Characterization of dynamic physiology of the bladder by optical coherence tomography
NASA Astrophysics Data System (ADS)
Yuan, Zhijia; Keng, Kerri; Pan, Rubin; Ren, Hugang; Du, Congwu; Kim, Jason; Pan, Yingtian
2012-03-01
Because of its high spatial resolution and noninvasive imaging capabilities, optical coherence tomography has been used to characterize the morphological details of various biological tissues including urinary bladder and to diagnose their alternations (e.g., cancers). In addition to static morphology, the dynamic features of tissue morphology can provide important information that can be used to diagnose the physiological and functional characteristics of biological tissues. Here, we present the imaging studies based on optical coherence tomography to characterize motion related physiology and functions of rat bladder detrusor muscles and compared the results with traditional biomechanical measurements. Our results suggest that optical coherence tomography is capable of providing quantitative evaluation of contractile functions of intact bladder (without removing bladder epithelium and connective tissue), which is potentially of more clinical relevance for future clinical diagnosis - if incorporated with cystoscopic optical coherence tomography.
NASA Astrophysics Data System (ADS)
Li, Yi-Chao; Cui, Wan-Xing; Wang, Xu-Jing; Amthor, Franklin; Yao, Xin-Cheng
2011-03-01
Intrinsic optical signal (IOS) imaging has been established for noninvasive monitoring of stimulus-evoked physiological responses in the retina and other neural tissues. Recently, we extended the IOS imaging technology for functional evaluation of insulin secreting INS-1 cells. INS-1 cells provide a popular model for investigating β-cell dysfunction and diabetes. Our experiments indicate that IOS imaging allows simultaneous monitoring of glucose-stimulated physiological responses in multiple cells with high spatial (sub-cellular) and temporal (sub-second) resolution. Rapid image sequences reveal transient optical responses that have time courses comparable to glucose-evoked β-cell electrical activities.
Optical coherence tomography for the quantitative study of cerebrovascular physiology
Srinivasan, Vivek J; Atochin, Dmitriy N; Radhakrishnan, Harsha; Jiang, James Y; Ruvinskaya, Svetlana; Wu, Weicheng; Barry, Scott; Cable, Alex E; Ayata, Cenk; Huang, Paul L; Boas, David A
2011-01-01
Doppler optical coherence tomography (DOCT) and OCT angiography are novel methods to investigate cerebrovascular physiology. In the rodent cortex, DOCT flow displays features characteristic of cerebral blood flow, including conservation along nonbranching vascular segments and at branch points. Moreover, DOCT flow values correlate with hydrogen clearance flow values when both are measured simultaneously. These data validate DOCT as a noninvasive quantitative method to measure tissue perfusion over a physiologic range. PMID:21364599
Using Bio-Optics to Reveal Phytoplankton Physiology from a Wirewalker Autonomous Platform
NASA Technical Reports Server (NTRS)
Omand, M. M.; Cetinic, I.; Lucas, A. J.
2017-01-01
Rapid, wave-powered profiling of bio-optical properties from an autonomous Wirewalker platform provides useful insights into phytoplankton physiology, including the patterns of diel growth, phytoplankton mortality, nonphotochemical quenching of chlorophyll a fluorescence, and natural (sun-induced) fluorescence of mixed communities. Methods are proposed to quantify each of these processes. Such autonomous measurements of phytoplankton physiological rates and responses open up new possibilities for studying phytoplankton in situ, over longer periods, and under a broader range of environmental conditions.
NASA Technical Reports Server (NTRS)
Myers, J. G.; Feola, A.; Werner, C.; Nelson, E. S.; Raykin, J.; Samuels, B.; Ethier, C. R.
2016-01-01
The earliest manifestations of Visual Impairment and Intracranial Pressure (VIIP) syndrome become evident after months of spaceflight and include a variety of ophthalmic changes, including posterior globe flattening and distension of the optic nerve sheath. Prevailing evidence links the occurrence of VIIP to the cephalic fluid shift induced by microgravity and the subsequent pressure changes around the optic nerve and eye. Deducing the etiology of VIIP is challenging due to the wide range of physiological parameters that may be influenced by spaceflight and are required to address a realistic spectrum of physiological responses. Here, we report on the application of an efficient approach to interrogating physiological parameter space through computational modeling. Specifically, we assess the influence of uncertainty in input parameters for two models of VIIP syndrome: a lumped-parameter model (LPM) of the cardiovascular and central nervous systems, and a finite-element model (FEM) of the posterior eye, optic nerve head (ONH) and optic nerve sheath. Methods: To investigate the parameter space in each model, we employed Latin hypercube sampling partial rank correlation coefficient (LHSPRCC) strategies. LHS techniques outperform Monte Carlo approaches by enforcing efficient sampling across the entire range of all parameters. The PRCC method estimates the sensitivity of model outputs to these parameters while adjusting for the linear effects of all other inputs. The LPM analysis addressed uncertainties in 42 physiological parameters, such as initial compartmental volume and nominal compartment percentage of total cardiac output in the supine state, while the FEM evaluated the effects on biomechanical strain from uncertainties in 23 material and pressure parameters for the ocular anatomy. Results and Conclusion: The LPM analysis identified several key factors including high sensitivity to the initial fluid distribution. The FEM study found that intraocular pressure and intracranial pressure had dominant impact on the peak strains in the ONH and retro-laminar optic nerve, respectively; optic nerve and lamina cribrosa stiffness were also important. This investigation illustrates the ability of LHSPRCC to identify the most influential physiological parameters, which must therefore be well-characterized to produce the most accurate numerical results.
Kuzmiak-Glancy, Sarah; Jaimes, Rafael; Wengrowski, Anastasia M; Kay, Matthew W
2015-06-01
What is the topic of this review? This review discusses how the function and electrophysiology of isolated perfused hearts are affected by oxygenation and energy utilization. The impact of oxygenation on fluorescence measurements in perfused hearts is also discussed. What advances does it highlight? Recent studies have illuminated the inherent differences in electromechanical function, energy utilization rate and oxygen requirements between the primary types of excised heart preparations. A summary and analysis of how these variables affect experimental results are necessary to elevate the physiological relevance of these approaches in order to advance the field of whole-heart research. The ex vivo perfused heart recreates important aspects of in vivo conditions to provide insight into whole-organ function. In this review we discuss multiple types of ex vivo heart preparations, explain how closely each mimic in vivo function, and discuss how changes in electromechanical function and inadequate oxygenation of ex vivo perfused hearts may affect measurements of physiology. Hearts that perform physiological work have high oxygen demand and are likely to experience hypoxia when perfused with a crystalloid perfusate. Adequate myocardial oxygenation is critically important for obtaining physiologically relevant measurements, so when designing experiments the type of ex vivo preparation and the capacity of perfusate to deliver oxygen must be carefully considered. When workload is low, such as during interventions that inhibit contraction, oxygen demand is also low, which could dramatically alter a physiological response to experimental variables. Changes in oxygenation also alter the optical properties of cardiac tissue, an effect that may influence optical signals measured from both endogenous and exogenous fluorophores. Careful consideration of oxygen supply, working condition, and wavelengths used to acquire optical signals is critical for obtaining physiologically relevant measurements during ex vivo perfused heart studies. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
Sjulson, Lucas; Miesenböck, Gero
2007-02-01
Optical imaging of physiological events in real time can yield insights into biological function that would be difficult to obtain by other experimental means. However, the detection of all-or-none events, such as action potentials or vesicle fusion events, in noisy single-trial data often requires a careful balance of tradeoffs. The analysis of such experiments, as well as the design of optical reporters and instrumentation for them, is aided by an understanding of the principles of signal detection. This review illustrates these principles, using as an example action potential recording with optical voltage reporters.
NASA Astrophysics Data System (ADS)
Liu, Yagang
A novel technique that combines microfluorometric detection and optical laser trapping has been developed for in-situ assessing the physiological state of an optically trapped biological sample. This optical diagnostic technique achieves high sensitivity (>30 dB signal -to-noise ratio) and high spatial resolution (~ 1 μm) over a broad spectral range (>400 nm). The fluorescence spectra derived from exogenous fluorescent probes, including laurdan, acridine orange, propidium iodide and Snarf, are used to assess the effects of optical confinement with respect to temperature, DNA structure, cell viability, and intracellular pH, respectively. In the latter three cases, fluorescence is excited via a two-photon absorption process, using the cw laser trap itself as the fluorescence excitation source. This enables the cw near infrared laser trapping beam to be used simultaneously as an optical diagnostic probe as well as an optical micromanipulator. Using microfluorometry, a temperature increase of less than several degrees centigrade was measured for test samples, including liposomes, Chinese hamster ovary (CHO) cells and human sperm cells that were held stationary by 1064 nm optical tweezers having a power density of ~10^7 W/cm^2. Additional physiological monitoring experiments indicated that there is no observable denaturation of DNA, or change of intracellular pH under typical continuous wave laser trapping conditions (P <= 400 mW). Under some circumstances, however, it was possible to achieve a decrease in cell viability with cw trapping, as monitored by a live/dead vital stain. In comparison, significant DNA denaturation and cellular physiological changes (e.g. cell death) were observed when a Q-switched pulsed laser at a threshold of ~30mu J/pulse was used as trapping source. These results generally support the conclusion that cw laser trapping at 1064 nm wavelength is a safe, non-invasive process and should prove to be of great value for understanding the mechanisms of laser microirradiation effects on living cells held stationary in a near-infrared trapping beam.
Optoacoustic Monitoring of Physiologic Variables
Esenaliev, Rinat O.
2017-01-01
Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro, in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy. PMID:29311964
Optoacoustic Monitoring of Physiologic Variables.
Esenaliev, Rinat O
2017-01-01
Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro , in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy.
Optical properties of in-vitro biomineralised silica.
Polini, Alessandro; Pagliara, Stefano; Camposeo, Andrea; Cingolani, Roberto; Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G; Pisignano, Dario
2012-01-01
Silicon is the second most common element on the Earth's crust and its oxide (SiO(2)) the most abundant mineral. Silica and silicates are widely used in medicine and industry as well as in micro- and nano-optics and electronics. However, the fabrication of glass fibres and components requires high temperature and non-physiological conditions, in contrast to biosilica structures in animals and plants. Here, we show for the first time the use of recombinant silicatein-α, the most abundant subunit of sponge proteins catalyzing biosilicification reactions, to direct the formation of optical waveguides in-vitro through soft microlithography. The artificial biosilica fibres mimic the natural sponge spicules, exhibiting refractive index values suitable for confinement of light within waveguides, with optical losses in the range of 5-10 cm(-1), suitable for application in lab-on-chips systems. This method extends biosilicification to the controlled fabrication of optical components by physiological processing conditions, hardly addressed by conventional technologies.
Wu, Weitai; Zhou, Ting; Aiello, Michael; Zhou, Shuiqin
2010-08-15
A new class of optical glucose nanobiosensors with high sensitivity and selectivity at physiological pH is described. To construct these glucose nanobiosensors, the fluorescent CdS quantum dots (QDs), serving as the optical code, were incorporated into the glucose-sensitive poly(N-isopropylacrylamide-acrylamide-2-acrylamidomethyl-5-fluorophenylboronic acid) copolymer microgels, via both in situ growth method and "breathing in" method, respectively. The polymeric gel can adapt to surrounding glucose concentrations, and regulate the fluorescence of the embedded QDs, converting biochemical signals into optical signals. The gradual swelling of the gel would lead to the quenching of the fluorescence at the elevated glucose concentrations. The hybrid microgels displayed high selectivity to glucose over the potential primary interferents of lactate and human serum albumin in the physiologically important glucose concentration range. The stability, reversibility, and sensitivity of the organic-inorganic hybrid microgel-based biosensors were also systematically studied. These general properties of our nanobiosensors are well tunable under appropriate tailor on the hybrid microgels, in particular, simply through the change in the crosslinking degree of the microgels. The optical glucose nanobiosensors based on the organic-inorganic hybrid microgels have shown the potential for a third generation fluorescent biosensor. Copyright 2010 Elsevier B.V. All rights reserved.
Orderly recruitment of motor units under optical control in vivo.
Llewellyn, Michael E; Thompson, Kimberly R; Deisseroth, Karl; Delp, Scott L
2010-10-01
A drawback of electrical stimulation for muscle control is that large, fatigable motor units are preferentially recruited before smaller motor units by the lowest-intensity electrical cuff stimulation. This phenomenon limits therapeutic applications because it is precisely the opposite of the normal physiological (orderly) recruitment pattern; therefore, a mechanism to achieve orderly recruitment has been a long-sought goal in physiology, medicine and engineering. Here we demonstrate a technology for reliable orderly recruitment in vivo. We find that under optical control with microbial opsins, recruitment of motor units proceeds in the physiological recruitment sequence, as indicated by multiple independent measures of motor unit recruitment including conduction latency, contraction and relaxation times, stimulation threshold and fatigue. As a result, we observed enhanced performance and reduced fatigue in vivo. These findings point to an unanticipated new modality of neural control with broad implications for nervous system and neuromuscular physiology, disease research and therapeutic innovation.
Motion compensation for in vivo subcellular optical microscopy.
Lucotte, B; Balaban, R S
2014-04-01
In this review, we focus on the impact of tissue motion on attempting to conduct subcellular resolution optical microscopy, in vivo. Our position is that tissue motion is one of the major barriers in conducting these studies along with light induced damage, optical probe loading as well as absorbing and scattering effects on the excitation point spread function and collection of emitted light. Recent developments in the speed of image acquisition have reached the limit, in most cases, where the signal from a subcellular voxel limits the speed and not the scanning rate of the microscope. Different schemes for compensating for tissue displacements due to rigid body and deformation are presented from tissue restriction, gating, adaptive gating and active tissue tracking. We argue that methods that minimally impact the natural physiological motion of the tissue are desirable because the major reason to perform in vivo studies is to evaluate normal physiological functions. Towards this goal, active tracking using the optical imaging data itself to monitor tissue displacement and either prospectively or retrospectively correct for the motion without affecting physiological processes is desirable. Critical for this development was the implementation of near real time image processing in conjunction with the control of the microscope imaging parameters. Clearly, the continuing development of methods of motion compensation as well as significant technological solutions to the other barriers to tissue subcellular optical imaging in vivo, including optical aberrations and overall signal-to-noise ratio, will make major contributions to the understanding of cell biology within the body.
Impact of phytoplankton community structure and function on marine particulate optical properties
NASA Astrophysics Data System (ADS)
McFarland, Malcolm Neil
Phytoplankton are an ecologically important and diverse group of organisms whose distribution, abundance, and population dynamics vary significantly over small spatial (cm) and temporal (minutes) scales in the coastal ocean. Our inability to observe phytoplankton community structure and function at these small scales has severely limited our understanding of the fundamental ecological and evolutionary mechanisms that drive phytoplankton growth, mortality, adaptation and speciation. The goal of this dissertation was to enhance our understanding of phytoplankton ecology by improving in situ observational techniques based on the optical properties of cells, colonies, populations, and communities. Field and laboratory studies were used to determine the effects of phytoplankton species composition, morphology, and physiology on the inherent optical properties of communities and to explore the adaptive significance of bio-optically important cellular characteristics. Initial field studies found a strong association between species composition and the relative magnitude and shape of particulate absorption, scattering, and attenuation coefficient spectra. Subsequent field studies using scanning flow cytometry to directly measure optically important phytoplankton and non-algal particle characteristics demonstrated that the size and pigment content of large (>20 microm) phytoplankton cells and colonies vary significantly with the slope of particulate attenuation and absorption spectra, and with the ratio of particulate scattering to absorption. These relationships enabled visualization of phytoplankton community composition and mortality over small spatial and temporal scales derived from high resolution optical measurements acquired with an autonomous profiling system. Laboratory studies with diverse uni-algal cultures showed that morphological and physiological characteristics of cells and colonies can account for ˜30% of the optical variation observed in natural communities and that complex morphologies and low intracellular pigment concentrations minimize pigment self-shading that could otherwise limit bio-optical fitness. These results demonstrate that optical properties reveal detailed information about the distribution, abundance, morphology, and physiology of phytoplankton that can help explain their ecological dynamics over small spatial scales and the bio-optical function of diverse forms in the ocean.
Medical Electronics and Physiological Measurement.
ERIC Educational Resources Information Center
Cochrane, T.
1989-01-01
Described are developments in medical electronics and physiological measurement. Discussed are electrocardiology, audiology, and urology as mature applications; applied potential tomography, magnetic stimulation of nerves, and laser Doppler flowmetry as new techniques; and optical sensors, ambulatory monitoring, and biosensors as future…
A Biomechanical Paradigm for Axonal Insult Within the Optic Nerve Head
Burgoyne, Claude F.
