measurement of object surfaces. Typically, fringe sequences in the visible wavelength range (VIS) are projected onto the surfaces of objects to be measured and are observed by two cameras in a stereo vision setup. The reconstruction is done by finding corresponding pixels in both cameras followed by triangulation. Problems can occur if the properties of some materials disturb the measurements. If the objects are transparent, translucent, reflective, or strongly absorbing in the VIS range, the projected patterns cannot be recorded properly. To overcome these challenges, we present a new alternative approach in the infrared (IR) region of the electromagnetic spectrum. For this purpose, two long-wavelength infrared (LWIR) cameras (7.5 - 13 μm) are used to detect the emitted heat radiation from surfaces which is induced by a pattern projection unit driven by a CO2 laser (10.6 μm). Thus, materials like glass or black objects, e.g. carbon fiber materials, can be measured non-destructively without the need of any additional paintings. We will demonstrate the basic principles of this heat pattern approach and show two types of 3D systems based on a freeform mirror and a GOBO wheel (GOes Before Optics) projector unit.

  17. Combining multi-atlas segmentation with brain surface estimation

    NASA Astrophysics Data System (ADS)

    Huo, Yuankai; Carass, Aaron; Resnick, Susan M.; Pham, Dzung L.; Prince, Jerry L.; Landman, Bennett A.

    2016-03-01

    Whole brain segmentation (with comprehensive cortical and subcortical labels) and cortical surface reconstruction are two essential techniques for investigating the human brain. The two tasks are typically conducted independently, however, which leads to spatial inconsistencies and hinders further integrated cortical analyses. To obtain self-consistent whole brain segmentations and surfaces, FreeSurfer segregates the subcortical and cortical segmentations before and after the cortical surface reconstruction. However, this "segmentation to surface to parcellation" strategy has shown limitation in various situations. In this work, we propose a novel "multi-atlas segmentation to surface" method called Multi-atlas CRUISE (MaCRUISE), which achieves self-consistent whole brain segmentations and cortical surfaces by combining multi-atlas segmentation with the cortical reconstruction method CRUISE. To our knowledge, this is the first work that achieves the reliability of state-of-the-art multi-atlas segmentation and labeling methods together with accurate and consistent cortical surface reconstruction. Compared with previous methods, MaCRUISE has three features: (1) MaCRUISE obtains 132 cortical/subcortical labels simultaneously from a single multi-atlas segmentation before reconstructing volume consistent surfaces; (2) Fuzzy tissue memberships are combined with multi-atlas segmentations to address partial volume effects; (3) MaCRUISE reconstructs topologically consistent cortical surfaces by using the sulci locations from multi-atlas segmentation. Two data sets, one consisting of five subjects with expertly traced landmarks and the other consisting of 100 volumes from elderly subjects are used for validation. Compared with CRUISE, MaCRUISE achieves self-consistent whole brain segmentation and cortical reconstruction without compromising on surface accuracy. MaCRUISE is comparably accurate to FreeSurfer while achieving greater robustness across an elderly population.

  18. Combining Multi-atlas Segmentation with Brain Surface Estimation.

    PubMed

    Huo, Yuankai; Carass, Aaron; Resnick, Susan M; Pham, Dzung L; Prince, Jerry L; Landman, Bennett A

    2016-02-27

    Whole brain segmentation (with comprehensive cortical and subcortical labels) and cortical surface reconstruction are two essential techniques for investigating the human brain. The two tasks are typically conducted independently, however, which leads to spatial inconsistencies and hinders further integrated cortical analyses. To obtain self-consistent whole brain segmentations and surfaces, FreeSurfer segregates the subcortical and cortical segmentations before and after the cortical surface reconstruction. However, this "segmentation to surface to parcellation" strategy has shown limitations in various situations. In this work, we propose a novel "multi-atlas segmentation to surface" method called Multi-atlas CRUISE (MaCRUISE), which achieves self-consistent whole brain segmentations and cortical surfaces by combining multi-atlas segmentation with the cortical reconstruction method CRUISE. To our knowledge, this is the first work that achieves the reliability of state-of-the-art multi-atlas segmentation and labeling methods together with accurate and consistent cortical surface reconstruction. Compared with previous methods, MaCRUISE has three features: (1) MaCRUISE obtains 132 cortical/subcortical labels simultaneously from a single multi-atlas segmentation before reconstructing volume consistent surfaces; (2) Fuzzy tissue memberships are combined with multi-atlas segmentations to address partial volume effects; (3) MaCRUISE reconstructs topologically consistent cortical surfaces by using the sulci locations from multi-atlas segmentation. Two data sets, one consisting of five subjects with expertly traced landmarks and the other consisting of 100 volumes from elderly subjects are used for validation. Compared with CRUISE, MaCRUISE achieves self-consistent whole brain segmentation and cortical reconstruction without compromising on surface accuracy. MaCRUISE is comparably accurate to FreeSurfer while achieving greater robustness across an elderly population.

  19. Reconstructing surface wave profiles from reflected acoustic pulses using multiple receivers.

    PubMed

    Walstead, Sean P; Deane, Grant B

    2014-08-01

    Surface wave shapes are determined by analyzing underwater reflected acoustic signals collected at multiple receivers. The transmitted signals are of nominal frequency 300 kHz and are reflected off surface gravity waves that are paddle-generated in a wave tank. An inverse processing algorithm reconstructs 50 surface wave shapes over a length span of 2.10 m. The inverse scheme uses a broadband forward scattering model based on Kirchhoff's diffraction formula to determine wave shapes. The surface reconstruction algorithm is self-starting in that source and receiver geometry and initial estimates of wave shape are determined from the same acoustic signals used in the inverse processing. A high speed camera provides ground-truth measurements of the surface wave field for comparison with the acoustically derived surface waves. Within Fresnel zone regions the statistical confidence of the inversely optimized surface profile exceeds that of the camera profile. Reconstructed surfaces are accurate to a resolution of about a quarter-wavelength of the acoustic pulse only within Fresnel zones associated with each source and receiver pair. Multiple isolated Fresnel zones from multiple receivers extend the spatial extent of accurate surface reconstruction while overlapping Fresnel zones increase confidence in the optimized profiles there.

  20. Adaptation and focusing of optode configurations for fluorescence optical tomography by experimental design methods.

    PubMed

    Freiberger, Manuel; Clason, Christian; Scharfetter, Hermann

    2010-01-01

    Fluorescence tomography excites a fluorophore inside a sample by light sources on the surface. From boundary measurements of the fluorescent light, the distribution of the fluorophore is reconstructed. The optode placement determines the quality of the reconstructions in terms of, e.g., resolution and contrast-to-noise ratio. We address the adaptation of the measurement setup. The redundancy of the measurements is chosen as a quality criterion for the optodes and is computed from the Jacobian of the mathematical formulation of light propagation. The algorithm finds a subset with minimum redundancy in the measurements from a feasible pool of optodes. This allows biasing the design in order to favor reconstruction results inside a given region. Two different variations of the algorithm, based on geometric and arithmetic averaging, are compared. Both deliver similar optode configurations. The arithmetic averaging is slightly more stable, whereas the geometric averaging approach shows a better conditioning of the sensitivity matrix and mathematically corresponds more closely with entropy optimization. Adapted illumination and detector patterns are presented for an initial set of 96 optodes placed on a cylinder with focusing on different regions. Examples for the attenuation of fluorophore signals from regions outside the focus are given.

  1. Quickly updatable hologram images with high performance photorefractive polymer composites

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Naoto; Kinashi, Kenji; Nonomura, Asato; Sakai, Wataru

    2012-02-01

    We present here quickly updatable hologram images using high performance photorefractive (PR) polymer composite based on poly(N-vinyl carbazole) (PVCz). PVCz is one of the pioneer materials for photoconductive polymer. PVCz/7- DCST/CzEPA/TNF (44/35/20/1 by wt) gives high diffraction efficiency of 68 % at E = 45 V/μm with fast response speed. Response speed of optical diffraction is the key parameter for real-time 3D holographic display. Key parameter for obtaining quickly updatable hologram images is to control the glass transition temperature lower enough to enhance chromophore orientation. Object image of the reflected coin surface recorded with reference beam at 532 nm (green beam) in the PR polymer composite is simultaneously reconstructed using a red probe beam at 642 nm. Instead of using coin object, object image produced by a computer was displayed on a spatial light modulator (SLM) is used as an object for hologram. Reflected object beam from a SLM interfered with reference beam on PR polymer composite to record a hologram and simultaneously reconstructed by a red probe beam. Movie produced in a computer was recorded as a realtime hologram in the PR polymer composite and simultaneously clearly reconstructed with a video rate.

  2. Virtual reconstruction of glenoid bone defects using a statistical shape model.

    PubMed

    Plessers, Katrien; Vanden Berghe, Peter; Van Dijck, Christophe; Wirix-Speetjens, Roel; Debeer, Philippe; Jonkers, Ilse; Vander Sloten, Jos

    2018-01-01

    Description of the native shape of a glenoid helps surgeons to preoperatively plan the position of a shoulder implant. A statistical shape model (SSM) can be used to virtually reconstruct a glenoid bone defect and to predict the inclination, version, and center position of the native glenoid. An SSM-based reconstruction method has already been developed for acetabular bone reconstruction. The goal of this study was to evaluate the SSM-based method for the reconstruction of glenoid bone defects and the prediction of native anatomic parameters. First, an SSM was created on the basis of 66 healthy scapulae. Then, artificial bone defects were created in all scapulae and reconstructed using the SSM-based reconstruction method. For each bone defect, the reconstructed surface was compared with the original surface. Furthermore, the inclination, version, and glenoid center point of the reconstructed surface were compared with the original parameters of each scapula. For small glenoid bone defects, the healthy surface of the glenoid was reconstructed with a root mean square error of 1.2 ± 0.4 mm. Inclination, version, and glenoid center point were predicted with an accuracy of 2.4° ± 2.1°, 2.9° ± 2.2°, and 1.8 ± 0.8 mm, respectively. The SSM-based reconstruction method is able to accurately reconstruct the native glenoid surface and to predict the native anatomic parameters. Based on this outcome, statistical shape modeling can be considered a successful technique for use in the preoperative planning of shoulder arthroplasty. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  3. Probing the electronic transport on the reconstructed Au/Ge(001) surface

    PubMed Central

    Krok, Franciszek; Kaspers, Mark R; Bernhart, Alexander M; Nikiel, Marek; Jany, Benedykt R; Indyka, Paulina; Wojtaszek, Mateusz; Möller, Rolf

    2014-01-01

    Summary By using scanning tunnelling potentiometry we characterized the lateral variation of the electrochemical potential µec on the gold-induced Ge(001)-c(8 × 2)-Au surface reconstruction while a lateral current flows through the sample. On the reconstruction and across domain boundaries we find that µec shows a constant gradient as a function of the position between the contacts. In addition, nanoscale Au clusters on the surface do not show an electronic coupling to the gold-induced surface reconstruction. In combination with high resolution scanning electron microscopy and transmission electron microscopy, we conclude that an additional transport channel buried about 2 nm underneath the surface represents a major transport channel for electrons. PMID:25247129

  4. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water.

    PubMed

    Glaser, Adam K; Andreozzi, Jacqueline M; Zhang, Rongxiao; Pogue, Brian W; Gladstone, David J

    2015-07-01

    To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp-Davis-Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm(3) volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%-99% pass fraction depending on the chosen threshold dose. The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  5. Optical diffraction tomography: accuracy of an off-axis reconstruction

    NASA Astrophysics Data System (ADS)

    Kostencka, Julianna; Kozacki, Tomasz

    2014-05-01

    Optical diffraction tomography is an increasingly popular method that allows for reconstruction of three-dimensional refractive index distribution of semi-transparent samples using multiple measurements of an optical field transmitted through the sample for various illumination directions. The process of assembly of the angular measurements is usually performed with one of two methods: filtered backprojection (FBPJ) or filtered backpropagation (FBPP) tomographic reconstruction algorithm. The former approach, although conceptually very simple, provides an accurate reconstruction for the object regions located close to the plane of focus. However, since FBPJ ignores diffraction, its use for spatially extended structures is arguable. According to the theory of scattering, more precise restoration of a 3D structure shall be achieved with the FBPP algorithm, which unlike the former approach incorporates diffraction. It is believed that with this method one is allowed to obtain a high accuracy reconstruction in a large measurement volume exceeding depth of focus of an imaging system. However, some studies have suggested that a considerable improvement of the FBPP results can be achieved with prior propagation of the transmitted fields back to the centre of the object. This, supposedly, enables reduction of errors due to approximated diffraction formulas used in FBPP. In our view this finding casts doubt on quality of the FBPP reconstruction in the regions far from the rotation axis. The objective of this paper is to investigate limitation of the FBPP algorithm in terms of an off-axis reconstruction and compare its performance with the FBPJ approach. Moreover, in this work we propose some modifications to the FBPP algorithm that allow for more precise restoration of a sample structure in off-axis locations. The research is based on extensive numerical simulations supported with wave-propagation method.

  6. TH-AB-202-08: A Robust Real-Time Surface Reconstruction Method On Point Clouds Captured From a 3D Surface Photogrammetry System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W; Sawant, A; Ruan, D

    2016-06-15

    Purpose: Surface photogrammetry (e.g. VisionRT, C-Rad) provides a noninvasive way to obtain high-frequency measurement for patient motion monitoring in radiotherapy. This work aims to develop a real-time surface reconstruction method on the acquired point clouds, whose acquisitions are subject to noise and missing measurements. In contrast to existing surface reconstruction methods that are usually computationally expensive, the proposed method reconstructs continuous surfaces with comparable accuracy in real-time. Methods: The key idea in our method is to solve and propagate a sparse linear relationship from the point cloud (measurement) manifold to the surface (reconstruction) manifold, taking advantage of the similarity inmore » local geometric topology in both manifolds. With consistent point cloud acquisition, we propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, building the point correspondences by the iterative closest point (ICP) method. To accommodate changing noise levels and/or presence of inconsistent occlusions, we further propose a modified sparse regression (MSR) model to account for the large and sparse error built by ICP, with a Laplacian prior. We evaluated our method on both clinical acquired point clouds under consistent conditions and simulated point clouds with inconsistent occlusions. The reconstruction accuracy was evaluated w.r.t. root-mean-squared-error, by comparing the reconstructed surfaces against those from the variational reconstruction method. Results: On clinical point clouds, both the SR and MSR models achieved sub-millimeter accuracy, with mean reconstruction time reduced from 82.23 seconds to 0.52 seconds and 0.94 seconds, respectively. On simulated point cloud with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent performance despite the introduced occlusions. Conclusion: We have developed a real-time and robust surface reconstruction method on point clouds acquired by photogrammetry systems. It serves an important enabling step for real-time motion tracking in radiotherapy. This work is supported in part by NIH grant R01 CA169102-02.« less

  7. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya

    2015-11-15

    Purpose: To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). Methods: The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discretemore » models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. Results: On phantom point clouds, their method achieved submillimeter reconstruction RMSE under different configurations, demonstrating quantitatively the faith of the proposed method in preserving local structural properties of the underlying surface in the presence of noise and missing measurements, and its robustness toward variations of such characteristics. On point clouds from the human subject, the proposed method successfully reconstructed all patient surfaces, filling regions where raw point coordinate readings were missing. Within two comparable regions of interest in the chest area, similar mean curvature distributions were acquired from both their reconstructed surface and CT surface, with mean and standard deviation of (μ{sub recon} = − 2.7 × 10{sup −3} mm{sup −1}, σ{sub recon} = 7.0 × 10{sup −3} mm{sup −1}) and (μ{sub CT} = − 2.5 × 10{sup −3} mm{sup −1}, σ{sub CT} = 5.3 × 10{sup −3} mm{sup −1}), respectively. The agreement of local geometry properties between the reconstructed surfaces and the CT surface demonstrated the ability of the proposed method in faithfully representing the underlying patient surface. Conclusions: The authors have integrated and developed an accurate level-set based continuous surface reconstruction method on point clouds acquired by a 3D surface photogrammetry system. The proposed method has generated a continuous representation of the underlying phantom and patient surfaces with good robustness against noise and missing measurements. It serves as an important first step for further development of motion tracking methods during radiotherapy.« less

  8. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system

    PubMed Central

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J.; Sawant, Amit; Ruan, Dan

    2015-01-01

    Purpose: To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). Methods: The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. Results: On phantom point clouds, their method achieved submillimeter reconstruction RMSE under different configurations, demonstrating quantitatively the faith of the proposed method in preserving local structural properties of the underlying surface in the presence of noise and missing measurements, and its robustness toward variations of such characteristics. On point clouds from the human subject, the proposed method successfully reconstructed all patient surfaces, filling regions where raw point coordinate readings were missing. Within two comparable regions of interest in the chest area, similar mean curvature distributions were acquired from both their reconstructed surface and CT surface, with mean and standard deviation of (μrecon = − 2.7 × 10−3 mm−1, σrecon = 7.0 × 10−3 mm−1) and (μCT = − 2.5 × 10−3 mm−1, σCT = 5.3 × 10−3 mm−1), respectively. The agreement of local geometry properties between the reconstructed surfaces and the CT surface demonstrated the ability of the proposed method in faithfully representing the underlying patient surface. Conclusions: The authors have integrated and developed an accurate level-set based continuous surface reconstruction method on point clouds acquired by a 3D surface photogrammetry system. The proposed method has generated a continuous representation of the underlying phantom and patient surfaces with good robustness against noise and missing measurements. It serves as an important first step for further development of motion tracking methods during radiotherapy. PMID:26520747

  9. Design of a multimodal fibers optic system for small animal optical imaging.

    PubMed

    Spinelli, Antonello E; Pagliazzi, Marco; Boschi, Federico

    2015-02-01

    Small animals optical imaging systems are widely used in pre-clinical research to image in vivo the bio-distribution of light emitting probes using fluorescence or bioluminescence modalities. In this work we presented a set of simulated results of a novel small animal optical imaging module based on a fibers optics matrix, coupled with a position sensitive detector, devoted to acquire bioluminescence and Cerenkov images. Simulations were performed using GEANT 4 code with the GAMOS architecture using the tissue optics plugin. Results showed that it is possible to image a 30 × 30 mm region of interest using a fiber optics array containing 100 optical fibers without compromising the quality of the reconstruction. The number of fibers necessary to cover an adequate portion of a small animal is thus quite modest. This design allows integrating the module with magnetic resonance (MR) in order to acquire optical and MR images at the same time. A detailed model of the mouse anatomy, obtained by segmentation of 3D MRI images, will improve the quality of optical 3D reconstruction. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) by particle swarm optimization

    PubMed Central

    Tehrani, Kayvan F.; Zhang, Yiwen; Shen, Ping; Kner, Peter

    2017-01-01

    Stochastic optical reconstruction microscopy (STORM) can achieve resolutions of better than 20nm imaging single fluorescently labeled cells. However, when optical aberrations induced by larger biological samples degrade the point spread function (PSF), the localization accuracy and number of localizations are both reduced, destroying the resolution of STORM. Adaptive optics (AO) can be used to correct the wavefront, restoring the high resolution of STORM. A challenge for AO-STORM microscopy is the development of robust optimization algorithms which can efficiently correct the wavefront from stochastic raw STORM images. Here we present the implementation of a particle swarm optimization (PSO) approach with a Fourier metric for real-time correction of wavefront aberrations during STORM acquisition. We apply our approach to imaging boutons 100 μm deep inside the central nervous system (CNS) of Drosophila melanogaster larvae achieving a resolution of 146 nm. PMID:29188105

  11. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) by particle swarm optimization.

    PubMed

    Tehrani, Kayvan F; Zhang, Yiwen; Shen, Ping; Kner, Peter

    2017-11-01

    Stochastic optical reconstruction microscopy (STORM) can achieve resolutions of better than 20nm imaging single fluorescently labeled cells. However, when optical aberrations induced by larger biological samples degrade the point spread function (PSF), the localization accuracy and number of localizations are both reduced, destroying the resolution of STORM. Adaptive optics (AO) can be used to correct the wavefront, restoring the high resolution of STORM. A challenge for AO-STORM microscopy is the development of robust optimization algorithms which can efficiently correct the wavefront from stochastic raw STORM images. Here we present the implementation of a particle swarm optimization (PSO) approach with a Fourier metric for real-time correction of wavefront aberrations during STORM acquisition. We apply our approach to imaging boutons 100 μm deep inside the central nervous system (CNS) of Drosophila melanogaster larvae achieving a resolution of 146 nm.

  12. Analyser-based phase contrast image reconstruction using geometrical optics.

    PubMed

    Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A

    2007-07-21

    Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (<100 microm), whilst quantitative phase and attenuation information can be extracted using just two images when the approximations of geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser.

  13. 3D reconstruction of the optic nerve head using stereo fundus images for computer-aided diagnosis of glaucoma

    NASA Astrophysics Data System (ADS)

    Tang, Li; Kwon, Young H.; Alward, Wallace L. M.; Greenlee, Emily C.; Lee, Kyungmoo; Garvin, Mona K.; Abràmoff, Michael D.

    2010-03-01

    The shape of the optic nerve head (ONH) is reconstructed automatically using stereo fundus color images by a robust stereo matching algorithm, which is needed for a quantitative estimate of the amount of nerve fiber loss for patients with glaucoma. Compared to natural scene stereo, fundus images are noisy because of the limits on illumination conditions and imperfections of the optics of the eye, posing challenges to conventional stereo matching approaches. In this paper, multi scale pixel feature vectors which are robust to noise are formulated using a combination of both pixel intensity and gradient features in scale space. Feature vectors associated with potential correspondences are compared with a disparity based matching score. The deep structures of the optic disc are reconstructed with a stack of disparity estimates in scale space. Optical coherence tomography (OCT) data was collected at the same time, and depth information from 3D segmentation was registered with the stereo fundus images to provide the ground truth for performance evaluation. In experiments, the proposed algorithm produces estimates for the shape of the ONH that are close to the OCT based shape, and it shows great potential to help computer-aided diagnosis of glaucoma and other related retinal diseases.

