Calculation of optical band gaps of a-Si:H thin films by ellipsometry and UV-Vis spectrophotometry
NASA Astrophysics Data System (ADS)
Qiu, Yijiao; Li, Wei; Wu, Maoyang; Fu, Junwei; Jiang, Yadong
2010-10-01
Hydrogenated amorphous silicon (a-Si:H) thin films doped with Phosphorus (P) and Nitrogen (N) were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). The optical band gaps of the thin films obtained through either changing the gas pressure (P-doped only) or adulterating nitrogen concentration (with fixed P content) were investigated by means of Ellipsometric and Ultraviolet-Visible (UV-Vis) spectroscopy, respectively. Tauc formula was used in calculating the optical band gaps of the thin films in both methods. The results show that Ellipsometry and UV-Vis spectrophotometry can be applied in the research of the optical properties of a-Si:H thin films experimentally. Both methods reflect the variation law of the optical band gaps caused by CVD process parameters, i.e., the optical band gap of the a-Si:H thin films is increased with the rise of the gas pressure or the nitrogen concentration respectively. The difference in optical band gaps of the doped a-Si:H thin films calculated by Ellipsometry or UV-Vis spectrophotometry are not so great that they both can be used to measure the optical band gaps of the thin films in practical applications.
Influences of the residual argon gas and thermal annealing on Ta2O5 and SiO2 thin film filters
NASA Astrophysics Data System (ADS)
Liu, Wen-Jen; Chen, Chih-Min; Lai, Yin-Chieh
2005-04-01
Ion beam assisted deposition (IBAD) technique had widely used for improving stacking density and atomic mobility of thin films in many applications, especially adopted in optical film industries. Tantalum pentaoxide (Ta2O5) and silicon oxides (SiO2) optical thin films were deposited on the quartz glass substrate by using argon ion beam assisted deposition, and the influences of the residual argon gas and thermal annealing processes on the optical property, stress, compositional and microstructure evolution of the thin films were investigated in this study. Ta2O5 thin films were analyzed by XPS indicated that the ratio value of oxygen to tantalum was insufficient, at the same time, the residual argon gas in the thin films might result in film and device instabilities. Adopting oxygen-thermal annealing treatment at the temperature of 425°C, the thin films not only decreased the residual argon gas and the surface roughness, but also provided the sufficient stoichiometric ratio. Simultaneously, microstructure examination indicated few nano-crystallized structures and voids existed in Ta2O5 thin films, and possessed reasonable refractive index and lower extinction coefficient. By the way, we also suggested the IBAD system using the film compositional gas ion beam to replace the argon ion beam for assisting deposited optical films. The designed (HL)6H6LH(LH)6 multi-layers indicated higher insertion loss than the designed (HL)68H(LH)6 multi-layers. Therefore, using the high refractive index as spacer material represented lower insertion loss.
Hydrogen Gas Sensing Characteristics of Nanostructured NiO Thin Films Synthesized by SILAR Method
NASA Astrophysics Data System (ADS)
Karaduman, Irmak; Çorlu, Tugba; Yıldırım, M. Ali; Ateş, Aytunç; Acar, Selim
2017-07-01
Nanostructured NiO thin films have been synthesized by a facile, low-cost successive ionic layer adsorption and reaction (SILAR) method, and the effects of the film thickness on their hydrogen gas sensing properties investigated. The samples were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis, and energy-dispersive x-ray analysis. The XRD results revealed that the crystallinity improved with increasing thickness, exhibiting polycrystalline structure. SEM studies showed that all the films covered the glass substrate well. According to optical absorption measurements, the optical bandgap decreased with increasing film thickness. The gas sensing properties of the nanostructured NiO thin films were studied as a function of operating temperature and gas concentration. The samples showed good sensing performance of H2 gas with high response. The maximum response was 75% at operating temperature of 200°C for hydrogen gas concentration of 40 ppm. These results demonstrate that nanostructured NiO thin films synthesized by the SILAR method have potential for application in hydrogen detection.
Optically thin core accretion: how planets get their gas in nearly gas-free discs
NASA Astrophysics Data System (ADS)
Lee, Eve J.; Chiang, Eugene; Ferguson, Jason W.
2018-05-01
Models of core accretion assume that in the radiative zones of accreting gas envelopes, radiation diffuses. But super-Earths/sub-Neptunes (1-4 R⊕, 2-20 M⊕) point to formation conditions that are optically thin: their modest gas masses are accreted from short-lived and gas-poor nebulae reminiscent of the transparent cavities of transitional discs. Planetary atmospheres born in such environments can be optically thin to both incident starlight and internally generated thermal radiation. We construct time-dependent models of such atmospheres, showing that super-Earths/sub-Neptunes can accrete their ˜1 per cent-by-mass gas envelopes, and super-puffs/sub-Saturns their ˜20 per cent-by-mass envelopes, over a wide range of nebular depletion histories requiring no fine tuning. Although nascent atmospheres can exhibit stratospheric temperature inversions affected by atomic Fe and various oxides that absorb strongly at visible wavelengths, the rate of gas accretion remains controlled by the radiative-convective boundary (rcb) at much greater pressures. For dusty envelopes, the temperature at the rcb Trcb ≃ 2500 K is still set by H2 dissociation; for dust-depleted envelopes, Trcb tracks the temperature of the visible or thermal photosphere, whichever is deeper, out to at least ˜5 au. The rate of envelope growth remains largely unchanged between the old radiative diffusion models and the new optically thin models, reinforcing how robustly super-Earths form as part of the endgame chapter in disc evolution.
LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagul, Sagar B., E-mail: nano.sbbagul@gmail.com; Upadhye, Deepak S.; Sharma, Ramphal, E-mail: rps.phy@gmail.com
Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology ofmore » Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.« less
LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film
NASA Astrophysics Data System (ADS)
Bagul, Sagar B.; Upadhye, Deepak S.; Sharma, Ramphal
2016-05-01
Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology of Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.
Vapor-solid growth of one-dimensional layer-structured gallium sulfide nanostructures.
Shen, Guozhen; Chen, Di; Chen, Po-Chiang; Zhou, Chongwu
2009-05-26
Gallium sulfide (GaS) is a wide direct bandgap semiconductor with uniform layered structure used in photoelectric devices, electrical sensors, and nonlinear optical applications. We report here the controlled synthesis of various high-quality one-dimensional GaS nanostructures (thin nanowires, nanobelts, and zigzag nanobelts) as well as other kinds of GaS products (microbelts, hexagonal microplates, and GaS/Ga(2)O(3) heterostructured nanobelts) via a simple vapor-solid method. The morphology and structures of the products can be easily controlled by substrate temperature and evaporation source. Optical properties of GaS thin nanowires and nanobelts were investigated and both show an emission band centered at 580 nm.
Synthesis of ZnO thin film by sol-gel spin coating technique for H2S gas sensing application
NASA Astrophysics Data System (ADS)
Nimbalkar, Amol R.; Patil, Maruti G.
2017-12-01
In this present work, zinc oxide (ZnO) thin film synthesized by a simple sol-gel spin coating technique. The structural, morphology, compositional, microstructural, optical, electrical and gas sensing properties of the film were studied by using XRD, FESEM, EDS, XPS, HRTEM, Raman, FTIR and UV-vis techniques. The ZnO thin film shows hexagonal wurtzite structure with a porous structured morphology. Gas sensing performance of synthesized ZnO thin film was tested initially for H2S gas at different operating temperatures as well as concentrations. The maximum gas response is achieved towards H2S gas at 300 °C operating temperature, at 100 ppm gas concentration as compared to other gases like CH3OH, Cl2, NH3, LPG, CH3COCH3, and C2H5OH with a good stability.
An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Wenjun, E-mail: sun_wenjun@iapcm.ac.cn; Jiang, Song, E-mail: jiang@iapcm.ac.cn; Xu, Kun, E-mail: makxu@ust.hk
The solutions of radiative transport equations can cover both optical thin and optical thick regimes due to the large variation of photon's mean-free path and its interaction with the material. In the small mean free path limit, the nonlinear time-dependent radiative transfer equations can converge to an equilibrium diffusion equation due to the intensive interaction between radiation and material. In the optical thin limit, the photon free transport mechanism will emerge. In this paper, we are going to develop an accurate and robust asymptotic preserving unified gas kinetic scheme (AP-UGKS) for the gray radiative transfer equations, where the radiation transportmore » equation is coupled with the material thermal energy equation. The current work is based on the UGKS framework for the rarefied gas dynamics [14], and is an extension of a recent work [12] from a one-dimensional linear radiation transport equation to a nonlinear two-dimensional gray radiative system. The newly developed scheme has the asymptotic preserving (AP) property in the optically thick regime in the capturing of diffusive solution without using a cell size being smaller than the photon's mean free path and time step being less than the photon collision time. Besides the diffusion limit, the scheme can capture the exact solution in the optical thin regime as well. The current scheme is a finite volume method. Due to the direct modeling for the time evolution solution of the interface radiative intensity, a smooth transition of the transport physics from optical thin to optical thick can be accurately recovered. Many numerical examples are included to validate the current approach.« less
Investigation of low-latitude hydrogen emission in terms of a two-component interstellar gas model
NASA Technical Reports Server (NTRS)
Baker, P. L.; Burton, W. B.
1975-01-01
High-resolution 21-cm hydrogen line observations at low galactic latitude are analyzed to determine the large-scale distribution of galactic hydrogen. Distribution parameters are found by model fitting, optical depth effects are computed using a two-component gas model suggested by the observations, and calculations are made for a one-component uniform spin-temperature gas model to show the systematic departures between this model and data obtained by incorrect treatment of the optical depth effects. Synthetic 21-cm line profiles are computed from the two-component model, and the large-scale trends of the observed emission profiles are reproduced together with the magnitude of the small-scale emission irregularities. Values are determined for the thickness of the galactic hydrogen disk between half density points, the total observed neutral hydrogen mass of the galaxy, and the central number density of the intercloud hydrogen atoms. It is shown that typical hydrogen clouds must be between 1 and 13 pc in diameter and that optical thinness exists on large-scale despite the presence of optically thin gas.
Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T; Ohodnicki, Paul R
2018-02-23
Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal-organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability of MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2 , N 2 , O 2 , and CO) with rapid (
NASA Astrophysics Data System (ADS)
Nyoung Jang, Jin; Jong Lee, You; Jang, YunSung; Yun, JangWon; Yi, Seungjun; Hong, MunPyo
2016-06-01
In this study, we confirm that bombardment by high energy negative oxygen ions (NOIs) is the key origin of electro-optical property degradations in indium tin oxide (ITO) thin films formed by conventional plasma sputtering processes. To minimize the bombardment effect of NOIs, which are generated on the surface of the ITO targets and accelerated by the cathode sheath potential on the magnetron sputter gun (MSG), we introduce a magnetic field shielded sputtering (MFSS) system composed of a permanent magnetic array between the MSG and the substrate holder to block the arrival of energetic NOIs. The MFSS processed ITO thin films reveal a novel nanocrystal imbedded polymorphous structure, and present not only superior electro-optical characteristics but also higher gas diffusion barrier properties. To the best of our knowledge, no gas diffusion barrier composed of a single inorganic thin film formed by conventional plasma sputtering processes achieves such a low moisture permeability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quarrie, L., E-mail: Lindsay.Quarrie@l-3com.com, E-mail: lindsay.o.quarrie@gmail.com; Air Force Research Laboratory, AFRL/RDLC Laser CoE, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776
The lifetime of Diode-Pumped Alkali Lasers (DPALs) is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and outputmore » laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.« less
EFFECTS OF ULTRAVIOLET BACKGROUND AND LOCAL STELLAR RADIATION ON THE H I COLUMN DENSITY DISTRIBUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagamine, Kentaro; Choi, Jun-Hwan; Yajima, Hidenobu, E-mail: kn@physics.unlv.ed
We study the impact of ultraviolet background (UVB) radiation field and the local stellar radiation on the H I column density distribution f(N{sub H{sub I}}) of damped Ly{alpha} systems (DLAs) and sub-DLAs at z = 3 using cosmological smoothed particle hydrodynamics simulations. We find that, in the previous simulations with an optically thin approximation, the UVB was sinking into the H I cloud too deeply, and therefore we underestimated the f(N{sub H{sub I}}) at 19 < log N{sub H{sub I}} < 21.2 compared to the observations. If the UVB is shut off in the high-density regions with n{sub gas}>6 xmore » 10{sup -3} cm{sup -3}, then we reproduce the observed f(N{sub H{sub I}}) at z = 3 very well. We also investigate the effect of local stellar radiation by postprocessing our simulation with a radiative transfer code and find that the local stellar radiation does not change the f(N{sub H{sub I}}) very much. Our results show that the shape of f(N{sub H{sub I}}) is determined primarily by the UVB with a much weaker effect by the local stellar radiation and that the optically thin approximation often used in cosmological simulation is inadequate to properly treat the ionization structure of neutral gas in and out of DLAs. Our result also indicates that the DLA gas is closely related to the transition region from optically thick neutral gas to optically thin ionized gas within dark matter halos.« less
Multiscale solutions of radiative heat transfer by the discrete unified gas kinetic scheme
NASA Astrophysics Data System (ADS)
Luo, Xiao-Ping; Wang, Cun-Hai; Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping
2018-06-01
The radiative transfer equation (RTE) has two asymptotic regimes characterized by the optical thickness, namely, optically thin and optically thick regimes. In the optically thin regime, a ballistic or kinetic transport is dominant. In the optically thick regime, energy transport is totally dominated by multiple collisions between photons; that is, the photons propagate by means of diffusion. To obtain convergent solutions to the RTE, conventional numerical schemes have a strong dependence on the number of spatial grids, which leads to a serious computational inefficiency in the regime where the diffusion is predominant. In this work, a discrete unified gas kinetic scheme (DUGKS) is developed to predict radiative heat transfer in participating media. Numerical performances of the DUGKS are compared in detail with conventional methods through three cases including one-dimensional transient radiative heat transfer, two-dimensional steady radiative heat transfer, and three-dimensional multiscale radiative heat transfer. Due to the asymptotic preserving property, the present method with relatively coarse grids gives accurate and reliable numerical solutions for large, small, and in-between values of optical thickness, and, especially in the optically thick regime, the DUGKS demonstrates a pronounced computational efficiency advantage over the conventional numerical models. In addition, the DUGKS has a promising potential in the study of multiscale radiative heat transfer inside the participating medium with a transition from optically thin to optically thick regimes.
Enhanced gas sensing correlated with structural and optical properties of Cs-loaded SnO2 nanofilms
NASA Astrophysics Data System (ADS)
Elia Raine, P. J.; Arun George, P.; Balasundaram, O. N.; Varghese, T.
2016-09-01
The Cs-loaded SnO2 thin films were prepared by the spray pyrolysis technique and were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible spectroscopy, impedance spectroscopy and conductometric method. Investigations based on the structural, optical and electrical properties confirm an enhanced gas sensing potential of cesium-loaded tin oxide films. It is found that the tin oxide thin film doped with 4% Cs with a mean grain size of 20 nm at a deposition temperature of 350 ° C show a maximum sensor response of 97.5% for LPG consistently. It is also observed that the sensor response of Cs-doped SnO2 thin films depends on the dopant concentration and the deposition temperature of the film.
A blue optical filter for narrow-band imaging in endoscopic capsules
NASA Astrophysics Data System (ADS)
Silva, M. F.; Ghaderi, M.; Goncalves, L. M.; de Graaf, G.; Wolffenbuttel, R. F.; Correia, J. H.
2014-05-01
This paper presents the design, simulation, fabrication, and characterization of a thin-film Fabry-Perot resonator composed of titanium dioxide (TiO2) and silicon dioxide (SiO2) thin-films. The optical filter is developed to be integrated with a light emitting diode (LED) for enabling narrow-band imaging (NBI) in endoscopy. The NBI is a high resolution imaging technique that uses spectrally centered blue light (415 nm) and green light (540 nm) to illuminate the target tissue. The light at 415 nm enhances the imaging of superficial veins due to their hemoglobin absorption, while the light at 540 nm penetrates deeper into the mucosa, thus enhances the sub-epithelial vessels imaging. Typically the endoscopes and endoscopic capsules use white light for acquiring images of the gastrointestinal (GI) tract. However, implementing the NBI technique in endoscopic capsules enhances their capabilities for the clinical applications. A commercially available blue LED with a maximum peak intensity at 404 nm and Full Width Half Maximum (FWHM) of 20 nm is integrated with a narrow band blue filter as the NBI light source. The thin film simulations show a maximum spectral transmittance of 36 %, that is centered at 415 nm with FWHM of 13 nm for combined the blue LED and a Fabry Perot resonator system. A custom made deposition scheme was developed for the fabrication of the blue optical filter by RF sputtering. RF powered reactive sputtering at 200 W with the gas flows of argon and oxygen that are controlled for a 5:1 ratio gives the optimum optical conditions for TiO2 thin films. For SiO2 thin films, a non-reactive RF sputtering at 150 W with argon gas flow at 15 sccm results in the best optical performance. The TiO2 and SiO2 thin films were fully characterized by an ellipsometer in the wavelength range between 250 nm to 1600 nm. Finally, the optical performance of the blue optical filter is measured and presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T.
Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal–organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability ofmore » MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2, N 2, O 2, and CO) with rapid (< tens of seconds) response time and excellent reversibility, which can be well correlated to the physisorption of gases into a nanoporous MOF. We propose a refractive index based sensing mechanism for the MOF-integrated optical fiber platform which results in an amplification of inherent optical absorption present within the MOF-based sensing layer with increasing values of effective refractive index associated with adsorption of gases.« less
Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T.; ...
2018-01-18
Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal–organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability ofmore » MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2, N 2, O 2, and CO) with rapid (< tens of seconds) response time and excellent reversibility, which can be well correlated to the physisorption of gases into a nanoporous MOF. We propose a refractive index based sensing mechanism for the MOF-integrated optical fiber platform which results in an amplification of inherent optical absorption present within the MOF-based sensing layer with increasing values of effective refractive index associated with adsorption of gases.« less
Size-controlled synthesis of nanocrystalline CdSe thin films by inert gas condensation
NASA Astrophysics Data System (ADS)
Sharma, Jeewan; Singh, Randhir; Kumar, Akshay; Singh, Tejbir; Agrawal, Paras; Thakur, Anup
2018-02-01
Size, shape and structure are considered to have significant influence on various properties of semiconducting nanomaterials. Different properties of these materials can be tailored by controlling the size. Size-controlled CdSe crystallites ranging from ˜ 04 to 95 nm were deposited by inert gas-condensation technique (IGC). In IGC method, by controlling the inert gas pressure in the condensation chamber and the substrate temperature or both, it was possible to produce nanoparticles with desired size. Structure and crystallite size of CdSe thin films were determined from Hall-Williamson method using X-ray diffraction data. The composition of CdSe samples was estimated by X-ray microanalysis. It was confirmed that CdSe thin film with different nanometer range crystallite sizes were synthesized with this technique, depending upon the synthesis conditions. The phase of deposited CdSe thin films also depend upon deposition conditions and cubic to hexagonal phase transition was observed with increase in substrate temperature. The effect of crystallite size on optical and electrical properties of these films was also studied. The crystallite size affects the optical band gap, electrical conductivity and mobility activation of nanocrystalline CdSe thin films. Mobility activation study suggested that there is a quasi-continuous linear distribution of three different trap levels below the conduction band.
NASA Astrophysics Data System (ADS)
Mayabadi, A. H.; Waman, V. S.; Kamble, M. M.; Ghosh, S. S.; Gabhale, B. B.; Rondiya, S. R.; Rokade, A. V.; Khadtare, S. S.; Sathe, V. G.; Pathan, H. M.; Gosavi, S. W.; Jadkar, S. R.
2014-02-01
Nanocrystalline thin films of TiO2 were prepared on glass substrates from an aqueous solution of TiCl3 and NH4OH at room temperature using the simple and cost-effective chemical bath deposition (CBD) method. The influence of deposition time on structural, morphological and optical properties was systematically investigated. TiO2 transition from a mixed anatase-rutile phase to a pure rutile phase was revealed by low-angle XRD and Raman spectroscopy. Rutile phase formation was confirmed by FTIR spectroscopy. Scanning electron micrographs revealed that the multigrain structure of as-deposited TiO2 thin films was completely converted into semi-spherical nanoparticles. Optical studies showed that rutile thin films had a high absorption coefficient and a direct bandgap. The optical bandgap decreased slightly (3.29-3.07 eV) with increasing deposition time. The ease of deposition of rutile thin films at low temperature is useful for the fabrication of extremely thin absorber (ETA) solar cells, dye-sensitized solar cells, and gas sensors.
Marozau, Ivan; Shkabko, Andrey; Döbeli, Max; Lippert, Thomas; Logvinovich, Dimitri; Mallepell, Marc; Schneider, Christof W.; Weidenkaff, Anke; Wokaun, Alexander
2009-01-01
Perovskite-type N‑substituted SrTiO3 thin films with a preferential (001) orientation were grown by pulsed laser deposition on (001)-oriented MgO and LaAlO3 substrates. Application of N2 or ammonia using a synchronized reactive gas pulse produces SrTiO3-x:Nx films with a nitrogen content of up to 4.1 at.% if prepared with the NH3 gas pulse at a substrate temperature of 720 °C. Incorporating nitrogen in SrTiO3 results in an optical absorption at 370‑460 nm associated with localized N(2p) orbitals. The estimated energy of these levels is ≈2.7 eV below the conduction band. In addition, the optical absorption increases gradually with increasing nitrogen content.
Tabassum, Shawana; Dong, Liang; Kumar, Ratnesh
2018-03-05
We present an effective yet simple approach to study the dynamic variations in optical properties (such as the refractive index (RI)) of graphene oxide (GO) when exposed to gases in the visible spectral region, using the thin-film interference method. The dynamic variations in the complex refractive index of GO in response to exposure to a gas is an important factor affecting the performance of GO-based gas sensors. In contrast to the conventional ellipsometry, this method alleviates the need of selecting a dispersion model from among a list of model choices, which is limiting if an applicable model is not known a priori. In addition, the method used is computationally simpler, and does not need to employ any functional approximations. Further advantage over ellipsometry is that no bulky optics is required, and as a result it can be easily integrated into the sensing system, thereby allowing the reliable, simple, and dynamic evaluation of the optical performance of any GO-based gas sensor. In addition, the derived values of the dynamically changing RI values of the GO layer obtained from the method we have employed are corroborated by comparing with the values obtained from ellipsometry.
Investigation of plasma dynamics during the growth of amorphous titanium dioxide thin films
NASA Astrophysics Data System (ADS)
Kim, Jin-Soo; Jee, Hyeok; Yu, Young-Hun; Seo, Hye-Won
2018-06-01
We have grown amorphous titanium dioxide thin films by reactive DC sputtering method using a different argon/oxygen partial pressure at a room temperature. The plasma dynamics of the process, reactive and sputtered gas particles was investigated via optical emission spectroscopy. We then studied the correlations between the plasma states and the structural/optical properties of the films. The growth rate and morphology of the titanium dioxide thin films turned out to be contingent with the population and the energy profile of Ar, O, and TiO plasma. In particular, the films grown under energetic TiO plasma have shown a direct band-to-band transition with an optical energy band gap up to ∼4.2 eV.
Synthesis and annealing study of RF sputtered ZnO thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Shushant Kumar, E-mail: singhshushant86@gmail.com; Sharma, Himanshu; Singhal, R.
2016-05-23
In this paper, we have investigated the annealing effect on optical and structural properties of ZnO thin films, synthesized by RF magnetron sputtering. ZnO thin films were deposited on glass and silicon substrates simultaneously at a substrate temperature of 300 °C using Argon gas in sputtering chamber. Thickness of as deposited ZnO thin film was found to be ~155 nm, calculated by Rutherford backscattering spectroscopy (RBS). These films were annealed at 400 °C and 500 °C temperature in the continuous flow of oxygen gas for 1 hour in tube furnace. X-ray diffraction analysis confirmed the formation of hexagonal wurtzite structuremore » of ZnO thin film along the c-axis (002) orientation. Transmittance of thin films was increased with increasing the annealing temperature estimated by UV-visible transmission spectroscopy. Quality and texture of the thin films were improved with annealing temperature, estimated by Raman spectroscopy.« less
Tailoring and optimization of optical properties of CdO thin films for gas sensing applications
NASA Astrophysics Data System (ADS)
Rajput, Jeevitesh K.; Pathak, Trilok K.; Kumar, V.; Swart, H. C.; Purohit, L. P.
2018-04-01
Cadmium oxide (CdO) thin films have been deposited onto glass substrates using different molar concentrations (0.2 M, 0.5 M and 0.8 M) of cadmium acetate precursor solutions using a sol-gel spin coating technique. The structural, morphological, optical and electrical results are presented. X-ray diffraction patterns indicated that the CdO films of different molarity have a stable cubic structure with a (111) preferred orientation at low molar concentration. Scanning electron microscopy images revealed that the films adopted a rectangular to cauliflower like morphology. The optical transmittance of the thin films was observed in the range 200-800 nm and it was found that the 0.2 M CdO thin films showed about 83% transmission in the visible region. The optical band gap energy of the thin films was found to vary from 2.10 to 3.30 eV with the increase in molar concentration of the solution. The electrical resistance of the 0.5 M thin film was found to be 1.56 kΩ. The oxygen sensing response was observed between 20-33% in the low temperature range (32-200 °C).
NASA Astrophysics Data System (ADS)
De, Rajnarayan; Haque, S. Maidul; Tripathi, S.; Prathap, C.; Rao, K. Divakar; Sahoo, N. K.
2016-05-01
A non-conventional magnetron sputtering technique was explored to deposit magnesium fluoride thin films using the concept of fluorine gas trapping without the introduction of additional fluorine gas flow inside the chamber. The effect of magnetron power from 50 W to 250 W has been explored on structural, optical and physical properties of the samples. Polycrystalline nature with tetragonal crystallinity of the films has been confirmed by GIXRD measurements along with thickness dependency. Monotonic increase of attenuation coefficient (k) with RF power has been explained in terms of target compound dissociation probability. In conclusion, with fluorine trapping method, the samples deposited at lower RF powers (<100 W) are found to be more suitable for optical applications.
Characterization of ZnO:SnO{sub 2} (50:50) thin film deposited by RF magnetron sputtering technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cynthia, S. R.; Sanjeeviraja, C.; Ponmudi, S.
2016-05-06
Zinc oxide (ZnO) and tin oxide (SnO{sub 2}) thin films have attracted significant interest recently for use in optoelectronic application such as solar cells, flat panel displays, photonic devices, laser diodes and gas sensors because of their desirable electrical and optical properties and wide band gap. In the present study, thin films of ZnO:SnO{sub 2} (50:50) were deposited on pre-cleaned microscopic glass substrate by RF magnetron sputtering technique. The substrate temperature and RF power induced changes in structural, surface morphological, compositional and optical properties of the films have been studied.
NASA Astrophysics Data System (ADS)
Coman, Tudor; Timpu, Daniel; Nica, Valentin; Vitelaru, Catalin; Rambu, Alicia Petronela; Stoian, George; Olaru, Mihaela; Ursu, Cristian
2017-10-01
Highly conductive transparent Al-doped ZnO (AZO) thin films were obtained at room temperature through sequential PLD (SPLD) from Zn and Al metallic targets in an oxygen/argon gas mixture. We have investigated the structural, electrical and optical properties as a function of the oxygen/argon pressure ratio in the chamber. The measured Hall carrier concentration was found to increase with argon injection from 1.3 × 1020 to 6.7 × 1020 cm-3, while the laser shots ratio for Al/Zn targets ablation was kept constant. This increase was attributed to an enhancement of the substitution doping into the ZnO lattice. The argon injection also leads to an increase of the Hall mobility up to 20 cm2 V-1 s-1, attributed to a reduction of interstitial-type defects. Thus, the approach of using an oxygen/argon gas mixture during SPLD from metallic targets allows obtaining at room temperature AZO samples with high optical transmittance (about 90%) and low electrical resistivity (down to 5.1 × 10-4 Ω cm).
NASA Astrophysics Data System (ADS)
Chebil, W.; Boukadhaba, M. A.; Madhi, I.; Fouzri, A.; Lusson, A.; Vilar, C.; Sallet, V.
2017-01-01
In this present work, ZnO and ZnMgO thin films prepared by a sol-gel process were deposited on glass substrates via spin coating technique. The structural, morphological and optical properties of the obtained films were investigated. X-ray diffraction study revealed that all layers exhibit a hexagonal wurtzite structure without any secondary phase segregation. The atomic force microscopy (AFM) depicts that the grains size of ours samples decreases as magnesium content increases. The absorption spectra obtained on ZnMgO thin films show a band gap tuning from 3.19 to 3.36 eV, which is also consistent with blue shifting of near-band edge PL emission, measured at low temperature. The incorporated amount of magnesium was calculated and confirmed by EDX. The gas sensing performances were tested in air containing NO2 for different operating temperatures. The experimental result exhibited that ZnMgO sensors shows a faster response and recovery time than the ZnO thin films. The resistivity and the sensor response as function of Mg content were also investigated.
Cheng, Sheng; Lu, Jiangbo; Han, Dong; ...
2016-11-23
Giant optical transmittance changes of over 300% in wide wavelength range from 500 nm to 2500 nm were observed in LaBaCo 2O 5.5+δ thin films annealed in air and ethanol ambient, respectively. The reduction process induces high density of ordered oxygen vacancies and the formation of LaBaCo 2O 5.5 (δ = 0) structure evidenced by aberration-corrected transmission electron microscopy. Moreover, the first-principles calculations reveal the origin and mechanism of optical transmittance enhancement in LaBaCo 2O 5.5 (δ = 0), which exhibits quite different energy band structure compared to that of LaBaCo 2O 6 (δ = 0.5). The discrepancy of energymore » band structure was thought to be the direct reason for the enhancement of optical transmission in reducing ambient. Thus, LaBaCo 2O 5.5+δ thin films show great prospect for applications on optical gas sensors in reducing/oxidizing atmosphere.« less
NASA Astrophysics Data System (ADS)
Khalaf, Mohammed K.; Mutlak, Rajaa H.; Khudiar, Ausama I.; Hial, Qahtan G.
2017-06-01
Nickel oxide thin films were deposited on glass substrates as the main gas sensor for H2 by the DC sputtering technique at various discharge voltages within the range of 1.8-2.5 kV. Their structural, optical and gas sensing properties were investigated by XRD, AFM, SEM, ultraviolet visible spectroscopy and home-made gas sensing measurement units. A diffraction peak in the direction of NiO (200) was observed for the sputtered films, thereby indicating that these films were polycrystalline in nature. The optical band gap of the films decreased from 3.8 to 3.5 eV when the thickness of the films was increased from 83.5 to 164.4 nm in relation to an increase in the sputtering discharge voltage from 1.8 to 2.5 kV, respectively. The gas sensitivity performance of the NiO films that were formed was studied and the electrical responses of the NiO-based sensors toward different H2 concentrations were also considered. The sensitivity of the gas sensor increased with the working temperature and H2 gas concentration. The thickness of the NiO thin films was also an important parameter in determining the properties of the NiO films as H2 sensors. It was shown in this study that NiO films have the capability to detect H2 concentrations below 3% in wet air, a feature that allows this material to be used directly for the monitoring of the environment.
NASA Astrophysics Data System (ADS)
Huang, Xinyue; Li, Xueming; Yang, Jianchun; Tao, Chuanyi; Guo, Xiaogang; Bao, Hebin; Yin, Yanjun; Chen, Huifei; Zhu, Yuhua
2017-04-01
Ammonia is an important indicator among environmental monitoring parameters. In this work, thin-core fiber Mach-Zehnder interferometer deposited with poly (acrylic acid) (PAA), poly (allyamine hydrochloride) (PAH) and single-walled carbon nanotubes (SWCNTs-COOH) sensing film for the detection of ammonia gas has been presented. The thin-core fiber modal interferometer was made by fusion splicing a small section of thin-core fiber (TCF) between two standard single mode fibers (SMF). A beam propagation method (BPM) is employed for the design of proposed interferometer and numerical simulation. Based on the simulation results, interferometer with a length of 2 cm of thin-core fiber is fabricated and experimentally studied. (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film is deposited on the outer surface of thin-core fiber via layer-by-layer (LbL) self-assembly technique. The gas sensor coated with (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film towards NH3 gas exposure at concentrations range from 1 to 960 ppm are analyzed and the sensing capability is demonstrated by optical spectrum analyzer (OSA). Experimental results show that the characteristic wavelength shift has an approximately linear relationship in the range 1-20 ppm, which is in accordance with the numerical simulation. Thus, this paper reveals the potential application of this sensor in monitoring low concentration NH3 gas.
The Case for Optically Thick High-Velocity Broad-Line Region Gas in Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Snedden, Stephanie A.; Gaskell, C. Martin
2007-11-01
A combined analysis of the profiles of the main broad quasar emission lines in both Hubble Space Telescope and optical spectra shows that while the profiles of the strong UV lines are quite similar, there is frequently a strong increase in the Lyα/Hα ratio in the high-velocity gas. We show that the suggestion that the high-velocity gas is optically thin presents many problems. We show that the relative strengths of the high-velocity wings arise naturally in an optically thick BLR component. An optically thick model successfully explains the equivalent widths of the lines, the Lyα/Hα ratios and flatter Balmer decrements in the line wings, the strengths of C III] and the λ1400 blend, and the strong variability in flux of high-velocity, high-ionization lines (especially He II and He I).
NASA Astrophysics Data System (ADS)
KałuŻyński, P.; Procek, M.; Stolarczyk, Agnieszka; Maciak, E.
2017-08-01
This work presents an investigation on conductive graft comb copolymer like SILPEG CH9 with carbon materials like graphite oxide or reduced graphite oxide. Morphology and optical properties like sample roughness, graphite oxide particles distribution, optical transmittance were measured of obtained thin films deposited on glass substrate using spin coating method. The study showed that obtained thin films are repeatable, convenient to process, and their parameters can be easy changed by the spin rate regulation during the deposition. Given results shows the possibility of using such polymer blend in the implementation of organic photovoltaic cells and different optoelectronics applications.
NASA Astrophysics Data System (ADS)
Kürüm, U.; Yaglioglu, H. G.; Küçüköz, B.; Oksuzoglu, R. M.; Yıldırım, M.; Yağcı, A. M.; Yavru, C.; Özgün, S.; Tıraş, T.; Elmali, A.
2015-01-01
Nanostructured VOX thin films were grown in a dc magnetron sputter system under two different Ar:O2 gas flow ratios. The films were annealed under vacuum and various ratios of O2/N2 atmospheres. The insulator-to-metal transition properties of the thin films were investigated by temperature dependent resistance measurement. Photo induced insulator-to-metal transition properties were investigated by Z-scan and ultrafast white light continuum pump probe spectroscopy measurements. Experiments showed that not only insulator-to-metal transition, but also wavelength dependence (from NIR to VIS) and time scale (from ns to ultrafast) of nonlinear optical response of the VOX thin films could be fine tuned by carefully adjusting post annealing atmosphere despite different initial oxygen content in the production. Fabricated VO2 thin films showed reflection change in the visible region due to photo induced phase transition. The results have general implications for easy and more effective fabrication of the nanostructured oxide systems with controllable electrical, optical, and ultrafast optical responses.
Optical depth of molecular gas in starburst galaxies - Is M82 the prototype?
NASA Technical Reports Server (NTRS)
Verter, F.; Rickard, L. J.
1989-01-01
An attempt is made to survey the CO(2-1) emission toward the centers of 17 IR-luminous galaxies which have previously been detected in CO(1-0). These galaxies span a wide range of size and L(FIR)/L(B) ratio, many have multiple-wavelength studies establishing them as starbursts, and some bear a morphological resemblance to M 82. Nine galaxies are detected and useful upper limits are placed on the remaining eight. Using the CO(2-1)/CO(1-0) ratio of antenna temperature as a diagnostic of optical depth, it is found that all of the galaxies contain predominantly optically thick molecular gas. This implies that the phase of starburst during which the molecular gas is optically thin, currently witnessed in M 82, is either uncommon or short-lived.
Analytic Expressions for the Inner-rim Structure of Passively Heated Protoplanetary Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueda, Takahiro; Okuzumi, Satoshi; Flock, Mario, E-mail: t_ueda@geo.titech.ac.jp
We analytically derive the expressions for the structure of the inner region of protoplanetary disks based on the results from the recent hydrodynamical simulations. The inner part of a disk can be divided into four regions: a dust-free region with a gas temperature in the optically thin limit, an optically thin dust halo, an optically thick condensation front, and the classical, optically thick region, in order from the innermost to the outermost. We derive the dust-to-gas mass ratio profile in the dust halo using the fact that partial dust condensation regulates the temperature relative to the dust evaporation temperature. Beyondmore » the dust halo, there is an optically thick condensation front where all the available silicate gas condenses out. The curvature of the condensation surface is determined by the condition that the surface temperature must be nearly equal to the characteristic temperature ∼1200 K. We derive the midplane temperature in the outer two regions using the two-layer approximation, with the additional heating by the condensation front for the outermost region. As a result, the overall temperature profile is step-like, with steep gradients at the borders between the outer three regions. The borders might act as planet traps where the inward migration of planets due to gravitational interaction with the gas disk stops. The temperature at the border between the two outermost regions coincides with the temperature needed to activate magnetorotational instability, suggesting that the inner edge of the dead zone must lie at this border. The radius of the dead zone inner edge predicted from our solution is ∼2–3 times larger than that expected from the classical optically thick temperature.« less
Analytic Expressions for the Inner-rim Structure of Passively Heated Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Ueda, Takahiro; Okuzumi, Satoshi; Flock, Mario
2017-07-01
We analytically derive the expressions for the structure of the inner region of protoplanetary disks based on the results from the recent hydrodynamical simulations. The inner part of a disk can be divided into four regions: a dust-free region with a gas temperature in the optically thin limit, an optically thin dust halo, an optically thick condensation front, and the classical, optically thick region, in order from the innermost to the outermost. We derive the dust-to-gas mass ratio profile in the dust halo using the fact that partial dust condensation regulates the temperature relative to the dust evaporation temperature. Beyond the dust halo, there is an optically thick condensation front where all the available silicate gas condenses out. The curvature of the condensation surface is determined by the condition that the surface temperature must be nearly equal to the characteristic temperature ˜1200 K. We derive the midplane temperature in the outer two regions using the two-layer approximation, with the additional heating by the condensation front for the outermost region. As a result, the overall temperature profile is step-like, with steep gradients at the borders between the outer three regions. The borders might act as planet traps where the inward migration of planets due to gravitational interaction with the gas disk stops. The temperature at the border between the two outermost regions coincides with the temperature needed to activate magnetorotational instability, suggesting that the inner edge of the dead zone must lie at this border. The radius of the dead zone inner edge predicted from our solution is ˜2-3 times larger than that expected from the classical optically thick temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakar, Muhammad Hafiz Abu; Li, Lam Mui; Salleh, Saafie
A transparent p-type thin film CuGaO{sub 2} was deposited by using RF sputtering deposition method on plastic (PET) and glass substrate. The characteristics of the film is investigated. The thin film was deposited at temperature range from 50-250°C and the pressure inside the chamber is 1.0×10{sup −2} Torr and Argon gas was used as a working gas. The RF power is set to 100 W. The thickness of thin film is 300nm. In this experiment the transparency of the thin film is more than 70% for the visible light region. The band gap obtain is between 3.3 to 3.5 eV. Themore » details of the results will be discussed in the conference.« less
Trivariate characteristics of intensity fluctuations for heavily saturated optical systems.
Das, Biman; Drake, Eli; Jack, John
2004-02-01
Trivariate cumulants of intensity fluctuations have been computed starting from a trivariate intensity probability distribution function, which rests on the assumption that the variation of intensity has a maximum entropy distribution with the constraint that the total intensity is constant. The assumption holds for optical systems such as a thin, long, mirrorless gas laser amplifier where under heavy gain saturation the total output approaches a constant intensity, although intensity of any mode fluctuates rapidly over the average intensity. The relations between trivariate cumulants and central moments that were needed for the computation of trivariate cumulants were derived. The results of the computation show that the cumulants have characteristic values that depend on the number of interacting modes in the system. The cumulant values approach zero when the number of modes is infinite, as expected. The results will be useful for comparison with the experimental triavariate statistics of heavily saturated optical systems such as the output from a thin, long, bidirectional gas laser amplifier.
Dust Emission at 8 and 24 μm as Diagnostics of H II Region Radiative Transfer
NASA Astrophysics Data System (ADS)
Oey, M. S.; López-Hernández, J.; Kellar, J. A.; Pellegrini, E. W.; Gordon, K. D.; Jameson, K. E.; Li, A.; Madden, S. C.; Meixner, M.; Roman-Duval, J.; Bot, C.; Rubio, M.; Tielens, A. G. G. M.
2017-07-01
We use the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) survey of the Magellanic Clouds to evaluate the relationship between the 8 μm polycyclic aromatic hydrocarbon (PAH) emission, 24 μm hot dust emission, and H II region radiative transfer. We confirm that in the higher-metallicity Large Magellanic Cloud, PAH destruction is sensitive to optically thin conditions in the nebular Lyman continuum: objects identified as optically thin candidates based on nebular ionization structure show six times lower median 8 μm surface brightness (0.18 mJy arcsec-2) than their optically thick counterparts (1.2 mJy arcsec-2). The 24 μm surface brightness also shows a factor of three offset between the two classes of objects (0.13 versus 0.44 mJy arcsec-2, respectively), which is driven by the association between the very small dust grains and higher density gas found at higher nebular optical depths. In contrast, PAH and dust formation in the low-metallicity Small Magellanic Cloud is strongly inhibited such that we find no variation in either 8 μm or 24 μm emission between our optically thick and thin samples. This is attributable to extremely low PAH and dust production together with high, corrosive UV photon fluxes in this low-metallicity environment. The dust mass surface densities and gas-to-dust ratios determined from dust maps using Herschel HERITAGE survey data support this interpretation.
Optical fiber humidity sensor based on evanescent-wave scattering.
Xu, Lina; Fanguy, Joseph C; Soni, Krunal; Tao, Shiquan
2004-06-01
The phenomenon of evanescent-wave scattering (EWS) is used to design an optical-fiber humidity sensor. Porous solgel silica (PSGS) coated on the surface of a silica optical-fiber core scatters evanescent waves that penetrate the coating layer. Water molecules in the gas phase surrounding the optical fiber can be absorbed into the inner surface of the pores of the porous silica. The absorbed water molecules form a thin layer of liquid water on the inner surface of the porous silica and enhance the EWS. The amount of water absorbed into the PSGS coating is in dynamic equilibrium with the water-vapor pressure in the gas phase. Therefore the humidity in the air can be quantitatively determined with fiber-optic EWS caused by the PSGS coating. The humidity sensor reported here is fast in response, reversible, and has a wide dynamic range. The possible interference caused by EWS to an optical-fiber gas sensor with a reagent-doped PSGS coating as a transducer is also discussed.
Sol-Gel Thin Films for Plasmonic Gas Sensors
Della Gaspera, Enrico; Martucci, Alessandro
2015-01-01
Plasmonic gas sensors are optical sensors that use localized surface plasmons or extended surface plasmons as transducing platform. Surface plasmons are very sensitive to dielectric variations of the environment or to electron exchange, and these effects have been exploited for the realization of sensitive gas sensors. In this paper, we review our research work of the last few years on the synthesis and the gas sensing properties of sol-gel based nanomaterials for plasmonic sensors. PMID:26184216
Examination of charge transfer in Au/YSZ for high-temperature optical gas sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baltrus, John P.; Ohodnicki, Paul R.
2014-01-01
Au-nanoparticle incorporated oxide thin film materials demonstrate significant promise as functionalsensor materials for high temperature optical gas sensing in severe environments relevant for fossil andnuclear based power generation. The Au/yttria-stabilized zirconia (YSZ) system has been extensivelystudied in the literature and serves as a model system for fundamental investigations that seek to betterunderstand the mechanistic origin of the plasmonic gas sensing response. In this work, X-ray photoelec-tron spectroscopy techniques are applied to Au/YSZ films in an attempt to provide further experimentalevidence for a proposed sensing mechanism involving a change in free carrier density of Au nanoparticles due to charge transfer.
Huang, Xinyue; Li, Xueming; Yang, Jianchun; Tao, Chuanyi; Guo, Xiaogang; Bao, Hebin; Yin, Yanjun; Chen, Huifei; Zhu, Yuhua
2017-01-01
Ammonia is an important indicator among environmental monitoring parameters. In this work, thin-core fiber Mach-Zehnder interferometer deposited with poly (acrylic acid) (PAA), poly (allyamine hydrochloride) (PAH) and single-walled carbon nanotubes (SWCNTs-COOH) sensing film for the detection of ammonia gas has been presented. The thin-core fiber modal interferometer was made by fusion splicing a small section of thin-core fiber (TCF) between two standard single mode fibers (SMF). A beam propagation method (BPM) is employed for the design of proposed interferometer and numerical simulation. Based on the simulation results, interferometer with a length of 2 cm of thin-core fiber is fabricated and experimentally studied. (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film is deposited on the outer surface of thin-core fiber via layer-by-layer (LbL) self-assembly technique. The gas sensor coated with (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film towards NH3 gas exposure at concentrations range from 1 to 960 ppm are analyzed and the sensing capability is demonstrated by optical spectrum analyzer (OSA). Experimental results show that the characteristic wavelength shift has an approximately linear relationship in the range 1–20 ppm, which is in accordance with the numerical simulation. Thus, this paper reveals the potential application of this sensor in monitoring low concentration NH3 gas. PMID:28378783
Cheng, Sheng; Lu, Jiangbo; Han, Dong; Liu, Ming; Lu, Xiaoli; Ma, Chunrui; Zhang, Shengbai; Chen, Chonglin
2016-01-01
Giant optical transmittance changes of over 300% in wide wavelength range from 500 nm to 2500 nm were observed in LaBaCo2O5.5+δ thin films annealed in air and ethanol ambient, respectively. The reduction process induces high density of ordered oxygen vacancies and the formation of LaBaCo2O5.5 (δ = 0) structure evidenced by aberration-corrected transmission electron microscopy. Moreover, the first-principles calculations reveal the origin and mechanism of optical transmittance enhancement in LaBaCo2O5.5 (δ = 0), which exhibits quite different energy band structure compared to that of LaBaCo2O6 (δ = 0.5). The discrepancy of energy band structure was thought to be the direct reason for the enhancement of optical transmission in reducing ambient. Hence, LaBaCo2O5.5+δ thin films show great prospect for applications on optical gas sensors in reducing/oxidizing atmosphere. PMID:27876830
Cheng, Sheng; Lu, Jiangbo; Han, Dong; Liu, Ming; Lu, Xiaoli; Ma, Chunrui; Zhang, Shengbai; Chen, Chonglin
2016-11-23
Giant optical transmittance changes of over 300% in wide wavelength range from 500 nm to 2500 nm were observed in LaBaCo 2 O 5.5+δ thin films annealed in air and ethanol ambient, respectively. The reduction process induces high density of ordered oxygen vacancies and the formation of LaBaCo 2 O 5.5 (δ = 0) structure evidenced by aberration-corrected transmission electron microscopy. Moreover, the first-principles calculations reveal the origin and mechanism of optical transmittance enhancement in LaBaCo 2 O 5.5 (δ = 0), which exhibits quite different energy band structure compared to that of LaBaCo 2 O 6 (δ = 0.5). The discrepancy of energy band structure was thought to be the direct reason for the enhancement of optical transmission in reducing ambient. Hence, LaBaCo 2 O 5.5+δ thin films show great prospect for applications on optical gas sensors in reducing/oxidizing atmosphere.
Plasmonic properties of gold nanoparticles covered by silicon suboxide thin film
NASA Astrophysics Data System (ADS)
Baranov, Evgeniy; Zamchiy, Alexandr; Safonov, Aleksey; Starinskiy, Sergey; Khmel, Sergey
2017-10-01
The optical properties of nanocomposite material consisting of gold nanoparticles without/with silicon suboxide thin film were obtained. The gold film was deposited by thermal vacuum evaporation and then it was annealed in a vacuum chamber to form gold nanoparticles. The silicon suboxide thin films were deposited by the gas-jet electron beam plasma chemical vapor deposition method. The intensity of the localized surface plasmon resonance increased and the plasmon maximum peak shifted from 520 nm to 537 nm.
New type of standalone gas sensors based on dye, thin films, and subwavelength structures
NASA Astrophysics Data System (ADS)
Schnieper, Marc; Davoine, Laurent; Holgado, Miguel; Casquel del Campo, Rafael; Barranco, Angel
2009-02-01
A new gas sensor was developed to enable visual indication of a contamination by specific gases like NO2, SO2, UV, etc. The sensor works with a combination of subwavelength structures and specific active dye thin film layers. The objective is to use the optical changes of the dye thin films after exposure and a custom designed subwavelength structure, a suited combination of both will produce a strong color change. The indication should be visible for the human eye. To enhance this visual aspect, we used a reference sensor sealed into a non-contaminated atmosphere. This work was realized within the PHODYE STREP Project, a collaboration of the 6th Framework Program Priority Information Society Technologies.
Free-Free Radiation Cannot Make the UV/Soft-X-Ray Excess in AGN
NASA Astrophysics Data System (ADS)
Kriss, G. A.
1994-05-01
Thermal gas always has associated atomic spectral features either in absorption or in emission. In optically thin gas the emission spectrum is dominated by line radiation and recombination continua. An example of radiation from optically thin material in accreting systems is the emission-line-dominated spectrum of a cataclysmic variable in its low state. Barvainis (1993, ApJ, 412, 513) and others have proposed that the UV/soft-X-ray excess prominent in the spectra of many AGN is due to free-free emission from gas at temperatures of 10(5) - 10(6) K. Simple arguments using only atomic data show that the recombination radiation from emission lines would produce UV, optical, and soft X-ray spectral features orders of magnitude stronger than observed. Collisional excitation produces even more line radiation under most physical conditions. As a particular example I take the Astro-1 observations of the Seyfert 1 galaxy Mrk 335 by HUT and BBXRT. Depending on the ionization state of the gas (which may be photoionized by the central source), the emission measure of the free-free radiation necessary to produce the UV continuum (3 times 10(68) cm(-3) at 8.2 times 10(5) K for H_o = 75 km s(-1) Mpc(-1) ) implies line emission from O VI, O VII, or O VIII more than a factor of 10 stronger than any features observed by HUT or BBXRT.
NASA Astrophysics Data System (ADS)
Rezaee, Sahar; Ghobadi, Nader
2018-06-01
The present study aims to investigate optical properties of Ag-Cu-Pd alloy thin films synthesized by DC-magnetron sputtering method. The thin films are deposited on the glass and silicon substrates using Argon gas and Ag-Cu-Pd target. XRD analysis confirms the successful growth of Ag, Cu, and Pd NPs with FCC crystalline structure. Moreover, UV-visible absorption spectroscopy is applied to determine optical properties of the prepared samples which are affected by changes in surface morphology. The existence of single surface plasmon resonance (SPR) peak near 350 nm proves the formation of silver nanoparticles with a slight red shift through increasing deposition time. Ineffective thickness method (ITM) and Derivation of ineffective thickness method (DITM) are applied to extract optical band gap and transition type via absorption spectrum. SEM and AFM analyses show the distribution of near-spherical nanoparticles covering the surface of thin films. Furthermore, thickness variation affects the grain size. In addition, TEM image reveals the uniform size distribution of nanoparticles with an average particle size of about 15 nm. The findings show that increasing grain size and crystallite order along with the decrease of structural defect and disorders decrease optical band gap from 3.86 eV to 2.58 eV.
NASA Astrophysics Data System (ADS)
Majeed, Shahbaz; Siraj, K.; Naseem, S.; Khan, Muhammad F.; Irshad, M.; Faiz, H.; Mahmood, A.
2017-07-01
Pure and gold-doped diamond-like carbon (Au-DLC) thin films are deposited at room temperature by using RF magnetron sputtering in an argon gas-filled chamber with a constant flow rate of 100 sccm and sputtering time of 30 min for all DLC thin films. Single-crystal silicon (1 0 0) substrates are used for the deposition of pristine and Au-DLC thin films. Graphite (99.99%) and gold (99.99%) are used as co-sputtering targets in the sputtering chamber. The optical properties and structure of Au-DLC thin films are studied with the variation of gold concentration from 1%-5%. Raman spectroscopy, atomic force microscopy (AFM), Vickers hardness measurement (VHM), and spectroscopic ellipsometry are used to analyze these thin films. Raman spectroscopy indicates increased graphitic behavior and reduction in the internal stresses of Au-DLC thin films as the function of increasing gold doping. AFM is used for surface topography, which shows that spherical-like particles are formed on the surface, which agglomerate and form larger clusters on the surface by increasing the gold content. Spectroscopy ellipsometry analysis elucidates that the refractive index and extinction coefficient are inversely related and the optical bandgap energy is decreased with increasing gold content. VHM shows that gold doping reduces the hardness of thin films, which is attributed to the increase in sp2-hybridization.
NASA Astrophysics Data System (ADS)
Cornejo, A.
2011-04-01
The field of Optics in Mexico, related with research projects, started at the Instituto de Astronomía, UNAM, since 1960. Therefore, the first projects and papers were mainly dedicated to astronomical instruments. After sometime, other projects started other areas of Optics as for example the production of He-Ne gas lasers, thin films deposits, experiments in holography, programs for general optical design, and theory and experiments for testing optical components and instruments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raftery, M. Daniel
1991-11-01
Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to highmore » magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raftery, M.D.
1991-11-01
Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas tomore » high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.« less
Dust Emission at 8 and 24 μ m as Diagnostics of H ii Region Radiative Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oey, M. S.; López-Hernández, J.; Kellar, J. A.
We use the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) survey of the Magellanic Clouds to evaluate the relationship between the 8 μ m polycyclic aromatic hydrocarbon (PAH) emission, 24 μ m hot dust emission, and H ii region radiative transfer. We confirm that in the higher-metallicity Large Magellanic Cloud, PAH destruction is sensitive to optically thin conditions in the nebular Lyman continuum: objects identified as optically thin candidates based on nebular ionization structure show six times lower median 8 μ m surface brightness (0.18 mJy arcsec{sup −2}) than their optically thick counterparts (1.2 mJy arcsec{sup −2}). The 24more » μ m surface brightness also shows a factor of three offset between the two classes of objects (0.13 versus 0.44 mJy arcsec{sup −2}, respectively), which is driven by the association between the very small dust grains and higher density gas found at higher nebular optical depths. In contrast, PAH and dust formation in the low-metallicity Small Magellanic Cloud is strongly inhibited such that we find no variation in either 8 μ m or 24 μ m emission between our optically thick and thin samples. This is attributable to extremely low PAH and dust production together with high, corrosive UV photon fluxes in this low-metallicity environment. The dust mass surface densities and gas-to-dust ratios determined from dust maps using Herschel HERITAGE survey data support this interpretation.« less
Experimental design to understand the interaction of stellar radiation with molecular clouds
NASA Astrophysics Data System (ADS)
VanDervort, Robert; Davis, Josh; Trantham, Matt; Klein, Sallee; Frank, Yechiel; Raicher, Erez; Fraenkel, Moshe; Shvarts, Dov; Keiter, Paul; Drake, R. Paul
2017-06-01
Enhanced star formation triggered by local O and B type stars is an astrophysical problem of interest. O and B type stars are massive, hot stars that emit an enormous amount of radiation. This radiation acts to either compress or blow apart clumps of gas in the interstellar media. For example, in the optically thick limit, when the x-ray radiation in the gas clump has a short mean free path length the x-ray radiation is absorbed near the clump edge and compresses the clump. In the optically thin limit, when the mean free path is long, the radiation is absorbed throughout acting to heat the clump. This heating explodes the gas clump. Careful selection of parameters, such as foam density or source temperature, allow the experimental platform to access different hydrodynamic regimes. The stellar radiation source is mimicked by a laser irradiated thin gold foil. This will provide a source of thermal x-rays (around ~100 eV). The gas clump is mimicked by a low-density foam around 0.150 g/cc. Simulations were done using radiation hydrodynamics codes to tune the experimental parameters. The experiment will be carried out at the Omega laser facility on OMEGA 60.
Synthesis and characterization of cadmium sulphide thin films prepared by spin coating
NASA Astrophysics Data System (ADS)
Chodavadiya, Nisarg; Chapanari, Amisha; Zinzala, Jignesh; Ray, Jaymin; Pandya, Samir
2018-05-01
An II-VI group semiconductor is Wide band gap materials and has been widely studied due to their fundamental optical, structural, and electrical properties. Cadmium sulphide (CdS) is one of the most emerged materials in II-VI group. It has many applications such as buffer later in photovoltaic cell, multilayer light emitting diodes, optical filters, thin film field effect transistors, gas sensors, light detectors etc. It is fundamentally an n-type material with an optical band gap of 2.4 eV. Owing to these properties we had studied CdS thin films synthesis and characterized by Raman, Ultraviolet - Visible spectroscopy (UV-VIS) and Hot probe method. CdS thin films were prepared by spin coating of the Cadmium-thiourea precursor solution. Visual inspection after 20 minute thermolysis time the films were looks uniform and shiny pale yellow in color. Raman confirms the A1 vibration of pure CdS. UV-VIS gives the band gap about 2.52 eV, which confirms the formation of nanocrystalline form of CdS. Finally, hot probe signifies the n-type conductivity of the CdS film.
NASA Astrophysics Data System (ADS)
Quynh, Luu Manh; Tien, Nguyen Thi; Thanh, Pham Van; Hieu, Nguyen Minh; Doanh, Sai Cong; Thuat, Nguyen Tran; Tuyen, Nguyen Viet; Luong, Nguyen Hoang; Hoang, Ngoc Lam Huong
2018-03-01
Nb-doped TiO2 (TNO) thin films were prepared by annealing at 300 °C for 30 min after a magnetron-sputter process. A laser-irradiated post-annealing Raman scattering analysis indirectly showed the possible formation of small size anatase TNO clusters within the thin film matrix Although the TNO thin films were not crystallized, oxygen vacancies were created by adding H2 into the sputter gas during the deposition process. This improved the conductivity and carrier concentration of the thin films. As the ratio of H2 in sputter gas is f(H2) = [H2/Ar+H2] = 10%, the carrier concentration of the amorphous TNO thin film reached 1022 (cm-3) with the resistivity being about 10-2 (Ω.cm). Even though a new methodology to decrease the fabrication temperature is not presented; this study demonstrates an efficient approach to shorten the annealing process, which ends prior to the crystallization of the thin films. Besides, in situ H2 addition into the sputter atmosphere is proven to be a good solution to enhance the electrical conductivity of semiconductor thin films like TNOs, despite the fact that they are not well crystallized.
NASA Astrophysics Data System (ADS)
Cui, W.; Zhao, X. L.; An, Y. H.; Guo, D. Y.; Qing, X. Y.; Wu, Z. P.; Li, P. G.; Li, L. H.; Cui, C.; Tang, W. H.
2017-04-01
Conductive Ga2O3 thin films with an In2O3 buffer layer have been prepared on c-plane sapphire substrates using a laser molecular beam epitaxy technique. The effects of the In2O3 buffer layer on the structure and optical, electrical and surface state properties of the Ga2O3 films have been studied. The change in conductivity of the thin films is attributed to different thicknesses of the In2O3 buffer layer, which determine the concentration of charge carriers injected into the upper Ga2O3 layer from the interface of the bilayer thin films. In addition, the increase in flat band voltage shift and capacitance values as the In2O3 buffer layer thickens are attributed to the increase in surface state density, which also contributes to the rapid shrinkage of the optical band gap of the Ga2O3. With transparency to visible light, high n-type conduction and the ability to tune the optical band gap and surface state density, we propose that Ga2O3/In2O3 bilayer thin film is an ideal n-type semiconductor for fabrication of transparent power devices, solar cell electrodes and gas sensors.
Interaction of the accretion flows in corona and disk near the black hole in active galactic nuclei
NASA Astrophysics Data System (ADS)
Meyer-Hofmeister, E.; Liu, B. F.; Qiao, E.
2017-11-01
Context. Accretion flows toward black holes can be of a quite different nature, described as an optically thick cool gas flow in a disk for high accretion rates or as a hot coronal optically thin gas flow for low accretion rates, possibly affected by outflowing gas. Aims: The detection of broad iron emission lines in active galactic nuclei (AGN) indicates the coexistence of corona and disk. The appearance and relative strength of such flows essentially depends on their interaction. Liu et al. suggested that condensation of gas from the corona to the disk allows to understand accretion flows of comparable strength of emission. Matter inflow due to gravitational capture of gas is important for the condensation process. We discuss observational features predicted by the model. Methods: Data from simultaneous observations of AGN with Swift's X-ray and UV-optical telescopes are compared with the theoretical predictions. Results: The frequent detection of broad iron Kα emission lines and the dependence of the emitted spectra on the Eddington ratio, described by the values of the photon index Γ and the two-point spectral index αox are in approximate agreement with the predictions of the condensation model; the latter, however, with a large scatter. The model further yields a coronal emission concentrated in a narrow inner region as is also deduced from the analysis of emissivity profiles. Conclusions: The accretion flows in bright AGN could be described by the accretion of stellar wind or interstellar medium and its condensation into a thin disk.
NASA Astrophysics Data System (ADS)
Manikandan, V.; Li, Xiaogan; Mane, R. S.; Chandrasekaran, J.
2018-04-01
Tin (Sn) substituted nickel ferrite (NiFe2O4) thin film sensors were prepared by a simple chemical co-precipitation method, which initially characterized their structure and surface morphology with the help of x-ray diffraction and scanning electron microscopy. Surface morphology of the sensing films reveals particles stick together with nearer particles and this formation leads to a large specific area as a large specific area is very useful for easy adsorption of gas molecules. Transmission electron microscopy and selected area electron diffraction pattern images confirm particle size and nanocrystallnity as due to formation of circular rings. Fourier transform infrared analysis has supported the presence of functional groups. The 3.69 eV optical band gap of the film was found which enabled better gas sensing. Gas sensors demonstrate better response and recovery characteristics, and the maximum response was 68.43%.
Premixed Flame Propagation in an Optically Thick Gas
NASA Technical Reports Server (NTRS)
Abbud-Madrid, Angel; Ronney, Paul D.
1993-01-01
Flame propagation in both the optically thin and the optically thick regime of radiative transport was studied experimentally using particle-laden gas mixtures. Data on flame shapes, propagation rates, peak pressure, maximum rate of pressure rise, and thermal decay in the burned gases are consistent with the hypothesis that, at low particle loadings, the particles act to increase the radiative loss from the gases, whereas at higher loadings, reabsorption of emitted radiation becomes significant. The reabsorption acts to decrease the net radiative loss and augment conductive heat transport. It is speculated that, in sufficiently large systems, in which the absorption length is much smaller than the system size, flammability limits might not exist at microgravity conditions because emitted radiation would not constitute a loss mechanism.
Coulomb Crystallization of Charged Microspheres Levitated in a Gas Discharge Plasma
NASA Technical Reports Server (NTRS)
Goree, John
1998-01-01
The technical topic of the project was the experimental observation of Coulomb crystallization of charged microspheres levitated in a gas discharge plasma. This suspension, sometimes termed a dusty plasma, is closely analogous to a colloidal suspension, except that it has a much faster time response, is more optically thin, and has no buoyancy forces to suspend the particles. The particles are levitated by electric fields. Through their collective Coulomb repulsions, the particles arrange themselves in a lattice with a crystalline symmetry, which undergoes an order-disorder phase transition analogous to melting when the effective temperature of the system is increased. Due to gravitational sedimentation, the particles form a thin layer in the laboratory, so that the experimental system is nearly 2D, whereas in future microgravity experiments they are expected to fill a larger volume and behave like a 3D solid or liquid. The particles are imaged using a video camera by illuminating them with a sheet of laser light. Because the suspension is optically thin, this imaging method will work as well in a 3D microgravity experiment as it does in a 2D laboratory system.
Vacuum ellipsometry as a method for probing glass transition in thin polymer films.