2010-01-01
Rosario Hernandez This article is dedicated to Rosario Hernandez for her warm support of my own work and her genuine enthusiasm for the work of her colleagues throughout her career. I first met Rosario as a research fellow in Harry Quigley’s laboratory between 1991 and 1993. Along with Harry, John Morrison, Elaine Johnson, Abe Clark, Colm O’Brien and many others, Rosario’s work has provided lamina cribrosa astrocyte cellular mechanisms that are biomechanically plausible and in so doing provided credibility to early notions of the optic nerve head (ONH) as a biomechanical structure. We owe a large intellectual debt to Rosario for her dogged persistence in the characterization of the ONH astrocyte and lamina cribrosacyte in age and disease. Two questions run through her work and remain of central importance today. First, how do astrocytes respond to and alter the biomechanical environment of the ONH and the physiologic stresses created therein? Second, how do these physiologic demands on the astrocyte influence their ability to deliver the support to retinal ganglion cell axon transport and flow against the translaminar pressure gradient? The purpose of this article is to summarize what is known about the biomechanical determinants of retinal ganglion cell axon physiology within the ONH in the optic neuropathy of aging and Glaucoma. My goal is to provide a biomechanical framework for this discussion. This framework assumes that the ONH astrocytes and glia fundamentally support and influence both the lamina cribrosa extracellular matrix and retinal ganglion cell axon physiology. Rosario Hernandez was one of the first investigators to recognize the implications of this unique circumstance. Many of the ideas contained herein have been initially presented within or derived from her work (Hernandez, M.R., 2000. The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res. 19, 297–321.; Hernandez, M.R., Pena, J.D., 1997. The optic nerve head in glaucomatous optic neuropathy. Arch Ophthalmol. 115, 389–395.). PMID:20849846
Optical properties of in-vitro biomineralised silica
Polini, Alessandro; Pagliara, Stefano; Camposeo, Andrea; Cingolani, Roberto; Wang, Xiaohong; Schröder, Heinz C.; Müller, Werner E. G.; Pisignano, Dario
2012-01-01
Silicon is the second most common element on the Earth's crust and its oxide (SiO2) the most abundant mineral. Silica and silicates are widely used in medicine and industry as well as in micro- and nano-optics and electronics. However, the fabrication of glass fibres and components requires high temperature and non-physiological conditions, in contrast to biosilica structures in animals and plants. Here, we show for the first time the use of recombinant silicatein-α, the most abundant subunit of sponge proteins catalyzing biosilicification reactions, to direct the formation of optical waveguides in-vitro through soft microlithography. The artificial biosilica fibres mimic the natural sponge spicules, exhibiting refractive index values suitable for confinement of light within waveguides, with optical losses in the range of 5–10 cm−1, suitable for application in lab-on-chips systems. This method extends biosilicification to the controlled fabrication of optical components by physiological processing conditions, hardly addressed by conventional technologies. PMID:22934130
Optical Properties of a Bio-Inspired Gradient Refractive Index Polymer Lens
2008-07-21
Optical properties of a bio-inspired gradient refractive index polymer lens G. Beadie,1,* James S. Shirk,1 A. Rosenberg,1 Paul A. Lane,1 E. Fleet,1...of magnitude less than the homogeneous glass lens. ©2008 Optical Society of America OCIS codes: (110.2760) Gradient-index lenses; (160.5470...H. von Helmholtz, A. Gullstrand, J. von Kries, and W. Nagel, Helmholtz’s Treatise on Physiological Optics (The Optical Society of America, Rochester
Dynamic physiological modeling for functional diffuse optical tomography
Diamond, Solomon Gilbert; Huppert, Theodore J.; Kolehmainen, Ville; Franceschini, Maria Angela; Kaipio, Jari P.; Arridge, Simon R.; Boas, David A.
2009-01-01
Diffuse optical tomography (DOT) is a noninvasive imaging technology that is sensitive to local concentration changes in oxy- and deoxyhemoglobin. When applied to functional neuroimaging, DOT measures hemodynamics in the scalp and brain that reflect competing metabolic demands and cardiovascular dynamics. The diffuse nature of near-infrared photon migration in tissue and the multitude of physiological systems that affect hemodynamics motivate the use of anatomical and physiological models to improve estimates of the functional hemodynamic response. In this paper, we present a linear state-space model for DOT analysis that models the physiological fluctuations present in the data with either static or dynamic estimation. We demonstrate the approach by using auxiliary measurements of blood pressure variability and heart rate variability as inputs to model the background physiology in DOT data. We evaluate the improvements accorded by modeling this physiology on ten human subjects with simulated functional hemodynamic responses added to the baseline physiology. Adding physiological modeling with a static estimator significantly improved estimates of the simulated functional response, and further significant improvements were achieved with a dynamic Kalman filter estimator (paired t tests, n = 10, P < 0.05). These results suggest that physiological modeling can improve DOT analysis. The further improvement with the Kalman filter encourages continued research into dynamic linear modeling of the physiology present in DOT. Cardiovascular dynamics also affect the blood-oxygen-dependent (BOLD) signal in functional magnetic resonance imaging (fMRI). This state-space approach to DOT analysis could be extended to BOLD fMRI analysis, multimodal studies and real-time analysis. PMID:16242967
A New (?) Physiological Effect in a Demonstration Experiment in Geometrical Optics
ERIC Educational Resources Information Center
Ganci, S.
2018-01-01
A surprising phenomenology from a traditional demonstration experiment in Geometrical Optics reveals here an interesting matter of discussion and analysis. Hence, the main focus of this paper is to observe and discuss such an innovative phenomenology.
Optical fiber-based biosensors.
Monk, David J; Walt, David R
2004-08-01
This review outlines optical fiber-based biosensor research from January 2001 through September 2003 and was written to complement the previous review in this journal by Marazuela and Moreno-Bondi. Optical fiber-based biosensors combine the use of a biological recognition element with an optical fiber or optical fiber bundle. They are classified by the nature of the biological recognition element used for sensing: enzyme, antibody/antigen (immunoassay), nucleic acid, whole cell, and biomimetic, and may be used for a variety of analytes ranging from metals and chemicals to physiological materials.
[Adaptive optics for ophthalmology].
Saleh, M
2016-04-01
Adaptive optics is a technology enhancing the visual performance of an optical system by correcting its optical aberrations. Adaptive optics have already enabled several breakthroughs in the field of visual sciences, such as improvement of visual acuity in normal and diseased eyes beyond physiologic limits, and the correction of presbyopia. Adaptive optics technology also provides high-resolution, in vivo imaging of the retina that may eventually help to detect the onset of retinal conditions at an early stage and provide better assessment of treatment efficacy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Sonek, Gregory J.; Liu, Yagang; Berns, Michael W.; Tromberg, Bruce J.
1996-05-01
We report the observation of two-photon fluorescence excitation and cell confinement, simultaneously, in a continuous-wave (cw) single-beam gradient force optical trap, and demonstrate its use as an in-situ probe to study the physiological state of an optically confined cell sample. At the wavelength of 1064 nm, a single focused gaussian laser beam is used to simultaneously confine, and excite visible fluorescence from, a human sperm cell that has been tagged with propidium iodide, a exogenous fluorescent dye that functions as a viability assay of cellular physiological state. The intensity at the dye peak emission wavelength of 620 nm exhibits a near-square-law dependence on incident trapping beam photon laser power, a behavior consistent with a two-photon absorption process. In addition, for a sperm cell held stationary in the optical tweezers for a period of several minutes at a constant trapping power, red fluorescence emission was observed to increase the time, indicating that the cell has gradually transitioned between a live and dead state. Two-photon excited fluorescence was also observed in chinese hamster ovary cells that were confined by cw laser tweezers and stained with either propidium iodide or Snarf, a pH-sensitive dye probe. These results suggest that, for samples suitably tagged with fluorescent probes and vital stains, optical tweezers can be used to generate their own in-situ diagnostic optical probes of cellular viability or induced photodamage, via two-photon processes.
Optical approach to the salivary pellicle
NASA Astrophysics Data System (ADS)
Baek, Jae Ho; Krasieva, Tatiana; Tang, Shuo; Ahn, Yehchan; Kim, Chang Soo; Vu, Diana; Chen, Zhongping; Wilder-Smith, Petra
2009-07-01
The salivary pellicle plays an important role in oral physiology, yet noninvasive in situ characterization and mapping of this layer remains elusive. The goal of this study is to develop an optical approach for the real-time, noninvasive mapping and characterization of salivary pellicles using optical coherence tomography (OCT) and optical coherence microscopy (OCM). The long-term goals are to improve diagnostic capabilities in the oral cavity, gain a better understanding of physiological and pathological processes related to the oral hard tissues, and monitor treatment responses. A salivary pellicle is incubated on small enamel cubes using human whole saliva. OCT and OCM imaging occurs at 0, 10, 30, 60 min, and 24 h. For some imaging, spherical gold nanoparticles (15 nm) are added to determine whether this would increase the optical signal from the pellicle. Multiphoton microscopy (MPM) provides the baseline information. In the saliva-incubated samples, a surface signal from the developing pellicle is visible in OCT images. Pellicle ``islands'' form, which increase in complexity over time until they merge to form a continuous layer over the enamel surface. Noninvasive, in situ time-based pellicle formation on the enamel surface is visualized and characterized using optical imaging.
NASA Astrophysics Data System (ADS)
Sonek, G. J.; Liu, Y.; Iturriaga, R. H.
1995-11-01
We describe the application of infrared optical tweezers to the in situ microparticle analysis of marine phytoplankton cells. A Nd:YAG laser (lambda=3D 1064 nm) trap is used to confine and manipulate single Nannochloris and Synechococcus cells in an enriched seawater medium while spectral fluorescence and Lorenz-Mie backscatter signals are simultaneously acquired under a variety of excitation and trapping conditions. Variations in the measured fluorescence intensities of chlorophyll a (Chl a) and phycoerythrin pigments in phytoplankton cells are observed. These variations are related, in part, to basic intrasample variability, but they also indicate that increasing ultraviolet-exposure time and infrared trapping power may have short-term effects on cellular physiology that are related to Chl a photobleaching and laser-induced heating, respectively. The use of optical tweezers to study the factors that affect marine cell physiology and the processes of absorption, scattering, and attenuation by individual cells, organisms, and particulate matter that contribute to optical closure on a microscopic scale are also described. (c)1995 Optical Society of America
Oximetry using multispectral imaging: theory and application
NASA Astrophysics Data System (ADS)
MacKenzie, Lewis E.; Harvey, Andrew R.
2018-06-01
Multispectral imaging (MSI) is a technique for measurement of blood oxygen saturation in vivo that can be applied using various imaging modalities to provide new insights into physiology and disease development. This tutorial aims to provide a thorough introduction to the theory and application of MSI oximetry for researchers new to the field, whilst also providing detailed information for more experienced researchers. The optical theory underlying two-wavelength oximetry, three-wavelength oximetry, pulse oximetry, and multispectral oximetry algorithms are described in detail. The varied challenges of applying MSI oximetry to in vivo applications are outlined and discussed, covering: the optical properties of blood and tissue, optical paths in blood vessels, tissue auto-fluorescence, oxygen diffusion, and common oximetry artefacts. Essential image processing techniques for MSI are discussed, in particular, image acquisition, image registration strategies, and blood vessel line profile fitting. Calibration and validation strategies for MSI are discussed, including comparison techniques, physiological interventions, and phantoms. The optical principles and unique imaging capabilities of various cutting-edge MSI oximetry techniques are discussed, including photoacoustic imaging, spectroscopic optical coherence tomography, and snapshot MSI.
Endoscopic sensing of pH in the distal lung (Conference Presentation)
NASA Astrophysics Data System (ADS)
Choudhury, Debaditya; Tanner, Michael G.; McAughtrie, Sarah; Yu, Fei; Mills, Bethany; Choudhary, Tushar R.; Seth, Sohan; Craven, Thomas; Stone, James M.; Mati, Ioulia K.; Campbell, Colin J.; Bradley, Mark; Williams, Christopher K.; Dhaliwal, Kevin; Birks, Timothy A.; Thomson, Robert R.
2017-04-01
In healthy humans, the physiological state in the distal lung alveolar acinar units is tightly regulated by normal homeostatic mechanisms. Pulmonary abnormalities such as chronic obstructive pulmonary disease, that are characterized by recurrent cycles of inflammation and infection involving dense infiltration by myeloid derived peripheral blood cells, may result in significant perturbation of the homeostatic baselines of physiology in addition to host tissue damage. Therefore, the ability to quantify and monitor physiology (e.g. pH, glucose level, oxygen tension) within the alveolar acinar units would provide a key biomarker of distal lung innate defence. Although in vitro modeling of fundamental biological processes show remarkable sensitivity to physiological aberrations, little is known about the physiological state of the distal lung due to the inability to concurrently access the alveolar sacs and perform real-time sensing. Here we report on previously unobtainable measurements of alveolar pH using a fiber-optic optrode and surface enhanced Raman spectroscopy (SERS) and show that alveolar pH changes in response to ventilation. The endoscope-deployable optrode consisted of para-mercaptobenzoic acid functionalized 150 nm gold nanoshells located at the distal end, and an asymmetric dual-core optical fiber designed for spatially separated optical pump delivery and SERS signal collection in order to circumvent the unwanted Raman signal originating from the fiber itself. We demonstrate a 100-fold increase in SERS signal-to-fiber background ratio and pH sensing at multiple sites in the respiratory acinar units of a whole ex vivo ovine lung model with a measurement accuracy of ± 0.07 pH units.
NASA Astrophysics Data System (ADS)
Chen, Szu-Yu; Hsieh, C.-S.; Chu, S.-W.; Lin, Cheng-Yung; Ko, C.-Y.; Chen, Y.-C.; Tsai, Huai-Jen; Hu, C.-H.; Sun, Chi-Kuang
2005-03-01
Harmonics optical microscopy (HOM) provides a truly "noninvasive" tool for in vivo and long-term study of vertebrate embryonic development. Based on the nonlinear natures, it provides sub-micrometer 3D spatial resolution and high 3D optical-sectioning power (~1μm axial resolution) without using invasive and toxic fluorophores. Since only virtual-level-transition is involved, HOM is known to leave no energy deposition and no photodamages. Combined with second harmonic generation, which is sensitive to specific structure such as nerve and muscle fibers, HOM can be used to do functional studies of early developmental dynamics of many vertebrate physiological systems. Recently, zebrafish has become a standard model for many biological and medical studies of vertebrates, due to the similarity between embryonic development of zebrafish and human being. Zebrafish embryos now have been used to study many vertebrate physiological systems. We have demonstrated an in vivo HOM study of developmental dynamics of several embryonic physiological systems in live zebrafish embryos, with focuses on the developments of brains, eyes, ears, and hearts. Based on a femtosecond Cr:forsterite laser, which provides the deepest penetration (~1.5mm) and least photodamage in the zebrafish embryo, complete developing processes of different physiological systems within a period of time longer than 20 hours can be non-invasively observed inside the same embryo.
Simultaneous measurement of time-domain fNIRS and physiological signals during a cognitive task
NASA Astrophysics Data System (ADS)
Jelzow, A.; Tachtsidis, I.; Kirilina, E.; Niessing, M.; Brühl, R.; Wabnitz, H.; Heine, A.; Ittermann, B.; Macdonald, R.
2011-07-01
Functional near-infrared spectroscopy (fNIRS) is a commonly used technique to measure the cerebral vascular response related to brain activation. It is known that systemic physiological processes, either independent or correlated with the stimulation task, can influence the optical signal making its interpretation challenging. The aim of the present work is to investigate the impact of task-evoked changes in the systemic physiology on fNIRS measurements for a cognitive paradigm. For this purpose we carried out simultaneous measurements of time-domain fNIRS on the forehead and systemic physiological signals, i.e. mean blood pressure, heart rate, respiration, galvanic skin response, scalp blood flow (flux) and red blood cell (RBC) concentration changes. We performed measurements on 15 healthy volunteers during a semantic continuous performance task (CPT). The optical data was analyzed in terms of depth-selective moments of distributions of times of flight of photons through the tissue. In addition, cerebral activation was localized by a subsequent fMRI experiment on the same subject population using the same task. We observed strong non-cerebral task-evoked changes in concentration changes of oxygenated hemoglobin in the forehead. We investigated the temporal behavior and mutual correlations between hemoglobin changes and the systemic processes. Mean blood pressure (BP), galvanic skin response (GSR) and heart rate exhibited significant changes during the activation period, whereby BP and GSR showed the highest correlation with optical measurements.
Akiyama, Hideo; Li, Danjie; Shimoda, Yukitoshi; Matsumoto, Hidetaka; Kishi, Shoji
2018-05-01
To describe the relationship between the vitreous and the neovascularization of the disc (NVD) using swept source optical coherence tomography (SS-OCT) and OCT angiography (OCTA). Retrospective. We examined 17 eyes of 11 consecutive patients diagnosed as NVD associated with proliferative diabetic retinopathy (PDR). The location of the NVD feeder or collector vessels were examined by using RTVue XR Avanti. To determine the condition of the posterior vitreous detachment (PVD) and the proliferative tissue of the NVD, we performed 12 mm horizontal and vertical scans through the disc using SS-OCT. OCT images of all 17 cases indicated there was no PVD on the optic disc. OCTA showed that the locations of the newly formed vessels from the optic disc were overwhelmingly outside the physiological cupping (95%). No cases exhibited formation of neovascularization inside the physiological cupping. OCT images revealed all 17 eyes had proliferative tissues located under the posterior wall of the vitreous, with 12 out of 17 eyes exhibiting additional invasion of the proliferative tissue into the vitreous through the posterior wall. Epiretinal membrane or a thickened posterior wall of the vitreous was present in 10 out of the 17 eyes. NVD associated with PDR arises from outside the physiological cupping and grows along the posterior wall of the vitreous. The absence of PVD on the optic disc is essential to the growth of NVD.