  14. Mach-Zehnder interferometry method for acoustic shock wave measurements in air and broadband calibration of microphones.

    PubMed

    Yuldashev, Petr; Karzova, Maria; Khokhlova, Vera; Ollivier, Sébastien; Blanc-Benon, Philippe

    2015-06-01

    A Mach-Zehnder interferometer is used to measure spherically diverging N-waves in homogeneous air. An electrical spark source is used to generate high-amplitude (1800 Pa at 15 cm from the source) and short duration (50 μs) N-waves. Pressure waveforms are reconstructed from optical phase signals using an Abel-type inversion. It is shown that the interferometric method allows one to reach 0.4 μs of time resolution, which is 6 times better than the time resolution of a 1/8-in. condenser microphone (2.5 μs). Numerical modeling is used to validate the waveform reconstruction method. The waveform reconstruction method provides an error of less than 2% with respect to amplitude in the given experimental conditions. Optical measurement is used as a reference to calibrate a 1/8-in. condenser microphone. The frequency response function of the microphone is obtained by comparing the spectra of the waveforms resulting from optical and acoustical measurements. The optically measured pressure waveforms filtered with the microphone frequency response are in good agreement with the microphone output voltage. Therefore, an optical measurement method based on the Mach-Zehnder interferometer is a reliable tool to accurately characterize evolution of weak shock waves in air and to calibrate broadband acoustical microphones.

  15. Cone beam x-ray luminescence computed tomography reconstruction with a priori anatomical information

    NASA Astrophysics Data System (ADS)

    Lo, Pei-An; Lin, Meng-Lung; Jin, Shih-Chun; Chen, Jyh-Cheng; Lin, Syue-Liang; Chang, C. Allen; Chiang, Huihua Kenny

    2014-09-01

    X-ray luminescence computed tomography (XLCT) is a novel molecular imaging modality that reconstructs the optical distribution of x-ray-excited phosphor particles with prior informational of anatomical CT image. The prior information improves the accuracy of image reconstruction. The system can also present anatomical CT image. The optical system based on a high sensitive charge coupled device (CCD) is perpendicular with a CT system. In the XLCT system, the xray was adopted to excite the phosphor of the sample and CCD camera was utilized to acquire luminescence emitted from the sample in 360 degrees projection free-space. In this study, the fluorescence diffuse optical tomography (FDOT)-like algorithm was used for image reconstruction, the structural prior information was incorporated in the reconstruction by adding a penalty term to the minimization function. The phosphor used in this study is Gd2O2S:Tb. For the simulation and experiments, the data was collected from 16 projections. The cylinder phantom was 40 mm in diameter and contains 8 mm diameter inclusion; the phosphor in the in vivo study was 5 mm in diameter at a depth of 3 mm. Both the errors were no more than 5%. Based on the results from these simulation and experimental studies, the novel XLCT method has demonstrated the feasibility for in vivo animal model studies.

  16. Model-based conifer crown surface reconstruction from multi-ocular high-resolution aerial imagery

    NASA Astrophysics Data System (ADS)

    Sheng, Yongwei

    2000-12-01

    Tree crown parameters such as width, height, shape and crown closure are desirable in forestry and ecological studies, but they are time-consuming and labor intensive to measure in the field. The stereoscopic capability of high-resolution aerial imagery provides a way to crown surface reconstruction. Existing photogrammetric algorithms designed to map terrain surfaces, however, cannot adequately extract crown surfaces, especially for steep conifer crowns. Considering crown surface reconstruction in a broader context of tree characterization from aerial images, we develop a rigorous perspective tree image formation model to bridge image-based tree extraction and crown surface reconstruction, and an integrated model-based approach to conifer crown surface reconstruction. Based on the fact that most conifer crowns are in a solid geometric form, conifer crowns are modeled as a generalized hemi-ellipsoid. Both the automatic and semi-automatic approaches are investigated to optimal tree model development from multi-ocular images. The semi-automatic 3D tree interpreter developed in this thesis is able to efficiently extract reliable tree parameters and tree models in complicated tree stands. This thesis starts with a sophisticated stereo matching algorithm, and incorporates tree models to guide stereo matching. The following critical problems are addressed in the model-based surface reconstruction process: (1) the problem of surface model composition from tree models, (2) the occlusion problem in disparity prediction from tree models, (3) the problem of integrating the predicted disparities into image matching, (4) the tree model edge effect reduction on the disparity map, (5) the occlusion problem in orthophoto production, and (6) the foreshortening problem in image matching, which is very serious for conifer crown surfaces. Solutions to the above problems are necessary for successful crown surface reconstruction. The model-based approach was applied to recover the canopy surface of a dense redwood stand using tri-ocular high-resolution images scanned from 1:2,400 aerial photographs. The results demonstrate the approach's ability to reconstruct complicated stands. The model-based approach proposed in this thesis is potentially applicable to other surfaces recovering problems with a priori knowledge about objects.

  17. A novel design of a scanning probe microscope integrated with an ultramicrotome for serial block-face nanotomography

    NASA Astrophysics Data System (ADS)

    Efimov, Anton E.; Agapov, Igor I.; Agapova, Olga I.; Oleinikov, Vladimir A.; Mezin, Alexey V.; Molinari, Michael; Nabiev, Igor; Mochalov, Konstantin E.

    2017-02-01

    We present a new concept of a combined scanning probe microscope (SPM)/ultramicrotome apparatus. It enables "slice-and-view" scanning probe nanotomography measurements and 3D reconstruction of the bulk sample nanostructure from series of SPM images after consecutive ultrathin sections. The sample is fixed on a flat XYZ scanning piezostage mounted on the ultramicrotome arm. The SPM measuring head with a cantilever tip and a laser-photodiode tip detection system approaches the sample for SPM measurements of the block-face surface immediately after the ultramicrotome sectioning is performed. The SPM head is moved along guides that are also fixed on the ultramicrotome arm. Thereby, relative dysfunctional displacements of the tip, the sample, and the ultramicrotome knife are minimized. The design of the SPM head enables open frontal optical access to the sample block-face adapted for high-resolution optical lenses for correlative SPM/optical microscopy applications. The new system can be used in a wide range of applications for the study of 3D nanostructures of biological objects, biomaterials, polymer nanocomposites, and nanohybrid materials in various SPM and optical microscopy measuring modes.

  18. Worthwhile optical method for free-form mirrors qualification

    NASA Astrophysics Data System (ADS)

    Sironi, G.; Canestrari, R.; Toso, G.; Pareschi, G.

    2013-09-01

    We present an optical method for free-form mirrors qualification developed by the Italian National Institute for Astrophysics (INAF) in the context of the ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Project which includes, among its items, the design, development and installation of a dual-mirror telescope prototype for the Cherenkov Telescope Array (CTA) observatory. The primary mirror panels of the telescope prototype are free-form concave mirrors with few microns accuracy required on the shape error. The developed technique is based on the synergy between a Ronchi-like optical test performed on the reflecting surface and the image, obtained by means of the TraceIT ray-tracing proprietary code, a perfect optics should generate in the same configuration. This deflectometry test allows the reconstruction of the slope error map that the TraceIT code can process to evaluate the measured mirror optical performance at the telescope focus. The advantages of the proposed method is that it substitutes the use of 3D coordinates measuring machine reducing production time and costs and offering the possibility to evaluate on-site the mirror image quality at the focus. In this paper we report the measuring concept and compare the obtained results to the similar ones obtained processing the shape error acquired by means of a 3D coordinates measuring machine.

  19. Homoepitaxial electrodeposition on reconstructed and unreconstructed Au(100): An in-situ STM study

    NASA Astrophysics Data System (ADS)

    Al-Shakran, Mohammad; Kibler, Ludwig A.; Jacob, Timo

    2015-01-01

    A study of homoepitaxial electrodeposition on reconstructed and unreconstructed Au(100) surfaces is presented. The growth behavior has been investigated by in-situ scanning tunneling microscopy for Au(100) in contact with 0.1 M H2SO4 + 5 μM K[AuCl4]. It is shown that the initial surface structure is decisive for the emerging Au structures, giving rise to clearly different surface morphologies for electro-crystallization of Au on the unreconstructed and on the reconstructed Au(100) surface. A layer-by-layer growth is observed at more positive potentials for unreconstructed Au(100). The electrodeposition proceeds initially by the formation of Au islands followed by island coalescence due to the high mobility of surface atoms. Monatomic recessed stripes are formed as a result of the coalescence of deposited Au islands. At more negative potentials, the growth of Au proceeds strongly anisotropic on the reconstructed surface by the formation of reconstructed elongated islands.

  20. Decoupled Method for Reconstruction of Surface Conditions From Internal Temperatures On Ablative Materials With Uncertain Recession Model

    NASA Technical Reports Server (NTRS)

    Oliver, A. Brandon

    2017-01-01

    Obtaining measurements of flight environments on ablative heat shields is both critical for spacecraft development and extremely challenging due to the harsh heating environment and surface recession. Thermocouples installed several millimeters below the surface are commonly used to measure the heat shield temperature response, but an ill-posed inverse heat conduction problem must be solved to reconstruct the surface heating environment from these measurements. Ablation can contribute substantially to the measurement response making solutions to the inverse problem strongly dependent on the recession model, which is often poorly characterized. To enable efficient surface reconstruction for recession model sensitivity analysis, a method for decoupling the surface recession evaluation from the inverse heat conduction problem is presented. The decoupled method is shown to provide reconstructions of equivalent accuracy to the traditional coupled method but with substantially reduced computational effort. These methods are applied to reconstruct the environments on the Mars Science Laboratory heat shield using diffusion limit and kinetically limited recession models.

  1. The Effects of Surface Reconstruction and Electron-Positron Correlation on the Annihilation Characteristics of Positrons Trapped at Semiconductor Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazleev, N. G.; Department of Physics, Kazan State University, Kazan 420008; Jung, E.

    2009-03-10

    Experimental positron annihilation induced Auger electron spectroscopy (PAES) data from Ge(100) and Ge(111) surfaces display several strong Auger peaks corresponding to M{sub 4,5}N{sub 1}N{sub 2,3}, M{sub 2,3}M{sub 4,5}M{sub 4,5}, M{sub 2,3}M{sub 4,5}V, and M{sub 1}M{sub 4,5}M{sub 4,5} Auger transitions. The integrated peak intensities of Auger transitions have been used to obtain experimental annihilation probabilities for the Ge 3d and 3p core electrons. The experimental data were analyzed by performing theoretical studies of the effects of surface reconstructions and electron-positron correlations on image potential induced surface states and annihilation characteristics of positrons trapped at the reconstructed Ge(100) and Ge(111) surfaces. Calculationsmore » of positron surface states and annihilation characteristics have been performed for Ge(100) surface with (2x1), (2x2), and (4x2) reconstructions, and for Ge(111) surface with c(2x8) reconstruction. Estimates of the positron binding energy and annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of the semiconductor and to the approximations used to describe electron-positron correlations. The results of these theoretical studies are compared with the ones obtained for the reconstructed Si(100)-(2x1) and Si(111)-(7x7) surfaces.« less

  2. Surface-reconstructed graphite nanofibers as a support for cathode catalysts of fuel cells.

    PubMed

    Gan, Lin; Du, Hongda; Li, Baohua; Kang, Feiyu

    2011-04-07

    Graphite nanofibers (GNFs), on which surface graphite edges were reconstructed into nano-loops, were explored as a cathode catalyst support for fuel cells. The high degree of graphitization, as well as the surface-reconstructed nano-loops that possess topological defects for uniform metal deposition, resulted in an improved performance of the GNF-supported Pt catalyst.

  3. Technical report on the surface reconstruction of stacked contours by using the commercial software

    NASA Astrophysics Data System (ADS)

    Shin, Dong Sun; Chung, Min Suk; Hwang, Sung Bae; Park, Jin Seo

    2007-03-01

    After drawing and stacking contours of a structure, which is identified in the serially sectioned images, three-dimensional (3D) image can be made by surface reconstruction. Usually, software is composed for the surface reconstruction. In order to compose the software, medical doctors have to acquire the help of computer engineers. So in this research, surface reconstruction of stacked contours was tried by using commercial software. The purpose of this research is to enable medical doctors to perform surface reconstruction to make 3D images by themselves. The materials of this research were 996 anatomic images (1 mm intervals) of left lower limb, which were made by serial sectioning of a cadaver. On the Adobe Photoshop, contours of 114 anatomic structures were drawn, which were exported to Adobe Illustrator files. On the Maya, contours of each anatomic structure were stacked. On the Rhino, superoinferior lines were drawn along all stacked contours to fill quadrangular surfaces between contours. On the Maya, the contours were deleted. 3D images of 114 anatomic structures were assembled with their original locations preserved. With the surface reconstruction technique, developed in this research, medical doctors themselves could make 3D images of the serially sectioned images such as CTs and MRIs.

  4. Accuracy Assessment of Three-dimensional Surface Reconstructions of In vivo Teeth from Cone-beam Computed Tomography

    PubMed Central

    Sang, Yan-Hui; Hu, Hong-Cheng; Lu, Song-He; Wu, Yu-Wei; Li, Wei-Ran; Tang, Zhi-Hui

    2016-01-01

    Background: The accuracy of three-dimensional (3D) reconstructions from cone-beam computed tomography (CBCT) has been particularly important in dentistry, which will affect the effectiveness of diagnosis, treatment plan, and outcome in clinical practice. The aims of this study were to assess the linear, volumetric, and geometric accuracy of 3D reconstructions from CBCT and to investigate the influence of voxel size and CBCT system on the reconstructions results. Methods: Fifty teeth from 18 orthodontic patients were assigned to three groups as NewTom VG 0.15 mm group (NewTom VG; voxel size: 0.15 mm; n = 17), NewTom VG 0.30 mm group (NewTom VG; voxel size: 0.30 mm; n = 16), and VATECH DCTPRO 0.30 mm group (VATECH DCTPRO; voxel size: 0.30 mm; n = 17). The 3D reconstruction models of the teeth were segmented from CBCT data manually using Mimics 18.0 (Materialise Dental, Leuven, Belgium), and the extracted teeth were scanned by 3Shape optical scanner (3Shape A/S, Denmark). Linear and volumetric deviations were separately assessed by comparing the length and volume of the 3D reconstruction model with physical measurement by paired t-test. Geometric deviations were assessed by the root mean square value of the imposed 3D reconstruction and optical models by one-sample t-test. To assess the influence of voxel size and CBCT system on 3D reconstruction, analysis of variance (ANOVA) was used (α = 0.05). Results: The linear, volumetric, and geometric deviations were −0.03 ± 0.48 mm, −5.4 ± 2.8%, and 0.117 ± 0.018 mm for NewTom VG 0.15 mm group; −0.45 ± 0.42 mm, −4.5 ± 3.4%, and 0.116 ± 0.014 mm for NewTom VG 0.30 mm group; and −0.93 ± 0.40 mm, −4.8 ± 5.1%, and 0.194 ± 0.117 mm for VATECH DCTPRO 0.30 mm group, respectively. There were statistically significant differences between groups in terms of linear measurement (P < 0.001), but no significant difference in terms of volumetric measurement (P = 0.774). No statistically significant difference were found on geometric measurement between NewTom VG 0.15 mm and NewTom VG 0.30 mm groups (P = 0.999) while a significant difference was found between VATECH DCTPRO 0.30 mm and NewTom VG 0.30 mm groups (P = 0.006). Conclusions: The 3D reconstruction from CBCT data can achieve a high linear, volumetric, and geometric accuracy. Increasing voxel resolution from 0.30 to 0.15 mm does not result in increased accuracy of 3D tooth reconstruction while different systems can affect the accuracy. PMID:27270544

  5. WASS: An open-source pipeline for 3D stereo reconstruction of ocean waves

    NASA Astrophysics Data System (ADS)

    Bergamasco, Filippo; Torsello, Andrea; Sclavo, Mauro; Barbariol, Francesco; Benetazzo, Alvise

    2017-10-01

    Stereo 3D reconstruction of ocean waves is gaining more and more popularity in the oceanographic community and industry. Indeed, recent advances of both computer vision algorithms and computer processing power now allow the study of the spatio-temporal wave field with unprecedented accuracy, especially at small scales. Even if simple in theory, multiple details are difficult to be mastered for a practitioner, so that the implementation of a sea-waves 3D reconstruction pipeline is in general considered a complex task. For instance, camera calibration, reliable stereo feature matching and mean sea-plane estimation are all factors for which a well designed implementation can make the difference to obtain valuable results. For this reason, we believe that the open availability of a well tested software package that automates the reconstruction process from stereo images to a 3D point cloud would be a valuable addition for future researches in this area. We present WASS (http://www.dais.unive.it/wass), an Open-Source stereo processing pipeline for sea waves 3D reconstruction. Our tool completely automates all the steps required to estimate dense point clouds from stereo images. Namely, it computes the extrinsic parameters of the stereo rig so that no delicate calibration has to be performed on the field. It implements a fast 3D dense stereo reconstruction procedure based on the consolidated OpenCV library and, lastly, it includes set of filtering techniques both on the disparity map and the produced point cloud to remove the vast majority of erroneous points that can naturally arise while analyzing the optically complex nature of the water surface. In this paper, we describe the architecture of WASS and the internal algorithms involved. The pipeline workflow is shown step-by-step and demonstrated on real datasets acquired at sea.

  6. Fine Metal Mask 3-Dimensional Measurement by using Scanning Digital Holographic Microscope

    NASA Astrophysics Data System (ADS)

    Shin, Sanghoon; Yu, Younghun

    2018-04-01

    For three-dimensional microscopy, fast and high axial resolution are very important. Extending the depth of field for digital holographic is necessary for three-dimensional measurements of thick samples. We propose an optical sectioning method for optical scanning digital holography that is performed in the frequency domain by spatial filtering of a reconstructed amplitude image. We established a scanning dual-wavelength off-axis digital holographic microscope to measure samples that exhibit a large amount of coherent noise and a thickness larger than the depth of focus of the objective lens. As a demonstration, we performed a three-dimensional measurement of a fine metal mask with a reconstructed sectional phase image and filtering with a reconstructed amplitude image.

  7. Optical tomography for flow visualization of the density field around a revolving helicopter rotor blade

    NASA Technical Reports Server (NTRS)

    Snyder, R.; Hesselink, L.

    1984-01-01

    In this paper, a tomographic procedure for reconstructing the density field around a helicopter rotor blade tip from remote optical line-of-sight measurements is discussed. Numerical model studies have been carried out to investigate the influence of the number of available views, limited width viewing, and ray bending on the reconstruction. Performance is measured in terms of the mean-square error. It is found that very good reconstructions can be obtained using only a small number of views even when the width of view is smaller than the spatial extent of the object. An iterative procedure is used to correct for ray bending due to refraction associated with the sharp density gradients (shocks).

  8. Mueller-matrix mapping of biological tissues in differential diagnosis of optical anisotropy mechanisms of protein networks

    NASA Astrophysics Data System (ADS)

    Ushenko, V. A.; Sidor, M. I.; Marchuk, Yu F.; Pashkovskaya, N. V.; Andreichuk, D. R.

    2015-03-01

    We report a model of Mueller-matrix description of optical anisotropy of protein networks in biological tissues with allowance for the linear birefringence and dichroism. The model is used to construct the reconstruction algorithms of coordinate distributions of phase shifts and the linear dichroism coefficient. In the statistical analysis of such distributions, we have found the objective criteria of differentiation between benign and malignant tissues of the female reproductive system. From the standpoint of evidence-based medicine, we have determined the operating characteristics (sensitivity, specificity and accuracy) of the Mueller-matrix reconstruction method of optical anisotropy parameters and demonstrated its effectiveness in the differentiation of benign and malignant tumours.

  9. 36 CFR 294.25 - Mineral activities in Idaho Roadless Areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... recommend, authorize, or consent to road construction, road reconstruction, or surface occupancy associated... construction or road reconstruction associated with mineral leases in Idaho Roadless Areas designated as Backcountry/Restoration. Surface use or occupancy without road construction or reconstruction is permissible...

  10. TH-AB-209-03: Overcoming Resolution Limitations of Diffuse Optical Signals in X-Ray Induced Luminescence (XIL) Imaging Via Selective Plane Illumination and 2D Deconvolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigley, B; Smith, C; La Riviere, P

    2016-06-15

    Purpose: To evaluate the resolution and sensitivity of XIL imaging using a surface radiance simulation based on optical diffusion and maximum likelihood expectation maximization (MLEM) image reconstruction. XIL imaging seeks to determine the distribution of luminescent nanophosphors, which could be used as nanodosimeters or radiosensitizers. Methods: The XIL simulation generated a homogeneous slab with optical properties similar to tissue. X-ray activated nanophosphors were placed at 1.0 cm depth in the tissue in concentrations of 10{sup −4} g/mL in two volumes of 10 mm{sup 3} with varying separations between each other. An analytical optical diffusion model determined the surface radiance frommore » the photon distributions generated at depth in the tissue by the nanophosphors. The simulation then determined the detected luminescent signal collected with a f/1.0 aperture lens and back-illuminated EMCCD camera. The surface radiance was deconvolved using a MLEM algorithm to estimate the nanophosphors distribution and the resolution. To account for both Poisson and Gaussian noise, a shifted Poisson imaging model was used in the deconvolution. The deconvolved distributions were fitted to a Gaussian after radial averaging to measure the full width at half maximum (FWHM) and the peak to peak distance between distributions was measured to determine the resolving power. Results: Simulated surface radiances for doses from 1mGy to 100 cGy were computed. Each image was deconvolved using 1000 iterations. At 1mGy, deconvolution reduced the FWHM of the nanophosphors distribution by 65% and had a resolving power is 3.84 mm. Decreasing the dose from 100 cGy to 1 mGy increased the FWHM by 22% but allowed for a dose reduction of a factor of 1000. Conclusion: Deconvolving the detected surface radiance allows for dose reduction while maintaining the resolution of the nanophosphors. It proves to be a useful technique in overcoming the resolution limitations of diffuse optical imaging in tissue. C. S. acknowledges support from the NIH National Institute of General Medical Sciences (Award number R25GM109439, Project Title: University of Chicago Initiative for Maximizing Student Development, IMSD). B. Q. and P. L. acknowledge support from NIH grant R01EB017293.« less

  11. Epitaxial graphene-encapsulated surface reconstruction of Ge(110)

    NASA Astrophysics Data System (ADS)

    Campbell, Gavin P.; Kiraly, Brian; Jacobberger, Robert M.; Mannix, Andrew J.; Arnold, Michael S.; Hersam, Mark C.; Guisinger, Nathan P.; Bedzyk, Michael J.