Efremov, Mikhail Yu; Soofi, Shauheen S; Kiyanova, Anna V; Munoz, Claudio J; Burgardt, Peter; Cerrina, Franco; Nealey, Paul F
2008-04-01
A vacuum ellipsometer has been designed for probing the glass transition in thin supported polymer films. The device is based on the optics of a commercial spectroscopic phase-modulated ellipsometer. A custom-made vacuum chamber evacuated by oil-free pumps, variable temperature optical table, and computer-based data acquisition system was described. The performance of the tool has been demonstrated using 20-200 nm thick poly(methyl methacrylate) and polystyrene films coated on silicon substrates at 10(-6)-10(-8) torr residual gas pressure. Both polymers show pronounced glass transitions. The difficulties in assigning in the glass transition temperature are discussed with respect to the experimental challenges of the measurements in thin polymer films. It is found that the experimental curves can be significantly affected by a residual gas. This effect manifests itself at lower temperatures as a decreased or even negative apparent thermal coefficient of expansion, and is related to the uptake and desorption of water by the samples during temperature scans. It is also found that an ionization gauge--the standard accessory of any high vacuum system--can cause a number of spurious phenomena including drift in the experimental data, roughening of the polymer surface, and film dewetting.
NASA Astrophysics Data System (ADS)
Fleming, L.; Gibson, D.; Song, S.; Hutson, D.; Reid, S.; MacGregor, C.; Clark, C.
2017-02-01
Mid-IR carbon dioxide (CO2) gas sensing is critical for monitoring in respiratory care, and is finding increasing importance in surgical anaesthetics where nitrous oxide (N2O) induced cross-talk is a major obstacle to accurate CO2 monitoring. In this work, a novel, solid state mid-IR photonics based CO2 gas sensor is described, and the role that 1- dimensional photonic crystals, often referred to as multilayer thin film optical coatings [1], play in boosting the sensor's capability of gas discrimination is discussed. Filter performance in isolating CO2 IR absorption is tested on an optical filter test bed and a theoretical gas sensor model is developed, with the inclusion of a modelled multilayer optical filter to analyse the efficacy of optical filtering on eliminating N2O induced cross-talk for this particular gas sensor architecture. Future possible in-house optical filter fabrication techniques are discussed. As the actual gas sensor configuration is small, it would be challenging to manufacture a filter of the correct size; dismantling the sensor and mounting a new filter for different optical coating designs each time would prove to be laborious. For this reason, an optical filter testbed set-up is described and, using a commercial optical filter, it is demonstrated that cross-talk can be considerably reduced; cross-talk is minimal even for very high concentrations of N2O, which are unlikely to be encountered in exhaled surgical anaesthetic patient breath profiles. A completely new and versatile system for breath emulation is described and the capability it has for producing realistic human exhaled CO2 vs. time waveforms is shown. The cross-talk inducing effect that N2O has on realistic emulated CO2 vs. time waveforms as measured using the NDIR gas sensing technique is demonstrated and the effect that optical filtering will have on said cross-talk is discussed.
Use of gas-phase ethanol to mitigate extreme UV/water oxidation of extreme UV optics
NASA Astrophysics Data System (ADS)
Klebanoff, L. E.; Malinowski, M. E.; Clift, W. M.; Steinhaus, C.; Grunow, P.
2004-03-01
A technique is described that uses a gas-phase species to mitigate the oxidation of a Mo/Si multilayer optic caused by either extreme UV (EUV) or electron-induced dissociation of adsorbed water vapor. It is found that introduction of ethanol (EtOH) into a water-rich gas-phase environment inhibits oxidation of the outermost Si layer of the Mo/Si EUV reflective coating. Auger electron spectroscopy, sputter Auger depth profiling, EUV reflectivity, and photocurrent measurements are presented that reveal the EUV/water- and electron/water-derived optic oxidation can be suppressed at the water partial pressures used in the tests (~2×10-7-2×10-5 Torr). The ethanol appears to function differently in two time regimes. At early times, ethanol decomposes on the optic surface, providing reactive carbon atoms that scavenge reactive oxygen atoms before they can oxidize the outermost Si layer. At later times, the reactive carbon atoms form a thin (~5 Å), possibly self-limited, graphitic layer that inhibits water adsorption on the optic surface. .
NASA Astrophysics Data System (ADS)
Richert, Alexander J. W.; Lyra, Wladimir; Kuchner, Marc J.
2018-03-01
In optically thin disks, dust grains are photoelectrically stripped of electrons by starlight, heating nearby gas and possibly creating a dust clumping instability—the photoelectric instability (PeI)—that significantly alters global disk structure. In the current work, we use the Pencil Code to perform the first numerical models of the PeI that include stellar radiation pressure on dust grains in order to explore the parameter regime in which the instability operates. In some models with low gas and dust surface densities, we see a variety of dust structures, including sharp concentric rings. In the most gas- and dust-rich models, nonaxisymmetric clumps, arcs, and spiral arms emerge that represent dust surface density enhancements of factors of ∼5–20. In one high gas surface density model, we include a large, low-order gas viscosity and find that it observably smooths the structures that form in the gas and dust, suggesting that resolved images of a given disk may be useful for deriving constraints on the effective viscosity of its gas. Our models show that radiation pressure does not preclude the formation of complex structure from the PeI, but the qualitative manifestation of the PeI depends strongly on the parameters of the system. The PeI may provide an explanation for unusual disk morphologies, such as the moving blobs of the AU Mic disk, the asymmetric dust distribution of the 49 Ceti disk, and the rings and arcs found in the HD 141569A disk.
Atmospheric gas dynamics in the Perseus cluster observed with Hitomi
NASA Astrophysics Data System (ADS)
Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Canning, Rebecca E. A.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashi, Tasuku; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Shota; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Keigo; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Wang, Qian H. S.; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen
2018-03-01
Extending the earlier measurements reported in Hitomi collaboration (2016, Nature, 535, 117), we examine the atmospheric gas motions within the central 100 kpc of the Perseus cluster using observations obtained with the Hitomi satellite. After correcting for the point spread function of the telescope and using optically thin emission lines, we find that the line-of-sight velocity dispersion of the hot gas is remarkably low and mostly uniform. The velocity dispersion reaches a maxima of approximately 200 km s-1 toward the central active galactic nucleus (AGN) and toward the AGN inflated northwestern "ghost" bubble. Elsewhere within the observed region, the velocity dispersion appears constant around 100 km s-1. We also detect a velocity gradient with a 100 km s-1 amplitude across the cluster core, consistent with large-scale sloshing of the core gas. If the observed gas motions are isotropic, the kinetic pressure support is less than 10% of the thermal pressure support in the cluster core. The well-resolved, optically thin emission lines have Gaussian shapes, indicating that the turbulent driving scale is likely below 100 kpc, which is consistent with the size of the AGN jet inflated bubbles. We also report the first measurement of the ion temperature in the intracluster medium, which we find to be consistent with the electron temperature. In addition, we present a new measurement of the redshift of the brightest cluster galaxy NGC 1275.
NASA Astrophysics Data System (ADS)
Suarez Anzorena, Manuel; Bertolo, Alma A.; Gagetti, Leonardo; Gaviola, Pedro A.; del Grosso, Mariela F.; Kreiner, Andrés J.
2018-06-01
Titanium deuteride thin films have been manufactured under different conditions specified by deuterium gas pressure, substrate temperature and time. The films were characterized by different techniques to evaluate the deuterium content and the homogeneity of such films. Samples with different concentrations of deuterium, including non deuterated samples, were irradiated with a 150 keV proton beam. Both deposits, pristine and irradiated, were characterized by optical profilometry and scanning electron microscopy.
Effect of Pt Nanoparticles on the Optical Gas Sensing Properties of WO3 Thin Films
Qadri, Muhammad U.; Diaz Diaz, Alex Fabian; Cittadini, Michaela; Martucci, Alessandro; Pujol, Maria Cinta; Ferré-Borrull, Josep; Llobet, Eduard; Aguiló, Magdalena; Díaz, Francesc
2014-01-01
Thin films of tungsten trioxide were deposited on quartz substrates by RF magnetron sputtering. Different annealing temperatures in the range from 423 to 973 K were used under ambient atmosphere. The influence of the annealing temperature on the structure and optical properties of the resulting WO3 thin films were studied. The surface morphology of the films is composed of grains with an average size near 70 nm for the films annealed between 773 and 973 K. Some of the WO3 thin films were also coated with Pt nanoparticles of about 45 nm in size. Spectrometric measurements of transmittance were carried out for both types of WO3 samples in the wavelength range from 200–900 nm, to determine the effect of the exposure to two different gases namely H2 and CO. Films showed fast response and recovery times, in the range of few seconds. The addition of Pt nanoparticles enables reducing the operation temperature to room temperature. PMID:24977386
NASA Astrophysics Data System (ADS)
Zhan, Yongjun; Xiao, Xiudi; Lu, Yuan; Cao, Ziyi; Cheng, Haoliang; Shi, Jifu; Xu, Gang
2017-10-01
The VOx thin films are successfully prepared on glass substrate by reactive magnetron sputtering at room-temperature, and subsequently annealed by rapid thermal annealing system in N2 from 0.5Pa to 10000Pa. The effects of annealing pressure on the optical performance and phase transition temperature (Tc) of VOx thin films are systematically investigated. The results show that the VOx thin films exhibit good performance with Tlum of 28.17%, ΔTsol of 12.69%, and Tc of 42. The annealing pressure had an obvious influence on the grain size, which can be attributed to light scattering effects by gas molecule. Compared with oxygen vacancy defects, the grain size plays a decisive role in the regulation of Tc. The restricting the growth of grain can be reduced the Tc, and a little deterioration effect on optical performance can be observed. In addition, the method in this paper not only depressed the Tc, but also simplified the process and improved efficiency, which will provide guidance for the preparation and application of VOx thin films.
Effect on the properties of ITO thin films in Gamma environment
NASA Astrophysics Data System (ADS)
Sofi, A. H.; Shah, M. A.; Asokan, K.
2018-04-01
The present study reports the effect of gamma irradiation of varying doses (0-200 kGy) on the physical properties of the indium tin oxide (ITO) thin films. The films were fabricated by thermal evaporation method using indium-tin (InSn) ingots followed by an oxidation in atmosphere at a temperature of 550 °C. X-ray diffraction analysis confirmed the body-centered cubic (BCC) structure corresponds to the ITO thin films, high phase purity and a variation in crystallite size between 30-44 nm. While the optical studies revealed an increase in transmission as well as variation in optical band gap, the electrical studies confirmed n-type semiconductive behavior of the thin films, increase in mobility and a decrease in resistivity from 2.33×10-2 - 9.31×10-4 Ωcm with the increase in gamma dose from 0-200 kGy. The gamma irradiation caused totally electronic excitation and resulted in this modifications. The degenerate electron gas model was considered when attempting to understand the prevalent scattering mechanism in gamma irradiated ITO thin films.
Yadav, A A; Lokhande, A C; Pujari, R B; Kim, J H; Lokhande, C D
2016-12-15
The porous honey comb-like La 2 O 3 thin films have been synthesized using one step spray pyrolysis method. The influence of sprayed solution quantity on properties of La 2 O 3 thin films is studied using X-ray diffraction, Fourier transform spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, optical absorption and Brunauer-Emmett-Teller techniques. Morphology of La 2 O 3 electrode is controlled with sprayed solution quantity. The supercapacitive properties of La 2 O 3 thin film electrode are investigated using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance techniques. The La 2 O 3 film electrode exhibited the specific capacitance of the 166Fg -1 with 85% stability for the 3000 cycles. The La 2 O 3 film electrode exhibited sensitivity of 68 at 523K for 500ppm CO 2 gas concentration. The possible CO 2 sensing mechanism is discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodson-Robinson, Sarah E.; Salyk, Colette, E-mail: sdr@astro.as.utexas.edu
Although there has yet been no undisputed discovery of a still-forming planet embedded in a gaseous protoplanetary disk, the cleared inner holes of transitional disks may be signposts of young planets. Here, we show that the subset of accreting transitional disks with wide, optically thin inner holes of 15 AU or more can only be sculpted by multiple planets orbiting inside each hole. Multiplanet systems provide two key ingredients for explaining the origins of transitional disks. First, multiple planets can clear wide inner holes where single planets open only narrow gaps. Second, the confined, non-axisymmetric accretion flows produced by multiplemore » planets provide a way for an arbitrary amount of mass transfer to occur through an apparently optically thin hole without overproducing infrared excess flux. Rather than assuming that the gas and dust in the hole are evenly and axisymmetrically distributed, one can construct an inner hole with apparently optically thin infrared fluxes by covering a macroscopic fraction of the hole's surface area with locally optically thick tidal tails. We also establish that other clearing mechanisms, such as photoevaporation, cannot explain our subset of accreting transitional disks with wide holes. Transitional disks are therefore high-value targets for observational searches for young planetary systems.« less
The absence of a thin disc in M81*
NASA Astrophysics Data System (ADS)
Young, A. J.; McHardy, I.; Emmanoulopoulos, D.; Connolly, S.
2018-06-01
We present the results of simultaneous Suzaku and NuSTAR observations of the nearest low-luminosity active galactic nucleus (LLAGN), M81*. The spectrum is well described by a cut-off power law plus narrow emission lines from Fe K α, Fe xxv, and Fe xxvi. There is no evidence of Compton reflection from an optically thick disc, and we obtain the strongest constraint on the reflection fraction in M81* to date, with a best-fitting value of R = 0.0 with an upper limit of R < 0.1. The Fe K α line may be produced in optically thin, N_H = 1 × 10^{23} cm^{-2}, gas located in the equatorial plane that could be the broad line region. The ionized iron lines may originate in the hot, inner accretion flow. The X-ray continuum shows significant variability on ˜40 ks time-scales suggesting that the primary X-ray source is ˜100 s of gravitational radii in size. If this X-ray source illuminates any putative optically thick disc, the weakness of reflection implies that such a disc lies outside a few ×103 gravitational radii. An optically thin accretion flow inside a truncated optically thick disc appears to be a common feature of LLAGN that are accreting at only a tiny fraction of the Eddington limit.
Initial experiments to understand the interaction of stellar radiation with molecular clouds
NASA Astrophysics Data System (ADS)
Vandervort, Robert; Davis, Josh; Trantham, Matt; Klein, Sallee; Shvarts, Dov; Keiter, Paul; Drake, R. Paul
2017-10-01
Enhanced star formation triggered by local O and B type stars is an astrophysical problem of interest. O and B type stars are massive, hot stars that emit an enormous amount of radiation. This radiation acts to either compress or blow apart gas clumps in the interstellar media. For example, in the optically thick limit, when the radiation in the gas clump has a short mean free path, radiation is absorbed near the clump edge and compresses the clump. In the optically thin limit, when the mean free path is long, the radiation is absorbed throughout, acting to heat the clump. This heating explodes the gas clump. Careful selection of parameters, such as foam density or source temperature, allow the experimental platform to access different hydrodynamic regimes. 2D CRASH simulations guide our parameter selection. A stellar radiation source is mimicked by a laser-irradiated, thin, gold foil, providing a source of thermal x-rays around 100 eV. The gas clump is mimicked by low-density CRF foam. We plan to show the preliminary experimental results of this platform in the optically thick limit, from experiments scheduled in August. This work is funded by the U.S. DOE, through the NNSA-DS and SC-OFES Joint Program in HEDPLP, Grant No. DE-NA0002956, and the NLUF Program, Grant No. DE-NA0002719, and through LLE, University of Rochester by the NNSA/OICF under Cooperative Agreement No. DE-NA0001944. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207.
Optical, structural and electrochromic properties of sputter- deposited W-Mo oxide thin films
NASA Astrophysics Data System (ADS)
Gesheva, K.; Arvizu, M. A.; Bodurov, G.; Ivanova, T.; Niklasson, G. A.; Iliev, M.; Vlakhov, T.; Terzijska, P.; Popkirov, G.; Abrashev, M.; Boyadjiev, S.; Jágerszki, G.; Szilágyi, I. M.; Marinov, Y.
2016-10-01
Thin metal oxide films were investigated by a series of characterization techniques including impedance spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, and Atomic Force Microscopy. Thin film deposition by reactive DC magnetron sputtering was performed at the Ångström Laboratory. W and Mo targets (5 cm diameter) and various oxygen gas flows were employed to prepare samples with different properties, whereas the gas pressure was kept constant at about 30 mTorr. The substrates were 5×5 cm2 plates of unheated glass pre-coated with ITO having a resistance of 40 ohm/sq. Film thicknesses were around 300 nm as determined by surface profilometry. Newly acquired equipment was used to study optical spectra, optoelectronic properties, and film structure. Films of WO3 and of mixed W- Mo oxide with three compositions showed coloring and bleaching under the application of a small voltage. Cyclic voltammograms were recorded with a scan rate of 5 mV s-1. Ellipsometric data for the optical constants show dependence on the amount of MoOx in the chemical composition. Single MoOx film, and the mixed one with only 8% MoOx have the highest value of refractive index, and similar dispersion in the visible spectral range. Raman spectra displayed strong lines at wavenumbers between 780 cm-1 and 950 cm-1 related to stretching vibrations of WO3, and MoO3. AFM gave evidence for domains of different composition in mixed W-Mo oxide films.
NASA Astrophysics Data System (ADS)
Kafle, Madhav; Kapadi, Ramesh K.; Joshi, Leela Pradhan; Rajbhandari, Armila; Subedi, Deepak P.; Gyawali, Gobinda; Lee, Soo W.; Adhikari, Rajendra; Kafle, Bhim P.
2017-07-01
The dependence of the structural, optical and electrical properties of the FTO thin films on the film thickness (276 nm - 546 nm), calcination environment, and low temperature plasma treatment were examined. The FTO thin films, prepared by spray pyrolysis, were calcinated under air followed by either further heat treatment under N2 gas or treatment in low temperature atmospheric plasma. The samples before and after calcination under N2, and plasma treatment will be represented by Sair, SN2 and SPl, respectively, hereafter. The thin films were characterized by measuring the XRD spectra, SEM images, optical transmittance and reflectance, and sheet resistance of the films before and after calcination in N2 environment or plasma treatment. The presence of sharp and narrow multiple peaks in XRD spectra hint us that the films were highly crystalline (polycrystalline). The samples Sair with the thickness of 471 nm showed as high as 92 % transmittance in the visible range. Moreover, from the tauc plot, the optical bandgap Eg values of the Sair found to be noticeably lower than that of the samples SN2. Very surprisingly, the electrical sheet resistance (Rsh) found to decrease following the trend as Rshair > RshN2 > RshPl. The samples exposed to plasma found to possess the lowest RshPl (for film with thickness 546 nm, the RshPl was 17 Ω /sq.).
NASA Astrophysics Data System (ADS)
Mane, A. A.; Moholkar, A. V.
2017-09-01
The nanocrystalline V2O5 thin films with different thicknesses have been grown onto the glass substrates using chemical spray pyrolysis (CSP) deposition method. The XRD study shows that the films exhibit an orthorhombic crystal structure. The narrow scan X-ray photoelectron spectrum of V-2p core level doublet gives the binding energy difference of 7.3 eV, indicating that the V5+ oxidation state of vanadium. The FE-SEM micrographs show the formation of nanorods-like morphology. The AFM micrographs show the high surface area to volume ratio of nanocrystalline V2O5 thin films. The optical study gives the band gap energy values of 2.41 eV, 2.44 eV, 2.47 eV and 2.38 eV for V2O5 thin films deposited with the thicknesses of 423 nm, 559 nm, 694 nm and 730 nm, respectively. The V2O5 film of thickness 559 nm shows the NO2 gas response of 41% for 100 ppm concentration at operating temperature of 200 °C with response and recovery times of 20 s and 150 s, respectively. Further, it shows the rapid response and reproducibility towards 10 ppm NO2 gas concentration at 200 °C. Finally, NO2 gas sensing mechanism based on chemisorption process is discussed.
NASA Astrophysics Data System (ADS)
Chen, Hsi-Chao; Jan, Der-Jun; Chen, Chien-Han; Huang, Kuo-Ting; Lo, Yen-Ming; Chen, Sheng-Hui
2011-09-01
The purpose of this research was to compare the optical properties and structure of tungsten oxide (WO3) thin films that was deposited by different sputtering depositions. WO3 thin films deposited by two different depositions of direct current (DC) magnetron sputtering and pulsed DC sputtering. A 99.95% WO3 target was used as the starting material for these depositions. These WO3 thin films were deposited on the ITO glass, PET and silicon substrate by different ratios of oxygen and argon. A shadow moiré interferometer would be introduced to measure the residual stress for PET substrate. RF magnetron sputtering had the large residual stress than the other's depositions. A Raman spectrum could exhibit the phase of oxidation of WO3 thin film by different depositions. At the ratio of oxygen and argon was about 1:1, and the WO3 thin films had the best oxidation. However, it was important at the change of the transmittance (ΔT = Tbleached - Tcolored) between the coloring and bleaching for the smart window. Therefore, we also found the WO3 thin films had the large variation of transmittance between the coloring and bleaching at the gas ratios of oxygen and argon of 1:1.
NASA Astrophysics Data System (ADS)
Park, M. G.; Choi, W. S.; Hong, B.; Kim, Y. T.; Yoon, D. H.
2002-05-01
In this article, we investigated the dependence of optical and electrical properties of hydrogenated amorphous silicon carbide (a-SiC:H) films on annealing temperature (Ta) and radio frequency (rf) power. The substrate temperature (Ts) was 250 °C, the rf power was varied from 30 to 400 W, and the range of Ta was from 400 to 600 °C. The a-SiC:H films were deposited by using the plasma enhanced chemical vapor deposition system on Corning 7059 glasses and p-type Si (100) wafers with a SiH4+CH4 gas mixture. The experimental results have shown that the optical bandgap energy (Eg) of the a-SiC:H thin films changed little on the annealing temperature while Eg increased with the rf power. The Raman spectrum of the thin films annealed at high temperatures showed that graphitization of carbon clusters and microcrystalline silicon occurs. The current-voltage characteristics have shown good electrical properties in relation to the annealed films.
Self-anti-reflective density-modulated thin films by HIPS technique
NASA Astrophysics Data System (ADS)
Keles, Filiz; Badradeen, Emad; Karabacak, Tansel
2017-08-01
A critical factor for an efficient light harvesting device is reduced reflectance in order to achieve high optical absorptance. In this regard, refractive index engineering becomes important to minimize reflectance. In this study, a new fabrication approach to obtain density-modulated CuIn x Ga(1-x)Se2 (CIGS) thin films with self-anti-reflective properties has been demonstrated. Density-modulated CIGS samples were fabricated by utilizing high pressure sputtering (HIPS) at Ar gas pressure of 2.75 × 10-2 mbar along with conventional low pressure sputtering (LPS) at Ar gas pressure of 3.0 × 10-3 mbar. LPS produces conventional high density thin films while HIPS produces low density thin films with approximate porosities of ˜15% due to a shadowing effect originating from the wide-spread angular atomic of HIPS. Higher pressure conditions lower the film density, which also leads to lower refractive index values. Density-modulated films that incorporate a HIPS layer at the side from which light enters demonstrate lower reflectance thus higher absorptance compared to conventional LPS films, although there is not any significant morphological difference between them. This result can be attributed to the self-anti-reflective property of the density-modulated samples, which was confirmed by the reduced refractive index calculated for HIPS layer via an envelope method. Therefore, HIPS, a simple and scalable approach, can provide enhanced optical absorptance in thin film materials and eliminate the need for conventional light trapping methods such as anti-reflective coatings of different materials or surface texturing.
Terahertz gas sensing based on time-domain-spectroscopy using a hollow-optical fiber gas cell
NASA Astrophysics Data System (ADS)
Suzuki, T.; Katagiri, T.; Matsuura, Y.
2018-02-01
Terahertz gas sensing system based on time-domain spectroscopy (THz-TDS) using a hollow-optical fiber gas cell is proposed. A hollow optical fiber functions as a long-path and low-volume gas cell and loading a dielectric layer on the inside of the fiber reduces the transmission loss and the dielectric layer also protects the metal layer of the fiber from deterioration. In the fabrication process, a polyethylene tube with a thin wall is drawn from a thick preform and a metal layer is formed on the outside of the tube. By using a 34-cm long fiber gas cell, NH3 gas with a concentration of 8.5 % is detected with a good SN ratio. However, the absorption peaks of NH3 and water vapor appeared at around 1.2 THz are not separated. To improve the frequency resolution in Fourier transformation, the time scan width that is decided by the scanning length of linear stage giving a time delay in the probing THz beam is enlarged. As a result, the absorption peaks at around 1.2 THz are successfully separated. In addition, by introducing a longer fiber gas cell of 60-cm length, the measurement sensitivity is improved and an absorption spectrum of NH3 gas with a concentration of 0.5 % is successfully detected.
High Power Laser Welding. [of stainless steel and titanium alloy structures
NASA Technical Reports Server (NTRS)
Banas, C. M.
1972-01-01
A review of recent developments in high power, carbon dixoide laser welding is presented. Deep penetration welding in stainless steel to 0.5-in. thick, high speed welding in thin gage rimmed steel and gas shielded welding in Ti-6Al-4V alloy are described. The effects of laser power, power density, focusing optics, gas-shielding techniques, material properties and weld speed on weld quality and penetration are discussed. It is shown that laser welding performance in thin materials is comparable to that of electron beams. It is further shown that high quality welds, as evidenced by NDT, mechanical and metal-lographic tests, can be achieved. The potential of the laser for industrial welding applications is indicated.
NASA Astrophysics Data System (ADS)
Park, Jun Woo; Jeong, Pil Seong; Choi, Suk-Ho; Lee, Hosun; Kong, Bo Hyun; Koun Cho, Hyung
2009-11-01
Amorphous InGaZnO (IGZO) thin films were grown using RF sputtering deposition at room temperature and their corresponding dielectric functions were measured. In order to reduce defects and increase carrier concentrations, we examined the effect of forming gas annealing and ion implantation. The band gap energy increased with increasing forming gas annealing temperature. We implanted the IGZO thin films with F- ions in order to decrease oxygen vacancies. For comparison, we also implanted InO- ions. Transmission electron microscopy showed that the amorphous phase undergoes transformation to a nanocrystalline phase due to annealing. We also observed InGaZnO4 nanocrystals having an In-(Ga/Zn) superlattice structure. As the annealing temperature increased, the optical gap energy increased due to crystallization. After annealing, we observed an oxygen-vacancy-related 1.9 eV peak for both unimplanted and InO-implanted samples. However, F- ion implantation substantially reduced the amplitude of the 1.9 eV peak, which disappeared completely at a F fluence of 5×1015 cm-2. We observed other defect-related peaks at 3.6 and 4.2 eV after annealing, which also disappeared after F implantation.
Magnetic hysteresis measurements of thin films under isotropic stress.
NASA Astrophysics Data System (ADS)
Holland, Patrick; Dubey, Archana; Geerts, Wilhelmus
2000-10-01
Nowadays, ferromagnetic thin films are widely applied in devices for information technology (credit cards, video recorder tapes, floppies, hard disks) and sensors (air bags, anti-breaking systems, navigation systems). Thus, with the increase in the use of magnetic media continued investigation of magnetic properties of materials is necessary to help in determining the useful properties of materials for new or improved applications. We are currently interested in studying the effect of applied external stress on Kerr hysteresis curves of thin magnetic films. The Ni and NiFe films were grown using DC magnetron sputtering with Ar as the sputter gas (pAr=4 mTorr; Tsub=55-190 C). Seed and cap layers of Ti were used on all films for adhesion and oxidation protection, respectively. A brass membrane pressure cell was designed to apply in-plane isotropic stress to thin films. In this pressure cell, gas pressure is used to deform a flexible substrate onto which a thin magnetic film has been sputtered. The curvature of the samples could be controlled by changing the gas pressure to the cell. Magneto-Optical in-plane hysteresis curves at different values of strain were measured. The results obtained show that the stress sensitivity is dependent on the film thickness. For the 500nm NiFe films, the coercivity strongly decreased as a function of the applied stress.
NASA Astrophysics Data System (ADS)
Lieberman, Robert A.
Various paper on chemical, biochemical, and environmental fiber sensors are presented. Some of the individual topics addressed include: evanescent-wave fiber optic (FO) biosensor, refractive-index sensors based on coupling to high-index multimode overlays, advanced technique in FO sensors, design of luminescence-based temperature sensors, NIR fluorescence in FO applications, FO sensor based on microencapsulated reagents, emitters and detectors for optical gas and chemical sensing, tunable fiber laser source for methane detection at 1.68 micron, FO fluorometer based on a dual-wavelength laser excitation source, thin polymer films as active components of FO chemical sensors, submicron optical sources for single macromolecule detection, nanometer optical fiber pH sensor. Also discussed are: microfabrication of optical sensor array, luminescent FO sensor for the measurement of pH, time-domain fluorescence methods as applied to pH sensing, characterization of a sol-gel-entrapped artificial receptor, FO technology for nuclear waste cleanup, spectroscopic gas sensing with IR hollow waveguides, dissolved-oxygen quenching of in situ fluorescence measurements.
Effect of composition on properties of In2O3-Ga2O3 thin films
NASA Astrophysics Data System (ADS)
Demin, I. E.; Kozlov, A. G.
2017-06-01
The In2O3-Ga2O3 mixed oxide polycrystalline thin films with various ratios of components were obtained by pulsed laser deposition. The effect of films composition on surface morphology, electrophysical and gas sensing properties and energies of adsorption and desorption of combustible gases was studied. The films with50%In2O3-50%Ga2O3 composition showed maximum gas response (˜25 times) combined with minimum optimal working temperature (˜530 °C) as compared with the other films. The optical transmittance of the films in visible range was investigated. For 50%In2O3-50%Ga2O3 films, the transmittance is higher in comparison with the other films. The explanation of the dependency of films behaviors on their composition was presented.The In2O3-Ga2O3 films were assumed to have perspectives as gas sensing material for semiconducting gas sensors.
Effect of argon ion activity on the properties of Y 2O 3 thin films deposited by low pressure PACVD
NASA Astrophysics Data System (ADS)
Barve, S. A.; Jagannath; Deo, M. N.; Kishore, R.; Biswas, A.; Gantayet, L. M.; Patil, D. S.
2010-10-01
Yttrium oxide thin films are deposited by microwave electron cyclotron resonance (ECR) plasma assisted metal organic chemical vapour deposition process using an indegeneously developed Y(thd) 3 {(2,2,6,6-tetramethyl-3,5-heptanedionate)yttrium} precursor. Depositions were carried out at two different argon gas flow rates keeping precursor and oxygen gas flow rate constant. The deposited coatings are characterized by X-ray photoelectron spectroscopy (XPS), glancing angle X-ray diffraction (GIXRD) and infrared spectroscopy. Optical properties of the films are studied by spectroscopic ellipsometry. Hardness and elastic modulus of the films are measured by load depth sensing nanoindentation technique. Stability of the film and its adhesion with the substrate is inferred from the nanoscratch test. It is shown here that, the change in the argon gas flow rates changes the ionization of the gas in the microwave ECR plasma and imposes a drastic change in the characteristics like composition, structure as well as mechanical properties of the deposited film.
Structural, Optical and Electrical Properties of ITO Thin Films
NASA Astrophysics Data System (ADS)
Sofi, A. H.; Shah, M. A.; Asokan, K.
2018-02-01
Transparent and conductive thin films of indium tin oxide were fabricated on glass substrates by the thermal evaporation technique. Tin doped indium ingots with low tin content were evaporated in vacuum (1.33 × 10-7 kpa) followed by an oxidation for 15 min in the atmosphere in the temperature range of 600-700°C. The structure and phase purity, surface morphology, optical and electrical properties of thin films were studied by x-ray diffractometry and Raman spectroscopy, scanning electron microcopy and atomic force microscopy, UV-visible spectrometry and Hall measurements in the van der Pauw configuration. The x-ray diffraction study showed the formation of the cubical phase of polycrystalline thin films. The morphological analysis showed the formation of ginger like structures and the energy dispersive x-ray spectrum confirmed the presence of indium (In), tin (Sn) and oxygen (O) elements. Hall measurements confirmed n-type conductivity of films with low electrical resistivity ( ρ) ˜ 10-3 Ω cm and high carrier concentration ( n) ˜ 1020 cm-3. For prevalent scattering mechanisms in the films, experimental data was analyzed by calculating a mean free path ( L) using a highly degenerate electron gas model. Furthermore, to investigate the performance of the deposited films as a transparent conductive material, the optical figure of merit was obtained for all the samples.
NASA Astrophysics Data System (ADS)
Li, Fei; Zhou, Xiaodong; Feng, Wanxiang; Fu, Botao; Yao, Yugui
2018-04-01
Recently, two-dimensional (2D) GaS and GaSe nanosheets were successfully fabricated and the measured electronic, mechanical, and optoelectronic properties are excellent. Here, using the first-principles density functional theory, we investigate the magnetic, optical, and magneto-optical (MO) Kerr and Faraday effects in hole-doped GaS and GaSe multilayers. GaS and GaSe monolayers (MLs) manifest ferromagnetic ground states by introducing even a small amount of hole doping, whereas the magnetism in GaS and GaSe multilayers are significantly different under hole doping. Our results show that ferromagnetic states can be easily established in GaS bilayers and trilayers under proper hole doping, however, most of GaSe multilayers are more favorable to nonmagnetic states. The magnetic moments in GaS multilayers are weakened remarkably with the increasing of thin film thickness and are negligible more than three MLs. This leads to the thickness dependence of MO Kerr and Faraday effects. Furthermore, the MO effects strongly depend on the doping concentration and therefore are electrically controllable by adjusting the number of holes via gate voltage. The substrate effects on the MO properties are also discussed. Combining the unique MO and other interesting physical properties make GaS and GaSe a superior 2D material platform for semiconductor MO and spintronic nanodevices.
Ni: Fe2O3, Mg: Fe2O3 and Fe2O3 thin films gas sensor application
NASA Astrophysics Data System (ADS)
Saritas, Sevda; Kundakci, Mutlu; Coban, Omer; Tuzemen, Sebahattin; Yildirim, Muhammet
2018-07-01
Iron oxide is a widely used sensitive material for gas sensor applications. They have fascinated much attention in the field of gas sensing and detecting under atmospheric conditions and at 200 °C temperature due to their low cost in production; simplicity and fast of their use; large number of detectable gases. Iron oxide gas sensors constitute investigated for hazardous gases used in various fields. The morphological structure (particle size, pore size, etc.), optical, magnetic and electrical properties of Ni:Fe2O3, Mg:Fe2O3 and Fe2O3 thin films which grown by Spray pyrolysis (SP) have been investigated. XRD, Raman and AFM techniques have been used for structural analysis. AFM measurements have been provided very useful information about surface topography. I-V (Van der Pauw) technique has been used for response of gas sensor. These devices offer a wide variety of advantages over traditional analytical instruments such as low cost, short response time, easy manufacturing, and small size.
Nanomechanical Behavior of High Gas Barrier Multilayer Thin Films.
Humood, Mohammad; Chowdhury, Shahla; Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C; Polycarpou, Andreas A
2016-05-04
Nanoindentation and nanoscratch experiments were performed on thin multilayer films manufactured using the layer-by-layer (LbL) assembly technique. These films are known to exhibit high gas barrier, but little is known about their durability, which is an important feature for various packaging applications (e.g., food and electronics). Films were prepared from bilayer and quadlayer sequences, with varying thickness and composition. In an effort to evaluate multilayer thin film surface and mechanical properties, and their resistance to failure and wear, a comprehensive range of experiments were conducted: low and high load indentation, low and high load scratch. Some of the thin films were found to have exceptional mechanical behavior and exhibit excellent scratch resistance. Specifically, nanobrick wall structures, comprising montmorillonite (MMT) clay and polyethylenimine (PEI) bilayers, are the most durable coatings. PEI/MMT films exhibit high hardness, large elastic modulus, high elastic recovery, low friction, low scratch depth, and a smooth surface. When combined with the low oxygen permeability and high optical transmission of these thin films, these excellent mechanical properties make them good candidates for hard coating surface-sensitive substrates, where polymers are required to sustain long-term surface aesthetics and quality.
Preparation and evaluation of Mn3GaN1-x thin films with controlled N compositions
NASA Astrophysics Data System (ADS)
Ishino, Sunao; So, Jongmin; Goto, Hirotaka; Hajiri, Tetsuya; Asano, Hidefumi
2018-05-01
Thin films of antiperovskite Mn3GaN1-x were grown on MgO (001) substrates by reactive magnetron sputtering, and their structural, magnetic, and magneto-optical properties were systematically investigated. It was found that the combination of the deposition rate and the N2 gas partial pressure could produce epitaxial films with a wide range of N composition (N-deficiency) and resulting c/a values (0.93 - 1.0). While the films with c/a = 0.992 - 1.0 were antiferromagnetic, the films with c/a = 0.93 - 0.989 showed perpendicular magnetic anisotropy (PMA) with the maximum PMA energy up to 1.5×106 erg/cm3. Systematic dependences of the energy spectra of the polar Kerr signals on the c/a ratio were observed, and the Kerr ellipticity was as large as 2.4 deg. at 1.9 eV for perpendicularly magnetized ferromagnetic thin films with c/a = 0.975. These results highlight that the tetragonal distortion plays an important role in magnetic and magneto-optical properties of Mn3GaN1-x thin films.
NASA Astrophysics Data System (ADS)
Sugumaran, Sathish; Jamlos, Mohd Faizal; Ahmad, Mohd Noor; Bellan, Chandar Shekar; Sivaraj, Manoj
2016-08-01
Indium zinc oxide (InZnO) thin films with thicknesses of 100 nm and 200 nm were deposited on glass plate by thermal evaporation technique. Fourier transform infrared spectra showed a strong metal-oxide bond. X-ray diffraction patterns revealed amorphous nature for as-deposited film whereas polycrystalline structure for annealed films. Scanning electron microscope images showed a uniform distribution of spherical shape grains. Grain size was found to be higher for 200 nm film than 100 nm film. The presence of elements (In, Zn and O) was confirmed from energy dispersive X-ray analysis. Photoluminescence study of 200 nm film showed a blue, blue-green and blue-yellow emission whereas 100 nm film showed a broad green and green-yellow emissions. Both 100 nm and 200 nm films showed good oxygen sensitivity from room temperature to 400 °C. The observed optical and sensor results indicated that the prepared InZnO films are highly potential for room temperature gas sensor and blue, green and yellow emissive opto-electronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nave, S.E.
Recent advances in fiber optics, diode lasers, CCD detectors, dielectric and holographic optical filters, grating spectrometers, and chemometric data analysis have greatly simplified Raman spectroscopy. In order to make a rugged fiber optic Raman probe for solids/slurries like these at Savannah River, we have designed a probe that eliminates as many optical elements and surfaces as possible. The diffuse reflectance probe tip is modified for Raman scattering by installing thin dielectric in-line filters. Effects of each filter are shown for the NaNO{sub 3} Raman spectrum. By using a diode laser excitation at 780 nm, fluorescence is greatly reduced, and excellentmore » spectra may be obtained from organic solids. At SRS, fiber optic Raman probes are being developed for in situ chemical mapping of radioactive waste storage tanks. Radiation darkening of silica fiber optics is negligible beyond 700 nm. Corrosion resistance is being evaluated. Analysis of process gas (off-gas from SRS processes) is investigated in some detail: hydrogen in nitrogen with NO{sub 2} interference. Other applications and the advantages of the method are pointed out briefly.« less
Preparation of VO2 thin film and its direct optical bit recording characteristics.
Fukuma, M; Zembutsu, S; Miyazawa, S
1983-01-15
Vanadium dioxide (VO2) film which has nearly the same transition point as single crystal has been obtained by reactive evaporation of vanadium on glass and subsequent annealing in N2 gas. Relations between optical properties of V02 film and its preparation conditions are presented. We made optical direct bit recording on V02 film using a laser diode as the light source. The threshold recording energy and bit density are 2 mJ/cm 2 and 350 bits/mm, respectively. We also made tungsten doping to lower the V02 film transition temperature.
433 micron laser heterodyne observations of galactic CO from Mauna Kea
NASA Technical Reports Server (NTRS)
Buhl, D.; Chin, G.; Koepf, G. A.; Fetterman, H. R.; Peck, D. D.; Clifton, B. J.; Tannenwald, P. E.; Goldsmith, P. F.; Erickson, N. R.; Mcavoy, N.
1981-01-01
A submillimeter heterodyne radiometer, developed for astronomical applications, uses an optically pumped laser local oscillator and a quasi-optical Schottky diode mixer. The resultant telescope-mounted system, which has a noise temperature less than 4000 K (double sideband) and high frequency and spatial resolution, has been used to detect the J = 6 to 5 rotational transition of carbon monoxide at 434 micrometers in the Orion molecular clouds. The measurements, when compared with previous millimeter-wave data, indicate that the broad carbon monoxide emission feature is produced by an optically thin gas whose temperature exceeds 180 K.
NASA Astrophysics Data System (ADS)
Manera, M. G.; Colombelli, A.; Rella, R.; Caricato, A.; Cozzoli, P. D.; Martino, M.; Vasanelli, L.
2012-09-01
The sensing performance comparisons presented in this work were carried out by exploiting a suitable magneto-plasmonic sensor in both the traditional surface plasmon resonance configuration and the innovative magneto-optic surface plasmon resonance one. The particular multilayer transducer was functionalized with TiO2 Brookite nanorods layers deposited by matrix assisted pulsed laser evaporation, and its sensing capabilities were monitored in a controlled atmosphere towards different concentrations of volatile organic compounds mixed in dry air.
NASA Technical Reports Server (NTRS)
Wang, Pi-Huan; Minnis, Patrick; McCormick, M. Patrick; Kent, Geoffrey S.; Yue, Glenn K.; Young, David F.; Skeens, Kristi M.
1998-01-01
The tropical cloud data obtained by the satellite instrument of the Stratospheric Aerosol and Gas Experiment (SAGE) II from October 1984 to May 1991 have been used to study cloud vertical distribution, including thickness and multilayer structure, and to estimate cloud optical depth. The results indicate that the SAGE-II-observed clouds are generally optically thin clouds, corresponding to a range of optical depth between approximately 8 x 10(exp -4) and 3 x 10(exp -1) with a mean of about 0.035. Two-thirds are classified as subvisual cirrus and one-third thin cirrus. Clouds between 2- to 3-km thick occur most frequently. Approximately 30% of the SAGE II cloud measurements are isolated single-layer clouds, while 65% are high clouds contiguous with an underlying opaque cloud that terminates the SAGE II profile. Thin clouds above detached opaque clouds at altitudes greater than 6.5 km occur less often. Only about 3% of the SAGE II single-layer clouds are located above the tropopause, while 58% of the cloud layers never reach the tropopause. More than one-third of the clouds appear at the tropopause. This study also shows that clouds occur more frequently and extend higher above the tropopause over the western Pacific than than over the eastern Pacific, especially during northern winter. The uncertainty of the derived results due to the SAGE II sampling constraints, data processing, and cloud characteristics is discussed.
CI as a Tracer of Gas Mass in Star Forming Galaxies
NASA Astrophysics Data System (ADS)
Bourne, Nathan
2018-01-01
Research in galaxy evolution aims to understand the cosmic industry of converting gas into stars. While SFR and stellar mass evolution are well constrained by current data, our knowledge of gas in galaxies throughout cosmic time is comparatively lacking. Almost all high-redshift gas measurements to date rely on CO as a tracer, but this is subject to systematic uncertainties due to optically thick emission and poorly constrained dependences on gas density, distribution and metallicity. Recently, some attention has been given to dust continuum as an alternative gas tracer, which shows promise for large samples but still requires accurate calibration on a direct gas tracer at high redshift. The [CI] 492GHz emission line could overcome much of the systematic uncertainty, as it is optically thin and has similar excitation conditions to CO(1-0), but observational limitations have so far restricted CI measurements to very small samples. I will presen t some new data from ALMA, for the first time testing the CI/dust correlation in a representative sample of star-forming galaxies at z=1, and discuss how future observations could be designed to more widely exploit this independent gas tracer.
NASA Astrophysics Data System (ADS)
Al-Jawad, Selma M. H.; Elttayf, Abdulhussain K.; Saber, Amel S.
Nanocrystalline SnO2 and SnO2:Cu thin films derived from SnCl2ṡ2H2O precursors have been prepared on glass substrates using sol-gel dip-coating technique. The deposited film was 300±20nm thick and the films were annealed in air at 500∘C for 1h. Structural, optical and sensing properties of the films were studied under different preparation conditions, such as Cu-doping concentration of 2%, 4% and 6wt.%. X-ray diffraction studies show the polycrystalline nature with tetragonal rutile structure of SnO2 and Cu:SnO2 thin films. The films have highly preferred orientation along (110). The crystallite size of the prepared samples reduced with increasing Cu-doping concentrations and the addition of Cu as dopants changed the structural properties of the thin films. Surface morphology was determined through scanning electron microscopy and atomic force microscopy. Results show that the particle size decreased as doping concentration increased. The films have moderate optical transmission (up to 82.4% at 800nm), and the transmittance, absorption coefficient and energy gap at different Cu-doping concentration were measured and calculated. Results show that Cu-doping decreased the transmittance and energy gap whereas it increased the absorption coefficient. Two peaks were noted with Cu-doping concentration of 0-6wt.%; the first peak was positioned exactly at 320nm ultraviolet emission and the second was positioned at 430-480nm. Moreover, emission bands were noticed in the photoluminescence spectra of Cu:SnO2. The electrical properties of SnO2 films include DC electrical conductivity, showing that the films have two activation energies, namely, Ea1 and Ea2, which increase as Cu-doping concentration increases. Cudoped nanocrystalline SnO2 gas-sensing material has better sensitivity to CO gas compared with pure SnO2.
Shock wave propagation in a magnetic flux tube
NASA Astrophysics Data System (ADS)
Ferriz-Mas, A.; Moreno-Insertis, F.
1992-12-01
The propagation of a shock wave in a magnetic flux tube is studied within the framework of the Brinkley-Kirkwood theory adapted to a radiating gas. Simplified thermodynamic paths along which the compressed plasma returns to its initial state are considered. It is assumed that the undisturbed medium is uniform and that the flux tube is optically thin. The shock waves investigated, which are described with the aid of the thin flux-tube approximation, are essentially slow magnetohydrodynamic shocks modified by the constraint of lateral pressure balance between the flux tube and the surrounding field-free fluid; the confining external pressure must be balanced by the internal gas plus magnetic pressures. Exact analytical solutions giving the evolution of the shock wave are obtained for the case of weak shocks.
NASA Astrophysics Data System (ADS)
Chia, Elbert; Cheng, Liang; Lourembam, James; Wu, S. G.; Motapothula, Mallikarjuna R.; Sarkar, Tarapada; Venkatesan, Venky
Using terahertz time-domain spectroscopy (THz-TDS), we obtained the complex optical conductivity [ σ (ω) ] of Ta-doped TiO2 thin films - a transparent conducting oxide (TCO), in the frequency range 0.3-2.7 THz, temperature range 10-300 K and various Ta dopings. Our results reveal the existence of an interacting polaronic gas in these TCOs, and suggest that their large conductivity is caused by the combined effects of large carrier density and small electron-phonon coupling constant due to Ta doping. NUSNNI-NanoCore, NRF-CRP (NRF2008NRF-CRP002-024), NUS cross-faculty Grant and FRC (ARF Grant No. R-144-000-278-112), MOE Tier 1 (RG123/14), SinBeRISE CREATE.
NASA Astrophysics Data System (ADS)
Benson, Christopher; Gann, Gabriel Orebi; Gehman, Victor
2018-04-01
A key enabling technology for many liquid noble gas (LNG) detectors is the use of the common wavelength shifting medium tetraphenyl butadiene (TPB). TPB thin films are used to shift ultraviolet scintillation light into the visible spectrum for detection and event reconstruction. Understanding the wavelength shifting efficiency and optical properties of these films are critical aspects in detector performance and modeling and hence in the ultimate physics sensitivity of such experiments. This article presents the first measurements of the room-temperature microphysical quantum efficiency for vacuum-deposited TPB thin films - a result that is independent of the optics of the TPB or substrate. Also presented are measurements of the absorption length in the vacuum ultraviolet regime, the secondary re-emission efficiency, and more precise results for the "black-box" efficiency across a broader spectrum of wavelengths than previous results. The low-wavelength sensitivity, in particular, would allow construction of LNG scintillator detectors with lighter elements (Ne, He) to target light mass WIMPs.
NASA Astrophysics Data System (ADS)
Gwamuri, Jephias; Venkatesan, Ragavendran; Sadatgol, Mehdi; Mayandi, Jeyanthinath; Guney, Durdu O.; Pearce, Joshua M.
2017-07-01
The agglomeration/dewetting process of thin silver films provides a scalable method of obtaining self-assembled nanoparticles (SANPs) for plasmonics-based thin-film solar photovoltaic (PV) devices. We show the effect of annealing ambiance on silver SANP average size, particle/cluster finite shape, substrate area coverage/particle distribution, and how these physical parameters influence optical properties and surface-enhanced Raman scattering (SERS) responses of SANPs. Statistical analysis performed indicates that generally Ag SANPs processed in the presence of a gas (argon and nitrogen) ambiance tend to have smaller average size particles compared to those processed under vacuum. Optical properties are observed to be highly dependent on particle size, separation distance, and finite shape. The greatest SERS enhancement was observed for the argon-processed samples. There is a correlation between simulation and experimental data that indicate argon-processed AgNPs have a great potential to enhance light coupling when integrated to thin-film PV.
Nanocomposite thin films for optical temperature sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohodnicki, Jr., Paul R.; Brown, Thomas D.; Buric, Michael P.
2017-02-14
The disclosure relates to an optical method for temperature sensing utilizing a temperature sensing material. In an embodiment the gas stream, liquid, or solid has a temperature greater than about 500.degree. C. The temperature sensing material is comprised of metallic nanoparticles dispersed in a dielectric matrix. The metallic nanoparticles have an electronic conductivity greater than approximately 10.sup.-1 S/cm at the temperature of the temperature sensing material. The dielectric matrix has an electronic conductivity at least two orders of magnitude less than the dispersed metallic nanoparticles at the temperature of the temperature sensing material. In some embodiments, the chemical composition ofmore » a gas stream or liquid is simultaneously monitored by optical signal shifts through multiple or broadband wavelength interrogation approaches. In some embodiments, the dielectric matrix provides additional functionality due to a temperature dependent band-edge, an optimized chemical sensing response, or an optimized refractive index of the temperature sensing material for integration with optical waveguides.« less
NASA Astrophysics Data System (ADS)
Farkas, B.; Heszler, P.; Budai, J.; Oszkó, A.; Ottosson, M.; Geretovszky, Zs.
2018-03-01
N-doped TiO2 thin films were prepared using pulsed laser deposition by ablating metallic Ti target with pulses of 248 nm wavelength, at 330 °C substrate temperature in reactive atmospheres of N2/O2 gas mixtures. These films were characterized by spectroscopic ellipsometry, X-ray photoelectron spectroscopy and X-ray diffraction. Optical properties are presented as a function of the N2 content in the processing gas mixture and correlated to nitrogen incorporation into the deposited layers. The optical band gap values decreased with increasing N concentration in the films, while a monotonically increasing tendency and a maximum can be observed in case of extinction coefficient and refractive index, respectively. It is also shown that the amount of substitutional N can be increased up to 7.7 at.%, but the higher dopant concentration inhibits the crystallization of the samples.
NASA Technical Reports Server (NTRS)
Parmar, D. S.; Singh, J. J.
1993-01-01
Polymer dispersed liquid crystal thin films have been deposited on glass substrates by the processes of polymerization and solvent evaporation induced phase separation. The electron and the optical polarization microscopies of the films reveal that PDLC microdroplets formed during the process of phase separation near the top surface of the film remain exposed and respond to shear stress due to air or gas flow on the surface. Optical response of the film to an air flow-induced shear stress input on the free surface has been measured. Director orientation in the droplets changes with the applied shear stress leading to time varying transmitted light intensity. Director dynamics of the droplet for an applied step shear stress has been discussed from free energy considerations. Results on the measurement of light transmission as a function of the gas flow parameter unambiguously demonstrate the potential of these systems for use as boundary layer and gas flow sensors.
NASA Astrophysics Data System (ADS)
PrasannaKumari, K.; Thomas, Boben
2018-01-01
Nanostructured SnO2 thin film have been efficiently fabricated by spray pyrolysis using atomizers of different types. The structure and morphology of as-prepared samples are investigated by techniques such as x-ray diffraction, and field-emission scanning electron microscopy. Significant morphological changes are observed in films by modifying the precursor atomization as a result of change of spray device. The optical characterization indicates that change in atomization, affects the absorbance and the band gap, following the varied crystallite size. Gas sensing investigations on ultrasonically prepared tin oxide films show NH3 response at operating temperatures lower down to 50 °C. For 1000 ppm of LPG the response at 350 °C for air blast atomizer film is about 99%, with short response and recovery times. The photoluminescence emmision spectra reveal the correlation between atomization process and the quantity of oxygen vacancies present in the samples. The favorable size reduction in microstructure with good crystallinity with slight change in lattice properties suggest their scope in gas sensing applications. On the basis of these characterizations, the mechanism of LPG and NH3 gas sensing of nanostructured SnO2 thin films has been proposed.
NASA Technical Reports Server (NTRS)
Ju, Yiguang; Masuya, Goro; Ronney, Paul D.
1998-01-01
Premixed gas flames in mixtures of CH4, O2, N2, and CO2 were studied numerically using detailed chemical and radiative emission-absorption models to establish the conditions for which radiatively induced extinction limits may exist independent of the system dimensions. It was found that reabsorption of emitted radiation led to substantially higher burning velocities and wider extinction limits than calculations using optically thin radiation models, particularly when CO2, a strong absorber, is present in the unburned gas, Two heat loss mechanisms that lead to flammability limits even with reabsorption were identified. One is that for dry hydrocarbon-air mixtures, because of the differences in the absorption spectra of H2O and CO2, most of the radiation from product H2O that is emitted in the upstream direction cannot be absorbed by the reactants. The second is that the emission spectrum Of CO2 is broader at flame temperatures than ambient temperature: thus, some radiation emitted near the flame front cannot be absorbed by the reactants even when they are seeded with CO2 Via both mechanisms, some net upstream heat loss due to radiation will always occur, leading to extinction of sufficiently weak mixtures. Downstream loss has practically no influence. Comparison with experiment demonstrates the importance of reabsorption in CO2 diluted mixtures. It is concluded that fundamental flammability limits can exist due to radiative heat loss, but these limits are strongly dependent on the emission-absorption spectra of the reactant and product -gases and their temperature dependence and cannot be predicted using gray-gas or optically thin model parameters. Applications to practical flames at high pressure, in large combustion chambers, and with exhaust-gas or flue-gas recirculation are discussed.
The Tuning of Optical Properties of Nanoscale MOFs-Based Thin Film through Post-Modification.
Yin, Wenchang; Tao, Cheng-An; Zou, Xiaorong; Wang, Fang; Qu, Tianlian; Wang, Jianfang
2017-08-29
Optical properties, which determine the application of optical devices in different fields, are the most significant properties of optical thin films. In recent years, Metal-organic framework (MOF)-based optical thin films have attracted increasing attention because of their novel optical properties and important potential applications in optical and photoelectric devices, especially optical thin films with tunable optical properties. This study reports the first example of tuning the optical properties of a MOF-based optical thin film via post-modification. The MOF-based optical thin film was composed of NH₂-MIL-53(Al) nanorods (NRs) (MIL: Materials from Institute Lavoisier), and was constructed via a spin-coating method. Three aldehydes with different lengths of carbon chains were chosen to modify the MOF optical thin film to tune their optical properties. After post-modification, the structural color of the NH₂-MIL-53(Al) thin film showed an obvious change from purple to bluish violet and cyan. The reflection spectrum and the reflectivity also altered in different degrees. The effective refractive index ( n eff ) of MOFs thin film can also be tuned from 1.292 to 1.424 at a wavelength of 750 nm. The success of tuning of the optical properties of MOFs thin films through post-modification will make MOFs optical thin films meet different needs of optical properties in various optical and optoelectronic devices.
The Tuning of Optical Properties of Nanoscale MOFs-Based Thin Film through Post-Modification
Zou, Xiaorong; Wang, Fang; Qu, Tianlian; Wang, Jianfang
2017-01-01
Optical properties, which determine the application of optical devices in different fields, are the most significant properties of optical thin films. In recent years, Metal-organic framework (MOF)-based optical thin films have attracted increasing attention because of their novel optical properties and important potential applications in optical and photoelectric devices, especially optical thin films with tunable optical properties. This study reports the first example of tuning the optical properties of a MOF-based optical thin film via post-modification. The MOF-based optical thin film was composed of NH2-MIL-53(Al) nanorods (NRs) (MIL: Materials from Institute Lavoisier), and was constructed via a spin-coating method. Three aldehydes with different lengths of carbon chains were chosen to modify the MOF optical thin film to tune their optical properties. After post-modification, the structural color of the NH2-MIL-53(Al) thin film showed an obvious change from purple to bluish violet and cyan. The reflection spectrum and the reflectivity also altered in different degrees. The effective refractive index (neff) of MOFs thin film can also be tuned from 1.292 to 1.424 at a wavelength of 750 nm. The success of tuning of the optical properties of MOFs thin films through post-modification will make MOFs optical thin films meet different needs of optical properties in various optical and optoelectronic devices. PMID:28850057
NASA Technical Reports Server (NTRS)
Baptista, Raymundo; Horne, Keith; Wade, Richard A.; Hubeny, Ivan; Long, Knox S.; Rutten, Rene G. M.
1998-01-01
Time-resolved eclipse spectroscopy of the nova-like variable UX UMa obtained with the Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) on 1994 August and November is analysed with eclipse mapping techniques to produce spatially resolved spectra of its accretion disk and gas stream as a function of distance from the disk centre. The inner accretion disk is characterized by a blue continuum filled with absorption bands and lines, which cross over to emission with increasing disk radius, similar to that reported at optical wavelengths. The comparison of spatially resolved spectra at different azimuths reveals a significant asymmetry in the disk emission at ultraviolet (UV) wavelengths, with the disk side closest to the secondary star showing pronounced absorption by an 'iron curtain' and a Balmer jump in absorption. These results suggest the existence of an absorbing ring of cold gas whose density and/or vertical scale increase with disk radius. The spectrum of the infalling gas stream is noticeably different from the disc spectrum at the same radius suggesting that gas overflows through the impact point at the disk rim and continues along the stream trajectory, producing distinct emission down to 0.1 R(sub LI). The spectrum of the uneclipsed light shows prominent emission lines of Lyalpha, N v lambda1241, SiIV Lambda 1400, C IV Lambda 1550, HeII Lambda 1640, and MgII Lambda 2800, and a UV continuum rising towards longer wavelengths. The Balmer jump appears clearly in emission indicating that the uneclipsed light has an important contribution from optically thin gas. The lines and optically thin continuum emission are most probably emitted in a vertically extended disk chromosphere + wind. The radial temperature profiles of the continuum maps are well described by a steady-state disc model in the inner and intermediate disk regions (R greater than or equal to 0.3R(sub LI) ). There is evidence of an increase in the mass accretion rate from August to November (from V = 10 (exp -8.3 +/-0.1) to 10(exp -8.1 +/- 0.1 solar mass yr(exp -1)), in accordance with the observed increase in brightness. Since the UX UMA disc seems to be in a high mass accretion, high-viscosity regime in both epochs, this result suggests that the mass transfer rate of UX UMA varies substantially (approximately equal to 50 per cent) on time-scales of a few months. It is suggested that the reason for the discrepancies between the prediction of the standard disk model and observations is not an inadequate treatment of radiative transfer in the disc atmosphere, but rather the presence of addition important sources of light in the system besides the accretion disk (e.g., optically thin contiuum emission from the disk wind and possible absorption by circumstellar cool gas).
Optical Sensors Based on Single Arm Thin Film Waveguide Interferometer
NASA Technical Reports Server (NTRS)
Sarkisov, Sergey S.
1997-01-01
All the goals of the research effort for the first year were met by the accomplishments. Additional efforts were done to speed up the process of development and construction of the experimental gas chamber which will be completed by the end of 1997. This chamber incorporates vacuum sealed multimode optical fiber lines which connect the sensor to the remote light source and signal processing equipment. This optical fiber line is a prototype of actual optical communication links connecting real sensors to a control unit within an aircraft or spacecraft. An important problem which we are planning to focus on during the second year is coupling of optical fiber line to the sensor. Currently this problem is solved using focusing optics and prism couplers. More reliable solutions are planned to be investigated.
NASA Astrophysics Data System (ADS)
Ciupinǎ, Victor; Prioteasa, Iulian; Ilie, Daniela; Manu, Radu; Petrǎşescu, Lucian; Tutun, Ştefan Gabriel; Dincǎ, Paul; MustaÅ£ǎ, Ion; Lungu, Cristian Petricǎ; Jepu, IonuÅ£; Vasile, Eugeniu; Nicolescu, Virginia; Vladoiu, Rodica
2017-02-01
Copper/Cobalt/Copper/Iron thin films were synthesized in order to obtain nanostructured materials with special magnetoresistive properties. The multilayer films were deposited on silicon substrates. In this respect we used Thermionic Vacuum Arc Discharge Method (TVA). The benefit of this deposition technique is the ability to have a controlled range of thicknesses starting from few nanometers to hundreds of nanometers. The purity of the thin films was insured by a high vacuum pressure and a lack of any kind of buffer gas inside the coating chamber. The morphology and structure of the thin films were analyzed using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) Techniques and Energy Dispersive X-ray Spectroscopy (EDXS). Magnetoresistive measurement results depict that thin films possess Giant Magneto-Resistance Effect (GMR). Magneto-Optic-Kerr Effect (MOKE) studies were performed to characterize the magnetic properties of these thin films.
Kim, Donguk; Kwon, Samyoung; Park, Young; Boo, Jin-Hyo; Nam, Sang-Hun; Joo, Yang Tae; Kim, Minha; Lee, Jaehyeong
2016-05-01
In present work, the effects of the heat treatment on the structural, optical, and thermochromic properties of vanadium oxide films were investigated. Vanadium dioxide (VO2) thin films were deposited on glass substrate by reactive pulsed DC magnetron sputtering from a vanadium metal target in mixture atmosphere of argon and oxygen gas. Various heat treatment conditions were applied in order to evaluate their influence on the crystal phases formed, surface morphology, and optical properties. The films were characterized by an X-ray diffraction (XRD) in order to investigate the crystal structure and identify the phase change as post-annealing temperature of 500-600 degrees C for 5 minutes. Surface conditions of the obtained VO2(M) films were analyzed by field emission scanning electron microscopy (FE-SEM) and the semiconductor-metal transition (SMT) characteristics of the VO2 films were evaluate by optical spectrophotometry in the UV-VIS-NIR, controlling temperature of the films.
Interstellar clouds containing optically thin H2
NASA Technical Reports Server (NTRS)
Jura, M.
1975-01-01
The theory of Black and Delgarno that the relative populations of the excited rotational levels of H2 can be understood in terms of cascading following absorption in the Lyman and Werner bands is employed to infer the gas densities and radiation fields within diffuse interstellar clouds containing H2 that is optically thin in those bands. The procedure is described for computing the populations of the different rotation levels, the relative distribution among the different rotation levels of newly formed H2 is determined on the basis of five simplified models, and the rate of H2 formation is estimated. The results are applied to delta Ori, two components of iota Ori, the second components of rho Leo and zeta Ori, tau Sco, gamma Vel, and zeta Pup. The inferred parameters are summarized for each cloud.
1988-08-12
been suggested to occur in amorphous GeS thin films [13]. A change in bond energy and band gap could also account for the measured decrease in optical...the financial support of the US Naval Weapons Center, China Lake and US SDI/IST through the Office of Naval Research. We also acknowledge the...forward power, 210 sTorr chamber pressure, gas flows GeH4/PH3/H2S in acca as given in table, together with 500 sccm Ar. DC bias potential approx. 2kV
The Effect of Gravity Axis Orientation on the Growth of Phthalocyanine Thin Films
NASA Technical Reports Server (NTRS)
Pearson, Earl F.