Diffuse Optical Monitoring of the Neoadjuvant Breast Cancer Therapy
Choe, Regine; Durduran, Turgut
2012-01-01
Recent advances in the use of diffuse optical techniques for monitoring the hemodynamic, metabolic and physiological signatures of the neoadjuvant breast cancer therapy effectiveness is critically reviewed. An extensive discussion of the state-of-theart diffuse optical mammography is presented alongside a discussion of the current approaches to breast cancer therapies. Overall, the diffuse optics field is growing rapidly with a great deal of promise to fill an important niche in the current approaches to monitor, predict and personalize neoadjuvant breast cancer therapies. PMID:23243386
Hernández-Rodriguez, M A; Lozano-Gorrín, A D; Lavín, V; Rodríguez-Mendoza, U R; Martín, I R
2017-10-30
The thermal sensing capability of the Tm 3+ -doped yttrium orthoaluminate nanoperovskite in the infrared range, synthetized by a sol-gel method, was studied. The temperature dependence of the infrared upconverted emission bands located at around 705 nm ( 3 F 2,3 → 3 H 6 ) and 800 nm ( 3 H 4 → 3 H 6 ) of YAP: Tm 3+ nanoperovskite under excitation at 1210 nm was analyzed from RT up to 425 K. Calibration of the optical sensor has been made using the fluorescence intensity ratio technique, showing a high sensitivity in the near-infrared compared to other trivalent rare-earth based optical sensors working in the same range. In addition, a second calibration procedure of the YAP: Tm 3+ optical sensor was performed by using the FIR technique on the emission band associated to the 3 H 4 → 3 H 6 transition in the physiological temperature range (293-333 K), showing a very high relative sensitivity compared with other rare-earth based optical temperature sensors working in the physiological range. Moreover, the main advantage compared with other optical sensors is that the excitation source and the upconverted emissions do not overlap, since they lie in different biological windows, thus allowing its potential use as an optical temperature probe in the near-infrared range for biological applications.
Steady State Fluorescence Spectroscopy for Medical Diagnosis
NASA Astrophysics Data System (ADS)
Mahadevan-Jansen, Anita; Gebhart, Steven C.
Light can react with tissue in different ways and provide information for identifying the physiological state of tissue or detecting the presence of disease. The light used to probe tissue does so in a non-intrusive manner and typically uses very low levels of light far below the requirements for therapeutic applications. The use of fiber optics simplifies the delivery and collection of this light in a minimally invasive manner. Since tissue response is virtually instantaneous, the results are obtained in real-time and the use of data processing techniques and multi-variate statistical analysis allows for automated detection and therefore provides an objective estimation of the tissue state. These then form the fundamental basis for the application of optical techniques for the detection of tissue physiology as well as pathology. These distinct advantages have encouraged many researchers to pursue the development of the different optical interactions for biological and medical detection.
Master's level education in biomedical optics: four-year experience at the University of Latvia
NASA Astrophysics Data System (ADS)
Spigulis, Janis
2000-06-01
Pilot program for Master's studies on Biomedical Optics has been developed and launched at University of Latvia in 1995. The Curriculum contains several basic subjects like Fundamentals of Biomedical Optics, Medical Lightguides, Anatomy and Physiology, Lasers and Non-coherent Light Sources, Optical Instrumentation for Healthcare, Optical Methods for Patient Treatment, Basic Physics, etc. Special English Terminology and Laboratory-Clinical Praxis are also involved, and the Master Theses is the final step for the degree award. Following one four-year teaching experience, some observations, conclusions and eventual future activities are discussed.
NASA Astrophysics Data System (ADS)
Lisker, Joseph S.; Dmitriev, Andrey P.
1999-12-01
By the method of the computer laser-optical photometry the investigation of the cereal stability for the various diseases taken into consideration the stability of tomato seeds to their interaction with the phytopathogenes and the phytotoxicity of microscopic fungi on the wheat seedlings was carried out. Original result for the investigation of optical-physiological characteristics of plants and seeds are shown.
Laser system for measuring small changes in plasma tracer concentrations.
Klaesner, J W; Pou, N A; Parker, R E; Galloway, R L; Roselli, R J
1996-01-01
The authors developed a laser-diode system that can be used for on-line optical concentration measurements in physiologic systems. Previous optical systems applied to whole blood have been hampered by artifacts introduced by red blood cells (RBCs). The system introduced here uses a commercially available filter cartridge to separate RBCs from plasma before plasma concentration measurements are made at a single wavelength. The filtering characteristics of the Cellco filter cartridge (#4007-10, German-town, MD) were adequate for use in the on-line measurement system. The response time of the filter cartridge was less than 40 seconds, and the sieving characteristics of the filter for macromolecules were excellent, with filtrate-to-plasma albumin ratios of 0.98 +/- 0.11 for studies in sheep and 0.94 +/- 0.15 for studies in dogs. The 635-nm laser diode system developed was shown to be more sensitive than the spectrophotometer used in previous studies (Klaesner et al., Annals of Biomedical Engineering, 1994; 22, 660-73). The new system was used to measure the product of filtration coefficient (Kfc) and reflection coefficient for albumin (delta f) in an isolated canine lung preparation. The delta fKfc values [mL/(cmH2O.min.100 g dry lung weight)] measured with the laser diode system (0.33 +/- 0.22) compared favorably with the delta fKfc obtained using a spectrophotometer (0.27 +/- 0.20) and with the Kfc obtained using the blood-corrected gravimetric method (0.32 +/- 0.23). Thus, this new optical system was shown to accurately measure plasma concentration changes in whole blood for physiologic levels of Kfc. The same system can be used with different optical tracers and different source wavelengths to make optical plasma concentration measurements for other physiologic applications.
NASA Astrophysics Data System (ADS)
Zhuo, Shuangmu; Chen, Jianxin; Xie, Shusen; Zheng, Liqin; Jiang, Xingshan
2009-11-01
In dermis, collagen and elastin are important structural proteins of extracellular maxtrix. The matrix-disorder is associated with various physiologic processes, such as localized scleroderma, anetoderma, photoaging. In this work, we demonstrate the capability of nonlinear optical microscopy in imaging structural proteins in normal and pathological human dermis.
Optical imaging characterizing brain response to thermal insult in injured rodent
NASA Astrophysics Data System (ADS)
Abookasis, David; Shaul, Oren; Meitav, Omri; Pinhasi, Gadi A.
2018-02-01
We used spatially modulated optical imaging system to assess the effect of temperature elevation on intact brain tissue in a mouse heatstress model. Heatstress or heatstroke is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological and hematological changes. During experiments, brain temperature was measured concurrently with a thermal camera while core body temperature was monitored with rectal thermocouple probe. Changes in a battery of macroscopic brain physiological parameters, such as hemoglobin oxygen saturation level, cerebral water content, as well as intrinsic tissue optical properties were monitored during temperature elevation. These concurrent changes reflect the pathophysiology of the brain during heatstress and demonstrate successful monitoring of thermoregulation mechanisms. In addition, the variation of tissue refractive index was calculated showing a monotonous decrease with increasing wavelength. We found increased temperature to greatly affect both the scattering properties and refractive index which represent cellular and subcellular swelling indicative of neuronal damage. The overall trends detected in brain tissue parameters were consistent with previous observations using conventional medical devices and optical modalities.
Optical medical imaging: from glass to man
NASA Astrophysics Data System (ADS)
Bradley, Mark
2016-11-01
A formidable challenge in modern respiratory healthcare is the accurate and timely diagnosis of lung infection and inflammation. The EPSRC Interdisciplinary Research Collaboration (IRC) `Proteus' seeks to address this challenge by developing an optical fibre based healthcare technology platform that combines physiological sensing with multiplexed optical molecular imaging. This technology will enable in situ measurements deep in the human lung allowing the assessment of tissue function and characterization of the unique signatures of pulmonary disease and is illustrated here with our in-man application of Optical Imaging SmartProbes and our first device Versicolour.
Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy.
Farzam, Parisa; Zirak, Peyman; Binzoni, Tiziano; Durduran, Turgut
2013-08-01
The cardiac cycle related pulsatile behavior of the absorption and scattering coefficients of diffuse light and the corresponding alterations in hemoglobin concentrations in the human patella was studied. The pulsations in scattering is considerably smaller than absorption. The difference in amplitude of absorption coefficient pulsations for different wavelengths was translated to pulsations in oxygenated and deoxygenated hemoglobin, which leads to strong pulsations in the total hemoglobin concentration and oxygen saturation. The physiological origin of the observed signals was confirmed by applying a thigh-cuff. Moreover, we have investigated the optical and physiological properties of the patella bone and their changes in response to arterial cuff occlusion.
Multimodal optical phenotyping of cancer cells
NASA Astrophysics Data System (ADS)
Kastl, Lena; Budde, Björn; Isbach, Michael; Rommel, Christina; Kemper, Björn; Schnekenburger, Jürgen
2015-03-01
There is a growing interest in label-free, optical techniques like digital holographic microscopy (DHM) and optical cell stretching, since the interaction with samples is minimized. Because optical manipulation strongly depends on the optical and physiological properties of the investigated material, we combined the usage of these methods for the characterization of pancreatic tumor cells. Our results demonstrate that cells of distinct differentiation levels, or different expression in only one protein, show differences in their deformability. Additionally, the DHM results showed only few variations in the refractive index, indicating that it does not significantly influence the results of the optical cell stretching. Thus, the combined usage of the two technologies represents a promising new approach for tumor cell characterization.
Three-dimensional printing physiology laboratory technology.
Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R
2013-12-01
Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.
NASA Astrophysics Data System (ADS)
Chen, S.-Y.; Tsai, T.-H.; Hsieh, C.-S.; Tai, S.-P.; Lin, C.-Y.; Ko, C.-Y.; Chen, Y.-C.; Tsai, H.-J.; Hu, C.-H.; Sun, C.-K.
2005-03-01
Based on a femtosecond Cr:forsterite laser, harmonics optical microscopy (HOM) provides a truly "noninvasive" tool for in vivo and long-term study of vertebrate embryonic development. Based on optical nonlinearity, HOM provides sub-micrometer 3D spatial resolution and high 3D optical-sectioning power without using invasive and toxic fluorophores. Since only virtual-level-transition is involved, HOM is known to leave no energy deposition and no photodamage. Combined with second harmonic generation, which is sensitive to specific structure such as nerve and muscle fibers, HOM can perform functional studies of early developmental dynamics of many vertebrate physiological systems. Recently, zebrafish has become a standard model for many biological and medical studies of vertebrates, due to the similarity between embryonic development of zebrafish and human being. Here we demonstrate in vivo HOM studies of developmental dynamics of several important embryonic physiological systems in live zebrafish embryos, with focuses on the developments of brains, eyes, ears, and hearts. Based on a femtosecond Cr:forsterite laser, which provides the deepest penetration (~1.5mm) and least photodamage in the zebrafish embryo, complete developing processes of different physiological systems within a period of time longer than 20 hours can be non-invasively observed inside the same embryo.
Medical smart textiles based on fiber optic technology: an overview.
Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano
2015-04-13
The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest.
NASA Astrophysics Data System (ADS)
Hu, Dewen; Wang, Yucheng; Liu, Yadong; Li, Ming; Liu, Fayi
2010-05-01
An automated method is presented for artery-vein separation in cerebral cortical images recorded with optical imaging of the intrinsic signal. The vessel-type separation method is based on the fact that the spectral distribution of intrinsic physiological oscillations varies from arterial regions to venous regions. In arterial regions, the spectral power is higher in the heartbeat frequency (HF), whereas in venous regions, the spectral power is higher in the respiration frequency (RF). The separation method was begun by extracting the vascular network and its centerline. Then the spectra of the optical intrinsic signals were estimated by the multitaper method. A standard F-test was performed on each discrete frequency point to test the statistical significance at the given level. Four periodic physiological oscillations were examined: HF, RF, and two other eigenfrequencies termed F1 and F2. The separation of arteries and veins was implemented with the fuzzy c-means clustering method and the region-growing approach by utilizing the spectral amplitudes and power-ratio values of the four eigenfrequencies on the vasculature. Subsequently, independent spectral distributions in the arteries, veins, and capillary bed were estimated for comparison, which showed that the spectral distributions of the intrinsic signals were very distinct between the arterial and venous regions.
Hu, Dewen; Wang, Yucheng; Liu, Yadong; Li, Ming; Liu, Fayi
2010-01-01
An automated method is presented for artery-vein separation in cerebral cortical images recorded with optical imaging of the intrinsic signal. The vessel-type separation method is based on the fact that the spectral distribution of intrinsic physiological oscillations varies from arterial regions to venous regions. In arterial regions, the spectral power is higher in the heartbeat frequency (HF), whereas in venous regions, the spectral power is higher in the respiration frequency (RF). The separation method was begun by extracting the vascular network and its centerline. Then the spectra of the optical intrinsic signals were estimated by the multitaper method. A standard F-test was performed on each discrete frequency point to test the statistical significance at the given level. Four periodic physiological oscillations were examined: HF, RF, and two other eigenfrequencies termed F1 and F2. The separation of arteries and veins was implemented with the fuzzy c-means clustering method and the region-growing approach by utilizing the spectral amplitudes and power-ratio values of the four eigenfrequencies on the vasculature. Subsequently, independent spectral distributions in the arteries, veins, and capillary bed were estimated for comparison, which showed that the spectral distributions of the intrinsic signals were very distinct between the arterial and venous regions.
Medical Smart Textiles Based on Fiber Optic Technology: An Overview
Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano
2015-01-01
The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest. PMID:25871010
Fiber optic biofluorometer for physiological research on muscle slices
NASA Astrophysics Data System (ADS)
Belz, Mathias; Dendorfer, Andreas; Werner, Jan; Lambertz, Daniel; Klein, Karl-Friedrich
2016-03-01
A focus of research in cell physiology is the detection of Ca2+, NADH, FAD, ATPase activity or membrane potential, only to name a few, in muscle tissues. In this work, we report on a biofluorometer using ultraviolet light emitting diodes (UV-LEDs), optical fibers and two photomultipliers (PMTs) using synchronized fluorescence detection with integrated background correction to detect free calcium, Ca2+, in cardiac muscle tissue placed in a horizontal tissue bath and a microscope setup. Fiber optic probes with imaging optics have been designed to transport excitation light from the biofluorometer's light output to a horizontal tissue bath and to collect emission light from a tissue sample of interest to two PMTs allowing either single excitation / single emission or ratiometric, dual excitation / single emission or single excitation / dual emission fluorescence detection of indicator dyes or natural fluorophores. The efficient transport of light from the excitation LEDs to the tissue sample, bleaching effects of the excitation light in both, polymer and fused silica-based fibers will be discussed. Furthermore, a new approach to maximize light collection of the emission light using high NA fibers and high NA coupling optics will be shown. Finally, first results on Ca2+ measurements in cardiac muscle slices in a traditional microscope setup and a horizontal tissue bath using fiber optic probes will be introduced and discussed.
Diffuse optical tomography and spectroscopy of breast cancer and fetal brain
NASA Astrophysics Data System (ADS)
Choe, Regine
Diffuse optical techniques utilize light in the near infrared spectral range to measure tissue physiology non-invasively. Based on these measurements, either on average or a three-dimensional spatial map of tissue properties such as total hemoglobin concentration, blood oxygen saturation and scattering can be obtained using model-based reconstruction algorithms. In this thesis, diffuse optical techniques were applied for in vivo breast cancer imaging and trans-abdominal fetal brain oxygenation monitoring. For in vivo breast cancer imaging, clinical diffuse optical tomography and related instrumentation was developed and used in several contexts. Bulk physiological properties were quantified for fifty-two healthy subjects in the parallel-plate transmission geometry. Three-dimensional images of breast were reconstructed for subjects with breast tumors and, tumor contrast with respect to normal tissue was found in total hemoglobin concentration and scattering and was quantified for twenty-two breast carcinomas. Tumor contrast and tumor volume changes during neoadjuvant chemotherapy were tracked for one subject and compared to the dynamic contrast-enhanced MRI. Finally, the feasibility for measuring blood flow of breast tumors using optical methods was demonstrated for seven subjects. In a qualitatively different set of experiments, the feasibility for trans-abdominal fetal brain oxygenation monitoring was demonstrated on pregnant ewes with induced fetal hypoxia. Preliminary clinical experiences were discussed to identify future directions. In total, this research has translated diffuse optical tomography techniques into clinical research environment.