    2018-04-01

    Understanding and engineering the properties of crystalline surfaces has been critical in achieving functional electronics at the nanoscale. Employing scanning tunneling microscopy, surface x-ray diffraction, and high-resolution x-ray reflectivity experiments, we present a thorough study of epitaxial graphene (EG)/Ge(110) and report a Ge(110) "6 × 2" reconstruction stabilized by the presence of epitaxial graphene unseen in group-IV semiconductor surfaces. X-ray studies reveal that graphene resides atop the surface reconstruction with a 0.34 nm van der Waals (vdW) gap and provides protection from ambient degradation.

  12. Photoacoustic tomography guided diffuse optical tomography for small-animal model

    NASA Astrophysics Data System (ADS)

    Wang, Yihan; Gao, Feng; Wan, Wenbo; Zhang, Yan; Li, Jiao

    2015-03-01

    Diffuse optical tomography (DOT) is a biomedical imaging technology for noninvasive visualization of spatial variation about the optical properties of tissue, which can be applied to in vivo small-animal disease model. However, traditional DOT suffers low spatial resolution due to tissue scattering. To overcome this intrinsic shortcoming, multi-modal approaches that incorporate DOT with other imaging techniques have been intensively investigated, where a priori information provided by the other modalities is normally used to reasonably regularize the inverse problem of DOT. Nevertheless, these approaches usually consider the anatomical structure, which is different from the optical structure. Photoacoustic tomography (PAT) is an emerging imaging modality that is particularly useful for visualizing lightabsorbing structures embedded in soft tissue with higher spatial resolution compared with pure optical imaging. Thus, we present a PAT-guided DOT approach, to obtain the location a priori information of optical structure provided by PAT first, and then guide DOT to reconstruct the optical parameters quantitatively. The results of reconstruction of phantom experiments demonstrate that both quantification and spatial resolution of DOT could be highly improved by the regularization of feasible-region information provided by PAT.

  13. Computational photography with plenoptic camera and light field capture: tutorial.

    PubMed

    Lam, Edmund Y

    2015-11-01

    Photography is a cornerstone of imaging. Ever since cameras became consumer products more than a century ago, we have witnessed great technological progress in optics and recording mediums, with digital sensors replacing photographic films in most instances. The latest revolution is computational photography, which seeks to make image reconstruction computation an integral part of the image formation process; in this way, there can be new capabilities or better performance in the overall imaging system. A leading effort in this area is called the plenoptic camera, which aims at capturing the light field of an object; proper reconstruction algorithms can then adjust the focus after the image capture. In this tutorial paper, we first illustrate the concept of plenoptic function and light field from the perspective of geometric optics. This is followed by a discussion on early attempts and recent advances in the construction of the plenoptic camera. We will then describe the imaging model and computational algorithms that can reconstruct images at different focus points, using mathematical tools from ray optics and Fourier optics. Last, but not least, we will consider the trade-off in spatial resolution and highlight some research work to increase the spatial resolution of the resulting images.

  14. Computational modeling of optical projection tomographic microscopy using the finite difference time domain method.

    PubMed

    Coe, Ryan L; Seibel, Eric J

    2012-12-01

    We present a method for modeling image formation in optical projection tomographic microscopy (OPTM) using high numerical aperture (NA) condensers and objectives. Similar to techniques used in computed tomography, OPTM produces three-dimensional, reconstructed images of single cells from two-dimensional projections. The model is capable of simulating axial scanning of a microscope objective to produce projections, which are reconstructed using filtered backprojection. Simulation of optical scattering in transmission optical microscopy is designed to analyze all aspects of OPTM image formation, such as degree of specimen staining, refractive-index matching, and objective scanning. In this preliminary work, a set of simulations is performed to examine the effect of changing the condenser NA, objective scan range, and complex refractive index on the final reconstruction of a microshell with an outer radius of 1.5 μm and an inner radius of 0.9 μm. The model lays the groundwork for optimizing OPTM imaging parameters and triaging efforts to further improve the overall system design. As the model is expanded in the future, it will be used to simulate a more realistic cell, which could lead to even greater impact.

  15. 3D reconstruction of highly fragmented bone fractures

    NASA Astrophysics Data System (ADS)

    Willis, Andrew; Anderson, Donald; Thomas, Thad; Brown, Thomas; Marsh, J. Lawrence

    2007-03-01

    A system for the semi-automatic reconstruction of highly fragmented bone fractures, developed to aid in treatment planning, is presented. The system aligns bone fragment surfaces derived from segmentation of volumetric CT scan data. Each fragment surface is partitioned into intact- and fracture-surfaces, corresponding more or less to cortical and cancellous bone, respectively. A user then interactively selects fracture-surface patches in pairs that coarsely correspond. A final optimization step is performed automatically to solve the N-body rigid alignment problem. The work represents the first example of a 3D bone fracture reconstruction system and addresses two new problems unique to the reconstruction of fractured bones: (1) non-stationary noise inherent in surfaces generated from a difficult segmentation problem and (2) the possibility that a single fracture surface on a fragment may correspond to many other fragments.

  16. Metrological analysis of the human foot: 3D multisensor exploration

    NASA Astrophysics Data System (ADS)

    Muñoz Potosi, A.; Meneses Fonseca, J.; León Téllez, J.

    2011-08-01

    In the podiatry field, many of the foot dysfunctions are mainly generated due to: Congenital malformations, accidents or misuse of footwear. For the treatment or prevention of foot disorders, the podiatrist diagnoses prosthesis or specific adapted footwear, according to the real dimension of foot. Therefore, it is necessary to acquire 3D information of foot with 360 degrees of observation. As alternative solution, it was developed and implemented an optical system of threedimensional reconstruction based in the principle of laser triangulation. The system is constituted by an illumination unit that project a laser plane into the foot surface, an acquisition unit with 4 CCD cameras placed around of axial foot axis, an axial moving unit that displaces the illumination and acquisition units in the axial axis direction and a processing and exploration unit. The exploration software allows the extraction of distances on three-dimensional image, taking into account the topography of foot. The optical system was tested and their metrological performances were evaluated in experimental conditions. The optical system was developed to acquire 3D information in order to design and make more appropriate footwear.

  17. Evaluation of hybrid SART  +  OS  +  TV iterative reconstruction algorithm for optical-CT gel dosimeter imaging

    NASA Astrophysics Data System (ADS)

    Du, Yi; Wang, Xiangang; Xiang, Xincheng; Wei, Zhouping

    2016-12-01

    Optical computed tomography (optical-CT) is a high-resolution, fast, and easily accessible readout modality for gel dosimeters. This paper evaluates a hybrid iterative image reconstruction algorithm for optical-CT gel dosimeter imaging, namely, the simultaneous algebraic reconstruction technique (SART) integrated with ordered subsets (OS) iteration and total variation (TV) minimization regularization. The mathematical theory and implementation workflow of the algorithm are detailed. Experiments on two different optical-CT scanners were performed for cross-platform validation. For algorithm evaluation, the iterative convergence is first shown, and peak-to-noise-ratio (PNR) and contrast-to-noise ratio (CNR) results are given with the cone-beam filtered backprojection (FDK) algorithm and the FDK results followed by median filtering (mFDK) as reference. The effect on spatial gradients and reconstruction artefacts is also investigated. The PNR curve illustrates that the results of SART  +  OS  +  TV finally converges to that of FDK but with less noise, which implies that the dose-OD calibration method for FDK is also applicable to the proposed algorithm. The CNR in selected regions-of-interest (ROIs) of SART  +  OS  +  TV results is almost double that of FDK and 50% higher than that of mFDK. The artefacts in SART  +  OS  +  TV results are still visible, but have been much suppressed with little spatial gradient loss. Based on the assessment, we can conclude that this hybrid SART  +  OS  +  TV algorithm outperforms both FDK and mFDK in denoising, preserving spatial dose gradients and reducing artefacts, and its effectiveness and efficiency are platform independent.

  18. Automating the implementation of an equilibrium profile model for glacier reconstruction in a GIS environment

    NASA Astrophysics Data System (ADS)

    Frew, Craig R.; Pellitero, Ramón; Rea, Brice R.; Spagnolo, Matteo; Bakke, Jostein; Hughes, Philip D.; Ivy-Ochs, Susan; Lukas, Sven; Renssen, Hans; Ribolini, Adriano

    2014-05-01

    Reconstruction of glacier equilibrium line altitudes (ELAs) associated with advance stages of former ice masses is widely used as a tool for palaeoclimatic reconstruction. This requires an accurate reconstruction of palaeo-glacier surface hypsometry, based on mapping of available ice-marginal landform evidence. Classically, the approach used to define ice-surface elevations, using such evidence, follows the 'cartographic method', whereby contours are estimated based on an 'understanding' of the typical surface form of contemporary ice masses. This method introduces inherent uncertainties in the palaeoclimatic interpretation of reconstructed ELAs, especially where the upper limits of glaciation are less well constrained and/or the age of such features in relation to terminal moraine sequences is unknown. An alternative approach is to use equilibrium profile models to define ice surface elevations. Such models are tuned, generally using basal shear stress, in order to generate an ice surface that reaches 'target elevations' defined by geomorphology. In areas where there are no geomorphological constraints for the former ice surface, the reconstruction is undertaken using glaciologiaclly representative values for basal shear stress. Numerical reconstructions have been shown to produce glaciologically "realistic" ice surface geometries, allowing for more objective and robust comparative studies at local to regional scales. User-friendly tools for the calculation of equilibrium profiles are presently available in the literature. Despite this, their use is not yet widespread, perhaps owing to the difficult and time consuming nature of acquiring the necessary inputs from contour maps or digital elevation models. Here we describe a tool for automatically reconstructing palaeo-glacier surface geometry using an equilibrium profile equation implemented in ArcGIS. The only necessary inputs for this tool are 1) a suitable digital elevation model and 2) mapped outlines of the former glacier terminus position (usually a frontal moraine system) and any relevant geomorphological constraints on ice surface elevation (e.g. lateral moraines, trimlines etc.). This provides a standardised method for glacier reconstruction that can be applied rapidly and systematically to large geomorphological datasets.

  19. Wavefront reconstruction using computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Schulze, Christian; Flamm, Daniel; Schmidt, Oliver A.; Duparré, Michael

    2012-02-01

    We propose a new method to determine the wavefront of a laser beam, based on modal decomposition using computer-generated holograms (CGHs). Thereby the beam under test illuminates the CGH with a specific, inscribed transmission function that enables the measurement of modal amplitudes and phases by evaluating the first diffraction order of the hologram. Since we use an angular multiplexing technique, our method is innately capable of real-time measurements of amplitude and phase, yielding the complete information about the optical field. A measurement of the Stokes parameters, respectively of the polarization state, provides the possibility to calculate the Poynting vector. Two wavefront reconstruction possibilities are outlined: reconstruction from the phase for scalar beams and reconstruction from the Poynting vector for inhomogeneously polarized beams. To quantify single aberrations, the reconstructed wavefront is decomposed into Zernike polynomials. Our technique is applied to beams emerging from different kinds of multimode optical fibers, such as step-index, photonic crystal and multicore fibers, whereas in this work results are exemplarily shown for a step-index fiber and compared to a Shack-Hartmann measurement that serves as a reference.

  20. Analysis on the Effect of Sensor Views in Image Reconstruction Produced by Optical Tomography System Using Charge-Coupled Device.

    PubMed

    Jamaludin, Juliza; Rahim, Ruzairi Abdul; Fazul Rahiman, Mohd Hafiz; Mohd Rohani, Jemmy

    2018-04-01

    Optical tomography (OPT) is a method to capture a cross-sectional image based on the data obtained by sensors, distributed around the periphery of the analyzed system. This system is based on the measurement of the final light attenuation or absorption of radiation after crossing the measured objects. The number of sensor views will affect the results of image reconstruction, where the high number of sensor views per projection will give a high image quality. This research presents an application of charge-coupled device linear sensor and laser diode in an OPT system. Experiments in detecting solid and transparent objects in crystal clear water were conducted. Two numbers of sensors views, 160 and 320 views are evaluated in this research in reconstructing the images. The image reconstruction algorithms used were filtered images of linear back projection algorithms. Analysis on comparing the simulation and experiments image results shows that, with 320 image views giving less area error than 160 views. This suggests that high image view resulted in the high resolution of image reconstruction.

  1. Novel, posterior sensory organ in the trochophore larva of Phyllodoce maculata (Polychaeta).

    PubMed Central

    Nezlin, L P; Voronezhskaya, E E

    2003-01-01

    A new posterior sensory organ (PSO), located at the dorsal midline of the hyposphere, is described by immunocytochemical detection of acetylated alpha tubulin and serotonin (5-HT) in a laser-scanning microscope, as well as three-dimensional reconstructions after optical serial sectioning in the trochophore larva of the polychaete Phyllodoce maculata (Phyllodocidae). The unpaired PSO consists of five bipolar sensory cells, two of them being 5-HT immunopositive, which send axons to the cerebral ganglion and prototroch nerve. The dendrites of these cells project to the surface and bear one cilium each. A single neuronal fibre from the apical sensory organ innervates the PSO. PMID:14667369

  2. Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging.

    PubMed

    Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda

    2016-07-25

    Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes.

  3. Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging

    PubMed Central

    Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda

    2016-01-01

    Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes. PMID:27453176

  4. Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual.

    PubMed

    Cao, Xu; Zhang, Bin; Liu, Fei; Wang, Xin; Bai, Jing

    2011-12-01

    Limited-projection fluorescence molecular tomography (FMT) can greatly reduce the acquisition time, which is suitable for resolving fast biology processes in vivo but suffers from severe ill-posedness because of the reconstruction using only limited projections. To overcome the severe ill-posedness, we report a reconstruction method based on the projected restarted conjugate gradient normal residual. The reconstruction results of two phantom experiments demonstrate that the proposed method is feasible for limited-projection FMT. © 2011 Optical Society of America

  5. All ceramic table tops analyzed using swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Stoica, Eniko Tunde; Marcauteanu, Corina; Sinescu, Cosmin; Negrutiu, Meda Lavinia; Topala, Florin; Duma, Virgil Florin; Bradu, Adrian; Podoleanu, Adrian Gh.

    2016-03-01

    Erosion is the progressive loss of tooth substance by chemical processes that do not involve bacterial action. The affected teeth can be restored by using IPS e.max Press "table tops", which replace the occlusal surfaces. In this study we applied a fast in-house Swept Source Optical Coherence Tomography (SS OCT) system to analyze IPS e.max Press "table tops". 12 maxillary first premolars have been extracted and prepared for "table tops". These restorations were subjected to 3000 alternating cycles of thermo-cycling in a range from -10°C to +50°C mechanical occlusal loads of 200 N were also applied. Using SS OCT we analyze the marginal seal of these restorations, before and after applying the mechanical and thermal strain. The characteristics of the SS OCT system utilized are presented. Its depth resolution, measured in air is 10 μm. The system is able to acquire entire volumetric reconstructions in 2.5 s. From the dataset acquired high resolution en-face projections were also produced. Thus, the interfaces between all ceramic "table tops" and natural teeth were analyzed on the cross-sections (i.e., the B-scans) produced and also on the volumetric (tri-dimensional (3D)) reconstructions, several open interfaces being detected. The study therefore demonstrates the utility of SS OCT for the analysis of lithium disilicate glass ceramic "table tops".

  6. Mechanism and energetics of O and O{sub 2} adsorption on polar and non-polar ZnO surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorai, Prashun; Seebauer, Edmund G.; Ertekin, Elif, E-mail: ertekin@illinois.edu

    2016-05-14

    Polar surfaces of semiconducting metal oxides can exhibit structures and chemical reactivities that are distinct from their non-polar surfaces. Using first-principles calculations, we examine O adatom and O{sub 2} molecule adsorption on 8 different known ZnO reconstructions including Zn-terminated (Zn–ZnO) and O-terminated (O–ZnO) polar surfaces, and non-polar surfaces. We find that adsorption tendencies are largely governed by the thermodynamic environment, but exhibit variations due to the different surface chemistries of various reconstructions. The Zn–ZnO surface reconstructions which appear under O-rich and H-poor environments are found to be most amenable to O and O{sub 2} adsorption. We attribute this to themore » fact that on Zn–ZnO, the O-rich environments that promote O adsorption also simultaneously favor reconstructions that involve adsorbed O species. On these Zn–ZnO surfaces, O{sub 2} dissociatively adsorbs to form O adatoms. By contrast, on O–ZnO surfaces, the O-rich conditions required for O or O{sub 2} adsorption tend to promote reconstructions involving adsorbed H species, making further O species adsorption more difficult. These insights about O{sub 2} adsorption on ZnO surfaces suggest possible design rules to understand the adsorption properties of semiconductor polar surfaces.« less

  7. Detection of reflector surface from near field phase measurements

    NASA Technical Reports Server (NTRS)

    Ida, Nathan

    1991-01-01

    The deviation of a reflector antenna surface from a perfect parabolic shape causes degradation of the performance of the antenna. The problem of determining the shape of the reflector surface in a reflector antenna using near field phase measurements is not a new one. A recent issue of the IEEE tansactions on Antennas and Propagation (June 1988) contained numerous descriptions of the use of these measurements: holographic reconstruction or inverse Fourier transform. Holographic reconstruction makes use of measurement of the far field of the reflector and then applies the Fourier transform relationship between the far field and the current distribution on the reflector surface. Inverse Fourier transformation uses the phase measurements to determine the far field pattern using the method of Kerns. After the far field pattern is established, an inverse Fourier transform is used to determine the phases in a plane between the reflector surface and the plane in which the near field measurements were taken. These calculations are time consuming since they involve a relatively large number of operations. A much faster method can be used to determine the position of the reflector. This method makes use of simple geometric optics to determine the path length of the ray from the feed to the reflector and from the reflector to the measurement point. For small physical objects and low frequencies, diffraction effects have a major effect on the error, and the algorithm provides incorrect results. It is believed that the effect is less noticeable for large distortions such as antenna warping, and more noticeable for small, localized distortions such as bumps and depressions such as might be caused by impact damage.

  8. Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy

    PubMed Central

    Doiron-Leyraud, N.; Badoux, S.; René de Cotret, S.; Lepault, S.; LeBoeuf, D.; Laliberté, F.; Hassinger, E.; Ramshaw, B. J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Park, J.-H..; Vignolles, D.; Vignolle, B.; Taillefer, L.; Proust, C.

    2015-01-01

    In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet, undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report evidence for a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency shows that it is a distinct Fermi surface, and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction by the charge–density–wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap. PMID:25616011

  9. [The influences of the stress distribution on the condylar cartilage surface by Herbst appliance under various bite reconstruction--a three dimensional finite element analysis].

    PubMed

    Hu, L; Zhao, Z; Song, J; Fan, Y; Jiang, W; Chen, J

    2001-02-01

    The distribution of stress on the surface of condylar cartilage was investigated. Three-dimensional model of the 'Temporomandibular joint mandible Herbst appliance system' was set up by SUPER SAP software (version 9.3). On this model, various bite reconstruction was simulated according to specified advanced displacement and vertical bite opening. The distribution of maximum and minimum principal stress on the surface of condylar cartilage were computerized and analyzed. When Herbst appliance drove the mandible forward, the anterior condyle surface was compressed while the posterior surface was drawn. The trend of stress on the same point on the condyle surface was consistent in various reconstruction conditions, but the trend of stress on various point were different in same reconstruction conditions. All five groups of bite reconstruction (3-7 mm advancement, 4-2 mm vertical bite opening of the mandible) designed by this study can be selected in clinic according to the patient's capability of adaptation, the extent of malocclusion and the potential and direction of growth.

  10. Fast Measurement and Reconstruction of Large Workpieces with Freeform Surfaces by Combining Local Scanning and Global Position Data

    PubMed Central

    Chen, Zhe; Zhang, Fumin; Qu, Xinghua; Liang, Baoqiu

    2015-01-01

    In this paper, we propose a new approach for the measurement and reconstruction of large workpieces with freeform surfaces. The system consists of a handheld laser scanning sensor and a position sensor. The laser scanning sensor is used to acquire the surface and geometry information, and the position sensor is utilized to unify the scanning sensors into a global coordinate system. The measurement process includes data collection, multi-sensor data fusion and surface reconstruction. With the multi-sensor data fusion, errors accumulated during the image alignment and registration process are minimized, and the measuring precision is significantly improved. After the dense accurate acquisition of the three-dimensional (3-D) coordinates, the surface is reconstructed using a commercial software piece, based on the Non-Uniform Rational B-Splines (NURBS) surface. The system has been evaluated, both qualitatively and quantitatively, using reference measurements provided by a commercial laser scanning sensor. The method has been applied for the reconstruction of a large gear rim and the accuracy is up to 0.0963 mm. The results prove that this new combined method is promising for measuring and reconstructing the large-scale objects with complex surface geometry. Compared with reported methods of large-scale shape measurement, it owns high freedom in motion, high precision and high measurement speed in a wide measurement range. PMID:26091396

  11. Three-dimensional refractive index and fluorescence tomography using structured illumination (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, GwangSik; Shin, SeungWoo; Kim, Kyoohyun; Park, YongKeun

    2017-02-01

    Optical diffraction tomography (ODT) has been an emerging optical technique for label-free imaging of three-dimensional (3-D) refractive index (RI) distribution of biological samples. ODT employs interferometric microscopy for measuring multiple holograms of samples with various incident angles, from which the Fourier diffraction theorem reconstructs the 3-D RI distribution of samples from retrieved complex optical fields. Since the RI value is linearly proportional to the protein concentration of biological samples where the proportional coefficient is called as refractive index increment (RII), reconstructed 3-D RI tomograms provide precise structural and biochemical information of individual biological samples. Because most proteins have similar RII value, however, ODT has limited molecular specificity, especially for imaging eukaryotic cells having various types of proteins and subcellular organelles. Here, we present an ODT system combined with structured illumination microscopy which can measure the 3-D RI distribution of biological samples as well as 3-D super-resolution fluorescent images in the same optical setup. A digital micromirror device (DMD) controls the incident angle of the illumination beam for tomogram reconstruction, and the same DMD modulates the structured illumination pattern of the excitation beam for super-resolution fluorescent imaging. We first validate the proposed method for simultaneous optical diffraction tomographic imaging and super-resolution fluorescent imaging of fluorescent beads. The proposed method is also exploited for various biological samples.