1996-01-01
Experimentally, many of the functions of electrical circuits have been demonstrated using optical circuits and, in theory, all of these functions may be accomplished using optical devices made of nonlinear optical materials. Actual construction of nonlinear optical devices is one of the most active areas in all optical research being done at this time. Physical vapor transport (PVT) is a promising technique for production of thin films of a variety of organic and inorganic materials. Film optical quality, orientation of microcrystals, and thickness depends critically on type of material, pressure of buffer gas and temperature of deposition. An important but understudied influence on film characteristics is the effect of gravity-driven buoyancy. Frazier, Hung, Paley, Penn and Long have recently reported mathematical modelling of the vapor deposition process and tested the predictions of the model on the thickness of films grown by PVT of 6-(2-methyl-4-nitroanilino)-2,4-hexadiyn-l-ol (DAMNA). In an historic experiment, Debe, et. al. offered definitive proof that copper phthalocyanine films grown in a low gravity environment are denser and more ordered than those grown at 1 g. This work seeks to determine the influence on film quality of gravity driven buoyancy in the low pressure PVT film growth of metal-free phthalocyanine.
Buffer for a gamma-insensitive optical sensor with gas and a buffer assembly
Kruger, Hans W.
1994-01-01
A buffer assembly for a gamma-insensitive gas avalanche focal plane array operating in the ultra-violet/visible/infrared energy wavelengths and using a photocathode and an avalanche gas located in a gap between an anode and the photocathode. The buffer assembly functions to eliminate chemical compatibility between the gas composition and the materials of the photocathode. The buffer assembly in the described embodiment is composed of two sections, a first section constructed of glass honeycomb under vacuum and a second section defining a thin barrier film or membrane constructed, for example, of Al and Be, which is attached to and supported by the honeycomb. The honeycomb section, in turn, is supported by and adjacent to the photocathode.
Buffer for a gamma-insensitive optical sensor with gas and a buffer assembly
Kruger, H.W.
1994-05-10
A buffer assembly is disclosed for a gamma-insensitive gas avalanche focal plane array operating in the ultra-violet/visible/infrared energy wavelengths and using a photocathode and an avalanche gas located in a gap between an anode and the photocathode. The buffer assembly functions to eliminate chemical compatibility between the gas composition and the materials of the photocathode. The buffer assembly in the described embodiment is composed of two sections, a first section constructed of glass honeycomb under vacuum and a second section defining a thin barrier film or membrane constructed, for example, of Al and Be, which is attached to and supported by the honeycomb. The honeycomb section, in turn, is supported by and adjacent to the photocathode. 7 figures.
Probing the Hydrogen Enhanced Near-Field Emission of ITO without a Vacuum-Gap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poole, Jacob L.; Yu, Yang; Ohodnicki, Paul R.
In-situ monitoring of the multi-component gas streams in high temperature energy conversion devices offer the promises to higher efficiency via improved understanding of the chemical environments during device operation. While conventional resistive based metal oxide semiconductor gas sensors suffer from strong cross-sensitivity, optical sensing approaches offer intrinsic advantages to achieve gas selectivity based on wavelength specific interactions. This manuscript describes a novel method to achieve multicomponent gas sensing during gas exposure of H2, CO2, CH4and CO in humid high temperature environments. A single sensor element comprised of a perovskite La0.3Sr0.7TiO3(LSTO) oxide thin film layer coated on silica optical fiber wasmore » used. The sensing responses consisted of two wavelength-specific near infrared (NIR) mechanisms, namely broadband absorption associated with the metal oxide layer, and wavelength localized thermal emission responses associated with the hydroxyl defects within the silica fiber. Principal component analysis (PCA) was applied to couple the two mechanisms to achieve selective gas identification. Successful discrimination of H2and CO2on a single fiber sensor was achieved, where the results are both stable and reversible. This design demonstrates that by coupling multiple optical mechanisms on a single oxide coated fiber sensor, simple platforms can also achieve multi-component sensing functionality without the added complexity of a sensor array. Thus, it suggests a new approach to construct simple, robust and functional sensor designs capable of gas discrimination and quantification in multi-component gas streams.« less
NASA Astrophysics Data System (ADS)
Davis, Anthony B.; Xu, Feng; Diner, David J.
2018-01-01
We demonstrate the computational advantage gained by introducing non-exponential transmission laws into radiative transfer theory for two specific situations. One is the problem of spatial integration over a large domain where the scattering particles cluster randomly in a medium uniformly filled with an absorbing gas, and only a probabilistic description of the variability is available. The increasingly important application here is passive atmospheric profiling using oxygen absorption in the visible/near-IR spectrum. The other scenario is spectral integration over a region where the absorption cross-section of a spatially uniform gas varies rapidly and widely and, moreover, there are scattering particles embedded in the gas that are distributed uniformly, or not. This comes up in many applications, O2 A-band profiling being just one instance. We bring a common framework to solve these problems both efficiently and accurately that is grounded in the recently developed theory of Generalized Radiative Transfer (GRT). In GRT, the classic exponential law of transmission is replaced by one with a slower power-law decay that accounts for the unresolved spectral or spatial variability. Analytical results are derived in the single-scattering limit that applies to optically thin aerosol layers. In spectral integration, a modest gain in accuracy is obtained. As for spatial integration of near-monochromatic radiance, we find that, although both continuum and in-band radiances are affected by moderate levels of sub-pixel variability, only extreme variability will affect in-band/continuum ratios.
Experimental design to understand the interaction of stellar radiation with molecular clouds
NASA Astrophysics Data System (ADS)
Vandervort, Robert; Davis, Josh; Trantham, Matt; Klein, Sallee; Frank, Yechiel; Raicher, Erez; Fraenkel, Moshe; Shvarts, Dov; Keiter, Paul; Drake, R. Paul
2016-10-01
Enhanced star formation triggered by local O and B type stars is an astrophysical problem of interest. O and B type stars are massive, hot stars that emit an enormous amount of radiation. This radiation acts to either compress or blow apart clumps of gas in the interstellar media. For example, in the optically thick limit, when the x-ray radiation in the gas clump has a short mean free path length the x-ray radiation is absorbed near the clump edge and compresses the clump. In the optically thin limit, when the mean free path is long, the radiation is absorbed throughout acting to heat the clump. This heating explodes the gas clump. Careful selection of parameters, such as foam density or source temperature, allow the experimental platform to access different hydrodynamic regimes. The stellar radiation source is mimicked by a laser irradiated thin gold foil. This will provide a source of thermal x-rays (around 100 eV). The gas clump is mimicked by a low-density foam around 0.12 g/cc. Simulations were done using radiation hydrodynamics codes to tune the experimental parameters. The experiment will be carried out at the Omega laser facility on OMEGA 60. Funding acknowledgements: This work is funded by the U.S. DOE, through the NNSA-DS and SC-OFES Joint Program in HEDPLP, Grant No. DE-NA0001840, and the NLUF Program, Grant No. DE-NA0000850, and through LLE, University of Rochester by the NNSA/OICF under Agreement No. DE-FC52-08NA28302.
Son, Intae; Lee, Byungsun; Kim, Jae Hong; Kim, Chunho; Yoo, Ji Yong; Ahn, Byung Wook; Hwang, Jeongho; Lee, Jonghyuk; Lee, Jun Hyup
2018-05-23
The spontaneous separation of a polymer thin film from a substrate is an innovative technology that will enable material recycling and reduce manufacturing cost in the film industry, and this can be applied in a wide range of applications, from optical films to wearable devices. Here, we present an unprecedented spontaneous strategy for separating transparent polymer films from substrates on the basis of microbubble generation using nanocapsules containing an evaporable material. The core-shell nanocapsules are prepared from poly(methyl methacrylate)-polyethyleneimine nanoparticles via the encapsulation of methylcyclohexane (MCH). A spherical nanostructure with a vaporizable core is obtained, with the heat-triggered gas release ability leading to the formation of microbubbles. Our separation method applied to transparent polymer films doped with a small amount of the nanocapsules encapsulating evaporable MCH enables spontaneous detachment of thin films from substrates via vacuum-assisted rapid vaporization of MCH over a short separation time, and clear detachment of the film is achieved with no deterioration of the inherent optical transparency and adhesive property compared to a pristine film.
NASA Astrophysics Data System (ADS)
Perumal, R.; Hassan, Z.
2016-06-01
Zinc oxide receives remarkable attention due to its several attractive physical properties. Zinc oxide thin films doped with nitrogen were grown by employing RF magnetron sputtering method at room temperature. Doping was accomplished in gaseous medium by mixing high purity nitrogen gas along with argon sputtering gas. Structural studies confirmed the high crystalline nature with c-axis oriented growth of the nitrogen doped zinc oxide thin films. The tensile strain was developed due to the incorporation of the nitrogen into the ZnO crystal lattice. Surface roughness of the grown films was found to be decreased with increasing doping level was identified through atomic force microscope analysis. The presenting phonon modes of each film were confirmed through FTIR spectral analysis. The increasing doping level leads towards red-shifting of the cut-off wavelength due to decrement of the band gap was identified through UV-vis spectroscopy. All the doped films exhibited p-type conductivity was ascertained using Hall measurements and the obtained results were presented.
NASA Astrophysics Data System (ADS)
Kavitha, A.; Kannan, R.; Gunasekhar, K. R.; Rajashabala, S.
2017-10-01
Amorphous titanium nitride (TiN) thin films have been prepared on silicon (Si) and glass substrates by direct-current (DC) reactive magnetron sputtering with a supported discharge (triode). Nitrogen gas (N2) at partial pressure of 0.3 Pa, 0.4 Pa, 0.5 Pa, and 0.6 Pa was used to prepare the TiN thin films, maintaining total pressure of argon and N2 of about 0.7 Pa. The chemical, microstructural, optical, and electrical properties of the TiN thin films were systematically studied. Presence of different phases of Ti with nitrogen (N), oxygen (O2), and carbon (C) elements was revealed by x-ray photoelectron spectroscopy characterization. Increase in the nitrogen pressure from 0.3 Pa to 0.6 Pa reduced the optical bandgap of the TiN thin film from 2.9 eV to 2.7 eV. Photoluminescence study showed that TiN thin film deposited at N2 partial pressure of 0.3 Pa exhibited three shoulder peaks at 330 nm, 335 nm, and 340 nm, which disappeared when the sample was deposited with N2 partial pressure of 0.6 Pa. Increase in the nitrogen content decreased the electrical resistivity of the TiN thin film from 3200 μΩ cm to 1800 μΩ cm. Atomic force microscopy studies of the TiN thin films deposited with N2 partial pressure of 0.6 Pa showed a uniform surface pattern associated with accumulation of fine grains. The results and advantages of this method of preparing TiN thin films are also reported.
High reflected cubic cavity as long path absorption cell for infrared gas sensing
NASA Astrophysics Data System (ADS)
Yu, Jia; Gao, Qiang; Zhang, Zhiguo
2014-10-01
One direct and efficient method to improve the sensitivity of infrared gas sensors is to increase the optical path length of gas cells according to Beer-Lambert Law. In this paper, cubic shaped cavities with high reflected inner coating as novel long path absorption cells for infrared gas sensing were developed. The effective optical path length (EOPL) for a single cubic cavity and tandem cubic cavities were investigated based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) measuring oxygen P11 line at 763 nm. The law of EOPL of a diffuse cubic cavity in relation with the reflectivity of the coating, the port fraction and side length of the cavity was obtained. Experimental results manifested an increase of EOPL for tandem diffuse cubic cavities as the decrease of port fraction of the connecting aperture f', and the EOPL equaled to the sum of that of two single cubic cavities at f'<0.01. The EOPL spectra at infrared wavelength range for different inner coatings including high diffuse coatings and high reflected metallic thin film coatings were deduced.
Submillimeter heterodyne detection of interstellar carbon monoxide at 434 micrometers
NASA Technical Reports Server (NTRS)
Fetterman, H. R.; Clifton, B. J.; Peck, D. D.; Tannenwald, P. E.; Koepf, G. A.; Goldsmith, P. F.; Erickson, N. R.; Buhl, D.; Mcavoy, N.
1981-01-01
Laser heterodyne observations of submillimeter emissions from carbon monoxide in the Orion molecular cloud are reported. High frequency and spatial resolution observations were made at the NASA Infrared Telescope Facility on Mauna Kea by the use of an optically pumped laser local oscillator and quasi-optical Schottky diode mixer for heterodyne detection of the J = 6 - 5 rotational transition of CO at 434 microns. Spectral analysis of the 434-micron emission indicates that the emitting gas is optically thin and is at a temperature above 180 K. Results thus demonstrate the potential contributions of ground-based high-resolution submillimeter astronomy to the study of active regions in interstellar molecular clouds.
Collapsing Radiative Shocks in Xenon Gas on the Omega Laser
NASA Astrophysics Data System (ADS)
Reighard, A. B.; Glendinning, S. G.; Knauer, J.; Bouquet, S.; Koenig, M.
2005-10-01
A number of astrophysical systems involve radiative shocks that collapse spatially in response to energy lost through radiation, producing thin shells believed to be Vishniac unstable. We report experiments intended to study such collapsing shocks. The Omega laser drives a thin slab of material at >100 km/s through Xe gas. Simulations predict a collapsed layer in which the density reaches 45 times initial density. X-ray backlighting techniques have yielded images of a collapsed shock compressed to <1/25 its initial thickness (45 μm) at a speed of ˜100 km/s when the shock has traveled 1.3 mm. Optical depth before and behind the shock is important for comparison to astrophysical systems. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-03NA00064, DE-FG53-2005-NA26014, and other grants and contracts.
Micro-machined thin film hydrogen gas sensor, and method of making and using the same
NASA Technical Reports Server (NTRS)
DiMeo, Jr., Frank (Inventor); Bhandari, Gautam (Inventor)
2001-01-01
A hydrogen sensor including a thin film sensor element formed, e.g., by metalorganic chemical vapor deposition (MOCVD) or physical vapor deposition (PVD), on a microhotplate structure. The thin film sensor element includes a film of a hydrogen-interactive metal film that reversibly interacts with hydrogen to provide a correspondingly altered response characteristic, such as optical transmissivity, electrical conductance, electrical resistance, electrical capacitance, magnetoresistance, photoconductivity, etc., relative to the response characteristic of the film in the absence of hydrogen. The hydrogen-interactive metal film may be overcoated with a thin film hydrogen-permeable barrier layer to protect the hydrogen-interactive film from deleterious interaction with non-hydrogen species. The hydrogen sensor of the invention may be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently configured as a hand-held apparatus.
NASA Astrophysics Data System (ADS)
Zhang, Lei
Transparent conducting oxide (TCO) thin films of In2O3, SnO2, ZnO, and their mixtures have been extensively used in optoelectronic applications such as transparent electrodes in solar photovoltaic devices. In this project I deposited amorphous indium-zinc oxide (IZO) thin films by radio frequency (RF) magnetron sputtering from a In2O3-10 wt.% ZnO sintered ceramic target to optimize the RF power, argon gas flowing rate, and the thickness of film to reach the maximum conductivity and transparency in visible spectrum. The results indicated optimized conductivity and transparency of IZO thin film is closer to ITO's conductivity and transparency, and is even better when the film was deposited with one specific tilted angle. National Science Foundation (NSF) MRSEC program at University of Nebraska Lincoln, and was hosted by Professor Jeff Shields lab.
Sánchez, Pascal; Lorenzo, Olaya; Menéndez, Armando; Menéndez, Jose Luis; Gomez, David; Pereiro, Rosario; Fernández, Beatriz
2011-01-01
The determination of optical parameters, such as absorption and extinction coefficients, refractive index and the bandgap energy, is crucial to understand the behavior and final efficiency of thin film solar cells based on hydrogenated amorphous silicon (a-Si:H). The influence of small variations of the gas flow rates used for the preparation of the p-a-SiC:H layer on the bandgap energy, as well as on the dopant elements concentration, thickness and conductivity of the p-layer, is investigated in this work using several complementary techniques. UV-NIR spectrophotometry and ellipsometry were used for the determination of bandgap energies of four p-a-SiC:H thin films, prepared by using different B2H6 and SiH4 fluxes (B2H6 from 12 sccm to 20 sccm and SiH4 from 6 sccm to 10 sccm). Moreover, radiofrequency glow discharge optical emission spectrometry technique was used for depth profiling characterization of p-a-SiC:H thin films and valuable information about dopant elements concentration and distribution throughout the coating was found. Finally, a direct relationship between the conductivity of p-a-SiC:H thin films and the dopant elements concentration, particularly boron and carbon, was observed for the four selected samples. PMID:21731436
Structural and mechanical properties of CVD deposited titanium aluminium nitride (TiAlN) thin films
NASA Astrophysics Data System (ADS)
Das, Soham; Guha, Spandan; Ghadai, Ranjan; Kumar, Dhruva; Swain, Bibhu P.
2017-06-01
Titanium aluminium nitride (TiAlN) thin films were deposited by chemical vapour deposition using TiO2 powder, Al powder and N2 gas. The morphology and mechanical properties of the films were characterized by scanning electron microscopy and nanoindentation technique, respectively. The structural properties were characterized by Raman spectroscopy and X-ray diffraction. The XRD result shows TiAlN films are of NaCl-type metal nitride structure. Micro-Raman peaks of the TiAlN thin film were observed within 450 and 642 cm-1 for acoustic and optic range, respectively. A maximum hardness and Young modulus up to 22 and 272.15 GPa, respectively, were observed in the TiAlN film deposited at 1200 °C.
Geometrically thin, hot accretion disks - Topology of the thermal equilibrium curves
NASA Technical Reports Server (NTRS)
Kusunose, Masaaki; Mineshige, Shin
1992-01-01
All the possible thermal equilibrium states of geometrically thin alpha-disks around stellar-mass black holes are presented. A (vertically) one-zone disk model is employed and it is assumed that a main energy source is viscous heating of protons and that cooling is due to bremsstrahlung and Compton scattering. There exist various branches of the thermal equilibrium solution, depending on whether disks are effectively optically thick or thin, radiation pressure-dominated or gas pressure-dominated, composed of one-temperature plasmas or of two-temperature plasmas, and with high concentration of e(+)e(-) pairs or without pairs. The thermal equilibrium curves at high temperatures (greater than or approximately equal to 10 exp 8 K) are substantially modified by the presence of e(+)e(-) pairs. The thermal stability of these branches are examined.
Perry, Nicola H; Kim, Jae Jin; Tuller, Harry L
2018-01-01
We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi 0.65 Fe 0.35 O 3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe 4+ ) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The k chem values obtained by OTR were significantly lower than the AC-IS derived k chem values and k q values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in k chem and k q values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived k chem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ , and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films.
Perry, Nicola H.; Kim, Jae Jin; Tuller, Harry L.
2018-01-01
Abstract We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi0.65Fe0.35O3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe4+) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The kchem values obtained by OTR were significantly lower than the AC-IS derived kchem values and kq values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in kchem and kq values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived kchem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ, and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films. PMID:29511391
Anni, M; Rella, R
2010-02-04
We investigated the fluorescence (FL) dependence on the environment oxygen content of poly(9,9-dioctylfluorene) (PF8) thin films. We show that the PF8 interactions with oxygen are not limited to the known irreversible photo-oxidation, resulting in the formation of Keto defects, but also reversible FL quenching is observed. This effect, which is stronger for the Keto defects than for the PF8, has been exploited for the realization of a prototype oxygen sensor based on FL quenching. The sensing sensitivity of Keto defects is comparable with the state of the art organic oxygen sensors based on phosphorescence quenching.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukui, Yasuo; Okamoto, Ryuji; Kaji, Ryohei
We present an analysis of the H I and CO gas in conjunction with the Planck/IRAS submillimeter/far-infrared dust properties toward the most outstanding high latitude clouds MBM 53, 54, 55 and HLCG 92 – 35 at b = –30° to – 45°. The CO emission, dust opacity at 353 GHz (τ{sub 353}), and dust temperature (T {sub d}) show generally good spatial correspondence. On the other hand, the correspondence between the H I emission and the dust properties is less clear than in CO. The integrated H I intensity W{sub H} {sub I} and τ{sub 353} show a large scattermore » with a correlation coefficient of ∼0.6 for a T {sub d} range from 16 K to 22 K. We find, however, that W{sub H} {sub I} and τ{sub 353} show better correlation for smaller ranges of T {sub d} every 0.5 K, generally with a correlation coefficient of 0.7-0.9. We set up a hypothesis that the H I gas associated with the highest T {sub d} ≥ 21.5 K is optically thin, whereas the H I emission is generally optically thick for T {sub d} lower than 21.5 K. We have determined a relationship for the optically thin H I gas between atomic hydrogen column density and τ{sub 353}, N{sub H} {sub I} (cm{sup −2})=(1.5×10{sup 26})⋅τ{sub 353}, under the assumption that the dust properties are uniform and we have applied this to estimate N{sub H} {sub I} from τ{sub 353} for the whole cloud. N{sub H} {sub I} was then used to solve for T {sub s} and τ{sub H} {sub I} over the region. The result shows that the H I is dominated by optically thick gas having a low spin temperature of 20-40 K and a density of 40-160 cm{sup –3}. The H I envelope has a total mass of ∼1.2 × 10{sup 4} M {sub ☉}, an order of magnitude larger than that of the CO clouds. The H I envelope properties derived by this method do not rule out a mixture of H I and H{sub 2} in the dark gas, but we present indirect evidence that most of the gas mass is in the atomic state.« less
Instabilities of Shallow Dynamic Thermocapillary Liquid Layers
NASA Technical Reports Server (NTRS)
Schwabe, D.; Moeller, U.; Schneider, J.; Scharmann, A.
1992-01-01
In the experiments reported here, correlation measurements with three fixed thermocouples and direct optical observations of the dynamically deformed liquid-gas interface were used to study the spatiotemporal structure of stable and unstable thermocapillary flows. The frequency, wavelength, phase speed, angle of propagation, and stability limits are reported for two geometrically different configurations of thermocapillary flow in side-heated thin liquid layers. A theoretical interpretation of the results is presented.
Invited Paper Thin Film Technology In Design And Production Of Optical Systems
NASA Astrophysics Data System (ADS)
Guenther, K. H.; Menningen, R.; Burke, C. A.
1983-10-01
Basic optical properties of dielectric thin films for interference applications and of metallic optical coatings are reviewed. Some design considerations of how to use thin films best in optical systems are given, and some aspects of thin film production technology relevant to the optical designer and the optician are addressed. The necessity of proper specifications, inclusive of test methods, is emphasized.
Creating a Driven, Collapsed Radiative Shock in the Laboratory
NASA Astrophysics Data System (ADS)
Reighard, Amy
2006-10-01
We report details of the first experimental campaign to create a driven, planar, radiatively collapsed in laboratory experiment. Radiation hydrodynamics experiments are challenging to realize in a laboratory setting, requiring high temperatures in a system of sufficient extent. The Omega laser at ˜10^15 W/cm^2 drives a thin slab of low-Z material at >100 km/s gas via laser ablation pressure. This slab initially shocks, then continues driving a shock through a cylindrical volume of Xe gas at 6 mg/cc. Simulations predict a collapsed layer in which the density reaches ˜45 times initial density. Side-on x-ray backlighting was the principal diagnostic. We have successfully imaged shocks with average velocities between 95-205 km/sec, with measured thicknesses of 45-150 μm in experiments lasting up to 20 ns and spanning up 2.5 mm in extent. Comparison of the shock position as a function of time from these experiments to 1D radiation hydrodynamic simulation results show some discrepancy, which will be explored. Optical depth before and behind the shock is important for meaningful comparison to these astrophysical systems. This shock is optically thin to emitted radiation in the unshocked region and optically thick to radiation in the shocked, dense region. We compare this system to collapsed shocks in astrophysical systems with similar optical depth profiles. An experiment using a Thomson scattering diagnostic across the shock front is also discussed. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-03NA00064, DE-FG53-2005-NA26014, and other grants and contracts.
NASA Astrophysics Data System (ADS)
Larbi, T.; Ouni, B.; Gantassi, A.; Doll, K.; Amlouk, M.; Manoubi, T.
2017-12-01
Chromium oxide (Cr2O3) thin films have been synthesized on glass substrates by the spray pyrolysis technique. The structural, morphological and optical properties of the sample have been studied by X-ray diffraction (XRD), Raman spectroscopy, FTIR spectroscopy, scanning probe microscopy and UV-vis spectroscopy respectively. X-ray diffraction results reveal that as deposited film is polycrystalline with a rhombohedral corundum structure and a preferential orientation of the crystallites along the (1 0 4) direction. IR and Raman spectra were recorded in the 100-900 cm-1 range and the observed modes were analysed and assigned to different normal modes of vibration. The direct optical band gap energy value calculated from the transmittance spectra of as-deposited thin film is about 3.38 eV. We employ first principles calculations based on density functional theory (DFT) with the B3LYP hybrid functional and a coupled perturbed Hartree-Fock/Kohn-Sham approach (CPHF/KS). We study the electronic structure, optimum geometry, and IR and Raman spectra of ferromagnetically and antiferromagnetically ordered Cr2O3. The computed results are consistent with the experimental measurements, and provide complete vibrational assignment, for the characterization of Cr2O3 thin film materials which can be used in photocatalysis and gas sensors.
Radiative enhancement of tube-side heat transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, K. H.; Ahluwalia, R. K.; Engineering Physics
1994-01-01
The potential of augmenting film coefficient by uniformly dispersing thin metallic/ceramic filaments oriented longitudinally along a tube is investigated. The purpose of the rigidly held filaments is to create a participating medium from a gas otherwise transparent to thermal radiation. The filaments absorb the thermal radiation emitted by the tube and transfer the heat convectively to the flowing gas. Wave theory shows that optical thickness > 10 can be achieved with 50 {micro}m SiC filaments at 300 cm{sup 2} number density in a 2.54 cm diameter tube. Solution of the radiation transport equation indicates that the radiative film coefficients aremore » a function of filament material, diameter and number density, and gas and surface temperatures.« less
Radiative transfer and radiative driving of outflows in active galactic nuclei and starbursts
NASA Astrophysics Data System (ADS)
Novak, G. S.; Ostriker, J. P.; Ciotti, L.
2012-12-01
To facilitate the study of black hole fuelling, star formation and feedback in galaxies, we outline a method for treating the radial forces on interstellar gas due to absorption of photons by dust grains. The method gives the correct behaviour in all of the relevant limits [dominated by the central point source; dominated by the distributed isotropic source; optically thin; optically thick to ultraviolet (UV)/optical; optically thick to infrared (IR)] and reasonably interpolates between the limits when necessary. The method is explicitly energy conserving so that UV/optical photons that are absorbed are not lost, but are rather redistributed to the IR where they may scatter out of the galaxy. We implement the radiative transfer algorithm in a two-dimensional hydrodynamical code designed to study feedback processes in the context of early-type galaxies. We find that the dynamics and final state of simulations are measurably but only moderately affected by radiative forces on dust, even when assumptions about the dust-to-gas ratio are varied from zero to a value appropriate for the Milky Way. In simulations with high gas densities designed to mimic ultraluminous IR galaxies with a star formation rate of several hundred solar masses per year, dust makes a more substantial contribution to the dynamics and outcome of the simulation. We find that, despite the large opacity of dust to UV radiation, the momentum input to the flow from radiation very rarely exceeds L/c due to two factors: the low opacity of dust to the re-radiated IR and the tendency for dust to be destroyed by sputtering in hot gas environments. We also develop a simplification of our radiative transfer algorithm that respects the essential physics but is much easier to implement and requires a fraction of the computational cost.
Erickson, Kenneth L.
2001-01-01
A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.
Spatial variation of the physical conditions of molecular gas in galaxies
NASA Technical Reports Server (NTRS)
Jackson, James M.; Eckart, Andreas; Wild, Wolfgang; Genzel, Reinhard; Harris, Andrew I.; Downes, Dennis; Jaffe, D. T.; Ho, Paul T. P.
1990-01-01
Multi-line studies of CO-12, CO-13, C-18O, HCN, and HCO(+) at 3 mm, 1.3 mm, and 0.8 mm using the Institute for Radio Astronomy in the Millimeter range (IRAM) 30 m telescope, with the IRAM superconductor insulator superconductor (SIS) receivers and the Max Planck Institute for External Physics (MPE) 350 GHz SIS receiver, show that the densities and temperatures of molecular gas in external galaxies change significantly with position. CO-12 measures the densities and temperature of diffuse interclump molecular gas, but not the bulk of the molecular gas. Simple one-component models, with or without external heating, cannot account for the weakness of the CO-12 J = 3 to 2 line relative to J = 2 to 1 and J = 1 to 0. CO-12 does not trace the bulk of the molecular gas, and optical depth effects obviate a straightforward interpretation of CO-12 data. Instead, researchers turned to the optically thin CO isotopes and other molecular species. Isotopic CO lines measure the bulk of the molecular gas, and HCN and HCO(+) pick out denser regions. Researchers find a warm ridge of gas in IC 342 (Eckart et al. 1989), denser gas in the starburst nucleus of IC 342, and a possible hot-spot in NGC 2903. In IC 342, NGC 2146, and NGC 6764, the CO-13 J = 2 to 1 line is subthermally populated, implying gas densities less than or equal to 10(exp 4) cm(-3).
Structural and optical properties of pulse laser deposited Ag2O thin films
NASA Astrophysics Data System (ADS)
Agasti, Souvik; Dewasi, Avijit; Mitra, Anirban
2018-05-01
We deposited Ag2O films in PLD system on glass substrate for a fixed partial oxygen gas pressure (70 mili Torr) and, with a variation of laser energy from 75 to 215 mJ/Pulse. The XRD patterns confirm that the films have well crystallinity and deposited as hexagonal lattice. The FESEM images show that the particle size of the films increased from 34.84 nm to 65.83 nm. The composition of the films is analyzed from EDX spectra which show that the percentage of oxygen increased by the increment of laser energy. From the optical characterization, it is observed that the optical band gap appears in the visible optical range in an increasing order from 0.87 to 0.98 eV with the increment of laser energy.
NASA Astrophysics Data System (ADS)
Sebők, Dániel; Csapó, Edit; Ábrahám, Nóra; Dékány, Imre
2015-04-01
Zinc-peroxide/poly(styrenesulfonate) nanohybrid thin films (containing 20 bilayers: [ZnO2/PSS]20, d ∼ 500 nm) were prepared using layer-by-layer (LbL) method. The thin film surface was functionalized by different surface modifying agents (silanes, alkylthiols and hydrophobized nanoparticles). Based on the experimental results of quartz crystal microbalance (QCM) and contact angle measurements (as prequalifications) the octanethiol covered gold nanoparticles (OT-AuNPs) were selected for further vapour adsorption studies. Reflectometric interference spectroscopy (RIfS) was used to measure n-hexane vapour adsorption on the original and modified nanohybrid films in a gas flow platform. The thin film provides only the principle of the measurement (by interference phenomenon), the selectivity and hydrophobicity is controlled and enhanced by surface functionalization (by dispersion interaction between the alkyl chains). The interference pattern shift (Δλ) caused by the increase of the optical thickness of the thin film due to vapour adsorption was investigated. It was found that due to the surface functionalization by hydrophobic nanoparticles the effect of water vapour adsorption decreased significantly, while for n-hexane opposite tendency was observed (the effective refractive index and thus the interference pattern shift increased drastically). The correlation between QCM technique and optical method (RIfS) was specified: linear specific adsorbed amount vs. wavelength shift calibration curves were determined in the pr = 0-0.4 relative vapour pressure range. The thin film is suitable for sensorial application (e.g. volatile organic compound/VOC sensor).
Fiber optic microsensor hydrogen leak detection system on Delta IV launch vehicle
NASA Astrophysics Data System (ADS)
Kazemi, Alex A.; Goepp, John W.; Larson, David B.; Wuestling, Mark E.
2008-04-01
This paper describes the successful development and test of a multipoint fiber optic hydrogen microsensors system during the static firing of an Evolved Expandable Launch Vehicle (EELV)/Delta's common booster core (CBC) rocket engine at NASA's Stennis Space Center. The hydrogen sensitive chemistry is fully reversible and has demonstrated a response to hydrogen gas in the range of 0% to 10% with a resolution of 0.1% and a response time of <=5 seconds measured at a gas flow rate of 1 cc/min. The system consisted of a reversible chemical interaction causing a change in reflective of a thin film of coated Palladium. The sensor using a passive element consisting of chemically reactive microcoatings deposited on the surface of a glass microlens, which is then bonded to an optical fiber. The system uses a multiplexing technique with a fiber optic driver-receiver consisting of a modulated LED source that is launched into the sensor, and photodiode detector that synchronously measures the reflected signal. The system incorporates a microprocessor to perform the data analysis and storage, as well as trending and set alarm function. The paper illustrates the sensor design and performance data under field deployment conditions.
Nanocomposite thin films for optical gas sensing
Ohodnicki, Paul R; Brown, Thomas D
2014-06-03
The disclosure relates to a plasmon resonance-based method for gas sensing in a gas stream utilizing a gas sensing material. In an embodiment the gas stream has a temperature greater than about 500.degree. C. The gas sensing material is comprised of gold nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10.sup.-7 S/cm at a temperature of 700.degree. C. Exemplary inert matrix materials include SiO.sub.2, Al.sub.2O.sub.3, and Si.sub.3N.sub.4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. Changes in the chemical composition of the gas stream are detected by changes in the plasmon resonance peak. The method disclosed offers significant advantage over active and reducible matrix materials typically utilized, such as yttria-stabilized zirconia (YSZ) or TiO.sub.2.
Preparation and characterization of Pt loaded WO3 films suitable for gas sensing applications
NASA Astrophysics Data System (ADS)
Jolly Bose, R.; Illyasukutty, Navas; Tan, K. S.; Rawat, R. S.; Vadakke Matham, Murukesan; Kohler, Heinz; Mahadevan Pillai, V. P.
2018-05-01
This paper presents the preparation of nanostructured platinum (Pt) loaded tungsten oxide (WO3) thin films by radio frequency (RF) magnetron sputtering technique. Even though, Pt loading does not produce any phase change in WO3 lattice, it deteriorates the crystalline quality and induces defects on WO3 films. The Pt loading in WO3 has profound impact on structural and optical properties of the films by which the particle size, lattice strain and optical band gap energy are reduced. Nanoporous film with reduced particle size is obtained for 5 wt% Pt loaded WO3 sample which is crucial for gas sensors. Hence the sensing response of 5 wt% Pt loaded sample is tested towards carbon monoxide (CO) gas along with pure WO3 sample. The sensing response of Pt loaded sample is nearly 15 times higher than pure WO3 sample in non-humid ambience at an operating temperature 200 °C. This indicates the suitability of the prepared films for gas sensors. The sensing response of pure WO3 film depends on the humidity while the Pt loaded WO3 film shows stable response in both humid and non-humid ambiences.
Nanomechanics of biocompatible hollow thin-shell polymer microspheres.
Glynos, Emmanouil; Koutsos, Vasileios; McDicken, W Norman; Moran, Carmel M; Pye, Stephen D; Ross, James A; Sboros, Vassilis
2009-07-07
The nanomechanical properties of biocompatible thin-shell hollow polymer microspheres with approximately constant ratio of shell thickness to microsphere diameter were measured by nanocompression tests in aqueous conditions. These microspheres encapsulate an inert gas and are used as ultrasound contrast agents by releasing free microbubbles in the presence of an ultrasound field as a result of free gas leakage from the shell. The tests were performed using an atomic force microscope (AFM) employing the force-distance curve technique. An optical microscope, on which the AFM was mounted, was used to guide the positioning of tipless cantilevers on top of individual microspheres. We performed a systematic study using several cantilevers with spring constants varying from 0.08 to 2.3 N/m on a population of microspheres with diameters from about 2 to 6 microm. The use of several cantilevers with various spring constants allowed a systematic study of the mechanical properties of the microsphere thin shell at different regimes of force and deformation. Using thin-shell mechanics theory for small deformations, the Young's modulus of the thin wall material was estimated and was shown to exhibit a strong size effect: it increased as the shell became thinner. The Young's modulus of thicker microsphere shells converged to the expected value for the macroscopic bulk material. For high applied forces, the force-deformation profiles showed a reversible and/or irreversible nonlinear behavior including "steps" and "jumps" which were attributed to mechanical instabilities such as buckling events.
NASA Astrophysics Data System (ADS)
Wang, Botao; Ünal, F. Nur; Eckardt, André
2018-06-01
The insertion of a local magnetic flux, as the one created by a thin solenoid, plays an important role in gedanken experiments of quantum Hall physics. By combining Floquet engineering of artificial magnetic fields with the ability of single-site addressing in quantum gas microscopes, we propose a scheme for the realization of such local solenoid-type magnetic fields in optical lattices. We show that it can be employed to manipulate and probe elementary excitations of a topological Chern insulator. This includes quantized adiabatic charge pumping along tailored paths inside the bulk, as well as the controlled population of edge modes.
Nickel antimony oxide (NiSb2O6): A fascinating nanostructured material for gas sensing application
NASA Astrophysics Data System (ADS)
Singh, Archana; Singh, Ajendra; Singh, Satyendra; Tandon, Poonam
2016-02-01
Fabrication of nanocrystalline NiSb2O6 thin films via sol-gel spin coating method towards the development of liquefied petroleum gas (LPG) sensor operable at room temperature (25 °C) is being reported. Nanostructural, surface morphological and optical properties of trirutile-type NiSb2O6 have been investigated in order to explore the parameters of interest. The crystallite size has been found to be 19 nm. A detailed sensing performance (sensitivity, sensor response, response and recovery times, reproducibility and long term stability) of NiSb2O6 nanostructures grown on alumina substrate has been investigated.
JPRS report: Science and technology. Central Eurasia
NASA Astrophysics Data System (ADS)
1994-05-01
Translated articles cover the following topics: optimal systems to detect and classify moving objects; multiple identification of optical readings in multisensor information and measurement system; method of first integrals in synthesis of optimal control; study of the development of turbulence in the region of a break above a triangular wing; electroerosion machining in aviation engine construction; and cumulation of a flat shock wave in a tube by a thin parietal gas layer of lower density.
Measurements of resonant scattering in the Perseus Cluster core with Hitomi SXS
NASA Astrophysics Data System (ADS)
Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furukawa, Maki; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier O.; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ogorzalek, Anna; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shiníchiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shiníchiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen
2018-03-01
Thanks to its high spectral resolution (˜5 eV at 6 keV), the Soft X-ray Spectrometer (SXS) on board Hitomi enables us to measure the detailed structure of spatially resolved emission lines from highly ionized ions in galaxy clusters for the first time. In this series of papers, using the SXS we have measured the velocities of gas motions, metallicities and the multi-temperature structure of the gas in the core of the Perseus Cluster. Here, we show that when inferring physical properties from line emissivities in systems like Perseus, the resonant scattering effect should be taken into account. In the Hitomi waveband, resonant scattering mostly affects the Fe XXV Heα line (w)—the strongest line in the spectrum. The flux measured by Hitomi in this line is suppressed by a factor of ˜1.3 in the inner ˜30 kpc, compared to predictions for an optically thin plasma; the suppression decreases with the distance from the center. The w line also appears slightly broader than other lines from the same ion. The observed distortions of the w line flux, shape, and distance dependence are all consistent with the expected effect of the resonant scattering in the Perseus core. By measuring the ratio of fluxes in optically thick (w) and thin (Fe XXV forbidden, Heβ, Lyα) lines, and comparing these ratios with predictions from Monte Carlo radiative transfer simulations, the velocities of gas motions have been obtained. The results are consistent with the direct measurements of gas velocities from line broadening described elsewhere in this series, although the systematic and statistical uncertainties remain significant. Further improvements in the predictions of line emissivities in plasma models, and deeper observations with future X-ray missions offering similar or better capabilities to the Hitomi SXS, will enable resonant scattering measurements to provide powerful constraints on the amplitude and anisotropy of cluster gas motions.
Engineering plasmonic nanostructured surfaces by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Ghidelli, Matteo; Mascaretti, Luca; Bricchi, Beatrice Roberta; Zapelli, Andrea; Russo, Valeria; Casari, Carlo Spartaco; Li Bassi, Andrea
2018-03-01
The synthesis and the optical response of gold nanoparticles (NPs) and thin nanostructured films grown by pulsed laser deposition (PLD) are here studied. Different PLD process parameters - including background gas pressure and the number of laser shots as well as post-deposition annealing treatments - have been varied to control the growth of Au NPs and films, thus tuning the surface plasmon characteristics. The mechanisms of NPs and film growth have been explored performing a morphological characterization by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), and the correlation with the optical behavior is investigated. We show that the size distribution and the morphology of the as deposited Au NPs depend on growth mechanisms which are controlled by tuning the deposition process, while the optical behavior is strongly affected by the average size and surface density of NPs or by the length of percolated Au domains. Furthermore, nucleation in gas phase has been reported at high (1000 Pa Ar) background pressures, enabling independent control of NP size and coverage, contrary to surface driven NP growth by diffusion and aggregation on substrate.
Kneiβ, Max; Lorenz, Michael
2016-01-01
A degenerate p-type conduction of cuprous iodide (CuI) thin films is achieved at the iodine-rich growth condition, allowing for the record high room-temperature conductivity of ∼156 S/cm for as-deposited CuI and ∼283 S/cm for I-doped CuI. At the same time, the films appear clear and exhibit a high transmission of 60–85% in the visible spectral range. The realization of such simultaneously high conductivity and transparency boosts the figure of merit of a p-type TC: its value jumps from ∼200 to ∼17,000 MΩ−1. Polycrystalline CuI thin films were deposited at room temperature by reactive sputtering. Their electrical and optical properties are examined relative to other p-type transparent conductors. The transport properties of CuI thin films were investigated by temperature-dependent conductivity measurements, which reveal a semiconductor–metal transition depending on the iodine/argon ratio in the sputtering gas. PMID:27807139
Seedless-grown of ZnO thin films for photoelectrochemical water splitting application
NASA Astrophysics Data System (ADS)
Abdullah, Aidahani; Hamid, Muhammad Azmi Abdul; Chiu, W. S.
2018-04-01
We developed a seedless hydrothermal method to grow a flower like ZnO nanorods. Prior to the growth, a layer of Au thin film is sputtered onto the surface of indium tin oxide (ITO) coated glass substrate. The morphological, structural and optical properties of the ZnO nanostructures were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), and diffuse reflection measurement to understand the growth process of the working thin film. The photoelectrochemical (PEC) results suggest that the deposition of ZnO nanorods on Au nanoparticles plays an important role in enhancing the photoelectrode activity. H2 evolution from photo-splitting of water over Au-incorporated ZnO in the 0.1M NaOH liquid system was enhanced, compared to that over bare ZnO; particularly, the production of 15.5 µL of H2 gas after twenty five minutes exposure of ZnO grown on Au-coated thin film.
Desertification of the peritoneum by thin-film evaporation during laparoscopy.
Ott, Douglas E
2003-01-01
To assess the effects of gas flow during insufflation on peritoneal fluid and peritoneal tissue regarding transient thermal behavior and thin-film evaporation. The effects of laparoscopic gas on peritoneal cell desiccation and peritoneal fluid thin-film evaporation were analyzed. Measurment of tissue and peritoneal fluid and analysis of gas flow dynamics during laparoscopy. High-velocity gas interface conditions during laparoscopic gas insufflation result in peritoneal surface temperature and decreases up to 20 degrees C/second due to rapid thin-film evaporation of the peritoneal fluid. Evaporation of the thin film of peritoneal fluid extends quickly to the peritoneal cell membrane, causing peritoneal cell desiccation, internal cytoplasmic stress, and disruption of the cell membrane, resulting in loss of peritoneal surface continuity and integrity. Changing the gas conditions to 35 degrees C and 95% humidity maintains normal peritoneal fluid thin-film characteristics, cellular integrity, and prevents evaporative losses. Cold, dry gas and the characteristics of the laparoscopic gas delivery apparatus cause local peritoneal damaging alterations by high-velocity gas flow with extremely dry gas, creating extreme arid surface conditions, rapid evaporative and hydrological changes, tissue desiccation, and peritoneal fluid alterations that contribute to the process of desertification and thin-film evaporation. Peritoneal desertification is preventable by preconditioning the gas to 35 degrees C and 95% humidity.
Detectability of cold streams into high-redshift galaxies by absorption lines
NASA Astrophysics Data System (ADS)
Goerdt, Tobias; Dekel, Avishai; Sternberg, Amiel; Gnat, Orly; Ceverino, Daniel
2012-08-01
Cold gas streaming along the dark matter filaments of the cosmic web is predicted to be the major source of fuel for disc buildup, violent disc instability and star formation in massive galaxies at high redshift. We investigate to what extent such cold gas is detectable in the extended circumgalactic environment of galaxies via Lyα absorption and selected low-ionization metal absorption lines. We model the expected absorption signatures using high-resolution zoom-in adaptive mesh refinement cosmological simulations. In the post-processing, we distinguish between self-shielded gas and unshielded gas. In the self-shielded gas, which is optically thick to Lyman continuum radiation, we assume pure collisional ionization for species with an ionization potential greater than 13.6 eV. In the optically-thin, unshielded gas, these species are also photoionized by the metagalactic radiation. In addition to absorption of radiation from background quasars, we compute the absorption line profiles of radiation emitted by the galaxy at the centre of the same halo. We predict the strength of the absorption signal for individual galaxies without stacking. We find that the Lyα absorption profiles produced by the streams are consistent with observations of absorption and emission Lyα profiles in high-redshift galaxies. Due to the low metallicities in the streams, and their low covering factors, the metal absorption features are weak and difficult to detect.
Optical characterization of Mg-doped ZnO thin films deposited by RF magnetron sputtering technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Satyendra Kumar; Tripathi, Shweta; Hazra, Purnima
2016-05-06
This paper reports the in-depth analysis on optical characteristics of magnesium (Mg) doped zinc oxide (ZnO) thin films grown on p-silicon (Si) substrates by RF magnetron sputtering technique. The variable angle ellipsometer is used for the optical characterization of as-deposited thin films. The optical reflectance, transmission spectra and thickness of as-deposited thin films are measured in the spectral range of 300-800 nm with the help of the spectroscopic ellipsometer. The effect of Mg-doping on optical parameters such as optical bandgap, absorption coefficient, absorbance, extinction coefficient, refractive Index and dielectric constant for as-deposited thin films are extracted to show its application inmore » optoelectronic and photonic devices.« less
NASA Astrophysics Data System (ADS)
Han, Xiao-Yan; Hou, Guo-Fu; Zhang, Xiao-Dan; Wei, Chang-Chun; Li, Gui-Jun; Zhang, De-Kun; Chen, Xin-Liang; Sun, Jian; Zhang, Jian-Jun; Zhao, Ying; Geng, Xin-Hua
2009-08-01
This paper reports that high-rate-deposition of microcrystalline silicon solar cells was performed by very-high-frequency plasma-enhanced chemical vapor deposition. These solar cells, whose intrinsic μc-Si:H layers were prepared by using a different total gas flow rate (Ftotal), behave much differently in performance, although their intrinsic layers have similar crystalline volume fraction, opto-electronic properties and a deposition rate of ~ 1.0 nm/s. The influence of Ftotal on the micro-structural properties was analyzed by Raman and Fourier transformed infrared measurements. The results showed that the vertical uniformity and the compact degree of μc-Si:H thin films were improved with increasing Ftotal. The variation of the microstructure was regarded as the main reason for the difference of the J-V parameters. Combined with optical emission spectroscopy, we found that the gas temperature plays an important role in determining the microstructure of thin films. With Ftotal of 300 sccm, a conversion efficiency of 8.11% has been obtained for the intrinsic layer deposited at 8.5 Å/s (1 Å = 0.1 nm).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, H.M.; Torres, J., E-mail: njtorress@unal.edu.co; Lopez Carreno, L.D.
2013-01-15
Polycrystalline molybdenum tri-oxide thin films were prepared using the spray pyrolysis technique; a 0.1 M solution of ammonium molybdate tetra-hydrated was used as a precursor. The samples were prepared on Corning glass substrates maintained at temperatures ranging between 423 and 673 K. The samples were characterized through micro Raman, X-ray diffraction, optical transmittance and DC electrical conductivity. The species MoO{sub 3} (H{sub 2}O){sub 2} was found in the sample prepared at a substrate temperature of 423 K. As the substrate temperature rises, the water disappears and the samples crystallize into {alpha}-MoO{sub 3}. The optical gap diminishes as the substrate temperaturemore » rises. Two electrical transport mechanisms were found: hopping under 200 K and intrinsic conduction over 200 K. The MoO{sub 3} films' sensitivity was analyzed for CO and H{sub 2}O in the temperature range 160 to 360 K; the results indicate that CO and H{sub 2}O have a reduction character. In all cases, it was found that the sensitivity to CO is lower than that to H{sub 2}O. - Highlights: Black-Right-Pointing-Pointer A low cost technique is used which produces good material. Black-Right-Pointing-Pointer Thin films are prepared using ammonium molybdate tetra hydrated. Black-Right-Pointing-Pointer The control of the physical properties of the samples could be done. Black-Right-Pointing-Pointer A calculation method is proposed to determine the material optical properties. Black-Right-Pointing-Pointer The MoO{sub 3} thin films prepared by spray pyrolysis could be used as gas sensor.« less
Evaluation of space environmental effects on metals and optical thin films on EOIM-3
NASA Technical Reports Server (NTRS)
Vaughn, Jason A.; Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.
1995-01-01
Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.
NASA Astrophysics Data System (ADS)
Liu, Fengshan; Guo, Hongsheng; Smallwood, Gregory J.; Gülder, Ömer L.
2003-06-01
A numerical study of soot formation and oxidation in axisymmetric laminar coflow non-smoking and smoking ethylene diffusion flames was conducted using detailed gas-phase chemistry and complex thermal and transport properties. A modified two-equation soot model was employed to describe soot nucleation, growth and oxidation. Interaction between the gas-phase chemistry and soot chemistry was taken into account. Radiation heat transfer by both soot and radiating gases was calculated using the discrete-ordinates method coupled with a statistical narrow-band correlated-k based band model, and was used to evaluate the simple optically thin approximation. The governing equations in fully elliptic form were solved. The current models in the literature describing soot oxidation by O2 and OH have to be modified in order to predict the smoking flame. The modified soot oxidation model has only moderate effects on the calculation of the non-smoking flame, but dramatically affects the soot oxidation near the flame tip in the smoking flame. Numerical results of temperature, soot volume fraction and primary soot particle size and number density were compared with experimental data in the literature. Relatively good agreement was found between the prediction and the experimental data. The optically thin approximation radiation model significantly underpredicts temperatures in the upper portion of both flames, seriously affecting the soot prediction.
The kinematics of the molecular gas in Centaurus A
NASA Technical Reports Server (NTRS)
Quillen, A. C.; De Zeeuw, P. T.; Phinney, E. S.; Phillips, T. G.
1992-01-01
The CO (2-1) emission along the inner dust lane of Centaurus A, observed with the Caltech Submillimeter Observatory on Mauna Kea, shows the molecular gas to be in a thin disk, with a velocity dispersion of only about 10 km/s. The observed line profiles are broadened considerably due to beam smearing of the gas velocity field. The profile shapes are inconsistent with planar circular and noncircular motion. However, a warped disk in a prolate potential provides a good fit to the profile shapes. The morphology and kinematics of the molecular gas is similar to that of the ionized material, seen in H-alpha. The best-fitting warped disk model not only matches the optical appearance of the dust lane but also agrees with the large-scale map of the CO emission and is consistent with H I measurements at larger radii.
Distribution of Si II in the Galactic center
NASA Technical Reports Server (NTRS)
Graf, P.; Herter, T.; Gull, G. E.; Houck, J. R.
1988-01-01
A map of the Galactic center region in the forbidden Si II 34.8-micron line is presented. The line emission arises from within the photodissociation region (PDR) associated with the neutral gas ring surrounding an ionized gas core confined within 2 pc of the Galactic center. Si II is a useful probe of the inner regions of the ring since it is always optically thin. The Si II data, when analyzed in conjunction with O I, C II, and molecular measurements, outlines the transition region between the PDR and the surrounding molecular cloud. The Si II emission is found to extend beyond that of the O II into the neutral gas ring. Although the interpretation is not unique, the data are consistent with a constant gas-phase abundance of silicon within the inner part of the PDR while the gaseous silicon is depleted by molecule formation in the transition region.
On the Nature and Extent of Optically Thin Marine low Clouds
NASA Technical Reports Server (NTRS)
Leahy, L. V.; Wood, R.; Charlson, R. J.; Hostetler, C. A.; Rogers, R. R.; Vaughan, M. A.; Winker, D. M.
2012-01-01
Macrophysical properties of optically thin marine low clouds over the nonpolar oceans (60 deg S-60 deg N) are measured using 2 years of full-resolution nighttime data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Optically thin clouds, defined as the subset of marine low clouds that do not fully attenuate the lidar signal, comprise almost half of the low clouds over the marine domain. Regionally, the fraction of low clouds that are optically thin (f(sub thin,cld)) exhibits a strong inverse relationship with the low-cloud cover, with maxima in the tropical trades (f(sub thin,cld) greater than 0.8) and minima in regions of persistent marine stratocumulus and in midlatitudes (f(sub thin,cld) less than 0.3). Domain-wide, a power law fit describes the cloud length distribution, with exponent beta = 2.03 +/- 0.06 (+/-95% confidence interval). On average, the fraction of a cloud that is optically thin decreases from approximately 1 for clouds smaller than 2 km to less than 0.3 for clouds larger than 30 km. This relationship is found to be independent of region, so that geographical variations in the cloud length distribution explain three quarters of the variance in f(sub thin,cld). Comparing collocated trade cumulus observations from CALIOP and the airborne High Spectral Resolution Lidar reveals that clouds with lengths smaller than are resolvable with CALIOP contribute approximately half of the low clouds in the region sampled. A bounded cascade model is constructed to match the observations from the trades. The model shows that the observed optically thin cloud behavior is consistent with a power law scaling of cloud optical depth and suggests that most optically thin clouds only partially fill the CALIOP footprint.
Determination of the optical absorption spectra of thin layers from their photoacoustic spectra
NASA Astrophysics Data System (ADS)
Bychto, Leszek; Maliński, Mirosław; Patryn, Aleksy; Tivanov, Mikhail; Gremenok, Valery
2018-05-01
This paper presents a new method for computations of the optical absorption coefficient spectra from the normalized photoacoustic amplitude spectra of thin semiconductor samples deposited on the optically transparent and thermally thick substrates. This method was tested on CuIn(Te0.7Se0.3)2 thin films. From the normalized photoacoustic amplitude spectra, the optical absorption coefficient spectra were computed with the new formula as also with the numerical iterative method. From these spectra, the value of the energy gap of the thin film material and the type of the optical transitions were determined. From the experimental optical transmission spectra, the optical absorption coefficient spectra were computed too, and compared with the optical absorption coefficient spectra obtained from photoacoustic spectra.
RESOLVED CO GAS INTERIOR TO THE DUST RINGS OF THE HD 141569 DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flaherty, Kevin M.; Hughes, A. Meredith; Zachary, Julia
2016-02-10
The disk around HD 141569 is one of a handful of systems whose weak infrared emission is consistent with a debris disk, but still has a significant reservoir of gas. Here we report spatially resolved millimeter observations of the CO(3-2) and CO(1-0) emission as seen with the Submillimeter Array and CARMA. We find that the excitation temperature for CO is lower than expected from cospatial blackbody grains, similar to previous observations of analogous systems, and derive a gas mass that lies between that of gas-rich primordial disks and gas-poor debris disks. The data also indicate a large inner hole inmore » the CO gas distribution and an outer radius that lies interior to the outer scattered light rings. This spatial distribution, with the dust rings just outside the gaseous disk, is consistent with the expected interactions between gas and dust in an optically thin disk. This indicates that gas can have a significant effect on the location of the dust within debris disks.« less
Ionic Self-Assembled Monolayer (ISAM) Nonlinear Optical Thin Films and Devices
1998-05-12
SUBTITLE " Ionic Self-Assembled Monolayer (ISAM) Nonlinear Optical Thin Films and Devices" 6. AUTHORS Michael B. Miller 5. FUNDING NUMBERS F49620-97...ii. Lü. Ionic Self-Assembled Monolayer (ISAM) Nonlinear Optical Thin Films and Devices Final Technical Report Performance Period: 15 August 1997...Investigator F&S. Inc.N ̂ 1. INTRODUCTION .’ 2 2. PROGRAM TASK REVIEW 2 3. BACKGROUND 4 3.1 NONLINEAR OPTICAL THIN FILMS 4 3.2 IONIC SELF
NASA Astrophysics Data System (ADS)
Gremaud, R.; Baldi, A.; Gonzalez-Silveira, M.; Dam, B.; Griessen, R.
2008-04-01
A multisite lattice gas approach is used to model pressure-optical-transmission isotherms (PTIs) recorded by hydrogenography on MgyTi1-yHx sputtered thin films. The model reproduces the measured PTIs well and allows us to determine the chemical short-range order parameter s . The s values are in good agreement with those determined from extended x-ray absorption fine structure measurements. Additionally, the PTI multisite modeling yields a parameter L that accounts for the local lattice deformations with respect to the average MgyTi1-y lattice given by Vegard’s law. It is thus possible to extract two essential characteristics of a metastable alloy from hydrogenographic data.
Observations of Circumstellar Disks with Infrared Interferometry
NASA Technical Reports Server (NTRS)
Akeson, Rachel
2008-01-01
Star formation is arguably the area of astrophysics in which infrared interferometry has had the biggest impact. The optically thick portion of T Tauri and Herbig Ae/Be disks DO NOT extend to a few stellar radii of the stellar surface. Emission is coming from near the dust sublimation radius, but not all from a single radius. The Herbig Ae stars can be either flared or self-shadowed but very massive (early Be) stars are geometrically thin. The Herbig Ae stars can be either flared or self-shadowed but very massive (early Be) stars are geometrically thin. Observational prospects are rapidly improving: a) Higher spectral resolution will allow observations of the gas: jets, winds, accretion. b) Closure phase and imaging will help eliminate model uncertainties/dependencies.
Effect of Doping Materials on the Low-Level NO Gas Sensing Properties of ZnO Thin Films
NASA Astrophysics Data System (ADS)
Çorlu, Tugba; Karaduman, Irmak; Yildirim, Memet Ali; Ateş, Aytunç; Acar, Selim
2017-07-01
In this study, undoped, Cu-doped, and Ni-doped ZnO thin films have been successfully prepared by successive ionic layer adsorption and reaction method. The structural, compositional, and morphological properties of the thin films are characterized by x-ray diffractometer, energy dispersive x-ray analysis (EDX), and scanning electron microscopy, respectively. Doping effects on the NO gas sensing properties of these thin films were investigated depending on gas concentration and operating temperature. Cu-doped ZnO thin film exhibited a higher gas response than undoped and Ni-doped ZnO thin film at the operating temperature range. The sensor with Cu-doped ZnO thin film gave faster responses and recovery speeds than other sensors, so that is significant for the convenient application of gas sensor. The response and recovery speeds could be associated with the effective electron transfer between the Cu-doped ZnO and the NO molecules.
Global Measurements of Optically Thin Cirrus Clouds Using CALIOP
NASA Astrophysics Data System (ADS)
Ryan, R. A.; Avery, M. A.; Vaughan, M.
2017-12-01
Optically thin cirrus clouds, defined here as cold clouds consisting of randomly oriented ice crystals and having optical depths (τ) less than 0.3, are difficult to measure accurately. Thin cirrus clouds have been shown to have a net warming effect on the globe but, because passive instruments are not sensitive to optically thin clouds, the occurrence frequency of thin cirrus is greatly underestimated in historical passive sensor cloud climatology. One major strength of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is its ability to detect these thin cirrus clouds, thus filling an important missing piece in the historical data record. This poster examines multiple years of CALIOP Level 2 data, focusing on those CALIOP retrievals identified as being optically thin (τ < 0.3), having a cold centroid temperature (TC < -40°C), and consisting solely of randomly oriented ice crystals. Using this definition, thin cirrus are identified and counted globally within each season. By examining the spatial, and seasonal distributions of these thin clouds we hope to gain a better understanding of how thin cirrus affect the atmosphere. Understanding when and where these clouds form and persist in the global atmosphere is the topic and focus of the presented poster.
Nyx: Adaptive mesh, massively-parallel, cosmological simulation code
NASA Astrophysics Data System (ADS)
Almgren, Ann; Beckner, Vince; Friesen, Brian; Lukic, Zarija; Zhang, Weiqun
2017-12-01
Nyx code solves equations of compressible hydrodynamics on an adaptive grid hierarchy coupled with an N-body treatment of dark matter. The gas dynamics in Nyx use a finite volume methodology on an adaptive set of 3-D Eulerian grids; dark matter is represented as discrete particles moving under the influence of gravity. Particles are evolved via a particle-mesh method, using Cloud-in-Cell deposition/interpolation scheme. Both baryonic and dark matter contribute to the gravitational field. In addition, Nyx includes physics for accurately modeling the intergalactic medium; in optically thin limits and assuming ionization equilibrium, the code calculates heating and cooling processes of the primordial-composition gas in an ionizing ultraviolet background radiation field.
Optical characterizations of silver nanoprisms embedded in polymer thin film layers
NASA Astrophysics Data System (ADS)
Carlberg, Miriam; Pourcin, Florent; Margeat, Olivier; Le Rouzo, Judikael; Berginc, Gerard; Sauvage, Rose-Marie; Ackermann, Jorg; Escoubas, Ludovic
2017-10-01
The precise control of light-matter interaction has a wide range of applications and is currently driven by the use of nanoparticles (NPs) by the recent advances in nanotechnology. Taking advantage of the material, size, shape, and surrounding media dependence of the optical properties of plasmonic NPs, thin film layers with tunable optical properties are achieved. The NPs are synthesized by wet chemistry and embedded in a polyvinylpyrrolidone (PVP) polymer thin film layer. Spectrophotometer and spectroscopic ellipsometry measurements are coupled to finite-difference time domain numerical modeling to optically characterize the heterogeneous thin film layers. Silver nanoprisms of 10 to 50 nm edge size exhibit high absorption through the visible wavelength range. A simple optical model composed of a Cauchy law and a Lorentz law, accounting for the optical properties of the nonabsorbing polymer and the absorbing property of the nanoprisms, fits the spectroscopic ellipsometry measurements. Knowing the complex optical indices of heterogeneous thin film layers let us design layers of any optical properties.
Permanent laser conditioning of thin film optical materials
Wolfe, C. Robert; Kozlowski, Mark R.; Campbell, John H.; Staggs, Michael; Rainer, Frank
1995-01-01
The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.
Electro-optic studies of novel organic materials and devices
NASA Astrophysics Data System (ADS)
Xu, Jianjun
1997-11-01
Specific single crystal organic materials have high potential for use in high speed optical signal processing and various other electro-optic applications. In this project some of the most important organic crystal materials were studied regarding their detailed electro- optic properties and potential device applications. In particular, the electro-optic properties of N-(4- Nitrophenyl)-L-Prolinol (NPP) and 4'-N,N- dimethylamino-4-methylstilbazolium tosylate (DAST) both of which have extremely large second order susceptibilites were studied. The orientation of the thin film crystal with respect to the substrate surface was determined using-X-ray diffraction. The principal axes of the single crystal thin film were determined by polarization transmission microscopy. The elements of the electro-optic coefficient tensor were measured by field induced birefringence measurements. Detailed measurements for NPP thin films with different orientations of the external electric field with respect to the charge transfer axis were carried out at a wavelength of 1064nm. The wavelength dependence of the electro-optic effect for DAST single crystal thin films was measured using a Ti:Sapphire laser. Several device geometries involving organic single crystal thin film materials were studied. A new method for the fabrication of channel waveguides for organic materials was initiated. Channel waveguides for NPP and ABP were obtained using this methods. Optical modulation due to the electro-optic effect based on the organic channel waveguide for NPP single crystal was demonstrated. The electro-optic modulation using NPP single crystals thin film in a Fabry-Perot cavity was measured. A device using a optical fiber half coupler and organic electro-optic thin film material was constructed, and it has potential applications in optical signal processing.