Adaptive optics ophthalmoscopy: results and applications.
Pallikaris, A
2005-01-01
The living human eye's optical aberrations set a limit to retinal imaging in the clinical setting. Progress in the field of adaptive optics has offered unique solutions to this problem. The purpose of this review is to summarize the most recent advances in adaptive optics ophthalmoscopy. Adaptive optics technology has been combined with flood illumination imaging, confocal scanning laser ophthalmoscopy, and optical coherence tomography for the high resolution imaging of the retina. The advent of adaptive optics technology has provided the technical platform for the compensation of the eye's aberration and made possible the observation of single cones, small capillaries, nerve fibers, and leukocyte dynamics as well as the ultrastructure of the optic nerve head lamina cribrosa in vivo. Detailed imaging of retinal infrastructure provides valuable information for the study of retinal physiology and pathology.
Teaching of laser medical topics: Latvian experience
NASA Astrophysics Data System (ADS)
Spigulis, Janis
2002-10-01
Pilot program for Master's studies on Biomedical Optics has been developed and launched at University of Latvia in 1995. The Curriculum contains several basic subjects like Fundamentals of Biomedical Optics, Medical Lightguides, Anatomy and Physiology, Lasers and Non-coherent Light Sources, Optical Instrumentation for Healthcare, Optical Methods for Patient Treatment, Basic Physics, etc. Special English Terminology and Laboratory-Clinical Praxis are also involved, and the Master Theses is the final step for the degree award. Recently a new extensive short course for medical laser users "Lasers and Bio-optics in Medicine" has been prepared in the PowerPoint format and successfully presented in Latvia, Lithuania and Sweden.
Biochemical measurement of bilirubin with an evanescent wave optical sensor
NASA Astrophysics Data System (ADS)
Poscio, Patrick; Depeursinge, Christian D.; Emery, Y.; Parriaux, Olivier M.; Voirin, Guy
1991-09-01
Optical sensing techniques can be considered as powerful information sources on the biochemistry of tissue, blood, and physiological fluids. Various sensing modalities can be considered: spectroscopic determination of the fluorescence or optical absorption of the biological medium itself, or more generally, of a reagent in contact with the biological medium. The principle and realization of the optical sensor developed are based on the use of polished fibers: the cladding of a monomode fiber is removed on a longitudinal section. The device can then be inserted into an hypodermic needle for in-vivo measurements. Using this minute probe, local measurements of the tissue biochemistry or metabolic processes can be obtained. The sensing mechanism is based on the propagation of the evanescent wave in the tissues or reagent: the proximity of the fiber core allows the penetration of the model field tail into the sensed medium, with a uniquely defined field distribution. Single or multi-wavelength analysis of the light collected into the fiber yields the biochemical information. Here an example of this sensing technology is discussed. In-vitro measurement of bilirubin in gastric juice demonstrates that the evanescent wave optical sensor provides a sensitivity which matches the physiological concentrations. A device is proposed for in-vivo monitoring of bilirubin concentration in the gastro-oesophageal tract.
Revolutionary optical sensor for physiological monitoring in the battlefield
NASA Astrophysics Data System (ADS)
Kingsley, Stuart A.; Sriram, Sriram; Pollick, Andrea; Marsh, John
2004-09-01
SRICO has developed a revolutionary approach to physiological status monitoring using state-of-the-art optical chip technology. The company"s patent pending Photrode is a photonic electrode that uses unique optical voltage sensing technology to measure and monitor electrophysiological parameters. The optical-based monitoring system enables dry-contact measurements of EEG and ECG signals that require no surface preparation or conductive gel and non-contact measurements of ECG signals through the clothing. The Photrode applies high performance optical integrated circuit technology, that has been successfully implemented in military & commercial aerospace, missile, and communications applications for sensing and signal transmission. SRICO"s award winning Photrode represents a new paradigm for the measurement of biopotentials in a reliable, convenient, and non-intrusive manner. Photrode technology has significant applications on the battlefield for rapid triage to determine the brain dead from those with viable brain function. An ECG may be obtained over the clothing without any direct skin contact. Such applications would enable the combat medic to receive timely medical information and to make important decisions regarding identification, location, triage priority and treatment of casualties. Other applications for the Photrode include anesthesia awareness monitoring, sleep medicine, mobile medical monitoring for space flight, emergency patient care, functional magnetic resonance imaging, various biopotential signal acquisition (EMG, EOG), and routine neuro and cardio diagnostics.
Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices
Losavio, Bradley E.; Iyer, Vijay; Saggau, Peter
2009-01-01
We developed a two-photon microscope optimized for physiologically manipulating single neurons through their postsynaptic receptors. The optical layout fulfills the stringent design criteria required for high-speed, high-resolution imaging in scattering brain tissue with minimal photodamage. We detail the practical compensation of spectral and temporal dispersion inherent in fast laser beam scanning with acousto-optic deflectors, as well as a set of biological protocols for visualizing nearly diffraction-limited structures and delivering physiological synaptic stimuli. The microscope clearly resolves dendritic spines and evokes electrophysiological transients in single neurons that are similar to endogenous responses. This system enables the study of multisynaptic integration and will assist our understanding of single neuron function and dendritic computation. PMID:20059271
Physiological Parameter Monitoring from Optical Recordings with a Mobile Phone
Scully, Christopher G.; Lee, Jinseok; Meyer, Joseph; Gorbach, Alexander M.; Granquist-Fraser, Domhnull; Mendelson, Yitzhak
2012-01-01
We show that a mobile phone can serve as an accurate monitor for several physiological variables, based on its ability to record and analyze the varying color signals of a fingertip placed in contact with its optical sensor. We confirm the accuracy of measurements of breathing rate, cardiac R-R intervals, and blood oxygen saturation, by comparisons to standard methods for making such measurements (respiration belts, ECGs, and pulse-oximeters, respectively). Measurement of respiratory rate uses a previously reported algorithm developed for use with a pulse-oximeter, based on amplitude and frequency modulation sequences within the light signal. We note that this technology can also be used with recently developed algorithms for detection of atrial fibrillation or blood loss. PMID:21803676
Naval Biodynamics Laboratory 1993 Command History
1993-01-01
position and alignment, camera optical calibration, photo target position, and standard anatomical coordinate systems based upon X-rays of each HRV...safety range. Before, during, and after each sled run, a physiological data acquisition system is used to collect and analyze physiological measurements ...experimental devices. It is also responsible for the configuring of field data measuring and acquisition systems for use aboard ships or at other field
Proposal of optical farming: development of several optical sensing instruments for agricultural use
NASA Astrophysics Data System (ADS)
Saito, Y.; Kobayashi, K.
2013-05-01
We propose the use of "Optical Farming," which is the leading application of all types of optical technologies, in agriculture and agriculture-related industries. This paper focuses on the optical sensing instruments named "Agriserver," "Agrigadget" and "LIFS Monitor" developed in our laboratory. They are considered major factors in utilizing Optical Farming. Agriserver is a sensor network system that uses the Internet to collect information on agricultural products growing in fields. Agrigadget contains several optical devices, such as a smartphone-based spectroscopic device and a hand framing camera. LIFS Monitor is an advanced monitoring instrument that makes it possible to obtain physiological information of living plants. They are strongly associated with information communication technology. Their field and data usage performance in agricultural industries are reported.
Molecular imaging of photodynamic therapy
NASA Astrophysics Data System (ADS)
Chang, Sung K.; Errabelli, Divya; Rizvi, Imran; Solban, Nicolas; O'Riordan, Katherine; Hasan, Tayyaba
2006-02-01
Recent advances in light sources, detectors and other optical imaging technologies coupled with the development of novel optical contrast agents have enabled real-time, high resolution, in vivo monitoring of molecular targets. Noninvasive monitoring of molecular targets is particularly relevant to photodynamic therapy (PDT), including the delivery of photosensitizer in the treatment site and monitoring of molecular and physiological changes following treatment. Our lab has developed optical imaging technologies to investigate these various aspects of photodynamic therapy (PDT). We used a laser scanning confocal microscope to monitor the pharmacokinetics of various photosensitizers in in vitro as well as ex vivo samples, and developed an intravital fluorescence microscope to monitor photosensitizer delivery in vivo in small animals. A molecular specific contrast agent that targets the vascular endothelial growth factor (VEGF) was developed to monitor the changes in the protein expression following PDT. We were then able to study the physiological changes due to post-treatment VEGF upregulation by quantifying vascular permeability with in vivo imaging.
Automated detection of kinks from blood vessels for optic cup segmentation in retinal images
NASA Astrophysics Data System (ADS)
Wong, D. W. K.; Liu, J.; Lim, J. H.; Li, H.; Wong, T. Y.
2009-02-01
The accurate localization of the optic cup in retinal images is important to assess the cup to disc ratio (CDR) for glaucoma screening and management. Glaucoma is physiologically assessed by the increased excavation of the optic cup within the optic nerve head, also known as the optic disc. The CDR is thus an important indicator of risk and severity of glaucoma. In this paper, we propose a method of determining the cup boundary using non-stereographic retinal images by the automatic detection of a morphological feature within the optic disc known as kinks. Kinks are defined as the bendings of small vessels as they traverse from the disc to the cup, providing physiological validation for the cup boundary. To detect kinks, localized patches are first generated from a preliminary cup boundary obtained via level set. Features obtained using edge detection and wavelet transform are combined using a statistical approach rule to identify likely vessel edges. The kinks are then obtained automatically by analyzing the detected vessel edges for angular changes, and these kinks are subsequently used to obtain the cup boundary. A set of retinal images from the Singapore Eye Research Institute was obtained to assess the performance of the method, with each image being clinically graded for the CDR. From experiments, when kinks were used, the error on the CDR was reduced to less than 0.1 CDR units relative to the clinical CDR, which is within the intra-observer variability of 0.2 CDR units.
Optical bio-sniffer for methyl mercaptan in halitosis.
Mitsubayashi, Kohji; Minamide, Takeshi; Otsuka, Kimio; Kudo, Hiroyuki; Saito, Hirokazu
2006-07-28
An optical bio-sniffer for methyl mercaptan (MM) one of major odorous chemicals in halitosis (bad breath) was constructed by immobilizing monoamine oxidase type A (MAO-A) onto a tip of a fiber optic oxygen sensor (od: 1.59 mm) with an oxygen sensitive ruthenium organic complex (excitation: 470 nm, fluorescent: 600 nm). A flow cell for circulating buffer solution was applied to rinse and clean the tip of the device like nasal mucosa. In order to amplify the bio-sniffer output, a substrate regeneration cycle caused by coupling MAO-A with l-ascorbic acid (AsA) as reducing reaction with reagent system was applied to the sensor system. After evaluating the sensor characteristics using a gas flow measurement system with a gas generator, the optical bio-sniffer was applied to expired gases from healthy male volunteers for halitosis analysis as a physiological application. The optical bio-sniffer was applied to detect the oxygen consumption induced by MAO-A enzymatic reaction (and AsA chemical reduction) with gaseous MM application. The bio-sniffer was calibrated against MM vapor from 8.7 to 11500 ppb with correlation coefficient of 0.977, including a MM threshold (200 ppb) of pathologic halitosis and the human sense of smell level 3.5 (10.0 ppb), with good gas-selectivity based on the MAO-A substrate specificity. As the result of the physiological application, the optical bio-sniffer could successfully monitor the MM level change in breath samples during daytime, which is consistent with the previously reported results.
Recent progress in tissue optical clearing
Zhu, Dan; Larin, Kirill V; Luo, Qingming; Tuchin, Valery V
2013-01-01
Tissue optical clearing technique provides a prospective solution for the application of advanced optical methods in life sciences. This paper gives a review of recent developments in tissue optical clearing techniques. The physical, molecular and physiological mechanisms of tissue optical clearing are overviewed and discussed. Various methods for enhancing penetration of optical-clearing agents into tissue, such as physical methods, chemical-penetration enhancers and combination of physical and chemical methods are introduced. Combining the tissue optical clearing technique with advanced microscopy image or labeling technique, applications for 3D microstructure of whole tissues such as brain and central nervous system with unprecedented resolution are demonstrated. Moreover, the difference in diffusion and/or clearing ability of selected agents in healthy versus pathological tissues can provide a highly sensitive indicator of the tissue health/pathology condition. Finally, recent advances in optical clearing of soft or hard tissue for in vivo imaging and phototherapy are introduced. PMID:24348874
NASA Astrophysics Data System (ADS)
Abookasis, David; Volkov, Boris; Kofman, Itamar
2017-02-01
During the last four decades, various optical techniques have been proposed and intensively used for biomedical diagnosis and therapy both in animal model and in human. These techniques have several advantages over the traditional existing methods: simplicity in structure, low-cost, easy to handle, portable, can be used repeatedly over time near the patient bedside for continues monitoring, and offer high spatiotemporal resolution. In this work, we demonstrate the use of two optical imaging modalities namely, spatially modulated illumination and dual-wavelength laser speckle to image the changes in brain tissue chromophores, morphology, and metabolic before, during, and after the onset of focal traumatic brain injury in intact mouse head (n=15). Injury was applied in anesthetized mice by weight-drop apparatus using 50gram metal rod striking the mouse's head. Following data analysis, we show a series of hemodynamic and structural changes over time including higher deoxyhemoglobin, reduction in oxygen saturation and blood flow, cell swelling, etc., in comparison with baseline measurements. In addition, to validate the monitoring of cerebral blood flow by the imaging system, measurements with laser Doppler flowmetry were also performed (n=5), which confirmed reduction in blood flow following injury. Overall, our result demonstrates the capability of diffuse optical modalities to monitor and map brain tissue optical and physiological properties following brain trauma.
NASA Astrophysics Data System (ADS)
Huang, Brendan K.; Gamm, Ute A.; Jonas, Stephan; Khokha, Mustafa K.; Choma, Michael A.
2015-03-01
Cilia-driven fluid flow is a critical yet poorly understood aspect of pulmonary physiology. Here, we demonstrate that optical coherence tomography-based particle tracking velocimetry can be used to quantify subtle variability in cilia-driven flow performance in Xenopus, an important animal model of ciliary biology. Changes in flow performance were quantified in the setting of normal development, as well as in response to three types of perturbations: mechanical (increased fluid viscosity), pharmacological (disrupted serotonin signaling), and genetic (diminished ciliary motor protein expression). Of note, we demonstrate decreased flow secondary to gene knockdown of kif3a, a protein involved in ciliogenesis, as well as a dose-response decrease in flow secondary to knockdown of dnah9, an important ciliary motor protein.
NASA Astrophysics Data System (ADS)
Lisker, Joseph S.
1999-01-01
A new conception of the scientific problem of information exchange in the system plant-man-environment is developed. The laser-optical methods and the system are described which allow computer automated investigation of bio-objects without damaging their vital function. The results of investigation of optical-physiological features of plants and seeds are presented. The effects of chlorophyll well and IR beg are discovered for plants and also the effects os water pumping and protein transformations are shown for seeds. The perspectives of the use of the optical methods and equipment suggested to solve scientific problems of agriculture are discussed.
Yaseen, Mohammad A.; Srinivasan, Vivek J.; Gorczynska, Iwona; Fujimoto, James G.; Boas, David A.; Sakadžić, Sava
2015-01-01
Improving our understanding of brain function requires novel tools to observe multiple physiological parameters with high resolution in vivo. We have developed a multimodal imaging system for investigating multiple facets of cerebral blood flow and metabolism in small animals. The system was custom designed and features multiple optical imaging capabilities, including 2-photon and confocal lifetime microscopy, optical coherence tomography, laser speckle imaging, and optical intrinsic signal imaging. Here, we provide details of the system’s design and present in vivo observations of multiple metrics of cerebral oxygen delivery and energy metabolism, including oxygen partial pressure, microvascular blood flow, and NADH autofluorescence. PMID:26713212
NASA Astrophysics Data System (ADS)
Stankovic, Miljan R.; Fujii, Alan M.; Kirby, Debra; Boas, David A.; Ntziachristos, Vasilis; Stubblefield, Phillip G.
1997-12-01
The present study demonstrated that optical variables HbT and SmcO2 can be used to monitor changes in cerebral hemodynamics and oxygenation during asphyxia. Unfortunately none of the individual optical variables alone could be used to monitor changes in cerebral hemodynamics and oxygenation under a variety of possible clinical circumstances. However, all variables together, forming patterns unique to the commonly occurring physiological conditions, might potentially serve as a `silver standard' to aid interpretations of optical signals in clinical settings where `gold standard' techniques are not available, i.g. in the human fetus and neonate.
NASA Astrophysics Data System (ADS)
Stankovic, Miljan R.; Fujii, Alan M.; Kirby, Debra; Boas, David A.; Ntziachristos, Vasilis; Stubblefield, Phillip G.
1998-01-01
The present study demonstrated that optical variables HbT and SmcO2 can be used to monitor changes in cerebral hemodynamics and oxygenation during asphyxia. Unfortunately none of the individual optical variables alone could be used to monitor changes in cerebral hemodynamics and oxygenation under a variety of possible clinical circumstances. However, all variables together, forming patterns unique to the commonly occurring physiological conditions, might potentially serve as a `silver standard' to aid interpretations of optical signals in clinical settings where `gold standard' techniques are not available, i.g. in the human fetus and neonate.