  12. Surface reconstruction and deformation monitoring of stratospheric airship based on laser scanning technology

    NASA Astrophysics Data System (ADS)

    Guo, Kai; Xie, Yongjie; Ye, Hu; Zhang, Song; Li, Yunfei

    2018-04-01

    Due to the uncertainty of stratospheric airship's shape and the security problem caused by the uncertainty, surface reconstruction and surface deformation monitoring of airship was conducted based on laser scanning technology and a √3-subdivision scheme based on Shepard interpolation was developed. Then, comparison was conducted between our subdivision scheme and the original √3-subdivision scheme. The result shows our subdivision scheme could reduce the shrinkage of surface and the number of narrow triangles. In addition, our subdivision scheme could keep the sharp features. So, surface reconstruction and surface deformation monitoring of airship could be conducted precisely by our subdivision scheme.

  13. Controlling Reaction Selectivity through the Surface Termination of Perovskite Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polo-Garzon, Felipe; Yang, Shi-Ze; Fung, Victor

    2017-07-19

    Although well known in the material science field, surface reconstruction of perovskites has not been implemented in heterogeneous catalysis. In this work, we employ multiple surface sensitive techniques to characterize the surface reconstruction of SrTiO3 (STO) after thermal pretreatment (Sr-enrichment) and chemical etching (Ti-enrichment). We show, using the conversion of 2-propanol as a probe reaction, that the surface reconstruction of STO can be controlled to greatly tune catalytic acid/base properties and consequently the reaction selectivities in a wide range, which are inaccessible using single metal oxides, either SrO or TiO2. Density functional theory (DFT) calculations well explain the selectivity tuningmore » and reaction mechanism on differently reconstructed surfaces of STO. Similar catalytic tunability is also observed on BaZrO3, highlighting the generality of the finding from this work.« less

  14. Improving image reconstruction of bioluminescence imaging using a priori information from ultrasound imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jayet, Baptiste; Ahmad, Junaid; Taylor, Shelley L.; Hill, Philip J.; Dehghani, Hamid; Morgan, Stephen P.

    2017-03-01

    Bioluminescence imaging (BLI) is a commonly used imaging modality in biology to study cancer in vivo in small animals. Images are generated using a camera to map the optical fluence emerging from the studied animal, then a numerical reconstruction algorithm is used to locate the sources and estimate their sizes. However, due to the strong light scattering properties of biological tissues, the resolution is very limited (around a few millimetres). Therefore obtaining accurate information about the pathology is complicated. We propose a combined ultrasound/optics approach to improve accuracy of these techniques. In addition to the BLI data, an ultrasound probe driven by a scanner is used for two main objectives. First, to obtain a pure acoustic image, which provides structural information of the sample. And second, to alter the light emission by the bioluminescent sources embedded inside the sample, which is monitored using a high speed optical detector (e.g. photomultiplier tube). We will show that this last measurement, used in conjunction with the ultrasound data, can provide accurate localisation of the bioluminescent sources. This can be used as a priori information by the numerical reconstruction algorithm, greatly increasing the accuracy of the BLI image reconstruction as compared to the image generated using only BLI data.

  15. All-optical associative memory using photorefractive crystals and a saturable absorber

    NASA Astrophysics Data System (ADS)

    Duelli, Markus; Cudney, Roger S.; Keller, Claude; Guenter, Peter

    1995-07-01

    We report on the investigation of a new configuration of an all-optical associative memory. The images to be recalled associatively are stored in a LiNbO3 crystal via angular multiplexing. Thresholding of the reconstructed reference beams during associative readout is achieved by using a saturable absorber with an intensity-tunable threshold. We demonstrate associative readout and error correction for 10 strongly overlapping black-and-white images. Associative recall and full reconstruction is performed when only 1/500 of the image stored is entered.

  16. Light ray field capture using focal plane sweeping and its optical reconstruction using 3D displays.

    PubMed

    Park, Jae-Hyeung; Lee, Sung-Keun; Jo, Na-Young; Kim, Hee-Jae; Kim, Yong-Soo; Lim, Hong-Gi

    2014-10-20

    We propose a method to capture light ray field of three-dimensional scene using focal plane sweeping. Multiple images are captured using a usual camera at different focal distances, spanning the three-dimensional scene. The captured images are then back-projected to four-dimensional spatio-angular space to obtain the light ray field. The obtained light ray field can be visualized either using digital processing or optical reconstruction using various three-dimensional display techniques including integral imaging, layered display, and holography.

  17. Optical signal-to-noise ratio measurement by optical homodyne tomography.

    PubMed

    Martelli, P; Pietralunga, S M; Ranzani, L; Siano, R; Martinelli, M

    2006-02-01

    An all-fiber optical homodyne tomography setup is introduced that measures the optical signal-to-noise ratio through reconstruction of the photon statistics. The scheme described has been conceived for applications to optical communications. In particular, the signal-to-noise ratio has been evaluated at lambda= 1.55 microm as a function of the received power. From the experimental data, in the case of optically amplified signals, the amplifier noise figure can be estimated.

  18. Exploration, Sampling, And Reconstruction of Free Energy Surfaces with Gaussian Process Regression.

    PubMed

    Mones, Letif; Bernstein, Noam; Csányi, Gábor

    2016-10-11

    Practical free energy reconstruction algorithms involve three separate tasks: biasing, measuring some observable, and finally reconstructing the free energy surface from those measurements. In more than one dimension, adaptive schemes make it possible to explore only relatively low lying regions of the landscape by progressively building up the bias toward the negative of the free energy surface so that free energy barriers are eliminated. Most schemes use the final bias as their best estimate of the free energy surface. We show that large gains in computational efficiency, as measured by the reduction of time to solution, can be obtained by separating the bias used for dynamics from the final free energy reconstruction itself. We find that biasing with metadynamics, measuring a free energy gradient estimator, and reconstructing using Gaussian process regression can give an order of magnitude reduction in computational cost.

  19. Layer-oriented multigrid wavefront reconstruction algorithms for multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.

    2003-02-01

    Multi-conjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of AO degrees of freedom. In this paper, we develop an iterative sparse matrix implementation of minimum variance wavefront reconstruction for telescope diameters up to 32m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method, using a multigrid preconditioner incorporating a layer-oriented (block) symmetric Gauss-Seidel iterative smoothing operator. We present open-loop numerical simulation results to illustrate algorithm convergence.

  20. A fast reconstruction algorithm for fluorescence optical diffusion tomography based on preiteration.

    PubMed

    Song, Xiaolei; Xiong, Xiaoyun; Bai, Jing

    2007-01-01

    Fluorescence optical diffusion tomography in the near-infrared (NIR) bandwidth is considered to be one of the most promising ways for noninvasive molecular-based imaging. Many reconstructive approaches to it utilize iterative methods for data inversion. However, they are time-consuming and they are far from meeting the real-time imaging demands. In this work, a fast preiteration algorithm based on the generalized inverse matrix is proposed. This method needs only one step of matrix-vector multiplication online, by pushing the iteration process to be executed offline. In the preiteration process, the second-order iterative format is employed to exponentially accelerate the convergence. Simulations based on an analytical diffusion model show that the distribution of fluorescent yield can be well estimated by this algorithm and the reconstructed speed is remarkably increased.

  1. Optical transillumination tomography with tolerance against refraction mismatch.

    PubMed

    Haidekker, Mark A

    2005-12-01

    Optical transillumination tomography (OT) is a laser-based imaging modality where ballistic photons are used for projection generation. Image reconstruction is therefore similar to X-ray computed tomography. This modality promises fast image acquisition, good resolution and contrast, and inexpensive instrumentation for imaging of weakly scattering objects, such as for example tissue-engineered constructs. In spite of its advantages, OT is not widely used. One reason is its sensitivity towards changes in material refractive index along the light path. Beam refraction artefacts cause areas of overestimated tissue density and blur geometric details. A spatial filter, introduced into the beam path to eliminate scattered photons, will also remove refracted photons from the projections. In the projections, zones affected by refraction can be detected by thresholding. By using algebraic reconstruction techniques (ART) in conjunction with suitable interpolation algorithms, reconstruction artefacts can be partly avoided. Reconstructions from a test image were performed. Standard filtered backprojection (FBP) showed a round mean square (RMS) deviation from the original image of 9.9. RMS deviation with refraction-tolerant ART reconstruction was 0.33 and 0.24, depending on the algorithm, compared to 0.57 (FBP) and 0.06 (ART) in a non-refracting case. In addition, modified ART reconstruction allowed detection of small geometric details that were invisible in standard reconstructions. Refraction-tolerant ART may be the key to eliminating one of the major challenges of OT.

  2. Acoustic imaging in application to reconstruction of rough rigid surface with airborne ultrasound waves

    NASA Astrophysics Data System (ADS)

    Krynkin, A.; Dolcetti, G.; Hunting, S.

    2017-02-01

    Accurate reconstruction of the surface roughness is of high importance to various areas of science and engineering. One important application of this technology is for remote monitoring of open channel flows through observing its dynamic surface roughness. In this paper a novel airborne acoustic method of roughness reconstruction is proposed and tested with a static rigid rough surface. This method is based on the acoustic holography principle and Kirchhoff approximation which make use of acoustic pressure data collected at multiple receiver points spread along an arch. The Tikhonov regularisation and generalised cross validation technique are used to solve the underdetermined system of equations for the acoustic pressures. The experimental data are collected above a roughness created with a 3D printer. For the given surface, it is shown that the proposed method works well with the various number of receiver positions. In this paper, the tested ratios between the number of surface points at which the surface elevation can be reconstructed and number of receiver positions are 2.5, 5, and 7.5. It is shown that, in a region comparable with the projected size of the main directivity lobe, the method is able to reconstruct the spatial spectrum density of the actual surface elevation with the accuracy of 20%.

  3. Acoustic imaging in application to reconstruction of rough rigid surface with airborne ultrasound waves.

    PubMed

    Krynkin, A; Dolcetti, G; Hunting, S

    2017-02-01

    Accurate reconstruction of the surface roughness is of high importance to various areas of science and engineering. One important application of this technology is for remote monitoring of open channel flows through observing its dynamic surface roughness. In this paper a novel airborne acoustic method of roughness reconstruction is proposed and tested with a static rigid rough surface. This method is based on the acoustic holography principle and Kirchhoff approximation which make use of acoustic pressure data collected at multiple receiver points spread along an arch. The Tikhonov regularisation and generalised cross validation technique are used to solve the underdetermined system of equations for the acoustic pressures. The experimental data are collected above a roughness created with a 3D printer. For the given surface, it is shown that the proposed method works well with the various number of receiver positions. In this paper, the tested ratios between the number of surface points at which the surface elevation can be reconstructed and number of receiver positions are 2.5, 5, and 7.5. It is shown that, in a region comparable with the projected size of the main directivity lobe, the method is able to reconstruct the spatial spectrum density of the actual surface elevation with the accuracy of 20%.

  4. A computer graphics reconstruction and optical analysis of scale anomalies in Caravaggio's Supper at Emmaus

    NASA Astrophysics Data System (ADS)

    Stork, David G.; Furuichi, Yasuo

    2011-03-01

    David Hockney has argued that the right hand of the disciple, thrust to the rear in Caravaggio's Supper at Emmaus (1606), is anomalously large as a result of the artist refocusing a putative secret lens-based optical projector and tracing the image it projected onto his canvas. We show through rigorous optical analysis that to achieve such an anomalously large hand image, Caravaggio would have needed to make extremely large, conspicuous and implausible alterations to his studio setup, moving both his purported lens and his canvas nearly two meters between "exposing" the disciple's left hand and then his right hand. Such major disruptions to his studio would have impeded -not aided- Caravaggio in his work. Our optical analysis quantifies these problems and our computer graphics reconstruction of Caravaggio's studio illustrates these problems. In this way we conclude that Caravaggio did not use optical projections in the way claimed by Hockney, but instead most likely set the sizes of these hands "by eye" for artistic reasons.

  5. Speckle contrast diffuse correlation tomography of complex turbid medium flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chong; Irwin, Daniel; Lin, Yu

    2015-07-15

    Purpose: Developed herein is a three-dimensional (3D) flow contrast imaging system leveraging advancements in the extension of laser speckle contrast imaging theories to deep tissues along with our recently developed finite-element diffuse correlation tomography (DCT) reconstruction scheme. This technique, termed speckle contrast diffuse correlation tomography (scDCT), enables incorporation of complex optical property heterogeneities and sample boundaries. When combined with a reflectance-based design, this system facilitates a rapid segue into flow contrast imaging of larger, in vivo applications such as humans. Methods: A highly sensitive CCD camera was integrated into a reflectance-based optical system. Four long-coherence laser source positions were coupledmore » to an optical switch for sequencing of tomographic data acquisition providing multiple projections through the sample. This system was investigated through incorporation of liquid and solid tissue-like phantoms exhibiting optical properties and flow characteristics typical of human tissues. Computer simulations were also performed for comparisons. A uniquely encountered smear correction algorithm was employed to correct point-source illumination contributions during image capture with the frame-transfer CCD and reflectance setup. Results: Measurements with scDCT on a homogeneous liquid phantom showed that speckle contrast-based deep flow indices were within 12% of those from standard DCT. Inclusion of a solid phantom submerged below the liquid phantom surface allowed for heterogeneity detection and validation. The heterogeneity was identified successfully by reconstructed 3D flow contrast tomography with scDCT. The heterogeneity center and dimensions and averaged relative flow (within 3%) and localization were in agreement with actuality and computer simulations, respectively. Conclusions: A custom cost-effective CCD-based reflectance 3D flow imaging system demonstrated rapid acquisition of dense boundary data and, with further studies, a high potential for translatability to real tissues with arbitrary boundaries. A requisite correction was also found for measurements in the fashion of scDCT to recover accurate speckle contrast of deep tissues.« less

  6. Updating a preoperative surface model with information from real-time tracked 2D ultrasound using a Poisson surface reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Deyu; Rettmann, Maryam E.; Holmes, David R.; Linte, Cristian A.; Packer, Douglas; Robb, Richard A.

    2014-03-01

    In this work, we propose a method for intraoperative reconstruction of a left atrial surface model for the application of cardiac ablation therapy. In this approach, the intraoperative point cloud is acquired by a tracked, 2D freehand intra-cardiac echocardiography device, which is registered and merged with a preoperative, high resolution left atrial surface model built from computed tomography data. For the surface reconstruction, we introduce a novel method to estimate the normal vector of the point cloud from the preoperative left atrial model, which is required for the Poisson Equation Reconstruction algorithm. In the current work, the algorithm is evaluated using a preoperative surface model from patient computed tomography data and simulated intraoperative ultrasound data. Factors such as intraoperative deformation of the left atrium, proportion of the left atrial surface sampled by the ultrasound, sampling resolution, sampling noise, and registration error were considered through a series of simulation experiments.

  7. In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models.

    PubMed

    Liu, Junting; Wang, Yabin; Qu, Xiaochao; Li, Xiangsi; Ma, Xiaopeng; Han, Runqiang; Hu, Zhenhua; Chen, Xueli; Sun, Dongdong; Zhang, Rongqing; Chen, Duofang; Chen, Dan; Chen, Xiaoyuan; Liang, Jimin; Cao, Feng; Tian, Jie

    2010-06-07

    Bioluminescence tomography (BLT) is a new optical molecular imaging modality, which can monitor both physiological and pathological processes by using bioluminescent light-emitting probes in small living animal. Especially, this technology possesses great potential in drug development, early detection, and therapy monitoring in preclinical settings. In the present study, we developed a dual modality BLT prototype system with Micro-computed tomography (MicroCT) registration approach, and improved the quantitative reconstruction algorithm based on adaptive hp finite element method (hp-FEM). Detailed comparisons of source reconstruction between the heterogeneous and homogeneous mouse models were performed. The models include mice with implanted luminescence source and tumor-bearing mice with firefly luciferase report gene. Our data suggest that the reconstruction based on heterogeneous mouse model is more accurate in localization and quantification than the homogeneous mouse model with appropriate optical parameters and that BLT allows super-early tumor detection in vivo based on tomographic reconstruction of heterogeneous mouse model signal.

  8. Reconstructing Space- and Energy-Dependent Exciton Generation in Solution-Processed Inverted Organic Solar Cells.

    PubMed

    Wang, Yuheng; Zhang, Yajie; Lu, Guanghao; Feng, Xiaoshan; Xiao, Tong; Xie, Jing; Liu, Xiaoyan; Ji, Jiahui; Wei, Zhixiang; Bu, Laju

    2018-04-25

    Photon absorption-induced exciton generation plays an important role in determining the photovoltaic properties of donor/acceptor organic solar cells with an inverted architecture. However, the reconstruction of light harvesting and thus exciton generation at different locations within organic inverted device are still not well resolved. Here, we investigate the film depth-dependent light absorption spectra in a small molecule donor/acceptor film. Including depth-dependent spectra into an optical transfer matrix method allows us to reconstruct both film depth- and energy-dependent exciton generation profiles, using which short-circuit current and external quantum efficiency of the inverted device are simulated and compared with the experimental measurements. The film depth-dependent spectroscopy, from which we are able to simultaneously reconstruct light harvesting profile, depth-dependent composition distribution, and vertical energy level variations, provides insights into photovoltaic process. In combination with appropriate material processing methods and device architecture, the method proposed in this work will help optimizing film depth-dependent optical/electronic properties for high-performance solar cells.

  9. Infrared light sensor applied to early detection of tooth decay

    NASA Astrophysics Data System (ADS)

    Benjumea, Eberto; Espitia, José; Díaz, Leonardo; Torres, Cesar

    2017-08-01

    The approach dentistry to dental care is gradually shifting to a model focused on early detection and oral-disease prevention; one of the most important methods of prevention of tooth decay is opportune diagnosis of decay and reconstruction. The present study aimed to introduce a procedure for early diagnosis of tooth decay and to compare result of experiment of this method with other common treatments. In this setup, a laser emitting infrared light is injected in core of one bifurcated fiber-optic and conduced to tooth surface and with the same bifurcated fiber the radiation reflected for the same tooth is collected and them conduced to surface of sensor that measures thermal and light frequencies to detect early signs of decay below a tooth surface, where demineralization is difficult to spot with x-ray technology. This device will can be used to diagnose tooth decay without any chemicals and rays such as high power lasers or X-rays.

  10. Realization of single terminated surface of perovskite oxide single crystals and their band profile: (LaAlO3)0.3(Sr2AlTaO6)0.7, SrTiO3 and KTaO3 case study

    NASA Astrophysics Data System (ADS)

    Tomar, Ruchi; Wadehra, Neha; Budhiraja, Vaishali; Prakash, Bhanu; Chakraverty, S.

    2018-01-01

    To characterize the physical properties of thin films without ambiguity and design interface with new functionalities, it is essential to have detailed knowledge of physical properties and appropriate estimation of the band profile of perovskite oxide substrates. We have developed and demonstrated a chemical free unified framework to realize single terminated surface of KTaO3, (LaAlO3)0.3 (Sr2AlTaO6)0.7 and SrTiO3 (001) oriented single crystals. The electronic band line-up of these single crystal substrates, using a combination of optical spectroscopy and Kelvin Probe Force Microscopy, has been constructed. A polar-polar interface of KTaO3 and LaBO3 (B-Transition metal ion) before and after the possible surface/electronic reconstruction has also been schematically presented.

  11. The magnetic field and the evolution of element spots on the surface of the HgMn eclipsing binary ARAur

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; Savanov, I.; Ilyin, I.; González, J. F.; Korhonen, H.; Lehmann, H.; Schöller, M.; Granzer, T.; Weber, M.; Strassmeier, K. G.; Hartmann, M.; Tkachenko, A.