Liquefied Petroleum Gas Monitoring System Based on Polystyrene Coated Long Period Grating
Zotti, Aldobenedetto; Palumbo, Giovanna; Zuppolini, Simona; Consales, Marco; Cutolo, Antonello; Borriello, Anna; Zarrelli, Mauro; Iadicicco, Agostino
2018-01-01
In this work, we report the in-field demonstration of a liquefied petroleum gas monitoring system based on optical fiber technology. Long-period grating coated with a thin layer of atactic polystyrene (aPS) was employed as a gas sensor, and an array comprising two different fiber Bragg gratings was set for the monitoring of environmental conditions such as temperature and humidity. A custom package was developed for the sensors, ensuring their suitable installation and operation in harsh conditions. The developed system was installed in a real railway location scenario (i.e., a southern Italian operative railway tunnel), and tests were performed to validate the system performances in operational mode. Daytime normal working operations of the railway line and controlled gas expositions, at very low concentrations, were the searched realistic conditions for an out-of-lab validation of the developed system. Encouraging results were obtained with a precise indication of the gas concentration and external conditioning of the sensor. PMID:29734731
Thin-film fiber optic hydrogen and temperature sensor system
Nave, S.E.
1998-07-21
The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.
NASA Astrophysics Data System (ADS)
Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay
2016-04-01
Surface plasmon resonance (SPR) technique is an easy and reliable method for detecting very low concentration of toxic gases at room temperature using a gas sensitive thin film layer. In the present work, a room temperature operated NH3 gas sensor has been developed using a laboratory assembled SPR measurement setup utilising a p-polarized He-Ne laser and prism coupling technique. A semiconducting gas sensitive tin oxide (SnO2) layer has been deposited under varying growth conditions (i.e., by varying deposition pressure) over the gold coated prism (BK-7) to excite the surface plasmon modes in Kretschmann configuration. The SPR reflectance curves for prism/Au/SnO2/air system for SnO2 thin films prepared at different sputtering pressure were measured, and the SnO2 film deposited at 10 mT pressure is found to exhibit a sharp SPR reflectance curve with minimum reflectance (0.32) at the resonance angle of 44.7° which is further used for sensing NH3 gas of different concentration at room temperature. The SPR reflectance curve shows a significant shift in resonance angle from 45.05° to 58.55° on interacting with NH3. The prepared sensor is found to give high sensing response (0.11) with high selectivity towards very low concentration of NH3 (0.5 ppm) and quick response time at room temperature.
Permanent laser conditioning of thin film optical materials
Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.
1995-12-05
The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.
2015-06-25
layered systems including transitional metal dichalcogenides, oxides and nitrides which have an exciting spectrum of electronic, optical, thermal and...disulfide (WS2)islands materials were prepared by using H2S gas and Tungsten oxide thin films at 950C. Both AFM and FEG-SEM showed the triangular...gains defects after few layers growth. They also reported the property of h-BN protecting Ni from oxidation up to 1100C; it is more difficult to grow
Nanocomposite thin films for high temperature optical gas sensing of hydrogen
Ohodnicki, Jr., Paul R.; Brown, Thomas D.
2013-04-02
The disclosure relates to a plasmon resonance-based method for H.sub.2 sensing in a gas stream at temperatures greater than about 500.degree. C. utilizing a hydrogen sensing material. The hydrogen sensing material is comprised of gold nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10.sup.-7 S/cm at a temperature of 700.degree. C. Exemplary inert matrix materials include SiO.sub.2, Al.sub.2O.sub.3, and Si.sub.3N.sub.4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. At high temperatures, blue shift of the plasmon resonance optical absorption peak indicates the presence of H.sub.2. The method disclosed offers significant advantage over active and reducible matrix materials typically utilized, such as yttria-stabilized zirconia (YSZ) or TiO.sub.2.
NASA Astrophysics Data System (ADS)
Shobin, L. R.; Manivannan, S.
2014-10-01
Carbon nanotube (CNT) networks are identified as potential substitute and surpass the conventional indium doped tin oxide (ITO) in transparent conducting electrodes, thin-film transistors, solar cells, and chemical sensors. Among them, CNT based gas sensors gained more interest because of its need in environmental monitoring, industrial control, and detection of gases in warfare or for averting security threats. The unique properties of CNT networks such as high surface area, low density, high thermal conductivity and chemical sensitivity making them as a potential candidate for gas sensing applications. Commercial unsorted single walled carbon nanotubes (SWCNT) were purified by thermal oxidation and acid treatment processes and dispersed in organic solvent N-methyl pyrolidone using sonication process in the absence of polymer or surfactant. Optically transparent SWCNT networks are realized on glass substrate by coating the dispersed SWCNT with the help of dynamic spray coating process at 200ºC. The SWCNT random network was characterized by scanning electron microscopy and UV-vis-NIR spectroscopy. Gas sensing property of transparent film towards ammonia vapor is studied at room temperature by measuring the resistance change with respect to the concentration in the range 0-1000 ppm. The sensor response is increased logarithmically in the concentration range 0 to 1000 ppm with the detection limit 0.007 ppm. The random networks are able to detect ammonia vapor selectively because of the high electron donating nature of ammonia molecule to the SWCNT. The sensor is reversible and selective to ammonia vapor with response time 70 seconds and recovery time 423 seconds for 62.5 ppm with 90% optical transparency at 550 nm.
NASA Astrophysics Data System (ADS)
Bonsor, Amy; Farihi, Jay; Wyatt, Mark C.; van Lieshout, Rik
2017-06-01
Infrared excesses around metal-polluted white dwarfs have been associated with the accretion of dusty planetary material. This work analyses the available infrared data for an unbiased sample of white dwarfs and demonstrates that no more than 3.3 per cent can have a wide, flat, opaque dust disc, extending to the Roche radius, with a temperature at the disc inner edge of Tin = 1400 K, the standard model for the observed excesses. This is in stark contrast to the incidence of pollution of about 30 per cent. We present four potential reasons for the absence of an infrared excess in polluted white dwarfs, depending on their stellar properties and inferred accretion rates: (I) their dust discs are opaque, but narrow, thus evading detection if more than 85 per cent of polluted white dwarfs have dust discs narrower than δr < 0.04r, (II) their dust discs have been fully consumed, which only works for the oldest white dwarfs with sinking time-scales longer than hundreds of years, (III) their dust is optically thin, which can supply low accretion rates of <107 gs-1 if dominated by (Poynting-Robertson) PR-drag, and higher accretion rates, if inwards transport of material is enhanced, e.g. due to the presence of gas, (IV) their accretion is supplied by a pure gas disc, which could result from the sublimation of optically thin dust for T* > 20 000 K. Future observations sensitive to faint infrared excesses or the presence of gas can test the scenarios presented here, thereby better constraining the nature of the material fuelling accretion in polluted white dwarfs.
CHIMPS: the 13CO/C18O (J = 3 → 2) Heterodyne Inner Milky Way Plane Survey
NASA Astrophysics Data System (ADS)
Rigby, A. J.; Moore, T. J. T.; Plume, R.; Eden, D. J.; Urquhart, J. S.; Thompson, M. A.; Mottram, J. C.; Brunt, C. M.; Butner, H. M.; Dempsey, J. T.; Gibson, S. J.; Hatchell, J.; Jenness, T.; Kuno, N.; Longmore, S. N.; Morgan, L. K.; Polychroni, D.; Thomas, H.; White, G. J.; Zhu, M.
2016-03-01
We present the 13CO/C18O (J = 3 → 2) Heterodyne Inner Milky Way Plane Survey (CHIMPS) which has been carried out using the Heterodyne Array Receiver Program on the 15 m James Clerk Maxwell Telescope (JCMT) in Hawaii. The high-resolution spectral survey currently covers |b| ≤ 0.5° and 28° ≲ l ≲ 46°, with an angular resolution of 15 arcsec in 0.5 km s-1 velocity channels. The spectra have a median rms of ˜0.6 K at this resolution, and for optically thin gas at an excitation temperature of 10 K, this sensitivity corresponds to column densities of NH2 ˜ 3 × 1020 cm-2 and NH2 ˜ 4 × 1021 cm-2 for 13CO and C18O, respectively. The molecular gas that CHIMPS traces is at higher column densities and is also more optically thin than in other publicly available CO surveys due to its rarer isotopologues, and thus more representative of the three-dimensional structure of the clouds. The critical density of the J = 3 → 2 transition of CO is ≳104 cm-3 at temperatures of ≤20 K, and so the higher density gas associated with star formation is well traced. These data complement other existing Galactic plane surveys, especially the JCMT Galactic Plane Survey which has similar spatial resolution and column density sensitivity, and the Herschel infrared Galactic Plane Survey. In this paper, we discuss the observations, data reduction and characteristics of the survey, presenting integrated-emission maps for the region covered. Position-velocity diagrams allow comparison with Galactic structure models of the Milky Way, and while we find good agreement with a particular four-arm model, there are some significant deviations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizuno, T.; Abdollahi, S.; Fukui, Y.
A study of the interstellar medium (ISM) and cosmic rays (CRs) using Fermi Large Area Telescope (LAT) data, in a region encompassing the nearby molecular clouds MBM 53, 54, and 55 and a farinfrared loop-like structure in Pegasus, is reported. By comparing Planck dust thermal emission model with Fermi -LAT γ-ray data, it was found that neither the dust radiance (R) nor the dust opacity at 353 GHz (τ353) were proportional to the total gas column density N(Htot) primarily because N(Htot)/R and N(Htot)/τ353 depend on the dust temperature (Td). The N(Htot) distribution was evaluated using γ-ray data by assuming themore » regions of high Td to be dominated by optically thin atomic hydrogen (HI) and by employing an empirical linear relation of N(Htot)/R to Td. It was determined that the mass of the gas not traced by the 21-cm or 2.6-mm surveys is ~25% of the mass of HI in the optically thin case and is larger than the mass of the molecular gas traced by carbon monoxide by a factor of up to 5. The measured γ-ray emissivity spectrum is consistent with a model based on CR spectra measured at the Earth and the nuclear enhancement factor of ≤1.5. It is, however, lower than local HI emissivities reported by previous Fermi -LAT studies employing different analysis methods and assumptions on ISM properties by 15%–20% in energies below a few GeV, even if we take account of the statistical and systematic uncertainties. The origin of the discrepancy is also discussed.« less
Mizuno, T.; Abdollahi, S.; Fukui, Y.; ...
2016-12-20
A study of the interstellar medium (ISM) and cosmic rays (CRs) using Fermi Large Area Telescope (LAT) data, in a region encompassing the nearby molecular clouds MBM 53, 54, and 55 and a farinfrared loop-like structure in Pegasus, is reported. By comparing Planck dust thermal emission model with Fermi -LAT γ-ray data, it was found that neither the dust radiance (R) nor the dust opacity at 353 GHz (τ353) were proportional to the total gas column density N(Htot) primarily because N(Htot)/R and N(Htot)/τ353 depend on the dust temperature (Td). The N(Htot) distribution was evaluated using γ-ray data by assuming themore » regions of high Td to be dominated by optically thin atomic hydrogen (HI) and by employing an empirical linear relation of N(Htot)/R to Td. It was determined that the mass of the gas not traced by the 21-cm or 2.6-mm surveys is ~25% of the mass of HI in the optically thin case and is larger than the mass of the molecular gas traced by carbon monoxide by a factor of up to 5. The measured γ-ray emissivity spectrum is consistent with a model based on CR spectra measured at the Earth and the nuclear enhancement factor of ≤1.5. It is, however, lower than local HI emissivities reported by previous Fermi -LAT studies employing different analysis methods and assumptions on ISM properties by 15%–20% in energies below a few GeV, even if we take account of the statistical and systematic uncertainties. The origin of the discrepancy is also discussed.« less
Generalized Ellipsometry on Complex Nanostructures and Low-Symmetry Materials
NASA Astrophysics Data System (ADS)
Mock, Alyssa Lynn
In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with monoclinic and triclinic symmetries. A model eigendielectric displacement vector approach is developed, described and utilized to characterize monoclinic materials. Materials are investigated in spectral regions spanning from the far-infrared to the vacuum ultraviolet. Examples are demonstrated for phonon mode determination in cadmium tungstate and yttrium silicate and for band-to-band transitions in gallia (beta-Ga2O3) single crystals. Furthermore, the anisotropic optical properties of an emerging class of spatially coherent heterostructure materials with nanostructure dimensions are investigated. The so-called anisotropic effective medium approximation for slanted columnar thin films is extended to the concept of slanted columnar heterostructure thin films as well as core-shell heterostructure thin films. Examples include the determination of band-to-band transitions, phonon modes and oxidation properties of cobalt-oxide core shell structures and gas-liquid-solid distribution during controlled adsorption of organic solvents in silicon slanted columnar thin films.
Two-dimensional models for the optical response of thin films
NASA Astrophysics Data System (ADS)
Li, Yilei; Heinz, Tony F.
2018-04-01
In this work, we present a systematic study of 2D optical models for the response of thin layers of material under excitation by normally incident light. The treatment, within the framework of classical optics, analyzes a thin film supported by a semi-infinite substrate, with both the thin layer and the substrate assumed to exhibit local, isotropic linear response. Starting from the conventional three-dimensional (3D) slab model of the system, we derive a two-dimensional (2D) sheet model for the thin film in which the optical response is described by a sheet optical conductivity. We develop criteria for the applicability of this 2D sheet model for a layer with an optical thickness far smaller than the wavelength of the light. We examine in detail atomically thin semi-metallic and semiconductor van-der-Waals layers and ultrathin metal films as representative examples. Excellent agreement of the 2D sheet model with the 3D slab model is demonstrated over a broad spectral range from the radio frequency limit to the near ultraviolet. A linearized version of system response for the 2D model is also presented for the case where the influence of the optically thin layer is sufficiently weak. Analytical expressions for the applicability and accuracy of the different optical models are derived, and the appropriateness of the linearized treatment for the materials is considered. We discuss the advantages, as well as limitations, of these models for the purpose of deducing the optical response function of the thin layer from experiment. We generalize the theory to take into account in-plane anisotropy, layered thin film structures, and more general substrates. Implications of the 2D model for the transmission of light by the thin film and for the implementation of half- and totally absorbing layers are discussed.
Effect of Thin Cirrus Clouds on Dust Optical Depth Retrievals From MODIS Observations
NASA Technical Reports Server (NTRS)
Feng, Qian; Hsu, N. Christina; Yang, Ping; Tsay, Si-Chee
2011-01-01
The effect of thin cirrus clouds in retrieving the dust optical depth from MODIS observations is investigated by using a simplified aerosol retrieval algorithm based on the principles of the Deep Blue aerosol property retrieval method. Specifically, the errors of the retrieved dust optical depth due to thin cirrus contamination are quantified through the comparison of two retrievals by assuming dust-only atmospheres and the counterparts with overlapping mineral dust and thin cirrus clouds. To account for the effect of the polarization state of radiation field on radiance simulation, a vector radiative transfer model is used to generate the lookup tables. In the forward radiative transfer simulations involved in generating the lookup tables, the Rayleigh scattering by atmospheric gaseous molecules and the reflection of the surface assumed to be Lambertian are fully taken into account. Additionally, the spheroid model is utilized to account for the nonsphericity of dust particles In computing their optical properties. For simplicity, the single-scattering albedo, scattering phase matrix, and optical depth are specified a priori for thin cirrus clouds assumed to consist of droxtal ice crystals. The present results indicate that the errors in the retrieved dust optical depths due to the contamination of thin cirrus clouds depend on the scattering angle, underlying surface reflectance, and dust optical depth. Under heavy dusty conditions, the absolute errors are comparable to the predescribed optical depths of thin cirrus clouds.
Broadly tunable thin-film intereference coatings: active thin films for telecom applications
NASA Astrophysics Data System (ADS)
Domash, Lawrence H.; Ma, Eugene Y.; Lourie, Mark T.; Sharfin, Wayne F.; Wagner, Matthias
2003-06-01
Thin film interference coatings (TFIC) are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable TFIC components based on the thermo-optic properties of semiconductor thin films with large thermo-optic coefficients 3.6X10[-4]/K. The technology is based on amorphous silicon thin films deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable TFIC can be designed as sophisticated multi-cavity, multi-layer optical designs. Applications include flat-top passband filters for add-drop multiplexing, tunable dispersion compensators, tunable gain equalizers and variable optical attenuators. Extremely compact tunable devices may be integrated into modules such as optical channel monitors, tunable lasers, gain-equalized amplifiers, and tunable detectors.
Microwave plasma assisted supersonic gas jet deposition of thin film materials
Schmitt, III, Jerome J.; Halpern, Bret L.
1993-01-01
An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures.
Optical figuring specifications for thin shells to be used in adaptive telescope mirrors
NASA Astrophysics Data System (ADS)
Riccardi, A.
2006-06-01
The present work describes the guidelines to define the optical figuring specifications for optical manufacturing of thin shells in terms of figuring error power spectrum (and related rms vs scale distributon) to be used in adaptive optics correctors with force actuators like Deformable Secondary Mirrors (DSM). In particular the numerical example for a thin shell for a VLT DSM is considered.
Surface-area-controlled synthesis of porous TiO2 thin films for gas-sensing applications
NASA Astrophysics Data System (ADS)
Park, Jae Young; Kim, Ho-hyoung; Rana, Dolly; Jamwal, Deepika; Katoch, Akash
2017-03-01
Surface-area-controlled porous TiO2 thin films were prepared via a simple sol-gel chemical route, and their gas-sensing properties were thoroughly investigated in the presence of typical oxidizing NO2 gas. The surface area of TiO2 thin films was controlled by developing porous TiO2 networked by means of controlling the TiO2-to-TTIP (titanium isopropoxide, C12H28O4Ti) molar ratio, where TiO2 nanoparticles of size ˜20 nm were used. The sensor’s response was found to depend on the surface area of the TiO2 thin films. The porous TiO2 thin-film sensor with greater surface area was more sensitive than those of TiO2 thin films with lesser surface area. The improved sensing ability was ascribed to the porous network formed within the thin films by TiO2 sol. Our results show that surface area is a key parameter for obtaining superior gas-sensing performance; this provides important guidelines for preparing and using porous thin films for gas-sensing applications.
Novel photon management for thin-film photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menon, Rajesh
2016-11-11
The objective of this project is to enable commercially viable thin-film photovoltaics whose efficiencies are increased by over 10% using a novel optical spectral-separation technique. A thin planar diffractive optic is proposed that efficiently separates the solar spectrum and assigns these bands to optimal thin-film sub-cells. An integrated device that is comprised of the optical element, an array of sub-cells and associated packaging is proposed.
Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films
NASA Astrophysics Data System (ADS)
Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.
2014-04-01
In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.
Ultra-thin plasma panel radiation detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, Peter S.
An ultra-thin radiation detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includesmore » a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.« less
NASA Astrophysics Data System (ADS)
Okamoto, A.; Suzuki, Y.; Yoshitake, M.; Ogawa, S.; Nakano, N.
1997-01-01
We have investigated the properties of gold-carbon composite thin films prepared by a plasma sputtering deposition using argon and methane mixture gas. These composite films have an uneven surface in submicron scale or consist of nano-scale particles of gold polycrystalline. Such morphological properties can be controlled by the sputtering voltage and the partial pressure of methane gas. The working electrode of electrochemical gas sensor has needed a stable gas sensitivity and a good gas selectivity. Our composite film is one of the excellent candidates for a thin film working electrode of electrochemical gas sensor. It is described that the output current of sensor is related to the preparation conditions of the thin films and increase linearly as the concentration of PH 3 gas ranging from 0.1 to 1.0 ppm is increasing.
NASA Astrophysics Data System (ADS)
Politano, Grazia Giuseppina; Vena, Carlo; Desiderio, Giovanni; Versace, Carlo
2018-02-01
Despite intensive investigations on graphene oxide-gold nanocomposites, the interaction of graphene oxide sheets with magnetron sputtered gold thin films has not been studied yet. The optical constants of graphene oxide thin films dip-coated on magnetron sputtered gold thin films were determined by spectroscopic ellipsometry in the [300-1000] wavelength range. Moreover, the morphologic properties of the samples were investigated by SEM analysis. Graphene oxide absorbs mainly in the ultraviolet region, but when it is dip-coated on magnetron sputtered gold thin films, its optical constants show dramatic changes, becoming absorbing in the visible region, with a peak of the extinction coefficient at 3.1 eV. Using magnetron sputtered gold thin films as a substrate for graphene oxide thin films could therefore be the key to enhance graphene oxide optical sheets' properties for several technological applications, preserving their oxygen content and avoiding the reduction process.
Formation of organized nanostructures from unstable bilayers of thin metallic liquids
NASA Astrophysics Data System (ADS)
Khenner, Mikhail; Yadavali, Sagar; Kalyanaraman, Ramki
2011-12-01
Dewetting of pulsed-laser irradiated, thin (<20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.
Structural and optical properties of ITO and Cu doped ITO thin films
NASA Astrophysics Data System (ADS)
Chakraborty, Deepannita; Kaleemulla, S.; Rao, N. Madhusudhana; Subbaravamma, K.; Rao, G. Venugopal
2018-04-01
(In0.95Sn0.05)2O3 and (In0.90Cu0.05Sn0.05)2O3 thin films were coated onto glass substrate by electron beam evaporation technique. The structural and optical properties of ITO and Cu doped ITO thin films have been studied by X-ray diffractometer (XRD) and UV-Vis-NIR spectrophotometer. The crystallite size obtained for ITO and Cu doped ITO thin films was in the range of 24 nm to 22 nm. The optical band gap of 4 eV for ITO thin film sample has been observed. The optical band gap decreases to 3.85 eV by doping Cu in ITO.
Thermo-optically tunable thin film devices
NASA Astrophysics Data System (ADS)
Domash, Lawrence H.
2003-10-01
We report advances in tunable thin film technology and demonstration of multi-cavity tunable filters. Thin film interference coatings are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable components based on the properties of semiconductor thin films with large thermo-optic coefficients. The technology is based on amorphous silicon deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable thin films can be constructed in sophisticated multi-cavity, multi-layer optical designs.
Low-Cost Detection of Thin Film Stress during Fabrication
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2015-01-01
NASA's Marshall Space Flight Center has developed a simple, cost-effective optical method for thin film stress measurements during growth and/or subsequent annealing processes. Stress arising in thin film fabrication presents production challenges for electronic devices, sensors, and optical coatings; it can lead to substrate distortion and deformation, impacting the performance of thin film products. NASA's technique measures in-situ stress using a simple, noncontact fiber optic probe in the thin film vacuum deposition chamber. This enables real-time monitoring of stress during the fabrication process and allows for efficient control of deposition process parameters. By modifying process parameters in real time during fabrication, thin film stress can be optimized or controlled, improving thin film product performance.
NASA Astrophysics Data System (ADS)
Gavilan, Lisseth; Broch, Laurent; Carrasco, Nathalie; Fleury, Benjamin; Vettier, Ludovic
2017-10-01
In this experimental study we investigate the role of atmospheric CO2 on the optical properties of organic photochemical aerosols. To this end, we add CO2 to a N2:CH4 gas mixture used in a plasma typically used for Titan studies. We produce organic thin films (tholins) in plasmas where the CO2/CH4 ratio is increased from 0 to 4. We measure these films via spectrometric ellipsometry and apply a Tauc-Lorentz model, used for optically transparent materials, to obtain the thickness of the thin film, its optical band gap, and the refractive indices in the UV-visible (270-600 nm). All samples present a significant absorption band in the UV. According to the Tauc-Lorentz model, as the CO2/CH4 ratio is quadrupled, the position of the UV band is shifted from ˜177 nm to 264 nm while its strength is quadrupled. Consequently, we infer that oxidized organic aerosols absorb more efficiently at longer UV wavelengths than reduced aerosols. Our laboratory wavelength-tabulated UV-vis refractive indices provide new constraints to atmospheric models of the early Earth and Earth-like exoplanets including photochemical hazes formed under increasingly oxidizing conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong Ha; Kim, Hyun-Jin; Park, Choon-Sang
In this study, we have proposed the double grounded atmospheric pressure plasma jet (2G-APPJ) device to individually control the plasmas in both fragmentation (or active) and recombination (or passive) regions with a mixture of He and Ar gases to deposit organic thin films on glass or Si substrates. Plasma polymerization of acetone has been successfully deposited using a highly energetic and high-density 2G-APPJ and confirmed by scanning electron microscopy (SEM). Plasma composition was measured by optical emission spectroscopy (OES). In addition to a large number of Ar and He spectra lines, we observed some spectra of C{sub 2} and CHmore » species for fragmentation and N{sub 2} (second positive band) species for recombination. The experimental results confirm that the Ar gas is identified as a key factor for facilitating fragmentation of acetone, whereas the He gas helps the plume of plasma reach the substrate on the 2{sup nd} grounded electrode during the plasma polymerization process. The high quality plasma polymerized thin films and nanoparticles can be obtained by the proposed 2G-APPJ device using dual gases.« less
Microwave plasma assisted supersonic gas jet deposition of thin film materials
Schmitt, J.J. III; Halpern, B.L.
1993-10-26
An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures. 5 figures.
NASA Astrophysics Data System (ADS)
Jilani, Asim; Abdel-wahab, M. Sh; Al-ghamdi, Attieh A.; Dahlan, Ammar sadik; Yahia, I. S.
2016-01-01
The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ(3) was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.
A Fast Hyperspectral Vector Radiative Transfer Model in UV to IR spectral bands
NASA Astrophysics Data System (ADS)
Ding, J.; Yang, P.; Sun, B.; Kattawar, G. W.; Platnick, S. E.; Meyer, K.; Wang, C.
2016-12-01
We develop a fast hyperspectral vector radiative transfer model with a spectral range from UV to IR with 5 nm resolutions. This model can simulate top of the atmosphere (TOA) diffuse radiance and polarized reflectance by considering gas absorption, Rayleigh scattering, and aerosol and cloud scattering. The absorption component considers several major atmospheric absorbers such as water vapor, CO2, O3, and O2 including both line and continuum absorptions. A regression-based method is used to parameterize the layer effective optical thickness for each gas, which substantially increases the computation efficiency for absorption while maintaining high accuracy. This method is over 500 times faster than the existing line-by-line method. The scattering component uses the successive order of scattering (SOS) method. For Rayleigh scattering, convergence is fast due to the small optical thickness of atmospheric gases. For cloud and aerosol layers, a small-angle approximation method is used in SOS calculations. The scattering process is divided into two parts, a forward part and a diffuse part. The scattering in the small-angle range in the forward direction is approximated as forward scattering. A cloud or aerosol layer is divided into thin layers. As the ray propagates through each thin layer, a portion diverges as diffuse radiation, while the remainder continues propagating in forward direction. The computed diffuse radiance is the sum of all of the diffuse parts. The small-angle approximation makes the SOS calculation converge rapidly even in a thick cloud layer.
Free-Standing β-Ga2O3 Thin Diaphragms
NASA Astrophysics Data System (ADS)
Zheng, Xu-Qian; Lee, Jaesung; Rafique, Subrina; Han, Lu; Zorman, Christian A.; Zhao, Hongping; Feng, Philip X.-L.
2018-02-01
Free-standing, very thin, single-crystal β-gallium oxide (β-Ga2O3) diaphragms have been constructed and their dynamical mechanical properties characterized by noncontact, noninvasive optical measurements harnessing the multimode nanomechanical resonances of these suspended nanostructures. We synthesized single-crystal β-Ga2O3 using low-pressure chemical vapor deposition (LPCVD) on a 3C-SiC epilayer grown on Si substrate at temperature of 950°C for 1.5 h. The synthesized single-crystal nanoflakes had widths of ˜ 2 μm to 30 μm and thicknesses of ˜ 20 nm to 140 nm, from which we fabricated free-standing circular drumhead β-Ga2O3 diaphragms with thicknesses of ˜ 23 nm to 73 nm and diameters of ˜ 3.2 μm and ˜ 5.2 μm using a dry stamp-transfer technique. Based on measurements of multiple flexural-mode mechanical resonances using ultrasensitive laser interferometric detection and performing thermal annealing at 250°C for 1.5 h, we quantified the effects of annealing and adsorption of atmospheric gas molecules on the resonant characteristics of the diaphragms. Furthermore, we studied the effects of structural nonidealities on these free-standing β-Ga2O3 nanoscale diaphragms. We present extensive characterization of the mechanical and optical properties of free-standing β-Ga2O3 diaphragms, paving the way for realization of resonant transducers using such nanomechanical structures for use in applications including gas sensing and ultraviolet radiation detection.
Light-scattering measurements of optical thin-film components at 157 and 193 nm
NASA Astrophysics Data System (ADS)
Gliech, Stefan; Steinert, Jorg; Duparre, Angela
2002-06-01
An instrument for total backscattering and forward-scattering measurements of optical coating components at 157 and 193 nm is described. The system is operated in both vacuum and nitrogen purge gas. An excimer laser as well as a deuterium lamp can be used as a radiation source. Suppression of the background signal level to 1 part in 106 permits measurements even of low-scatter samples such as superpolished substrates and antireflection coatings. Results of investigations of antireflective and highly reflective multilayers and CaF2 substrates reveal scattering from surface and interface roughness as well as from the volume of the substrate material. First steps to extend the instrument for angle-resolved scatter, transmittance, and reflectance measurements are described.
Optical spectrophotometry of oscillations and flickering in AE Aquarii
NASA Technical Reports Server (NTRS)
Welsh, William F.; Horne, Keith; Oke, J. B.
1993-01-01
We observed rapid variations in the nova-like cataclysmic variable AE Aquarii for 1.7 hr with 4.3 s time resolution using the 30-channel (3227-10494 A) spectrophotometer on the Hale 5 m telescope. The 16.5 and 33.0 s oscillations show a featureless blue spectrum that can be represented by a blackbody with temperature and area much smaller than the accretion disk. Models consisting of the sum of a K star spectrum and a hydrogen slab in LTE at T = 6000-10,000 K can fit the spectrum of AE Aquarii reasonably well. The spectrum of a flare indicates optically thin gas with T = 8000-12,000 K. The energy released by the flare is large compared to typical stellar flares.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meral, Kadem, E-mail: kademm@atauni.edu.tr; Arik, Mustafa, E-mail: marik@tatauni.edu.tr; Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr
Thin films of pyronin dye mixed with poly(vinyl alcohol) (PVA) on glass substrate were prepared by using spin-coating technique. The optical and morphological properties of the thin films were studied by UV-Vis., steady-state fluorescence spectroscopies and atomic force microscopy (AFM). The thin films on glass substrate were fabricated at various [PVA]/[dye] (P/D) ratios. Hence, the monomeric and H-aggregates thin films of pyronin dye mixed with PVA were formed as a function of the dye and PVA concentration. It was determined that while the monomeric thin films showed strong fluorescence, the formation of H-aggregates in the thin film caused to decreasingmore » the fluorescence intensity. AFM studies demonstrated that the morphology of the thin film was drastically varied with changing the optical property of the thin film such as monomeric and H-aggregates thin films.« less
Silicon-integrated thin-film structure for electro-optic applications
McKee, Rodney A.; Walker, Frederick Joseph
2000-01-01
A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.
An Electrochemical Experiment Using an Optically Transparent Thin Layer Electrode
ERIC Educational Resources Information Center
DeAngelis, Thomas P.; Heineman, William R.
1976-01-01
Describes a unified experiment in which an optically transparent thin layer electrode is used to illustrate the techniques of thin layer electrochemistry, cyclic voltammetry, controlled potential coulometry, and spectroelectrochemistry. (MLH)
NASA Astrophysics Data System (ADS)
Najafi-Ashtiani, Hamed; Bahari, Ali
2016-08-01
In the field of materials for electrochromic (EC) applications much attention was paid to the derivatives of aniline. We report on the optical, structural and electrochromic properties of electrochromic thin film based on composite of WO3 nanoparticles and copolymer of aniline and o-toluidine prepared by electrochemical polymerization method on fluorine doped tin oxide (FTO) coated glass. The thin film was studied by X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectroscopy. The morphology of prepared thin film was characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and the thermal gravimetric analysis (TGA) as well. The optical spectra of nanocomposite thin film were characterized in the 200-900 nm wavelength range and EC properties of nanocomposite thin film were studied by cyclic voltammetry (CV). The calculation of optical band gaps of thin film exhibited that the thin film has directly allowed transition with the values of 2.63 eV on first region and 3.80 eV on second region. Dispersion parameters were calculated based on the single oscillator model. Finally, important parameters such as dispersion energy, oscillator energy and lattice dielectric constant were determined and compared with the data from other researchers. The nonlinear optical properties such as nonlinear optical susceptibility, nonlinear absorption coefficient and nonlinear refractive index were extracted. The obtained results of nanocomposite thin film can be useful for the optoelectronic applications.
NASA Astrophysics Data System (ADS)
Dey, Anup; Roy, Subhashis; Sarkar, Subir Kumar
2018-03-01
In this paper, an attempt is made to deposit ZnO thin films using sol-gel process followed by dip-coating method on p-silicon (100) substrates for intended application as a hydrogen gas sensor owing to the low toxic nature and thermal stability of ZnO. The thin films are annealed under annealing temperatures of 350, 450 and 550 °C for 25 min. The crystalline quality of the fabricated thin films is then analyzed by field-emission scanning electron microscopy and transmission electron microscope. The gas sensing performance analysis of ZnO thin films is demonstrated at different annealing temperatures and hydrogen gas concentrations ranging from 100 to 3000 ppm. Results obtained show that the sensitivity is significantly improved as annealing temperature increases with maximum sensitivity being achieved at 550 °C annealing temperature and operating temperature of 150 °C. Hence, the modified ZnO thin films can be applicable as H2 gas sensing device showing to the improved performance in comparison with unmodified thin-film sensor.
Synthesis and characterization of cobalt doped nickel oxide thin films by spray pyrolysis method
NASA Astrophysics Data System (ADS)
Sathisha, D.; Naik, K. Gopalakrishna
2018-05-01
Cobalt (Co) doped nickel oxide (NiO) thin films were deposited on glass substrates at a temperature of about 400 °C by spray pyrolysis method. The effect of Co doping concentration on structural, optical and compositional properties of NiO thin films was investigated. X-ray diffraction result shows that the deposited thin films are polycrystalline in nature. Surface morphologies of the deposited thin films were observed by FESEM and AFM. EDS spectra showed the incorporation of Co dopants in NiO thin films. Optical properties of the grown thin films were characterized by UV-visible spectroscopy. It was found that the optical band gap energy and transmittance of the films decrease with increasing Co doping concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wei-Bin; Li, Fei; Chen, Hong-Ming
2015-06-15
Er-doped ZnO thin films have been prepared by using inductively coupled plasma enhanced physical vapor deposition at different O{sub 2}:Ar gas flow ratio (R = 0:30, 1:30, 1:15, 1:10 and 1:6). The influence of oxygen partial pressure on the structural, optical and magnetic properties was studied. It is found that an appropriate oxygen partial pressure (R=1:10) can produce the best crystalline quality with a maximum grain size. The internal strain, estimated by fitting the X-ray diffraction peaks, varied with oxygen partial pressure during growth. PL measurements show that plenty of defects, especially zinc vacancy, exist in Er-doped ZnO films. Allmore » the samples show room-temperature ferromagnetism. Importantly, the saturation magnetization exhibits similar dependency on oxygen partial pressure with the internal strain, which indicates that internal strain has an important effect on the magnetic properties of Er-doped ZnO thin films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolat, Sami, E-mail: bolat@ee.bilkent.edu.tr; Tekcan, Burak; Ozgit-Akgun, Cagla
2015-01-15
Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metal–semiconductor–metal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N{sub 2}/H{sub 2} PA-ALD based GaN channels aremore » observed to have improved stability and transfer characteristics with respect to NH{sub 3} PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N{sub 2}:H{sub 2} ambient.« less
Tunable Gas Permeability of Polymer-Clay Nano Brick Wall Thin Film Assemblies
NASA Astrophysics Data System (ADS)
Gamboa, Daniel; Priolo, Morgan; Grunlan, Jaime
2010-03-01
Thin films of anionic natural montmorrilonite (MMT) clay and cationic polyethylenimine (PEI) have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient. After 40 polymer-clay layers have been deposited, the resulting transparent film exhibits an oxygen transmission rate (OTR) below 0.35 cm^3/m^2 . day when the pH of PEI solution is 10. This low permeability is due to a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall creates an extremely tortuous path at thicknesses below 250 nm and clay concentration above 80 wt%. A 70-bilayer PEI-MMT assembly has an undetectable OTR (< 0.005 cm^3/m^2 . day), which equates to a permeability below SiOx when multiplied by its film thickness of 231 nm. With optical transparency greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.
NASA Technical Reports Server (NTRS)
Hollahan, J. R.; Wydeven, T.
1975-01-01
The need for protective coatings on critical optical surfaces, such as halide crystal windows or lenses used in spectroscopy, has long been recognized. It has been demonstrated that thin, one micron, organic coatings produced by polymerization of flourinated monomers in low temperature gas discharge (plasma) exhibit very high degrees of moisture resistence, e.g., hundreds of hours protection for cesium iodide vs. minutes before degradation sets in for untreated surfaces. The index of refraction of these coatings is intermediate between that of the halide substrate and air, a condition for anti-reflection, another desirable property of optical coatings. Thus, the organic coatings not only offer protection, but improved transmittance as well. The polymer coating is non-absorbing over the range 0.4 to 40 microns with an exception at 8.0 microns, the expected absorption for C-F bonds.
Optical Properties and Aging of Gasochromic WO3
NASA Astrophysics Data System (ADS)
Ghosh, Rudresh; Baker, Matthew B.; Lopez, Rene
2009-03-01
WO3 as a possible optical gas sensor has gained increasing importance with H2 becoming a major fuel of the future. This has led to efforts to understand the theoretical and practical aspects of the gasochromic behavior of WO3. WO3 films were fabricated using pulsed laser deposition (PLD). Morphological and stoichiometric ratios of films obtained were observed as functions of deposition parameters. We present the optical constants induced by 2% H2:Ar in WO3 films. This allows us to obtain the limits of the gasochromic change in comparison to ion injection. It was found using Langmuir's adsorption equation that at low H2 concentrations a high sensitivity is predicted but the coloration could saturate at 57.9 % of the material's maximum ion adsorption. Poisoning of the films was also addressed by coating with a permeable polydimethylsiloxane layer. It is shown that gasochromic degradation is prevented thus eliminating common atmospheric gases as possible contaminants. Our studies suggest WO3 thin films as highly sensitive and stable optical hydrogen sensors. .
Optical Properties and Aging of Gasochromic WO3
NASA Astrophysics Data System (ADS)
Ghosh, Rudresh; Baker, Matthew B.; Lopez, Rene
2008-10-01
WO3 as a possible optical gas sensor has gained increasing importance with H2 becoming a major fuel of the future. This has led to efforts to understand the theoretical and practical aspects of the gasochromic behavior of WO3. WO3 films were fabricated using pulsed laser deposition (PLD). Morphological and stoichiometric ratios of films obtained were observed as functions of deposition parameters. We present the optical constants induced by 2% H2:Ar in WO3 films. This allows us to obtain the limits of the gasochromic change in comparison to ion injection. It was found using Langmuir's adsorption equation that at low H2 concentrations a high sensitivity is predicted but the coloration could saturate at 57.9 % of the material's maximum ion adsorption. Poisoning of the films was also addressed by coating with a permeable polydimethylsiloxane layer. It is shown that gasochromic degradation is prevented thus eliminating common atmospheric gases as possible contaminants. Our studies suggest WO3 thin films as highly sensitive and stable optical hydrogen sensors.
On the Vortex Waves in Nonadiabatic Flows
NASA Astrophysics Data System (ADS)
Ibáñez S., Miguel H.; Núñez, Luis A.
2018-03-01
Linear disturbances superposed on steady flows in nonadiabatic plasmas are analyzed. In addition to the potential modes resulting (two sound waves and a thermal mode) that are Doppler shifted, a rotational mode appears identified as an entropy-vortex wave (evw) which is carried along by the gas flow. In adiabatic flows, as well as in nonadiabatic flows, the evw always shows a null pressure disturbance. But in the second case, the wave number of the evw disturbance is fixed for the particular thermal conditions of the gas. The above holds for optically thin gases, as well as for radiating flows, if the dynamical effects of the radiation field are neglected in a first approximation. The above results allow us to calculate the dimensions of the vortex elements that are expected to be formed in nonadiabatic gas flows, particularly in hot ionized plasmas of interest in astrophysics.
NASA Astrophysics Data System (ADS)
Romo-Medrano, Katya E.; Khotiaintsev, Sergei N.; García-Garduño, Victor
2004-08-01
An optical-fibre sensor system is presented for monitoring void fraction distribution in a spacecraft's gas and propellant centrifuge separator. The system could be used at the separator development stage or for monitoring, during ground tests, the elements of the spacecraft propulsion system. Our sensor system employs an array of point optical-fibre refractometric transducers installed in the form of several linear radial arrays on the separator rotating blades. We employed a small-size hemispherical optical detection element as the transducer and we optimized its parameters through numerical ray-tracing. The aim is to minimize the effect of the thin film of liquid that forms on the transducer's surface in this application. The features of this sensor system are: (1) an efficient matrix-type multiplexing scheme, (2) the installation of the main optoelectronic unit of the sensor in a hermetically sealed container inside the separator tank located on the rotating shaft and (3) the spark-proof and explosion-proof design of the sensor circuits and elements. The sensor is simple, reliable, low-cost and is capable of withstanding the factors involved during operation of the propulsion system such as cryogenic temperatures and chemically aggressive liquids. The novel elements and design concepts implemented in this sensor system can also find applications in other sensors for spacecraft propulsion systems and also in a variety of optical-fibre sensors used in scientific research and industry.
NASA Astrophysics Data System (ADS)
Ota, Yasutomo; Moriya, Rai; Yabuki, Naoto; Arai, Miho; Kakuda, Masahiro; Iwamoto, Satoshi; Machida, Tomoki; Arakawa, Yasuhiko
2017-05-01
Atomically thin black phosphorus (BP) is an emerging two dimensional (2D) material exhibiting bright photoluminescence in the near infrared region. Coupling its radiation to photonic nanostructures will be an important step toward the realization of 2D material based nanophotonic devices that operate efficiently in the near infrared region, which includes the technologically important optical telecommunication wavelength bands. In this letter, we demonstrate the optical coupling between atomically thin BP and a 2D photonic crystal nanocavity. We employed a home-build dry transfer apparatus for placing a thin BP flake on the surface of the nanocavity. Their optical coupling was analyzed through measuring cavity mode emission under optical carrier injection at room temperature.
NASA Astrophysics Data System (ADS)
Perry, Thomas M.; Marr, J. M.; Read, J. W.; Taylor, G. B.
2011-01-01
We obtained VLBI observations at six frequencies of two Compact Symmetric Objects, 1321+410 and 0026+346. By comparing the lower frequency maps with spectral extrapolations of the higher frequency maps, we produced maps of the optical depth as a function of frequency. The optical-depth maps of 1321+410 are strikingly uniform, consistent with a foreground screen of absorbing gas; the optical depths as a function of frequency are consistent with free-free absorption; and no net polarization was detected. We conclude that the case for free-free absorption in 1321+410 is strong. The optical-depth maps of 0026+346 exhibit structure but the morphology does not correlate with that in the intensity maps, in conflict with that expected in the case of synchrotron self-absorption. No net polarization was detected. The frequency dependence of the optical depths does not fit well to a simple free-free absorption model, but this does not take into account possible structure in the absorbing gas on smaller scales. We conclude that free-free absorption by a thin amount of gas with structure on the scale of our maps and smaller is possible in 0026+346, although no definitive conclusion can be made. A compact feature between the lobes in 0026+346 has an inverted spectrum even at the highest frequencies, suggesting that this component is synchrotron self-absorbed. We infer this to be the location of the core. We estimate an upper limit to the magnetic field in the core of 50 Gauss at a radius of 1 pc. This research was supported by an award from the Research Corporation, a NASA NY Space Grant, and a Booth-Ferris Research Fellowship. The VLBA is operated by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
NASA Astrophysics Data System (ADS)
Reghima, Meriem; Akkari, Anis; Guasch, Cathy; Turki-Kamoun, Najoua
2014-09-01
SnS thin films were initially coated onto Pyrex substrates by the chemical bath deposition (CBD) method and annealed at various temperatures ranging from 200°C to 600°C for 30 min in nitrogen gas. X-ray diffraction (XRD) analysis revealed that a structural transition from face-centered cubic to orthorhombic occurs when the annealing temperature is over 500°C. The surface morphology of all thin layers was investigated by means of scanning electron microscopy and atomic force microscopy. The elemental composition of Sn and S, as measured by energy dispersive spectroscopy, is near the stoichiometric ratio. Optical properties studied by means of transmission and reflection measurements show an increase in the absorption coefficient with increasing annealing temperatures. The band gap energy is close to 1.5 eV, which corresponds to the optimum for photovoltaic applications. Last, the thermally stimulated current measurements show that the electrically active traps located in the band gap disappear after annealing at 500°C. These results suggest that, once again, annealing as a post-deposition treatment may be useful for improving the physical properties of the SnS layers included in photovoltaic applications. Moreover, the thermo-stimulated current method may be of practical relevance to explore the electronic properties of more conventional industrial methods, such as sputtering and chemical vapor deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Headrick, Randall
In this research program, we have explored the fundamental limits for thin film deposition in both crystalline and amorphous (i.e. non-crystalline) materials systems. For vacuum-based physical deposition processes such as sputter deposition, the background gas pressure of the inert gas (usually argon) used as the process gas has been found to be a key variable. Both a roughness transition and stress transition as a function of pressure have been linked to a common mechanism involving collisions of energetic particles from the deposition source with the process inert gas. As energetic particles collide with gas molecules in the deposition process theymore » lose their energy rapidly if the pressure (and background gas density) is above a critical value. Both roughness and stress limit important properties of thin films for applications. In the area of epitaxial growth we have also discovered a related effect; there is a critical pressure below which highly crystalline layers grow in a layer-by-layer mode. This effect is also though to be due to energetic particle thermalization and scattering. Several other important effects such as the observation of coalescence dominated growth has been observed. This mode can be likened to the behavior of two-dimensional water droplets on the hood of a car during a rain storm; as the droplets grow and touch each other they tend to coalesce rapidly into new larger circular puddles, and this process proceeds exponentially as larger puddles overtake smaller ones and also merge with other large puddles. This discovery will enable more accurate simulations and modeling of epitaxial growth processes. We have also observed that epitaxial films undergo a roughening transition as a function of thickness, which is attributed to strain induced by the crystalline lattice mismatch with the substrate crystal. In addition, we have studied another physical deposition process called pulsed laser deposition. It differs from sputter deposition due to the pulsed nature of the deposition where particles arrive at the growth surface in an interval of a few microseconds. We have observed effects such as transient formation of two dimensional islands on elemental crystalline surfaces. Pulsed deposition may also lead to non-equilibrium phases in some cases, such as the observation anomalously high tetragonality for ferroelectric thin films. All of the results described above feature in-situ synchrotron X-ray scattering as the main experimental method, which has become an indispensable technique for observing the kinetics of structures forming in real-time. We have also investigated in-situ coherent X-ray scattering and have developed methods to characterize temporal correlations that are not possible to observe with low-coherence X-rays. A high profile result of this work is a new technique to monitor defect propagation velocities in thin films. This has practical significance since defects limit the properties of thin films and it is desirable to understand their properties and origin in order to control them for practical applications. More broadly, amorphous thin films and multilayers have applications in optical devices, including mirrors and filters. Epitaxial thin films and multilayers have applications in electronic devices such as ferroelectric multilayers for non-volatile data storage, and thermoelectric nanostructures for energy conversion. Our progress in this project points the way for improved deposition methods and for improved simulation and modeling of thin film deposition processes for nanoscale control of materials with novel applications in these areas.« less
NASA Astrophysics Data System (ADS)
Nayak, Aditya B.; Price, James M.; Dai, Bin; Perkins, David; Chen, Ding Ding; Jones, Christopher M.
2015-06-01
Multivariate optical computing (MOC), an optical sensing technique for analog calculation, allows direct and robust measurement of chemical and physical properties of complex fluid samples in high-pressure/high-temperature (HP/HT) downhole environments. The core of this MOC technology is the integrated computational element (ICE), an optical element with a wavelength-dependent transmission spectrum designed to allow the detector to respond sensitively and specifically to the analytes of interest. A key differentiator of this technology is it uses all of the information present in the broadband optical spectrum to determine the proportion of the analyte present in a complex fluid mixture. The detection methodology is photometric in nature; therefore, this technology does not require a spectrometer to measure and record a spectrum or a computer to perform calculations on the recorded optical spectrum. The integrated computational element is a thin-film optical element with a specific optical response function designed for each analyte. The optical response function is achieved by fabricating alternating layers of high-index (a-Si) and low-index (SiO2) thin films onto a transparent substrate (BK7 glass) using traditional thin-film manufacturing processes (e.g., ion-assisted e-beam vacuum deposition). A proprietary software and process are used to control the thickness and material properties, including the optical constants of the materials during deposition to achieve the desired optical response function. The ion-assisted deposition is useful for controlling the densification of the film, stoichiometry, and material optical constants as well as to achieve high deposition growth rates and moisture-stable films. However, the ion-source can induce undesirable absorption in the film; and subsequently, modify the optical constants of the material during the ramp-up and stabilization period of the e-gun and ion-source, respectively. This paper characterizes the unwanted absorption in the a-Si thin-film using advanced thin-film metrology methods, including spectroscopic ellipsometry and Fourier transform infrared (FTIR) spectroscopy. The resulting analysis identifies a fundamental mechanism contributing to this absorption and a method for minimizing and accounting for the unwanted absorption in the thin-film such that the exact optical response function can be achieved.
Manufacturing of glassy thin shell for adaptive optics: results achieved
NASA Astrophysics Data System (ADS)
Poutriquet, F.; Rinchet, A.; Carel, J.-L.; Leplan, H.; Ruch, E.; Geyl, R.; Marque, G.
2012-07-01
Glassy thin shells are key components for the development of adaptive optics and are part of future & innovative projects such as ELT. However, manufacturing thin shells is a real challenge. Even though optical requirements for the front face - or optical face - are relaxed compared to conventional passive mirrors, requirements concerning thickness uniformity are difficult to achieve. In addition, process has to be completely re-defined as thin mirror generates new manufacturing issues. In particular, scratches and digs requirement is more difficult as this could weaken the shell, handling is also an important issue due to the fragility of the mirror. Sagem, through REOSC program, has recently manufactured different types of thin shells in the frame of European projects: E-ELT M4 prototypes and VLT Deformable Secondary Mirror (VLT DSM).
Influences of annealing temperature on sprayed CuFeO2 thin films
NASA Astrophysics Data System (ADS)
Abdelwahab, H. M.; Ratep, A.; Abo Elsoud, A. M.; Boshta, M.; Osman, M. B. S.
2018-06-01
Delafossite CuFeO2 thin films were successfully prepared onto quartz substrates using simple spray pyrolysis technique. Post annealing under nitrogen atmosphere for 2 h was necessary to form delafossite CuFeO2 phase. The effect of alteration in annealing temperature (TA) 800, 850 and 900 °C was study on structural, morphology and optical properties. The XRD results for thin film annealed at TA = 850 °C show single phase CuFeO2 with rhombohedral crystal system and R 3 bar m space group with preferred orientation along (0 1 2). The prepared copper iron oxide thin films have an optical transmission ranged ∼40% in the visible region. The optical direct optical band gap of the prepared thin films was ranged ∼2.9 eV.
Aircraft photovoltaic power-generating system
NASA Astrophysics Data System (ADS)
Doellner, Oscar Leonard
Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet-engine design modifications incorporating this concept not only save weight (and thus fuel), but are - in themselves - favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project.
Bremsstrahlung of nitrogen and noble gases in single-bubble sonoluminescence
NASA Astrophysics Data System (ADS)
Xu, Ning; Wang, Long; Hu, Xiwei
2000-03-01
A hydrodynamic model, discussing neutral gases as well as plasmas, is applied to simulate single-bubble sonoluminescence. In this model, thermal conduction and various inelastic impact processes such as dissociation, ionization, and recombination are considered. Bremsstrahlung is assumed as the mechanism of the picosecond light pulse in sonoluminescence. Diatomic nitrogen and noble gas bubbles are studied. The results show that the sonoluminescing bubbles are completely optically thin for bremsstrahlung. The calculated spectra agree with previous observations, and can explain the observed differences in spectra of different gases.
Optical and electro-optic anisotropy of epitaxial PZT thin films
NASA Astrophysics Data System (ADS)
Zhu, Minmin; Du, Zehui; Jing, Lin; Yoong Tok, Alfred Iing; Tong Teo, Edwin Hang
2015-07-01
Strong optical and electro-optic (EO) anisotropy has been investigated in ferroelectric Pb(Zr0.48Ti0.52)O3 thin films epitaxially grown on Nb-SrTiO3 (001), (011), and (111) substrates using magnetron sputtering. The refractive index, electro-optic, and ferroelectric properties of the samples demonstrate the significant dependence on the growth orientation. The linear electro-optic coefficients of the (001), (011), and (111)-oriented PZT thin films were 270.8, 198.8, and 125.7 pm/V, respectively. Such remarkable anisotropic EO behaviors have been explained according to the structure correlation between the orientation dependent distribution, spontaneous polarization, epitaxial strain, and domain pattern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manouchehrian, M.; Larijani, M.M., E-mail: mmojtahedfr@yahooo.com; Elahi, S.M.
Highlights: • Tellurium thin films were prepared by thermal evaporation technique. • Tellurium thin films showed excellent gas-sensing properties to H{sub 2}S at room temperature. • Tellurium showed a remarkably enhanced response to H{sub 2}S gas under UV irradiation. • The reason of the enhanced response by UV irradiation was discussed. - Abstract: In this research, tellurium thin films were investigated for use as hydrogen sulfide gas sensors. To this end, a tellurium thin film has been deposited on Al{sub 2}O{sub 3} substrates by thermal evaporation, and the influence of thickness on the sensitivity of the tellurium thin film formore » measuring H{sub 2}S gas is studied. XRD patterns indicate that as the thickness increases, the crystallization improves. Observing the images obtained by SEM, it is seen that the grain size increases as the thickness increases. Studying the effect of thickness on H{sub 2}S gas measurement, it became obvious that as the thickness increases, the sensitivity decreases and the response and recovery times increase. To improve the response and recovery times of the tellurium thin film for measuring H{sub 2}S gas, the influence of UV radiation while measuring H{sub 2}S gas was also investigated. The results indicate that the response and recovery times strongly decrease using UV radiation.« less
Optical instruments synergy in determination of optical depth of thin clouds
NASA Astrophysics Data System (ADS)
Viviana Vlăduţescu, Daniela; Schwartz, Stephen E.; Huang, Dong
2018-04-01
Optically thin clouds have a strong radiative effect and need to be represented accurately in climate models. Cloud optical depth of thin clouds was retrieved using high resolution digital photography, lidar, and a radiative transfer model. The Doppler Lidar was operated at 1.5 μm, minimizing return from Rayleigh scattering, emphasizing return from aerosols and clouds. This approach examined cloud structure on scales 3 to 5 orders of magnitude finer than satellite products, opening new avenues for examination of cloud structure and evolution.
Optical Instruments Synergy in Determination of Optical Depth of Thin Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vladutescu, Daniela V.; Schwartz, Stephen E.
Optically thin clouds have a strong radiative effect and need to be represented accurately in climate models. Cloud optical depth of thin clouds was retrieved using high resolution digital photography, lidar, and a radiative transfer model. The Doppler Lidar was operated at 1.5 μm, minimizing return from Rayleigh scattering, emphasizing return from aerosols and clouds. This approach examined cloud structure on scales 3 to 5 orders of magnitude finer than satellite products, opening new avenues for examination of cloud structure and evolution.
Aleman, Tomas S.; Huang, Jiayan; Garrity, Sean T.; Carter, Stuart B.; Aleman, Wendy D.; Ying, Gui-shuang; Tamhankar, Madhura A.
2014-01-01
Purpose To study the relationship between the appearance of the optic nerve and the retinal nerve fiber layer (RNFL) thickness determined by spectral domain optical coherence tomography (OCT). Methods Records from patients with spectral domain-OCT imaging in a neuro-ophthalmology practice were reviewed. Eyes with glaucoma/glaucoma suspicion, macular/optic nerve edema, pseudophakia, and with refractive errors > 6D were excluded. Optic nerve appearance by slit lamp biomicroscopy was related to the RNFL thickness by spectral domain-OCT and to visual field results. Results Ninety-one patients (176 eyes; mean age: 49 ± 15 years) were included. Eighty-three eyes (47%) showed optic nerve pallor; 89 eyes (50.6%) showed RNFL thinning (sectoral or average peripapillary). Average peripapillary RNFL thickness in eyes with pallor (mean ± SD = 76 ± 17 μm) was thinner compared to eyes without pallor (91 ± 14 μm, P < 0.001). Optic nerve pallor predicted RNFL thinning with a sensitivity of 69% and a specificity of 75%. Optic nerve appearance predicted RNFL thinning (with a sensitivity and specificity of 81%) when RNFL had thinned by ∼ 40%. Most patients with pallor had RNFL thinning with (66%) or without (25%) visual field loss; the remainder had normal RNFL and fields (5%) or with visual field abnormalities (4%). Conclusions Optic nerve pallor as a predictor of RNFL thinning showed fair sensitivity and specificity, although it is optimally sensitive/specific only when substantial RNFL loss has occurred. Translational Relevance Finding an acceptable relationship between the optic nerve appearance by ophthalmoscopy and spectral domain-OCT RNFL measures will help the clinician's interpretation of the information provided by this technology, which is gaining momentum in neuro-ophthalmic research. PMID:25374773
Metal-Coated Optical Fibers for High Temperature Applications
NASA Technical Reports Server (NTRS)
Zeakes, Jason; Murphy, Kent; Claus, Richard; Greene, Jonathan; Tran, Tuan
1996-01-01
This poster will highlight on-going research at the Virginia Tech Fiber & Electro-Optics Research Center (FEORC) in the area of thin films on optical fibers. Topics will include the sputter deposition of metals and metal; alloys onto optical fiber and fiber optic sensors for innovative applications. Specific information will be available on thin film fiber optic hydrogen sensors, corrosion sensors, and metal-coated optical fiber for high temperature aerospace applications.
On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism.
Miniewicz, A; Quintard, C; Orlikowska, H; Bartkiewicz, S
2017-07-19
Gas bubbles can be trapped and then manipulated with laser light. In this report, we propose the detailed optical trapping mechanism of gas bubbles confined inside a thin light-absorbing liquid layer between two glass plates. The necessary condition of bubble trapping in this case is the direct absorption of light by the solution containing a dye. Due to heat release, fluid whirls propelled by the surface Marangoni effect at the liquid/gas interface emerge and extend to large distances. We report the experimental microscopic observation of the origin of whirls at an initially flat liquid/air interface as well as at the curved interface of a liquid/gas bubble and support this finding with advanced numerical simulations using the finite element method within the COMSOL Multiphysics platform. The simulation results were in good agreement with the observations, which allowed us to propose a simple physical model for this particular trapping mechanism, to establish the origin of forces attracting bubbles toward a laser beam and to predict other phenomena related to this effect.
Evaporation system and method for gas jet deposition of thin film materials
Schmitt, J.J.; Halpern, B.L.
1994-10-18
A method and apparatus are disclosed for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases. 8 figs.
Evaporation system and method for gas jet deposition of thin film materials
Schmitt, Jerome J.; Halpern, Bret L.
1994-01-01
A method and apparatus for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases.
Structure and properties of optical-discharge plasma in CO2-laser beam near target surface
NASA Astrophysics Data System (ADS)
Danshchikov, Ye. V.; Dymshakov, V. A.; Lebedev, F. V.; Ryazanov, A. V.
1986-05-01
An experimental study of optical-discharge plasma in a CO2-laser beam at a target surface was made for the purpose of exploring the not yet understood role of this plasma in the laser-target interaction process. Such a plasma was produced by means of a quasi-continuous CO2-laser with an unstable resonator, its power being maintained constant for 1 ms periods. Its radiation was focused on the surfaces of thick and seeding thin Al, Ti, and Ta targets inclined at an approximately 70 deg. angle to the beam, inside a hermetic chamber containing air, argon, or helium under atmospheric pressure. The radiation intensity distribution over the focal plane and the nearest caustic surface in the laser beam was measured along with the plasma parameters, the latter by the methods of spectral analysis and photoelectric recording. The instrumentation for this purpose included an MDR-3 monochromator with an entrance slit, a double electron-optical converter, a memory oscillograph, and an SI-10-30 ribbon lamp as radiation reference standard. The results yielded integral diametral intensity distributions of the emission lines Ti-II (457.2 nm), Ti-I (464 nm), Ar-II (462 nm), radial and axial temperature profiles of optical discharge in metal vapor in surrounding gas, and the radial temperature profile of irradiated metal surface at successive instants of time. The results reveal marked differences between the structures and the properties of optical-discharge plasma in metal vapor and in surrounding gas, optical discharge in the former being characterized by localization within the laser beam and optical discharge in the latter being characterized by a drift away from the target.
Effect of temperature on optical properties of PMMA/SiO2 composite thin film
NASA Astrophysics Data System (ADS)
Soni, Gyanesh; Srivastava, Subodh; Soni, Purushottam; Kalotra, Pankaj; Vijay, Y. K.
2018-05-01
Effect of temperature on PMMA/SiO2 composites thin films were investigated. Nanocomposite flexible thin films of 60 µm thicknesses with different loading of SiO2 nanoparticles were prepared using solution casting method. SEM images show that SiO2 nanoparticles are distributed uniformly in PMMA matrix without any lumps on the surface, and PMMA/SiO2 nano composite thin films had a smoother and regular morphology. UV-Vis and optical band gap measurements revealed that both the concentration of SiO2 nanoparticles and temperature affect the optical properties of the composite thin film in comparison to the pure PMMA film.
NASA Astrophysics Data System (ADS)
Brusberg, Lars; Lang, Günter; Schröder, Henning
2011-01-01
The proposed novel packaging approach merges micro-system packaging and glass integrated optics. It provides 3D optical single-mode intra system links to bridge the gap between novel photonic integrated circuits and the glass fibers for inter system interconnects. We introduce our hybrid 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip links. Optical mirrors and lenses provide optical mode matching for photonic IC assemblies and optical fiber interconnects. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties as reviewed in the paper. That makes it perfect for micro-system packaging. The adopted planar waveguide process based on ion-exchange technology is capable for high-volume manufacturing. This ion-exchange process and the optical propagation are described in detail for thin glass substrates. An extensive characterization of all basic circuit elements like straight and curved waveguides, couplers and crosses proves the low attenuation of the optical circuit elements.
NASA Astrophysics Data System (ADS)
Zahran, H. Y.; Yahia, I. S.; Alamri, F. H.
2017-05-01
Pyronin Y dye (PY) is a kind of xanthene derivatives. Thin films of pyronin Y were deposited onto highly cleaned glass substrates using low-cost/spin coating technique. The structure properties of pyronin Y thin films with different thicknesses were investigated by using X-ray diffraction (XRD) and atomic force microscope (AFM). PY thin films for all the studied thicknesses have an amorphous structure supporting the short range order of the grain size. AFM supports the nanostructure with spherical/clusters morphologies of the investigated thin films. The optical constants of pyronin Y thin films for various thicknesses were studied by using UV-vis-NIR spectrophotometer in the wavelength range 350-2500 nm. The transmittance T(λ), reflectance R(λ) spectral and absorbance (abs(λ)) were obtained for all film thicknesses at room temperature and the normal light incident. These films showed a high transmittance in the wide scale wavelengths. For different thicknesses of the studied thin films, the optical band gaps were determined and their values around 2 eV. Real and imaginary dielectric constants, dissipation factor and the nonlinear optical parameters were calculated in the wavelengths to the range 300-2500 nm. The pyronin Y is a new organic semiconductor with a good optical absorption in UV-vis regions and it is suitable for nonlinear optical applications.