Biomedical and sensing applications of a multi-mode biodegradable phosphate-based optical fiber
NASA Astrophysics Data System (ADS)
Podrazky, Ondřej; Peterka, Pavel; Vytykáčová, SoÅa.; Proboštová, Jana; Kuneš, Martin; Lyutakov, Oleksiy; Ceci-Ginistrelli, Edoardo; Pugliese, Diego; Boetti, Nadia G.; Janner, Davide; Milanese, Daniel
2018-02-01
We report on the employment of a biodegradable phosphate-based optical fiber as a pH sensing probe in physiological environment. The phosphate-based optical fiber preform was fabricated by the rod-in-tube technique. The fiber biodegradability was first tested in-vitro and then its biodegradability and toxicity were tested in-vivo. Optical probes for pH sensing were prepared by the immobilization of a fluorescent dye on the fiber tip by a sol-gel method. The fluorescence response of the pH-sensor was measured as a ratio of the emission intensities at the excitation wavelengths of 405 and 450 nm.
Quantitative frequency-domain fluorescence spectroscopy in tissues and tissue-like media
NASA Astrophysics Data System (ADS)
Cerussi, Albert Edward
1999-09-01
In the never-ending quest for improved medical technology at lower cost, modern near-infrared optical spectroscopy offers the possibility of inexpensive technology for quantitative and non-invasive diagnoses. Hemoglobin is the dominant chromophore in the 700-900 nm spectral region and as such it allows for the optical assessment of hemoglobin concentration and tissue oxygenation by absorption spectroscopy. However, there are many other important physiologically relevant compounds or physiological states that cannot be effectively sensed via optical methods because of poor optical contrast. In such cases, contrast enhancements are required. Fluorescence spectroscopy is an attractive component of optical tissue spectroscopy. Exogenous fluorophores, as well as some endogenous ones, may furnish the desperately needed sensitivity and specificity that is lacking in near-infrared optical tissue spectroscopy. The main focus of this thesis was to investigate the generation and propagation of fluorescence photons inside tissues and tissue-like media (i.e., scattering dominated media). The standard concepts of fluorescence spectroscopy have been incorporated into a diffusion-based picture that is sometimes referred to as photon migration. The novelty of this work lies in the successful quantitative recovery of fluorescence lifetimes, absolute fluorescence quantum yields, fluorophore concentrations, emission spectra, and both scattering and absorption coefficients at the emission wavelength from a tissue-like medium. All of these parameters are sensitive to the fluorophore local environment and hence are indicators of the tissue's physiological state. One application demonstrating the capabilities of frequency-domain lifetime spectroscopy in tissue-like media is a study of the binding of ethidium bromide to bovine leukocytes in fresh milk. Ethidium bromide is a fluorescent dye that is commonly used to label DNA, and hence visualize chromosomes in cells. The lifetime of ethidium bromide increases by an order of magnitude upon binding to DNA. In this thesis, I demonstrated that the fluorescence photon migration model is capable of accurately determining the somatic cell count (SCC) in a milk sample. Although meant as a demonstration of fluorescence tissue spectroscopy, this specific problem has important implications for the dairy industry's warfare against subclinical mastitis (i.e., mammary gland inflammation), since the SCC is often used as an indication of bovine infection.
Effect of glucose on the optical properties of arterial blood using Mie theory simulations
NASA Astrophysics Data System (ADS)
Clancy, Neil T.; Leahy, Martin J.
2005-08-01
The glucose concentration in arterial plasma has immediate effects on the optical properties of blood-bearing tissue due primarily to the alteration of refractive index mismatch between the scattering particles (red blood cells) and the medium (plasma). The influence of these effects on pulse oximetry is investigated using a numerical model based on Mie theory. The objective is to determine whether or not physiological fluctuations in blood glucose levels could sufficiently vary the optical properties to shift the calibration curve of a commercial pulse oximeter significantly.
NASA Astrophysics Data System (ADS)
Yang, Hongqin; Xie, Shusen; Li, Hui; Wang, Yuhua
2009-04-01
A new concept and its methodology for studying human meridians are presented based on rigorous and scientific observation on the objective existence of human meridians in view of biomedical optics. According to this methodology, the infrared radiant characteristics of acupuncture meridians over human body and the optical transport properties of light propagating along the meridian are reported. This study, thus, confirms the existence of acupuncture meridians, sheds new light on an approach to investigation of human meridians and offers a new perspective in understanding the potential meridian functions such as energy and information transfer and physiological regulation.
U-Shaped and Surface Functionalized Polymer Optical Fiber Probe for Glucose Detection.
Azkune, Mikel; Ruiz-Rubio, Leire; Aldabaldetreku, Gotzon; Arrospide, Eneko; Pérez-Álvarez, Leyre; Bikandi, Iñaki; Zubia, Joseba; Vilas-Vilela, Jose Luis
2017-12-25
In this work we show an optical fiber evanescent wave absorption probe for glucose detection in different physiological media. High selectivity is achieved by functionalizing the surface of an only-core poly(methyl methacrylate) (PMMA) polymer optical fiber with phenilboronic groups, and enhanced sensitivity by using a U-shaped geometry. Employing a supercontinuum light source and a high-resolution spectrometer, absorption measurements are performed in the broadband visible light spectrum. Experimental results suggest the feasibility of such a fiber probe as a low-cost and selective glucose detector.
Towards 24/7 continuous heart rate monitoring.
Tarniceriu, Adrian; Parak, Jakub; Renevey, Philippe; Nurmi, Marko; Bertschi, Mattia; Delgado-Gonzalo, Ricard; Korhonen, Ilkka
2016-08-01
Heart rate (HR) and HR variability (HRV) carry rich information about physical activity, mental and physical load, physiological status, and health of an individual. When combined with activity monitoring and personalized physiological modelling, HR/HRV monitoring may be used for monitoring of complex behaviors and impact of behaviors and external factors on the current physiological status of an individual. Optical HR monitoring (OHR) from wrist provides a comfortable and unobtrusive method for HR/HRV monitoring and is better adhered by users than traditional ECG electrodes or chest straps. However, OHR power consumption is significantly higher than that for ECG based methods due to the measurement principle based on optical illumination of the tissue. We developed an algorithmic approach to reduce power consumption of the OHR in 24/7 HR trending. We use continuous activity monitoring and a fast converging frequency domain algorithm to derive a reliable HR estimate in 7.1s (during outdoor sports, in average) to 10.0s (during daily life). The method allows >80% reduction in power consumption in 24/7 OHR monitoring when average HR monitoring is targeted, without significant reduction in tracking accuracy.
Corneal thickness: measurement and implications.
Ehlers, Niels; Hjortdal, Jesper
2004-03-01
The thickness of the cornea was reported in more than 100-year-old textbooks on physiological optics (Helmholtz, Gullstrand). Physiological interest was revived in the 1950s by David Maurice, and over the next 50 years, this 'simple' biological parameter has been studied extensively. Several techniques for its measurement have been described and physiological and clinical significance have been studied. In this review, the different methods and techniques of measurement are briefly presented (optical, ultrasound). While the corneal thickness of many animals are the same over a considerable part of the surface, in the human cornea anterior and posterior curvature are not concentric giving rise to a problem of definition. Based on this the precision and accuracy of determining the central corneal thickness are discussed. Changes in corneal thickness reflects changes in function of the boundary layers, in particular the endothelial barrier. The absolute value of thickness is of importance for the estimation of IOP but also in diagnosis of corneal and systemic disorders. Finally it is discussed to what extent the thickness is a biometric parameter of significance, e.g. in the progression of myopia or in the development of retinal detachment.
Label-free optical detection of action potential in mammalian neurons (Conference Presentation)
NASA Astrophysics Data System (ADS)
Batabyal, Subrata; Satpathy, Sarmishtha; Bui, Loan; Kim, Young-Tae; Mohanty, Samarendra K.; Davé, Digant P.
2017-02-01
Electrophysiology techniques are the gold standard in neuroscience for studying functionality of a single neuron to a complex neuronal network. However, electrophysiology techniques are not flawless, they are invasive nature, procedures are cumbersome to implement with limited capability of being used as a high-throughput recording system. Also, long term studies of neuronal functionality with aid of electrophysiology is not feasible. Non-invasive stimulation and detection of neuronal electrical activity has been a long standing goal in neuroscience. Introduction of optogenetics has ushered in the era of non-invasive optical stimulation of neurons, which is revolutionizing neuroscience research. Optical detection of neuronal activity that is comparable to electro-physiology is still elusive. A number of optical techniques have been reported recording of neuronal electrical activity but none is capable of reliably measuring action potential spikes that is comparable to electro-physiology. Optical detection of action potential with voltage sensitive fluorescent reporters are potential alternatives to electrophysiology techniques. The heavily rely on secondary reporters, which are often toxic in nature with background fluorescence, with slow response and low SNR making them far from ideal. The detection of one shot (without averaging)-single action potential in a true label-free way has been elusive so far. In this report, we demonstrate the optical detection of single neuronal spike in a cultured mammalian neuronal network without using any exogenous labels. To the best of our knowledge, this is the first demonstration of label free optical detection of single action potentials in a mammalian neuronal network, which was achieved using a high-speed phase sensitive interferometer. We have carried out stimulation and inhibition of neuronal firing using Glutamate and Tetrodotoxin respectively to demonstrate the different outcome (stimulation and inhibition) revealed in optical signal. We hypothesize that the interrogating optical beam is modulated during neuronal firing by electro-motility driven membrane fluctuation in conjunction with electrical wave propagation in cellular system.
Kloppe, A; Hoeland, K; Müller, S; Hexamer, M; Nowack, G; Mügge, A; Werner, J
2004-10-01
In order to obtain a better physiological performance and a closer restoration of the regular rhythm of failing hearts, a new fiber optical sensor system for the measurement of cardiac contraction has been developed. It consists of an opto-electrical unit and a sensing fiber which has to be positioned in the heart. The objective of this new fiber optic sensor system is to use the inotropic information to adjust a stimulation algorithm in single or multichamber pacing or to detect arrhythmia in insufficient heart function. In this study, the mechanical and optical characteristics of different fibers are investigated. The relationship between the attenuation (with an achieved numerical maximum of 0.3 dB), the bending diameter and the angle of bending is determined in a range of 20-160 mm. The most suitable fiber for the application in cardiological problems is determined (WT8 fiber), for which the sensitivity is analyzed. Additionally, power spectra are calculated from WT8 fiber signals obtained from pig hearts, working under physiological conditions. The maximal frequency response was 23 Hz. It is concluded that the fiber optical measurement of cardiac contraction is not only feasible and reproducible, but the WT8 fiber also shows optimal behavior in the range of parameters occurring in the heart chambers. Nevertheless, in order to restrict the measured signal reliably to bending processes within the chambers only, it is concluded that a special combined fiber has to be constructed with a high sensitivity only at its terminal section within the heart.
Abdelsalam, Salaheldin; Uemura, Hiroyuki; Umezaki, Yujiro; Saifullah, A S M; Shimohigashi, Miki; Tomioka, Kenji
2008-07-01
Pigment-dispersing factor (PDF) is a neuropeptide playing important roles in insect circadian systems. In this study, we morphologically and physiologically characterized PDF-immunoreactive neurons in the optic lobe and the brain of the cricket Gryllus bimaculatus. PDF-immunoreactivity was detected in cells located in the proximal medulla (PDFMe cells) and those in the dorsal and ventral regions of the outer chiasma (PDFLa cells). The PDFMe cells had varicose processes spread over the frontal surface of the medulla and the PDFLa cells had varicose mesh-like innervations in almost whole lamina, suggesting their modulatory role in the optic lobe. Some of PDFMe cells had a hairpin-shaped axonal process running toward the lamina then turning back to project into the brain where they terminated at various protocerebral areas. The PDFMe cells had a low frequency spontaneous spike activity that was higher during the night and was often slightly increased by light pulses. Six pairs of PDF-immunoreactive neurons were also found in the frontal ganglion. Competitive ELISA with anti-PDF antibodies revealed daily cycling of PDF both in the optic lobe and cerebral lobe with an increase during the night that persisted in constant darkness. The physiological role of PDF is discussed based on these results.
Optical Drug Monitoring: Photoacoustic Imaging of Nanosensors to Monitor Therapeutic Lithium In Vivo
Cash, Kevin J.; Li, Chiye; Xia, Jun; Wang, Lihong V.; Clark, Heather A.
2015-01-01
Personalized medicine could revolutionize how primary care physicians treat chronic disease and how researchers study fundamental biological questions. To realize this goal we need to develop more robust, modular tools and imaging approaches for in vivo monitoring of analytes. In this report, we demonstrate that synthetic nanosensors can measure physiologic parameters with photoacoustic contrast, and we apply that platform to continuously track lithium levels in vivo. Photoacoustic imaging achieves imaging depths that are unattainable with fluorescence or multiphoton microscopy. We validated the photoacoustic results that illustrate the superior imaging depth and quality of photoacoustic imaging with optical measurements. This powerful combination of techniques will unlock the ability to measure analyte changes in deep tissue and will open up photoacoustic imaging as a diagnostic tool for continuous physiological tracking of a wide range of analytes. PMID:25588028
Cash, Kevin J; Li, Chiye; Xia, Jun; Wang, Lihong V; Clark, Heather A
2015-02-24
Personalized medicine could revolutionize how primary care physicians treat chronic disease and how researchers study fundamental biological questions. To realize this goal, we need to develop more robust, modular tools and imaging approaches for in vivo monitoring of analytes. In this report, we demonstrate that synthetic nanosensors can measure physiologic parameters with photoacoustic contrast, and we apply that platform to continuously track lithium levels in vivo. Photoacoustic imaging achieves imaging depths that are unattainable with fluorescence or multiphoton microscopy. We validated the photoacoustic results that illustrate the superior imaging depth and quality of photoacoustic imaging with optical measurements. This powerful combination of techniques will unlock the ability to measure analyte changes in deep tissue and will open up photoacoustic imaging as a diagnostic tool for continuous physiological tracking of a wide range of analytes.
Laser refrigeration of hydrothermal nanocrystals in physiological media.
Roder, Paden B; Smith, Bennett E; Zhou, Xuezhe; Crane, Matthew J; Pauzauskie, Peter J
2015-12-08
Coherent laser radiation has enabled many scientific and technological breakthroughs including Bose-Einstein condensates, ultrafast spectroscopy, superresolution optical microscopy, photothermal therapy, and long-distance telecommunications. However, it has remained a challenge to refrigerate liquid media (including physiological buffers) during laser illumination due to significant background solvent absorption and the rapid (∼ ps) nonradiative vibrational relaxation of molecular electronic excited states. Here we demonstrate that single-beam laser trapping can be used to induce and quantify the local refrigeration of physiological media by >10 °C following the emission of photoluminescence from upconverting yttrium lithium fluoride (YLF) nanocrystals. A simple, low-cost hydrothermal approach is used to synthesize polycrystalline particles with sizes ranging from <200 nm to >1 μm. A tunable, near-infrared continuous-wave laser is used to optically trap individual YLF crystals with an irradiance on the order of 1 MW/cm(2). Heat is transported out of the crystal lattice (across the solid-liquid interface) by anti-Stokes (blue-shifted) photons following upconversion of Yb(3+) electronic excited states mediated by the absorption of optical phonons. Temperatures are quantified through analysis of the cold Brownian dynamics of individual nanocrystals in an inhomogeneous temperature field via forward light scattering in the back focal plane. The cold Brownian motion (CBM) analysis of individual YLF crystals indicates local cooling by >21 °C below ambient conditions in D2O, suggesting a range of potential future applications including single-molecule biophysics and integrated photonic, electronic, and microfluidic devices.
Laser refrigeration of hydrothermal nanocrystals in physiological media
Roder, Paden B.; Smith, Bennett E.; Zhou, Xuezhe; Crane, Matthew J.; Pauzauskie, Peter J.