    2010-10-01

    The system ARAur is a young late B-type double-lined eclipsing binary with a primary star of HgMn peculiarity. We applied the Doppler imaging method to reconstruct the distribution of Fe and Y over the surface of the primary using spectroscopic time series obtained in 2005 and from 2008 October to 2009 February. The results show a remarkable evolution of the element distribution and overabundances. Measurements of the magnetic field with the moment technique using several elements reveal the presence of a longitudinal magnetic field of the order of a few hundred gauss in both stellar components and a quadratic field of the order of 8kG on the surface of the primary star. Based on observations obtained at the 2.56-m Nordic Optical Telescope on La Palma, the Karl-Schwarzschild-Observatorium in Tautenburg and the STELLA robotic telescope on Tenerife. E-mail: shubrig@aip.de

  12. Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Cui, Yaokui; Long, Di; Hong, Yang; Zeng, Chao; Zhou, Jie; Han, Zhongying; Liu, Ronghua; Wan, Wei

    2016-12-01

    Soil moisture is a key variable in the exchange of water and energy between the land surface and the atmosphere, especially over the Tibetan Plateau (TP) which is climatically and hydrologically sensitive as the Earth's 'third pole'. Large-scale spatially consistent and temporally continuous soil moisture datasets are of great importance to meteorological and hydrological applications, such as weather forecasting and drought monitoring. The Fengyun-3B Microwave Radiation Imager (FY-3B/MWRI) soil moisture product is a relatively new passive microwave product, with the satellite being launched on November 5, 2010. This study validates and reconstructs FY-3B/MWRI soil moisture across the TP. First, the validation is performed using in situ measurements within two in situ soil moisture measurement networks (1° × 1° and 0.25° × 0.25°), and also compared with the Essential Climate Variable (ECV) soil moisture product from multiple active and passive satellite soil moisture products using new merging procedures. Results show that the ascending FY-3B/MWRI product outperforms the descending product. The ascending FY-3B/MWRI product has almost the same correlation as the ECV product with the in situ measurements. The ascending FY-3B/MWRI product has better performance than the ECV product in the frozen season and under the lower NDVI condition. When the NDVI is higher in the unfrozen season, uncertainty in the ascending FY-3B/MWRI product increases with increasing NDVI, but it could still capture the variability in soil moisture. Second, the FY-3B/MWRI soil moisture product is subsequently reconstructed using the back-propagation neural network (BP-NN) based on reconstructed MODIS products, i.e., LST, NDVI, and albedo. The reconstruction method of generating the soil moisture product not only considers the relationship between the soil moisture and NDVI, LST, and albedo, but also the relationship between the soil moisture and four-dimensional variations using the longitude, latitude, DEM and day of year (DOY). Results show that the soil moisture could be well reconstructed with R2 higher than 0.56, RMSE less than 0.1 cm3 cm-3, and Bias less than 0.07 cm3 cm-3 for both frozen and unfrozen seasons, compared with the in situ measurements at the two networks. Third, the reconstruction method is applied to generate surface soil moisture over the TP. Both original and reconstructed FY-3B/MWRI soil moisture products could be valuable in studying meteorology, hydrology, and ecosystems over the TP.

  13. Spectrally resolved chromatic confocal interferometry for one-shot nano-scale surface profilometry with several tens of micrometric depth range

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Chen, Yi-Shiuan; Chang, Yi-Wei; Lin, Shyh-Tsong; Yeh, Sheng Lih

    2013-01-01

    In this research, new nano-scale measurement methodology based on spectrally-resolved chromatic confocal interferometry (SRCCI) was successfully developed by employing integration of chromatic confocal sectioning and spectrally-resolve white light interferometry (SRWLI) for microscopic three dimensional surface profilometry. The proposed chromatic confocal method (CCM) using a broad band while light in combination with a specially designed chromatic dispersion objective is capable of simultaneously acquiring multiple images at a large range of object depths to perform surface 3-D reconstruction by single image shot without vertical scanning and correspondingly achieving a high measurement depth range up to hundreds of micrometers. A Linnik-type interferometric configuration based on spectrally resolved white light interferometry is developed and integrated with the CCM to simultaneously achieve nanoscale axis resolution for the detection point. The white-light interferograms acquired at the exit plane of the spectrometer possess a continuous variation of wavelength along the chromaticity axis, in which the light intensity reaches to its peak when the optical path difference equals to zero between two optical arms. To examine the measurement accuracy of the developed system, a pre-calibrated accurate step height target with a total step height of 10.10 μm was measured. The experimental result shows that the maximum measurement error was verified to be less than 0.3% of the overall measuring height.

  14. Backward-gazing method for heliostats shape errors measurement and calibration

    NASA Astrophysics Data System (ADS)

    Coquand, Mathieu; Caliot, Cyril; Hénault, François

    2017-06-01

    The pointing and canting accuracies and the surface shape of the heliostats have a great influence on the solar tower power plant efficiency. At the industrial scale, one of the issues to solve is the time and the efforts devoted to adjust the different mirrors of the faceted heliostats, which could take several months if the current methods were used. Accurate control of heliostat tracking requires complicated and onerous devices. Thus, methods used to adjust quickly the whole field of a plant are essential for the rise of solar tower technology with a huge number of heliostats. Wavefront detection is widely use in adaptive optics and shape error reconstruction. Such systems can be sources of inspiration for the measurement of solar facets misalignment and tracking errors. We propose a new method of heliostat characterization inspired by adaptive optics devices. This method aims at observing the brightness distributions on heliostat's surface, from different points of view close to the receiver of the power plant, in order to calculate the wavefront of the reflection of the sun on the concentrated surface to determine its errors. The originality of this new method is to use the profile of the sun to determine the defects of the mirrors. In addition, this method would be easy to set-up and could be implemented without sophisticated apparatus: only four cameras would be used to perform the acquisitions.

  15. Inverse transport calculations in optical imaging with subspace optimization algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Tian, E-mail: tding@math.utexas.edu; Ren, Kui, E-mail: ren@math.utexas.edu

    2014-09-15

    Inverse boundary value problems for the radiative transport equation play an important role in optics-based medical imaging techniques such as diffuse optical tomography (DOT) and fluorescence optical tomography (FOT). Despite the rapid progress in the mathematical theory and numerical computation of these inverse problems in recent years, developing robust and efficient reconstruction algorithms remains a challenging task and an active research topic. We propose here a robust reconstruction method that is based on subspace minimization techniques. The method splits the unknown transport solution (or a functional of it) into low-frequency and high-frequency components, and uses singular value decomposition to analyticallymore » recover part of low-frequency information. Minimization is then applied to recover part of the high-frequency components of the unknowns. We present some numerical simulations with synthetic data to demonstrate the performance of the proposed algorithm.« less

  16. Methodology and apparatus for diffuse photon imaging

    DOEpatents

    Feng, S.C.; Zeng, F.; Zhao, H.L.

    1997-12-09

    Non-invasive near infrared optical medical imaging devices for both hematoma detection in the brain and early tumor detection in the breast is achieved using image reconstruction which allows a mapping of the position dependent contrast diffusive propagation constants, which are related to the optical absorption coefficient and scattering coefficient in the tissue, at near infrared wavelengths. Spatial resolutions in the range of 5 mm for adult brain sizes and breast sizes can be achieved. The image reconstruction utilizes WKB approximation on most probable diffusion paths which has as lowest order approximation the straight line-of-sight between the plurality of sources and the plurality of detectors. The WKB approximation yields a set of linear equations in which the contrast optical absorption coefficients are the unknowns and for which signals can be generated to produce a pixel map of the contrast optical resolution of the scanned tissue. 58 figs.

  17. Methodology and apparatus for diffuse photon mimaging

    DOEpatents

    Feng, Shechao C.; Zeng, Fanan; Zhao, Hui-Lin

    1997-12-09

    Non-invasive near infrared optical medical imaging devices for both hematoma detection in the brain and early tumor detection in the breast is achieved using image reconstruction which allows a mapping of the position dependent contrast diffusive propagation constants, which are related to the optical absorption coefficient and scattering coefficient in the tissue, at near infrared wavelengths. Spatial resolutions in the range of 5 mm for adult brain sizes and breast sizes can be achieved. The image reconstruction utilizes WKB approximation on most probable diffusion paths which has as lowest order approximation the straight line-of-sight between the plurality of sources and the plurality of detectors. The WKB approximation yields a set of linear equations in which the contrast optical absorption coefficients are the unknowns and for which signals can be generated to produce a pixel map of the contrast optical resolution of the scanned tissue.

  18. Full-color large-scaled computer-generated holograms for physical and non-physical objects

    NASA Astrophysics Data System (ADS)

    Matsushima, Kyoji; Tsuchiyama, Yasuhiro; Sonobe, Noriaki; Masuji, Shoya; Yamaguchi, Masahiro; Sakamoto, Yuji

    2017-05-01

    Several full-color high-definition CGHs are created for reconstructing 3D scenes including real-existing physical objects. The field of the physical objects are generated or captured by employing three techniques; 3D scanner, synthetic aperture digital holography, and multi-viewpoint images. Full-color reconstruction of high-definition CGHs is realized by RGB color filters. The optical reconstructions are presented for verifying these techniques.

  19. Measurement of impinging butane flame using combined optical system with digital speckle tomography

    NASA Astrophysics Data System (ADS)

    Ko, Han Seo; Ahn, Seong Soo; Kim, Hyun Jung

    2011-11-01

    Three-dimensional density distributions of an impinging and eccentric flame were measured experimentally using a combined optical system with digital speckle tomography. In addition, a three-dimensional temperature distribution of the flame was reconstructed from an ideal gas equation based on the reconstructed density data. The flame was formed by the ignition of premixed butane/air from air holes and impinged upward against a plate located 24 mm distance from the burner nozzle. In order to verify the reconstruction process for the experimental measurements, numerically synthesized phantoms of impinging and eccentric flames were derived and reconstructed using a developed three-dimensional multiplicative algebraic reconstruction technique (MART). A new scanning technique was developed for the accurate analysis of speckle displacements necessary for investigating the wall jet regions of the impinging flame at which a sharp variation of the flow direction and pressure gradient occur. The reconstructed temperatures by the digital speckle tomography were applied to the boundary condition for numerical analysis of a flame impinged plate. Then, the numerically calculated temperature distribution of the upper side of the flame impinged plate was compared to temperature data taken by an infrared camera. The absolute average uncertainty between the numerical and infrared camera data was 3.7%.

  20. Cerenkov luminescence tomography based on preconditioning orthogonal matching pursuit

    NASA Astrophysics Data System (ADS)

    Liu, Haixiao; Hu, Zhenhua; Wang, Kun; Tian, Jie; Yang, Xin

    2015-03-01

    Cerenkov luminescence imaging (CLI) is a novel optical imaging method and has been proved to be a potential substitute of the traditional radionuclide imaging such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). This imaging method inherits the high sensitivity of nuclear medicine and low cost of optical molecular imaging. To obtain the depth information of the radioactive isotope, Cerenkov luminescence tomography (CLT) is established and the 3D distribution of the isotope is reconstructed. However, because of the strong absorption and scatter, the reconstruction of the CLT sources is always converted to an ill-posed linear system which is hard to be solved. In this work, the sparse nature of the light source was taken into account and the preconditioning orthogonal matching pursuit (POMP) method was established to effectively reduce the ill-posedness and obtain better reconstruction accuracy. To prove the accuracy and speed of this algorithm, a heterogeneous numerical phantom experiment and an in vivo mouse experiment were conducted. Both the simulation result and the mouse experiment showed that our reconstruction method can provide more accurate reconstruction result compared with the traditional Tikhonov regularization method and the ordinary orthogonal matching pursuit (OMP) method. Our reconstruction method will provide technical support for the biological application for Cerenkov luminescence.

  1. The PRISM4 (mid-Piacenzian) Palaeoenvironmental Reconstruction

    NASA Technical Reports Server (NTRS)

    Dowsett, Harry; Dolan, Aisling; Rowley, David; Moucha, Robert; Forte, Alessandro M.; Mitrovica, Jerry X.; Pound, Matthew; Salzmann, Ulrich; Robinson, Marci; Chandler, Mark; hide

    2016-01-01

    The mid-Piacenzian is known as a period of relative warmth when compared to the present day. A comprehensive understanding of conditions during the Piacenzian serves as both a conceptual model and a source for boundary conditions as well as means of verification of global climate model experiments. In this paper we present the PRISM4 reconstruction, a paleoenvironmental reconstruction of the mid-Piacenzian (approximately 3 Ma) containing data for paleogeography, land and sea ice, sea-surface temperature, vegetation, soils, and lakes. Our retrodicted paleogeography takes into account glacial isostatic adjustments and changes in dynamic topography. Soils and lakes, both significant as land surface features, are introduced to the PRISM reconstruction for the first time. Sea-surface temperature and vegetation reconstructions are unchanged but now have confidence assessments. The PRISM4 reconstruction is being used as boundary condition data for the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) experiments.

  2. The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction

    USGS Publications Warehouse

    Dowsett, Harry J.; Dolan, Aisling M.; Rowley, David; Moucha, Robert; Forte, Alessandro; Mitrovica, Jerry X.; Pound, Matthew; Salzmann, Ulrich; Robinson, Marci M.; Chandler, Mark; Foley, Kevin M.; Haywood, Alan M.

    2016-01-01

    The mid-Piacenzian is known as a period of relative warmth when compared to the present day. A comprehensive understanding of conditions during the Piacenzian serves as both a conceptual model and a source for boundary conditions as well as means of verification of global climate model experiments. In this paper we present the PRISM4 reconstruction, a paleoenvironmental reconstruction of the mid-Piacenzian ( ∼ 3 Ma) containing data for paleogeography, land and sea ice, sea-surface temperature, vegetation, soils, and lakes. Our retrodicted paleogeography takes into account glacial isostatic adjustments and changes in dynamic topography. Soils and lakes, both significant as land surface features, are introduced to the PRISM reconstruction for the first time. Sea-surface temperature and vegetation reconstructions are unchanged but now have confidence assessments. The PRISM4 reconstruction is being used as boundary condition data for the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) experiments.

  3. Distortion Correction of OCT Images of the Crystalline Lens: GRIN Approach

    PubMed Central

    Siedlecki, Damian; de Castro, Alberto; Gambra, Enrique; Ortiz, Sergio; Borja, David; Uhlhorn, Stephen; Manns, Fabrice; Marcos, Susana; Parel, Jean-Marie

    2012-01-01

    Purpose To propose a method to correct Optical Coherence Tomography (OCT) images of posterior surface of the crystalline lens incorporating its gradient index (GRIN) distribution and explore its possibilities for posterior surface shape reconstruction in comparison to existing methods of correction. Methods 2-D images of 9 human lenses were obtained with a time-domain OCT system. The shape of the posterior lens surface was corrected using the proposed iterative correction method. The parameters defining the GRIN distribution used for the correction were taken from a previous publication. The results of correction were evaluated relative to the nominal surface shape (accessible in vitro) and compared to the performance of two other existing methods (simple division, refraction correction: assuming a homogeneous index). Comparisons were made in terms of posterior surface radius, conic constant, root mean square, peak to valley and lens thickness shifts from the nominal data. Results Differences in the retrieved radius and conic constant were not statistically significant across methods. However, GRIN distortion correction with optimal shape GRIN parameters provided more accurate estimates of the posterior lens surface, in terms of RMS and peak values, with errors less than 6μm and 13μm respectively, on average. Thickness was also more accurately estimated with the new method, with a mean discrepancy of 8μm. Conclusions The posterior surface of the crystalline lens and lens thickness can be accurately reconstructed from OCT images, with the accuracy improving with an accurate model of the GRIN distribution. The algorithm can be used to improve quantitative knowledge of the crystalline lens from OCT imaging in vivo. Although the improvements over other methods are modest in 2-D, it is expected that 3-D imaging will fully exploit the potential of the technique. The method will also benefit from increasing experimental data of GRIN distribution in the lens of larger populations. PMID:22466105

  4. Distortion correction of OCT images of the crystalline lens: gradient index approach.

    PubMed

    Siedlecki, Damian; de Castro, Alberto; Gambra, Enrique; Ortiz, Sergio; Borja, David; Uhlhorn, Stephen; Manns, Fabrice; Marcos, Susana; Parel, Jean-Marie

    2012-05-01

    To propose a method to correct optical coherence tomography (OCT) images of posterior surface of the crystalline lens incorporating its gradient index (GRIN) distribution and explore its possibilities for posterior surface shape reconstruction in comparison to existing methods of correction. Two-dimensional images of nine human lenses were obtained with a time-domain OCT system. The shape of the posterior lens surface was corrected using the proposed iterative correction method. The parameters defining the GRIN distribution used for the correction were taken from a previous publication. The results of correction were evaluated relative to the nominal surface shape (accessible in vitro) and compared with the performance of two other existing methods (simple division, refraction correction: assuming a homogeneous index). Comparisons were made in terms of posterior surface radius, conic constant, root mean square, peak to valley, and lens thickness shifts from the nominal data. Differences in the retrieved radius and conic constant were not statistically significant across methods. However, GRIN distortion correction with optimal shape GRIN parameters provided more accurate estimates of the posterior lens surface in terms of root mean square and peak values, with errors <6 and 13 μm, respectively, on average. Thickness was also more accurately estimated with the new method, with a mean discrepancy of 8 μm. The posterior surface of the crystalline lens and lens thickness can be accurately reconstructed from OCT images, with the accuracy improving with an accurate model of the GRIN distribution. The algorithm can be used to improve quantitative knowledge of the crystalline lens from OCT imaging in vivo. Although the improvements over other methods are modest in two dimension, it is expected that three-dimensional imaging will fully exploit the potential of the technique. The method will also benefit from increasing experimental data of GRIN distribution in the lens of larger populations.

  5. Reconstructing spatial-temporal continuous MODIS land surface temperature using the DINEOF method

    NASA Astrophysics Data System (ADS)

    Zhou, Wang; Peng, Bin; Shi, Jiancheng

    2017-10-01

    Land surface temperature (LST) is one of the key states of the Earth surface system. Remote sensing has the capability to obtain high-frequency LST observations with global coverage. However, mainly due to cloud cover, there are always gaps in the remotely sensed LST product, which hampers the application of satellite-based LST in data-driven modeling of surface energy and water exchange processes. We explored the suitability of the data interpolating empirical orthogonal functions (DINEOF) method in moderate resolution imaging spectroradiometer LST reconstruction around Ali on the Tibetan Plateau. To validate the reconstruction accuracy, synthetic clouds during both daytime and nighttime are created. With DINEOF reconstruction, the root mean square error and bias under synthetic clouds in daytime are 4.57 and -0.0472 K, respectively, and during the nighttime are 2.30 and 0.0045 K, respectively. The DINEOF method can well recover the spatial pattern of LST. Time-series analysis of LST before and after DINEOF reconstruction from 2002 to 2016 shows that the annual and interannual variabilities of LST can be well reconstructed by the DINEOF method.

  6. Three-dimensional image reconstruction of macula from stratus optical coherence tomography (OCT) for diagnosis of macular degeneration

    NASA Astrophysics Data System (ADS)

    Arinilhaq; Widita, R.

    2016-03-01

    Diagnosis of macular degeneration using a Stratus OCT with a fast macular thickness map (FMTM) method produced six B-scan images of macula from different angles. The images were converted into a retinal thickness chart to be evaluated by normal distribution percentile of data so that it can be classified as normal thickness of macula or as experiencing abnormality (e.g. thickening and thinning). Unfortunately, the diagnostic images only represent the retinal thickness in several areas of the macular region. Thus, this study is aims to obtain the entire retinal thickness in the macula area from Status OCT's output images. Basically, the volumetric image is obtained by combining each of the six images. Reconstruction consists of a series of processes such as pre-processing, segmentation, and interpolation. Linear interpolation techniques are used to fill the empty pixels in reconstruction matrix. Based on the results, this method is able to provide retinal thickness maps on the macula surface and the macula 3D image. Retinal thickness map can display the macula area which experienced abnormalities. The macula 3D image can show the layers of tissue in the macula that is abnormal. The system built cannot replace ophthalmologist in decision making in term of diagnosis.

  7. Nanopatterned articles produced using surface-reconstructed block copolymer films

    DOEpatents

    Russell, Thomas P.; Park, Soojin; Wang, Jia-Yu; Kim, Bokyung

    2016-06-07

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred to the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.

  8. Closed-loop motor control using high-speed fiber optics

    NASA Technical Reports Server (NTRS)

    Dawson, Reginald (Inventor); Rodriquiz, Dagobert (Inventor)

    1991-01-01

    A closed-loop control system for controlling the operation of one or more servo motors or other controllable devices is described. The system employs a fiber optics link immune to electromagnetic interference, for transmission of control signals from a controller or controllers at a remote station to the power electronics located in proximity to the motors or other devices at the local station. At the remote station the electrical control signals are time-multiplexed, converted to a formatted serial bit stream, and converted to light signals for transmission over a single fiber of the fiber optics link. At the local station, the received optical signals are reconstructed as electrical control signals for the controlled motors or other devices. At the local station, an encoder sensor linked to the driven device generates encoded feedback signals which provide information as to a condition of the controlled device. The encoded signals are placed in a formatted serial bit stream, multiplexed, and transmitted as optical signals over a second fiber of the fiber optic link which closes the control loop of the closed-loop motor controller. The encoded optical signals received at the remote station are demultiplexed, reconstructed and coupled to the controller(s) as electrical feedback signals.

  9. A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software project

    NASA Astrophysics Data System (ADS)

    Polydorides, Nick; Lionheart, William R. B.

    2002-12-01

    The objective of the Electrical Impedance and Diffuse Optical Reconstruction Software project is to develop freely available software that can be used to reconstruct electrical or optical material properties from boundary measurements. Nonlinear and ill posed problems such as electrical impedance and optical tomography are typically approached using a finite element model for the forward calculations and a regularized nonlinear solver for obtaining a unique and stable inverse solution. Most of the commercially available finite element programs are unsuitable for solving these problems because of their conventional inefficient way of calculating the Jacobian, and their lack of accurate electrode modelling. A complete package for the two-dimensional EIT problem was officially released by Vauhkonen et al at the second half of 2000. However most industrial and medical electrical imaging problems are fundamentally three-dimensional. To assist the development we have developed and released a free toolkit of Matlab routines which can be employed to solve the forward and inverse EIT problems in three dimensions based on the complete electrode model along with some basic visualization utilities, in the hope that it will stimulate further development. We also include a derivation of the formula for the Jacobian (or sensitivity) matrix based on the complete electrode model.

  10. Surface reconstruction, figure-ground modulation, and border-ownership.

    PubMed

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2013-01-01

    The Differentiation-Integration for Surface Completion (DISC) model aims to explain the reconstruction of visual surfaces. We find the model a valuable contribution to our understanding of figure-ground organization. We point out that, next to border-ownership, neurons in visual cortex code whether surface elements belong to a figure or the background and that this is influenced by attention. We furthermore suggest that there must be strong links between object recognition and figure-ground assignment in order to resolve the status of interior contours. Incorporation of these factors in neurocomputational models will further improve our understanding of surface reconstruction, figure-ground organization, and border-ownership.