Fast Industrial Inspection of Optical Thin Film Using Optical Coherence Tomography
Shirazi, Muhammad Faizan; Park, Kibeom; Wijesinghe, Ruchire Eranga; Jeong, Hyosang; Han, Sangyeob; Kim, Pilun; Jeon, Mansik; Kim, Jeehyun
2016-01-01
An application of spectral domain optical coherence tomography (SD-OCT) was demonstrated for a fast industrial inspection of an optical thin film panel. An optical thin film sample similar to a liquid crystal display (LCD) panel was examined. Two identical SD-OCT systems were utilized for parallel scanning of a complete sample in half time. Dual OCT inspection heads were utilized for transverse (fast) scanning, while a stable linear motorized translational stage was used for lateral (slow) scanning. The cross-sectional and volumetric images of an optical thin film sample were acquired to detect the defects in glass and other layers that are difficult to observe using visual inspection methods. The rapid inspection enabled by this setup led to the early detection of product defects on the manufacturing line, resulting in a significant improvement in the quality assurance of industrial products. PMID:27690043
Thin film ferroelectric electro-optic memory
NASA Technical Reports Server (NTRS)
Thakoor, Sarita (Inventor); Thakoor, Anilkumar P. (Inventor)
1993-01-01
An electrically programmable, optically readable data or memory cell is configured from a thin film of ferroelectric material, such as PZT, sandwiched between a transparent top electrode and a bottom electrode. The output photoresponse, which may be a photocurrent or photo-emf, is a function of the product of the remanent polarization from a previously applied polarization voltage and the incident light intensity. The cell is useful for analog and digital data storage as well as opto-electric computing. The optical read operation is non-destructive of the remanent polarization. The cell provides a method for computing the product of stored data and incident optical data by applying an electrical signal to store data by polarizing the thin film ferroelectric material, and then applying an intensity modulated optical signal incident onto the thin film material to generate a photoresponse therein related to the product of the electrical and optical signals.
Nanostructured hematite thin films for photoelectrochemical water splitting
NASA Astrophysics Data System (ADS)
Maabong, Kelebogile; Machatine, Augusto G. J.; Mwankemwa, Benard S.; Braun, Artur; Bora, Debajeet K.; Toth, Rita; Diale, Mmantsae
2018-04-01
Nanostructured hematite thin films prepared by dip coating technique were investigated for their photoelectrochemical activity for generation of hydrogen from water splitting. Structural, morphological and optical analyses of the doped/undoped films were performed by X-ray diffraction, high resolution field emission-scanning electron microscopy, UV-vis spectrophotometry and Raman spectroscopy. The photoelectrochemical measurements of the films showed enhanced photoresponse and cathodic shift of the onset potential upon Ti doping indicating improved transfer of photoholes at the semiconductor-electrolyte interface. Films doped with 1 at% Ti produced 0.72 mA/cm2 at 1.23 V vs RHE which is 2 times higher than current density for the pure film (0.30 mA/cm2, at 1.23 V vs RHE). Gas chromatography analysis of the films also showed enhanced hydrogen evolution at 1 at% Ti with respect to pure film.
He, Yuan; Li, Xiang; Que, Long
2012-10-01
Optically transparent anodic aluminum oxide (AAO) nanostructure thin film has been successfully fabricated from lithographically patterned aluminum on indium tin oxide (ITO) glass substrates for the first time, indicating the feasibility to integrate the AAO nanostructures with microdevices or microfluidics for a variety of applications. Both one-step and two-step anodization processes using sulfuric acid and oxalic acid have been utilized for fabricating the AAO nanostructure thin film. The optical properties of the fabricated AAO nanostructure thin film have been evaluated and analyzed.
Compositional and structural analysis of nitrogen incorporated and ion implanted diamond thin films
NASA Astrophysics Data System (ADS)
Garratt, Elias James
Significant progress in area of nano-structured thin film systems has taken place in recent decades. In particular, diamond thin film systems are being widely studied for their wear resistant, optical and electronic properties. Of the various methods researchers use to modify the structure of such films, three techniques in particular are of interest due to their versatility: modification of the growth atmosphere, growth on metalized substrates, providing an interfacial layer, and modification through post-growth ion implantation. The aim of this study is to investigate the effects each has to the structure and composition of elements. Different techniques are applied in each section; nitrogen gas dilution in a microwave plasma CVD system, diamond deposition on a metal interfacial layer and ion implantation in thin nanocrystalline diamond film. The forms of nanocrystalline diamond film resulting from such modifications are investigated using advanced spectroscopic and spectrometric techniques, as well as mechanical testing and surface mapping. The impact of these characterizations will provide valuable perspective to researchers in materials science. Understanding the changes to the structure and properties of this class of thin films, which can be induced through various mechanisms, will allow future researchers to refine these films towards technological applications in areas of hard coatings, electronics and photonics.
Neutral ISM, Ly α , and Lyman-continuum in the Nearby Starburst Haro 11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Thorsen, T. Emil; Östlin, Göran; Hayes, Matthew
2017-03-01
Star-forming galaxies are believed to be a major source of Lyman continuum (LyC) radiation responsible for reionizing the early universe. Direct observations of escaping ionizing radiation have however been sparse and with low escape fractions. In the local universe, only 10 emitters have been observed, with typical escape fractions of a few percent. The mechanisms regulating this escape need to be strongly evolving with redshift in order to account for the epoch of reionization. Gas content and star formation feedback are among the main suspects, known to both regulate neutral gas coverage and evolve with cosmic time. In this paper,more » we reanalyze Hubble Space Telescope ( HST )-Cosmic Origins Spectrograph (COS) spectrocopy of the first detected local LyC leaker, Haro 11. We examine the connection between LyC leakage and Ly α line shape, and feedback-influenced neutral interstellar medium (ISM) properties like kinematics and gas distribution. We discuss the two extremes of an optically thin, density bounded ISM and a riddled, optically thick, ionization bounded ISM, and how Haro 11 fits into theoretical predictions. We find that the most likely ISM model is a clumpy neutral medium embedded in a highly ionized medium with a combined covering fraction of unity and a residual neutral gas column density in the ionized medium high enough to be optically thick to Ly α , but low enough to be at least partly transparent to LyC and undetected in Si ii. This suggests that star formation feedback and galaxy-scale interaction events play a major role in opening passageways for ionizing radiation through the neutral medium.« less
Microfabricated alkali vapor cell with anti-relaxation wall coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straessle, R.; Pétremand, Y.; Briand, D.
2014-07-28
We present a microfabricated alkali vapor cell equipped with an anti-relaxation wall coating. The anti-relaxation coating used is octadecyltrichlorosilane and the cell was sealed by thin-film indium-bonding at a low temperature of 140 °C. The cell body is made of silicon and Pyrex and features a double-chamber design. Depolarizing properties due to liquid Rb droplets are avoided by confining the Rb droplets to one chamber only. Optical and microwave spectroscopy performed on this wall-coated cell are used to evaluate the cell's relaxation properties and a potential gas contamination. Double-resonance signals obtained from the cell show an intrinsic linewidth that is significantlymore » lower than the linewidth that would be expected in case the cell had no wall coating but only contained a buffer-gas contamination on the level measured by optical spectroscopy. Combined with further experimental evidence this proves the presence of a working anti-relaxation wall coating in the cell. Such cells are of interest for applications in miniature atomic clocks, magnetometers, and other quantum sensors.« less
The properties of RE-TM magneto-optical films
NASA Astrophysics Data System (ADS)
Lee, Z. Y.; Miao, X. S.; Zhu, P.; Hu, Y. S.; Wan, D. F.; Dai, D. W.; Chen, S. B.; Lin, G. Q.
1992-09-01
In this paper, the magnetic, magneto-optical and galvonomagnetic properties, and their temperature dependence for LRE-TM SmCo, SmCoDy and HRE-TM TbFeCo magneto-optical films as high density recording media prepared by rf magnetron sputtering or evaporation are reported. By adding Dy to SmCo thin film, the SmCoDy thin film is more suitable for magneto-optical recording, its domain size being below 0.63 μm. The Kerr enhancement and corrosion protective effects of AIN and AlSiN for optimum design of the multi-layer structure of magneto-optical disk are described. The instruments of measuring the magneto-optical Kerr effect and magneto-optical recording domain characteristics of thin films are reviewed.
NASA Astrophysics Data System (ADS)
Sosnin, D.; Kudryashov, D.; Mozharov, A.
2017-11-01
Titanium nitride is a promising material due to its low resistivity, high hardness and chemical inertness. Titanium nitride (TiN) can be applied as an ohmic contact for n-GaN and rectifying contact for p-GaN and also as a part of perovskite solar cell. A technology of TiN low temperature reactive rf-magnetron sputtering has been developed. Electrical and optical properties of titanium nitride were studied as a function of the rf-power and gas mixture composition. Reflectance and transmittance spectra were measured. Cross-section and surface SEM image were obtained. 250 nm thin films of TiN with a resistivity of 23.6 μOm cm were obtained by rf-magnetron sputtering at low temperature.
NASA Astrophysics Data System (ADS)
Drake, R. Paul; Visco, A.; Doss, F.; Reighard, A.; Froula, D.; Glenzer, S.; Knauer, J.
2008-05-01
Radiative shocks are shock waves fast enough that radiation from the shock-heated matter alters the structure of the shock. They are of fundamental interest to high-energy-density physics and also have applications throughout astrophysics. This poster will review the dimensionless parameters that determine structure in these shocks and will discuss recent experiments to measure such structure for strongly radiative shocks that are optically thin upstream and optically thick downstream. The shock transition itself heats mainly the ions. Immediately downstream of the shock, the ions heat the electrons and the electrons radiate, producing an optically thin cooling layer, followed by the downstream layer of warm, shocked material. The axial structure of these systems is of interest, because the transition from precursor through the cooling layer to the final state is complex and difficult to calculate. Their lateral structure is also of interest, as they seem likely to be subject to some variation on the Vishniac instability of thin layers. In our experiments to produce such shocks, laser ablation launches a Be plasma into a tube of Xe or Ar gas, at a velocity above 100 km/s. This drives a shock down the tube. Radiography provides fundamental information about the structure and evolution of the shocked material in Xe. Thomson scattering and pyrometry have provided data in Ar. We will summarize the available evidence regarding the properties of these shocks, and will discuss their connections to astrophysical cases. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-07NA28058, DE-FG52-04NA00064, and other grants and contracts.
Optical and structural properties of cobalt-permalloy slanted columnar heterostructure thin films
NASA Astrophysics Data System (ADS)
Sekora, Derek; Briley, Chad; Schubert, Mathias; Schubert, Eva
2017-11-01
Optical and structural properties of sequential Co-column-NiFe-column slanted columnar heterostructure thin films with an Al2O3 passivation coating are reported. Electron-beam evaporated glancing angle deposition is utilized to deposit the sequential multiple-material slanted columnar heterostructure thin films. Mueller matrix generalized spectroscopic ellipsometry data is analyzed with a best-match model approach employing the anisotropic Bruggeman effective medium approximation formalism to determine bulk-like and anisotropic optical and structural properties of the individual Co and NiFe slanted columnar material sub-layers. Scanning electron microscopy is applied to image the Co-NiFe sequential growth properties and to verify the results of the ellipsometric analysis. Comparisons to single-material slanted columnar thin films and optically bulk solid thin films are presented and discussed. We find that the optical and structural properties of each material sub-layer of the sequential slanted columnar heterostructure film are distinct from each other and resemble those of their respective single-material counterparts.
NASA Astrophysics Data System (ADS)
Pat, Suat; Özen, Soner; Korkmaz, Şadan
2018-01-01
We report the influence of Sn doping on microstructure, surface, and optical properties of GaN thin films deposited on glass and polyethylene terephthalate (PET) substrate. Sn-doped GaN thin films have been deposited by thermionic vacuum arc (TVA) at low temperature. TVA is a rapid deposition technology for thin film growth. Surface and optical properties of the thin films were presented. Grain size, height distribution, roughness values were determined. Grain sizes were calculated as 20 nm and 13 nm for glass and PET substrates, respectively. Nano crystalline forms were shown by field emission scanning electron microscopy. Optical band gap values were determined by optical methods and photoluminescence measurement. The optical band gap values of Sn doped GaN on glass and PET were determined to be approximately ˜3.40 eV and ˜3.47 eV, respectively. As a result, TVA is a rapid and low temperature deposition technology for the Sn doped GaN deposited on glass and PET substrate.
NASA Astrophysics Data System (ADS)
Abdel-Khalek, H.; El-Samahi, M. I.; El-Mahalawy, Ahmed M.
2018-06-01
The influence of plasma exposure on structural, morphological and optical properties of copper (II) acetylacetonate thin films deposited by thermal evaporation technique was investigated. Copper (II) acetylacetonate as-grown thin films were exposed to the atmospheric plasma for different times. The exposure of as-grown cu(acac)2 thin film to atmospheric plasma for 5 min modified its structural, morphological and optical properties. The effect of plasma exposure on structure and roughness of cu(acac)2 thin films was evaluated by XRD and AFM techniques, respectively. The XRD results showed an increment in crystallinity due to exposure for 5 min, but, when the exposure time reaches 10 min, the film was transformed to an amorphous state. The AFM results revealed a strong modification of films roughness when the average roughness decreased from 63.35 nm to 1 nm as a result of interaction with plasma. The optical properties of as-grown and plasma exposured cu(acac)2 thin films were studied using spectrophotometric method. The exposure of cu(acac)2 thin films to plasma produced the indirect energy gap decrease from 3.20 eV to 2.67 eV for 10 min exposure time. The dispersion parameters were evaluated in terms of single oscillator model for as-grown and plasma exposured thin films. The influence of plasma exposure on third order optical susceptibility was studied.
NASA Technical Reports Server (NTRS)
Abdeldayem, Hossin; Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin; Witherow, William K.; Bank, Curtis; Shields, Angela; Hicks, Rosline; Ashley, Paul R.
1996-01-01
In this paper, we will take a closer look at the state of the art of polydiacetylene, and metal-free phthalocyanine films, in view of the microgravity impact on their optical properties, their nonlinear optical properties and their potential advantages for integrated optics. These materials have many attractive features with regard to their use in integrated optical circuits and optical switching. Thin films of these materials processed in microgravity environment show enhanced optical quality and better molecular alignment than those processed in unit gravity. Our studies of these materials indicate that microgravity can play a major role in integrated optics technology. Polydiacetylene films are produced by UV irradiation of monomer solution through an optical window. This novel technique of forming polydiacetylene thin films has been modified for constructing sophisticated micro-structure integrated optical patterns using a pre-programmed UV-Laser beam. Wave guiding through these thin films by the prism coupler technique has been demonstrated. The third order nonlinear parameters of these films have been evaluated. Metal-free phthalocyanine films of good optical quality are processed in our laboratories by vapor deposition technique. Initial studies on these films indicate that they have excellent chemical, laser, and environmental stability. They have large nonlinear optical parameters and show intrinsic optical bistability. This bistability is essential for optical logic gates and optical switching applications. Waveguiding and device making investigations of these materials are underway.
Effect of 60Co γ-irradiation on structural and optical properties of thin films of Ga10Se80Hg10
NASA Astrophysics Data System (ADS)
Ahmad, Shabir; Asokan, K.; Shahid Khan, Mohd.; Zulfequar, M.
2015-08-01
Thin films of Ga10Se80Hg10 have been deposited onto a chemically cleaned Al2O3 substrates by thermal evaporation technique under vacuum. The investigated thin films are irradiated by 60Co γ-rays in the dose range of 50-150 kGy. X-ray diffraction patterns of the investigated thin films confirm the preferred crystallite growth occurs in the tetragonal phase structure. It also shows, the average crystallite size increases after γ-exposure, which indicates the crystallinity of the material increases after γ-irradiation. These results were further supported by surface morphological analysis carried out by scanning electron microscope and atomic force microscope which also shows the crystallinity of the material increases with increasing the γ-irradiation dose. The optical transmission spectra of the thin films at normal incidence were investigated in the spectral range from 190 to 1100 nm. Using the transmission spectra, the optical constants like refractive index (n) and extinction coefficient (k) were calculated based on Swanepoel's method. The optical band gap (Eg) was also estimated using Tauc's extrapolation procedure. The optical analysis shows: the value of optical band gap of investigated thin films decreases and the corresponding absorption coefficient increases continuously with increasing dose of γ-irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, D.K.; Tracy, C.E.
The real and perceived risks of hydrogen fuel use, particularly in passenger vehicles, will require extensive safety precautions including hydrogen leak detection. Conventional hydrogen gas sensors require electrical wiring and may be too expensive for deployment in multiple locations within a vehicle. In this recently initiated project, we are attempting to develop a reversible, thin-film, chemochromic sensor that can be applied to the end of a polymer optical fiber. The presence of hydrogen gas causes the film to become darker. A light beam transmitted from a central instrument in the vehicle along the sensor fibers will be reflected from themore » ends of the fiber back to individual light detectors. A decrease in the reflected light signal will indicate the presence and concentration of hydrogen in the vicinity of the fiber sensor. The typical thin film sensor consists of a layer of transparent, amorphous tungsten oxide covered by a very thin reflective layer of palladium. When the sensor is exposed to hydrogen, a portion of the hydrogen is dissociated, diffuses through the palladium and reacts with the tungsten oxide to form a blue insertion compound, H{sub X}WO{sub 3}- When the hydrogen gas is no longer present, the hydrogen will diffuse out of the H{sub X}WO{sub 3} and oxidize at the palladium/air interface, restoring the tungsten oxide film and the light signal to normal. The principle of this detection scheme has already been demonstrated by scientists in Japan. However, the design of the sensor has not been optimized for speed of response nor tested for its hydrogen selectivity in the presence of hydrocarbon gases. The challenge of this project is to modify the basic sensor design to achieve the required rapid response and assure sufficient selectivity to avoid false readings.« less
Thin-film fiber optic hydrogen and temperature sensor system
Nave, Stanley E.
1998-01-01
The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiberoptic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavilan, Lisseth; Carrasco, Nathalie; Vettier, Ludovic
In this experimental study we investigate the role of atmospheric CO{sub 2} on the optical properties of organic photochemical aerosols. To this end, we add CO{sub 2} to a N{sub 2}:CH{sub 4} gas mixture used in a plasma typically used for Titan studies. We produce organic thin films (tholins) in plasmas where the CO{sub 2}/CH{sub 4} ratio is increased from 0 to 4. We measure these films via spectrometric ellipsometry and apply a Tauc–Lorentz model, used for optically transparent materials, to obtain the thickness of the thin film, its optical band gap, and the refractive indices in the UV–visible (270–600more » nm). All samples present a significant absorption band in the UV. According to the Tauc–Lorentz model, as the CO{sub 2}/CH{sub 4} ratio is quadrupled, the position of the UV band is shifted from ∼177 nm to 264 nm while its strength is quadrupled. Consequently, we infer that oxidized organic aerosols absorb more efficiently at longer UV wavelengths than reduced aerosols. Our laboratory wavelength-tabulated UV–vis refractive indices provide new constraints to atmospheric models of the early Earth and Earth-like exoplanets including photochemical hazes formed under increasingly oxidizing conditions.« less
NASA Astrophysics Data System (ADS)
Panda, A. B.; Mahapatra, S. K.; Barhai, P. K.; Das, A. K.; Banerjee, I.
2012-10-01
Nanostructured TiO2 thin films were deposited using RF reactive magnetron sputtering at different O2 flow rates (20, 30, 50 and 60 sccm) and constant RF power of 200 W. In situ investigation of the nucleation and growth of the films was made by Optical Emission Spectroscopy (OES). The nano amorphous nature as revealed from X-ray diffraction (XRD) of the as deposited films and abundance of the Ti3+ surface oxidation states and surface hydroxyl group (OH-) in the films deposited at 50 sccm as determined from X-ray photo electron spectroscopy (XPS) was explained on the basis of emission spectra studies. The increase in band gap and decrease in particle size with O2 flow rate was observed from transmission spectra of UV-vis spectroscopy. Photoinduced hydrophilicity has been studied using Optical Contact Angle (OCA) measurement. The post irradiated films showed improved hydrophilicity. The bactericidal efficiency of these films was investigated taking Escherichia coli as model bacteria. The films deposited at 50 sccm shows better bactericidal activity as revealed from the optical density (OD) measurement. The qualitative analysis of the bactericidal efficiency was depicted from Scanning Electron Microscope images. A correlation between bactericidal efficiency and the deposited film has been established and explained on the basis of nucleation growth, band gap and hydrophilicity of the films.
Shtenberg, Giorgi; Massad-Ivanir, Naama; Fruk, Ljiljana; Segal, Ester
2014-09-24
The influence of thermal oxidation conditions on the performance of porous Si optical biosensors used for label-free and real-time monitoring of enzymatic activity is studied. We compare three oxidation temperatures (400, 600, and 800 °C) and their effect on the enzyme immobilization efficiency and the intrinsic stability of the resulting oxidized porous Si (PSiO2), Fabry-Pérot thin films. Importantly, we show that the thermal oxidation profoundly affects the biosensing performance in terms of greater optical sensitivity, by monitoring the catalytic activity of horseradish peroxidase and trypsin-immobilized PSiO2. Despite the significant decrease in porous volume and specific surface area (confirmed by nitrogen gas adsorption-desorption studies) with elevating the oxidation temperature, higher content and surface coverage of the immobilized enzymes is attained. This in turn leads to greater optical stability and sensitivity of PSiO2 nanostructures. Specifically, films produced at 800 °C exhibit stable optical readout in aqueous buffers combined with superior biosensing performance. Thus, by proper control of the oxide layer formation, we can eliminate the aging effect, thus achieving efficient immobilization of different biomolecules, optical signal stability, and sensitivity.
Optical Coherence Tomography in Glaucoma
NASA Astrophysics Data System (ADS)
Berisha, Fatmire; Hoffmann, Esther M.; Pfeiffer, Norbert
Retinal nerve fiber layer (RNFL) thinning and optic nerve head cupping are key diagnostic features of glaucomatous optic neuropathy. The higher resolution of the recently introduced SD-OCT offers enhanced visualization and improved segmentation of the retinal layers, providing a higher accuracy in identification of subtle changes of the optic disc and RNFL thinning associated with glaucoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazur, Michal, E-mail: michal.mazur@pwr.edu.pl; Wojcieszak, Damian; Domaradzki, Jaroslaw
2015-12-15
Highlights: • HfTiO{sub 4} thin films were deposited by magnetron co-sputtering. • As-prepared and annealed at 800 °C thin films were nanocrystalline. • Optical properties and hardness were investigated in relation to thin films structure. • Hardness was 3-times higher in the case of as-deposited thin films. • HfTiO{sub 4} thin films are suitable for use as optical coatings with protective properties. - Abstract: Titania (TiO{sub 2}) and hafnium oxide (HfO{sub 2}) thin films are in the focus of interest to the microelectronics community from a dozen years. Because of their outstanding properties like, among the others, high stability, highmore » refractive index, high electric permittivity, they found applications in many optical and electronics domains. In this work discussion on the hardness, microstructure and optical properties of as-deposited and annealed HfTiO{sub 4} thin films has been presented. Deposited films were prepared using magnetron co-sputtering method. Performed investigations revealed that as-deposited coatings were nanocrystalline with HfTiO{sub 4} structure. Deposited films were built from crystallites of ca. 4–12 nm in size and after additional annealing an increase in crystallites size up to 16 nm was observed. Micro-mechanical properties, i.e., hardness and elastic modulus were determined using conventional load-controlled nanoindentation testing. the annealed films had 3-times lower hardness as-compared to as-deposited ones (∼9 GPa). Based on optical investigations real and imaginary components of refractive index were calculated, both for as-deposited and annealed thin films. The real refractive index component increased after annealing from 2.03 to 2.16, while extinction coefficient increased by an order from 10{sup −4} to 10{sup −3}. Structure modification was analyzed together with optical energy band-gap, Urbach energy and using Wemple–DiDomenico model.« less
Efficient 'Optical Furnace': A Cheaper Way to Make Solar Cells is Reaching the Marketplace
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Kuegelgen, T.
In Bhushan Sopori's laboratory, you'll find a series of optical furnaces he has developed for fabricating solar cells. When not in use, they sit there discreetly among the lab equipment. But when a solar silicon wafer is placed inside one for processing, Sopori walks over to a computer and types in a temperature profile. Almost immediately this fires up the furnace, which glows inside and selectively heats up the silicon wafer to 800 degrees centigrade by the intense light it produces. Sopori, a principal engineer at the National Renewable Energy Laboratory, has been researching and developing optical furnace technology formore » around 20 years. He says it's a challenging technology to develop because there are many issues to consider when you process a solar cell, especially in optics. Despite the challenges, Sopori and his research team have advanced the technology to the point where it will benefit all solar cell manufacturers. They are now developing a commercial version of the furnace in partnership with a manufacturer. 'This advanced optical furnace is highly energy efficient, and it can be used to manufacture any type of solar cell,' he says. Each type of solar cell or manufacturing process typically requires a different furnace configuration and temperature profile. With NREL's new optical furnace system, a solar cell manufacturer can ask the computer for any temperature profile needed for processing a solar cell, and the same type of furnace is suitable for several solar cell fabrication process steps. 'In the future, solar cell manufacturers will only need this one optical furnace because it can be used for any process, including diffusion, metallization and oxidation,' Sopori says. 'This helps reduce manufacturing costs.' One startup company, Applied Optical Systems, has recognized the furnace's potential for manufacturing thin-film silicon cells. 'We'd like to develop thin-film silicon cells with higher efficiencies, up to 15 to 18 percent, and we believe this furnace will enable us to do so,' says A. Rangappan, founder and CEO of Applied Optical Systems. Rangappan also says it will take only a few minutes for the optical furnace to process a thin-film solar cell, which reduces manufacturing costs. Overall, he estimates the company's solar cell will cost around 80 cents per watt. For manufacturing these thin-film silicon cells, Applied Optical Systems and NREL have developed a partnership through a cooperative research and development agreement (CRADA) to construct an optical furnace system prototype. DOE is providing $500,000 from its Technology Commercialization Development Fund to help offset the prototype's development costs because of the technology's significant market potential. The program has provided the NREL technology transfer office with a total of $4 million to expand such collaborative efforts between NREL researchers and companies. Applied Optical will construct a small version of the optical furnace based on the prototype design in NREL's process development and integration laboratory through a separate CRADA. This small furnace will only develop one solar cell wafer at a time. Then, the company will construct a large, commercial-scale optical furnace at its own facilities, which will turn out around 1,000 solar cell wafers per hour. 'We hope to start using the optical furnace for manufacturing within four to five years,' Rangappan says. Meanwhile, another partnership using the optical furnace has evolved between NREL and SiXtron Advanced Materials, another startup. Together they'll use the optical furnace to optimize the metallization process for novel antireflective solar cell coatings. The process is not only expected to yield higher efficiencies for silicon-based solar cells, but also lowers processing costs and eliminates safety concerns for manufacturers. Most solar cell manufacturers currently use a plasma-enhanced chemical vapor deposition (PECVD) system with compressed and extremely pyrophoric silane gas (SiH4) for applying passivation antireflective coatings (ARC). If silane is exposed to air, the SiH4 will explode - a serious safety issue for high-volume manufacturers. SiXtron's process uses a solid, silicon-based polymer that's converted into noncompressed, nonexplosive gas, which then flows to a standard PECVD system. 'The solid source is so safe to handle that it can be shipped by FedEx,' says Zbigniew Barwicz, president and CEO of SiXtron. Barwicz says manufacturers can use the same PECVD processing equipment for the SiXtron process that they already use for SiH4, a plug-and-play solution. For this novel passivation ARC process, NREL is helping to optimize the metallization parameters. NREL has developed a new technology called optical processing. One of the applications of this process is fire-through contact formation of silicon solar cells.« less
NASA Astrophysics Data System (ADS)
Junda, Maxwell M.; Grice, Corey R.; Subedi, Indra; Yan, Yanfa; Podraza, Nikolas J.
2016-07-01
Ex-situ spectroscopic ellipsometry measurements are made on radio frequency magnetron sputtered oxygenated cadmium sulfide (CdS:O) thin films. Films are deposited onto glass substrates at room temperature and at 270 °C with varying oxygen to total gas flow ratios in the sputtering ambient. Ellipsometric spectra from 0.74 to 5.89 eV are collected before and after annealing at 607 °C to simulate the thermal processes during close-space sublimation of overlying cadmium telluride in that solar cell configuration. Complex dielectric function (ɛ = ɛ1 + iɛ2) spectra are extracted for films as a function of oxygen gas flow ratio, deposition temperature, and post-deposition annealing using a parametric model accounting for critical point transitions and an Urbach tail for sub-band gap absorption. The results suggest an inverse relationship between degree of crystallinity and oxygen gas flow ratio, whereas annealing is shown to increase crystallinity in all samples. Direct band gap energies are determined from the parametric modeling of ɛ and linear extrapolations of the square of the absorption coefficient. As-deposited samples feature a range of band gap energies whereas annealing is shown to result in gap energies ranging only from 2.40 to 2.45 eV, which is close to typical band gaps for pure cadmium sulfide.
Enhancement of Gas Barrier Properties of CFRP Laminates Fabricated Using Thin-Ply Prepregs
NASA Astrophysics Data System (ADS)
横関, 智弘; 高木, 智宏; 吉村, 彰記; Ogasawara, Toshio; 荻原, 慎二
Composite laminates manufactured using thin-ply prepregs are expected to have superior resistance properties against microcracking compared to those using standard prepregs. In this study, comparative investigations are presented on the microcrack accumulation and gas leakage characteristics of CFRP laminates fabricated using standard and thin-ply prepregs, consisting of high-performance carbon fiber and toughened epoxy, as a fundamental research on the cryogenic composite tanks for future space vehicles. It was shown that laminates using thin-ply prepregs exhibited much higher strain at microcrack initiation compared to those using standard prepregs at room and cryogenic temperatures. In addition, helium gas leak tests using CFRP laminated tubular specimens subjected to quasi-static tension loadings were performed. It was demonstrated that CFRP laminates using thin-ply prepregs have higher gas barrier properties than those using standard prepregs.
Nanocrystalline silicon thin films and grating structures for solar cells
NASA Astrophysics Data System (ADS)
Juneja, Sucheta; Sudhakar, Selvakumar; Khonina, Svetlana N.; Skidanov, Roman V.; Porfirevb, Alexey P.; Moissev, Oleg Y.; Kazanskiy, Nikolay L.; Kumar, Sushil
2016-03-01
Enhancement of optical absorption for achieving high efficiencies in thin film silicon solar cells is a challenge task. Herein, we present the use of grating structure for the enhancement of optical absorption. We have made grating structures and same can be integrated in hydrogenated micro/nanocrystalline silicon (μc/nc-Si: H) thin films based p-i-n solar cells. μc/nc-Si: H thin films were grown using plasma enhanced chemical vapor deposition method. Grating structures integrated with μc/nc-Si: H thin film solar cells may enhance the optical path length and reduce the reflection losses and its characteristics can be probed by spectroscopic and microscopic technique with control design and experiment.
Optical, mechanical and structural properties of PMMA/SiO2 nanocomposite thin films
NASA Astrophysics Data System (ADS)
Soni, Gyanesh; Srivastava, Subodh; Soni, Purushottam; Kalotra, Pankaj; Vijay, Y. K.
2018-01-01
We have fabricated PMMA/SiO2 nanocomposite flexible thin films of 60 μm thicknesses by using solution casting method in the presence of transverse electric field. In this paper, we have investigated the effect of SiO2 nanoparticle (NP) loading on optical and mechanical properties of the composite thin film. The SEM images show that nanocomposite thin films have a smoother and uniform morphology. The transmittance peak near 1103 cm-1 in FT-IR spectrum confirms the presence of SiO2 NPs in the composite thin film. It is observed that optical bandgap decreases with an increase in the SiO2 NP concentration. Dynamic mechanical analysis shows that presence of SiO2 NP enhances the mechanical strength of the composite thin film.
Advanced high temperature static strain sensor development
NASA Technical Reports Server (NTRS)
Hulse, C. O.; Stetson, K. A.; Grant, H. P.; Jameikis, S. M.; Morey, W. W.; Raymondo, P.; Grudkowski, T. W.; Bailey, R. S.
1986-01-01
An examination was made into various techniques to be used to measure static strain in gas turbine liners at temperatures up to 1150 K (1600 F). The methods evaluated included thin film and wire resistive devices, optical fibers, surface acoustic waves, the laser speckle technique with a heterodyne readout, optical surface image and reflective approaches and capacitive devices. A preliminary experimental program to develop a thin film capacitive device was dropped because calculations showed that it would be too sensitive to thermal gradients. In a final evaluation program, the laser speckle technique appeared to work well up to 1150 K when it was used through a relatively stagnant air path. The surface guided acoustic wave approach appeared to be interesting but to require too much development effort for the funds available. Efforts to develop a FeCrAl resistive strain gage system were only partially successful and this part of the effort was finally reduced to a characterization study of the properties of the 25 micron diameter FeCrAl (Kanthal A-1) wire. It was concluded that this particular alloy was not suitable for use as the resistive element in a strain gage above about 1000 K.
Advanced high temperature static strain sensor development
NASA Astrophysics Data System (ADS)
Hulse, C. O.; Stetson, K. A.; Grant, H. P.; Jameikis, S. M.; Morey, W. W.; Raymondo, P.; Grudkowski, T. W.; Bailey, R. S.
1986-08-01
An examination was made into various techniques to be used to measure static strain in gas turbine liners at temperatures up to 1150 K (1600 F). The methods evaluated included thin film and wire resistive devices, optical fibers, surface acoustic waves, the laser speckle technique with a heterodyne readout, optical surface image and reflective approaches and capacitive devices. A preliminary experimental program to develop a thin film capacitive device was dropped because calculations showed that it would be too sensitive to thermal gradients. In a final evaluation program, the laser speckle technique appeared to work well up to 1150 K when it was used through a relatively stagnant air path. The surface guided acoustic wave approach appeared to be interesting but to require too much development effort for the funds available. Efforts to develop a FeCrAl resistive strain gage system were only partially successful and this part of the effort was finally reduced to a characterization study of the properties of the 25 micron diameter FeCrAl (Kanthal A-1) wire. It was concluded that this particular alloy was not suitable for use as the resistive element in a strain gage above about 1000 K.
Photocatalytic Anatase TiO2 Thin Films on Polymer Optical Fiber Using Atmospheric-Pressure Plasma.
Baba, Kamal; Bulou, Simon; Choquet, Patrick; Boscher, Nicolas D
2017-04-19
Due to the undeniable industrial advantages of low-temperature atmospheric-pressure plasma processes, such as low cost, low temperature, easy implementation, and in-line process capabilities, they have become the most promising next-generation candidate system for replacing thermal chemical vapor deposition or wet chemical processes for the deposition of functional coatings. In the work detailed in this article, photocatalytic anatase TiO 2 thin films were deposited at a low temperature on polymer optical fibers using an atmospheric-pressure plasma process. This method overcomes the challenge of forming crystalline transition metal oxide coatings on polymer substrates by using a dry and up-scalable method. The careful selection of the plasma source and the titanium precursor, i.e., titanium ethoxide with a short alkoxy group, allowed the deposition of well-adherent, dense, and crystalline TiO 2 coatings at low substrate temperature. Raman and XRD investigations showed that the addition of oxygen to the precursor's carrier gas resulted in a further increase of the film's crystallinity. Furthermore, the films deposited in the presence of oxygen exhibited a better photocatalytic activity toward methylene blue degradation assumedly due to their higher amount of photoactive {101} facets.
Liang, Yuan-Chang; Lung, Tsai-Wen; Wang, Chein-Chung
2016-12-01
Well-crystallized Sn 2 S 3 semiconductor thin films with a highly (111)-crystallographic orientation were grown using RF sputtering. The surface morphology of the Sn 2 S 3 thin films exhibited a sheet-like feature. The Sn 2 S 3 crystallites with a sheet-like surface had a sharp periphery with a thickness in a nanoscale size, and the crystallite size ranged from approximately 150 to 300 nm. Postannealing the as-synthesized Sn 2 S 3 thin films further in ambient air at 400 °C engendered roughened and oxidized surfaces on the Sn 2 S 3 thin films. Transmission electron microscopy analysis revealed that the surfaces of the Sn 2 S 3 thin films transformed into a SnO 2 phase, and well-layered Sn 2 S 3 -SnO 2 heterostructure thin films were thus formed. The Sn 2 S 3 -SnO 2 heterostructure thin film exhibited a visible photoassisted room-temperature gas-sensing behavior toward low concentrations of NO 2 gases (0.2-2.5 ppm). By contrast, the pure Sn 2 S 3 thin film exhibited an unapparent room-temperature NO 2 gas-sensing behavior under illumination. The suitable band alignment at the interface of the Sn 2 S 3 -SnO 2 heterostructure thin film and rough surface features might explain the visible photoassisted room-temperature NO 2 gas-sensing responses of the heterostructure thin film on exposure to NO 2 gas at low concentrations in this work.
Highly Sensitive Nanostructured SnO2 Thin Films For Hydrogen Sensing
NASA Astrophysics Data System (ADS)
Patil, L. A.; Shinde, M. D.; Bari, A. R.; Deo, V. V.
2010-10-01
Nanostructured SnO2 thin films were prepared by ultrasonic spray pyrolysis technique. Aqueous solution (0.05 M) of SnCl4ṡ5H2O in double distilled water was chosen as the starting solution for the preparation of the films. The stock solution was delivered to nozzle with constant and uniform flow rate of 70 ml/h by Syringe pump SK5001. Sono-tek spray nozzle, driven by ultrasonic frequency of 120 kHz, converts the solution into fine spray. The aerosol produced by nozzle was sprayed on glass substrate heated at 150 °C. The sensing performance of the films was tested for various gases such as LPG, hydrogen, ethanol, carbon dioxide and ammonia. The sensor (30 min) showed high gas response (S = 3040 at 350 °C) on exposure of 1000 ppm of hydrogen and high selectivity against other gases. Its response time was short (2 s) and recovery was also fast (12 s). To understand reasons behind this uncommon gas sensing performance of the films, their structural, microstructural, and optical properties were studied using X-ray diffraction, electron microscopy (SEM and TEM) respectively. The results are interpreted
Pál, Edit; Hornok, Viktória; Sebok, Dániel; Majzik, Andrea; Dékány, Imre
2010-08-01
Lysozyme/gold thin layers were prepared by layer-by-layer (LbL) self-assembly method. The build-up of the films was followed by UV-vis-absorbance spectra, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) techniques. The structural property of films was examined by X-ray diffraction (XRD) measurements, while their morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). It was found that gold nanoparticles (NPs) had cubic crystalline structure, the primary particles form aggregates in the thin layer due to the presence of lysozyme molecules. The UV-vis measurements prove change in particle size while the colour of the film changes from wine-red to blue. The layer thickness of films was determined using the above methods and the loose, porous structure of the films explains the difference in the results. The vapour adsorption property of hybrid layers was also studied by QCM using different saturated vapours and ammonia gas. The lysozyme/Au films were most sensitive for ammonia gas among the tested gases/vapours due to the strongest interaction between the functional groups of the protein. Copyright 2010 Elsevier B.V. All rights reserved.
Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr).
Demessence, Aude; Horcajada, Patricia; Serre, Christian; Boissière, Cédric; Grosso, David; Sanchez, Clément; Férey, Gérard
2009-12-14
Stable nanoparticles dispersions of the porous hybrid MIL-101(Cr) allow dip-coating of high quality optical thin films with dual hierarchical porous structure. Moreover, for the first time, mechanical and sorption properties of mesoporous MOFs based thin films are evaluated.
Optical stress generator and detector
Maris, Humphrey J.; Stoner, Robert J
2001-01-01
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.
Optical stress generator and detector
Maris, Humphrey J.; Stoner, Robert J.
1998-01-01
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.
Optical stress generator and detector
Maris, H.J.; Stoner, R.J.
1998-05-05
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects. 32 figs.
Optical stress generator and detector
Maris, Humphrey J.; Stoner, Robert J
2002-01-01
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.
Optical stress generator and detector
Maris, Humphrey J.; Stoner, Robert J
1999-01-01
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.
Characterization of Pb-Doped GaN Thin Films Grown by Thermionic Vacuum Arc
NASA Astrophysics Data System (ADS)
Özen, Soner; Pat, Suat; Korkmaz, Şadan
2018-03-01
Undoped and lead (Pb)-doped gallium nitride (GaN) thin films have been deposited by a thermionic vacuum arc (TVA) method. Glass and polyethylene terephthalate were selected as optically transparent substrates. The structural, optical, morphological, and electrical properties of the deposited thin films were investigated. These physical properties were interpreted by comparison with related analysis methods. The crystalline structure of the deposited GaN thin films was hexagonal wurtzite. The optical bandgap energy of the GaN and Pb-doped GaN thin films was found to be 3.45 eV and 3.47 eV, respectively. The surface properties of the deposited thin films were imaged using atomic force microscopy and field-emission scanning electron microscopy, revealing a nanostructured, homogeneous, and granular surface structure. These results confirm that the TVA method is an alternative layer deposition system for Pb-doped GaN thin films.
A study on micro-structural and optical parameters of InxSe1-x thin film
NASA Astrophysics Data System (ADS)
Patel, P. B.; Desai, H. N.; Dhimmar, J. M.; Modi, B. P.
2018-04-01
Thin film of Indium Selenide (InSe) has been deposited by thermal evaporation technique onto pre cleaned glass substrate under high vacuum condition. The micro-structural and optical properties of InxSe1-x (x = 0.6, 1-x = 0.4) thin film have been characterized by X-ray diffractrometer (XRD) and UV-Visible spectrophotometer. The XRD spectra showed that InSe thin film has single phase hexagonal structure with preferred orientation along (1 1 0) direction. The micro-structural parameters (crystallite size, lattice strain, dislocation density, domain population) for InSe thin film have been calculated using XRD spectra. The optical parameters (absorption, transmittance, reflectance, energy band gap, Urbach energy) of InSe thin film have been evaluated from absorption spectra. The direct energy band gap and Urbach energy of InSe thin film is found to be 1.90 eV and 235 meV respectively.
Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films
NASA Astrophysics Data System (ADS)
Li, Na; Chen, Fei; Shen, Qiang; Wang, Chuanbin; Zhang, Lianmeng
2013-03-01
A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.
Optical sensors and multisensor arrays containing thin film electroluminescent devices
Aylott, Jonathan W.; Chen-Esterlit, Zoe; Friedl, Jon H.; Kopelman, Raoul; Savvateev, Vadim N.; Shinar, Joseph
2001-12-18
Optical sensor, probe and array devices for detecting chemical biological, and physical analytes. The devices include an analyte-sensitive layer optically coupled to a thin film electroluminescent layer which activates the analyte-sensitive layer to provide an optical response. The optical response varies depending upon the presence of an analyte and is detected by a photodetector and analyzed to determine the properties of the analyte.
Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm.
Wang, Wenhui; Wu, Nan; Tian, Ye; Niezrecki, Christopher; Wang, Xingwei
2010-04-26
This paper presents an all-silica miniature optical fiber pressure/acoustic sensor based on the Fabry-Perot (FP) interferometric principle. The endface of the etched optical fiber tip and silica thin diaphragm on it form the FP structure. The uniform and thin silica diaphragm was fabricated by etching away the silicon substrate from a commercial silicon wafer that has a thermal oxide layer. The thin film was directly thermally bonded to the endface of the optical fiber thus creating the Fabry-Perot cavity. Thin films with a thickness from 1microm to 3microm have been bonded successfully. The sensor shows good linearity and hysteresis during measurement. A sensor with 0.75 microm-thick diaphragm thinned by post silica etching was demonstrated to have a sensitivity of 11 nm/kPa. The new sensor has great potential to be used as a non-intrusive pressure sensor in a variety of sensing applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Vipin, E-mail: vipinkumar28@yahoo.co.in; Sharma, D. K.; Agrawal, Sonalika
Cd{sub 1-X}Zn{sub X}S thin films (X = 0.2, 0.4, 0.6, 0.8) have been grown on glass substrate by spray pyrolysis technique using equimolar concentration aqueous solution of cadmium chloride, zinc acetate and thiourea. Prepared thin films have been characterized by UV-VIS spectrophotometer. The optical band gap of the films has been studied by transmission spectra in wavelength range 325-600nm. It has been observed that optical band gap increases with increasing zinc concentration. The optical band gap of these thin films varies from 2.59 to 3.20eV with increasing Zn content.
Research on precision grinding technology of large scale and ultra thin optics
NASA Astrophysics Data System (ADS)
Zhou, Lian; Wei, Qiancai; Li, Jie; Chen, Xianhua; Zhang, Qinghua
2018-03-01
The flatness and parallelism error of large scale and ultra thin optics have an important influence on the subsequent polishing efficiency and accuracy. In order to realize the high precision grinding of those ductile elements, the low deformation vacuum chuck was designed first, which was used for clamping the optics with high supporting rigidity in the full aperture. Then the optics was planar grinded under vacuum adsorption. After machining, the vacuum system was turned off. The form error of optics was on-machine measured using displacement sensor after elastic restitution. The flatness would be convergenced with high accuracy by compensation machining, whose trajectories were integrated with the measurement result. For purpose of getting high parallelism, the optics was turned over and compensation grinded using the form error of vacuum chuck. Finally, the grinding experiment of large scale and ultra thin fused silica optics with aperture of 430mm×430mm×10mm was performed. The best P-V flatness of optics was below 3 μm, and parallelism was below 3 ″. This machining technique has applied in batch grinding of large scale and ultra thin optics.
Tunable thin-film optical filters for hyperspectral microscopy
NASA Astrophysics Data System (ADS)
Favreau, Peter F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.
2013-02-01
Hyperspectral imaging was originally developed for use in remote sensing applications. More recently, it has been applied to biological imaging systems, such as fluorescence microscopes. The ability to distinguish molecules based on spectral differences has been especially advantageous for identifying fluorophores in highly autofluorescent tissues. A key component of hyperspectral imaging systems is wavelength filtering. Each filtering technology used for hyperspectral imaging has corresponding advantages and disadvantages. Recently, a new optical filtering technology has been developed that uses multi-layered thin-film optical filters that can be rotated, with respect to incident light, to control the center wavelength of the pass-band. Compared to the majority of tunable filter technologies, these filters have superior optical performance including greater than 90% transmission, steep spectral edges and high out-of-band blocking. Hence, tunable thin-film optical filters present optical characteristics that may make them well-suited for many biological spectral imaging applications. An array of tunable thin-film filters was implemented on an inverted fluorescence microscope (TE 2000, Nikon Instruments) to cover the full visible wavelength range. Images of a previously published model, GFP-expressing endothelial cells in the lung, were acquired using a charge-coupled device camera (Rolera EM-C2, Q-Imaging). This model sample presents fluorescently-labeled cells in a highly autofluorescent environment. Linear unmixing of hyperspectral images indicates that thin-film tunable filters provide equivalent spectral discrimination to our previous acousto-optic tunable filter-based approach, with increased signal-to-noise characteristics. Hence, tunable multi-layered thin film optical filters may provide greatly improved spectral filtering characteristics and therefore enable wider acceptance of hyperspectral widefield microscopy.
[Preparation of large area Al-ZnO thin film by DC magnetron sputtering].
Jiao, Fei; Liao, Cheng; Han, Jun-Feng; Zhou, Zhen
2009-03-01
Solar cells of p-CIS/n-buffer/ZnO type, where CIS is (CuInS2, CuInSe2 or intermediates, are thin-film-based devices for the future high-efficiency and low-cost photovoltaic devices. As important thin film, the properties of Al-doped ZnO (AZO) directly affect the parameter of the cell, especially for large volume. In the present paper, AZO semiconductor transparent thin film on soda-lime glass was fabricated using cylindrical zinc-aluminum target, which can not only lower the cost of the target but also make the preparation of large area AZO thin film more easily. Using the DC magnet sputtering techniques and rolling target, high utilization efficiency of target was achieved and large area uniform and directional film was realized. An introduction to DC magnet sputtering techniques for large area film fabrication is given. With different measurement methods, such as X-ray diffraction (XRD) and scan electron microscope (SEM), we analyzed large size film's structure, appearance, and electrical and optical characteristics. The XRD spectrum indicated that the AZO film shows well zinc-blende structure with a preferred (002) growth and the c-axis is oriented normal to the substrate plane. The lattice constant is 5.603 9 nm and the mismatch with CdS thin film is only 2 percent. It absolutely satisfied the demand of the GIGS solar cell. The cross-section of the AZO thin film indicates the columnar structure and the surface morphology shows that the crystal size is about 50 nm that is consistent with the result of XRD spectrum. By the optical transmission curve, not only the high transmission rate over 85 percent in the visible spectrum between 400 nm and 700 nm was showed but also the band gap 3.1 eV was estimated. And all these parameters can meet the demand of the large area module of GIGS solar cell. The result is that using alloy target and Ar gas, and controlling the appropriate pressure of oxygen, we can get directional, condensed, uniform, high transmitting rate, low resistance and large size (300 mm x 300 mm) AZO film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller-Sanchez, F.; Prieto, M. A.; Mezcua, M.
2013-01-20
We present observations of the molecular gas in the nuclear environment of three prototypical low-luminosity active galactic nuclei (LLAGNs), based on VLT/SINFONI AO-assisted integral-field spectroscopy of H{sub 2} 1-0 S(1) emission at angular resolutions of {approx}0.''17. On scales of 50-150 pc, the spatial distribution and kinematics of the molecular gas are consistent with a rotating thin disk, where the ratio of rotation (V) to dispersion ({sigma}) exceeds unity. However, in the central 50 pc, the observations reveal a geometrically and optically thick structure of molecular gas (V/{sigma} < 1 and N{sub H} > 10{sup 23} cm{sup -2}) that is likelymore » to be associated with the outer extent of any smaller scale obscuring structure. In contrast to Seyfert galaxies, the molecular gas in LLAGNs has a V/{sigma} < 1 over an area that is {approx}9 times smaller and column densities that are on average {approx}3 times smaller. We interpret these results as evidence for a gradual disappearance of the nuclear obscuring structure. While a disk wind may not be able to maintain a thick rotating structure at these luminosities, inflow of material into the nuclear region could provide sufficient energy to sustain it. In this context, LLAGNs may represent the final phase of accretion in current theories of torus evolution. While the inflow rate is considerable during the Seyfert phase, it is slowly decreasing, and the collisional disk is gradually transitioning to become geometrically thin. Furthermore, the nuclear region of these LLAGNs is dominated by intermediate-age/old stellar populations (with little or no ongoing star formation), consistent with a late stage of evolution.« less
Characterization facility for magneto-optic media and systems
NASA Technical Reports Server (NTRS)
Mansuripur, M.; Fu, H.; Gadetsky, S.; Sugaya, S.; Wu, T. H.; Zambuto, J.; Gerber, R.; Goodman, T.; Erwin, J. K.
1993-01-01
Objectives of this research are: (1) to measure the hysteresis loop, Kerr rotation angle, anisotropy energy profile, Hall voltage, and magnetoresistance of thin-film magneto-optic media using our loop-tracer; (2) measure the wavelength-dependence of the Kerr rotation angle, Theta(sub k), and ellipticity, epsilon(sub k), for thin-film media using our magneto-optic Kerr spectrometer (MOKS); (3) measure the dielectric tensor of thin-film and multilayer samples using our variable-angle magneto-optic ellipsometer (VAMOE); (4) measure the hysteresis loop, coercivity, remanent magnetization, saturation magnetization, and anisotropy energy constant for thin film magnetic media using vibrating sample magnetometry; (5) observe small magnetic domains and investigate their interaction with defects using magnetic force microscopy; (6) perform static read/write/erase experiments on thin-film magneto-optic media using our static test station; (7) integrate the existing models of magnetization, magneto-optic effects, coercivity, and anisotropy in an interactive and user-friendly environment, and analyze the characterization data obtained in the various experiments, using this modeling package; (8) measure focusing- and tracking-error signals on a static testbed, determine the 'feedthrough' for various focusing schemes, investigate the effects of polarization and birefringence, and compare the results with diffraction-based calculations; and (9) measure the birefringence of optical disk substrates using two variable angle ellipsometers.
Thickness Measurement, Rate Control And Automation In Thin Film Coating Technology
NASA Astrophysics Data System (ADS)
Pulker, H. K.
1983-11-01
There are many processes known for fabricating thin films/1, 2.Among them the group of physical vapor deposition processes comprising evaporation, sputtering and ion plating has received special attention.Especially evaporation but also the other PVD techniques are widely used to deposit various single and multilayer coatings for optical and electrical thin film applications/3,4/.A large number of parameters is important in obtaining the required film properties in a reproducible manner when depositing thin films by such processes.Amongst the many are the film thickness, the condensation rate,the substrate temperature,as well as the qualitative and the quantitative composition of the residual gas of primary importance.First of all the film thickness is a dimension which enters in practically all equations used to characterize a thin film. However,when discussing film thickness,definitions are required since there one has to distinguish between various types of thicknesses e.g.geometrical thickness,mass thickness and optical thickness.The geometrical thickness,often also called physical thickness,is defined as the step height between the substrate surface and the film surface.This step height multiplied by the refractive index of the film is termed the optical thickness and is expressed generally in integer multiples of fractional parts of a desired wavelength.The mass thickness finally is defined as the film mass per unit area obtained by weighing.Knowing the density and the optical data of a thin film its mass thickness can be converted into the corresponding geometrical as well as optical thickness.However,with ultrathin films ranging between a few and several atomic or molecular "layers"the concept of a film thickness may become senseless since often no closed film exists of such minor deposits.Although film thickness is a length,the measurement of it can,obviously,not be accomplished with conventional methods for length determinations but requires special methods.The great efforts made to overcome this problem led to a remarkable number of different,often highly sophisticated film thickness measuring methods reviewed in various articles such ase.g./5,6/.With some of the methods,it is possible to carry out measurement under vacuum during and after the film formation other determinations have to be undertaken outside the deposition chamber only after the film has been produced.Many of the methods cannot be employed for all film substances,and there are varying limits as regards the range of thickness and measuring accuracy.Furthermore, with these methods the film to be measured is often specially prepared or dissolved during measurement and therefore becomes useless for additional investigations or applications.If only those methods which can be employed during the film deposition are considered,then the very large number of methods is considerably reduced.Insitu measurements,however,are highly desired since many basic investigations and practically all industrial applications require a precise knowledge of thefilm thickness at any instant to enable termination of the deposition process at the predetermined right moment.Apartfrom few exceptions in practical film deposition only optical measuring units andmass determination monitors are used.
NASA Astrophysics Data System (ADS)
Moon, Eun-A.; Jun, Young-Kil; Kim, Nam-Hoon; Lee, Woo-Sun
2016-07-01
Photovoltaic applications require transparent conducting-oxide (TCO) thin films with high optical transmittance in the visible spectral region (380 - 780 nm), low resistivity, and high thermal/chemical stability. The ZnO thin film is one of the most common alternatives to the conventional indium-tin-oxide (ITO) thin film TCO. Highly transparent and conductive ZnO thin films can be prepared by doping with group III elements. Heavily-doped ZnO:Al (AZO) thin films were prepared by using the RF magnetron co-sputtering method with ZnO and Al targets to obtain better characteristics at a low cost. The RF sputtering power to each target was varied to control the doping concentration in fixed-thickness AZO thin films. The crystal structures of the AZO thin films were analyzed by using X-ray diffraction. The morphological microstructure was observed by using scanning electron microscopy. The optical transmittance and the band gap energy of the AZO thin films were examined with an UV-visible spectrophotometer in the range of 300 - 1800 nm. The resistivity and the carrier concentration were examined by using a Hall-effect measurement system. An excellent optical transmittance > 80% with an appropriate band gap energy (3.26 - 3.27 eV) and an improved resistivity (~10 -1 Ω·cm) with high carrier concentration (1017 - 1019 cm -3) were demonstrated in 350-nm-thick AZO thin films for thin-film photovoltaic applications.
Visible and Near-Infrared Spectroscopy of Seyfert 1 and Narrow-Line Seyfert 1 Galaxies
NASA Astrophysics Data System (ADS)
Rodríguez-Ardila, Alberto; Pastoriza, Miriani G.; Donzelli, Carlos J.
2000-01-01
This paper studies the continuum and emission-line properties of a sample composed of 16 normal Seyfert 1 and seven narrow-line Seyfert 1 (NLS1) galaxies using optical and near-IR CCD spectroscopy. The continuum emission of the galaxies can be described in terms of a combination of stellar population, a nonstellar continuum of power-law form, and Fe II emission. A significative difference in the optical spectral index between NLS1's and normal Seyfert 1's is observed; the latter is steeper. Most NLS1's show Fe II/Hβ ratios larger than those observed in the other Seyfert 1's. In the IRAS band, both groups of galaxies have very similar properties. We have searched for the presence of optically thin gas in the broad-line region (BLR) of the galaxies by comparing the broad O I λ8446 and Hα emission-line profiles. Our analysis show that in the NLS1's, both profiles are similar in shape and width. This result contradicts the hypothesis of thin gas emission in the high-velocity part of the BLR to explain the ``narrowness'' of broad optical permitted lines in these objects. Evidence of narrow O I λ8446 emission is found in six galaxies of our sample, implying that this line is not restricted to a pure BLR phenomenon. In the narrow-line region, we find similar luminosities in the permitted and high-ionization lines of NLS1's and normal Seyfert 1's. However, low-ionization lines such as [O I] λ6300, [O II] λ3727, and [S II] λλ6717, 6731 are intrinsically less luminous in NLS1's. Physical properties derived from density- and temperature-sensitive line ratios suggest that the [O II] and [S II] emitting zones are overlapping in normal Seyfert 1's and separated in NLS1's. Based on observations made at CASLEO. Complejo Astronómico El Leoncito (CASLEO) is operated under agreement between the Consejo Nacional de Investigaciones Científicas y técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juán.
NASA Astrophysics Data System (ADS)
Jatratkar, Aviraj A.; Yadav, Jyotiprakash B.; Deshmukh, R. R.; Barshilia, Harish C.; Puri, Vijaya; Puri, R. K.
2016-12-01
This study reports on polyaniline thin films deposited on a glass substrate using a low-pressure glow-discharge-pulsed plasma polymerization method. The polyaniline thin film obtained by pulsed plasma polymerization has been successfully demonstrated as an optical waveguide with a transmission loss of 3.93 dB cm-1, and has the potential to be employed in integrated optics. An attempt has been made to investigate the effect of plasma OFF-time on the structural, optical as well as surface properties of polyaniline thin film. The plasma ON-time has been kept constant and the plasma OFF-time has been varied throughout the work. The plasma OFF-time strongly influenced the properties of the polyaniline thin film, and a nanostructured and compact surface was revealed in the morphological studies. The plasma OFF-time was found to enhance film thickness, roughness, refractive index and optical transmission loss, whereas it reduced the optical band gap of the polyaniline thin films. Retention in the aromatic structure was confirmed by FTIR results. Optical studies revealed a π-π* electronic transition at about 317 nm as well as the formation of a branched structure. As compared with continuous wave plasma, pulsed plasma polymerization shows better properties. Pulsed plasma polymerization reduced the roughness of the film from 1.2 nm to 0.42 nm and the optical transmission loss from 6.56 dB cm-1 to 3.39 dB cm-1.
Al-/Ga-Doped ZnO Window Layers for Highly Efficient Cu₂ZnSn(S,Se)₄ Thin Film Solar Cells.
Seo, Se Won; Seo, Jung Woo; Kim, Donghwan; Cheon, Ki-Beom; Lee, Doh-Kwon; Kim, Jin Young
2018-09-01
The successful use of Al-/Ga-doped ZnO (AGZO) thin films as a transparent conducting oxide (TCO) layer of a Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cell is demonstrated. The AGZO thin films were prepared by radio frequency (RF) sputtering. The structural, crystallographic, electrical, and optical properties of the AGZO thin films were systematically investigated. The photovoltaic properties of CZTSSe thin film solar cells incorporating the AGZO-based TCO layer were also reported. It has been found that the RF power and substrate temperature of the AGZO thin film are important factors determining the electrical, optical, and structural properties. The optimization process involving the RF power and the substrate temperature leads to good electrical and optical transmittance of the AGZO thin films. Finally, the CZTSSe solar cell with the AGZO TCO layer demonstrated a high conversion efficiency of 9.68%, which is higher than that of the conventional AZO counterpart by 12%.
Structural and optical analysis of 60Co gamma-irradiated thin films of polycrystalline Ga10Se85Sn5
NASA Astrophysics Data System (ADS)
Ahmad, Shabir; Asokan, K.; Shahid Khan, Mohd.; Zulfequar, M.
2015-12-01
The present study focuses on the effects of gamma irradiation on structural and optical properties of polycrystalline Ga10Se85Sn5 thin films with a thickness of ∼300 nm deposited by the thermal evaporation technique on cleaned glass substrates. X-ray diffraction patterns of the investigated thin films show that crystallite growth occurs in the orthorhombic phase structure. The surface study carried out by using the scanning electron microscope (SEM) confirms that the grain size increases with gamma irradiation. The optical parameters were estimated from optical transmission spectra data measured from a UV-vis-spectrophotometer in the wavelength range of 200-1100 nm. The refractive index dispersion data of the investigated thin films follow the single oscillator model. The estimated values of static refractive index n0, oscillator strength Ed, zero frequency dielectric constant ε0, optical conductivity σoptical and the dissipation factor increases after irradiation, while the single oscillator energy Eo decreases after irradiation. It was found that the value of the optical band gap of the investigated thin films decreases and the corresponding absorption coefficient increases continuously with an increase in the dose of gamma irradiation. This post irradiation changes in the values of optical band gap and absorption coefficient were interpreted in terms of the bond distribution model.
Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Pei; Zaslavsky, Alexander; Longo, Paolo
2016-01-07
Accurate optical methods are required to determine the energy bandgap of amorphous semiconductors and elucidate the role of quantum confinement in nanometer-scale, ultra-thin absorbing layers. Here, we provide a critical comparison between well-established methods that are generally employed to determine the optical bandgap of thin-film amorphous semiconductors, starting from normal-incidence reflectance and transmittance measurements. First, we demonstrate that a more accurate estimate of the optical bandgap can be achieved by using a multiple-reflection interference model. We show that this model generates more reliable results compared to the widely accepted single-pass absorption method. Second, we compare two most representative methods (Taucmore » and Cody plots) that are extensively used to determine the optical bandgap of thin-film amorphous semiconductors starting from the extracted absorption coefficient. Analysis of the experimental absorption data acquired for ultra-thin amorphous germanium (a-Ge) layers demonstrates that the Cody model is able to provide a less ambiguous energy bandgap value. Finally, we apply our proposed method to experimentally determine the optical bandgap of a-Ge/SiO{sub 2} superlattices with single and multiple a-Ge layers down to 2 nm thickness.« less
Abdel-Khalek, H; El-Samahi, M I; El-Mahalawy, Ahmed M
2018-06-15
The influence of plasma exposure on structural, morphological and optical properties of copper (II) acetylacetonate thin films deposited by thermal evaporation technique was investigated. Copper (II) acetylacetonate as-grown thin films were exposed to the atmospheric plasma for different times. The exposure of as-grown cu(acac) 2 thin film to atmospheric plasma for 5min modified its structural, morphological and optical properties. The effect of plasma exposure on structure and roughness of cu(acac) 2 thin films was evaluated by XRD and AFM techniques, respectively. The XRD results showed an increment in crystallinity due to exposure for 5min, but, when the exposure time reaches 10min, the film was transformed to an amorphous state. The AFM results revealed a strong modification of films roughness when the average roughness decreased from 63.35nm to ~1nm as a result of interaction with plasma. The optical properties of as-grown and plasma exposured cu(acac) 2 thin films were studied using spectrophotometric method. The exposure of cu(acac) 2 thin films to plasma produced the indirect energy gap decrease from 3.20eV to 2.67eV for 10min exposure time. The dispersion parameters were evaluated in terms of single oscillator model for as-grown and plasma exposured thin films. The influence of plasma exposure on third order optical susceptibility was studied. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fajardo, Mario E., E-mail: mario.fajardo@eglin.af.mil; Molek, Christopher D.; Vesely, Annamaria L.