2015-01-01
Coherent laser radiation has enabled many scientific and technological breakthroughs including Bose–Einstein condensates, ultrafast spectroscopy, superresolution optical microscopy, photothermal therapy, and long-distance telecommunications. However, it has remained a challenge to refrigerate liquid media (including physiological buffers) during laser illumination due to significant background solvent absorption and the rapid (∼ps) nonradiative vibrational relaxation of molecular electronic excited states. Here we demonstrate that single-beam laser trapping can be used to induce and quantify the local refrigeration of physiological media by >10 °C following the emission of photoluminescence from upconverting yttrium lithium fluoride (YLF) nanocrystals. A simple, low-cost hydrothermal approach is used to synthesize polycrystalline particles with sizes ranging from <200 nm to >1 μm. A tunable, near-infrared continuous-wave laser is used to optically trap individual YLF crystals with an irradiance on the order of 1 MW/cm2. Heat is transported out of the crystal lattice (across the solid–liquid interface) by anti-Stokes (blue-shifted) photons following upconversion of Yb3+ electronic excited states mediated by the absorption of optical phonons. Temperatures are quantified through analysis of the cold Brownian dynamics of individual nanocrystals in an inhomogeneous temperature field via forward light scattering in the back focal plane. The cold Brownian motion (CBM) analysis of individual YLF crystals indicates local cooling by >21 °C below ambient conditions in D2O, suggesting a range of potential future applications including single-molecule biophysics and integrated photonic, electronic, and microfluidic devices. PMID:26589813
Yan, Yonggang; Ma, Xiang; Yao, Lifeng; Ouyang, Jianfei
2015-01-01
Non-contact and remote measurements of vital physical signals are important for reliable and comfortable physiological self-assessment. We presented a novel optical imaging-based method to measure the vital physical signals. Using a digital camera and ambient light, the cardiovascular pulse waves were extracted better from human color facial videos correctly. And the vital physiological parameters like heart rate were measured using a proposed signal-weighted analysis method. The measured HRs consistent with those measured simultaneously with reference technologies (r=0.94, p<0.001 for HR). The results show that the imaging-based method is suitable for measuring the physiological parameters, and provide a reliable and comfortable measurement mode. The study lays a physical foundation for measuring multi-physiological parameters of human noninvasively.
McCafferty, Sean J; Schwiegerling, Jim T
2015-04-01
Present an analysis methodology for developing and evaluating accommodating intraocular lenses incorporating a deformable interface. The next generation design of extruded gel interface intraocular lens is presented. A prototype based upon similar previously in vivo proven design was tested with measurements of actuation force, lens power, interface contour, optical transfer function, and visual Strehl ratio. Prototype verified mathematical models were used to optimize optical and mechanical design parameters to maximize the image quality and minimize the required force to accommodate. The prototype lens produced adequate image quality with the available physiologic accommodating force. The iterative mathematical modeling based upon the prototype yielded maximized optical and mechanical performance through maximum allowable gel thickness to extrusion diameter ratio, maximum feasible refractive index change at the interface, and minimum gel material properties in Poisson's ratio and Young's modulus. The design prototype performed well. It operated within the physiologic constraints of the human eye including the force available for full accommodative amplitude using the eye's natural focusing feedback, while maintaining image quality in the space available. The parameters that optimized optical and mechanical performance were delineated as those, which minimize both asphericity and actuation pressure. The design parameters outlined herein can be used as a template to maximize the performance of a deformable interface intraocular lens. The article combines a multidisciplinary basic science approach from biomechanics, optical science, and ophthalmology to optimize an intraocular lens design suitable for preliminary animal trials.
Optic fiber pulse-diagnosis sensor of traditional Chinese medicine
NASA Astrophysics Data System (ADS)
Ni, J. S.; Jin, W.; Zhao, B. N.; Zhang, X. L.; Wang, C.; Li, S. J.; Zhang, F. X.; Peng, G. D.
2013-09-01
The wrist-pulse is a kind of signals, from which a lot of physiological and pathological status of patients are deduced according to traditional Chinese medicine theories. This paper designs a new optic fiber wrist-pulse sensor that based on a group of FBGs. Sensitivity of the optic fiber wrist-pulse measurement system reaches 0.05% FS and the range reaches 50kPa. Frequency response is from 0 Hz to 5 kHz. A group of typical pulse signal is given out in the paper to compare different status of patient. It will improve quantification of pulse diagnosis greatly.
In biochemical systems a host of “nature’s catalysts” conduct chemical transformations at physiological temperatures, high substrate conversion, high optical activity integrity, and single reactive center substrate changes. All of these traits are highly esteemed in the pursuit o...
In vivo optical imaging and dynamic contrast methods for biomedical research
Hillman, Elizabeth M. C.; Amoozegar, Cyrus B.; Wang, Tracy; McCaslin, Addason F. H.; Bouchard, Matthew B.; Mansfield, James; Levenson, Richard M.
2011-01-01
This paper provides an overview of optical imaging methods commonly applied to basic research applications. Optical imaging is well suited for non-clinical use, since it can exploit an enormous range of endogenous and exogenous forms of contrast that provide information about the structure and function of tissues ranging from single cells to entire organisms. An additional benefit of optical imaging that is often under-exploited is its ability to acquire data at high speeds; a feature that enables it to not only observe static distributions of contrast, but to probe and characterize dynamic events related to physiology, disease progression and acute interventions in real time. The benefits and limitations of in vivo optical imaging for biomedical research applications are described, followed by a perspective on future applications of optical imaging for basic research centred on a recently introduced real-time imaging technique called dynamic contrast-enhanced small animal molecular imaging (DyCE). PMID:22006910
Cell Signaling Experiments Driven by Optical Manipulation
Difato, Francesco; Pinato, Giulietta; Cojoc, Dan
2013-01-01
Cell signaling involves complex transduction mechanisms in which information released by nearby cells or extracellular cues are transmitted to the cell, regulating fundamental cellular activities. Understanding such mechanisms requires cell stimulation with precise control of low numbers of active molecules at high spatial and temporal resolution under physiological conditions. Optical manipulation techniques, such as optical tweezing, mechanical stress probing or nano-ablation, allow handling of probes and sub-cellular elements with nanometric and millisecond resolution. PicoNewton forces, such as those involved in cell motility or intracellular activity, can be measured with femtoNewton sensitivity while controlling the biochemical environment. Recent technical achievements in optical manipulation have new potentials, such as exploring the actions of individual molecules within living cells. Here, we review the progress in optical manipulation techniques for single-cell experiments, with a focus on force probing, cell mechanical stimulation and the local delivery of active molecules using optically manipulated micro-vectors and laser dissection. PMID:23698758
NASA Astrophysics Data System (ADS)
Liao, Fang-Tsu; Chang, Cheng-Yi; Su, Ming-Tsan; Kuo, Wen-Chuan
2014-01-01
Prior studies have established the necessity of an angiotensin-converting enzyme-related (ACER) gene for heart morphogenesis of Drosophila. Nevertheless, the physiology of ACER has yet to be comprehensively understood. Herein, we employed RNA interference to down-regulate the expression of ACER in Drosophila's heart and swept source optical coherence tomography to assess whether ACER is required for cardiac functions in living adult flies. Several contractile parameters of Drosophila heart, including the heart rate (HR), end-diastolic diameter (EDD), end-systolic diameter (ESD), percent fractional shortening (%FS), and stress-induced cardiac performance, are shown, which are age dependent. These age-dependent cardiac functions declined significantly when ACER was down-regulated. Moreover, the lifespans of ACER knock-down flies were significantly shorter than those of wild-type control flies. Thus, we posit that ACER, the Drosophila ortholog of mammalian angiotensin-converting enzyme 2 (ACE2), is essential for both heart physiology and longevity of animals. Since mammalian ACE2 controls many cardiovascular physiological features and is implicated in cardiomyopathies, our findings that ACER plays conserved roles in genetically tractable animals will pave the way for uncovering the genetic pathway that controls the renin-angiotensin system.
NASA Astrophysics Data System (ADS)
Hu, Gang; Zhang, Quan; Ivkovic, Vladimir; Strangman, Gary E.
2016-09-01
Ambulatory diffuse optical tomography (aDOT) is based on near-infrared spectroscopy (NIRS) and enables three-dimensional imaging of regional hemodynamics and oxygen consumption during a person's normal activities. Although NIRS has been previously used for muscle assessment, it has been notably limited in terms of the number of channels measured, the extent to which subjects can be ambulatory, and/or the ability to simultaneously acquire synchronized auxiliary data such as electromyography (EMG) or electrocardiography (ECG). We describe the development of a prototype aDOT system, called NINscan-M, capable of ambulatory tomographic imaging as well as simultaneous auxiliary multimodal physiological monitoring. Powered by four AA size batteries and weighing 577 g, the NINscan-M prototype can synchronously record 64-channel NIRS imaging data, eight channels of EMG, ECG, or other analog signals, plus force, acceleration, rotation, and temperature for 24+ h at up to 250 Hz. We describe the system's design, characterization, and performance characteristics. We also describe examples of isometric, cycle ergometer, and free-running ambulatory exercise to demonstrate tomographic imaging at 25 Hz. NINscan-M represents a multiuse tool for muscle physiology studies as well as clinical muscle assessment.
Bibliography on Cold Regions Science and Technology. Volume 47, Part 1, 1993
1993-09-01
54 refs. • DLC TP884.A3 D87 1989 Tundra. Plant ecology. Plant physiology. Plant tissues.tions. Biomass. ice cover effect. Ice optics. Algae. Concrete...1992. 89(1). p.24-31. 15 refs. ty. Chemical properties. Nuclear power. Freeze 91i92. This included providing the fundamental life Plante . P.. Pleau. R...Arora. R., etal, Plant physiology. Aug. 1992.99(4). photography. North Sea. Wetlands sewage treatment tested in the north. p. 1 56 2 .1568. 30 refs
Microinjection of Follicle-Enclosed Mouse Oocytes
NASA Astrophysics Data System (ADS)
Jaffe, Laurinda A.; Norris, Rachael P.; Freudzon, Marina; Ratzan, William J.; Mehlmann, Lisa M.
The mammalian oocyte develops within a complex of somatic cells known as a follicle, within which signals from the somatic cells regulate the oocyte, and signals from the oocyte regulate the somatic cells. Because isolation of the oocyte from the follicle disrupts these communication pathways, oocyte physiology is best studied within an intact follicle. Here we describe methods for quantitative microinjection of follicle-enclosed mouse oocytes, thus allowing the introduction of signaling molecules as well as optical probes into the oocyte within its physiological environment.
Demonstration of skull bones mobility using optical methods: practical importance in medicine
NASA Astrophysics Data System (ADS)
Zakharov, Alexander V.; Okushko, Vladimir R.; Vturin, Sergey A.; Moseychuk, Vladimir V.; Petrov, Aleksey A.; Suetenkov, Dmitry E.
2014-01-01
Unprompted skull bones mobility not related to breathing, heart beating and other physiological reactions, using installation of original construction with control of physiological parameters by biofeedback hardware-software complex BOS-lab and BOS-pulse appliance (COMSIB, Novosibirsk, Russia) has been confirmed. Teeth eruption occurs through odontiasis canals, emerging from the funiculus. The main driving force for promoting a tooth into odontiasis canal during eruption is the unprompted skull bones mobility. A simple optical installation was made for the visualization of skull bones mobility during the investigation of the median palatine and incisors sutures. Early detection of failures of unprompted skull bones mobility and its normalization can lead to prevention of impact teeth, malocclusion, extrudocclusion and other anomalies and deformations of teeth, teeth rows, TMJ and skull. The skull bones mobility should be considered during the early preventive treatment and therapy of the consequences of injuries and malfunction of the maxillofacial area.
Nestola, E; Scartazza, A; Di Baccio, D; Castagna, A; Ranieri, A; Cammarano, M; Mazzenga, F; Matteucci, G; Calfapietra, C
2018-01-15
This study investigates the functionality of a Mediterranean-mountain beech forest in Central Italy using simultaneous determinations of optical measurements, carbon (C) fluxes, leaf eco-physiological and biochemical traits during two growing seasons (2014-2015). Meteorological variables showed significant differences between the two growing seasons, highlighting a heat stress coupled with a reduced water availability in mid-summer 2015. As a result, a different C sink capacity of the forest was observed between the two years of study, due to the differences in stressful conditions and the related plant physiological status. Spectral indices related to vegetation (VIs, classified in structural, chlorophyll and carotenoid indices) were computed at top canopy level and used to track CO 2 fluxes and physiological changes. Optical indices related to structure (EVI 2, RDVI, DVI and MCARI 1) were found to better track Net Ecosystem Exchange (NEE) variations for 2014, while indices related to chlorophylls (SR red edge, CL red edge, MTCI and DR) provided better results for 2015. This suggests that when environmental conditions are not limiting for forest sink capacity, structural parameters are more strictly connected to C uptake, while under stress conditions indices related to functional features (e.g., chlorophyll content) become more relevant. Chlorophyll indices calculated with red edge bands (SR red edge, NDVI red edge, DR, CL red edge) resulted to be highly correlated with leaf nitrogen content (R 2 >0.70), while weaker, although significant, correlations were found with chlorophyll content. Carotenoid indices (PRI and PSRI) were strongly correlated with both chlorophylls and carotenoids content, suggesting that these indices are good proxies of the shifting pigment composition related to changes in soil moisture, heat stress and senescence. Our work suggests the importance of integrating different methods as a successful approach to understand how changing climatic conditions in the Mediterranean mountain region will impact on forest conditions and functionality. Copyright © 2017 Elsevier B.V. All rights reserved.
Numerical simulation studies for optical properties of biomaterials
NASA Astrophysics Data System (ADS)
Krasnikov, I.; Seteikin, A.
2016-11-01
Biophotonics involves understanding how light interacts with biological matter, from molecules and cells, to tissues and even whole organisms. Light can be used to probe biomolecular events, such as gene expression and protein-protein interaction, with impressively high sensitivity and specificity. The spatial and temporal distribution of biochemical constituents can also be visualized with light and, thus, the corresponding physiological dynamics in living cells, tissues, and organisms in real time. Computer-based Monte Carlo (MC) models of light transport in turbid media take a different approach. In this paper, the optical and structural properties of biomaterials discussed. We explain the numerical simulationmethod used for studying the optical properties of biomaterials. Applications of the Monte-Carlo method in photodynamic therapy, skin tissue optics, and bioimaging described.
Techniques A: continuous waves
NASA Astrophysics Data System (ADS)
Beuthan, J.
1993-08-01
In a vast amount of medical diseases the biochemical and physiological changes of soft tissues are hardly detectable by conventional techniques of diagnostic imaging (x- ray, ultrasound, computer tomography, and MRI). The detectivity is low and the technical efforts are tremendous. On the other hand these pathologic variations induce significant changes of the optical tissue parameters which can be detected. The corresponding variations of the scattered light can most easily be detected and evaluated by infrared diaphanoscopy, even on optical thick tissue slices.
Khalil, Omar S
2004-10-01
There are three main issues in non-invasive (NI) glucose measurements: namely, specificity, compartmentalization of glucose values, and calibration. There has been progress in the use of near-infrared and mid-infrared spectroscopy. Recently new glucose measurement methods have been developed, exploiting the effect of glucose on erythrocyte scattering, new photoacoustic phenomenon, optical coherence tomography, thermo-optical studies on human skin, Raman spectroscopy studies, fluorescence measurements, and use of photonic crystals. In addition to optical methods, in vivo electrical impedance results have been reported. Some of these methods measure intrinsic properties of glucose; others deal with its effect on tissue or blood properties. Recent studies on skin from individuals with diabetes and its response to stimuli, skin thermo-optical response, peripheral blood flow, and red blood cell rheology in diabetes shed new light on physical and physiological changes resulting from the disease that can affect NI glucose measurements. There have been advances in understanding compartmentalization of glucose values by targeting certain regions of human tissue. Calibration of NI measurements and devices is still an open question. More studies are needed to understand the specific glucose signals and signals that are due to the effect of glucose on blood and tissue properties. These studies should be performed under normal physiological conditions and in the presence of other co-morbidities.
Khan, Reas S.; Geisler, John G.
2017-01-01
The ability of novel mitochondrial uncoupler prodrug of 2,4-dinitrophenol (DNP), MP201, to prevent neuronal damage and preserve visual function in an experimental autoimmune encephalomyelitis (EAE) model of optic neuritis was evaluated. Optic nerve inflammation, demyelination, and axonal loss are prominent features of optic neuritis, an inflammatory optic neuropathy often associated with the central nervous system demyelinating disease multiple sclerosis. Currently, optic neuritis is frequently treated with high-dose corticosteroids, but treatment fails to prevent permanent neuronal damage and associated vision changes that occur as optic neuritis resolves, thus suggesting that additional therapies are required. MP201 administered orally, once per day, attenuated visual dysfunction, preserved retinal ganglion cells (RGCs), and reduced RGC axonal loss and demyelination in the optic nerves of EAE mice, with limited effects on inflammation. The prominent mild mitochondrial uncoupling properties of MP201, with slow elimination of DNP, may contribute to the neuroprotective effect by modulating the entire mitochondria's physiology directly. Results suggest that MP201 is a potential novel treatment for optic neuritis. PMID:28680531
Doronina-Amitonova, L. V.; Fedotov, I. V.; Ivashkina, O. I.; Zots, M. A.; Fedotov, A. B.; Anokhin, K. V.; Zheltikov, A. M.