  11. Nitridation of an unreconstructed and reconstructed (√31 ×√31)R ± 9° (0001) sapphire surface in an ammonia flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milakhina, D. S., E-mail: denironman@mail.ru; Malin, T. V.; Mansurov, V. G.

    This paper is devoted to the study of the nitridation of unreconstructed and reconstructed (√31 ×√31)R ± 9° (0001) sapphire surfaces in an ammonia flow by reflection high-energy electron diffraction (RHEED). The experimental results show that sapphire nitridation occurs on the unreconstructed (1 × 1) surface, which results in AlN phase formation on the substrate surface. However, if sapphire nitridation is preceded by high-temperature annealing (1150°C) resulting in sapphire surface reconstruction with formation of the (√31 ×√31)R ± 9° surface, the crystalline AlN phase on the sapphire surface is not formed during surface exposure to an ammonia flow.

  12. Two-step reconstruction method using global optimization and conjugate gradient for ultrasound-guided diffuse optical tomography.

    PubMed

    Tavakoli, Behnoosh; Zhu, Quing

    2013-01-01

    Ultrasound-guided diffuse optical tomography (DOT) is a promising method for characterizing malignant and benign lesions in the female breast. We introduce a new two-step algorithm for DOT inversion in which the optical parameters are estimated with the global optimization method, genetic algorithm. The estimation result is applied as an initial guess to the conjugate gradient (CG) optimization method to obtain the absorption and scattering distributions simultaneously. Simulations and phantom experiments have shown that the maximum absorption and reduced scattering coefficients are reconstructed with less than 10% and 25% errors, respectively. This is in contrast with the CG method alone, which generates about 20% error for the absorption coefficient and does not accurately recover the scattering distribution. A new measure of scattering contrast has been introduced to characterize benign and malignant breast lesions. The results of 16 clinical cases reconstructed with the two-step method demonstrates that, on average, the absorption coefficient and scattering contrast of malignant lesions are about 1.8 and 3.32 times higher than the benign cases, respectively.

  13. Surgery: Modified Pi with Triple-Bonnet Flap and Fronto-Orbital Advancement.

    PubMed

    Singh Raswan, Uday; Singh Chhiber, Sarbjit; Ramzan, Altaf Umar

    2017-01-01

    Craniosynostosis is the premature fusion of one or more of the cranial sutures and can occur as part of a syndrome or as an isolated defect. Pansynostosis is a rare form of craniosynostosis that involves premature fusion of all the cranial sutures (coronal, sagittal, metopic, and occipital). Particularly in cases of late presentation, there are heightened clinical concerns, both functional and aesthetic. In untreated cases of pansynostosis and increased intracranial pressure, optic nerve damage progresses to optic atrophy and then blindness. Cranial vault reconstruction is the standard surgical treatment. We attempt to highlight the importance of modifying the osteotomies and reshaping of the cranial vault based on individual requirements in order to achieve the best possible result and to prevent catastrophic blood loss. We present a case of modified pi with triple-bonnet flap and fronto-orbital advancement, an individual modification of the techniques of cranial vault reconstruction, in a patient with pansynostosis with optic atrophy. The technical variation can be applied to any case of pansynostosis requiring cranial vault reconstruction. © 2017 S. Karger AG, Basel.

  14. 3D reconstruction of the porous microstructure of Al2O3-coatings based on sequentially revealed surface data

    NASA Astrophysics Data System (ADS)

    Loftfield, Nina; Kästner, Markus; Reithmeier, Eduard

    2018-06-01

    Local and global liquid transport properties correlate strongly with the morphology of porous materials. Therefore, by characterizing the porous network information is indirectly gained on the materials properties. Properties like the open-porosity are easily accessible with techniques like mercury porosimetry. However, the 3D image reconstruction, destructive or non-destructive, holds advantages like an accurate spatially resolved representation of the investigated material. Common 3D data acquisition is done by x-ray microtomography or a combination of focused ion beam based milling and scanning electron microscopy. In this work a reconstruction approach similar to the latter one is implemented. The porous network is reconstructed based on an alternating process of milling the surface by fly cutting and measuring the surface data with a confocal laser scanning microscope. This has the benefit of reconstructing the pore network on the basis of surface height data, measuring the structure boundaries directly. The stack of milled surface height data needs to be registered and the pore structure to be segmented. The segmented pore structure is connected throughout each height layer and afterwards meshed. The investigated materials are porous surface coatings of aluminum oxide for the usage in tribological pairings.

  15. Assessment of the accuracy of plasma shape reconstruction by the Cauchy condition surface method in JT-60SA

    NASA Astrophysics Data System (ADS)

    Miyata, Y.; Suzuki, T.; Takechi, M.; Urano, H.; Ide, S.

    2015-07-01

    For the purpose of stable plasma equilibrium control and detailed analysis, it is essential to reconstruct an accurate plasma boundary on the poloidal cross section in tokamak devices. The Cauchy condition surface (CCS) method is a numerical approach for calculating the spatial distribution of the magnetic flux outside a hypothetical surface and reconstructing the plasma boundary from the magnetic measurements located outside the plasma. The accuracy of the plasma shape reconstruction has been assessed by comparing the CCS method and an equilibrium calculation in JT-60SA with a high elongation and triangularity of plasma shape. The CCS, on which both Dirichlet and Neumann conditions are unknown, is defined as a hypothetical surface located inside the real plasma region. The accuracy of the plasma shape reconstruction is sensitive to the CCS free parameters such as the number of unknown parameters and the shape in JT-60SA. It is found that the optimum number of unknown parameters and the size of the CCS that minimizes errors in the reconstructed plasma shape are in proportion to the plasma size. Furthermore, it is shown that the accuracy of the plasma shape reconstruction is greatly improved using the optimum number of unknown parameters and shape of the CCS, and the reachable reconstruction errors in plasma shape and locations of strike points are within the target ranges in JT-60SA.

  16. Multi-wavelengths digital holography: reconstruction, synthesis and display of holograms using adaptive transformation.

    PubMed

    Memmolo, P; Finizio, A; Paturzo, M; Ferraro, P; Javidi, B

    2012-05-01

    A method based on spatial transformations of multiwavelength digital holograms and the correlation matching of their numerical reconstructions is proposed, with the aim to improve superimposition of different color reconstructed images. This method is based on an adaptive affine transform of the hologram that permits management of the physical parameters of numerical reconstruction. In addition, we present a procedure to synthesize a single digital hologram in which three different colors are multiplexed. The optical reconstruction of the synthetic hologram by a spatial light modulator at one wavelength allows us to display all color features of the object, avoiding loss of details.

  17. Influence of Enzyme Quantity and Distribution on the Self-Propulsion of Non-Janus Urease-Powered Micromotors.

    PubMed

    Patiño, Tania; Feiner-Gracia, Natalia; Arqué, Xavier; Miguel-López, Albert; Jannasch, Anita; Stumpp, Tom; Schäffer, Erik; Albertazzi, Lorenzo; Sánchez, Samuel

    2018-06-27

    The use of enzyme catalysis to power micro- and nanomachines offers unique features such as biocompatibility, versatility, and fuel bioavailability. Yet, the key parameters underlying the motion behavior of enzyme-powered motors are not completely understood. Here, we investigate the role of enzyme distribution and quantity on the generation of active motion. Two different micromotor architectures based on either polystyrene (PS) or polystyrene coated with a rough silicon dioxide shell (PS@SiO 2 ) were explored. A directional propulsion with higher speed was observed for PS@SiO 2 motors when compared to their PS counterparts. We made use of stochastically optical reconstruction microscopy (STORM) to precisely detect single urease molecules conjugated to the micromotors surface with a high spatial resolution. An asymmetric distribution of enzymes around the micromotor surface was observed for both PS and PS@SiO 2 architectures, indicating that the enzyme distribution was not the only parameter affecting the motion behavior. We quantified the number of enzymes present on the micromotor surface and observed a 10-fold increase in the number of urease molecules for PS@SiO 2 motors compared to PS-based micromotors. To further investigate the number of enzymes required to generate a self-propulsion, PS@SiO 2 particles were functionalized with varying amounts of urease molecules and the resulting speed and propulsive force were measured by optical tracking and optical tweezers, respectively. Surprisingly, both speed and force depended in a nonlinear fashion on the enzyme coverage. To break symmetry for active propulsion, we found that a certain threshold number of enzymes molecules per micromotor was necessary, indicating that activity may be due to a critical phenomenon. Taken together, these results provide new insights into the design features of micro/nanomotors to ensure an efficient development.

  18. A photogrammetry-based system for 3D surface reconstruction of prosthetics and orthotics.

    PubMed

    Li, Guang-kun; Gao, Fan; Wang, Zhi-gang

    2011-01-01

    The objective of this study is to develop an innovative close range digital photogrammetry (CRDP) system using the commercial digital SLR cameras to measure and reconstruct the 3D surface of prosthetics and orthotics. This paper describes the instrumentation, techniques and preliminary results of the proposed system. The technique works by taking pictures of the object from multiple view angles. The series of pictures were post-processed via feature point extraction, point match and 3D surface reconstruction. In comparison with the traditional method such as laser scanning, the major advantages of our instrument include the lower cost, compact and easy-to-use hardware, satisfactory measurement accuracy, and significantly less measurement time. Besides its potential applications in prosthetics and orthotics surface measurement, the simple setup and its ease of use will make it suitable for various 3D surface reconstructions.

  19. Bidirectional reflectance distribution function effects in ladar-based reflection tomography.

    PubMed

    Jin, Xuemin; Levine, Robert Y

    2009-07-20

    Light reflection from a surface is described by the bidirectional reflectance distribution function (BRDF). In this paper, BRDF effects in reflection tomography are studied using modeled range-resolved reflection from well-characterized geometrical surfaces. It is demonstrated that BRDF effects can cause a darkening at the interior boundary of the reconstructed surface analogous to the well-known beam hardening artifact in x-ray transmission computed tomography (CT). This artifact arises from reduced reflection at glancing incidence angles to the surface. It is shown that a purely Lambertian surface without shadowed components is perfectly reconstructed from range-resolved measurements. This result is relevant to newly fabricated carbon nanotube materials. Shadowing is shown to cause crossed streak artifacts similar to limited-angle effects in CT reconstruction. In tomographic reconstruction, these effects can overwhelm highly diffuse components in proximity to specularly reflecting elements. Diffuse components can be recovered by specialized processing, such as reducing glints via thresholded measurements.

  20. Subaperture metrology technologies extend capabilities in optics manufacturing

    NASA Astrophysics Data System (ADS)

    Tricard, Marc; Forbes, Greg; Murphy, Paul

    2005-10-01

    Subaperture polishing technologies have radically changed the landscape of precision optics manufacturing and enabled the production of higher precision optics with increasingly difficult figure requirements. However, metrology is a critical piece of the optics fabrication process, and the dependence on interferometry is especially acute for computer-controlled, deterministic finishing. Without accurate full-aperture metrology, figure correction using subaperture polishing technologies would not be possible. QED Technologies has developed the Subaperture Stitching Interferometer (SSI) that extends the effective aperture and dynamic range of a phase measuring interferometer. The SSI's novel developments in software and hardware improve the capacity and accuracy of traditional interferometers, overcoming many of the limitations previously faced. The SSI performs high-accuracy automated measurements of spheres, flats, and mild aspheres up to 200 mm in diameter by stitching subaperture data. The system combines a six-axis precision workstation, a commercial Fizeau interferometer of 4" or 6" aperture, and dedicated software. QED's software automates the measurement design, data acquisition, and mathematical reconstruction of the full-aperture phase map. The stitching algorithm incorporates a general framework for compensating several types of errors introduced by the interferometer and stage mechanics. These include positioning errors, viewing system distortion, the system reference wave error, etc. The SSI has been proven to deliver the accurate and flexible metrology that is vital to precision optics fabrication. This paper will briefly review the capabilities of the SSI as a production-ready, metrology system that enables costeffective manufacturing of precision optical surfaces.

  1. Interaction of diamond (111)-(1 × 1) and (2 × 1) surfaces with OH: a first principles study.

    PubMed

    Stampfl, C; Derry, T E; Makau, N W

    2010-12-01

    The properties of hydroxyl groups on C(111)-(1 × 1) and reconstructed (2 × 1) surfaces at different sites and for various coverages are investigated using density functional theory. Out of the adsorption sites considered, i.e. face centred cubic, hexagonal close packed, on-top and bridge sites, the on-top site is the most stable for OH on the C(111)-(1 × 1) surface for all coverages. On the reconstructed (2 × 1) surface the on-top site is the preferred configuration. Adsorption of OH was not stable however at any site on the reconstructed C(111)-(2 × 1) relative to the (1 × 1) surface; thus adsorption of OH leads to the de-reconstruction of the former surface. Both the 0.5 and 1 monolayer (ML) coverages were able to lift the (2 × 1) surface reconstruction. Repulsion between the OH adsorbates on the (1 × 1) surface sets in for coverages greater than 0.5 ML. A general decrease in the work function with increasing OH coverage was observed on both the (1 × 1) and (2 × 1) surfaces relative to the values of their respective clean surfaces. Regarding the electronic structure, O 2p states on the reconstructed (2 × 1) surface are observed at around - 21, - 8.75 , - 5 and - 2.5 eV, while O 2s states are present at - 22.5 eV. On the (1 × 1) surface (for 0.33 ML in the on-top site), O 2p states occurred between - 8 and - 9 eV, - 5 and - 4 eV and at around - 2.5 eV. O 2s states are established between - 22.5 and - 21 eV. The valence band width is 21 eV, and a hybrid 2s/2p state that is characteristic of diamond is located at about 12.5 eV below the valence band minimum.

  2. Can we predict necrosis intra-operatively? Real-time optical quantitative perfusion imaging in surgery: study protocol for a prospective, observational, in vivo pilot study.

    PubMed

    Jansen, Sanne M; de Bruin, Daniel M; van Berge Henegouwen, Mark I; Strackee, Simon D; Veelo, Denise P; van Leeuwen, Ton G; Gisbertz, Suzanne S

    2017-01-01

    Compromised perfusion as a result of surgical intervention causes a reduction of oxygen and nutrients in tissue and therefore decreased tissue vitality. Quantitative imaging of tissue perfusion during reconstructive surgery, therefore, may reduce the incidence of complications. Non-invasive optical techniques allow real-time tissue imaging, with high resolution and high contrast. The objectives of this study are, first, to assess the feasibility and accuracy of optical coherence tomography (OCT), sidestream darkfield microscopy (SDF), laser speckle contrast imaging (LSCI), and fluorescence imaging (FI) for quantitative perfusion imaging and, second, to identify/search for criteria that enable risk prediction of necrosis during gastric tube and free flap reconstruction. This prospective, multicenter, observational in vivo pilot study will assess tissue perfusion using four optical technologies: OCT, SDF, LSCI, and FI in 40 patients: 20 patients who will undergo gastric tube reconstruction after esophagectomy and 20 patients who will undergo free flap surgery. Intra-operative images of gastric perfusion will be obtained directly after reconstruction at four perfusion areas. Feasibility of perfusion imaging will be analyzed per technique. Quantitative parameters directly related to perfusion will be scored per perfusion area, and differences between biologically good versus reduced perfusion will be tested statistically. Patient outcome will be correlated to images and perfusion parameters. Differences in perfusion parameters before and after a bolus of ephedrine will be tested for significance. This study will identify quantitative perfusion-related parameters for an objective assessment of tissue perfusion during surgery. This will likely allow early risk stratification of necrosis development, which will aid in achieving a reduction of complications in gastric tube reconstruction and free flap transplantation. Clinicaltrials.gov registration number NCT02902549. Dutch Central Committee on Research Involving Human Subjects registration number NL52377.018.15.

  3. Large aperture and wide field of view space telescope for the detection of ultra high energy cosmic rays and neutrinos

    NASA Astrophysics Data System (ADS)

    Mazzinghi, Piero; Bratina, Vojko; Gambicorti, Lisa; Simonetti, Francesca; Zuccaro Marchi, Alessandro

    2017-11-01

    New technologies are proposed for large aperture and wide Field of View (FOV) space telescopes dedicated to detection of Ultra High Energy Cosmic Rays and Neutrinos flux, through observation of fluorescence traces in atmosphere and diffused Cerenkov signals. The presented advanced detection system is a spaceborne LEO telescope, with better performance than ground-based observatories, detecting up to 103 - 104 events/year. Different design approaches are implemented, all with very large FOV and focal surface detectors with sufficient segmentation and time resolution to allow precise reconstructions of the arrival direction. In particular, two Schmidt cameras are suggested as an appropriate solution to match most of the optical and technical requirements: large FOV, low f/#, reduction of stray light, optionally flat focal surface, already proven low-cost construction technologies. Finally, a preliminary proposal of a wideFOV retrofocus catadioptric telescope is explained.

  4. Multiplexed Holograms by Surface Plasmon Propagation and Polarized Scattering.

    PubMed

    Chen, Ji; Li, Tao; Wang, Shuming; Zhu, Shining

    2017-08-09

    Thanks to the superiority in controlling the optical wave fronts, plasmonic nanostructures have led to various striking applications, among which metasurface holograms have been well developed and endowed with strong multiplexing capability. Here, we report a new design of multiplexed plasmonic hologram, which allows for reconstruction of multiple holographic images in free space by scatterings of surface plasmon polariton (SPP) waves in different propagation directions. Besides, the scattered polarization states can be further modulated by arranging the orientations of nanoscatterers. By incorporation of the SPP propagation and polarized scattering, a 4-fold hologram with low crosstalk is successfully demonstrated, which breaks the limitation of only two orthogonal states in conventional polarization multiplexers. Moreover, our design using the near-field SPP as reference wave holds the advantage for compact integration. This holographic approach is expected to inspire new photonic designs with enhanced information capacity and integratability.

  5. Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system

    PubMed Central

    Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha

    2008-01-01

    Hand-held based optical imaging systems are a recent development towards diagnostic imaging of breast cancer. To date, all the hand-held based optical imagers are used to perform only surface mapping and target localization, but are not capable of demonstrating tomographic imaging. Herein, a novel hand-held probe based optical imager is developed towards three-dimensional (3-D) optical tomography studies. The unique features of this optical imager, which primarily consists of a hand-held probe and an intensified charge coupled device detector, are its ability to; (i) image large tissue areas (5×10 sq. cm) in a single scan, (ii) perform simultaneous multiple point illumination and collection, thus reducing the overall imaging time; and (iii) adapt to varying tissue curvatures, from a flexible probe head design. Experimental studies are performed in the frequency domain on large slab phantoms (∼650 ml) using fluorescence target(s) under perfect uptake (1:0) contrast ratios, and varying target depths (1–2 cm) and X-Y locations. The effect of implementing simultaneous over sequential multiple point illumination towards 3-D tomography is experimentally demonstrated. The feasibility of 3-D optical tomography studies has been demonstrated for the first time using a hand-held based optical imager. Preliminary fluorescence-enhanced optical tomography studies are able to reconstruct 0.45 ml target(s) located at different target depths (1–2 cm). However, the depth recovery was limited as the actual target depth increased, since only reflectance measurements were acquired. Extensive tomography studies are currently carried out to determine the resolution and performance limits of the imager on flat and curved phantoms. PMID:18697559

  6. Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system.

    PubMed

    Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha

    2008-07-01

    Hand-held based optical imaging systems are a recent development towards diagnostic imaging of breast cancer. To date, all the hand-held based optical imagers are used to perform only surface mapping and target localization, but are not capable of demonstrating tomographic imaging. Herein, a novel hand-held probe based optical imager is developed towards three-dimensional (3-D) optical tomography studies. The unique features of this optical imager, which primarily consists of a hand-held probe and an intensified charge coupled device detector, are its ability to; (i) image large tissue areas (5 x 10 sq. cm) in a single scan, (ii) perform simultaneous multiple point illumination and collection, thus reducing the overall imaging time; and (iii) adapt to varying tissue curvatures, from a flexible probe head design. Experimental studies are performed in the frequency domain on large slab phantoms (approximately 650 ml) using fluorescence target(s) under perfect uptake (1:0) contrast ratios, and varying target depths (1-2 cm) and X-Y locations. The effect of implementing simultaneous over sequential multiple point illumination towards 3-D tomography is experimentally demonstrated. The feasibility of 3-D optical tomography studies has been demonstrated for the first time using a hand-held based optical imager. Preliminary fluorescence-enhanced optical tomography studies are able to reconstruct 0.45 ml target(s) located at different target depths (1-2 cm). However, the depth recovery was limited as the actual target depth increased, since only reflectance measurements were acquired. Extensive tomography studies are currently carried out to determine the resolution and performance limits of the imager on flat and curved phantoms.

  7. Surface structures of L10-MnGa (001) by scanning tunneling microscopy and first-principles theory

    NASA Astrophysics Data System (ADS)

    Corbett, J. P.; Guerrero-Sanchez, J.; Richard, A. L.; Ingram, D. C.; Takeuchi, N.; Smith, A. R.

    2017-11-01

    We report on the surface reconstructions of L10-ordered MnGa (001) thin films grown by molecular beam epitaxy on a 50 nm Mn3N2 (001) layer freshly grown on a magnesium oxide (001) substrate. Scanning tunneling microscopy, Auger electron spectroscopy, and reflection high energy electron diffraction are combined with first-principles density functional theory calculations to determine the reconstructions of the L10-ordered MnGa (001) surface. We find two lowest energy reconstructions of the MnGa (001) face: a 1 × 1 Ga-terminated structure and a 1 × 2 structure with a Mn replacing a Ga in the 1 × 1 Ga-terminated surface. The 1 × 2 reconstruction forms a row structure along [100]. The manganese:gallium stoichiometry within the surface based on theoretical modeling is in good agreement with experiment. Magnetic moment calculations for the two lowest energy structures reveal important surface and bulk effects leading to oscillatory total magnetization for ultra-thin MnGa (001) films.

  8. CMOS detectors: lessons learned during the STC stereo channel preflight calibration

    NASA Astrophysics Data System (ADS)

    Simioni, E.; De Sio, A.; Da Deppo, V.; Naletto, G.; Cremonese, G.