2015-10-14
We report the first successful results from our novel Rubidium Atomic Line Filtered (RALF) Doppler velocimetry apparatus, along with unanticipated oscillatory signals due to coherent optical transients generated within pure Rb vapor cells. RALF is a high-velocity and high-acceleration extension of the well-known Doppler Global Velocimetry (DGV) technique for constructing multi-dimensional flow velocity vector maps in aerodynamics experiments [H. Komine, U.S. Patent No. 4,919,536 (24 April 1990)]. RALF exploits the frequency dependence of pressure-broadened Rb atom optical absorptions in a heated Rb/N{sub 2} gas cell to encode the Doppler shift of reflected near-resonant (λ{sub 0} ≈ 780.24 nm) laser light onto the intensitymore » transmitted by the cell. The present RALF apparatus combines fiber optic and free-space components and was built to determine suitable operating conditions and performance parameters for the Rb/N{sub 2} gas cells. It yields single-spot velocities of thin laser-driven-flyer test surfaces and incorporates a simultaneous Photonic Doppler Velocimetry (PDV) channel [Strand et al., Rev. Sci. Instrum. 77, 083108 (2006)] for validation of the RALF results, which we demonstrate here over the v = 0 to 1 km/s range. Both RALF and DGV presume the vapor cells to be simple Beer's Law optical absorbers, so we were quite surprised to observe oscillatory signals in experiments employing low pressure pure Rb vapor cells. We interpret these oscillations as interference between the Doppler shifted reflected light and the Free Induction Decay (FID) coherent optical transient produced within the pure Rb cells at the original laser frequency; this is confirmed by direct comparison of the PDV and FID signals. We attribute the different behaviors of the Rb/N{sub 2} vs. Rb gas cells to efficient dephasing of the atomic/optical coherences by Rb-N{sub 2} collisions. The minimum necessary N{sub 2} buffer gas density ≈0.3 amagat translates into a smallest useful velocity range of 0 to 2 km/s, which can readily be extended to cover the 0 to 10 km/s range, and beyond. The recognition that coherent optical transients can be produced within low pressure vapor cells during velocimetry experiments may offer new insights into some quantitative discrepancies reported in earlier DGV studies. Future plans include “line-RALF” experiments with streak camera detection, and two-dimensional surface velocity mapping using pulsed laser illumination and/or gated intensified CCD camera detection.« less
NASA Technical Reports Server (NTRS)
Mosqueira, I.; Estrada, P. R.
2000-01-01
Using an optically thick inner disk and an extended, optically thin outer disk as described in Mosqueira and Estrada, we compute the torque as a function of position in the subnebula, and show that although the torque exerted on the satellite is generally negative, which leads to inward migration as expected, there are regions of the disk where the torque is positive. For our model these regions of positive torque correspond roughly to the locations of Callisto and Iapetus. Though the outer location of zero torque depends on the (unknown) size of the transition region between the inner and outer disks, the result that Saturn's is found much farther out (at approximately 3r(sub c, sup S) where r(sub c, sup S) is Saturn's centrifugal radius) than Jupiter's (at approximately 2r(sub c, sup J), where r(sub c, sup J) is Jupiter's centrifugal radius) is mostly due to Saturn's less massive outer disk, and larger Hill radius. For a satellite to survive in the disk the timescale of satellite migration must be longer than the timescale for gas dissipation. For large satellites (approximately 1000 km) migration is dominated by the gas torque. We consider the possibility that the feedback reaction of the gas disk caused by the redistribution of gas surface density around satellites with masses larger than the inertial mass causes a large drop in the drift velocity of such objects, thus improving the likelihood that they will be left stranded following gas dissipation. We adapt the inviscid inertial mass criterion to include gas drag, and m-dependent non-local deposition of angular momentum.
ZnO Thin Film Electronics for More than Displays
NASA Astrophysics Data System (ADS)
Ramirez, Jose Israel
Zinc oxide thin film transistors (TFTs) are investigated in this work for large-area electronic applications outside of display technology. A constant pressure, constant flow, showerhead, plasma-enhanced atomic layer deposition (PEALD) process has been developed to fabricate high mobility TFTs and circuits on rigid and flexible substrates at 200 °C. ZnO films and resulting devices prepared by PEALD and pulsed laser deposition (PLD) have been compared. Both PEALD and PLD ZnO films result in densely packed, polycrystalline ZnO thin films that were used to make high performance devices. PEALD ZnO TFTs deposited at 300 °C have a field-effect mobility of ˜ 40 cm2/V-s (and > 20 cm2/V-S deposited at 200 °C). PLD ZnO TFTs, annealed at 400 °C, have a field-effect mobility of > 60 cm2/V-s (and up to 100 cm2/V-s). Devices, prepared by either technique, show high gamma-ray radiation tolerance of up to 100 Mrad(SiO2) with only a small radiation-induced threshold voltage shift (VT ˜ -1.5 V). Electrical biasing during irradiation showed no enhanced radiation-induced effects. The study of the radiation effects as a function of material stack thicknesses revealed the majority of the radiation-induced charge collection happens at the semiconductor-passivation interface. A simple sheet-charge model at that interface can describe the radiation-induced charge in ZnO TFTs. By taking advantage of the substrate-agnostic process provided by PEALD, due to its low-temperature and excellent conformal coatings, ZnO electronics were monolithically integrated with thin-film complex oxides. Application-based examples where ZnO electronics provide added functionality to complex oxide-based devices are presented. In particular, the integration of arrayed lead zirconate titanate (Pb(Zr, Ti)O3 or PZT) thin films with ZnO electronics for microelectromechanical systems (MEMs) and deformable mirrors is demonstrated. ZnO switches can provide voltage to PZT capacitors with fast charging and slow discharging time constants. Finally, to circumvent fabrication challenges on predetermined complex shapes, like curved mirror optics, a technique to transfer electronics from a rigid substrate to a flexible substrate is used. This technique allows various thin films, regardless of their deposition temperature, to be transferred to flexible substrates. Finally, ultra-low power operation of ZnO TFT gas sensors was demonstrated. The ZnO ozone sensors were optimized to operate with excellent electrical stability in ambient conditions, without using elevated temperatures, while still providing good gas sensitivity. This was achieved by using a post-deposition anneal and by partially passivating the contact regions while leaving the semiconductor sensing area open to the ambient. A novel technique to reset the gas sensor using periodic pulsing of a UV light over the sensor results in less than 25 milliseconds recovery time. A pathway to achieve gas selectivity by using organic thin-film layers as filters deposited over the gas sensors tis demonstrated. The ZnO ozone sensor TFTs and the UV light operate at room temperature with an average power below 1 muW.
Ultra-thin plasma radiation detector
Friedman, Peter S.
2017-01-24
A position-sensitive ionizing-radiation counting detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includes a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.
Thickness and microstructure effects in the optical and electrical properties of silver thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Guowen, E-mail: gding@intermolecular.com; Clavero, César; Schweigert, Daniel
The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C), with a value of 59 ± 2 μΩ cm ⋅more » fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry.« less
Spin temperature and density of cold and warm H I in the Galactic disk: Hidden H I
NASA Astrophysics Data System (ADS)
Sofue, Yoshiaki
2018-05-01
We present a method to determine the spin temperature TS and volume density n of H I gas simultaneously along the tangent-point circle of Galactic rotation in the Milky Way by using the χ2 method. The best-fit TS is shown to range either in TS ˜ 100-120 K or in 1000-3000 K, indicating that the gas is in the cold H I phase with high density and large optical depth, or in warm H I with low density and small optical depth. Averaged values at 3 ≤ R ≤ 8 kpc are obtained to be TS = 106.7 ± 16.0 K and n = 1.53 ± 0.86 H cm-3 for cold H I, and 1720 ± 1060 K and 0.38 ± 0.10 H cm-3 for warm H I, where R = 8 |sinl| kpc is the galacto-centric distance along the tangent-point circle. The cold H I appears in spiral arms and rings, whereas warm H I appears in the inter-arm regions. The cold H I is denser by a factor of ˜4 than warm H I. The present analysis has revealed the hidden H I mass in the cold and optically thick phase in the Galactic disk. The total H I mass inside the solar circle is shown to be greater by a factor of 2-2.5 than the current estimation by the optically thin assumption.
Spin temperature and density of cold and warm H I in the Galactic disk: Hidden H I
NASA Astrophysics Data System (ADS)
Sofue, Yoshiaki
2018-06-01
We present a method to determine the spin temperature TS and volume density n of H I gas simultaneously along the tangent-point circle of Galactic rotation in the Milky Way by using the χ2 method. The best-fit TS is shown to range either in TS ˜ 100-120 K or in 1000-3000 K, indicating that the gas is in the cold H I phase with high density and large optical depth, or in warm H I with low density and small optical depth. Averaged values at 3 ≤ R ≤ 8 kpc are obtained to be TS = 106.7 ± 16.0 K and n = 1.53 ± 0.86 H cm-3 for cold H I, and 1720 ± 1060 K and 0.38 ± 0.10 H cm-3 for warm H I, where R = 8 |sinl| kpc is the galacto-centric distance along the tangent-point circle. The cold H I appears in spiral arms and rings, whereas warm H I appears in the inter-arm regions. The cold H I is denser by a factor of ˜4 than warm H I. The present analysis has revealed the hidden H I mass in the cold and optically thick phase in the Galactic disk. The total H I mass inside the solar circle is shown to be greater by a factor of 2-2.5 than the current estimation by the optically thin assumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Mo; Evans II, Neal J.; Dodson-Robinson, Sarah E.
Gas in protostellar disks provides the raw material for giant planet formation and controls the dynamics of the planetesimal-building dust grains. Accurate gas mass measurements help map the observed properties of planet-forming disks onto the formation environments of known exoplanets. Rare isotopologues of carbon monoxide (CO) have been used as gas mass tracers for disks in the Lupus star-forming region, with an assumed interstellar CO/H{sub 2} abundance ratio. Unfortunately, observations of T-Tauri disks show that CO abundance is not interstellar, a finding reproduced by models that show CO abundance decreasing both with distance from the star and as a functionmore » of time. Here, we present radiative transfer simulations that assess the accuracy of CO-based disk mass measurements. We find that the combination of CO chemical depletion in the outer disk and optically thick emission from the inner disk leads observers to underestimate gas mass by more than an order of magnitude if they use the standard assumptions of interstellar CO/H{sub 2} ratio and optically thin emission. Furthermore, CO abundance changes on million-year timescales, introducing an age/mass degeneracy into observations. To reach a factor of a few accuracy for CO-based disk mass measurements, we suggest that observers and modelers adopt the following strategies: (1) select low- J transitions; (2) observe multiple CO isotopologues and use either intensity ratios or normalized line profiles to diagnose CO chemical depletion; and (3) use spatially resolved observations to measure the CO-abundance distribution.« less
Disk Masses around Solar-mass Stars are Underestimated by CO Observations
NASA Astrophysics Data System (ADS)
Yu, Mo; Evans, Neal J., II; Dodson-Robinson, Sarah E.; Willacy, Karen; Turner, Neal J.
2017-05-01
Gas in protostellar disks provides the raw material for giant planet formation and controls the dynamics of the planetesimal-building dust grains. Accurate gas mass measurements help map the observed properties of planet-forming disks onto the formation environments of known exoplanets. Rare isotopologues of carbon monoxide (CO) have been used as gas mass tracers for disks in the Lupus star-forming region, with an assumed interstellar CO/H2 abundance ratio. Unfortunately, observations of T-Tauri disks show that CO abundance is not interstellar, a finding reproduced by models that show CO abundance decreasing both with distance from the star and as a function of time. Here, we present radiative transfer simulations that assess the accuracy of CO-based disk mass measurements. We find that the combination of CO chemical depletion in the outer disk and optically thick emission from the inner disk leads observers to underestimate gas mass by more than an order of magnitude if they use the standard assumptions of interstellar CO/H2 ratio and optically thin emission. Furthermore, CO abundance changes on million-year timescales, introducing an age/mass degeneracy into observations. To reach a factor of a few accuracy for CO-based disk mass measurements, we suggest that observers and modelers adopt the following strategies: (1) select low-J transitions; (2) observe multiple CO isotopologues and use either intensity ratios or normalized line profiles to diagnose CO chemical depletion; and (3) use spatially resolved observations to measure the CO-abundance distribution.
Fiber-Optic Temperature Sensor Using a Thin-Film Fabry-Perot Interferometer
NASA Technical Reports Server (NTRS)
Beheim, Glenn
1997-01-01
A fiber-optic temperature sensor was developed that is rugged, compact, stable, and can be inexpensively fabricated. This thin-film interferometric temperature sensor was shown to be capable of providing a +/- 2 C accuracy over the range of -55 to 275 C, throughout a 5000 hr operating life. A temperature-sensitive thin-film Fabry-Perot interferometer can be deposited directly onto the end of a multimode optical fiber. This batch-fabricatable sensor can be manufactured at a much lower cost than can a presently available sensor, which requires the mechanical attachment of a Fabry-Perot interferometer to a fiber. The principal disadvantage of the thin-film sensor is its inherent instability, due to the low processing temperatures that must be used to prevent degradation of the optical fiber's buffer coating. The design of the stable thin-film temperature sensor considered the potential sources of both short and long term drifts. The temperature- sensitive Fabry-Perot interferometer was a silicon film with a thickness of approx. 2 microns. A laser-annealing process was developed which crystallized the silicon film without damaging the optical fiber. The silicon film was encapsulated with a thin layer of Si3N4 over coated with aluminum. Crystallization of the silicon and its encapsulation with a highly stable, impermeable thin-film structure were essential steps in producing a sensor with the required long-term stability.
NASA Astrophysics Data System (ADS)
Aziz, Tareque; Rumaiz, Abdul
Titanium Nitride (TiNx) thin films were prepared by reactive dc sputtering in presence of Ar-N2 plasma. The thin films were grown on Quartz and pure Si surfaces. The Ar-N2 content ratio was gradually varied while the substrate and the Titanium target were kept at room temperature. Structural properties, optical and electrical properties of the thin films were studied by using X-ray Photoelectron Spectroscopy (XPS) and XRD and 4 probe resistivity measurement. Target poisoning of the Ti target was also studied by varying reactive gas concentration and measuring the target current. A study of target current vs growth rate of the films was performed to investigate the onset of ``poison'' mode.Although there was an insignificant drop in plasma current, we noticed a drop in the deposition rate. This result was tested against Monte Carlo simulations using SRIM simulations. Effects of annealing on the crystallinity and the sheet resistance will also be discussed. The work has been supported by BSA,DOE.
Physical Characterization of Orthorhombic AgInS2 Nanocrystalline Thin Films
NASA Astrophysics Data System (ADS)
El Zawawi, I. K.; Mahdy, Manal A.
2017-11-01
Nanocrystalline thin films of AgInS2 were synthesized using an inert gas condensation technique. The grazing incident in-plane x-ray diffraction technique was used to detect the crystal structure of the deposited and annealed thin films. The results confirmed that the as-deposited film shows an amorphous behavior and that the annealed film has a single phase crystallized in an orthorhombic structure. The orthorhombic structure and particle size were detected using high-resolution transmission electron microscopy. The particle size ( P_{{s}}) estimated from micrograph images of the nanocrystalline films were increased from 6 nm to 12 nm as the film thickness increased from 11 nm to 110 nm. Accordingly, increasing the film thickness up to 110 nm reflects varying the optical band gap from 2.75 eV to 2.1 eV. The photocurrent measurements were studied where the fast rise and decay of the photocurrent are governed by the recombination mechanism. The electrical conductivity behavior was demonstrated by two transition mechanisms: extrinsic transition for a low-temperature range (300-400 K) and intrinsic transition for the high-temperature region above 400 K.
NASA Astrophysics Data System (ADS)
Polonyankin, D. A.; Blesman, A. I.; Postnikov, D. V.
2017-05-01
Conductive thin films formation by copper and silver magnetron sputtering is one of high technological areas for industrial production of solar energy converters, energy-saving coatings, flat panel displays and touch control panels because of their high electrical and optical properties. Surface roughness and porosity, average grain size, internal stresses, orientation and crystal lattice type, the crystallinity degree are the main physical properties of metal films affecting their electrical resistivity and conductivity. Depending on the film thickness, the dominant conduction mechanism can affect bulk conductivity due to the flow of electron gas, and grain boundary conductivity. The present investigation assesses the effect of microstructure and surface topography on the electrical conductivity of magnetron sputtered Cu and Ag thin films using X-ray diffraction analysis, scanning electron and laser interference microscopy. The highest specific conductivity (78.3 MS m-1 and 84.2 MS m-1, respectively, for copper and silver films at the thickness of 350 nm) were obtained with the minimum values of roughness and grain size as well as a high degree of lattice structuredness.
Powerful radiative jets in supercritical accretion discs around non-spinning black holes
NASA Astrophysics Data System (ADS)
Sądowski, Aleksander; Narayan, Ramesh
2015-11-01
We describe a set of simulations of supercritical accretion on to a non-rotating supermassive black hole (BH). The accretion flow takes the form of a geometrically thick disc with twin low-density funnels around the rotation axis. For accretion rates {gtrsim } 10 dot{M}_Edd, there is sufficient gas in the funnel to make this region optically thick. Radiation from the disc first flows into the funnel, after which it accelerates the optically thick funnel gas along the axis. The resulting jet is baryon loaded and has a terminal density-weighted velocity ≈0.3c. Much of the radiative luminosity is converted into kinetic energy by the time the escaping gas becomes optically thin. These jets are not powered by BHrotation or magnetic driving, but purely by radiation. Their characteristic beaming angle is ˜0.2 rad. For an observer viewing down the axis, the isotropic equivalent luminosity of total energy is as much as 1048 erg s- 1 for a 107 M⊙ BH accreting at 103 Eddington. Therefore, energetically, the simulated jets are consistent with observations of the most powerful tidal disruption events, e.g. Swift J1644. The jet velocity is, however, too low to match the Lorentz factor γ > 2 inferred in J1644. There is no such conflict in the case of other tidal disruption events. Since favourably oriented observers see isotropic equivalent luminosities that are highly super-Eddington, the simulated models can explain observations of ultraluminous X-ray sources, at least in terms of luminosity and energetics, without requiring intermediate-mass BHs.
Direct Collapse to Supermassive Black Hole Seeds with Radiative Transfer: Isolated Halos
NASA Astrophysics Data System (ADS)
Luo, Yang; Ardaneh, Kazem; Shlosman, Isaac; Nagamine, Kentaro; Wise, John H.; Begelman, Mitchell C.
2018-05-01
Direct collapse within dark matter haloes is a promising path to form supermassive black hole seeds at high redshifts. The outer part of this collapse remains optically thin. However, the innermost region of the collapse is expected to become optically thick and requires to follow the radiation field in order to understand its evolution. So far, the adiabatic approximation has been used exclusively for this purpose. We apply radiative transfer in the flux-limited diffusion (FLD) approximation to solve the evolution of coupled gas and radiation for isolated haloes. We find that (1) the photosphere forms at 10-6 pc and rapidly expands outwards. (2) A central core forms, with a mass of 1 M⊙, supported by gas pressure gradients and rotation. (3) Growing gas and radiation pressure gradients dissolve it. (4) This process is associated with a strong anisotropic outflow; another core forms nearby and grows rapidly. (5) Typical radiation luminosity emerging from the photosphere is 5 × 1037-5 × 1038 erg s-1, of the order the Eddington luminosity. (6) Two variability time-scales are associated with this process: a long one, which is related to the accretion flow within the central 10-4-10-3 pc, and 0.1 yr, related to radiation diffusion. (7) Adiabatic models evolution differs profoundly from that of the FLD models, by forming a geometrically thick disc. Overall, an adiabatic equation of state is not a good approximation to the advanced stage of direct collapse, because the radiation is capable of escaping due to anisotropy in the optical depth and associated gradients.
Pinch-off Scaling Law of Soap Bubbles
NASA Astrophysics Data System (ADS)
Davidson, John; Ryu, Sangjin
2014-11-01
Three common interfacial phenomena that occur daily are liquid drops in gas, gas bubbles in liquid and thin-film bubbles. One aspect that has been studied for these phenomena is the formation or pinch-off of the drop/bubble from the liquid/gas threads. In contrast to the formation of liquid drops in gas and gas bubbles in liquid, thin-film bubble pinch-off has not been well documented. Having thin-film interfaces may alter the pinch-off process due to the limiting factor of the film thickness. We observed the pinch-off of one common thin-film bubble, soap bubbles, in order to characterize its pinch-off behavior. We achieved this by constructing an experimental model replicating the process of a human producing soap bubbles. Using high-speed videography and image processing, we determined that the minimal neck radius scaled with the time left till pinch-off, and that the scaling law exponent was 2/3, similar to that of liquid drops in gas.
RQL Sector Rig Testing of SiC/SiC Combustor Liners
NASA Technical Reports Server (NTRS)
Verrilli, Michael J.; Martin, Lisa C.; Brewer, David N.
2002-01-01
Combustor liners, manufactured from silicon carbide fiber-reinforced silicon carbide (SiC/SiC) were tested for 260 hr using a simulated gas turbine engine cycle. This report documents the results of the last 56 hr of testing. Damage occurred in one of the six different components that make up the combustor liner set, the rich zone liner. Cracks in the rich zone liner initiated at the leading edge due to stresses resulting from the component attachment configuration. Thin film thermocouples and fiber optic pyrometers were used to measure the rich zone liner's temperature and these results are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawar, C. S., E-mail: charudutta-p@yahoo.com; Gujar, M. P.; Mathe, V. L.
Nano crystalline Nickel Zinc ferrite (Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4}) thin films were synthesized by Sol Gel method for gas response. The phase and microstructure of the obtained Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The nanostructured Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} thin film shows single spinel phase. Magnetic study was obtained with the help of VSM. The effects of working temperature on the gas response were studied. The results reveal that the Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} thin film gas sensor shows good selectivity to chlorine gas at roommore » temperature. The sensor shows highest sensitivity (∼50%) at room temperature, indicating its application in detecting chlorine gas at room temperature in the future.« less
Optical properties and crystallinity of silver mirrors under a 35 krad cobalt-60 radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Po-Kai, E-mail: pkchiu@itrc.narl.org.tw; Chiang, Donyau; Lee, Chao-Te
2015-09-15
This study addresses the effects of thin film optical design and environmental radiation on the optical properties of silver mirrors. Different experimental thin film optical designs are selected, and the film stack is built using Macleod's approach. Mirror elements are exposed to the same dose of radiation and their properties are characterized using a spectrophotometer equipped with an integration sphere and an x-ray diffractometer. Spectrophotometric analyses of mirrors exposed to about 35 krad of {sup 60}Co radiations overall show that the B270 glass substrates coated with titanium oxide (TiO{sub 2}), silicon dioxide (SiO{sub 2}), pure chrome, and pure silver effectivelymore » reduces radiation damage. The absorption spectrum of the TiO{sub 2} film in the visible region decreases after radiation and displays drifting. As thin metal films comparison, the silver thin film exhibits higher radiation resistance than the chrome thin film. The x-ray diffraction analysis on metal film layers reveals that crystallinity slightly increases when the silver thin film is irradiated.« less
Third order nonlinearity in pulsed laser deposited LiNbO{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluri, Anil; Rapolu, Mounika; Rao, S. Venugopal, E-mail: kcjrsp@uohyd.ernet.in, E-mail: svrsp@uohyd.ernet.in
2016-05-06
Lithium niobate (LiNbO{sub 3}) thin films were prepared using pulsed laser deposition technique. Structural properties of the same were examined from XRD and optical band gap of the thin films were measured from transmittance spectra recorded using UV-Visible spectrophotometer. Nonlinear optical properties of the thin films were recorded using Z-Scan technique. The films were exhibiting third order nonlinearity and their corresponding two photon absorption, nonlinear refractive index, real and imaginary part of nonlinear susceptibility were calculated from open aperture and closed aperture transmission curves. From these studies, it suggests that these films have potential applications in nonlinear optical devices.
NASA Astrophysics Data System (ADS)
Susetyo, P.; Fauzia, V.; Sugihartono, I.
2017-04-01
ZnO nanorods is a low cost II-VI semiconductor compound with huge potential to be applied in optoelectronic devices i.e. light emitting diodes, solar cells, gas sensor, spintronic devices and lasers. In order to improve the electrical and optical properties, group II, III and IV elements were widely investigated as dopand elements on ZnO. In this work, magnesium (Mg) was doped into ZnO nanorods. Samples were prepared firstly by deposition of undoped ZnO seed layer on indium thin oxide coated glass substrates by ultrasonic spray pyrolysis method and then followed by the growth of ZnO nanorods doped by three different Mg concentrations by hydrothermal method. Based on the morphological, microstructural and optical characterizations results, it is concluded that the increase of magnesium concentration tends to reduce the diameter of ZnO nanorods, increases the bandgap energy and decreases the UV absorption the luminescence in UV and visible range.
Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers.
Matsuura, Yuji; Tsuchiuchi, Akio; Noguchi, Hiroshi; Miyagi, Mitsunobu
2007-03-10
To improve the damage threshold of hollow optical waveguides for transmitting Q-switched Nd:YAG laser pulses, we optimize the metallization processes for the inner coating of fibers. For silver-coated hollow fiber as the base, second, and third Nd:YAG lasers, drying silver films at a moderate temperature and with inert gas flow is found to be effective. By using this drying process, the resistance to high-peak-power optical pulse radiation is drastically improved for fibers fabricated with and without the sensitizing process. The maximum peak power transmitted in the fiber is greater than 20 MW. To improve the energy threshold of aluminum-coated hollow fibers for the fourth and fifth harmonics of Nd:YAG lasers, a thin silver film is added between the aluminum film and the glass substrate to increase adhesion of the aluminum coating. By using this primer layer, the power threshold improves to 3 MW for the fourth harmonics of a Q-switched Nd:YAG laser light.
ZnO:Al Thin Film Gas Sensor for Detection of Ethanol Vapor
Chou, Shih Min; Teoh, Lay Gaik; Lai, Wei Hao; Su, Yen Hsun; Hon, Min Hsiung
2006-01-01
The ZnO:Al thin films were prepared by RF magnetron sputtering on Si substrate using Pt as interdigitated electrodes. The structure was characterized by XRD and SEM analyses, and the ethanol vapor gas sensing as well as electrical properties have been investigated and discussed. The gas sensing results show that the sensitivity for detecting 400 ppm ethanol vapor was ∼20 at an operating temperature of 250°C. The high sensitivity, fast recovery, and reliability suggest that ZnO:Al thin film prepared by RF magnetron sputtering can be used for ethanol vapor gas sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abayli, D., E-mail: abayli@itu.edu.tr; Baydogan, N., E-mail: dogannil@itu.edu.tr
In this study, zirconium oxide (ZrO{sub 2}) thin film samples prepared by sol–gel method were irradiated using Co-60 radioisotope as gamma source. Then, it was investigated the ionizing effect on optical properties of ZrO{sub 2} thin film samples with the rise of the absorbed dose. The changes in the optical absorbance of ZrO{sub 2} thin films were determined by using optical transmittance and the reflectance measurements in the range between 190 – 1100 nm obtained from PG Instruments T80 UV-Vis spectrophotometer.
Apparatus and method for the determination of grain size in thin films
Maris, Humphrey J
2000-01-01
A method for the determination of grain size in a thin film sample comprising the steps of measuring first and second changes in the optical response of the thin film, comparing the first and second changes to find the attenuation of a propagating disturbance in the film and associating the attenuation of the disturbance to the grain size of the film. The second change in optical response is time delayed from the first change in optical response.
Apparatus and method for the determination of grain size in thin films
Maris, Humphrey J
2001-01-01
A method for the determination of grain size in a thin film sample comprising the steps of measuring first and second changes in the optical response of the thin film, comparing the first and second changes to find the attenuation of a propagating disturbance in the film and associating the attenuation of the disturbance to the grain size of the film. The second change in optical response is time delayed from the first change in optical response.
NASA Astrophysics Data System (ADS)
Haakenaasen, Randi; Lovold, Stian
2003-01-01
Infrared technology in Norway started at the Norwegian Defense Research Establishment (FFI) in the 1960s, and has since then spread to universities, other research institutes and industry. FFI has a large, integrated IR activity that includes research and development in IR detectors, optics design, optical coatings, advanced dewar design, modelling/simulation of IR scenes, and image analysis. Part of the integrated activity is a laboratory for more basic research in materials science and semiconductor physics, in which thin films of CdHgTe are grown by molecular beam epitaxy and processed into IR detectors by various techniques. FFI also has a lot of experience in research and development of tunable infrared lasers for various applications. Norwegian industrial activities include production of infrared homing anti-ship missiles, laser rangefinders, various infrared gas sensors, hyperspectral cameras, and fiberoptic sensor systems for structural health monitoring and offshore oil well diagnostics.
Microstructure and ferroelectricity of BaTiO3 thin films on Si for integrated photonics
NASA Astrophysics Data System (ADS)
Kormondy, Kristy J.; Popoff, Youri; Sousa, Marilyne; Eltes, Felix; Caimi, Daniele; Rossell, Marta D.; Fiebig, Manfred; Hoffmann, Patrik; Marchiori, Chiara; Reinke, Michael; Trassin, Morgan; Demkov, Alexander A.; Fompeyrine, Jean; Abe, Stefan
2017-02-01
Significant progress has been made in integrating novel materials into silicon photonic structures in order to extend the functionality of photonic circuits. One of these promising optical materials is BaTiO3 or barium titanate (BTO) that exhibits a very large Pockels coefficient as required for high-speed light modulators. However, all previous demonstrations show a noticable reduction of the Pockels effect in BTO thin films deposited on silicon substrates compared to BTO bulk crystals. Here, we report on the strong dependence of the Pockels effect in BTO thin films on their microstructure, and provide guidelines on how to engineer thin films with strong electro-optic response. We employ several deposition methods such as molecular beam epitaxy and chemical vapor deposition to realize BTO thin films with different morphology and crystalline structure. While a linear electro-optic response is present even in porous, polycrystalline BTO thin films with an effective Pockels coefficient r eff = 6 pm V-1, it is maximized for dense, tetragonal, epitaxial BTO films (r eff = 140 pm V-1). By identifying the key structural predictors of electro-optic response in BTO/Si, we provide a roadmap to fully exploit the linear electro-optic effect in novel hybrid oxide/semiconductor nanophotonic devices.
Growth of diamond by RF plasma-assisted chemical vapor deposition
NASA Technical Reports Server (NTRS)
Meyer, Duane E.; Ianno, Natale J.; Woollam, John A.; Swartzlander, A. B.; Nelson, A. J.
1988-01-01
A system has been designed and constructed to produce diamond particles by inductively coupled radio-frequency, plasma-assisted chemical vapor deposition. This is a low-pressure, low-temperature process used in an attempt to deposit diamond on substrates of glass, quartz, silicon, nickel, and boron nitride. Several deposition parameters have been varied including substrate temperature, gas concentration, gas pressure, total gas flow rate, RF input power, and deposition time. Analytical methods employed to determine composition and structure of the deposits include scanning electron microscopy, absorption spectroscopy, scanning Auger microprobe spectroscopy, and Raman spectroscopy. Analysis indicates that particles having a thin graphite surface, as well as diamond particles with no surface coatings, have been deposited. Deposits on quartz have exhibited optical bandgaps as high as 4.5 eV. Scanning electron microscopy analysis shows that particles are deposited on a pedestal which Auger spectroscopy indicates to be graphite. This is a phenomenon that has not been previously reported in the literature.
A comparative study on NbOx films reactively sputtered from sintered and cold gas sprayed targets
NASA Astrophysics Data System (ADS)
Lorenz, Roland; O'Sullivan, Michael; Fian, Alexander; Sprenger, Dietmar; Lang, Bernhard; Mitterer, Christian
2018-04-01
The aim of this work is to evaluate novel cold gas sprayed Nb targets in a reactive sputter deposition process of thin films with respect to the widely used sintered Nb targets. With the exception of a higher target discharge voltage of ∼100 V for the cold gas sprayed targets and the thus higher film growth rate compared to sintered targets, NbOx films with comparable microstructure and properties were obtained for both target variants. The amorphous films with thicknesses between 2.9 and 4.9 μm present an optical shift from dark and non-transparent towards transparent properties, as the oxygen partial pressure increases. X-ray photoelectron spectroscopy confirms the occurrence of the Nb5+ oxidation state for the highest oxygen partial pressure, while Nb4+ is additionally present at lower oxygen partial pressure settings. With a maximal transparency of ∼80% and a refractive index of ∼2.5, the transparent films show characteristics similar to Nb2O5.
Correlated fast X-ray and optical variability in the black-hole candidate XTE J1118+480.
Kanbach, G; Straubmeier, C; Spruit, H C; Belloni, T
2001-11-08
Black holes become visible when they accrete gas, a common source of which is a close stellar companion. The standard theory for this process (invoking a 'thin accretion disk') does not explain some spectacular phenomena associated with these systems, such as their X-ray variability and relativistic outflows, indicating some lack of understanding of the actual physical conditions. Simultaneous observations at multiple wavelengths can provide strong constraints on these conditions. Here we report simultaneous high-time-resolution X-ray and optical observations of the transient source XTE J1118+480, which show a strong but puzzling correlation between the emissions. The optical emission rises suddenly following an increase in the X-ray output, but with a dip 2-5 seconds in advance of the X-rays. This result is not easy to understand within the simplest model of the optical emission, where the light comes from reprocessed X-rays. It is probably more consistent with an earlier suggestion that the optical light is cyclosynchrotron emission that originates in a region about 20,000 km from the black hole. We propose that the time dependence is evidence for a relatively slow (<0.1c), magnetically controlled outflow.
Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices
Bi, Lei; Hu, Juejun; Jiang, Peng; Kim, Hyun Suk; Kim, Dong Hun; Onbasli, Mehmet Cengiz; Dionne, Gerald F.; Ross, Caroline A.
2013-01-01
Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integration of nonreciprocal photonic devices on silicon. We demonstrate high Faraday rotation at telecommunication wavelengths in several novel magnetooptical oxide thin films including Co substituted CeO2−δ, Co- or Fe-substituted SrTiO3−δ, as well as polycrystalline garnets on silicon. Figures of merit of 3~4 deg/dB and 21 deg/dB are achieved in epitaxial Sr(Ti0.2Ga0.4Fe0.4)O3−δ and polycrystalline (CeY2)Fe5O12 films, respectively. We also demonstrate an optical isolator on silicon, based on a racetrack resonator using polycrystalline (CeY2)Fe5O12/silicon strip-loaded waveguides. Our work demonstrates that physical vapor deposited magneto-optical oxide thin films on silicon can achieve high Faraday rotation, low optical loss and high magneto-optical figure of merit, therefore enabling novel high-performance non-reciprocal photonic devices monolithically integrated on semiconductor substrates. PMID:28788379
Absorbing TiOx thin film enabling laser welding of polyurethane membranes and polyamide fibers
Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M; Hegemann, Dirk
2015-01-01
We report on the optical properties of thin titanium suboxide (TiOx) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiOx coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiOx coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiOx films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties. PMID:27877837
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malini, D. Rachel; Sanjeeviraja, C., E-mail: sanjeeviraja@rediffmail.com
Vanadium pentoxide (V{sub 2}O{sub 5}) and Vanadium-Cerium mixed oxide thin films at different molar ratios of V{sub 2}O{sub 5} and CeO{sub 2} have been deposited at 200 W rf power by rf planar magnetron sputtering in pure argon atmosphere. The structural and optical properties were studied by taking X-ray diffraction and transmittance and absorption spectra respectively. The amorphous thin films show an increase in transmittance and optical bandgap with increase in CeO{sub 2} content in as-prepared thin films. The impedance measurements for as-deposited thin films show an increase in electrical conductivity with increase in CeO{sub 2} material.
Absorbing TiOx thin film enabling laser welding of polyurethane membranes and polyamide fibers
NASA Astrophysics Data System (ADS)
Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M.; Hegemann, Dirk
2015-10-01
We report on the optical properties of thin titanium suboxide (TiOx) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiOx coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiOx coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiOx films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties.
Absorbing TiO x thin film enabling laser welding of polyurethane membranes and polyamide fibers.
Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M; Hegemann, Dirk
2015-10-01
We report on the optical properties of thin titanium suboxide (TiO x ) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiO x coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiO x coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiO x films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties.
Applications in Energy, Optics and Electronics.
ERIC Educational Resources Information Center
Rosenberg, Robert; And Others
1980-01-01
Discusses the applications of thin films in energy, optics and electronics. The use of thin-film technologies for heat mirrors, anti-reflection coatings, interference filters, solar cells, and metal contacts is included. (HM)
Electrochemical and physical properties of electroplated CuO thin films.
Dhanasekaran, V; Mahalingam, T
2013-01-01
Cupric oxide thin films have been prepared on ITO glass substrates from an aqueous electrolytic bath containing CuSO4 and tartaric acid. Growth mechanism has been analyzed using cyclic voltammetry. The role of pH on the structural, morphological, compositional, electrical and optical properties of CuO films is investigated. The structural studies revealed that the deposited films are polycrystalline in nature with a cubic structure. The preferential orientation of CuO thin films is found to be along (111) plane. X-ray line profile analysis has been carried out to determine the microstructural parameters of CuO thin films. The pyramid shaped grains are observed from SEM and AFM images. The optical band gap energy and electrical activation energy is found to be 1.45 and 0.37 eV, respectively. Also, the optical constants of CuO thin films such as refractive index (n), complex dielectric constant (epsilon) extinction coefficient (k) and optical conductivity (sigma) are evaluated.
Z-scan measurement for nonlinear absorption property of rGO/ZnO:Al thin film
NASA Astrophysics Data System (ADS)
Sreeja, V. G.; Anila, E. I.
2018-04-01
We report the fabrication of reduced graphene oxide integrated aluminium doped zinc oxide (rGO/ZnO:Al) composite thin film on a glass substrate by spin coating technique. The effect of rGO on structural and linear optical properties of rGO/ZnO:Al composite thin film was explored with the help of X-Ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-Vis absorption spectroscopy. Structural studies reveals that the composite film has hexagonal wurtzite structure with a strong bonding between rGO and ZnO:Al material. The band gap energy of ZnO:Al thin film was red shifted by the addition of rGO. The Nonlinear absorption property was investigated by open aperture Z-scan technique by using Q switched Nd-YAG laser at 532nm. The Z-scan results showed that the composite film demonstrates reverse saturable absorption property with a nonlinear absorption coefficient, β, of 12.75×10-7m/w. The results showed that investigated rGO/ZnO:Al thin film is a promising material suitable for the applications in absorbing type optical devices such as optical limiters, optical switches and protection of the optical sensors in the field of nonlinear optics.
Hot-filament chemical vapor deposition chamber and process with multiple gas inlets
Deng, Xunming; Povolny, Henry S.
2004-06-29
A thin film deposition method uses a vacuum confinement cup that employs a dense hot filament and multiple gas inlets. At least one reactant gas is introduced into the confinement cup both near and spaced apart from the heated filament. An electrode inside the confinement cup is used to generate plasma for film deposition. The method is used to deposit advanced thin films (such as silicon based thin films) at a high quality and at a high deposition rate.
Thin, nearly wireless adaptive optical device
NASA Technical Reports Server (NTRS)
Knowles, Gareth (Inventor); Hughes, Eli (Inventor)
2008-01-01
A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.
Thin, nearly wireless adaptive optical device
NASA Technical Reports Server (NTRS)
Knowles, Gareth (Inventor); Hughes, Eli (Inventor)
2007-01-01
A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.
Thin nearly wireless adaptive optical device
NASA Technical Reports Server (NTRS)
Knowles, Gareth J. (Inventor); Hughes, Eli (Inventor)
2009-01-01
A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.
NASA Technical Reports Server (NTRS)
Gadi, Jagannath; Yalamanchili, Raj; Shahid, Mohammad
1995-01-01
The need for high efficiency components has grown significantly due to the expanding role of fiber optic communications for various applications. Integrated optics is in a state of metamorphosis and there are many problems awaiting solutions. One of the main problems being the lack of a simple and efficient method of coupling single-mode fibers to thin-film devices for integrated optics. In this paper, optical coupling between a single-mode fiber and a uniform and tapered thin-film waveguide is theoretically modeled and analyzed. A novel tapered structure presented in this paper is shown to produce perfect match for power transfer.
Gas Permeation in Thin Glassy Polymer Films
NASA Astrophysics Data System (ADS)
Paul, Donald
2011-03-01
The development of asymmetric and composite membranes with very thin dense ``skins'' needed to achieve high gas fluxes enabled the commercial use of membranes for molecular level separations. It has been generally assumed that these thin skins, with thicknesses of the order of 100 nm, have the same permeation characteristics as films with thicknesses of 25 microns or more. Thick films are easily made in the laboratory and have been used extensively for measuring permeation characteristics to evaluate the potential of new polymers for membrane applications. There is now evidence that this assumption can be in very significant error, and use of thick film data to select membrane materials or predict performance should be done with caution. This presentation will summarize our work on preparing films of glassy polymers as thin as 20 nm and characterizing their behavior by gas permeation, ellipsometry and positron annihilation lifetime spectroscopy. Some of the most important polymers used commercially as gas separation membranes, i.e., Matrimid polyimide, polysulfone (PSF) and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), have been made into well-defined thin films in our laboratories by spin casting techniques and their properties studied using the techniques we have developed. These thin films densify (or physically age) much faster than thicker films, and, as result, the permeability decreases, sometimes by several-fold over weeks or months for thin films. This means that the properties of these thin films can be very different from bulk films. The techniques, interpretations and implications of these observations will be discussed. In a broader sense, gas permeation measurements can be a powerful way of developing a better understanding of the effects of polymer chain confinement and/or surface mobility on the behavior of thin films.
Tracy, C. Edwin; Benson, David K.; Ruth, Marta R.
1987-01-01
A method of synthesizing electro-optically active reaction products from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of electro-optically active transition metal oxides.
Effect of thermal annealing on structural and optical properties of In{sub 2}S{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, Sonu, E-mail: sonuchoudhary1983@gmail.com
2015-08-28
There is a highly need of an alternate of toxic materials CdS for solar cell applications and indium sulfide is found the most suitable candidate to replace CdS due to its non-toxic and environmental friendly nature. In this paper, the effect of thermal annealing on the structural and optical properties of indium sulfide (In{sub 2}S{sub 3}) thin films is undertaken. The indium sulfide thin films of 121 nm were deposited on glass substrates employing thermal evaporation method. The films were subjected to the X-ray diffractometer and UV-Vis spectrophotometer respectively for structural and optical analysis. The XRD pattern show that themore » as-deposited thin film was amorphous in nature and crystallinity is found to be varied with annealing temperature. The optical analysis reveals that the optical band gap is varied with annealing. The optical parameters like absorption coefficient, extinction coefficient and refractive index were calculated. The results are in good agreement with available literature.« less
Gas sensing properties of very thin TiO2 films prepared by atomic layer deposition (ALD)
NASA Astrophysics Data System (ADS)
Boyadjiev, S.; Georgieva, V.; Vergov, L.; Baji, Zs; Gáber, F.; Szilágyi, I. M.
2014-11-01
Very thin titanium dioxide (TiO2) films of less than 10 nm were deposited by atomic layer deposition (ALD) in order to study their gas sensing properties. Applying the quartz crystal microbalance (QCM) method, prototype structures with the TiO2 ALD deposited thin films were tested for sensitivity to NO2. Although being very thin, the films were sensitive at room temperature and could register low concentrations as 50-100 ppm. The sorption is fully reversible and the films seem to be capable to detect for long term. These initial results for very thin ALD deposited TiO2 films give a promising approach for producing gas sensors working at room temperature on a fast, simple and cost-effective technology.
An, Jae Seok; Jang, Ha Jun; Park, Cheol Young; Youn, Hongseok; Lee, Jong Ho; Heo, Gi-Seok; Choi, Bum Ho; Lee, Choong Hun
2015-10-01
Inorganic/organic hybrid thin film encapsulation layers consist of a thin Al2O3 layer together with polymer material. We have investigated optical properties of thin film encapsulation layers for top-emission flexible organic light-emitting diodes. The transmittance of hybrid thin film encapsulation layers and the electroluminescent spectrum of organic light-emitting diodes that were passivated by hybrid organic/inorganic thin film encapsulation layers were also examined as a function of the thickness of inorganic Al203 and monomer layers. The number of interference peaks, their intensity, and their positions in the visible range can be controlled by varying the thickness of inorganic Al2O3 layer. On the other hand, changing the thickness of monomer layer had a negligible effect on the optical properties. We also verified that there is a trade-off between transparency in the visible range and the permeation of water vapor in hybrid thin film encapsulation layers. As the number of dyads decreased, optical transparency improved while the water vapor permeation barrier was degraded. Our study suggests that, in top-emission organic light-emitting diodes, the thickness of each thin film encapsulation layer, in particular that of the inorganic layer, and the number of dyads should be controlled for highly efficient top-emission flexible organic light-emitting diodes.
NASA Astrophysics Data System (ADS)
Hasani, Ebrahim; Raoufi, Davood
2018-04-01
Thermal evaporation is one of the promising methods for depositing CdTe thin films, which can obtain the thin films with the small thickness. In this work, CdTe nanoparticles have deposited on SiO2 substrates such as quartz (crystal) and glass (amorphous) at a temperature (Ts) of 150 °C under a vacuum pressure of 2 × 10‑5 mbar. The thickness of CdTe thin films prepared under vacuum pressure is 100 nm. X-ray diffraction analysis (XRD) results showed the formation of CdTe cubic phase with a strong preferential orientation of (111) crystalline plane on both substrates. The grain size (D) in this orientation obtained about 7.41 and 5.48 nm for quartz and glass respectively. Ultraviolet-visible spectroscopy (UV–vis) measurements indicated the optical band gap about 1.5 and 1.52 eV for CdTe thin films deposited on quartz and glass respectively. Furthermore, to show the effect of annealing temperature on structure and optical properties of CdTe thin films on quartz and glass substrates, the thin films have been annealed at temperatures 50 and 70 °C for one hour. The results of this work indicate that the structure’s parameters and optical properties of CdTe thin films change due to increase in annealing temperature.
Influence of spray time on the optical and electrical properties of CoNi2S4 thin films
NASA Astrophysics Data System (ADS)
El Radaf, I. M.; Fouad, S. S.; Ismail, A. M.; Sakr, G. B.
2018-04-01
In this paper, a facile spray pyrolysis technique was utilized to synthesize CoNi2S4 thin films. The influence of spray time on the structural, optical and electrical properties of the CoNi2S4 thin films was studied. The x-ray diffraction studies of the CoNi2S4 thin films illustrate that the films exhibit a polycrystalline nature with cubic structure. The values of the lattice strain ε, and the dislocation density δ, were decreased as the spray time increase while the grain size has reverse manner to lattice strain ε, and the dislocation density δ. The transmittance and reflectance spectra of the CoNi2S4 thin films were recorded in the wavelength range of (400–2500) nm to evaluate the optical parameters of the CoNi2S4 thin films. Optical absorption coefficient of CoNi2S4 thin films revealed a presence of a direct energy gap and the values of energy gap were decreased from 1.68 to 1.53 eV as the spray time increases from 15 min to 45 min. The nonlinear refractive index of the CoNi2S4 thin films was increased with increasing of the spray time. The CoNi2S4 thin films exhibit single activation energy and the activation energy was decreased as the spray time increased.
Prototyping iridium coated mirrors for x-ray astronomy
NASA Astrophysics Data System (ADS)
Döhring, Thorsten; Probst, Anne-Catherine; Stollenwerk, Manfred; Emmerich, Florian; Stehlíková, Veronika; Inneman, Adolf
2017-05-01
X-ray astronomy uses space-based telescopes to overcome the disturbing absorption of the Earth's atmosphere. The telescope mirrors are operating at grazing incidence angles and are coated with thin metal films of high-Z materials to get sufficient reflectivity for the high-energy radiation to be observed. In addition the optical payload needs to be light-weighted for launcher mass constrains. Within the project JEUMICO, an acronym for "Joint European Mirror Competence", the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague started a collaboration to develop mirrors for X-ray telescopes. The X-ray telescopes currently developed within this Bavarian- Czech project are of Lobster eye type optical design. Corresponding mirror segments use substrates of flat silicon wafers which are coated with thin iridium films, as this material is promising high reflectivity in the X-ray range of interest. The deposition of the iridium films is based on a magnetron sputtering process. Sputtering with different parameters, especially by variation of the argon gas pressure, leads to iridium films with different properties. In addition to investigations of the uncoated mirror substrates the achieved surface roughness has been studied. Occasional delamination of the iridium films due to high stress levels is prevented by chromium sublayers. Thereby the sputtering parameters are optimized in the context of the expected reflectivity of the coated X-ray mirrors. In near future measurements of the assembled mirror modules optical performances are planned at an X-ray test facility.
The Effects of ph on Structural and Optical Characterization of Iron Oxide Thin Films
NASA Astrophysics Data System (ADS)
Tezel, Fatma Meydaneri; Özdemir, Osman; Kariper, I. Afşin
In this study, the iron oxide thin films have been produced by chemical bath deposition (CBD) method as a function of pH onto amorphous glass substrates. The surface images of the films were investigated with scanning electron microscope (SEM). The crystal structures, orientation of crystallization, crystallite sizes, and dislocation density i.e. structural properties of the thin films were analyzed with X-ray diffraction (XRD). The optical band gap (Eg), optical transmission (T%), reflectivity (R%), absorption coefficient (α), refraction index (n), extinction coefficient (k) and dielectric constant (ɛ) of the thin films were investigated depending on pH, deposition time, solution temperature, substrate temperature, thickness of the films by UV-VIS spectrometer.
Infrared radiation of thin plastic films.
NASA Technical Reports Server (NTRS)
Tien, C. L.; Chan, C. K.; Cunnington, G. R.
1972-01-01
A combined analytical and experimental study is presented for infrared radiation characteristics of thin plastic films with and without a metal substrate. On the basis of the thin-film analysis, a simple analytical technique is developed for determining band-averaged optical constants of thin plastic films from spectral normal transmittance data for two different film thicknesses. Specifically, the band-averaged optical constants of polyethylene terephthalate and polyimide were obtained from transmittance measurements of films with thicknesses in the range of 0.25 to 3 mil. The spectral normal reflectance and total normal emittance of the film side of singly aluminized films are calculated by use of optical constants; the results compare favorably with measured values.
Global Measurements of Optically Thin Ice Clouds Using CALIOP
NASA Technical Reports Server (NTRS)
Ryan, R.; Avery, M.; Tackett, J.
2017-01-01
Optically thin ice clouds have been shown to have a net warming effect on the globe but, because passive instruments are not sensitive to optically thin clouds, the occurrence frequency of this class of clouds is greatly underestimated in historical passive sensor cloud climatology. One major strength of CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization), onboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) spacecraft, is its ability to detect these thin clouds, thus filling an important missing piece in the historical data record. This poster examines the full mission of CALIPSO Level 2 data, focusing on those CALIOP retrievals identified as thin ice clouds according to the definition shown to the right. Using this definition, thin ice clouds are identified and counted globally and vertically for each season. By examining the spatial and seasonal distributions of these thin clouds we hope to gain a better understanding these thin ice clouds and how their global distribution has changed over the mission. This poster showcases when and where CALIOP detects thin ice clouds and examines a case study of the eastern pacific and the effects seen from the El Nino-Southern Oscillation (ENSO).
QCM gas sensor characterization of ALD-grown very thin TiO2 films
NASA Astrophysics Data System (ADS)
Boyadjiev, S.; Georgieva, V.; Vergov, L.; Szilágyi, I. M.
2018-03-01
The paper presents a technology for preparation and characterization of titanium dioxide (TiO2) thin films suitable for gas sensor applications. Applying atomic layer deposition (ALD), very thin TiO2 films were deposited on quartz resonators, and their gas sensing properties were studied using the quartz crystal microbalance (QCM) method. The TiO2 thin films were grown using Ti(iOPr)4 and water as precursors. The surface of the films was observed by scanning electron microscopy (SEM), coupled with energy dispersive X-ray analysis (EDX) used for a composition study. The research was focused on the gas-sensing properties of the films. Films of 10-nm thickness were deposited on quartz resonators with Au electrodes and the QCMs were used to build highly sensitive gas sensors, which were tested for detecting NO2. Although very thin, these ALD-grown TiO2 films were sensitive to NO2 already at room temperature and could register as low concentrations as 50 ppm, while the sorption was fully reversible, and the sensors could be fully recovered. With the technology presented, the manufacturing of gas sensors is simple, fast and cost-effective, and suitable for energy-effective portable equipment for real-time environmental monitoring of NO2.
Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) Instrument Improvements
NASA Technical Reports Server (NTRS)
Dunagan, Stephen E.; Redemann, Jens; Chang, Cecilia; Dahlgren, Robert; Fahey, Lauren; Flynn, Connor; Johnson, Roy; Kacenelenbogen, Meloe; Leblanc, Samuel; Liss, Jordan;
2017-01-01
The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with grating spectroscopy to improve knowledge of atmospheric constituents and their links to air-pollution and climate. Hyper-spectral measurements of direct-beam solar irradiance provide retrievals of gas constituents, aerosol optical depth, and aerosol and thin cloud optical properties. Sky radiance measurements in the principal and almucantar planes enhance retrievals of aerosol absorption, aerosol type, and size mode distribution. Zenith radiance measurements are used to retrieve cloud properties and phase, which in turn are used to quantify the radiative transfer below cloud layers. These airborne measurements tighten the closure between satellite and ground-based measurements. In contrast to the Ames Airborne Tracking Sunphotometer (AATS-14) predecessor instrument, new technologies for each subsystem have been incorporated into 4STAR. In particular, 4STAR utilizes a modular sun-trackingsky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and spectrometerdetector configurations that may be tailored for specific scientific objectives. This paper discusses technical challenges relating to compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage at high resolution. Test results benchmarking the performance of the instrument against the AATS-14 standard and emerging science requirements are presented.
Ultra-fast movies of thin-film laser ablation
NASA Astrophysics Data System (ADS)
Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.
2012-11-01
Ultra-short-pulse laser irradiation of thin molybdenum films from the glass substrate side initiates an intact Mo disk lift off free from thermal effects. For the investigation of the underlying physical effects, ultra-fast pump-probe microscopy is used to produce stop-motion movies of the single-pulse ablation process, initiated by a 660-fs laser pulse. The ultra-fast dynamics in the femtosecond and picosecond ranges are captured by stroboscopic illumination of the sample with an optically delayed probe pulse of 510-fs duration. The nanosecond and microsecond delay ranges of the probe pulse are covered by an electronically triggered 600-ps laser. Thus, the setup enables an observation of general laser ablation processes from the femtosecond delay range up to the final state. A comparison of time- and space-resolved observations of film and glass substrate side irradiation of a 470-nm molybdenum layer reveals the driving mechanisms of the Mo disk lift off initiated by glass-side irradiation. Observations suggest that a phase explosion generates a liquid-gas mixture in the molybdenum/glass interface about 10 ps after the impact of the pump laser pulse. Then, a shock wave and gas expansion cause the molybdenum layer to bulge, while the enclosed liquid-gas mixture cools and condenses at delay times in the 100-ps range. The bulging continues for approximately 20 ns, when an intact Mo disk shears and lifts off at a velocity of above 70 m/s. As a result, the remaining hole is free from thermal effects.
Evidence of environmental strains on charge injection in silole-based organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Huby, N.; Hirsch, L.; Aubouy, L.; Gerbier, P.; van der Lee, A.; Amy, F.; Kahn, A.
2007-03-01
Using density functional theory (DFT) computations, we have demonstrated a substantial skeletal relaxation when the structure of 2,5-[bis-(4-anthracene-9-yl-phenyl]-1,1-dimethyl-3,4-diphenyl-silole (BAS) is optimized in the gas-phase comparing with the molecular structure determined from monocrystal x-ray diffraction. The origin of such a relaxation is explained by a strong environmental strains induced by the presence of anthracene entities. Moreover, the estimation of the frontier orbital levels showed that this structural relaxation affects mainly the LUMO that is lowered of 190meV in the gas phase. To check if these theoretical findings would be confirmed for thin films of BAS, we turned to ultraviolet photoemission spectroscopy and/or inverse photoemission spectroscopy and electro-optical measurements. Interestingly, the study of the current density or voltage and luminance or voltage characteristics of an ITO/PEDOT/BAS/Au device clearly demonstrated a very unusual temperature-dependent behavior. Using a thermally assisted tunnel transfer model, we found that this behavior likely originated from the variation of the electronic affinity of the silole derivative with the temperature. The thermal agitation relaxes the molecular strains in thin films as it is shown when passing from the crystalline to the gas phase. The relaxation of the intramolecular thus induces an increase of the electronic affinity and, as a consequence, the more efficient electron injection in organic light-emitting diodes.
Calibrating an optical scanner for quality assurance of large area radiation detectors
NASA Astrophysics Data System (ADS)
Karadzhinova, A.; Hildén, T.; Berdova, M.; Lauhakangas, R.; Heino, J.; Tuominen, E.; Franssila, S.; Hæggström, E.; Kassamakov, I.
2014-11-01
A gas electron multiplier (GEM) is a particle detector used in high-energy physics. Its main component is a thin copper-polymer-copper sandwich that carries Ø =70 ± 5 µm holes. Quality assurance (QA) is needed to guarantee both long operating life and reading fidelity of the GEM. Absence of layer defects and conformity of the holes to specifications is important. Both hole size and shape influence the detector’s gas multiplication factor and hence affect the collected data. For the scanner the required lateral measurement tolerance is ± 5 µm. We calibrated a high aspect ratio optical scanning system (OSS) to allow ensuring the quality of large GEM foils. For the calibration we microfabricated transfer standards, which were imaged with the OSS and which were compared to corresponding scanning electron microscopy (SEM) images. The calibration fulfilled the ISO/IEC 17025 and UKAS M3003 requirements: the calibration factor was 1.01 ± 0.01, determined at 95% confidence level across a 950 × 950 mm2 area. The proposed large-scale scanning technique can potentially be valuable in other microfabricated products too.
Preparation of polymeric diacetylene thin films for nonlinear optical applications
NASA Technical Reports Server (NTRS)
Frazier, Donald O. (Inventor); Mcmanus, Samuel P. (Inventor); Paley, Mark S. (Inventor); Donovan, David N. (Inventor)
1995-01-01
A method for producing polymeric diacetylene thin films having desirable nonlinear optical characteristics has been achieved by producing amorphous diacetylene polymeric films by simultaneous polymerization of diacetylene monomers in solution and deposition of polymerized diacetylenes on to the surface of a transparent substrate through which ultraviolet light has been transmitted. These amorphous polydiacetylene films produced by photo-deposition from solution possess very high optical quality and exhibit large third order nonlinear optical susceptibilities, such properties being suitable for nonlinear optical devices such as waveguides and integrated optics.
Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation.
Chin, Jessie Yao; Steinle, Tobias; Wehlus, Thomas; Dregely, Daniel; Weiss, Thomas; Belotelov, Vladimir I; Stritzker, Bernd; Giessen, Harald
2013-01-01
Light propagation is usually reciprocal. However, a static magnetic field along the propagation direction can break the time-reversal symmetry in the presence of magneto-optical materials. The Faraday effect in magneto-optical materials rotates the polarization plane of light, and when light travels backward the polarization is further rotated. This is applied in optical isolators, which are of crucial importance in optical systems. Faraday isolators are typically bulky due to the weak Faraday effect of available magneto-optical materials. The growing research endeavour in integrated optics demands thin-film Faraday rotators and enhancement of the Faraday effect. Here, we report significant enhancement of Faraday rotation by hybridizing plasmonics with magneto-optics. By fabricating plasmonic nanostructures on laser-deposited magneto-optical thin films, Faraday rotation is enhanced by one order of magnitude in our experiment, while high transparency is maintained. We elucidate the enhanced Faraday effect by the interplay between plasmons and different photonic waveguide modes in our system.
Studies of PMMA sintering foils with and without coating by magnetron sputtering Pd
NASA Astrophysics Data System (ADS)
Cutroneo, M.; Mackova, A.; Torrisi, L.; Vad, K.; Csik, A.; Ando', L.; Svecova, B.
2017-09-01
Polymethylmethacrylate thin foils were prepared by using physical and chemical processes aimed at changing certain properties. The density and the optical properties were changed obtaining clear and opaque foils. DC magnetron sputtering method was used to cover the foils with thin metallic palladium layers. The high optical absorbent foils were obtained producing microstructured PMMA microbeads with and without thin metallic coatings. Rutherford Backscattering Spectroscopy, optical investigation and microscopy were employed to characterize the prepared foils useful in the field study of laser-matter interaction.
Chemical spray pyrolyzed kesterite Cu2ZnSnS4 (CZTS) thin films
NASA Astrophysics Data System (ADS)
Khalate, S. A.; Kate, R. S.; Deokate, R. J.
2018-04-01
Pure kesterite phase thin films of Cu2ZnSnS4 (CZTS) were synthesized at different substrate temperatures using sulphate precursors by spray pyrolysis method. The significance of synthesis temperature on the structural, morphological and optical properties has been studied. The X-ray analysis assured that synthesized CZTS thin films showing pure kesterite phase. The value of crystallite size was found maximum at the substrate temperature 400 °C. At the same temperature, microstructural properties such as dislocation density, micro-strain and stacking fault probability were found minimum. The morphological examination designates the development of porous and uniform CZTS thin films. The synthesized CZTS thin films illustrate excellent optical absorption (105 cm-1) in the visible band and the optical band gap varies in the range of 1.489 eV to 1.499 eV.
NASA Astrophysics Data System (ADS)
Kaushal, Ajay; Kaur, Davinder
2011-06-01
We report on the effect of oxygen partial pressure and vacuum annealing on structural and optical properties of pulsed laser-deposited nanocrystalline WO3 thin films. XRD results show the hexagonal phase of deposited WO3 thin films. The crystallite size was observed to increase with increase in oxygen partial pressure. Vacuum annealing changed the transparent as-deposited WO3 thin film to deep shade of blue color which increases the optical absorption of the film. The origin of this blue color could be due to the presence of oxygen vacancies associated with tungsten ions in lower oxidation states. In addition, the effects of VO2 content on structural, electrochemical, and optical properties of (WO3)1- x (VO2) x nanocomposite thin films have also been systematically investigated. Cyclic voltammogram exhibits a modification with the appearance of an extra cathodic peak for VO2-WO3 thin film electrode with higher VO2 content ( x ≥ 0.2). Increase of VO2 content in (WO3)1- x (VO2) x films leads to red shift in optical band gap.
NASA Astrophysics Data System (ADS)
Petkov, Kiril; Todorov, Rossen; Vassilev, Venceslav; Aljihmani, Lilia
We examined the condition of preparation of thin films from GeSe2-GeTe-ZnTe system by thermal evaporation and changes in their optical properties after exposure to light and thermal annealing. The results for composition analysis of thin films showed absence of Zn independently of the composition of the bulk glass. By X-ray diffraction (XRD) analysis it was found that a reduction of ZnTe in ZnSe in bulk materials takes of place during the film deposition. A residual from ZnSe was observed in the boat after thin film deposition. Optical constants (refractive index, n and absorption coefficient, α) and thickness, d as well as the optical band gap, Eg, depending of the content of Te in ternary Ge-Se-Te system are determined from specrophotometric measurements in the spectral range 400-2500 nm applying the Swanepoel's envelope method and Tauc's procedure. With the increase of Te content in the layers the absorption edge is shifted to the longer wavelengths, refractive index increases while the optical band gap decreases from 2.02 eV for GeSe2 to 1.26 eV for Ge34Se42Te24. The values of the refractive index decrease after annealing of all composition and Eg increase, respectively. Thin films with composition of Ge27Se47Te9Zn17 and Ge28Se49Te10Zn13 were prepared by co-evaporation of (GeSe2)78(GeTe)22 and Zn from a boat and a crucible and their optical properties, surface morphology and structure were investigated. The existence of a correlation between the optical band gap and the copostion of thin films from the system studied was demonstrated.
Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors
NASA Astrophysics Data System (ADS)
Boyadjiev, S. I.; Georgieva, V.; Yordanov, R.; Raicheva, Z.; Szilágyi, I. M.
2016-11-01
Applying atomic layer deposition (ALD), very thin zinc oxide (ZnO) films were deposited on quartz resonators, and their gas sensing properties were studied using the quartz crystal microbalance (QCM) method. The gas sensing of the ZnO films to NO2 was tested in the concentration interval between 10 and 5000 ppm. On the basis of registered frequency change of the QCM, for each concentration the sorbed mass was calculated. Further characterization of the films was carried out by various techniques, i.e. by SEM-EDS, XRD, ellipsometry, and FTIR spectroscopy. Although being very thin, the films were gas sensitive to NO2 already at room temperature and could register very well as low concentrations as 100 ppm, while the sorption was fully reversible. Our results for very thin ALD ZnO films show that the described fast, simple and cost-effective technology could be implemented for producing gas sensors working at room temperature and being capable to detect in real time low concentrations of NO2.
Room temperature ammonia gas sensing properties of MoS2 nanostructured thin film
NASA Astrophysics Data System (ADS)
Sharma, Shubham; Kumar, Arvind; Kaur, Davinder
2018-05-01
Here, we have fabricated the MoS2 nanostructure thin films on the Si (100) substrate using DC magnetron sputtering technique. The MoS2 thin film sensor shows the selective responses towards the ammonia gas (NH3) under low detection range 10-500 ppm. The sensor displays a significantly high sensing response (Rg/Ra ˜2.2) towards 100 ppm ammonia gas with a very fast response and recovery time of 22 sec and 30 sec respectively. Selectivity and stability investigations exhibit the excellent sensing properties of MoS2 thin film sensor. The working principle and sensing mechanism behind their remarkable performance was also investigated in detail.
NASA Astrophysics Data System (ADS)
Antony, Albin; Pramodini, S.; Poornesh, P.; Kityk, I. V.; Fedorchuk, A. O.; Sanjeev, Ganesh
2016-12-01
We present the studies on third-order nonlinear optical properties of Al doped ZnO thin films irradiated with electron beam at different dose rate. Al doped ZnO thin films were deposited on a glass substrate by spray pyrolysis deposition technique. The thin films were irradiated using the 8 MeV electron beam from microtron ranging from 1 kG y to 5 kG y. Nonlinear optical studies were carried out by employing the single beam Z-scan technique to determine the sign and magnitude of absorptive and refractive nonlinearities of the irradiated thin films. Continuous wave He-Ne laser operating at 633 nm was used as source of excitation. The open aperture Z-scan measurements indicated the sample displays reverse saturable absorption (RSA) process. The negative sign of the nonlinear refractive index n2 was noted from the closed aperture Z-scan measurements indicates, the films exhibit self-defocusing property due to thermal nonlinearity. The third-order nonlinear optical susceptibility χ(3) varies from 8.17 × 10-5 esu to 1.39 × 10-3 esu with increase in electron beam irradiation. The present study reveals that the irradiation of electron beam leads to significant changes in the third-order optical nonlinearity. Al doped ZnO displays good optical power handling capability with optical clamping of about ∼5 mW. The irradiation study endorses that the Al doped ZnO under investigation is a promising candidate photonic device applications such as all-optical power limiting.
NASA Astrophysics Data System (ADS)
Erken, Ozge; Gunes, Mustafa; Gumus, Cebrail
2017-04-01
Transparent ZnS:Mn thin films were produced by chemical bath deposition (CBD) technique at 80 °C for 4h, 6h and 8h durations. The optical properties such as optical transmittance (T %), reflectance (R %), extinction coefficient (k) and refractive index (n) were deeply investigated in terms of contribution ratio, wavelength and film thickness. The optical properties of ZnS:Mn thin films were determined by UV/vis spectrophotometer transmittance measurements in the range of λ=300-1100 nm. Optical transmittances of the films were found from 12% to 92% in the visible region. The refractive index (n) values for visible region were calculated as 1.34-5.09. However, film thicknesses were calculated between 50 and 901 nm by gravimetric analysis.
Some Experiments with Thin Prisms.
ERIC Educational Resources Information Center
Fernando, P. C. B.
1980-01-01
Described are several experiments, for a course in geometrical optics or for a college physics laboratory, which have a bearing on ophthalmic optics. Experiments include the single thin prism, crossed prisms, and the prismatic power of a lens. (Author/DS)
NASA Astrophysics Data System (ADS)
Baisakh, K.; Behera, S.; Pati, S.
2018-03-01
In this work we have systematically studied the optical characteristics of synthesized wurzite zinc oxide thin films exhibiting (002) orientation. Using sol gel spin coating technique zinc oxide thin films are grown on pre cleaned fused quartz substrates. Structural properties of the films are studied using X-ray diffraction analysis. Micro structural analysis and thickness of the grown samples are analyzed using field emission scanning electron microscopy. With an aim to investigate the optical characteristics of the grown zinc oxide thin films the transmission and reflection spectra are evaluated in the ultraviolet-visible (UV-VIS) range. Using envelope method, the refractive index, extinction coefficient, absorption coefficient, band gap energy and the thickness of the synthesized films are estimated from the recorded UV-VIS spectra. An attempt has also been made to study the influence of crystallographic orientation on the optical characteristics of the grown films.
Structural and optical properties of PbS thin films grown by chemical bath deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seghaier, S.; Kamoun, N.; Guasch, C.
2007-09-19
Lead sulphide thin films are grown on glass substrates at various deposition times tD, in the range of 40-60 min per step of 2 min, using the chemical bath deposition technique. X-ray diffraction and atomic force microscopy are used to characterize the film structure. The surface composition is analysed by Auger electron spectroscopy. It appears that the as-prepared thin films are polycrystalline with cubic structure. Nanometric scale crystallites are uniformly distributed on the surface. They exhibit almost a stoechiometric composition with a [Pb]/[S] ratio equal to 1.10. Optical properties are studied in the range of 300-3300 nm by spectrophotometric measurements.more » Analysis of the optical absorption data of lead sulphide thin layers reveals a narrow optical direct band gap equal to 0.46 eV for the layer corresponding to a deposition time equal to 60 min.« less
Furukawa, Taichi; Kanamori, Satoshi; Fukuta, Masahiro; Nawa, Yasunori; Kominami, Hiroko; Nakanishi, Yoichiro; Sugita, Atsushi; Inami, Wataru; Kawata, Yoshimasa
2015-07-13
We fabricated a bright and thin Zn₂SiO₄ luminescent film to serve as a nanometric light source for high-spatial-resolution optical microscopy based on electron beam excitation. The Zn₂SiO₄ luminescent thin film was fabricated by annealing a ZnO film on a Si₃N₄ substrate at 1000 °C in N₂. The annealed film emitted bright cathodoluminescence compared with the as-deposited film. The film is promising for nano-imaging with electron beam excitation-assisted optical microscopy. We evaluated the spatial resolution of a microscope developed using this Zn₂SiO₄ luminescent thin film. This is the first report of the investigation and application of ZnO/Si₃N₄ annealed at a high temperature (1000 °C). The fabricated Zn₂SiO₄ film is expected to enable high-frame-rate dynamic observation with ultra-high resolution using our electron beam excitation-assisted optical microscopy.
Nonlinear optical characterization of ZnS thin film synthesized by chemical spray pyrolysis method
NASA Astrophysics Data System (ADS)
G, Sreeja V.; V, Sabitha P.; Anila, E. I.; R, Reshmi; John, Manu Punnan; Radhakrishnan, P.
2014-10-01
ZnS thin film was prepared by Chemical Spray Pyrolysis (CSP) method. The sample was characterized by X-ray diffraction method and Z scan technique. XRD pattern showed that ZnS thin film has hexagonal structure with an average size of about 5.6nm. The nonlinear optical properties of ZnS thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532nm. The Z-scan plot showed that the investigated ZnS thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, Andrews; Goud, J. Pundareekam; Raju, K. C. James
2016-05-23
Optical properties of pulsed laser deposited (PLD) sodium bismuth titanate thin films (NBT), are investigated at wavelengths of 190-2500 nm. Microwave dielectric properties were investigated using the Split Post Dielectric Resonator (SPDR) technique. At 10 GHz, the NBT films have a dielectric constant of 205 and loss tangent of 0.0373 at room temperature. The optical spectra analysis reveals that NBT thin films have an optical band gap E{sub g}=3.55 eV and it has a dielectric constant of 3.37 at 1000 nm with dielectric loss of 0.299. Hence, NBT is a promising candidate for photonic device applications.
Preparation, linear and NLO properties of DNA-CTMA-SBE complexes
NASA Astrophysics Data System (ADS)
Manea, Ana-Maria; Rau, Ileana; Kajzar, Francois; Meghea, Aurelia
2013-10-01
Synthesis of deoxyribonucleic acid (DNA) - was cetyltrimethylammonium (CTMA) - sea buckthorn extract (SBE) at different concentrations is decribed. The complexes were processed into good optical quality thin films by spin coating on different substrates such as: glass, silica and ITO covered glass substrates. SBE contains many bioactive substances that can be used in the treatment of several diseases, such as cardiovascular disease, cancer, and acute mountain sickness. The obtained thin films were characterized for their spectroscopic, fluorescent, linear and nonlinear optical properties as function of SBE concentration. The third-order nonlinear optical (NLO) properties of thin films were determined by the optical third-harmonic generation technique at 1 064.2 nm fundamental wavelength.
Influence of sputtering power on the optical properties of ITO thin films
NASA Astrophysics Data System (ADS)
K, Aijo John; Kumar, Vineetha V.; M, Deepak; T, Manju
2014-10-01
Tin doped indium oxide films are widely used in transparent conducting coatings such as flat panel displays, crystal displays and in optical devices such as solar cells and organic light emitting diodes due to the high electrical resistivity and optical transparency in the visible region of solar spectrum. The deposition parameters have a commendable influence on the optical and electrical properties of the thin films. In this study, ITO thin films were prepared by RF magnetron sputtering. The properties of the films prepared under varying sputtering power were compared using UV- visible spectrophotometry. Effect of sputtering power on the energy band gap, absorption coefficient and refractive index are investigated.
Properties of thin silver films with different thickness
NASA Astrophysics Data System (ADS)
Zhao, Pei; Su, Weitao; Wang, Reng; Xu, Xiaofeng; Zhang, Fengshan
2009-01-01
In order to investigate optical properties of silver films with different film thickness, multilayer composed of thin silver film sandwiched between ZnS films are sputtered on the float glass. The crystal structures, optical and electrical properties of films are characterized by various techniques, such as X-ray diffraction (XRD), spectrum analysis, etc. The optical constants of thin silver film are calculated by fitting the transmittance ( T) and reflectance ( R) spectrum of the multilayer. Electrical and optical properties of silver films thinner than 6.2 nm exhibit sharp change. However, variation becomes slow as film thickness is larger than 6.2 nm. The experimental results indicate that 6.2 nm is the optimum thickness for properties of silver.
Gas impermeable glaze for sealing a porous ceramic surface
Reed, Scott T.; Stone, Ronald G.; Nenoff, Tina M.; Trudell, Daniel E.; Thoma, Steven G.
2004-04-06
A process for fabricating a gas impermeable seal on a porous ceramic surface using a thin, glass-based, pinhole free glaze. The process can be used to fabricate gas impermeable end seals on porous alumina tubes used as filter media. The porous alumina tubes can have an inorganic microporous thin film separation membrane on the inner surface, which can be used for high temperature gas separation processes.
Fabrication and Characterization of N-Type Zinc Oxide/P-Type Boron Doped Diamond Heterojunction
NASA Astrophysics Data System (ADS)
Marton, Marián; Mikolášek, Miroslav; Bruncko, Jaroslav; Novotný, Ivan; Ižák, Tibor; Vojs, Marian; Kozak, Halyna; Varga, Marián; Artemenko, Anna; Kromka, Alexander
2015-09-01
Diamond and ZnO are very promising wide-bandgap materials for electronic, photovoltaic and sensor applications because of their excellent electrical, optical, physical and electrochemical properties and biocompatibility. In this contribution we show that the combination of these two materials opens up the potential for fabrication of bipolar heterojunctions. Semiconducting boron doped diamond (BDD) thin films were grown on Si and UV grade silica glass substrates by HFCVD method with various boron concentration in the gas mixture. Doped zinc oxide (ZnO:Al, ZnO:Ge) thin layers were deposited by diode sputtering and pulsed lased deposition as the second semiconducting layer on the diamond films. The amount of dopants within the films was varied to obtain optimal semiconducting properties to form a bipolar p-n junction. Finally, different ZnO/BDD heterostructures were prepared and analyzed. Raman spectroscopy, SEM, Hall constant and I-V measurements were used to investigate the quality, structural and electrical properties of deposited heterostructures, respectively. I-V measurements of ZnO/BDD diodes show a rectifying ratio of 55 at ±4 V. We found that only very low dopant concentrations for both semiconducting materials enabled us to fabricate a functional p-n junction. Obtained results are promising for fabrication of optically transparent ZnO/BDD bipolar heterojunction.
High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe
NASA Astrophysics Data System (ADS)
Bandurin, Denis A.; Tyurnina, Anastasia V.; Yu, Geliang L.; Mishchenko, Artem; Zólyomi, Viktor; Morozov, Sergey V.; Kumar, Roshan Krishna; Gorbachev, Roman V.; Kudrynskyi, Zakhar R.; Pezzini, Sergio; Kovalyuk, Zakhar D.; Zeitler, Uli; Novoselov, Konstantin S.; Patanè, Amalia; Eaves, Laurence; Grigorieva, Irina V.; Fal'Ko, Vladimir I.; Geim, Andre K.; Cao, Yang
2017-03-01
A decade of intense research on two-dimensional (2D) atomic crystals has revealed that their properties can differ greatly from those of the parent compound. These differences are governed by changes in the band structure due to quantum confinement and are most profound if the underlying lattice symmetry changes. Here we report a high-quality 2D electron gas in few-layer InSe encapsulated in hexagonal boron nitride under an inert atmosphere. Carrier mobilities are found to exceed 103 cm2 V-1 s-1 and 104 cm2 V-1 s-1 at room and liquid-helium temperatures, respectively, allowing the observation of the fully developed quantum Hall effect. The conduction electrons occupy a single 2D subband and have a small effective mass. Photoluminescence spectroscopy reveals that the bandgap increases by more than 0.5 eV with decreasing the thickness from bulk to bilayer InSe. The band-edge optical response vanishes in monolayer InSe, which is attributed to the monolayer's mirror-plane symmetry. Encapsulated 2D InSe expands the family of graphene-like semiconductors and, in terms of quality, is competitive with atomically thin dichalcogenides and black phosphorus.
Membrane thinning for efficient CO2 capture
Selyanchyn, Roman; Fujikawa, Shigenori
2017-01-01
Abstract Enhancing the fluxes in gas separation membranes is required for utilizing the membranes on a mass scale for CO2 capture. Membrane thinning is one of the most promising approaches to achieve high fluxes. In addition, sophisticated molecular transport across membranes can boost gas separation performance. In this review, we attempt to summarize the current state of CO2 separation membranes, especially from the viewpoint of thinning the selective layers and the membrane itself. The gas permeation behavior of membranes with ultimate thicknesses and their future directions are discussed. PMID:29152016
NASA Astrophysics Data System (ADS)
Liang, Yuan-Chang; Lee, Chia-Min
2016-10-01
ZnO-In2O3 (InO) composite thin films were grown by radio frequency cosputtering ZnO and InO ceramic targets in this study. The indium content of the composite films was varied from 1.7 at. % to 8.2 at. % by varying the InO sputtering power during cosputtering thin-film growth. X-ray diffraction and transmission electron microscopy analysis results show that the high indium content leads to the formation of a separated InO phase in the ZnO matrix. The surface crystallite size and roughness of the ZnO-InO composite films grown here increased with an increasing indium content. Furthermore, under the conditions of a higher indium content and InO sputtering power, the number of crystal defects in the composite films increased, and the optical absorbance edge of the composite films broadened. The photoactivity and ethanol gas sensing response of the ZnO-InO composite films increased as their indium content increased; this finding is highly correlated with the microstructural evolution of ZnO-InO composite films of various indium contents, which is achieved by varying the InO sputtering power during cosputtering.
NASA Astrophysics Data System (ADS)
Lee, Jun S.; Shin, Kyung S.; Sahu, B. B.; Han, Jeon G.
2015-09-01
In this work, silicon nitride (SiNx) thin films were deposited on polyethylene terephthalate (PET) substrates as barrier layers by plasma enhanced chemical vapor deposition (PECVD) system. Utilizing a combination of very high-frequency (VHF 40.68 MHz) and radio-frequency (RF 13.56 MHz) plasmas it was possible to adopt PECVD deposition at low-temperature using the precursors: Hexamethyldisilazane (HMDSN) and nitrogen. To investigate relationship between film properties and plasma properties, plasma diagnostic using optical emission spectroscopy (OES) was performed along with the film analysis using Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). OES measurements show that there is dominance of the excited N2 and N2+ emissions with increase in N2 dilution, which has a significant impact on the film properties. It was seen that all the deposited films contains mainly silicon nitride with a small content of carbon and no signature of oxygen. Interestingly, upon air exposure, films have shown the formation of Si-O bonds in addition to the Si-N bonds. Measurements and analysis reveals that SiNx films deposited with high content of nitrogen with HMDSN plasma can have lower gas barrier properties as low as 7 . 3 ×10-3 g/m2/day. Also at Chiang Mai University.
Polarization-dependent optical absorption of MoS₂ for refractive index sensing.
Tan, Yang; He, Ruiyun; Cheng, Chen; Wang, Dong; Chen, Yanxue; Chen, Feng
2014-12-17
As a noncentrosymmetric crystal with spin-polarized band structure, MoS2 nanomaterials have attracts increasing attention in many areas such as lithium ion batteries, flexible electronic devices, photoluminescence and valleytronics. The investigation of MoS2 is mainly focused on the electronics and spintronics instead of optics, which restrict its applications as key elements of photonics. In this work, we demonstrate the first observation of the polarization-dependent optical absorption of the MoS2 thin film, which is integrated onto an optical waveguide device. With this feature, a novel optical sensor combining MoS2 thin-film and a microfluidic structure has been constituted to achieve the sensitive monitoring of refractive index. Our work indicates the MoS2 thin film as a complementary material to graphene for the optical polarizer in the visible light range, and explores a new application direction of MoS2 nanomaterials for the construction of photonic circuits.
NASA Astrophysics Data System (ADS)
Tripathi, Ravi P.; Zulfequar, M.; Khan, Shamshad A.
2018-04-01
Our aim is to study the thickness dependent effects on structure, electrical and optical properties of Se85In12Bi3 nanochalcogenide thin films. Bulk alloy of Se85In12Bi3 was synthesized by melt-quenching technique. The amorphous as well as glassy nature of Se85In12Bi3 chalcogenide was confirmed by non-isothermal Differential Scanning Calorimetry (DSC) measurements. The nanochalcogenide thin films of thickness 30, 60 and 90 nm were prepared on glass/Si wafer substrate using Physical Vapour Condensation Technique (PVCT). From XRD studies it was found that thin films have amorphous texture. The surface morphology and particle size of films were studied by Field Emission Scanning Electron Microscope (FESEM). From optical studies, different optical parameters were estimated for Se85In12Bi3 thin films at different thickness. It was found that the absorption coefficient (α) and extinction coefficient (k) increases with photon energy and decreases with film thickness. The optical absorption process followed the rule of indirect transitions and optical band gap were found to be increase with film thickness. The value of Urbach energy (Et) and steepness parameter (σ) were also calculated for different film thickness. For electrical studies, dc-conductivity measurement was done at different temperature and activation energy (ΔEc) were determined and found to be increase with film thickness.
Optical Analysis of Iron-Doped Lead Sulfide Thin Films for Opto-Electronic Applications
NASA Astrophysics Data System (ADS)
Chidambara Kumar, K. N.; Khadeer Pasha, S. K.; Deshmukh, Kalim; Chidambaram, K.; Shakil Muhammad, G.
Iron-doped lead sulfide thin films were deposited on glass substrates using successive ionic layer adsorption and reaction method (SILAR) at room temperature. The X-ray diffraction pattern of the film shows a well formed crystalline thin film with face-centered cubic structure along the preferential orientation (1 1 1). The lattice constant is determined using Nelson Riley plots. Using X-ray broadening, the crystallite size is determined by Scherrer formula. Morphology of the thin film was studied using a scanning electron microscope. The optical properties of the film were investigated using a UV-vis spectrophotometer. We observed an increase in the optical band gap from 2.45 to 3.03eV after doping iron in the lead sulfide thin film. The cutoff wavelength lies in the visible region, and hence the grown thin films can be used for optoelectronic and sensor applications. The results from the photoluminescence study show the emission at 500-720nm. The vibrating sample magnetometer measurements confirmed that the lead sulfide thin film becomes weakly ferromagnetic material after doping with iron.
NASA Astrophysics Data System (ADS)
Studenyak, I. P.; Kutsyk, M. M.; Buchuk, M. Yu.; Rati, Y. Y.; Neimet, Yu. Yu.; Izai, V. Yu.; Kökényesi, S.; Nemec, P.
2016-02-01
(Ag3AsS3)0.6(As2S3)0.4 thin films were deposited using rapid thermal evaporation (RTE) and pulse laser deposition (PLD) techniques. Ag-enriched micrometre-sized cones (RTE) and bubbles (PLD) were observed on the thin film surface. Optical transmission spectra of the thin films were studied in the temperature range 77-300 K. The Urbach behaviour of the optical absorption edge in the thin films due to strong electron-phonon interaction was observed, the main parameters of the Urbach absorption edge were determined. Temperature dependences of the energy position of the exponential absorption edge and the Urbach energy are well described in the Einstein model. Dispersion and temperature dependences of refractive indices were analysed; a non-linear increase of the refractive indices with temperature was revealed. Disordering processes in the thin films were studied and compared with bulk composites, the differences between the thin films prepared by RTE and PLD were analysed.
NASA Astrophysics Data System (ADS)
Zhou, Yawei; Xu, Wenwu; Li, Jingjing; Yin, Chongshan; Liu, Yong; Zhao, Bin; Chen, Zhiquan; He, Chunqing; Mao, Wenfeng; Ito, Kenji
2018-01-01
Fluorine doped tin oxide (FTO) thin films were deposited on glass substrates by e-beam evaporation. Much higher carrier concentration, broader optical band gap, and average transmittance over 80% were obtained with SnF2 doped SnO2 thin films. Positron annihilation results showed that there are two kinds of vacancy clusters with different sizes existing in the annealed FTO thin films, and the concentration of the larger vacancy clusters of VSnO in the thin films increases with increasing SnF2 contents. Meanwhile, photoluminescence spectra results indicated that the better electrical and optical properties of the FTO thin films are attributed to FO substitutions and oxygen vacancies with higher concentration, which are supported by positron annihilation Doppler broadening results and confirmed by X-ray photoelectron spectroscopy. The results showed that widening of the optical band gap of the FTO thin films strongly depends on the carrier concentration, which is interpreted for the Burstein-Moss effect and is associated with the formation of FO and oxygen vacancies with increasing SnF2 content.
Aulin, Christian; Karabulut, Erdem; Tran, Amy; Wågberg, Lars; Lindström, Tom
2013-08-14
The layer-by-layer (LbL) deposition method was used for the build-up of alternating layers of nanofibrillated cellulose (NFC) or carboxymethyl cellulose (CMC) with a branched, cationic polyelectrolyte, polyethyleneimine (PEI) on flexible poly (lactic acid) (PLA) substrates. With this procedure, optically transparent nanocellulosic films with tunable gas barrier properties were formed. 50 layer pairs of PEI/NFC and PEI/CMC deposited on PLA have oxygen permeabilities of 0.34 and 0.71 cm(3)·μm/m(2)·day·kPa at 23 °C and 50% relative humidity, respectively, which is in the same range as polyvinyl alcohol and ethylene vinyl alcohol. The oxygen permeability of these multilayer nanocomposites outperforms those of pure NFC films prepared by solvent-casting. The nanocellulosic LbL assemblies on PLA substrates was in detailed characterized using a quartz crystal microbalance with dissipation (QCM-D). Atomic force microscopy (AFM) reveals large structural differences between the PEI/NFC and the PEI/CMC assemblies, with the PEI/NFC assembly showing a highly entangled network of nanofibrils, whereas the PEI/CMC surfaces lacked structural features. Scanning electron microscopy images showed a nearly perfect uniformity of the nanocellulosic coatings on PLA, and light transmittance results revealed remarkable transparency of the LbL-coated PLA films. The present work demonstrates the first ever LbL films based on high aspect ratio, water-dispersible nanofibrillated cellulose, and water-soluble carboxymethyl cellulose polymers that can be used as multifunctional films and coatings with tailorable properties, such as gas barriers and transparency. Owing to its flexibility, transparency and high-performance gas barrier properties, these thin film assemblies are promising candidates for several large-scale applications, including flexible electronics and renewable packaging.
Effect of visible light on the optical properties of a-(Ge2Sb2Te5)90Ag10 thin film
NASA Astrophysics Data System (ADS)
Singh, Palwinder; Thakur, Anup
2018-05-01
(Ge2Sb2Te5)90Ag10 (GST-Ag) bulk alloy was prepared using melt quenching technique. GST-Ag thin film was deposited on glass substrate using thermal evaporation method. The prepared thin films were exposed to visible light (intensity of 105 Lux for 2, 8, 20 and 30 hours) using 25W LED lamp. Transmission spectra were taken using UV-vis-NIR spectrophotometer in the wavelength range 800-3200 nm. Optical band gap of as-deposited and light exposed thin films was determined using Tauc's plot. Optical band gap was found to be decreasing on light exposure upto 8 hours and after that no significant change was observed.
Determination of dispersive optical constants of nanocrystalline CdSe (nc-CdSe) thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Kriti; Al-Kabbi, Alaa S.; Saini, G.S.S.
2012-06-15
Highlights: ► nc-CdSe thin films are prepared by thermal vacuum evaporation technique. ► TEM analysis shows NCs are spherical in shape. ► XRD reveals the hexagonal (wurtzite) crystal structure of nc-CdSe thin films. ► The direct optical bandgap of nc-CdSe is 2.25 eV in contrast to bulk (1.7 eV). ► Dispersion of refractive index is discussed in terms of Wemple–DiDomenico single oscillator model. -- Abstract: The nanocrystalline thin films of CdSe are prepared by thermal evaporation technique at room temperature. These thin films are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-raymore » diffraction (XRD) and photoluminescence spectroscopy (PL). The transmission spectra are recorded in the transmission range 400–3300 nm for nc-CdSe thin films. Transmittance measurements are used to calculate the refractive index (n) and absorption coefficient (α) using Swanepoel's method. The optical band gap (E{sub g}{sup opt}) has been determined from the absorption coefficient values using Tauc's procedure. The optical constants such as extinction coefficient (k), real (ε{sub 1}) and imaginary (ε{sub 2}) dielectric constants, dielectric loss (tan δ), optical conductivity (σ{sub opt}), Urbach energy (E{sub u}) and steepness parameter (σ) are also calculated for nc-CdSe thin films. The normal dispersion of refractive index is described using Wemple–DiDomenico single-oscillator model. Refractive index dispersion is further analysed to calculate lattice dielectric constant (ε{sub L}).« less
Method of Bonding Optical Elements with Near-Zero Displacement
NASA Technical Reports Server (NTRS)
Robinson, David; McClelland, Ryan; Byron, Glenn; Evans, Tyler
2012-01-01
The International X-ray Project seeks to build an x-ray telescope using thousands of pieces of thin and flexible glass mirror segments. Each mirror segment must be bonded into a housing in nearly perfect optical alignment without distortion. Forces greater than 0.001 Newton, or displacements greater than 0.5 m of the glass, cause unacceptable optical distortion. All known epoxies shrink as they cure. Even the epoxies with the least amount of shrinkage (<0.01%) cause unacceptable optical distortion and misalignment by pulling the mirror segments towards the housing as it cures. A related problem is that the shrinkage is not consistent or predictable so that it cannot be accounted for in the setup (i.e., if all of the bonds shrunk an equal amount, there would be no problem). A method has been developed that allows two components to be joined with epoxy in such a way that reduces the displacement caused by epoxy shrinking as it cures to less than 200 nm. The method involves using ultraviolet-cured epoxy with a displacement sensor and a nanoactuator in a control loop. The epoxy is cured by short-duration exposures to UV light. In between each exposure, the nano-actuator zeroes out the displacement caused by epoxy shrinkage and thermal expansion. After a few exposures, the epoxy has cured sufficiently to prevent further displacement of the two components. Bonding of optical elements has been done for many years, but most optics are thick and rigid elements that resist micro-Newton-level forces without causing distortion. When bonding thin glass optics such as the 0.40-mm thick IXO X-ray mirrors, forces in the micro- and milli-Newton levels cause unacceptable optical figure error. This innovation can now repeatedly and reliably bond a thin glass mirror to a metal housing with less than 0.2 m of displacement (<200 nm). This is an enabling technology that allows the installation of virtually stress-free, undistorted thin optics onto structures. This innovation is applicable to the bonding of thin optical elements, or any thin/flexible structures, that must be attached in an undistorted, consistent, and aligned way.
NASA Astrophysics Data System (ADS)
Yoshimura, Tetsuzo
1987-09-01
The electro-optic effect in styrylpyridinium cyanine dye (SPCD) thin-film crystals is characterized by a newly developed ac modulation method that is effective in characterizing thin-film materials of small area. SPCD thin-film crystals 3-10 μm thick were grown from a methanol solution of SPCD. The crystal shows strong dichroism and anisotropy of refractive index, indicating that molecular dipole moments align along a definite direction (z axis). When an electric field is applied along the z axis, SPCD thin-film crystals show a large figure of merit of electro-optic phase retardation of 6.5×10-10 m/V, which is 5 times as large as in LiNbO3 crystal, 2 times that in 2-methyl-4-nitroaniline (MNA) crystal, and is the largest ever reported in organic solids. The electro-optic coefficient r33 of SPCD crystals is estimated to be approximately 4.3×10-10 m/V, which is 6 times larger than that of an MNA crystal. This value is consistent with that expected from second-harmonic generation measurements.
NASA Astrophysics Data System (ADS)
Oueslati, H.; Rabeh, M. Ben; Kanzari, M.
2018-02-01
In this work, the effect of different types of thermal annealing on the properties of Cu2FeSnS4 (CFTS) thin films deposited by thermal evaporation at room temperature on glass substrate were investigated. CFTS powder was synthesized by direct melting of the constituent elements taken in stoichiometry compositions. The X-ray diffraction experimental data indicating that the Cu2FeSnS4 powder illustrating a stannite structure in space group I\\bar {4}2m. From the XRD analysis we have found that the polycrystalline CFTS thin film was only obtained by thermal annealed in sulfur atmosphere under a high vacuum of 400 °C temperature during 2 h. Optical study reveals that the thin films have relatively high absorption coefficients (≈ 105cm-1) and the values of optical band gap energy ranged between 1.38 and 1.48 eV. Other optical parameters were evaluated according to the models of Wemple Di-Domenico and Spitzer-Fan. Finally, hot probe measurements of CFTS thin films reveal p-type conductivity.
NASA Astrophysics Data System (ADS)
Zaman, S.; Mehmood, S. K.; Mansoor, M.; Asim, M. M.
2014-06-01
PbS thin films have received considerable attention because of their potential applications in opto-electronics applications. Spontaneous reaction of lead acetate and thiourea in aqueous hydrazine hydrate has been used for depositing PbS thin films on glass substrates. Structural and optical properties of PbS thin films are greatly influenced by the morality of the reactants and crystal defects in the lattice. Our work focuses on the variation in lead ion concentration and its effect on the structural and optical properties of PbS thin films. The deposited films were analyzed using XRD, SEM, spectrophotometer and dark resistance measurement. XRD patterns indicated the formation of major phase of nano crystalline PbS with minor presence of lead oxide phase. We also noticed that peak intensity ratio of I111/I200 varied by changing the Pb ion concentration. The film thickness and dark resistance increased whereas optical band gap decreased with the decreasing Pb ion concentration. SEM scans showed that the grain size is less than 100 nm and is not affected by varying Pb ion concentration.
NASA Astrophysics Data System (ADS)
Gholamali, Hediyeh; Shafiekhani, Azizollah; Darabi, Elham; Elahi, Seyed Mohammad
2018-03-01
Atomic force microscopy (AFM) images give valuable information about surface roughness of thin films based on the results of power spectral density (PSD) through the fast Fourier transform (FFT) algorithms. In the present work, AFM data are studied for silver and gold nanoparticles (Ag NPs a-C: H and Au NPs a-C: H) embedded in amorphous hydrogenated carbon films and co-deposited on glass substrate via of RF-Sputtering and RF-Plasma Enhanced Chemical Vapor Deposition methods. Here, the working gas is acetylene and the targets are Ag and Au. While time and power are constant, the only variable parameter in this study is initial pressure. In addition, the crystalline structure of Ag NPs a-C: H and Au NPs a-C: H are studied using X-ray diffraction (XRD). UV-visible spectrophotometry will also investigate optical properties and localized surface plasmon resonance (LSPR) of samples.
Structural and optical properties of cobalt doped multiferroics BiFeO3 nanostructure thin films
NASA Astrophysics Data System (ADS)
Prasannakumara, R.; Naik, K. Gopalakrishna
2018-05-01
Bismuth ferrite (BiFeO3) and Cobalt doped BiFeO3 (BiFe1-XCoXO3) nanostructure thin films were deposited on glass substrates by the sol-gel spin coating method. The X-ray diffraction patterns (XRD) of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films showed distorted rhombohedral structure. The shifting of peaks to higher angles was observed in cobalt doped BiFeO3. The surface morphology of the BiFeO3 and BiFe1-XCoXO3 nanostructure thin films were studied using FESEM, an increase in grain size was observed as Co concentration increases. The thickness of the nanostructure thin films was examined using FESEM cross-section. The EDX studies confirmed the elemental composition of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films. The optical characterizations of the grown nanostructure thin films were carried out using FTIR, it confirms the existence of Fe-O and Bi-O bands and UV-Visible spectroscopy shows the increase in optical band gap of the BiFeO3 nanostructure thin films with Co doping by ploting Tauc plot.
A Case For Free-free Absorption In The GPS Sources 1321+410 And 0026+346
NASA Astrophysics Data System (ADS)
Marr, Jonathan M.; Perry, T. M.; Read, J. W.; Taylor, G. B.
2010-05-01
We report on the results of VLBI observations of two gigahertz-peaked spectrum sources, 1321+410 and 0026+346, at five frequencies bracketing the spectral peaks. By comparing the three lower-frequency flux-density maps with extrapolations of the high frequency spectra we obtained maps of the optical depths as a function of frequency. The morphologies of the optical depth maps of 1321+410, at all frequencies, are strikingly uniform, consistent with there being a foreground screen of absorbing gas. We also find that the flux densities across the map fit free-free absorption spectra within the uncertainties. The required free-free optical depths are satisfied with reasonable gas parameters (ne 4000 cm-3, T 104 K, and L 1 pc). We conclude that the case for free-free absorption in 1321+410 is strong. In 0026+346, there is a compact feature with an inverted spectrum at the highest frequencies which we take to be the core. The optical depth maps, even excluding the possible core component, exhibit a noticeable amount of structure, but the morphology does not correlate with that in the flux-density maps, as would be expected if the absorption was due to synchrotron self-absorption. Additionally, the spectra (except at the core component) are consistent with free-free absorption, to within the uncertainties, and require column depths about one half of that in 1321+410. We conclude that free-free absorption by a relatively thin amount of gas with structure apparent on the scale of our maps in 0026+346 is likely, although the case is weaker than in 1321+410. This research was supported by an award from the Research Corporation, a NASA NY Space Grant, and by a Booth-Ferris Research Fellowship. The VLBA is operated by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
Cold atomic hydrogen in the inner galaxy
NASA Technical Reports Server (NTRS)
Dickey, J. M.; Garwood, R. W.
1986-01-01
The VLA is used to measure 21 cm absorption in directions with the absolute value of b less than 1 deg., the absolute value of 1 less than 25 deg. to probe the cool atomic gas in the inner galaxy. Abundant H I absorption is detected; typical lines are deep and narrow, sometimes blending in velocity with adjacent features. Unlike 21 cm emission not all allowed velocities are covered: large portions of the l-v diagram are optically thin. Although not similar to H I emission, the absorption shows a striking correspondence with CO emission in the inner galaxy: essentially every strong feature detected in one survey is seen in the other. The provisional conclusion is that in the inner galaxy most cool atomic gas is associated with molecular cloud complexes. There are few or no cold atomic clouds devoid of molecules in the inner galaxy, although these are common in the outer galaxy.
Effect of substrate baking temperature on zinc sulfide and germanium thin films optical parameters
NASA Astrophysics Data System (ADS)
Liu, Fang; Gao, Jiaobo; Yang, Chongmin; Zhang, Jianfu; Liu, Yongqiang; Liu, Qinglong; Wang, Songlin; Mi, Gaoyuan; Wang, Huina
2016-10-01
ZnS and Ge are very normal optical thin film materials in Infrared wave. Studying the influence of different substrate baking temperature to refractive index and actual deposition rates is very important to promote optical thin film quality. In the same vacuum level, monitoring thickness and evaporation rate, we use hot evaporation to deposit ZnS thin film materials and use ion-assisted electron beam to deposit Ge thin film materials with different baking temperature. We measure the spectral transmittance with the spectrophotometer and calculate the actual deposition rates and the refractive index in different temperature. With the higher and higher temperature in a particular range, ZnS and Ge refractive index become higher and actual deposition rates become smaller. The refractive index of Ge film material change with baking temperature is more sensitive than ZnS. However, ZnS film actual deposition rates change with baking temperature is more sensitive than Ge.
Effect of cell thickness on the electrical and optical properties of thin film silicon solar cell
NASA Astrophysics Data System (ADS)
Zaki, A. A.; El-Amin, A. A.
2017-12-01
In this work Electrical and optical properties of silicon thin films with different thickness were measured. The thickness of the Si films varied from 100 to 800 μm. The optical properties of the cell were studied at different thickness. A maximum achievable current density (MACD) generated by a planar solar cell, was measured for different values of the cell thickness which was performed by using photovoltaic (PV) optics method. It was found that reducing the values of the cell thickness improves the open-circuit voltage (VOC) and the fill factor (FF) of the solar cell. The optical properties were measured for thin film Si (TF-Si) at different thickness by using the double beam UV-vis-NIR spectrophotometer in the wavelength range of 300-2000 nm. Some of optical parameters such as refractive index with dispersion relation, the dispersion energy, the oscillator energy, optical band gap energy were calculated by using the spectra for the TF-Si with different thickness.
Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth.
Mercante, Andrew J; Shi, Shouyuan; Yao, Peng; Xie, Linli; Weikle, Robert M; Prather, Dennis W
2018-05-28
We present a thin film crystal ion sliced (CIS) LiNbO 3 phase modulator that demonstrates an unprecedented measured electro-optic (EO) response up to 500 GHz. Shallow rib waveguides are utilized for guiding a single transverse electric (TE) optical mode, and Au coplanar waveguides (CPWs) support the modulating radio frequency (RF) mode. Precise index matching between the co-propagating RF and optical modes is responsible for the device's broadband response, which is estimated to extend even beyond 500 GHz. Matching the velocities of these co-propagating RF and optical modes is realized by cladding the modulator's interaction region in a thin UV15 polymer layer, which increases the RF modal index. The fabricated modulator possesses a tightly confined optical mode, which lends itself to a strong interaction between the modulating RF field and the guided optical carrier; resulting in a measured DC half-wave voltage of 3.8 V·cm -1 . The design, fabrication, and characterization of our broadband modulator is presented in this work.
NASA Astrophysics Data System (ADS)
Deng, Dashen; Feng, Wenlin; Wei, Jianwei; Qin, Xiang; Chen, Rong
2017-11-01
A novel fiber-optic hydrogen sulfide sensor based on a thin-core Mach-Zehnder fiber modal interferometer (TMZFI) is demonstrated and fabricated. This in-line interferometer is composed of a short section of thin-core fiber sandwiched between two standard single mode fibers, and the fast response to hydrogen sulfide is achieved via the construction of tungsten sulfide film on the outside surface of the TMZFI using the dip-coating and calcination technique. The fabricated sensing nanofilm is characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) spectrometer, Fourier transform infrared (FTIR) and spectroscopic analysis technology, etc. Experimental results showed that the WS2 sensing film has a hexagonal structure with a compact and porous morphology. The XPS and FTIR indicate that the existence of two elements (W and S) is demonstrated. With the increasing concentration of hydrogen sulfide, the interference spectra appear blue shift. In addition, a high sensitivity of 18.37 pm/ppm and a good linear relationship are obtained within a measurement range from 0 to 80 ppm. In addition, there is an excellent selectivity for H2S, which has also been proved by the surface adsorption energy results of tungsten sulfide with four gases (H2S, N2, O2 and CO2) by using the density functional theory calculations. This interferometer has the advantages of simple structure, high sensitivity and easy manufacture, and could be used in the safety monitoring field of hydrogen sulfide gas.
2013-10-01
measurements for cellulose and PMMA thin- films . ..13 v List of Tables Table 1. Recorded optical data for nanocellulose in water...applications beyond thin films . In particular, the effects of nanocellulose fibers in higher concentrations, processed in different solvents, and...Optical Properties of Nanocellulose Dispersions in Water, Dimethylformamide and Poly(Methyl Methacrylate) by James F. Snyder, Joshua Steele
An Analytical Model for the Evolution of the Protoplanetary Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khajenabi, Fazeleh; Kazrani, Kimia; Shadmehri, Mohsen, E-mail: f.khajenabi@gu.ac.ir
We obtain a new set of analytical solutions for the evolution of a self-gravitating accretion disk by holding the Toomre parameter close to its threshold and obtaining the stress parameter from the cooling rate. In agreement with the previous numerical solutions, furthermore, the accretion rate is assumed to be independent of the disk radius. Extreme situations where the entire disk is either optically thick or optically thin are studied independently, and the obtained solutions can be used for exploring the early or the final phases of a protoplanetary disk evolution. Our solutions exhibit decay of the accretion rate as amore » power-law function of the age of the system, with exponents −0.75 and −1.04 for optically thick and thin cases, respectively. Our calculations permit us to explore the evolution of the snow line analytically. The location of the snow line in the optically thick regime evolves as a power-law function of time with the exponent −0.16; however, when the disk is optically thin, the location of the snow line as a function of time with the exponent −0.7 has a stronger dependence on time. This means that in an optically thin disk inward migration of the snow line is faster than an optically thick disk.« less
Improved Lyman Ultraviolet Astronomy Capabilities through Enhanced Coatings
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; del Hoyo, Javier; Boris, David; Walton, Scott
2017-01-01
This paper will describe efforts at developing broadband mirror coatings with high performance that will extend from infrared wavelengths down to the Far-Ultraviolet (FUV) spectral region. These mirror coatings would be realized by passivating the surface of freshly made aluminum coatings with XeF2 gas in order to form a thin AlF$_3$ overcoat that will protect the aluminum from oxidation and, hence, realize the high-reflectance of this material down to its intrinsic cut-off wavelength of 90 nm. Improved reflective coatings for optics, particularly in the FUV region (90-120 nm), could yield dramatically more sensitive instruments and permit more instrument design freedom.
Roberts, F Sloan; Anderson, Scott L
2013-12-01
The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a "soft" photoionization source for gas-phase mass spectrometry.
Enhanced sensitivity for optical loss measurement in planar thin-films (Conference Presentation)
NASA Astrophysics Data System (ADS)
Yuan, Hua-Kang
2016-09-01
An organic-inorganic hybrid material benefits from processing advantages of organics and high refractive indices of inorganics. We focus on a titanium oxide hydrate system combined with common bulk polymers. In particular, we target thin-film structures of a few microns in thickness. Traditional Beer-Lambert approaches for measuring optical losses can only provide an upper limit estimate. This sensitivity is highly limited when considering the low-losses required for mid-range optical applications, on the order of 0.1 cm-1. For intensity based measurements, improving the sensitivity requires an increase in the optical path length. Instead, a new sensitive technique suitable for simple planar thin films is required. A number of systems were modelled to measure optical losses in films of 1 micron thick. The presented techniques utilise evanescent waves and total internal reflection to increase optical path length through the material. It was found that a new way of using prism coupling provides the greatest improvement in sensitivity. In keeping the requirements on the material simple, this method for measuring loss is well suited to any future developments of new materials in thin-film structures.
Glynn, Colm; Creedon, Donal; Geaney, Hugh; Armstrong, Eileen; Collins, Timothy; Morris, Michael A.; Dwyer, Colm O’
2015-01-01
Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thin films, alterations to commonly used precursors can be made that facilitate controlled thin film deposition. The effects of polymer assisted deposition and changes in solvent-alkoxide dilution on the morphology, structure, optoelectronic properties and crystallinity of vanadium pentoxide thin films was studied using a dip-coating method using a substrate withdrawal speed within the fast-rate draining regime. The formation of sub-100 nm thin films could be achieved rapidly from dilute alkoxide based precursor solutions with high optical transmission in the visible, linked to the phase and film structure. The effects of the polymer addition was shown to change the crystallized vanadium pentoxide thin films from a granular surface structure to a polycrystalline structure composed of a high density of smaller in-plane grains, resulting in a uniform surface morphology with lower thickness and roughness. PMID:26123117
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Deming; Shvydko, Yury; Stoupin, Stanislav
A method and mechanical design for a thin-film diamond crystal mounting apparatus for coherence preservation x-ray optics with optimized thermal contact and minimized crystal strain are provided. The novel thin-film diamond crystal mounting apparatus mounts a thin-film diamond crystal supported by a thick chemical vapor deposition (CVD) diamond film spacer with a thickness slightly thicker than the thin-film diamond crystal, and two groups of thin film thermal conductors, such as thin CVD diamond film thermal conductor groups separated by the thick CVD diamond spacer. The two groups of thin CVD film thermal conductors provide thermal conducting interface media with themore » thin-film diamond crystal. A piezoelectric actuator is integrated into a flexural clamping mechanism generating clamping force from zero to an optimal level.« less
HUBBLE SEES CHANGES IN GAS SHELL AROUND NOVA CYGNI 1992
NASA Technical Reports Server (NTRS)
2002-01-01
The European Space Agency's ESA Faint Object Camera utilizing the corrective optics provided by NASA's COSTAR (Corrective Optics Space Telescope Axial Replacement), has given astronomers their best look yet at a rapidly ballooning bubble of gas blasted off a star. The shell surrounds Nova Cygni 1992, which erupted on February 19, 1992. A nova is a thermonuclear explosion that occurs on the surface of a white dwarf star in a double star system. The new HST image [right] reveals an elliptical and slightly lumpy ring-like structure. The ring is the edge of a bubble of hot gas blasted into space by the nova. The shell is so thin that the FOC does not resolve its true thickness, even with HST's restored vision. An HST image taken on May 31 1993, [left] 467 days after the explosion, provided the first glimpse of the ring and a mysterious bar-like structure. But the image interpretation was severely hampered by HST's optical aberration, that scattered light from the central star which contaminated the ring's image. A comparison of the pre and post COSTAR/FOC images reveals that the ring has evolved in the seven months that have elapsed between the two observations. The ring has expanded from a diameter of approximately 74 to 96 billion miles. The bar-like structure seen in the earlier HST image has disappear. These changes might confirm theories that the bar was produced by a dense layer of gas thrown off in the orbital plane of the double star system. The gas has subsequently grown more tenuous and so the bar has faded. The ring has also grown noticeably more oblong since the earlier image. This suggests the hot gas is escaping more rapidly above and below the system's orbital plane. As the gas continues escaping the ring should grow increasingly egg-shaped in the coming years. HST's newly improved sensitivity and high resolution provides a unique opportunity to understand the novae by resolving the effects of the explosion long before they can be resolved in ground based telescopes. Nova Cygni is 10,430 light years away (as measured directly from the ring's diameter), and located in the summer constellation Cygnus the Swan. Credit: F. Paresce, R. Jedrzejewski (STScI) NASA/ESA PHOTO RELEASE NO.: STScI-PR94-06
A characteristic scale for cold gas
NASA Astrophysics Data System (ADS)
McCourt, Michael; Oh, S. Peng; O'Leary, Ryan; Madigan, Ann-Marie
2018-02-01
We find that clouds of optically thin, pressure-confined gas are prone to fragmentation as they cool below ∼106 K. This fragmentation follows the lengthscale ∼cstcool, ultimately reaching very small scales (∼0.1 pc/n), as they reach the temperature ∼104 K at which hydrogen recombines. While this lengthscale depends on the ambient pressure confining the clouds, we find that the column density through an individual fragment Ncloudlet ∼ 1017 cm-2 is essentially independent of environment; this column density represents a characteristic scale for atomic gas at 104 K. We therefore suggest that 'clouds' of cold, atomic gas may, in fact, have the structure of a mist or a fog, composed of tiny fragments dispersed throughout the ambient medium. We show that this scale emerges in hydrodynamic simulations, and that the corresponding increase in the surface area may imply rapid entrainment of cold gas. We also apply it to a number of observational puzzles, including the large covering fraction of diffuse gas in galaxy haloes, the broad-line widths seen in quasar and AGN spectra and the entrainment of cold gas in galactic winds. While our simulations make a number of assumptions and thus have associated uncertainties, we show that this characteristic scale is consistent with a number of observations, across a wide range of astrophysical environments. We discuss future steps for testing, improving and extending our model.
Magneto-optical Kerr rotation and color in ultrathin lossy dielectric
NASA Astrophysics Data System (ADS)
Zhang, Jing; Wang, Hai; Qu, Xin; Zhou, Yun song; Li, Li na
2017-05-01
Ultra-thin optical coating comprising nanometer-thick silicon absorbing films on iron substrates can display strong optical interference effects. A resonance peak of ∼1.6^\\circ longitudinal Kerr rotation with the silicon thickness of ∼47 \\text{nm} was found at the wavelength of 660 nm. The optical properties of silicon thin films were well controlled by the sputtering power. Non-iridescence color exhibition and Kerr rotation enhancement can be manipulated and encoded individually.
Structural and optical properties of Sb65Se35-xGex thin films
NASA Astrophysics Data System (ADS)
Saleh, S. A.; Al-Hajry, A.; Ali, H. M.
2011-07-01
Sb65Se35-xGex (x=0-20 at.%) thin films, prepared by the electron beam evaporation technique on ultrasonically cleaned glass substrates at 300 K, were investigated. The amorphous structure of the thin films was confirmed by x-ray diffraction analysis. The structure was deduced from the Raman spectra measured for all germanium contents in the Sb-Se-Ge matrix. The absorption coefficient (α) of the films was determined by optical transmission measurements. The compositional dependence of the optical band gap is discussed in light of topological and chemical ordered network models.
NASA Astrophysics Data System (ADS)
Rashid, Affa Rozana Abd; Hazwani, Tuan Nur; Mukhtar, Wan Maisarah; Taib, Nur Athirah Mohd
2018-06-01
Zinc oxide (ZnO) thin films have become technologically important materials due to their wide range of electrical and optical properties. The characteristics can be further adjusted by adequate doping processes. The effect of dopant concentration of Al, heating treatment and annealing in reducing atmosphere on the optical properties of the thin films is discussed. Undoped and aluminum-doped zinc oxide (AZO) thin films are prepared by the sol-gel method. Zinc acetate dihydrate, 2-methoxyethanol and monoethanolamine are used as precursor, solvent and stabilizer. In the case of AZO, aluminum nitrate nanohydrate is added to the precursor solution with an atomic percentage equal to 0 %, 1 %, 2 % and 3 % of Al. The multi thin layers are transformed into ZnO upon annealing at 450 °C and 500 °C. The optical properties such as transmittance, absorbance, band gap and refractive index of the thin films have been investigated by using UV-Visible Spectroscopy (UV-Vis). The results show that the effect of aluminium dopant concentration on the optical properties is depend on the post-heat treatment of the films. By doping with Al, the transmittance spectra in visible range increased and widen the band gap of ZnO which might due to Burstein-moss effects.
Optical and Nonlinear Optical Response of Light Sensor Thin Films
Liu, Huimin; Rua, Armando; Vasquez, Omar; Vikhnin, Valentin S.; Fernandez, Felix E.; Fonseca, Luis F.; Resto, Oscar; Weisz, Svi Z.
2005-01-01
For potential ultrafast optical sensor application, both VO2 thin films and nanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates were successfully prepared using pulsed laser deposition (PLD) and RF co-sputtering techniques. In photoluminescence (PL) measurement c-Si/SiO2 film contains nanoparticles of crystal Si exhibits strong red emission with the band maximum ranging from 580 to 750 nm. With ultrashort pulsed laser excitation all films show extremely intense and ultrafast nonlinear optical (NLO) response. The recorded holography from all these thin films in a degenerate-four-wave-mixing configuration shows extremely large third-order response. For VO2 thin films, an optically induced semiconductor-to-metal phase transition (PT) immediately occurred upon laser excitation. it accompanied. It turns out that the fast excited state dynamics was responsible to the induced PT. For c-Si/SiO2 film, its NLO response comes from the contribution of charge carriers created by laser excitation in conduction band of the c-Si nanoparticles. It was verified by introducing Eu3+ which is often used as a probe sensing the environment variations. It turns out that the entire excited state dynamical process associated with the creation, movement and trapping of the charge carriers has a characteristic 500 ps duration.
NASA Astrophysics Data System (ADS)
Park, J.-S.; Park, J.-H.; Lee, D.-W.
2018-02-01
In this paper, we describe a simple manufacturing method for producing an optically transparent super-hydrophobic polymer thin film using a reusable photo-curable polymer mold. Soluble photoresist (PR) molds were prepared with under-exposed and under-baked processes, which created unique hierarchical micro/nano structures. The reverse phase of the PR mold was replicated on the surface of polydimethylsiloxane (PDMS) substrates. The unique patterns on the replicated PDMS molds were successfully transferred back to the UV curable polyurethane-acrylate (PUA) using a laboratory-made UV exposure system. Continuous production of the super-hydrophobic PDMS thin film was demonstrated using the reusable PUA mold. In addition, hydrophobic nano-silica powder was sprayed onto the micro/nano structured PDMS surfaces to further improve hydrophobicity. The fabricated PDMS thin films with hierarchical surface texturing showed a water contact angle ⩾150°. Excellent optical transmittance within the range of visible light of wavelengths between 400-800 nm was experimentally confirmed using a spectrophotometer. High efficiency of the super-hydrophobic PDMS film in optical transparency was also confirmed using solar panels. The fabricated PUA molds are very suitable for use in roll-to-roll or roll-to-plate systems which allow continuous production of super-hydrophobic thin films with an excellent optical transparency.
Optical switching and photoluminescence in erbium-implanted vanadium dioxide thin films
NASA Astrophysics Data System (ADS)
Lim, Herianto; Stavrias, Nikolas; Johnson, Brett C.; Marvel, Robert E.; Haglund, Richard F.; McCallum, Jeffrey C.
2014-03-01
Vanadium dioxide (VO2) is under intensive consideration for optical switching due to its reversible phase transition, which features a drastic and rapid shift in infrared reflectivity. Classified as an insulator-to-metal transition, the phase transition in VO2 can be induced thermally, electrically, and optically. When induced optically, the transition can occur on sub-picosecond time scales. It is interesting to dope VO2 with erbium ions (Er3+) and observe their combined properties. The first excited-state luminescence of Er3+ lies within the wavelength window of minimal transmission-loss in silicon and has been widely utilized for signal amplification and generation in silicon photonics. The incorporation of Er3+ into VO2 could therefore result in a novel photonic material capable of simultaneous optical switching and amplification. In this work, we investigate the optical switching and photoluminescence in Er-implanted VO2 thin films. Thermally driven optical switching is demonstrated in the Er-implanted VO2 by infrared reflectometry. Photoluminescence is observed in the thin films annealed at ˜800 °C or above. In addition, Raman spectroscopy and a statistical analysis of switching hysteresis are carried out to assess the effects of the ion implantation on the VO2 thin films. We conclude that Er-implanted VO2 can function as an optical switch and amplifier, but with reduced switching quality compared to pure VO2.
NASA Astrophysics Data System (ADS)
Redel, Engelbert; Wang, Zhengbang; Walheim, Stefan; Liu, Jinxuan; Gliemann, Hartmut; Wöll, Christof
2013-08-01
We determine the optical constants of two highly porous, crystalline metal-organic frameworks (MOFs). Since it is problematic to determine the optical constants for the standard powder modification of these porous solids, we instead use surface-anchored metal-organic frameworks (SURMOFs). These MOF thin films are grown using liquid phase epitaxy (LPE) on modified silicon substrates. The produced SURMOF thin films exhibit good optical properties; these porous coatings are smooth as well as crack-free, they do not scatter visible light, and they have a homogenous interference color over the entire sample. Therefore, spectroscopic ellipsometry (SE) can be used in a straightforward fashion to determine the corresponding SURMOF optical properties. After careful removal of the solvent molecules used in the fabrication process as well as the residual water adsorbed in the voids of this highly porous solid, we determine an optical constant of n = 1.39 at a wavelength of 750 nm for HKUST-1 (stands for Hong Kong University of Science and Technology-1; and was first discovered there) or [Cu3(BTC)2]. After exposing these SURMOF thin films to moisture/EtOH atmosphere, the refractive index (n) increases to n = 1.55-1.6. This dependence of the optical properties on water/EtOH adsorption demonstrates the potential of such SURMOF materials for optical sensing.
Growth and nonlinear optical characterization of organic single crystal films
NASA Astrophysics Data System (ADS)
Zhou, Ligui
1997-12-01
Organic single crystal films are important for various future applications in photonics and integrated optics. The conventional method for inorganic crystal growth is not suitable for organic materials, and the high temperature melting method is not good for most organic materials due to decomposition problems. We developed a new method-modified shear method-to grow large area organic single crystal thin films which have exceptional nonlinear optical properties and high quality surfaces. Several organic materials (NPP, PNP and DAST) were synthesized and purified before the thin film crystal growth. Organic single crystal thin films were grown from saturated organic solutions using modified shear method. The area of single crystal films were about 1.5 cm2 for PNP, 1 cm2 for NPP and 5 mm2 for DAST. The thickness of the thin films which could be controlled by the applied pressure ranged from 1μm to 10 μm. The single crystal thin films of organic materials were characterized by polarized microscopy, x-ray diffraction, polarized UV-Visible and polarized micro-FTIR spectroscopy. Polarized microscopy showed uniform birefringence and complete extinction with the rotation of the single crystal thin films under crossed- polarization, which indicated high quality single crystals with no scattering. The surface orientation of single crystal thin films was characterized by x-ray diffraction. The molecular orientation within the crystal was further studied by the polarized UV-Visible and Polarized micro-FTIR techniques combined with the x-ray and polarized microscopy results. A Nd:YAG laser with 35 picosecond pulses at 1064nm wavelength was employed to perform the nonlinear optical characterization of the organic single crystal thin films. Two measurement techniques were used to study the crystal films: second harmonic generation (SHG) and electro-optic (EO) effect. SHG results showed that the nonlinear optical coefficient of NPP was 18 times that of LiNbO3, a standard inorganic crystal material, and the nonlinear optical coefficient of PNP was 11 times that of LiNbO3. Electro-optic measurements showed that r11 = 65 pm/V for NPP and r12 = 350 pm/V for DAST. EO modulation effect was also observed using Fabry-Perot interferometry. Waveguide devices are very important for integrated optics. But the fabrication of waveguide devices on the organic single crystal thin films was difficult due to the solubility of the film in common organic solvents. A modified photolithographic technique was employed to make channel waveguides and poly(vinyl alcohol) (PVA) was used as a protective layer in the fabrication of the waveguides. Waveguides with dimensions about 7/mum x 1μm x 1mm were obtained.
Preparation, characterization and gas sensing performance of BaTiO3 nanostructured thin films
NASA Astrophysics Data System (ADS)
Suryawanshi, Dinesh N.; Pathan, Idris G.; Bari, Anil. R.; Patil, Lalchand A.
2018-05-01
Spray pyrolysis techniques was employed to prepare BaTiO3 thin films. AR grade solutions of Barium chloride (0.05 M) and Titanium chloride (0.05 M) were mixed in the proportion of 30:70, 50:50 and 70:30. The solutions were sprayed on quartz substrate heated at 350°C temperature to obtain the films. These thin films were annealed for a two hours at 600°C in air medium respectively. The prepared thin films were characterized using XRD, FESEM, EDAX, TEM. The electrical and gas sensing properties of these films were investigated. 50:50 film showed better response to Liquid Petroleum Gas (LPG) as compare 30:70 and 70:30 films.
Controlling the scattering properties of thin, particle-doped coatings
NASA Astrophysics Data System (ADS)
Rogers, William; Corbett, Madeleine; Manoharan, Vinothan
2013-03-01
Coatings and thin films of small particles suspended in a matrix possess optical properties that are important in several industries from cosmetics and paints to polymer composites. Many of the most interesting applications require coatings that produce several bulk effects simultaneously, but it is often difficult to rationally formulate materials with these desired optical properties. Here, we focus on the specific challenge of designing a thin colloidal film that maximizes both diffuse and total hemispherical transmission. We demonstrate that these bulk optical properties follow a simple scaling with two microscopic length scales: the scattering and transport mean free paths. Using these length scales and Mie scattering calculations, we generate basic design rules that relate scattering at the single particle level to the film's bulk optical properties. These ideas will be useful in the rational design of future optically active coatings.
Korte, Dorota; Franko, Mladen
2015-01-01
In this work, complex geometrical optics is, for what we believe is the first time, applied instead of geometrical or wave optics to describe the probe beam interaction with the field of the thermal wave in photothermal beam deflection (photothermal deflection spectroscopy) experiments on thin films. On the basis of this approach the thermal (thermal diffusivity and conductivity), optical (energy band gap), and transport (carrier lifetime) parameters of the semiconductor thin films (pure TiO2, N- and C-doped TiO2, or TiO2/SiO2 composites deposited on a glass or aluminum support) were determined with better accuracy and simultaneously during one measurement. The results are in good agreement with results obtained by the use of other methods and reported in the literature.
Liang, Yuan-Chang; Xu, Nian-Cih; Wang, Chein-Chung; Wei, Da-Hua
2017-07-10
TiO₂-CdO composite rods were synthesized through a hydrothermal method and sputtering thin-film deposition. The hydrothermally derived TiO₂ rods exhibited a rectangular cross-sectional crystal feature with a smooth surface, and the as-synthesized CdO thin film exhibited a rounded granular surface feature. Structural analyses revealed that the CdO thin film sputtered onto the surfaces of the TiO₂ rods formed a discontinuous shell layer comprising many island-like CdO crystallites. The TiO₂-CdO composite rods were highly crystalline, and their surfaces were rugged. A comparison of the NO₂ gas-sensing properties of the CdO thin film, TiO₂ rods, and TiO₂-CdO composite rods revealed that the composite rods exhibited superior gas-sensing responses to NO₂ gas than did the CdO thin film and TiO 2 rods, which can be attributed to the microstructural differences and the formation of heterojunctions between the TiO₂ core and CdO crystallites.