2013-01-01
Seeing the big picture of functional responses within large neural networks in a freely functioning brain is crucial for understanding the cellular mechanisms behind the higher nervous activity, including the most complex brain functions, such as cognition and memory. As a breakthrough toward meeting this challenge, implantable fiber-optic interfaces integrating advanced optogenetic technologies and cutting-edge fiber-optic solutions have been demonstrated, enabling a long-term optogenetic manipulation of neural circuits in freely moving mice. Here, we show that a specifically designed implantable fiber-optic interface provides a powerful tool for parallel long-term optical interrogation of distinctly separate, functionally different sites in the brain of freely moving mice. This interface allows the same groups of neurons lying deeply in the brain of a freely behaving mouse to be reproducibly accessed and optically interrogated over many weeks, providing a long-term dynamic detection of genome activity in response to a broad variety of pharmacological and physiological stimuli. PMID:24253232
Computer-aided, multi-modal, and compression diffuse optical studies of breast tissue
NASA Astrophysics Data System (ADS)
Busch, David Richard, Jr.
Diffuse Optical Tomography and Spectroscopy permit measurement of important physiological parameters non-invasively through ˜10 cm of tissue. I have applied these techniques in measurements of human breast and breast cancer. My thesis integrates three loosely connected themes in this context: multi-modal breast cancer imaging, automated data analysis of breast cancer images, and microvascular hemodynamics of breast under compression. As per the first theme, I describe construction, testing, and the initial clinical usage of two generations of imaging systems for simultaneous diffuse optical and magnetic resonance imaging. The second project develops a statistical analysis of optical breast data from many spatial locations in a population of cancers to derive a novel optical signature of malignancy; I then apply this data-derived signature for localization of cancer in additional subjects. Finally, I construct and deploy diffuse optical instrumentation to measure blood content and blood flow during breast compression; besides optics, this research has implications for any method employing breast compression, e.g., mammography.
NASA Astrophysics Data System (ADS)
Doronina-Amitonova, L. V.; Fedotov, I. V.; Ivashkina, O. I.; Zots, M. A.; Fedotov, A. B.; Anokhin, K. V.; Zheltikov, A. M.
2013-11-01
Seeing the big picture of functional responses within large neural networks in a freely functioning brain is crucial for understanding the cellular mechanisms behind the higher nervous activity, including the most complex brain functions, such as cognition and memory. As a breakthrough toward meeting this challenge, implantable fiber-optic interfaces integrating advanced optogenetic technologies and cutting-edge fiber-optic solutions have been demonstrated, enabling a long-term optogenetic manipulation of neural circuits in freely moving mice. Here, we show that a specifically designed implantable fiber-optic interface provides a powerful tool for parallel long-term optical interrogation of distinctly separate, functionally different sites in the brain of freely moving mice. This interface allows the same groups of neurons lying deeply in the brain of a freely behaving mouse to be reproducibly accessed and optically interrogated over many weeks, providing a long-term dynamic detection of genome activity in response to a broad variety of pharmacological and physiological stimuli.
Towards novel compact laser sources for non-invasive diagnostics and treatment
NASA Astrophysics Data System (ADS)
Rafailov, Edik U.; Litvinova, Karina S.; Sokolovski, Sergei G.
2015-08-01
An important field of application of lasers is biomedical optics. Here, they offer great utility for diagnosis, therapy and surgery. For the development of novel methods of laser-based biomedical diagnostics careful study of light propagation in biological tissues is necessary to enhance our understanding of the optical measurements undertaken, increase research and development capacity and the diagnostic reliability of optical technologies. Ultimately, fulfilling these requirements will increase uptake in clinical applications of laser based diagnostics and therapeutics. To address these challenges informative biomarkers relevant to the biological and physiological function or disease state of the organism must be selected. These indicators are the results of the analysis of tissues and cells, such as blood. For non-invasive diagnostics peripheral blood, cells and tissue can potentially provide comprehensive information on the condition of the human organism. A detailed study of the light scattering and absorption characteristics can quickly detect physiological and morphological changes in the cells due to thermal, chemical, antibiotic treatments, etc [1-5]. The selection of a laser source to study the structure of biological particles also benefits from the fact that gross pathological changes are not induced and diagnostics make effective use of the monochromatic directional coherence properties of laser radiation.
Leaf Optical Properties in Higher Plants: Linking Spectral Characteristics with Plant Stress
NASA Technical Reports Server (NTRS)
Carter, Gregory A.; Knapp, Alan K.
1999-01-01
A number of studies have addressed responses of leaf spectral reflectance, transmittance, or absorptance to physiological stress. Stressors included dehydration, ozone, herbicides, disease, insufficient mycorrhizae and N fertilization, flooding and insects. Species included conifers, grasses, and broadleaved trees. Increased reflectance with maximum responses near 700 nm wavelength occurred in all cases. Varying the chlorophyll content in leaves or pigment extracts can simulate this effect. Thus, common optical responses to stress result from decreases in leaf chlorophyll contents or the capacity of chloroplasts to absorb light. Leaf optic can be quite sensitive to any stressor that alters soil-plant-atmosphere processes.
Optical Fibre Sensor For Measuring pH In Physiological Range
NASA Astrophysics Data System (ADS)
Golunski, Witold; Hypszer, Ryszard; Plucinski, Jerzy
1990-01-01
The principle of fibre optic pH sensor operation is given in this paper. PH measurement in 7.0-7.5 range is based on changing of optical property of a indicator. The indicator is sensitive to the hydrogen ion concentration in the water solution. Microspheres of the polymer XAD-2 (a styrene-divinylbenzene copolymer) containing bound phenol red were used as a indicator. Such prepared indicator was inserted in optrode. The optrode was connected with transmitter and receiver by a bundle of glass fibres (multicomponent glass). Transmitter was done by using green LED while receiver construction was based on pin photodiode.
Schwenninger, David; Priebe, Hans-Joachim; Schneider, Matthias; Runck, Hanna; Guttmann, Josef
2017-07-01
Optical clearing allows tissue visualization under preservation of organ integrity. Optical clearing of organs with a physiological change in three-dimensional geometry (such as the lung) would additionally allow visualization of macroscopic and microscopic tissue geometry. A prerequisite, however, is the preservation of the native tissue mechanics of the optically cleared lung tissue. We investigated the impact of optical and dielectric properties of clearing solutions on biomechanics and clearing potency in porcine tissue strips of healthy lungs. After fixation, bleaching, and rehydration, four methods of optical clearing were investigated using eight different protocols. The mechanical and optical properties of the cleared lung tissue strips were investigated by uniaxial tensile testing and by analyzing optical transparency and translucency for red, green, and blue light before, during, and after the biochemical optical clearing process. Fresh tissue strips were used as controls. Best balance between efficient clearing and preserved mechanics was found for clearing with a 1:1 mixture of dimethyl sulfoxide (DMSO) and aniline. Our findings show that 1 ) the degree of tissue transparency and translucency correlated with the refractive index of the clearing solution index ( r = 0.976, P = 0.0004; and r = 0.91, P = 0.0046, respectively), 2 ) tissue mechanics were affected by dehydration and the type of clearing solution, and 3 ) tissue biomechanics and geometry correlated with the dielectric constant of the clearing solution ( r = -0.98, P < 0.00001; and r = 0.69, P = 0.013, respectively). We show that the lower the dielectric constant of the clearing solutions, the larger the effect on tissue stiffness. This suggests that the dielectric constant is an important measure in determining the effect of a clearing solution on lung tissue biomechanics. Optimal tissue transparency requires complete tissue dehydration and a refractive index of 1.55 of the clearing solution. NEW & NOTEWORTHY Investigating optical clearing in porcine lung tissue strips, we found that refractive index and dielectric constant of the clearing solution affected tissue clearing and biomechanics. By documenting the impact of the composition of the clearing solution on clearing potency and preservation of tissue mechanics, our results help to compose optimal clearing solutions. In addition, the results allow conclusions on the molecular interaction of solvents with collagen fibers in tissue, thereby consolidating existing theories about the functionality of collagen. Copyright © 2017 the American Physiological Society.
Video display engineering and optimization system
NASA Technical Reports Server (NTRS)
Larimer, James (Inventor)
1997-01-01
A video display engineering and optimization CAD simulation system for designing a LCD display integrates models of a display device circuit, electro-optics, surface geometry, and physiological optics to model the system performance of a display. This CAD system permits system performance and design trade-offs to be evaluated without constructing a physical prototype of the device. The systems includes a series of modules which permit analysis of design trade-offs in terms of their visual impact on a viewer looking at a display.
NASA Astrophysics Data System (ADS)
Khokhlova, Maria D.; Lyubin, Eugeny V.; Zhdanov, Alexander G.; Rykova, Sophia Yu.; Sokolova, Irina A.; Fedyanin, Andrey A.
2012-02-01
Direct measurements of aggregation forces in piconewton range between two red blood cells in pair rouleau are performed under physiological conditions using double trap optical tweezers. Aggregation and disaggregation properties of healthy and pathologic (system lupus erythematosis) blood samples are analyzed. Strong difference in aggregation speed and behavior is revealed using the offered method which is proposed to be a promising tool for SLE monitoring at single cell level.
NASA Astrophysics Data System (ADS)
Psaltis, Demetri; Vasdekis, Andreas E.; Choi, Jae-Woo
2016-05-01
Optofluidics is a tool for synthesizing optical systems, making use of the interaction of light with fluids. In this paper we explore optofluidic mechanisms that have evolved in plants where sunlight and fluidic control combine to define most of the functionality of the plan. We hope that the presentation of how plants function, from an optofluidics point of view, will open a window for the optics community to the vast literature of plant physiology and provide inspiration for new ideas for the design of bio-mimetic optofluidic devices.
Glucose-Sensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid.
Yetisen, Ali K; Jiang, Nan; Fallahi, Afsoon; Montelongo, Yunuen; Ruiz-Esparza, Guillermo U; Tamayol, Ali; Zhang, Yu Shrike; Mahmood, Iram; Yang, Su-A; Kim, Ki Su; Butt, Haider; Khademhosseini, Ali; Yun, Seok-Hyun
2017-04-01
Hydrogel optical fibers are utilized for continuous glucose sensing in real time. The hydrogel fibers consist of poly(acrylamide-co-poly(ethylene glycol) diacrylate) cores functionalized with phenylboronic acid. The complexation of the phenylboronic acid and cis-diol groups of glucose enables reversible changes of the hydrogel fiber diameter. The analyses of light propagation loss allow for quantitative glucose measurements within the physiological range. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Physiological correlates and emotional specificity of human piloerection
Benedek, Mathias; Kaernbach, Christian
2011-01-01
Piloerection is known as an indicator of strong emotional experiences. However, little is known about the physiological and emotional specificity of this psychophysiological response. In the presented study, piloerection was elicited by audio stimuli taken from music and film episodes. The physiological response accompanying the incidence of piloerection was recorded with respect to electrodermal, cardiovascular and respiratory measures and compared to a matched control condition. The employment of an optical recording system allowed for a direct and objective assessment of visible piloerection. The occurrence of piloerection was primarily accompanied by an increase of phasic electrodermal activity and increased respiration depth as compared to a matched control condition. This physiological response pattern is discussed in the context of dominant theories of human piloerection. Consideration of all available evidence suggests that emotional piloerection represents a valuable indicator of the state of being moved or touched. PMID:21276827
Physiological correlates and emotional specificity of human piloerection.
Benedek, Mathias; Kaernbach, Christian
2011-03-01
Piloerection is known as an indicator of strong emotional experiences. However, little is known about the physiological and emotional specificity of this psychophysiological response. In the presented study, piloerection was elicited by audio stimuli taken from music and film episodes. The physiological response accompanying the incidence of piloerection was recorded with respect to electrodermal, cardiovascular and respiratory measures and compared to a matched control condition. The employment of an optical recording system allowed for a direct and objective assessment of visible piloerection. The occurrence of piloerection was primarily accompanied by an increase of phasic electrodermal activity and increased respiration depth as compared to a matched control condition. This physiological response pattern is discussed in the context of dominant theories of human piloerection. Consideration of all available evidence suggests that emotional piloerection represents a valuable indicator of the state of being moved or touched. Copyright © 2011 Elsevier B.V. All rights reserved.
From the EEL to the EGO: psychoanalysis and the remnants of Freud's early scientific practice.
Wieser, Martin
2013-01-01
While numerous historiographical works have been written to shed light on Freud's early theoretical education in biology, physiology, and medicine and on the influence of that education on psychoanalysis, this paper approaches Freud's basic comprehension of science and methodology by focusing on his early research practice in physiology and neuranatomy. This practice, taking place in the specific context of Ernst Brücke's physiological laboratory in Vienna, was deeply concerned with problems of visuality and the revelation of hidden organic structures by use of proper preparation techniques and optical instruments. The paper explores the connection between such visualizing practices, shaped by a physiological context as they were, and Freud's later convictions of the scientific status of psychoanalysis and the function of its method as means to unveil the concealed structure of the "psychical apparatus". © 2013 Wiley Periodicals, Inc.
Akemann, Walther; Song, Chenchen; Mutoh, Hiroki; Knöpfel, Thomas
2015-01-01
Abstract. The invention of membrane voltage protein indicators widens the reach of optical voltage imaging in cell physiology, most notably neurophysiology, by enabling membrane voltage recordings from genetically defined cell types in chronic and life-long preparations. While the last years have seen a dramatic improvement in the technical performance of these indicators, concomitant innovations in optogenetics, optical axon tracing, and high-speed digital microscopy are beginning to fulfill the age-old vision of an all-optical analysis of neuronal circuits, reaching beyond the limits of traditional electrode-based recordings. We will present our personal account of the development of protein voltage indicators from the pioneering days to the present state, including their applications in neurophysiology that has inspired our own work for more than a decade. PMID:26082930
Analysis of Photosynthetic Rate and Bio-Optical Components from Ocean Color Imagery
NASA Technical Reports Server (NTRS)
Kiefer, Dale A.; Stramski, Dariusz
1997-01-01
Our research over the last 5 years indicates that the successful transformation of ocean color imagery into maps of bio-optical properties will require continued development and testing of algorithms. In particular improvements in the accuracy of predicting from ocean color imagery the concentration of the bio-optical components of sea as well as the rate of photosynthesis will require progress in at least three areas: (1) we must improve mathematical models of the growth and physiological acclimation of phytoplankton; (2) we must better understand the sources of variability in the absorption and backscattering properties of phytoplankton and associated microparticles; and (3) we must better understand how the radiance distribution just below the sea surface varies as a function sun and sky conditions and inherent optical properties.
NASA Astrophysics Data System (ADS)
Chen, Zhihao; Lau, Doreen; Teo, Ju Teng; Ng, Soon Huat; Yang, Xiufeng; Kei, Pin Lin
2014-05-01
We propose and demonstrate the feasibility of using a highly sensitive microbend multimode fiber optic sensor for simultaneous measurement of breathing rate (BR) and heart rate (HR). The sensing system consists of a transceiver, microbend multimode fiber, and a computer. The transceiver is comprised of an optical transmitter, an optical receiver, and circuits for data communication with the computer via Bluetooth. Comparative experiments conducted between the sensor and predicate commercial physiologic devices showed an accuracy of ±2 bpm for both BR and HR measurement. Our preliminary study of simultaneous measurement of BR and HR in a clinical trial conducted on 11 healthy subjects during magnetic resonance imaging (MRI) also showed very good agreement with measurements obtained from conventional MR-compatible devices.
Toward biomaterial-based implantable photonic devices
NASA Astrophysics Data System (ADS)
Humar, Matjaž; Kwok, Sheldon J. J.; Choi, Myunghwan; Yetisen, Ali K.; Cho, Sangyeon; Yun, Seok-Hyun
2017-03-01
Optical technologies are essential for the rapid and efficient delivery of health care to patients. Efforts have begun to implement these technologies in miniature devices that are implantable in patients for continuous or chronic uses. In this review, we discuss guidelines for biomaterials suitable for use in vivo. Basic optical functions such as focusing, reflection, and diffraction have been realized with biopolymers. Biocompatible optical fibers can deliver sensing or therapeutic-inducing light into tissues and enable optical communications with implanted photonic devices. Wirelessly powered, light-emitting diodes (LEDs) and miniature lasers made of biocompatible materials may offer new approaches in optical sensing and therapy. Advances in biotechnologies, such as optogenetics, enable more sophisticated photonic devices with a high level of integration with neurological or physiological circuits. With further innovations and translational development, implantable photonic devices offer a pathway to improve health monitoring, diagnostics, and light-activated therapies.
Choy, Garry; Choyke, Peter; Libutti, Steven K
2003-10-01
Recently, there has been tremendous interest in developing techniques such as MRI, micro-CT, micro-PET, and SPECT to image function and processes in small animals. These technologies offer deep tissue penetration and high spatial resolution, but compared with noninvasive small animal optical imaging, these techniques are very costly and time consuming to implement. Optical imaging is cost-effective, rapid, easy to use, and can be readily applied to studying disease processes and biology in vivo. In vivo optical imaging is the result of a coalescence of technologies from chemistry, physics, and biology. The development of highly sensitive light detection systems has allowed biologists to use imaging in studying physiological processes. Over the last few decades, biochemists have also worked to isolate and further develop optical reporters such as GFP, luciferase, and cyanine dyes. This article reviews the common types of fluorescent and bioluminescent optical imaging, the typical system platforms and configurations, and the applications in the investigation of cancer biology.