    2017-09-01

    The Stereo Camera (STC), mounted on-board the BepiColombo spacecraft, will acquire in push frame stereo mode the entire surface of Mercury. STC will provide the images for the global three-dimensional reconstruction of the surface of the innermost planet of the Solar System. The launch of BepiColombo is foreseen in 2018. STC has an innovative optical system configuration, which allows good optical performances with a mass and volume reduction of a factor two with respect to classical stereo camera approach. In such a telescope, two different optical paths inclined of +/-20°, with respect to the nadir direction, are merged together in a unique off axis path and focused on a single detector. The focal plane is equipped with a 2k x 2k hybrid Si-PIN detector, based on CMOS technology, combining low read-out noise, high radiation hardness, compactness, lack of parasitic light, capability of snapshot image acquisition and short exposure times (less than 1 ms) and small pixel size (10 μm). During the preflight calibration campaign of STC, some detector spurious effects have been noticed. Analyzing the images taken during the calibration phase, two different signals affecting the background level have been measured. These signals can reduce the detector dynamics down to a factor of 1/4th and they are not due to dark current, stray light or similar effects. In this work we will describe all the features of these unwilled effects, and the calibration procedures we developed to analyze them.

  9. Simultaneous PET and Multispectral 3-Dimensional Fluorescence Optical Tomography Imaging System

    PubMed Central

    Li, Changqing; Yang, Yongfeng; Mitchell, Gregory S.; Cherry, Simon R.

    2015-01-01

    Integrated PET and 3-dimensional (3D) fluorescence optical tomography (FOT) imaging has unique and attractive features for in vivo molecular imaging applications. We have designed, built, and evaluated a simultaneous PET and 3D FOT system. The design of the FOT system is compatible with many existing small-animal PET scanners. Methods The 3D FOT system comprises a novel conical mirror that is used to view the whole-body surface of a mouse with an electron-multiplying charge-coupled device camera when a collimated laser beam is projected on the mouse to stimulate fluorescence. The diffusion equation was used to model the propagation of optical photons inside the mouse body, and 3D fluorescence images were reconstructed iteratively from the fluorescence intensity measurements measured from the surface of the mouse. Insertion of the conical mirror into the gantry of a small-animal PET scanner allowed simultaneous PET and 3D FOT imaging. Results The mutual interactions between PET and 3D FOT were evaluated experimentally. PET has negligible effects on 3D FOT performance. The inserted conical mirror introduces a reduction in the sensitivity and noise-equivalent count rate of the PET system and increases the scatter fraction. PET–FOT phantom experiments were performed. An in vivo experiment using both PET and FOT was also performed. Conclusion Phantom and in vivo experiments demonstrate the feasibility of simultaneous PET and 3D FOT imaging. The first in vivo simultaneous PET–FOT results are reported. PMID:21810591

  10. Two-step phase-shifting SPIDER

    NASA Astrophysics Data System (ADS)

    Zheng, Shuiqin; Cai, Yi; Pan, Xinjian; Zeng, Xuanke; Li, Jingzhen; Li, Ying; Zhu, Tianlong; Lin, Qinggang; Xu, Shixiang

    2016-09-01

    Comprehensive characterization of ultrafast optical field is critical for ultrashort pulse generation and its application. This paper combines two-step phase-shifting (TSPS) into the spectral phase interferometry for direct electric-field reconstruction (SPIDER) to improve the reconstruction of ultrafast optical-fields. This novel SPIDER can remove experimentally the dc portion occurring in traditional SPIDER method by recording two spectral interferograms with π phase-shifting. As a result, the reconstructed results are much less disturbed by the time delay between the test pulse replicas and the temporal widths of the filter window, thus more reliable. What is more, this SPIDER can work efficiently even the time delay is so small or the measured bandwidth is so narrow that strong overlap happens between the dc and ac portions, which allows it to be able to characterize the test pulses with complicated temporal/spectral structures or narrow bandwidths.

  11. Adaptive optics image restoration algorithm based on wavefront reconstruction and adaptive total variation method

    NASA Astrophysics Data System (ADS)

    Li, Dongming; Zhang, Lijuan; Wang, Ting; Liu, Huan; Yang, Jinhua; Chen, Guifen

    2016-11-01

    To improve the adaptive optics (AO) image's quality, we study the AO image restoration algorithm based on wavefront reconstruction technology and adaptive total variation (TV) method in this paper. Firstly, the wavefront reconstruction using Zernike polynomial is used for initial estimated for the point spread function (PSF). Then, we develop our proposed iterative solutions for AO images restoration, addressing the joint deconvolution issue. The image restoration experiments are performed to verify the image restoration effect of our proposed algorithm. The experimental results show that, compared with the RL-IBD algorithm and Wiener-IBD algorithm, we can see that GMG measures (for real AO image) from our algorithm are increased by 36.92%, and 27.44% respectively, and the computation time are decreased by 7.2%, and 3.4% respectively, and its estimation accuracy is significantly improved.

  12. The AOLI Non-Linear Curvature Wavefront Sensor: High sensitivity reconstruction for low-order AO

    NASA Astrophysics Data System (ADS)

    Crass, Jonathan; King, David; Mackay, Craig

    2013-12-01

    Many adaptive optics (AO) systems in use today require bright reference objects to determine the effects of atmospheric distortions on incoming wavefronts. This requirement is because Shack Hartmann wavefront sensors (SHWFS) distribute incoming light from reference objects into a large number of sub-apertures. Bright natural reference objects occur infrequently across the sky leading to the use of laser guide stars which add complexity to wavefront measurement systems. The non-linear curvature wavefront sensor as described by Guyon et al. has been shown to offer a significant increase in sensitivity when compared to a SHWFS. This facilitates much greater sky coverage using natural guide stars alone. This paper describes the current status of the non-linear curvature wavefront sensor being developed as part of an adaptive optics system for the Adaptive Optics Lucky Imager (AOLI) project. The sensor comprises two photon-counting EMCCD detectors from E2V Technologies, recording intensity at four near-pupil planes. These images are used with a reconstruction algorithm to determine the phase correction to be applied by an ALPAO 241-element deformable mirror. The overall system is intended to provide low-order correction for a Lucky Imaging based multi CCD imaging camera. We present the current optical design of the instrument including methods to minimise inherent optical effects, principally chromaticity. Wavefront reconstruction methods are discussed and strategies for their optimisation to run at the required real-time speeds are introduced. Finally, we discuss laboratory work with a demonstrator setup of the system.

  13. Infrared laser transillumination CT imaging system using parallel fiber arrays and optical switches for finger joint imaging

    NASA Astrophysics Data System (ADS)

    Sasaki, Yoshiaki; Emori, Ryota; Inage, Hiroki; Goto, Masaki; Takahashi, Ryo; Yuasa, Tetsuya; Taniguchi, Hiroshi; Devaraj, Balasigamani; Akatsuka, Takao

    2004-05-01

    The heterodyne detection technique, on which the coherent detection imaging (CDI) method founds, can discriminate and select very weak, highly directional forward scattered, and coherence retaining photons that emerge from scattering media in spite of their complex and highly scattering nature. That property enables us to reconstruct tomographic images using the same reconstruction technique as that of X-Ray CT, i.e., the filtered backprojection method. Our group had so far developed a transillumination laser CT imaging method based on the CDI method in the visible and near-infrared regions and reconstruction from projections, and reported a variety of tomographic images both in vitro and in vivo of biological objects to demonstrate the effectiveness to biomedical use. Since the previous system was not optimized, it took several hours to obtain a single image. For a practical use, we developed a prototype CDI-based imaging system using parallel fiber array and optical switches to reduce the measurement time significantly. Here, we describe a prototype transillumination laser CT imaging system using fiber-optic based on optical heterodyne detection for early diagnosis of rheumatoid arthritis (RA), by demonstrating the tomographic imaging of acrylic phantom as well as the fundamental imaging properties. We expect that further refinements of the fiber-optic-based laser CT imaging system could lead to a novel and practical diagnostic tool for rheumatoid arthritis and other joint- and bone-related diseases in human finger.

  14. Quantitative reconstructions in multi-modal photoacoustic and optical coherence tomography imaging

    NASA Astrophysics Data System (ADS)

    Elbau, P.; Mindrinos, L.; Scherzer, O.

    2018-01-01

    In this paper we perform quantitative reconstruction of the electric susceptibility and the Grüneisen parameter of a non-magnetic linear dielectric medium using measurement of a multi-modal photoacoustic and optical coherence tomography system. We consider the mathematical model presented in Elbau et al (2015 Handbook of Mathematical Methods in Imaging ed O Scherzer (New York: Springer) pp 1169-204), where a Fredholm integral equation of the first kind for the Grüneisen parameter was derived. For the numerical solution of the integral equation we consider a Galerkin type method.

  15. Validation of a Laboratory Method for Evaluating Dynamic Properties of Reconstructed Equine Racetrack Surfaces

    PubMed Central

    Setterbo, Jacob J.; Chau, Anh; Fyhrie, Patricia B.; Hubbard, Mont; Upadhyaya, Shrini K.; Symons, Jennifer E.; Stover, Susan M.

    2012-01-01

    Background Racetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior. Objective To develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties. Methods Track-testing device (TTD) impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack) and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression. Results Most dynamic surface property setting differences (racetrack-laboratory) were small relative to surface material type differences (dirt-synthetic). Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces. Conclusions Laboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof impact (TTD). Potential Relevance Dynamic impact properties of race surfaces can be evaluated in a laboratory setting, allowing for further study of factors affecting surface behavior under controlled conditions. PMID:23227183

  16. Wavelet-sparsity based regularization over time in the inverse problem of electrocardiography.

    PubMed

    Cluitmans, Matthijs J M; Karel, Joël M H; Bonizzi, Pietro; Volders, Paul G A; Westra, Ronald L; Peeters, Ralf L M

    2013-01-01

    Noninvasive, detailed assessment of electrical cardiac activity at the level of the heart surface has the potential to revolutionize diagnostics and therapy of cardiac pathologies. Due to the requirement of noninvasiveness, body-surface potentials are measured and have to be projected back to the heart surface, yielding an ill-posed inverse problem. Ill-posedness ensures that there are non-unique solutions to this problem, resulting in a problem of choice. In the current paper, it is proposed to restrict this choice by requiring that the time series of reconstructed heart-surface potentials is sparse in the wavelet domain. A local search technique is introduced that pursues a sparse solution, using an orthogonal wavelet transform. Epicardial potentials reconstructed from this method are compared to those from existing methods, and validated with actual intracardiac recordings. The new technique improves the reconstructions in terms of smoothness and recovers physiologically meaningful details. Additionally, reconstruction of activation timing seems to be improved when pursuing sparsity of the reconstructed signals in the wavelet domain.

  17. Optical asymmetric cryptography based on amplitude reconstruction of elliptically polarized light

    NASA Astrophysics Data System (ADS)

    Cai, Jianjun; Shen, Xueju; Lei, Ming

    2017-11-01

    We propose a novel optical asymmetric image encryption method based on amplitude reconstruction of elliptically polarized light, which is free from silhouette problem. The original image is analytically separated into two phase-only masks firstly, and then the two masks are encoded into amplitudes of the orthogonal polarization components of an elliptically polarized light. Finally, the elliptically polarized light propagates through a linear polarizer, and the output intensity distribution is recorded by a CCD camera to obtain the ciphertext. The whole encryption procedure could be implemented by using commonly used optical elements, and it combines diffusion process and confusion process. As a result, the proposed method achieves high robustness against iterative-algorithm-based attacks. Simulation results are presented to prove the validity of the proposed cryptography.

  18. Method of producing nanopatterned articles using surface-reconstructed block copolymer films

    DOEpatents

    Russell, Thomas P; Park, Soojin; Wang, Jia-Yu; Kim, Bokyung

    2013-08-27

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred to the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.

  19. Interactive Retro-Deformation of Terrain for Reconstructing 3D Fault Displacements.

    PubMed

    Westerteiger, R; Compton, T; Bernadin, T; Cowgill, E; Gwinner, K; Hamann, B; Gerndt, A; Hagen, H

    2012-12-01

    Planetary topography is the result of complex interactions between geological processes, of which faulting is a prominent component. Surface-rupturing earthquakes cut and move landforms which develop across active faults, producing characteristic surface displacements across the fault. Geometric models of faults and their associated surface displacements are commonly applied to reconstruct these offsets to enable interpretation of the observed topography. However, current 2D techniques are limited in their capability to convey both the three-dimensional kinematics of faulting and the incremental sequence of events required by a given reconstruction. Here we present a real-time system for interactive retro-deformation of faulted topography to enable reconstruction of fault displacement within a high-resolution (sub 1m/pixel) 3D terrain visualization. We employ geometry shaders on the GPU to intersect the surface mesh with fault-segments interactively specified by the user and transform the resulting surface blocks in realtime according to a kinematic model of fault motion. Our method facilitates a human-in-the-loop approach to reconstruction of fault displacements by providing instant visual feedback while exploring the parameter space. Thus, scientists can evaluate the validity of traditional point-to-point reconstructions by visually examining a smooth interpolation of the displacement in 3D. We show the efficacy of our approach by using it to reconstruct segments of the San Andreas fault, California as well as a graben structure in the Noctis Labyrinthus region on Mars.

  20. Development of Three-Dimensional Dental Scanning Apparatus Using Structured Illumination

    PubMed Central

    Park, Anjin; Lee, Byeong Ha; Eom, Joo Beom

    2017-01-01

    We demonstrated a three-dimensional (3D) dental scanning apparatus based on structured illumination. A liquid lens was used for tuning focus and a piezomotor stage was used for the shift of structured light. A simple algorithm, which detects intensity modulation, was used to perform optical sectioning with structured illumination. We reconstructed a 3D point cloud, which represents the 3D coordinates of the digitized surface of a dental gypsum cast by piling up sectioned images. We performed 3D registration of an individual 3D point cloud, which includes alignment and merging the 3D point clouds to exhibit a 3D model of the dental cast. PMID:28714897

  1. Point spread function reconstruction validated using on-sky CANARY data in multiobject adaptive optics mode

    NASA Astrophysics Data System (ADS)

    Martin, Olivier A.; Correia, Carlos M.; Gendron, Eric; Rousset, Gerard; Gratadour, Damien; Vidal, Fabrice; Morris, Tim J.; Basden, Alastair G.; Myers, Richard M.; Neichel, Benoit; Fusco, Thierry

    2016-10-01

    In preparation of future multiobject spectrographs (MOS) whose one of the major role is to provide an extensive statistical studies of high redshifted galaxies surveyed, the demonstrator CANARY has been designed to tackle technical challenges related to open-loop adaptive optics (AO) control with jointed Natural Guide Star and Laser Guide Star tomography. We have developed a point spread function (PSF) reconstruction algorithm dedicated to multiobject adaptive optics systems using system telemetry to estimate the PSF potentially anywhere in the observed field, a prerequisite to postprocess AO-corrected observations in integral field spectroscopy. We show how to handle off-axis data to estimate the PSF using atmospheric tomography and compare it to a classical approach that uses on-axis residual phase from a truth sensor observing a natural bright source. We have reconstructed over 450 on-sky CANARY PSFs and we get bias/1-σ standard-deviation (std) of 1.3/4.8 on the H-band Strehl ratio (SR) with 92.3% of correlation between reconstructed and sky SR. On the full-width at half-maximum, we get, respectively, 2.94 mas, 19.9 mas, and 88.3% for the bias, std, and correlation. The reference method achieves 0.4/3.5/95% on the SR and 2.71 mas/14.9 mas/92.5% on the FWHM for the bias/std/correlation.

  2. Accurate reconstruction of the optical parameter distribution in participating medium based on the frequency-domain radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Qiao, Yao-Bin; Qi, Hong; Zhao, Fang-Zhou; Ruan, Li-Ming

    2016-12-01

    Reconstructing the distribution of optical parameters in the participating medium based on the frequency-domain radiative transfer equation (FD-RTE) to probe the internal structure of the medium is investigated in the present work. The forward model of FD-RTE is solved via the finite volume method (FVM). The regularization term formatted by the generalized Gaussian Markov random field model is used in the objective function to overcome the ill-posed nature of the inverse problem. The multi-start conjugate gradient (MCG) method is employed to search the minimum of the objective function and increase the efficiency of convergence. A modified adjoint differentiation technique using the collimated radiative intensity is developed to calculate the gradient of the objective function with respect to the optical parameters. All simulation results show that the proposed reconstruction algorithm based on FD-RTE can obtain the accurate distributions of absorption and scattering coefficients. The reconstructed images of the scattering coefficient have less errors than those of the absorption coefficient, which indicates the former are more suitable to probing the inner structure. Project supported by the National Natural Science Foundation of China (Grant No. 51476043), the Major National Scientific Instruments and Equipment Development Special Foundation of China (Grant No. 51327803), and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51121004).

  3. Submicron patterns obtained by thermal-induced reconstruction of self-assembled monolayer of Ag nanoparticles and their application in SERS

    NASA Astrophysics Data System (ADS)

    Ruan, Weidong; Zhou, Tieli; Cui, Yinqiu; Dong, Yujie; Liu, Zhuo; Dong, Fengxia; Wang, Haiyang; Luan, Xintong; Wang, Xu; Song, Wei; Zhao, Bing

    2014-08-01

    The layer-by-layer (LbL) self-assembly technique was employed for the deposition of poly(diallyldimethylammonium chloride) (PDDA) and triangular Ag nanoplates on glass substrates. A thermal-induced reconstruction of these polyelectrolyte-linked nanoparticle (NP) films was presented. Before the reconstruction, triangular Ag nanoplates were distributed uniformly on the surface with an average interval of 50 ± 15 nm. After the reconstruction, the triangular Ag nanoplates accumulated into discrete stacks with an average interval of 90 ± 25 nm. The temperature-dependent experiments were done and the optimal temperature for the formation of the reconstructed patterns was 120 °C. The possible mechanism of the NP movement and stacking was analyzed. Under the experimental conditions, a hydrophobic environment was formed because of the vacuum and heating. As a result the polyelectrolyte-linked Ag NPs preferred to congregate due to the lowered surface energy. Finally the submicron patterns were formed. The ultraviolet-visible (UV-vis) absorption and surface-enhanced Raman scattering (SERS) properties of the films before and after the reconstruction was investigated. The reconstructed films with submicron patterns had better SERS enhancement ability, which was 1300 times to the original films. The reconstruction method of the monolayer films showed great potential in the surface design and related applications. AFM images were obtained to clarify the three dimensional structures of the reconstructed films obtained at 120 °C. As shown in Fig. 2, the Ag NP stacks had an average diameter of 1.0 ± 0.2 μm and an average height of 170 ± 30 nm. The diameter and height of the stacks were shaped by the aggregates of tens of triangular Ag nanoplates. The AFM cross-sectional contour showed the clear intervals of the stacks, which was corresponding to the SEM characterization.XRD patterns of the polyelectrolyte-linked NP films before and after thermal post-treatment are showed in Fig. 3. The peak at 38.1° was corresponding to the diffraction of the {1 1 1} plane of Ag NPs. No other diffraction peaks was observable because the Ag NPs grew at the {1 1 1} plane preferred in our synthesis method. The intensity of the peaks changed slightly, which is attributed to the change of the orientation of NPs.The possible mechanism for the reconstruction was discussed. In our experiments, the as-prepared polyelectrolyte-linked NP films were located in a very hydrophobic environment in the post-treatment process. To minimize interfacial free energy, both the polar groups of PDDA and the Ag NPs preferred to accumulate to lower the surface area, viz. surface tension [22,23]. As a result, the uniform films converted to the discrete islands on glass substrates. The mechanism is illustrated in Fig. 4.It should note that the NPs did not undergo an obvious phase change in our experimental conditions. From the SEM in Fig. 1(b) it can be seen that the shape of triangular silver nanoplates did not change perceptibly. Moreover, the XRD patterns in Fig. 3 also did not show big changes in the peak intensities. The slight intensity change of the diffraction peaks at 38.1° is assigned to the change of the orientation of NPs, which happens usually in any reconstruction of NP films.The reconstruction of the NP films provides an opportunity to produce surface modifications which have applications in optical properties. The SPR and enhanced spectroscopy properties were investigated by UV-vis absorption and SERS, respectively. Fig. 5(a) shows the UV-vis absorption spectra of the Ag colloid, Ag NP films before and after the post-treatment at 120 °C. In the visible region the triangular Ag nanoplates have two adsorption bands centered at 675 and 490 nm. These absorption bands are assigned to be the in-plane dipole and the in-plane quadruple plasmon resonances, separately [24]. After the deposition of the triangular Ag NPs on glass slides, the UV-vis absorption bands appeared to be 627 and 454 nm, which are similar to the reported results [24]. When the Ag NP films underwent the thermal post-treatment at 120 °C, an absorption band at 410 nm was generated, which is generally assigned to be the strong coupling SPR of Ag NP aggregates. The relative stronger absorption near 514.5 nm comparing with the Ag NP films before the reconstruction could contribute more enhancement with the excitation line of 514.5 nm when the films were used as SERS substrates.Fig. 5(b) shows the SERS spectra of 4-ATP adsorbed on the Ag NP films before and after the reconstruction. The SERS measurements were prepared by drop coating of 10 μL of 4-ATP (10-5 mol/L) ethanol solution onto the reconstructed films and 10 μL of 4-ATP (10-3 mol/L) ethanol solution onto the original films, separately. Then they were dried naturally. 10 (±0.5) mm diameter circular blots were formed on the substrates. The peak at 1077 cm-1 was chosen for quantitative comparison of the enhancement ability of these films. Because the enhancement is proportional to the concentration of the 4-ATP molecule and the intensity of the SERS signal in our experiments, it is easy to obtain the quantitative comparison for the NP films. As results, the enhancement of the reconstructed films is 1300 times to the original films. The reconstruction of the NP films created more “hot spots” by the aggregation of Ag NPs, which has great contribution to the enhancement according to the electromagnetic mechanism of SERS. Other delicate works also showed the importance for the engineering fabrication of nanogaps with plasmonic materials [25-27]. Our method shows potential application to the fabrication of high-active SERS substrates via a convenient and inexpensive way.