Wang, Fang-Hsing; Kuo, Hsin-Hui; Yang, Cheng-Fu; Liu, Min-Chu
2014-01-01
In this study, silicon nitride (SiNx) thin films were deposited on polyimide (PI) substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD) system. The gallium-doped zinc oxide (GZO) thin films were deposited on PI and SiNx/PI substrates at room temperature (RT), 100 and 200 °C by radio frequency (RF) magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si) thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI. PMID:28788494
Far-field optical imaging with subdiffraction resolution enabled by nonlinear saturation absorption
NASA Astrophysics Data System (ADS)
Ding, Chenliang; Wei, Jingsong
2016-01-01
The resolution of far-field optical imaging is required to improve beyond the Abbe limit to the subdiffraction or even the nanoscale. In this work, inspired by scanning electronic microscopy (SEM) imaging, in which carbon (or Au) thin films are usually required to be coated on the sample surface before imaging to remove the charging effect while imaging by electrons. We propose a saturation-absorption-induced far-field super-resolution optical imaging method (SAI-SRIM). In the SAI-SRIM, the carbon (or Au) layers in SEM imaging are replaced by nonlinear-saturation-absorption (NSA) thin films, which are directly coated onto the sample surfaces using advanced thin film deposition techniques. The surface fluctuant morphologies are replicated to the NSA thin films, accordingly. The coated sample surfaces are then imaged using conventional laser scanning microscopy. Consequently, the imaging resolution is greatly improved, and subdiffraction-resolved optical images are obtained theoretically and experimentally. The SAI-SRIM provides an effective and easy way to achieve far-field super-resolution optical imaging for sample surfaces with geometric fluctuant morphology characteristics.
Conformal self-assembled thin films for optical pH sensors
NASA Astrophysics Data System (ADS)
Topasna, Daniela M.; Topasna, Gregory A.; Liu, Minghanbo; Tseng, Ching-Hung
2016-04-01
Simple, reliable, lightweight, and inexpensive thin films based sensors are still in intense development and high demand in many applications such as biomedical, industrial, environmental, military, and consumer products. One important class of sensors is the optical pH sensor. In addition, conformal thin film based sensors extend the range of application for pH optical sensors. We present the results on the fabrication and characterization of optical pH sensing coatings made through ionic self-assembled technique. These thin films are based on the combination of a polyelectrolyte and water-soluble organic dye molecule Direct Yellow 4. A series of films was fabricated and characterized in order to determine the optimized parameters of the polymer and of the organic dye solutions. The optical pH responses of these films were also studied. The transparent films were immersed in solutions at various temperature and pH values. The films are stable when immersed in solutions with pH below 9.0 and temperatures below 90 °C and they maintain their performance after longer immersion times. We also demonstrate the functionality of these coatings as conformal films.
Threshold thickness for applying diffusion equation in thin tissue optical imaging
NASA Astrophysics Data System (ADS)
Zhang, Yunyao; Zhu, Jingping; Cui, Weiwen; Nie, Wei; Li, Jie; Xu, Zhenghong
2014-08-01
We investigated the suitability of the semi-infinite model of the diffusion equation when using diffuse optical imaging (DOI) to image thin tissues with double boundaries. Both diffuse approximation and Monte Carlo methods were applied to simulate light propagation in the thin tissue model with variable optical parameters and tissue thicknesses. A threshold value of the tissue thickness was defined as the minimum thickness in which the semi-infinite model exhibits the same reflected intensity as that from the double-boundary model and was generated as the final result. In contrast to our initial hypothesis that all optical properties would affect the threshold thickness, our results show that only absorption coefficient is the dominant parameter and the others are negligible. The threshold thickness decreases from 1 cm to 4 mm as the absorption coefficient grows from 0.01 mm-1 to 0.2 mm-1. A look-up curve was derived to guide the selection of the appropriate model during the optical diagnosis of thin tissue cancers. These results are useful in guiding the development of the endoscopic DOI for esophageal, cervical and colorectal cancers, among others.
Özen, Soner; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan
2016-01-01
The aim of this research is to investigate the optical and morphological properties of the InGaN thin films deposited onto amorphous glass substrates in two separate experiments with two different voltages applied between the electrodes, i.e. 500 and 600 V by means of the thermionic vacuum arc technique. This technique is original for thin film deposition and it enables thin film production in a very short period of time. The optical and morphological properties of the films were investigated by using field emission scanning electron microscope, atomic force microscope, spectroscopic ellipsometer, reflectometer, spectrophotometer, and optical tensiometer. Optical properties were also supported by empirical relations. The deposition rates were calculated as 3 and 3.3 nm/sec for 500 and 600 V, respectively. The increase in the voltage also increased the refractive index, grain size, root mean square roughness and surface free energy. According to the results of the wetting experiments, InGaN samples were low-wettable, also known as hydrophobic. © Wiley Periodicals, Inc.
Study of optical properties of vacuum evaporated carbon nanotube containing Se80Te16Cu4 thin films
NASA Astrophysics Data System (ADS)
Upadhyay, A. N.; Tiwari, R. S.; Singh, Kedar
2016-08-01
Thin films of Se80Te16Cu4 glassy alloy and 3 wt.% of carbon nanotubes (CNTs) containing Se80Te16Cu4 glassy composite were deposited on clean glass substrate by thermal evaporation technique. The scanning electron microscope and energy dispersive x-ray analysis were performed to investigate the surface morphology and elemental composition of as synthesised samples. The reflectance and transmittance spectra of as-deposited thin films were recorded (200-1100 nm) by using UV/VIS/NIR spectrophotometer. The optical band gap and optical constants such as absorption coefficient (α), refractive index (n) and extinction coefficient (k) of Se80Te16Cu4 and 3 wt.% CNTs-Se80Te16Cu4 glassy composite thin films were calculated. It is observed that optical properties alter due to CNTs incorporation in Se80Te16Cu4 glassy alloy. Effect on optical properties due to CNTs incorporation can be explained in terms of concentration of unsaturated bonds/defects in the localised states.
Minn, Khant; Anopchenko, Aleksei; Yang, Jingyi; Lee, Ho Wai Howard
2018-02-05
We report a novel optical waveguide design of a hollow step index fiber modified with a thin layer of indium tin oxide (ITO). We show an excitation of highly confined waveguide mode in the proposed fiber near the wavelength where permittivity of ITO approaches zero. Due to the high field confinement within thin ITO shell inside the fiber, the epsilon-near-zero (ENZ) mode can be characterized by a peak in modal loss of the hybrid waveguide. Our results show that such in-fiber excitation of ENZ mode is due to the coupling of the guided core mode to the thin-film ENZ mode. We also show that the phase matching wavelength, where the coupling takes place, varies depending on the refractive index of the constituents inside the central bore of the fiber. These ENZ nanostructured optical fibers have many potential applications, for example, in ENZ nonlinear and magneto-optics, as in-fiber wavelength-dependent filters, and as subwavelength fluid channel for optical and bio-photonic sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Hui; Tan, O.K.; Lee, Y.C.
2005-10-17
SnO{sub 2} thin films were deposited by radio-frequency inductively coupled plasma-enhanced chemical vapor deposition. Postplasma treatments were used to modify the microstructure of the as-deposited SnO{sub 2} thin films. Uniform nanorods with dimension of null-set 7x100 nm were observed in the plasma-treated films. After plasma treatments, the optimal operating temperature of the plasma-treated SnO{sub 2} thin films decreased by 80 deg. C, while the gas sensitivity increased eightfold. The enhanced gas sensing properties of the plasma-treated SnO{sub 2} thin film were believed to result from the large surface-to-volume ratio of the nanorods' tiny grain size in the scale comparable tomore » the space-charge length and its unique microstructure of SnO{sub 2} nanorods rooted in SnO{sub 2} thin films.« less
NASA Astrophysics Data System (ADS)
Saha, Shibu; Mehan, Navina; Sreenivas, K.; Gupta, Vinay
2009-08-01
Temperature dependent optical properties of c-axis oriented ZnO thin film were investigated using surface plasmon resonance (SPR) technique. SPR data for double layer (prism-Au-ZnO-air) and single layer (prism-Au-air) systems were taken over a temperature range (300-525 K). Dielectric constant at optical frequency and real part of refractive index of the ZnO film shows an increase with temperature. The bandgap of the oriented ZnO film was found to decrease with rise in temperature. The work indicates a promising application of the system as a temperature sensor and highlights an efficient scientific tool to study optical properties of thin film under varying ambient conditions.
NASA Astrophysics Data System (ADS)
Istratov, A. V.; Gerke, M. N.
2018-01-01
Progress in nano- and microsystem technology is directly related to the development of thin-film technologies. At the present time, thin metal films can serve as the basis for the creation of new instruments for nanoelectronics. One of the important parameters of thin films affecting the characteristics of devices is their optical properties. That is why the island structures, whose optical properties, can change in a wide range depending on their morphology, are of increasing interest. However, despite the large amount of research conducted by scientists from different countries, many questions about the optimal production and use of thin films remain unresolved.
Khazaeinezhad, Reza; Hosseinzadeh Kassani, Sahar; Paulson, Bjorn; Jeong, Hwanseong; Gwak, Jiyoon; Rotermund, Fabian; Yeom, Dong-Il; Oh, Kyunghwan
2017-01-01
A new extraordinary application of deoxyribonucleic acid (DNA) thin-solid-film was experimentally explored in the field of ultrafast nonlinear photonics. Optical transmission was investigated in both linear and nonlinear regimes for two types of DNA thin-solid-films made from DNA in aqueous solution and DNA-cetyltrimethylammonium chloride (CTMA) in an organic solvent. Z-scan measurements revealed a high third-order nonlinearity with n2 exceeding 10−9 at a wavelength of 1570 nm, for a nonlinarity about five orders of magnitude larger than that of silica. We also demonstrated ultrafast saturable absorption (SA) with a modulation depth of 0.43%. DNA thin solid films were successfully deposited on a side-polished optical fiber, providing an efficient evanescent wave interaction. We built an organic-inorganic hybrid all-fiber ring laser using DNA film as an ultrafast SA and using Erbium-doped fiber as an efficient optical gain medium. Stable transform-limited femtosecond soliton pulses were generated with full width half maxima of 417 fs for DNA and 323 fs for DNA-CTMA thin-solid-film SAs. The average output power was 4.20 mW for DNA and 5.46 mW for DNA-CTMA. Detailed conditions for DNA solid film preparation, dispersion control in the laser cavity and subsequent characteristics of soliton pulses are discussed, to confirm unique nonlinear optical applications of DNA thin-solid-film. PMID:28128340
Simulation of the optical coating deposition
NASA Astrophysics Data System (ADS)
Grigoriev, Fedor; Sulimov, Vladimir; Tikhonravov, Alexander
2018-04-01
A brief review of the mathematical methods of thin-film growth simulation and results of their applications is presented. Both full-atomistic and multi-scale approaches that were used in the studies of thin-film deposition are considered. The results of the structural parameter simulation including density profiles, roughness, porosity, point defect concentration, and others are discussed. The application of the quantum level methods to the simulation of the thin-film electronic and optical properties is considered. Special attention is paid to the simulation of the silicon dioxide thin films.
Optical characterization of pure and Al-doped ZnO prepared by sol-gel method
NASA Astrophysics Data System (ADS)
Belka, Radosław; Keczkowska, Justyna; Kasińska, Justyna
2016-09-01
In this paper the preparation process and optical characterization of pure and Al3+ doped zinc oxide (Al:ZnO) coatings will be presented. ZnO based materials have been studied extensively due to their potential applications in optoelectronic devices as conductive gas sensors, transparent conductive, electrodes, solar cell windows, varistors, UVfilters or photovoltaic cells. It is II-VI semiconductor with wide-band gap of 3.37 eV and large exciton binding energy of 60meV. It is possible to improve the conductivity of ZnO coating by intentionally doping ZnO with aluminium ions during preparation process. Such transparent and conducting thin films, known as AZO (Aluminium Zinc Oxide) films, are very good candidate for application as transparent conducting materials in many optoelectronic devices. The well-known sol-gel method is used for preparation of solution, coated on glass substrates by dip coating process. Prepared samples were investigated by Raman and UV-VIS spectroscopy. Transmittance as well as specular and diffuse reflectance spectroscopy methods were used for studies of optical parameters. We found that Al admixture influences on optical bandgap of ZnO.
NASA Astrophysics Data System (ADS)
Flores, Raquel; Janeiro, Ricardo; Dahlem, Marcus; Viegas, Jaime
2015-03-01
We report an optical fiber chemical sensor based on a focused ion beam processed optical fiber. The demonstrated sensor is based on a cavity formed onto a standard 1550 nm single-mode fiber by either chemical etching, focused ion beam milling (FIB) or femtosecond laser ablation, on which side channels are drilled by either ion beam milling or femtosecond laser irradiation. The encapsulation of the cavity is achieved by optimized fusion splicing onto a standard single or multimode fiber. The empty cavity can be used as semi-curved Fabry-Pérot resonator for gas or liquid sensing. Increased reflectivity of the formed cavity mirrors can be achieved with atomic layer deposition (ALD) of alternating metal oxides. For chemical selective optical sensors, we demonstrate the same FIB-formed cavity concept, but filled with different materials, such as polydimethylsiloxane (PDMS), poly(methyl methacrylate) (PMMA) which show selective swelling when immersed in different solvents. Finally, a reducing agent sensor based on a FIB formed cavity partially sealed by fusion splicing and coated with a thin ZnO layer by ALD is presented and the results discussed. Sensor interrogation is achieved with spectral or multi-channel intensity measurements.
NASA Astrophysics Data System (ADS)
Horprathum, M.; Eiamchai, P.; Kaewkhao, J.; Chananonnawathorn, C.; Patthanasettakul, V.; Limwichean, S.; Nuntawong, N.; Chindaudom, P.
2014-09-01
A nanostructural thin film is one of the highly exploiting research areas particularly in applications in sensor, photocatalytic, and solar-cell technologies. In the past two decades, the integration of glancing-angle deposition (GLAD) technique to physical vapor deposition (PVD) process has gained significant attention for well-controlled multidimensional nanomorphologies because of fast, simple, cost-effective, and mass-production capability. The performance and functional properties of the coated thin films generally depend upon their nanostructural compositions, i.e., large aspect ratio, controllable porosity, and shape. Such structural platforms make the fabricated thin films very practical for several realistic applications. We therefore present morphological and nanostructural properties of various deposited materials, which included metals, i.e., silver (Ag), and oxide compounds, i.e., tungsten oxide (WO3), titanium dioxide (TiO2), and indium tin oxide (ITO). Different PVD techniques based on DC magnetron sputtering and electron-beam evaporation, both with the integrated GLAD component, were discussed. We further explore engineered nanostructures which enable controls of optical, electrical, and mechanical properties. These improvements led to several practical applications in surface-enhanced Raman, smart windows, gas sensors, self-cleaning materials and transparent conductive oxides (TCO).
Ultra-wide bandgap beta-Ga2O3 for deep-UV solar blind photodetectors(Conference Presentation)
NASA Astrophysics Data System (ADS)
Rafique, Subrina; Han, Lu; Zhao, Hongping
2017-03-01
Deep-ultraviolet (DUV) photodetectors based on wide bandgap (WB) semiconductor materials have attracted strong interest because of their broad applications in military surveillance, fire detection and ozone hole monitoring. Monoclinic β-Ga2O3 with ultra-wide bandgap of 4.9 eV is a promising candidate for such application because of its high optical transparency in UV and visible wavelength region, and excellent thermal and chemical stability at elevated temperatures. Synthesis of high qualityβ-Ga2O3 thin films is still at its early stage and knowledge on the origins of defects in this material is lacking. The conventional epitaxy methods used to grow β-Ga2O3 thin films such as molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD) still face great challenges such as limited growth rate and relatively high defects levels. In this work, we present the growth of β-Ga2O3 thin films on c-plane (0001) sapphire substrate by our recently developed low pressure chemical vapor deposition (LPCVD) method. The β-Ga2O3 thin films synthesized using high purity metallic gallium and oxygen as the source precursors and argon as carrier gas show controllable N-type doping and high carrier mobility. Metal-semiconductor-metal (MSM) photodetectors (PDs) were fabricated on the as-grown β-Ga2O3 thin films. Au/Ti thin films deposited by e-beam evaporation served as the contact metals. Optimization of the thin film growth conditions and the effects of thermal annealing on the performance of the PDs were investigated. The responsivity of devices under 250 nm UV light irradiation as well as dark light will be characterized and compared.
High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum
NASA Astrophysics Data System (ADS)
Steidtner, Jens; Pettinger, Bruno
2007-10-01
An optical microscope based on tip-enhanced optical processes that can be used for studies on adsorbates as well as thin layers and nanostructures is presented. The microscope provides chemical and topographic informations with a resolution of a few nanometers and can be employed in ultrahigh vacuum as well as gas phase. The construction involves a number of improvements compared to conventional instruments. The central idea is to mount, within an UHV system, an optical platform with all necessary optical elements to a rigid frame that also carries the scanning tunneling microscope unit and to integrate a high numerical aperture parabolic mirror between the scanning probe microscope head and the sample. The parabolic mirror serves to focus the incident light and to collect a large fraction of the scattered light. The first experimental results of Raman measurements on silicon samples as well as brilliant cresyl blue layers on single crystalline gold and platinum surfaces in ultrahigh vacuum are presented. For dye adsorbates a Raman enhancement of ˜106 and a net signal gain of up to 4000 was observed. The focus diameter (˜λ/2) was measured by Raman imaging the focal region on a Si surface. The requirements of the parabolic mirror in terms of alignment accuracy were experimentally determined as well.
Fluidized Bed Sputtering for Particle and Powder Metallization
2013-04-01
Introduction Small particles are often added to material systems to modify mechanical, dielectric, optical, or other properties . However, the particle...the poor mechanical properties of the wax degrade the bulk mechanical properties of the composite material . Thin metal coatings on the catalyst...to create precisely tailored optical properties . Alternating layers of ceramic and metal thin films can be designed to create optical filters that
Optical and microwave detection using Bi-Sr-Ca-Cu-O thin films
NASA Technical Reports Server (NTRS)
Grabow, B. E.; Sova, R. M.; Boone, B. G.; Moorjani, K.; Kim, B. F.; Bohandy, J.; Adrian, F.; Green, W. J.
1990-01-01
Recent progress at the Johns Hopkins University Applied Physics Laboratory (JHU/APL) in the development of optical and microwave detectors using high temperature superconducting thin films is described. Several objectives of this work have been accomplished, including: deposition of Bi-Sr-Ca-Cu-O thin films by laser abation processing (LAP); development of thin film patterning techniques, including in situ masking, wet chemical etching and laser patterning; measurements of bolometric and non-bolometric signatures in patterned Bi-Sr-Ca-Cu-O films using optical and microwave sources, respectively; analysis and design of an optimized bolometer through computer simulation, and investigation of its use in a Fourier transform spectrometer. The focus here is primarily on results from the measurement of the bolometric and non-bolometric response.
Optical and microwave detection using Bi-Sr-Ca-Cu-O thin films
NASA Technical Reports Server (NTRS)
Grabow, B. E.; Sova, R. M.; Boone, B. G.; Moorjani, K.; Kim, B. F.; Bohandy, J.; Adrian, F.; Green, W. J.
1991-01-01
Recent progress at the Johns Hopkins University Applied Physics Laboratory (JHU/APL) in the development of optical and microwave detectors using high temperature superconducting thin films is described. Several objectives of this work have been accomplished, including: deposition of Bi-Sr-Ca-Cu-O thin films by laser abation processing (LAP); development of thin film patterning techniques, including in situ masking, wet chemical etching, and laser patterning; measurements of bolometric and non-bolometric signatures in patterned Bi-Sr-Ca-Cu-O films using optical and microwave sources, respectively; analysis and design of an optimized bolometer through computer simulation; and investigation of its use in a Fourier transform spectrometer. The focus here is primarily on results from the measurement of the bolometric and non-bolometric response.
NASA Astrophysics Data System (ADS)
Qiu, Fei; Xu, Zhimou
2009-08-01
In this study, the amorphous Ba0.7Sr0.3TiO3 (BST0.7) thin films were grown onto fused quartz and silicon substrates at low temperature by using a metal organic decomposition (MOD)-spin-coating procedure. The optical transmittance spectrum of amorphous BST0.7 thin films on fused quartz substrates has been recorded in the wavelength range 190~900 nm. The films were highly transparent for wavelengths longer than 330 nm; the transmission drops rapidly at 330 nm, and the cutoff wavelength occurs at about 260 nm. In addition, we also report the amorphous BST0.7 thin film groove-buried type waveguides with 90° bent structure fabricated on Si substrates with 1.65 μm thick SiO2 thermal oxide layer. The design, fabrication and optical losses of amorphous BST0.7 optical waveguides were presented. The amorphous BST0.7 thin films were grown onto the SiO2/Si substrates by using a metal organic decomposition (MOD)-spin-coating procedure. The optical propagation losses were about 12.8 and 9.4 dB/cm respectively for the 5 and 10 μm wide waveguides at the wavelength of 632.8 nm. The 90° bent structures with a small curvature of micrometers were designed on the basis of a double corner mirror structure. The bend losses were about 1.2 and 0.9 dB respectively for 5 and 10 μm wide waveguides at the wavelength of 632.8 nm. It is expected for amorphous BST0.7 thin films to be used not only in the passive optical interconnection in monolithic OEICs but also in active waveguide devices on the Si chip.
Effect of copper doping on the photocatalytic activity of ZnO thin films prepared by sol-gel method
NASA Astrophysics Data System (ADS)
Saidani, T.; Zaabat, M.; Aida, M. S.; Boudine, B.
2015-12-01
In the present work, we prepared undoped and copper doped ZnO thin films by the sol-gel dip coating method on glass substrates from zinc acetate dissolved in a solution of ethanol. The objective of our work is to study the effect of Cu doping with different concentrations on structural, morphological, optical properties and photocatalytic activity of ZnO thin films. For this purpose, we have used XRD to study the structural properties, and AFM to determine the morphology of the surface of the ZnO thin films. The optical properties and the photocatalytic degradation of the films were examined by UV-visibles spectrophotometer. The Tauc method was used to estimate the optical band gap. The XRD spectra indicated that the films have an hexagonal wurtzite structure, which gradually deteriorated with increasing Cu concentration. The results showed that the incorporation of Cu decreases the crystallite size. The AFM study showed that an increase of the concentration of Cu causes the decrease of the surface roughness, which passes from 20.2 for Un-doped ZnO to 12.16 nm for doped ZnO 5 wt% Cu. Optical measurements have shown that all the deposited films show good optical transmittance (77%-92%) in the visible region and increases the optical gap with increasing Cu concentration. The presence of copper from 1% to 5 wt% in the ZnO thin films is found to decelerate the photocatalytic process.
Optical coherence tomography study of retinal changes in normal aging and after ischemia.
Shariati, Mohammad Ali; Park, Joyce Ho; Liao, Yaping Joyce
2015-05-01
Age-related thinning of the retinal ganglion cell axons in the nerve fiber layer has been measured in humans using optical coherence tomography (OCT). In this study, we used OCT to measure inner retinal changes in 3-month-, 1-year-, and 2-year-old mice and after experimental anterior ischemic optic neuropathy (AION). We used OCT to quantify retinal thickness in over 200 eyes at different ages before and after a photochemical thrombosis model of AION. The scans were manually or automatically segmented. In normal aging, there was 1.3-μm thinning of the ganglion cell complex (GCC) between 3 months and 1 year (P < 0.0001) and no further thinning at 2 years. In studying age-related inner retinal changes, measurement of the GCC (circular scan) was superior to that of the total retinal thickness (posterior pole scan) despite the need for manual segmentation because it was not contaminated by outer retinal changes. Three weeks after AION, there was 8.9-μm thinning of the GCC (circular scan; P < 0.0001), 50-μm thinning of the optic disc (posterior pole scan; P < 0.0001), and 17-μm thinning of the retina (posterior pole scan; P < 0.0001) in the 3-month-old group. Changes in the older eyes after AION were similar to those of the 3-month-old group. Optical coherence tomography imaging of a large number of eyes showed that, like humans, mice exhibited small, age-related inner retinal thinning. Measurement of the GCC was superior to total retinal thickness in quantifying age-related changes, and both circular and posterior pole scans were useful to track short-term changes after AION.
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Yoo, J.-M.; Dalu, G.; Kratz, P.
1991-01-01
Over the convectively active tropical ocean regions, the measurement made from space in the IR and visible spectrum have revealed the presence of optically thin cirrus clouds, which are quite transparent in the visible and nearly opaque in the IR. The Nimbus-4 IR Interferometer Spectrometer (IRIS), which has a field of view (FOV) of approximately 100 km, was utilized to examine the IR optical characteristics of these cirrus clouds. From the IRIS data, it was observed that these optically thin cirrus clouds prevail extensively over the warm pool region of the equatorial western Pacific, surrounding Indonesia. It is found that the seasonal cloud cover caused by these thin cirrus clouds exceeds 50 percent near the central regions of the warm pool. For most of these clouds, the optical thickness in the IR is less than or = 2. It is deduced that the dense cold anvil clouds associated with deep convection spread extensively and are responsible for the formation of the thin cirrus clouds. This is supported by the observation that the coverage of the dense anvil clouds is an order of magnitude less than that of the thin cirrus clouds. From these observations, together with a simple radiative-convective model, it is inferred that the optically thin cirrus can provide a greenhouse effect, which can be a significant factor in maintaining the warm pool. In the absence of fluid transports, it is found that these cirrus clouds could lead to a runaway greenhouse effect. The presence of fluid transport processes, however, act to moderate this effect. Thus, if a modest 20 W/sq m energy input is considered to be available to warm the ocean, then it is found that the ocean mixed-layer of a 50-m depth will be heated by approximately 1 C in 100 days.
Effect of sheath gas in atmospheric-pressure plasma jet for potato sprouting suppression
NASA Astrophysics Data System (ADS)
Nishiyama, S.; Monma, M.; Sasaki, K.
2016-09-01
Recently, low-temperature atmospheric-pressure plasma jets (APPJs) attract much interest for medical and agricultural applications. We try to apply APPJs for the suppression of potato sprouting in the long-term storage. In this study, we investigated the effect of sheath gas in APPJ on the suppression efficiency of the potato sprouting. Our APPJ was composed of an insulated thin wire electrode, a glass tube, a grounded electrode which was wound on the glass tube, and a sheath gas nozzle which was attached at the end of the glass tube. The wire electrode was connected to a rectangular-waveform power supply at a frequency of 3 kHz and a voltage of +/- 7 kV. Helium was fed through the glass tube, while we tested dry nitrogen, humid nitrogen, and oxygen as the sheath gas. Eyes of potatoes were irradiated by APPJ for 60 seconds. The sprouting probability was evaluated at two weeks after the plasma irradiation. The sprouting probability was 28% when we employed no sheath gases, whereas an improved probability of 10% was obtained when we applied dry nitrogen as the sheath gas. Optical emission spectroscopy was carried out to diagnose the plasma jet. It was suggested that reactive species originated from nitrogen worked for the efficient suppression of the potato sprouting.
Optical characterization of sputtered YBaCo 4O 7+ δ thin films
NASA Astrophysics Data System (ADS)
Montoya, J. F.; Izquierdo, J. L.; Causado, J. D.; Bastidas, A.; Nisperuza, D.; Gómez, A.; Arnache, O.; Osorio, J.; Marín, J.; Paucar, C.; Morán, O.
2011-02-01
Thin films of YBaCo 4O 7+ δ were deposited on r (1012)-oriented Al 2O 3 substrates by dc magnetron sputtering. The as-grown films were characterized after their structural, morphological and optical properties. Special attention is devoted to the analysis of the optical response of these films as reports on optical properties of YBaCo 4O 7+ δ, especially in thin film form, are not frequently reported in the literature. Transmittance/absorbance measurements allow for determining two well defined energy gaps at 3.7 and 2.2 eV. In turn, infrared (IR) measurements show infrared transparency in the wave length range 4000-2500 nm with a sharp absorption edge at wave lengths less than 2500 nm. Complementary Raman spectra measurements on the thin films allowed for identifying bands associated with vibrating modes of CoO 4 and YO 6 in tetrahedral and octahedral oxygen coordination, respectively. Additional bands which seemed to stem from Co ions in octahedral oxygen coordination were also clearly identified.
NASA Astrophysics Data System (ADS)
Sultana, Jenifar; Paul, Somdatta; Karmakar, Anupam; Yi, Ren; Dalapati, Goutam Kumar; Chattopadhyay, Sanatan
2017-10-01
Thin film of p-type cupric oxide (p-CuO) is grown on silicon (n-Si) substrate by using chemical bath deposition (CBD) technique and a precise control of thickness from 60 nm to 178 nm has been achieved. The structural properties and stoichiometric composition of the grown films are observed to depend significantly on the growth time. The chemical composition, optical properties, and structural quality are investigated in detail by employing XRD, ellipsometric measurements and SEM images. Also, the elemental composition and the oxidation states of Cu and O in the grown samples have been studied in detail by XPS measurements. Thin film of 110 nm thicknesses exhibited the best performance in terms of crystal quality, refractive index, dielectric constant, band-gap, and optical properties. The study suggests synthesis route for developing high quality CuO thin film using CBD method for electronic and optical applications.
Structural and optical properties of Na-doped ZnO films
NASA Astrophysics Data System (ADS)
Akcan, D.; Gungor, A.; Arda, L.
2018-06-01
Zn1-xNaxO (x = 0.0-0.05) solutions have been synthesized by the sol-gel technique using Zinc acetate dihydrate and Sodium acetate which were dissolved into solvent and chelating agent. Na-doped ZnO nanoparticles were obtained from solutions to find phase and crystal structure. Na-doped ZnO films have been deposited onto glass substrate by using sol-gel dip coating system. The effects of dopant concentration on the structure, morphology, and optical properties of Na-doped ZnO thin films deposited on glass substrate are investigated. Characterization of Zn1-xNaxO nanoparticles and thin films are examined using differential thermal analysis (DTA)/thermogravimetric analysis (TGA), Scanning electron microscope (SEM) and X-Ray diffractometer (XRD). Optical properties of Zn1-xNaxO thin films were obtained by using PG Instruments UV-Vis-NIR spectrophotometer in 190-1100 nm range. The structure, morphology, and optical properties of thin films are presented.
Reduced Dimensionality Lithium Niobate Microsystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichenfield, Matt
2017-01-01
The following report describes work performed under the LDRD program at Sandia National Laboratories October 2014 and September 2016. The work presented demonstrates the ability of Sandia Labs to develop state-of-the-art photonic devices based on thin film lithium niobate (LiNbO 3 ). Section 1 provides an introduction to integrated LiNbO 3 devices and motivation for developing thin film nonlinear optical systems. Section 2 describes the design, fabrication, and photonic performance of thin film optical microdisks fabricated from bulk LiNbO 3 using a bulk implantation method developed at Sandia. Sections 3 and 4 describe the development of similar thin film LiNbOmore » 3 structures fabricated from LiNbO 3 on insulator (LNOI) substrates and our demonstration of optical frequency conversion with state-of-the-art efficiency. Finally, Section 5 describes similar microdisk resonators fabricated from LNOI wafers with a buried metal layer, in which we demonstrate electro-optic modulation.« less
CW laser damage testing of RAR nano-textured fused silica and YAG
NASA Astrophysics Data System (ADS)
MacLeod, Bruce D.; Hobbs, Douglas S.; Manni, Anthony D.; Sabatino, Ernest; Bernot, David M.; DeFrances, Sage; Randi, Joseph A.; Thomas, Jeffrey
2017-11-01
A study of the continuous wave (CW) laser induced damage threshold (LiDT) of fused silica and yttrium aluminum garnet (YAG) optics was conducted to further illustrate the enhanced survivability within high power laser systems of an anti-reflection (AR) treatment consisting of randomly distributed surface relief nanostructures (RAR). A series of three CW LiDT tests using the 1070nm wavelength, 16 KW fiber laser test bed at Penn State Electro-Optic Center (PSEOC) were designed and completed, with improvements in the testing protocol, areal coverage, and maximum exposure intensities implemented between test cycles. Initial results for accumulated power, stationary site exposures of RAR nano-textured optics showed no damage and low surface temperatures similar to the control optics with no AR treatment. In contrast, optics with thin-film AR coatings showed high surface temperatures consistent with absorption by the film layers. Surface discriminating absorption measurements made using the Photothermal Common-path Interferometry (PCI) method, showed zero added surface absorption for the RAR nanotextured optics, and absorption levels in the 2-5 part per million range for thin-film AR coated optics. In addition, the surface absorption of thin-film AR coatings was also found to have localized absorption spikes that are likely pre-cursors for damage. Subsequent CW LiDT testing protocol included raster scanning an increased intensity focused beam over the test optic surface where it was found that thin-film AR coated optics damaged at intensities in the 2 to 5 MW/cm2 range with surface temperatures over 250C during the long-duration exposures. Significantly, none of the 10 RAR nano-textured fused silica optics tested could be damaged up to the maximum system intensity of 15.5 MW/cm2, and surface temperatures remained low. YAG optics tested during the final cycle exhibited a similar result with RAR nano-textured surfaces surviving intensities over 3 times higher than thin-film AR coated surfaces. This result was correlated with PCI measurements that also show zero-added surface absorption for the RAR nano-textured YAG optics.
NASA Astrophysics Data System (ADS)
Roschuk, T.; Wojcik, J.; Tan, X.; Davies, J. A.; Mascher, P.
2004-05-01
Thin silicon oxynitride (SiOxNy) and silicon-rich silicon-oxide (SiOx,x<=2) films of varying composition have been deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition. Films were deposited using various source gas flow rates while maintaining a constant chamber pressure. Thicknesses and refractive indices for these films were determined using ellipsometry. Bonding of the constituent atoms was analyzed using Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy also allowed for the detection of bonded species such as hydrogen. Compositional characteristics were determined using various forms of ion beam analysis such as Rutherford backscattering and elastic recoil detection. These analysis techniques were used to determine the values of x and y, the molar fractions of oxygen and nitrogen, respectively, and the total amount of hydrogen present in the films. Using the results obtained from these methods the film characteristics were determined as a function of the deposition conditions. .
Aerosol-Assisted Chemical Vapor Deposited Thin Films for Space Photovoltaics
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; McNatt, Jeremiah; Dickman, John E.; Jin, Michael H.-C.; Banger, Kulbinder K.; Kelly, Christopher V.; AquinoGonzalez, Angel R.; Rockett, Angus A.
2006-01-01
Copper indium disulfide thin films were deposited via aerosol-assisted chemical vapor deposition using single source precursors. Processing and post-processing parameters were varied in order to modify morphology, stoichiometry, crystallography, electrical properties, and optical properties in order to optimize device-quality material. Growth at atmospheric pressure in a horizontal hot-wall reactor at 395 C yielded best device films. Placing the susceptor closer to the evaporation zone and flowing a more precursor-rich carrier gas through the reactor yielded shinier, smoother, denser-looking films. Growth of (112)-oriented films yielded more Cu-rich films with fewer secondary phases than growth of (204)/(220)-oriented films. Post-deposition sulfur-vapor annealing enhanced stoichiometry and crystallinity of the films. Photoluminescence studies revealed four major emission bands (1.45, 1.43, 1.37, and 1.32 eV) and a broad band associated with deep defects. The highest device efficiency for an aerosol-assisted chemical vapor deposited cell was 1.03 percent.
Synergistic effect of indium and gallium co-doping on the properties of RF sputtered ZnO thin films
NASA Astrophysics Data System (ADS)
Shaheera, M.; Girija, K. G.; Kaur, Manmeet; Geetha, V.; Debnath, A. K.; Karri, Malvika; Thota, Manoj Kumar; Vatsa, R. K.; Muthe, K. P.; Gadkari, S. C.
2018-04-01
ZnO thin films were synthesized using RF magnetron sputtering, with simultaneous incorporation of Indium (In) and Gallium (Ga). The structural, optical, chemical composition and surface morphology of the pure and co-doped (IGZO) thin films were characterized by X-Ray diffraction (XRD), UV-visible spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Raman spectroscopy. XRD revealed that these films were oriented along c-axis with hexagonal wurtzite structure. The (002) diffraction peak in the co-doped sample was observed at 33.76° with a slight shift towards lower 2θ values as compared to pure ZnO. The surface morphology of the two thin films was observed to differ. For pure ZnO films, round grains were observed and for IGZO thin films round as well as rod type grains were observed. All thin films synthesized show excellent optical properties with more than 90% transmission in the visible region and band gap of the films is observed to decrease with co-doping. The co doping of In and Ga is therefore expected to provide a broad range optical and physical properties of ZnO thin films for a variety of optoelectronic applications.
Characterization of AlF3 thin films at 193 nm by thermal evaporation
NASA Astrophysics Data System (ADS)
Lee, Cheng-Chung; Liu, Ming-Chung; Kaneko, Masaaki; Nakahira, Kazuhide; Takano, Yuuichi
2005-12-01
Aluminum fluoride (AlF3) was deposited by a resistive heating boat. To obtain a low optical loss and high laser-induced damage threshold (LIDT) at 193 nm, the films were investigated under different substrate temperatures, deposition rates, and annealing after coating. The optical property (the transmittance, refractive index, extinction coefficient, and optical loss) at 193 nm, microstructure (the cross-sectional morphology, surface roughness, and crystalline structure), mechanical property (stress), and LIDT of AlF3 thin films have been studied. AlF3 thin films deposited at a high substrate temperature and low deposition rate showed a lower optical loss. The highest LIDT occurred at the substrate temperature of 150 °C. The LIDT of the films prepared at a deposition rate of 2 Å/s was higher than that at other deposition rates. The annealing process did not influence the optical properties too much, but it did increase the LIDT and stress.
Characterization of AlF3 thin films at 193 nm by thermal evaporation.
Lee, Cheng-Chung; Liu, Ming-Chung; Kaneko, Masaaki; Nakahira, Kazuhide; Takano, Yuuichi
2005-12-01
Aluminum fluoride (AlF3) was deposited by a resistive heating boat. To obtain a low optical loss and high laser-induced damage threshold (LIDT) at 193 nm, the films were investigated under different substrate temperatures, deposition rates, and annealing after coating. The optical property (the transmittance, refractive index, extinction coefficient, and optical loss) at 193 nm, microstructure (the cross-sectional morphology, surface roughness, and crystalline structure), mechanical property (stress), and LIDT of AlF3 thin films have been studied. AlF3 thin films deposited at a high substrate temperature and low deposition rate showed a lower optical loss. The highest LIDT occurred at the substrate temperature of 150 degrees C. The LIDT of the films prepared at a deposition rate of 2 A/s was higher than that at other deposition rates. The annealing process did not influence the optical properties too much, but it did increase the LIDT and stress.
NASA Astrophysics Data System (ADS)
Wang, Wei; Li, Yan; Guo, Zhongyi; Li, Rongzhen; Zhang, Jingran; Zhang, Anjun; Qu, Shiliang
2015-04-01
The ultra-thin optical vortex phase plate (VPP) has been designed and investigated based on the metasurface of the metal rectangular split-ring resonators (MRSRRs) array. The circularly polarized incident light can convert into corresponding cross-polarization transmission light, and the phase and the amplitude of cross-polarization transmission light can be simultaneously governed by modulating two arms of the MRSRR. The MRSRR has been arranged in a special order for forming an ultra-thin optical VPP that can covert a plane wave into a vortex beam with a variety of the topological charges, and the transformation between spin angular momentum (SAM) and orbital angular momentum (OAM) has been discussed in detail. The multi-spectral characteristics of the VPP have also been investigated, and the operating bandwidth of the designed VPP is 190 nm (in the range of 710-900 nm), which enable a potential implication for integrated optics and vortex optics.
NASA Technical Reports Server (NTRS)
Mcguire, Gary E. (Editor); Mcintyre, Dale C. (Editor); Hofmann, Siegfried (Editor)
1991-01-01
A conference on metallurgical coatings and thin films produced papers in the areas of coatings for use at high temperatures; hard coatings and deposition technologies; diamonds and related materials; tribological coatings/surface modifications; thin films for microelectronics and high temperature superconductors; optical coatings, film characterization, magneto-optics, and guided waves; and methods for characterizing films and modified surfaces.
NASA Astrophysics Data System (ADS)
Chen, L.; Kóspál, Á.; Ábrahám, P.; Kreplin, A.; Matter, A.; Weigelt, G.
2018-01-01
Context. An essential step to understanding protoplanetary evolution is the study of disks that contain gaps or inner holes. The pre-transitional disk around the Herbig star HD 169142 exhibits multi-gap disk structure, differentiated gas and dust distribution, planet candidates, and near-infrared fading in the past decades, which make it a valuable target for a case study of disk evolution. Aims: Using near-infrared interferometric observations with VLTI/PIONIER, we aim to study the dust properties in the inner sub-au region of the disk in the years 2011-2013, when the object is already in its near-infrared faint state. Methods: We first performed simple geometric modeling to characterize the size and shape of the NIR-emitting region. We then performed Monte-Carlo radiative transfer simulations on grids of models and compared the model predictions with the interferometric and photometric observations. Results: We find that the observations are consistent with optically thin gray dust lying at Rin 0.07 au, passively heated to T 1500 K. Models with sub-micron optically thin dust are excluded because such dust will be heated to much higher temperatures at similar distance. The observations can also be reproduced with a model consisting of optically thick dust at Rin 0.06 au, but this model is plausible only if refractory dust species enduring 2400 K exist in the inner disk. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programs 190.C-963 and 087.C-0709.
Empirical Temperature Measurement in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Weaver, Erik; Isella, Andrea; Boehler, Yann
2018-02-01
The accurate measurement of temperature in protoplanetary disks is critical to understanding many key features of disk evolution and planet formation, from disk chemistry and dynamics, to planetesimal formation. This paper explores the techniques available to determine temperatures from observations of single, optically thick molecular emission lines. Specific attention is given to issues such as the inclusion of optically thin emission, problems resulting from continuum subtraction, and complications of real observations. Effort is also made to detail the exact nature and morphology of the region emitting a given line. To properly study and quantify these effects, this paper considers a range of disk models, from simple pedagogical models to very detailed models including full radiative transfer. Finally, we show how the use of the wrong methods can lead to potentially severe misinterpretations of data, leading to incorrect measurements of disk temperature profiles. We show that the best way to estimate the temperature of emitting gas is to analyze the line peak emission map without subtracting continuum emission. Continuum subtraction, which is commonly applied to observations of line emission, systematically leads to underestimation of the gas temperature. We further show that once observational effects such as beam dilution and noise are accounted for, the line brightness temperature derived from the peak emission is reliably within 10%–15% of the physical temperature of the emitting region, assuming optically thick emission. The methodology described in this paper will be applied in future works to constrain the temperature, and related physical quantities, in protoplanetary disks observed with ALMA.
NASA Astrophysics Data System (ADS)
Jovic, Vedran; Idriss, Hicham; Waterhouse, Geoffrey I. N.
2016-11-01
Here we describe the successful fabrication of six titania inverse opal (TiO2 IO) photocatalysts with fcc[1 1 1] pseudo photonic band gaps (PBGs) tuned to span the UV-vis region. Photocatalysts were fabricated by a colloidal crystal templating and sol-gel approach - a robust and highly applicable bottom-up scheme which allowed for precise control over the geometric and optical properties of the TiO2 IO photocatalysts. Optical properties of the TiO2 IO thin films were investigated in detail by UV-vis transmittance and reflectance measurements. The PBG along the fcc[1 1 1] direction in the TiO2 IOs was dependent on the inter-planar spacing in the [1 1 1] direction, the incident angle of light and the refractive index of the medium filling the macropores in the IOs, in agreement with a modified Bragg's law expression. Calculated photonic band structures for the photocatalysts revealed a PBG along the Γ → L direction at a/λ ∼ 0.74, in agreement with the experimental optical data. By coupling the low frequency edge of the PBG along the [1 1 1] direction with the electronic absorption edge of anatase TiO2, a two-fold enhancement in the rate of gas phase ethanol photo-oxidation in air was achieved. This enhancement appears to be associated with a 'slow photon' effect that acts to both enhance TiO2 absorption and inhibit spontaneous emission (i.e. suppress electron-hole pair recombination).
Polarization-dependent optical absorption of MoS2 for refractive index sensing
Tan, Yang; He, Ruiyun; Cheng, Chen; Wang, Dong; Chen, Yanxue; Chen, Feng
2014-01-01
As a noncentrosymmetric crystal with spin-polarized band structure, MoS2 nanomaterials have attracts increasing attention in many areas such as lithium ion batteries, flexible electronic devices, photoluminescence and valleytronics. The investigation of MoS2 is mainly focused on the electronics and spintronics instead of optics, which restrict its applications as key elements of photonics. In this work, we demonstrate the first observation of the polarization-dependent optical absorption of the MoS2 thin film, which is integrated onto an optical waveguide device. With this feature, a novel optical sensor combining MoS2 thin-film and a microfluidic structure has been constituted to achieve the sensitive monitoring of refractive index. Our work indicates the MoS2 thin film as a complementary material to graphene for the optical polarizer in the visible light range, and explores a new application direction of MoS2 nanomaterials for the construction of photonic circuits. PMID:25516116
NASA Astrophysics Data System (ADS)
Dicken, Matthew J.; Diest, Kenneth; Park, Young-Bae; Atwater, Harry A.
2007-03-01
We have investigated the growth of barium titanate thin films on bulk crystalline and amorphous substrates utilizing biaxially oriented template layers. Ion beam-assisted deposition was used to grow thin, biaxially textured, magnesium oxide template layers on amorphous and silicon substrates. Growth of highly oriented barium titanate films on these template layers was achieved by molecular beam epitaxy using a layer-by-layer growth process. Barium titanate thin films were grown in molecular oxygen and in the presence of oxygen radicals produced by a 300 W radio frequency plasma. We used X-ray and in situ reflection high-energy electron diffraction (RHEED) to analyze the structural properties and show the predominantly c-oriented grains in the films. Variable angle spectroscopic ellipsometry was used to analyze and compare the optical properties of the thin films grown with and without oxygen plasma. We have shown that optical quality barium titanate thin films, which show bulk crystal-like properties, can be grown on any substrate through the use of biaxially oriented magnesium oxide template layers.
(12)CO (3-2) & (1-0) emission line observations of nearby starburst galaxy nuclei
NASA Technical Reports Server (NTRS)
Devereux, Nicholas; Taniguchi, Yoshiaki; Sanders, D. B.; Nakai, N.; Young, J. S.
1994-01-01
New measurements of the (12)CO (1-0) and (12)CO (3-2) line emission are presented for the nuclei of seven nearby starburst galaxies selected from a complete sample of 21 nearby starburst galaxies for which the nuclear star formation rates are measured to be comparable to the archetype starburst galaxies M82 and NGC 253. The new observations capitalize on the coincidence between the beam size of the 45 m Nobeyama telescope at 115 GHz and that of the 15 m James Clerk Maxwell Telescope at 345 GHz to measure the value of the (12)CO (3-2)/(1-0) emission line ratio in a 15 sec (less than or equal to 2.5 kpc) diameter region centered on the nuclear starburst. In principle, the (12)CO (3-2)/(1-0) emission line ratio provides a measure of temperature and optical depth for the (12)CO gas. The error weighted mean value of the (12)CO (3-2)/(1-0) emission line ratio measured for the seven starburst galaxy nuclei is -0.64 +/- 0.06. The (12)CO (3-2)/(1-0) emission line ratio measured for the starburst galaxy nuclei is significantly higher than the average value measured for molecular gas in the disk of the Galaxy, implying warmer temperatures for the molecular gas in starburst galaxy nuclei. On the other hand, the (12)CO (3-2)/(1-0) emission line ratio measured for the starburst galaxy nuclei is not as high as would be expected if the molecular gas were hot, greater than 20 K, and optically thin, tau much less than 1. The total mass of molecular gas contained within the central 1.2-2.8 kpc diameter region of the starburst galaxy nuclei ranges from 10(exp 8) to 10(exp 9) solar mass. While substantial, the molecular gas mass represents only a small percentage, approximately 9%-16%, of the dynamical mass in the same region.
Baltrus, John P.; Holcomb, Gordon R.; Tylczak, Joseph H.; ...
2017-02-24
There is interest in using Au-nanoparticle incorporated oxide films as functional sensor layers for high-temperature applications in optical-based sensors for measurements in both highly-oxidizing and highly-reducing atmospheres at temperatures approaching 900°C-1000°C because of a relatively high melting temperature combined with the inert nature of Au nanoparticles. This study includes a systematic series of experiments and theoretical calculations targeted at further understanding stability of Au-nanoparticle incorporated TiO 2 films as archetype sensing materials. A combination of thermodynamic modeling and long-term exposure tests were utilized to unambiguously determine that gas stream composition-dependent reactive evaporation of Au (to form predominately Au(g) or AuH(g),more » depending upon the environment) at the surface of the nanoparticles is the dominant mechanism for mass loss of Au. Primary factors dictating the rate of reactive evaporation, and hence the associated film stability, were determined to be the gas stream temperature and the concentration of H 2, with the former playing a more significant role over the ranges of temperatures (700°C - 800°C) and H 2 concentrations (1% to 29% H 2 by volume) explored. The mitigation of Au-mass loss through reactive evaporation was also successfully demonstrated by depositing a SiO 2 overlayer on the Au-nanoparticle embedded films to prevent direct Au-nanoparticle/vapor-phase contact.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baltrus, John P.; Holcomb, Gordon R.; Tylczak, Joseph H.
There is interest in using Au-nanoparticle incorporated oxide films as functional sensor layers for high-temperature applications in optical-based sensors for measurements in both highly-oxidizing and highly-reducing atmospheres at temperatures approaching 900°C-1000°C because of a relatively high melting temperature combined with the inert nature of Au nanoparticles. This study includes a systematic series of experiments and theoretical calculations targeted at further understanding stability of Au-nanoparticle incorporated TiO 2 films as archetype sensing materials. A combination of thermodynamic modeling and long-term exposure tests were utilized to unambiguously determine that gas stream composition-dependent reactive evaporation of Au (to form predominately Au(g) or AuH(g),more » depending upon the environment) at the surface of the nanoparticles is the dominant mechanism for mass loss of Au. Primary factors dictating the rate of reactive evaporation, and hence the associated film stability, were determined to be the gas stream temperature and the concentration of H 2, with the former playing a more significant role over the ranges of temperatures (700°C - 800°C) and H 2 concentrations (1% to 29% H 2 by volume) explored. The mitigation of Au-mass loss through reactive evaporation was also successfully demonstrated by depositing a SiO 2 overlayer on the Au-nanoparticle embedded films to prevent direct Au-nanoparticle/vapor-phase contact.« less
NASA Astrophysics Data System (ADS)
Hymavathi, B.; Rajesh Kumar, B.; Subba Rao, T.
2018-01-01
Nanostructured Cr-doped CdO thin films were deposited on glass substrates by reactive direct current magnetron sputtering and post-annealed in vacuum from 200°C to 500°C. X-ray diffraction studies confirmed that the films exhibit cubic nature with preferential orientation along the (111) plane. The crystallite size, lattice parameters, unit cell volume and strain in the films were determined from x-ray diffraction analysis. The surface morphology of the films has been characterized by field emission scanning electron microscopy and atomic force microscopy. The electrical properties of the Cr-doped CdO thin films were measured by using a four-probe method and Hall effect system. The lowest electrical resistivity of 2.20 × 10-4 Ω cm and a maximum optical transmittance of 88% have been obtained for the thin films annealed at 500°C. The optical band gap of the films decreased from 2.77 eV to 2.65 eV with the increase of annealing temperature. The optical constants, packing density and porosity of Cr-doped CdO thin films were also evaluated from the transmittance spectra.
Nam, Giwoong; Yoon, Hyunsik; Kim, Byunggu; Lee, Dong-Yul; Kim, Jong Su; Leem, Jae-Young
2014-11-01
The structural and optical properties of Co-doped ZnO thin films prepared by a sol-gel dip-coating method were investigated. X-ray diffraction analysis showed that the thin films were grown with a c-axis preferred orientation. The position of the (002) peak was almost the same in all samples, irrespective of the Co concentration. It is thus clear that Co doping had little effect on the position of the (002) peak. To confirm that Co2+ was substituted for Zn2+ in the wurtzite structure, optical measurements were conducted at room temperature by a UV-visible spectrometer. Three absorption peaks are apparent in the Co-doped ZnO thin films that do not appear for the undoped ZnO thin film. As the Co concentration was increased, absorption related to characteristic Co2+ transitions increased because three absorption band intensities and the area underneath the absorption wells between 500 and 700 nm increased with increasing Co concentration. The optical band gap and static dielectric constant decreased and the Urbach energy and extinction coefficient increased with increasing Co concentration.
Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings
NASA Astrophysics Data System (ADS)
Kats, Mikhail A.; Byrnes, Steven J.; Blanchard, Romain; Kolle, Mathias; Genevet, Patrice; Aizenberg, Joanna; Capasso, Federico
2013-09-01
Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, D. K.; Pathak, H. P.; Shukla, Nitesh
2015-05-15
Thin films of a-Se{sub 66}Te{sub 25}In{sub 9} have been deposited onto a chemically cleaned glass substrate by thermal evaporation technique under vacuum. Glassy nature of the films has been ascertained by X-ray diffraction pattern. The analysis of absorption spectra, measured at normal incidence, in the spectral range 400-1100 nm has been used for the optical characterization of thin films under investigation. The effect of thermal annealing on structure and optical band gap (E{sub g}) of a-Se{sub 66}Te{sub 25}In{sub 9} have been studied.
Reflective Coating for Lightweight X-Ray Optics
NASA Technical Reports Server (NTRS)
Chan, Kai-Wing; Zhang, William W.; Windt, David; Hong, Mao-Ling; Saha, Timo; McClelland, Ryan; Sharpe, Marton; Dwivedi, Vivek H.
2012-01-01
X-ray reflective coating for next generation's lightweight, high resolution, optics for astronomy requires thin-film deposition that is precisely fine-tuned so that it will not distort the thin sub-mm substrates. Film of very low stress is required. Alternatively, mirror distortion can be cancelled by precisely balancing the deformation from multiple films. We will present results on metallic film deposition for the lightweight optics under development. These efforts include: low-stress deposition by magnetron sputtering and atomic layer deposition of the metals, balancing of gross deformation with two-layer depositions of opposite stresses and with depositions on both sides of the thin mirrors.
The Integration Process of Very Thin Mirror Shells with a Particular Regard to Simbol-X
NASA Astrophysics Data System (ADS)
Basso, S.; Pareschi, G.; Tagliaferri, G.; Mazzoleni, F.; Valtolina, R.; Citterio, O.; Conconi, P.
2009-05-01
The optics of Simbol-X are very thin compared to previous X-ray missions (like XMM). Therefore their shells floppy and are unable to maintain the correct shape. To avoid the deformations of their very thin X-ray optics during the integration process we adopt two stiffening rings with a good roundness. In this article the procedure used for the first three prototypes of the Simbol-X optics is presented with a description of the problems involved and with an analysis of the degradation of the performances during the integration. This analysis has been performed with the UV vertical bench measurements at INAF-OAB.
NASA Astrophysics Data System (ADS)
Rani, D. Jhansi; Kumar, A. GuruSampath; Sarmash, T. Sofi; Chandra Babu Naidu, K.; Maddaiah, M.; Rao, T. Subba
2016-06-01
High transmitting, non absorbent, nano crystalline zirconium titanate (ZT) thin films suitable for anti reflection coatings (ARC) were deposited on to glass substrates by direct current (DC) magnetron reactive sputtering technique, under distinct Argon to Oxygen (Ar/O2) gas flow rate ratios of 31/1, 30/2, 29/3 and 28/4, with a net gas flow (Ar + O2) of 32sccm, at an optimum substrate temperature of 250°C. The influence of the gas mixture ratio on the film properties has been investigated by employing x-ray diffraction (XRD), ultra violet visible (UV-vis) spectroscopy, atomic force microscopy (AFM), energy dispersive x-ray analysis (EDX) and four point probe methods. The films showed a predominant peak at 30.85° with (111) orientation. The crystallite size reduced from 22.94 nm to 13.5 nm and the surface roughness increased from 11.53 nm to 50.58 nm with increase in oxygen content respectively. The films deposited at 31/1 and 30/2 showed almost similar chemical composition. Increased oxygen content results an increase in electrical resistivity from 3.59 × 103 to 2.1 × 106 Ωm. The film deposited at Ar/O2 of 28/4 exhibited higher average optical transmittance of 91%, but its refractive index is higher than that of what is required for ARC. The films deposited at 31/1 and 30/2 of Ar/O2 possess higher transmittance (low absorbance) apart from suitable refractive index. Thus, these films are preferable candidates for ARC.
Real-time optical fiber dosimeter probe
NASA Astrophysics Data System (ADS)
Croteau, André; Caron, Serge; Rink, Alexandra; Jaffray, David; Mermut, Ozzy
2011-03-01
There is a pressing need for a passive optical fiber dosimeter probe for use in real-time monitoring of radiation dose delivered to clinical radiation therapy patients. An optical fiber probe using radiochromic material has been designed and fabricated based on a thin film of the radiochromic material on a dielectric mirror. Measurements of the net optical density vs. time before, during, and after irradiation at a rate of 500cGy/minute to a total dose of 5 Gy were performed. Net optical densities increased from 0.2 to 2.0 for radiochromic thin film thicknesses of 2 to 20 μm, respectively.
NASA Astrophysics Data System (ADS)
Cano-Lara, Miroslava; Severiano-Carrillo, Israel; Trejo-Durán, Mónica; Alvarado-Méndez, Edgar
2017-09-01
In this work, we present a study of non-linear optical response in thin films elaborated with Gelite Bloom and extract of Hibiscus Sabdariffa. Non-linear refraction and absorption effects were studied experimentally (Z-scan technique) and numerically, by considering the transmittance as non-linear absorption and refraction contribution. We observe large phase shifts to far field, and diffraction due to self-phase modulation of the sample. Diffraction and self-diffraction effects were observed as time function. The aim of studying non-linear optical properties in thin films is to eliminate thermal vortex effects that occur in liquids. This is desirable in applications such as non-linear phase contrast, optical limiting, optics switches, etc. Finally, we find good agreement between experimental and theoretical results.
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Banger, Kulbinder K.; Jin, Michael H.-C.; Harris, Jerry D.; McNatt, Jeremiah S.; Dickman, John E.
2008-01-01
Thin-film solar cells on flexible, lightweight, space-qualified substrates provide an attractive approach to fabricating solar arrays with high mass-specific power. A polycrystalline chalcopyrite absorber layer is among the new generation of photovoltaic device technologies for thin film solar cells. At NASA Glenn Research Center we have focused on the development of new single-source precursors (SSPs) for deposition of semiconducting chalcopyrite materials onto lightweight, flexible substrates. We describe the syntheses and thermal modulation of SSPs via molecular engineering. Copper indium disulfide and related thin-film materials were deposited via aerosol-assisted chemical vapor deposition using SSPs. Processing and post-processing parameters were varied in order to modify morphology, stoichiometry, crystallography, electrical properties, and optical properties to optimize device quality. Growth at atmospheric pressure in a horizontal hotwall reactor at 395 C yielded the best device films. Placing the susceptor closer to the evaporation zone and flowing a more precursor-rich carrier gas through the reactor yielded shinier-, smoother-, and denser-looking films. Growth of (112)-oriented films yielded more Cu-rich films with fewer secondary phases than growth of (204)/(220)-oriented films. Post-deposition sulfur-vapor annealing enhanced stoichiometry and crystallinity of the films. Photoluminescence studies revealed four major emission bands and a broad band associated with deep defects. The highest device efficiency for an aerosol-assisted chemical vapor deposited cell was one percent.
Dielectric Studies on Thermally Evaporated
NASA Astrophysics Data System (ADS)
Selvasekarapandian, S.; Gowtham, M.; Bhuvaneswari, M. S.
In recent years rare earth compounds especially their fluorides have drawn particular attention as electrochemical gas sensors. Lanthanum and cerium fluoride based sensors have been investigated for sensing the fluorine, oxygen, and carbon monoxide because of their high chemical stability and high ionic conductivity. The fast response and good sensitivity of these sensors rely on the ion conduction properties of these thin films. In the present work Cerium Fluoride thin film has been prepared by vacuum thermal evaporation method. The electrical characterization is carried out using the Impedance spectroscopy method in the frequency range of 50 Hz to 5 MHz. The temperature dependence of ionic conductivity obeys the Arrhenius behavior and the activation energy Ea is found to be 0.3eV. The modulus and the dielectric spectra analysis reveal the non - Debye nature and the distribution of relaxation time due to the presence of grain and grain boundaries in the film. The relaxation energy Ed has been calculated from the dielectric spectra. The similar value of activation and relaxation energies suggests that the charge carriers that are responsible for bulk conductivity and relaxation process are the same. The optical measurement done in the wavelength range of 400-2500 nm confirms that the CeF3 thin film is highly transparent and the band gap energy is found to be 3.5 eV.
1976-05-01
random walk photon scattering, geometric optics refraction at a thin phase screen, plane wave scattering from a thin screen in the Fraunhofer limit and...significant cases. In the geometric optics regime the distribution of density of allowable multipath rays is gsslanly distributed and the power...3.1 Random Walk Approach to Scattering 10 3.2 Phase Screen Approximation to Strong Scattering 13 3.3 Ray Optics and Stationary Phase Analysis 21 3,3,1
Optical filters for wavelength selection in fluorescence instrumentation.
Erdogan, Turan
2011-04-01
Fluorescence imaging and analysis techniques have become ubiquitous in life science research, and they are poised to play an equally vital role in in vitro diagnostics (IVD) in the future. Optical filters are crucial for nearly all fluorescence microscopes and instruments, not only to provide the obvious function of spectral control, but also to ensure the highest possible detection sensitivity and imaging resolution. Filters make it possible for the sample to "see" light within only the absorption band, and the detector to "see" light within only the emission band. Without filters, the detector would not be able to distinguish the desired fluorescence from scattered excitation light and autofluorescence from the sample, substrate, and other optics in the system. Today the vast majority of fluorescence instruments, including the widely popular fluorescence microscope, use thin-film interference filters to control the spectra of the excitation and emission light. Hence, this unit emphasizes thin-film filters. After briefly introducing different types of thin-film filters and how they are made, the unit describes in detail different optical filter configurations in fluorescence instruments, including both single-color and multicolor imaging systems. Several key properties of thin-film filters, which can significantly affect optical system performance, are then described. In the final section, tunable optical filters are also addressed in a relative comparison.
Self-Mixing Thin-Slice Solid-State Laser Metrology
Otsuka, Kenju
2011-01-01
This paper reviews the dynamic effect of thin-slice solid-state lasers subjected to frequency-shifted optical feedback, which led to the discovery of the self-mixing modulation effect, and its applications to quantum-noise-limited versatile laser metrology systems with extreme optical sensitivity. PMID:22319406
Zhou, Kai-Ge; Chang, Meng-Jie; Wang, Hang-Xing; Xie, Yu-Long; Zhang, Hao-Li
2012-01-01
Thin films of graphene oxide, graphene and copper (II) phthalocyanine dye have been successfully fabricated by electrostatic layer-by-layer (LbL) assembly approach. We present the first variable angle spectroscopic ellipsometry (VASE) investigation on these graphene-dye hybrid thin films. The thickness evaluation suggested that our LbL assembly process produces highly uniform and reproducible thin films. We demonstrate that the refractive indices of the graphene-dye thin films undergo dramatic variation in the range close to the absorption of the dyes. This investigation provides new insight to the optical properties of graphene containing thin films and shall help to establish an appropriate optical model for graphene-based hybrid materials.
Epitaxial Ba2IrO4 thin-films grown on SrTiO3 substrates by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Nichols, J.; Korneta, O. B.; Terzic, J.; Cao, G.; Brill, J. W.; Seo, S. S. A.
2014-03-01
We have synthesized epitaxial Ba2IrO4 (BIO) thin-films on SrTiO3 (001) substrates by pulsed laser deposition and studied their electronic structure by dc-transport and optical spectroscopic experiments. We have observed that BIO thin-films are insulating but close to the metal-insulator transition boundary with significantly smaller transport and optical gap energies than its sister compound, Sr2IrO4. Moreover, BIO thin-films have both an enhanced electronic bandwidth and electronic-correlation energy. Our results suggest that BIO thin-films have great potential for realizing the interesting physical properties predicted in layered iridates.