  4. Influence of the light propagation models on a linearized photoacoustic image reconstruction of the light absorption coefficient

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Kushibiki, Toshihiro; Ishihara, Miya

    2015-03-01

    Quantification of the optical properties of the tissues and blood by noninvasive photoacoustic (PA) imaging may provide useful information for screening and early diagnosis of diseases. Linearized 2D image reconstruction algorithm based on PA wave equation and the photon diffusion equation (PDE) can reconstruct the image with computational cost smaller than a method based on 3D radiative transfer equation. However, the reconstructed image is affected by the differences between the actual and assumed light propagations. A quantitative capability of a linearized 2D image reconstruction was investigated and discussed by the numerical simulations and the phantom experiment in this study. The numerical simulations with the 3D Monte Carlo (MC) simulation and the 2D finite element calculation of the PDE were carried out. The phantom experiment was also conducted. In the phantom experiment, the PA pressures were acquired by a probe which had an optical fiber for illumination and the ring shaped P(VDF-TrFE) ultrasound transducer. The measured object was made of Intralipid and Indocyanine green. In the numerical simulations, it was shown that the linearized image reconstruction method recovered the absorption coefficients with alleviating the dependency of the PA amplitude on the depth of the photon absorber. The linearized image reconstruction method worked effectively under the light propagation calculated by 3D MC simulation, although some errors occurred. The phantom experiments validated the result of the numerical simulations.

  5. Locating structures and evolution pathways of reconstructed rutile TiO2(011) using genetic algorithm aided density functional theory calculations.

    PubMed

    Ding, Pan; Gong, Xue-Qing

    2016-05-01

    Titanium dioxide (TiO2) is an important metal oxide that has been used in many different applications. TiO2 has also been widely employed as a model system to study basic processes and reactions in surface chemistry and heterogeneous catalysis. In this work, we investigated the (011) surface of rutile TiO2 by focusing on its reconstruction. Density functional theory calculations aided by a genetic algorithm based optimization scheme were performed to extensively sample the potential energy surfaces of reconstructed rutile TiO2 structures that obey (2 × 1) periodicity. A lot of stable surface configurations were located, including the global-minimum configuration that was proposed previously. The wide variety of surface structures determined through the calculations performed in this work provide insight into the relationship between the atomic configuration of a surface and its stability. More importantly, several analytical schemes were proposed and tested to gauge the differences and similarities among various surface structures, aiding the construction of the complete pathway for the reconstruction process.

  6. THE MUSCLES TREASURY SURVEY. II. INTRINSIC LY α AND EXTREME ULTRAVIOLET SPECTRA OF K AND M DWARFS WITH EXOPLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youngblood, Allison; France, Kevin; Loyd, R. O. Parke

    2016-06-20

    The ultraviolet (UV) spectral energy distributions (SEDs) of low-mass (K- and M-type) stars play a critical role in the heating and chemistry of exoplanet atmospheres, but are not observationally well-constrained. Direct observations of the intrinsic flux of the Ly α line (the dominant source of UV photons from low-mass stars) are challenging, as interstellar H i absorbs the entire line core for even the closest stars. To address the existing gap in empirical constraints on the UV flux of K and M dwarfs, the MUSCLES Hubble Space Telescope Treasury Survey has obtained UV observations of 11 nearby M and Kmore » dwarfs hosting exoplanets. This paper presents the Ly α and extreme-UV spectral reconstructions for the MUSCLES targets. Most targets are optically inactive, but all exhibit significant UV activity. We use a Markov Chain Monte Carlo technique to correct the observed Ly α profiles for interstellar absorption, and we employ empirical relations to compute the extreme-UV SED from the intrinsic Ly α flux in ∼100 Å bins from 100–1170 Å. The reconstructed Ly α profiles have 300 km s{sup −1} broad cores, while >1% of the total intrinsic Ly α flux is measured in extended wings between 300 and 1200 km s{sup −1}. The Ly α surface flux positively correlates with the Mg ii surface flux and negatively correlates with the stellar rotation period. Stars with larger Ly α surface flux also tend to have larger surface flux in ions formed at higher temperatures, but these correlations remain statistically insignificant in our sample of 11 stars. We also present H i column density measurements for 10 new sightlines through the local interstellar medium.« less

  7. Probing atomic-scale friction on reconstructed surfaces of single-crystal semiconductors

    NASA Astrophysics Data System (ADS)

    Goryl, M.; Budzioch, J.; Krok, F.; Wojtaszek, M.; Kolmer, M.; Walczak, L.; Konior, J.; Gnecco, E.; Szymonski, M.

    2012-02-01

    Friction force microscopy (FFM) investigations have been performed on reconstructed (001) surfaces of InSb and Ge in an ultrahigh vacuum. On the c(8×2) reconstruction of InSb(001) atomic resolution is achieved under superlubric conditions, and the features observed in the lateral force images are precisely reproduced by numerical simulations, taking into account possible decorations of the probing tip. On the simultaneously acquired (1×3) reconstruction a significant disorder of the surface atoms is observed. If the loading force increases, friction becomes much larger on this reconstruction compared to the c(8×2) one. In FFM images acquired on the Ge(001)(2×1) characteristic substructures are resolved within the unit cells. In such a case, a strong dependence of the friction pattern on the scan direction is observed.

  8. Optical nulling apparatus and method for testing an optical surface

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene (Inventor); Hannon, John J. (Inventor); Dey, Thomas W. (Inventor); Jensen, Arthur E. (Inventor)

    2008-01-01

    An optical nulling apparatus for testing an optical surface includes an aspheric mirror having a reflecting surface for imaging light near or onto the optical surface under test, where the aspheric mirror is configured to reduce spherical aberration of the optical surface under test. The apparatus includes a light source for emitting light toward the aspheric mirror, the light source longitudinally aligned with the aspheric mirror and the optical surface under test. The aspheric mirror is disposed between the light source and the optical surface under test, and the emitted light is reflected off the reflecting surface of the aspheric mirror and imaged near or onto the optical surface under test. An optical measuring device is disposed between the light source and the aspheric mirror, where light reflected from the optical surface under test enters the optical measuring device. An imaging mirror is disposed longitudinally between the light source and the aspheric mirror, and the imaging mirror is configured to again reflect light, which is first reflected from the reflecting surface of the aspheric mirror, onto the optical surface under test.

  9. The Interior Analysis and 3-D Reconstruction of Internally-Mixed Light-Absorbing Atmospheric Particles

    NASA Astrophysics Data System (ADS)

    Conny, J. M.; Collins, S. M.; Anderson, I.; Herzing, A.

    2010-12-01

    Carbon-containing atmospheric particles may either absorb solar or outgoing long-wave radiation or scatter solar radiation, and thus, affect Earth’s radiative balance in multiple ways. Light-absorbing carbon that is common in urban air particles such as industrial coke dust, road dust, and diesel soot, often exists in the same particle with other phases that contain, for example, aluminum, calcium, iron, and sulfur. While the optical properties of atmospheric particles in general depend on overall particle size and shape, the inhomogeneity of chemical phases within internally-mixed particles may also greatly affect particle optical properties. In this study, a series of microscopic approaches were used to identify individual light-absorbing coarse-mode particles and to assess their interior structure and composition. Particle samples were collected in 2004 from one of the U.S. EPA’s Los Angeles Particulate Matter Supersites, and were likely affected substantially by road dust and construction dust. First, bright-field and dark-field light microscopy and computer-controlled scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy (EDX) were used to distinguish predominantly light-absorbing carbonaceous particles from other particle types such as mineral dust, sea salt, and brake wear. Second, high-resolution SEM-EDX elemental mapping of individual carbonaceous particles was used to select particles with additional elemental phases that exhibited spatial inhomogeneity. Third, focused ion-beam SEM (FIB-SEM) with EDX was used to slice through selected particles to expose interior surfaces and to determine the spatial distribution of element phases throughout the particles. Fourth, study of the interior phases of a particle was augmented by the transmission electron microscopy (TEM) of a thin section of the particle prepared by FIB-SEM. Here, electron energy loss spectroscopy with TEM was used to study chemical bonding in the carbonaceous phase. Finally, automated serial slicing and imaging in the FIB-SEM generated a stack of secondary electron images of the particles’ interior surfaces that allowed for the 3-D reconstruction of the particles, a process known as FIB tomography. Interior surface of light-absorbing carbonaceous particle from FIB-SEM analysis.

  10. Coherent diffraction surface imaging in reflection geometry.

    PubMed

    Marathe, Shashidhara; Kim, S S; Kim, S N; Kim, Chan; Kang, H C; Nickles, P V; Noh, D Y

    2010-03-29

    We present a reflection based coherent diffraction imaging method which can be used to reconstruct a non periodic surface image from a diffraction amplitude measured in reflection geometry. Using a He-Ne laser, we demonstrated that a surface image can be reconstructed solely from the reflected intensity from a surface without relying on any prior knowledge of the sample object or the object support. The reconstructed phase image of the exit wave is particularly interesting since it can be used to obtain quantitative information of the surface depth profile or the phase change during the reflection process. We believe that this work will broaden the application areas of coherent diffraction imaging techniques using light sources with limited penetration depth.

  11. A family of neuromuscular stimulators with optical transcutaneous control.

    PubMed

    Jarvis, J C; Salmons, S

    1991-01-01

    A family of miniature implantable neuromuscular stimulators has been developed using surface-mounted Philips 4000-series integrated circuits. The electronic components are mounted by hand on printed circuits (platinum/gold on alumina) and the electrical connections are made by reflow soldering. The plastic integrated-circuit packages, ceramic resistors and metal interconnections are protected from the body fluids by a coating of biocompatible silicone rubber. This simple technology provides reliable function for at least 4 months under implanted conditions. The circuits have in common a single lithium cell power-supply (3.2 V) and an optical sensor which can be used to detect light flashes through the skin after the device has been implanted. This information channel may be used to switch the output of a device on or off, or to cycle through a series of pre-set programs. The devices are currently finding application in studies which provide an experimental basis for the clinical exploitation of electrically stimulated skeletal muscle in cardiac assistance, sphincter reconstruction or functional electrical stimulation of paralysed limbs.

  12. Rapid and highly integrated FPGA-based Shack-Hartmann wavefront sensor for adaptive optics system

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Pin; Chang, Chia-Yuan; Chen, Shean-Jen

    2018-02-01

    In this study, a field programmable gate array (FPGA)-based Shack-Hartmann wavefront sensor (SHWS) programmed on LabVIEW can be highly integrated into customized applications such as adaptive optics system (AOS) for performing real-time wavefront measurement. Further, a Camera Link frame grabber embedded with FPGA is adopted to enhance the sensor speed reacting to variation considering its advantage of the highest data transmission bandwidth. Instead of waiting for a frame image to be captured by the FPGA, the Shack-Hartmann algorithm are implemented in parallel processing blocks design and let the image data transmission synchronize with the wavefront reconstruction. On the other hand, we design a mechanism to control the deformable mirror in the same FPGA and verify the Shack-Hartmann sensor speed by controlling the frequency of the deformable mirror dynamic surface deformation. Currently, this FPGAbead SHWS design can achieve a 266 Hz cyclic speed limited by the camera frame rate as well as leaves 40% logic slices for additionally flexible design.

  13. High-precision double-frequency interferometric measurement of the cornea shape

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl V.; Pallikaris, Ioannis G.; Naoumidis, Leonidas P.; Smirnov, Eugene M.; Ilchenko, Leonid M.; Goncharov, Vadym O.

    1996-11-01

    To measure the shape of the cornea and its declinations from the necessary values before and after PRK operation, s well as the shape of other spherical objects like artificial pupil, a technique was used of double-frequency dual-beam interferometry. The technique is based on determination of the optical path difference between two neighboring laser beams, reflected from the cornea or other surface under investigation. Knowing the distance between the beams on the investigated shape. The shape itself is reconstructed by along-line integration. To adjust the wavefront orientation of the laser beam to the spherical shape of the cornea or artificial pupil in the course of scanning, additional lens is involved. Signal-to-noise ratio is ameliorated excluding losses in the acousto-optic deflectors. Polarization selection is realized for choosing the signal needed for measurement. 2D image presentation is accompanied by convenient PC accessories, permitting precise cross-section measurements along selected directions. Sensitivity of the order of 10-2 micrometers is achieved.

  14. Proposal of an innovative benchmark for comparison of the performance of contactless digitizers

    NASA Astrophysics Data System (ADS)

    Iuliano, Luca; Minetola, Paolo; Salmi, Alessandro

    2010-10-01

    Thanks to the improving performances of 3D optical scanners, in terms of accuracy and repeatability, reverse engineering applications have extended from CAD model design or reconstruction to quality control. Today, contactless digitizing devices constitute a good alternative to coordinate measuring machines (CMMs) for the inspection of certain parts. The German guideline VDI/VDE 2634 is the only reference to evaluate whether 3D optical measuring systems comply with the declared or required performance specifications. Nevertheless it is difficult to compare the performance of different scanners referring to such a guideline. An adequate novel benchmark is proposed in this paper: focusing on the inspection of production tools (moulds), the innovative test piece was designed using common geometries and free-form surfaces. The reference part is intended to be employed for the evaluation of the performance of several contactless digitizing devices in computer-aided inspection, considering dimensional and geometrical tolerances as well as other quantitative and qualitative criteria.

  15. Fossilized biophotonic nanostructures reveal the original colors of 47-million-year-old moths.

    PubMed

    McNamara, Maria E; Briggs, Derek E G; Orr, Patrick J; Wedmann, Sonja; Noh, Heeso; Cao, Hui

    2011-11-01

    Structural colors are generated by scattering of light by variations in tissue nanostructure. They are widespread among animals and have been studied most extensively in butterflies and moths (Lepidoptera), which exhibit the widest diversity of photonic nanostructures, resultant colors, and visual effects of any extant organism. The evolution of structural coloration in lepidopterans, however, is poorly understood. Existing hypotheses based on phylogenetic and/or structural data are controversial and do not incorporate data from fossils. Here we report the first example of structurally colored scales in fossil lepidopterans; specimens are from the 47-million-year-old Messel oil shale (Germany). The preserved colors are generated by a multilayer reflector comprised of a stack of perforated laminae in the scale lumen; differently colored scales differ in their ultrastructure. The original colors were altered during fossilization but are reconstructed based upon preserved ultrastructural detail. The dorsal surface of the forewings was a yellow-green color that probably served as a dual-purpose defensive signal, i.e. aposematic during feeding and cryptic at rest. This visual signal was enhanced by suppression of iridescence (change in hue with viewing angle) achieved via two separate optical mechanisms: extensive perforation, and concave distortion, of the multilayer reflector. The fossils provide the first evidence, to our knowledge, for the function of structural color in fossils and demonstrate the feasibility of reconstructing color in non-metallic lepidopteran fossils. Plastic scale developmental processes and complex optical mechanisms for interspecific signaling had clearly evolved in lepidopterans by the mid-Eocene.

  16. Development of an inexpensive optical method for studies of dental erosion process in vitro

    NASA Astrophysics Data System (ADS)

    Nasution, A. M. T.; Noerjanto, B.; Triwanto, L.

    2008-09-01

    Teeth have important roles in digestion of food, supporting the facial-structure, as well as in articulation of speech. Abnormality in teeth structure can be initiated by an erosion process due to diet or beverages consumption that lead to destruction which affect their functionality. Research to study the erosion processes that lead to teeth's abnormality is important in order to be used as a care and prevention purpose. Accurate measurement methods would be necessary as a research tool, in order to be capable for quantifying dental destruction's degree. In this work an inexpensive optical method as tool to study dental erosion process is developed. It is based on extraction the parameters from the 3D dental visual information. The 3D visual image is obtained from reconstruction of multiple lateral projection of 2D images that captured from many angles. Using a simple motor stepper and a pocket digital camera, sequence of multi-projection 2D images of premolar tooth is obtained. This images are then reconstructed to produce a 3D image, which is useful for quantifying related dental erosion parameters. The quantification process is obtained from the shrinkage of dental volume as well as surface properties due to erosion process. Results of quantification is correlated to the ones of dissolved calcium atom which released from the tooth using atomic absorption spectrometry. This proposed method would be useful as visualization tool in many engineering, dentistry, and medical research. It would be useful also for the educational purposes.

  17. Recent Climate Changes in Northwestern Qaidam Basin Inferred from Geothermal Gradients

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhang, T.

    2014-12-01

    Temperature perturbations under the ground surface are direct thermal response to ground surface temperature changes. Thus ground surface temperature history can be reconstructed from borehole temperature measurements using borehole paleothermometry inversion method. In this study, we use seven borehole temperature profiles to reconstruct the ground surface temperature variation of the past 500 years of the Qaidam basin, northwestern China. Borehole transient temperature measurement from seven sites in northwestern Qaidam basin were separated from geothermal gradients and analyzed by functional space inversion method to determine past ground surface temperature variations in this region. All temperature profiles show the effects of recent climatic disturbances. Inversion shows an overall increase in ground surface temperature by an averaged 1.2℃ (-0.11~2.21℃) during the last 500 years. Clear signs of a cold period between 1500 and 1900 A.D., corresponding to the Little Ice Age, have been found. Its coldest period was between 1780~1790 A.D. with the ground surface temperature of 5.4℃. During the 19th and the 20th century, reconstructed ground surface temperature shows a rising trend, and in the late 20th century, the temperature started to decrease. However, the highest temperature in 1990s broke the record of the past 500 years. This reconstructed past ground surface temperature variation is verified by the simulated annual surface air temperature computed by EdGCM and the cooling trend is also confirmed by other reconstruction of winter half year minimum temperatures using tree rings on the northeastern Tibetan Plateau.

  18. 3D-optical measurement system using a new vignetting aperture procedure

    NASA Astrophysics Data System (ADS)

    Hofbauer, Engelbert; Rascher, Rolf; Wühr, Konrad; Friedke, Felix; Stubenrauch, Thomas; Pastötter, Benjamin; Schleich, Sebastian; Zöcke, Christine

    2014-05-01

    A newly developed measuring procedure uses vignetting to evaluate angles and angle changes, independently from the measurement distance. Further on, the same procedure enables the transmission of a digital readout and therefore a better automation of the electronic signal evaluation, for use as an alignment telescope. The fully extended readout by a simple 3-D reflector will provide the user with a measurement result with six degrees of freedom. The vignetting field stop procedure will be described. Firstly, considering artificial vignetting, the theoretical basics from geometric-optical view are represented. Secondly, the natural vignetting with photometric effects will be considered. The distribution of intensity in the image plane light spot, the so-called V-SPOT, is analytically deduced as a function of differently measured variables. Intensity shifts within the V-Spot are examined independently from different effects by numeric simulation. On these basics, the theoretical research regarding accuracy, linearity as well as results in 2 dimensional surface reconstruction on precision optical mirrors and also three dimensional measurements in mechanical engineering are examined. Effects and deviations will be discussed. The project WiPoVi is sponsored by "Ingenieur Nachwuchs - Qualifizierung von Ingenieurnachwuchs an Fachhochschulen" by Bavarian State Ministry of Education, Science and the Arts.

  19. Monitoring of mirror degradation of fluorescence detectors at the Pierre Auger Observatory due to dust sedimentation

    NASA Astrophysics Data System (ADS)

    Nozka, L.; Hiklova, H.; Horvath, P.; Hrabovsky, M.; Mandat, D.; Palatka, M.; Pech, M.; Ridky, J.; Schovanek, P.

    2018-05-01

    We present results of the monitoring method we have used to characterize the optical performance deterioration due to the dust of our mirror segments produced for fluorescence detectors used in astrophysics experiments. The method is based on the measurement of scatter profiles of reflected light. The scatter profiles and the reflectivity of the mirror segments sufficiently describe the performance of the mirrors from the perspective of reconstruction algorithms. The method is demonstrated on our mirror segments installed in frame of the Pierre Auger Observatory project. Although installed in air-conditioned buildings, both the dust sedimentation and the natural aging of the reflective layer deteriorate the optical throughput of the segments. In the paper, we summarized data from ten years of operation of the fluorescence detectors. During this time, we periodically measured in-situ scatter characteristics represented by the specular reflectivity and the reflectivity of the diffusion part at the wavelength of 670 nm of the segment surface (measured by means of the optical scatter technique as well). These measurements were extended with full Bidirectional Reflectance Distribution Functions (BRDF) profiles of selected segments made in the laboratory. Cleaning procedures are also discussed in the paper.

  20. Assessment of the accuracy of plasma shape reconstruction by the Cauchy condition surface method in JT-60SA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyata, Y.; Suzuki, T.; Takechi, M.

    2015-07-15

    For the purpose of stable plasma equilibrium control and detailed analysis, it is essential to reconstruct an accurate plasma boundary on the poloidal cross section in tokamak devices. The Cauchy condition surface (CCS) method is a numerical approach for calculating the spatial distribution of the magnetic flux outside a hypothetical surface and reconstructing the plasma boundary from the magnetic measurements located outside the plasma. The accuracy of the plasma shape reconstruction has been assessed by comparing the CCS method and an equilibrium calculation in JT-60SA with a high elongation and triangularity of plasma shape. The CCS, on which both Dirichletmore » and Neumann conditions are unknown, is defined as a hypothetical surface located inside the real plasma region. The accuracy of the plasma shape reconstruction is sensitive to the CCS free parameters such as the number of unknown parameters and the shape in JT-60SA. It is found that the optimum number of unknown parameters and the size of the CCS that minimizes errors in the reconstructed plasma shape are in proportion to the plasma size. Furthermore, it is shown that the accuracy of the plasma shape reconstruction is greatly improved using the optimum number of unknown parameters and shape of the CCS, and the reachable reconstruction errors in plasma shape and locations of strike points are within the target ranges in JT-60SA.« less

Top