NASA Technical Reports Server (NTRS)
Badr, I. H.; Johnson, R. D.; Diaz, M.; Hawthorne, M. F.; Bachas, L. G.; Daunert, S. (Principal Investigator)
2000-01-01
A highly selective optical sensor for chloride, based on the multidentate Lewis acid ionophore [9]mercuracarborand-3, is described herein. This sensor is constructed by embedding the mercuracarborand ionophore, a suitable pH-sensitive lipophilic dye, and lipophilic cationic sites in a plasticized polymeric membrane. The multiple complementary interactions offered by the preorganized complexing cavity of [9]mercuracarborand-3 is shown to control the anion selectivity pattern of the optical film. The film exhibits a significantly enhanced selectivity for chloride over a variety of lipophilic anions such as perchlorate, nitrate, salicylate, and thiocyanate. Furthermore, the optical selectivity coefficients obtained for chloride over other biologically relevant anions are shown to meet the selectivity requirements for the determination of chloride in physiological fluids, unlike previously reported chloride optical sensors. In addition, the optical film responds to chloride reversibly over a wide dynamic range (16 microM-136 mM) with fast response and recovery times.
Zhang, Fang; Ma, Yuxin; Lin, Ling; He, Jianfeng
2012-12-01
Flow cytometry (FCM) is efficient in detecting both abundance and optical physiological parameters including cell size and cellular carbon content-side scatter (SSC), carotenoids-green and orange fluorescence (FL1 and FL2), and red fluorescence-chlorophylls (FL3) can be obtained by FCM. The utilization of these physiological parameters in indicating water masses in Prydz Bay was investigated for the first time. Picophytoplankton were very sensitive to hydrophysical changes and present distinct characteristics of water masses: Picophytoplankton in water closer to the Amery Ice Shelf were more affected by salinity than by temperature, while temperature became more important than salinity the nearer the picophytoplankton were to the deep sea. The picophytoplankton dealt with declines in light by increasing the size of cells, which increase the fixation of carbon. This can also be increased by high temperature and salinity. Pure water masses can increase the content of chlorophylls and cellular carbon. Generally, the distributions of all the five parameters at upper water depths were less affected by temperature and salinity than by water masses; and these parameters can be as indicators to Summer Surface Water (SSW), Winter Water (WW) and Continental Shelf Water (CSW). Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Brenner, Matthew; Mahon, Sari B.; Lee, Jangwoen; Kim, Jae; Mukai, David; Goodman, Seth; Kreuter, Kelly A.; Ahdout, Rebecca; Mohammad, Othman; Sharma, Vijay S.; Blackledge, William; Boss, Gerry R.
2010-01-01
Our purpose is to compare cobinamide to hydroxocobalamin in reversing cyanide (CN)-induced physiologic effects in an animal model using diffuse optical spectroscopy (DOS). Cyanide poisoning is a major threat worldwide. Cobinamide is a novel molecule that can bind two molecules of cyanide, has a much higher binding affinity than hydroxocobalamin, and is more water soluble. We investigated the ability of equimolar doses of cobinamide and hydroxocobalamin to reverse the effects of cyanide exposure in an animal model monitored continuously by DOS. Cyanide toxicity was induced in 16 New Zealand white rabbits by intravenous infusion. Animals were divided into three groups: controls (n=5) received saline following cyanide, hydroxocobalamin (N=6) following cyanide, and cobinamide (N=5) following cyanide. Cobinamide caused significantly faster and more complete recovery of oxy- and deoxyhemoglobin concentrations in cyanide-exposed animals than hydroxocobalamin- or saline-treated animals, with a recovery time constant of 13.8+/-7.1 min compared to 75.4+/-25.1 and 76.4+/-42.7 min, for hydroxocobalamin- and saline-treated animals, respectively (p<0.0001). This study indicates that cobinamide more rapidly and completely reverses the physiologic effects of cyanide than equimolar doses of cobalamin at the dose used in this study, and CN effects and response can be followed noninvasively using DOS.
NASA Astrophysics Data System (ADS)
Davies-Shaw, Dana; Huser, Thomas R.
2008-02-01
We report on the successful development of a custom in vitro system that provides a physiologically relevant means of demonstrating optical methodologies for the calibration and validation of oxygen delivery and hemoglobin oxygen binding dynamics in the brain. While measured optical signals have generally been equated to heme absorbance values that are, in turn, presumed to correspond to oxygen delivery, there has been little specific study of the sigmoidal oxygen binding dynamics of hemoglobin, a tetrameric protein, within physiologically relevant parameters. Our development of this novel analytical device addresses this issue, and is a significant step towards the minimally invasive and real-time monitoring of spatially resolved cognitive processes. As such, it is of particular interest for the detection of autistic brain activity in infants and young children. Moreover, our device and approach bring with them the ability to quantify and spatially resolve oxygen delivery down to volumes relevant to individual cell oxygen uptake, without any oxygen consumption, and with a temporal resolution that is physically unachievable by any oxygen tracking modality such as fMRI etc. Such a capability opens up myriad possibilities for further investigation, such as real-time tumor biopsy and resection; the tracking and quantification of cellular proliferation, as well as metabolic measures of tissue viability, to name but a few. Our system has also been engineered to be synergistic with virtually all imaging techniques, optical and otherwise.
Refractive indices used by the Haag-Streit Lenstar to calculate axial biometric dimensions.
Suheimat, Marwan; Verkicharla, Pavan K; Mallen, Edward A H; Rozema, Jos J; Atchison, David A
2015-01-01
To estimate refractive indices used by the Lenstar biometer to translate measured optical path lengths into geometrical path lengths within the eye. Axial lengths of model eyes were determined using the IOLMaster and Lenstar biometers; comparing those lengths gave an overall eye refractive index estimate for the Lenstar. Using the Lenstar Graphical User Interface, we noticed that boundaries between media could be manipulated and opposite changes in optical path lengths on either side of the boundary could be introduced. Those ratios were combined with the overall eye refractive index to estimate separate refractive indices. Furthermore, Haag-Streit provided us with a template to obtain 'air thicknesses' to compare with geometrical distances. The axial length estimates obtained using the IOLMaster and the Lenstar agreed to within 0.01 mm. Estimates of group refractive indices used in the Lenstar were 1.340, 1.341, 1.415, and 1.354 for cornea, aqueous, lens, and overall eye, respectively. Those refractive indices did not match those of schematic eyes, but were close in the cases of aqueous and lens. Linear equations relating air thicknesses to geometrical thicknesses were consistent with our findings. The Lenstar uses different refractive indices for different ocular media. Some of the refractive indices, such as that for the cornea, are not physiological; therefore, it is likely that the calibrations in the instrument correspond to instrument-specific corrections and are not the real optical path lengths. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.
Boukens, Bastiaan J; Meijborg, Veronique M F; Belterman, Charly N; Opthof, Tobias; Janse, Michiel J; Schuessler, Richard B; Coronel, Ruben; Efimov, Igor R
2017-05-01
The left ventricular (LV) coronary-perfused canine wedge preparation is a model commonly used for studying cardiac repolarization. In wedge studies, transmembrane potentials typically are recorded; whereas, extracellular electrical recordings are commonly used in intact hearts. We compared electrically measured activation recovery interval (ARI) patterns in the intact heart with those recorded at the same location in the LV wedge preparation. We also compared electrically recorded and optically obtained ARIs in the LV wedge preparation. Five Langendorff-perfused canine hearts were paced from the right atrium. Local activation and repolarization times were measured with eight transmural needle electrodes. Subsequently, left ventricular coronary-perfused wedge preparations were prepared from these hearts while the electrodes remained in place. Three electrodes remained at identical positions as in the intact heart. Both electrograms and optical action potentials were recorded (pacing cycle length 400-4000 msec) and activation and repolarization patterns were analyzed. ARIs found in the subepicardium were shorter than in the subendocardium in the LV wedge preparation but not in the intact heart. The transmural ARI gradient recorded at the cut surface of the wedge was not different from that recorded internally. ARIs recorded internally and at the cut surface in the LV wedge preparation, both correlated with optically recorded action potentials. ARI and RT gradients in the LV wedge preparation differed from those in the intact canine heart, implying that those observations in human LV wedge preparations also should be extrapolated to the intact human heart with caution. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
NASA Astrophysics Data System (ADS)
Ong, Yi Hong; Padawer-Curry, Jonah; Finlay, Jarod C.; Kim, Michele M.; Dimofte, Andreea; Cengel, Keith; Zhu, Timothy C.
2018-02-01
PDT efficacy depends on the concentration of photosensitizer, oxygen, and light delivery in patient tissues. In this study, we measure the in-vivo distribution of important dosimetric parameters, namely the tissue optical properties (absorption μa (λ) and scattering μs ' (λ) coefficients), photofrin concentration (cphotofrin), blood oxygen saturation (%StO2), and total hemoglobin concentration (THC), before and after PDT. We characterize the inter- and intra-patient heterogeneity of these quantities and explore how these properties change as a result of PDT treatment. The result suggests the need for real-time dosimetry during PDT to optimize the treatment condition depending on the optical and physiological properties.
Neurophotonics: non-invasive optical techniques for monitoring brain functions
Torricelli, Alessandro; Contini, Davide; Mora, Alberto Dalla; Pifferi, Antonio; Re, Rebecca; Zucchelli, Lucia; Caffini, Matteo; Farina, Andrea; Spinelli, Lorenzo
2014-01-01
Summary The aim of this review is to present the state of the art of neurophotonics, a recently founded discipline lying at the interface between optics and neuroscience. While neurophotonics also includes invasive techniques for animal studies, in this review we focus only on the non-invasive methods that use near infrared light to probe functional activity in the brain, namely the fast optical signal, diffuse correlation spectroscopy, and functional near infrared spectroscopy methods. We also present an overview of the physical principles of light propagation in biological tissues, and of the main physiological sources of signal. Finally, we discuss the open issues in models, instrumentation, data analysis and clinical approaches. PMID:25764252
Remote sensing of the energetic status of plants and ecosystems: optical and odorous signals
NASA Astrophysics Data System (ADS)
Penuelas, J.; Bartrons, M.; Llusia, J.; Filella, I.
2016-12-01
The optical and odorous signals emitted by plants and ecosystems present consistent relationships. They offer promising prospects for continuous local and global monitoring of the energetic status of plants and ecosystems, and therefore of their processing of energy and matter. We will discuss how the energetic status of plants (and ecosystems) resulting from the balance between the supply and demand of reducing power can be assessed biochemically, by the cellular NADPH/NADP ratio, optically, by using the photochemical reflectance index and sun-induced fluorescence as indicators of the dissipation of excess energy and associated physiological processes, and "odorously", by the emission of volatile organic compounds such as isoprenoids, as indicators of an excess of reducing equivalents and also of enhancement of protective converging physiological processes. These signals thus provide information on the energetic status, associated health status, and the functioning of plants and ecosystems. We will present the links among the three signals and will especially discuss the possibility of remotely sense the optical signals linked to carbon uptake and VOCs exchange by plants and ecosystems. These signals and their integration may have multiple applications for environmental and agricultural monitoring, for example, by extending the spatial coverage of carbon-flux and VOCs emission observations to most places and times, and/or for improving the process-based modeling of carbon fixation and isoprenoid emissions from terrestrial vegetation on plant, ecosystemic and global scales. Considerable challenges remain for a wide-scale and routine implementation of these biochemical, optical, and odorous signals for ecosystemic and/or agronomic monitoring and modeling, but its interest for making further steps forward in global ecology, agricultural applications, global carbon cycle, atmospheric science, and earth science warrants further research efforts in this line.
Kim, H W; Matin, A; Rhee, M S
2014-04-01
The aim of this study is to provide understanding of microgravity effects on important food-borne bacteria, Escherichia coli O157:H7 ATCC 35150, ATCC 43889, and ATCC 43895, cultured in nutrient-rich or minimal medium. Physiological characteristics, such as growth (measured by optical density and plating), cell morphology, and pH, were monitored under low-shear modeled microgravity (LSMMG; space conditions) and normal gravity (NG; Earth conditions). In nutrient-rich medium, all strains except ATCC 35150 showed significantly higher optical density after 6 h of culture under LSMMG conditions than under NG conditions (P < 0.05). LSMMG-cultured cells were approximately 1.8 times larger than NG-cultured cells at 24 h; therefore, it was assumed that the increase in optical density was due to the size of individual cells rather than an increase in the cell population. The higher pH of the NG cultures relative to that of the LSMMG cultures suggests that nitrogen metabolism was slower in the latter. After 24 h of culturing in minimal media, LSMMG-cultured cells had an optical density 1.3 times higher than that of NG-cultured cells; thus, the higher optical density in the LSMMG cultures may be due to an increase in both cell size and number. Since bacteria actively grew under LSMMG conditions in minimal medium despite the lower pH, it is of some concern that LSMMG-cultured E. coli O157:H7 may be able to adapt well to acidic environments. These changes may be caused by changes in nutrient metabolism under LSMMG conditions, although this needs to be demonstrated in future studies.
NASA Astrophysics Data System (ADS)
Zhu, Dan
2017-03-01
The tissue optical clearing technique could significantly enhance the biomedical optical imaging depth, but current investigations are mainly limited to in vitro studies. In vivo tissue optical clearing method should be enough rapid, transparent and safe, which makes it more difficult, especially, for hard tissue. During the past years, we developed skull optical clearing methods for in vivo cortical imaging. This presentation will report recent progress in skull optical clearing method, including their efficacy, safety, and applications. The skull optical clearing method is proved to be effective for adult mice ages in different month and permit various imaging techniques to monitor cortical blood flow, blood oxygen, and vascular with high resolution and contrast, not only for local cortex, but also for whole cortex. The long-term and short-term observation show that there is no obvious effect on cortical vascular function when laser speckle contrast imaging and hyperspectral imaging are used to repeatedly image the cortical blood flow, blood oxygen. Finally, we will demonstrate some applications for physiological or pathological situation, including monitoring the anoxia, drug-induced cortical response, et al.
NASA Astrophysics Data System (ADS)
Dong, Erbao; Zhao, Zuhua; Wang, Minjie; Xie, Yanjun; Li, Shidi; Shao, Pengfei; Cheng, Liuquan; Xu, Ronald X.
2015-12-01
Biomedical optical devices are widely used for clinical detection of various tissue anomalies. However, optical measurements have limited accuracy and traceability, partially owing to the lack of effective calibration methods that simulate the actual tissue conditions. To facilitate standardized calibration and performance evaluation of medical optical devices, we develop a three-dimensional fuse deposition modeling (FDM) technique for freeform fabrication of tissue-simulating phantoms. The FDM system uses transparent gel wax as the base material, titanium dioxide (TiO2) powder as the scattering ingredient, and graphite powder as the absorption ingredient. The ingredients are preheated, mixed, and deposited at the designated ratios layer-by-layer to simulate tissue structural and optical heterogeneities. By printing the sections of human brain model based on magnetic resonance images, we demonstrate the capability for simulating tissue structural heterogeneities. By measuring optical properties of multilayered phantoms and comparing with numerical simulation, we demonstrate the feasibility for simulating tissue optical properties. By creating a rat head phantom with embedded vasculature, we demonstrate the potential for mimicking physiologic processes of a living system.
Advances in understanding the optics of shallow water environments, submerged vegetation canopies and seagrass physiology, combined with improved spatial resolution of remote sensing platforms, now enable eelgrass ecosystems to be monitored at a variety of time scales from earth-...
A Multi-Modality CMOS Sensor Array for Cell-Based Assay and Drug Screening.
Chi, Taiyun; Park, Jong Seok; Butts, Jessica C; Hookway, Tracy A; Su, Amy; Zhu, Chengjie; Styczynski, Mark P; McDevitt, Todd C; Wang, Hua
2015-12-01
In this paper, we present a fully integrated multi-modality CMOS cellular sensor array with four sensing modalities to characterize different cell physiological responses, including extracellular voltage recording, cellular impedance mapping, optical detection with shadow imaging and bioluminescence sensing, and thermal monitoring. The sensor array consists of nine parallel pixel groups and nine corresponding signal conditioning blocks. Each pixel group comprises one temperature sensor and 16 tri-modality sensor pixels, while each tri-modality sensor pixel can be independently configured for extracellular voltage recording, cellular impedance measurement (voltage excitation/current sensing), and optical detection. This sensor array supports multi-modality cellular sensing at the pixel level, which enables holistic cell characterization and joint-modality physiological monitoring on the same cellular sample with a pixel resolution of 80 μm × 100 μm. Comprehensive biological experiments with different living cell samples demonstrate the functionality and benefit of the proposed multi-modality sensing in cell-based assay and drug screening.
NASA Astrophysics Data System (ADS)
Senova, Suhan; Scisniak, Ilona; Chiang, Chih Chieh; Doignon, Isabelle; Martin, Claire; Palfi, Stephane; Chaillet, Antoine; Pain, Frederic
2016-03-01
2D surface maps of light distribution and temperature increase were recorded in wild type anesthetized rats brains during 90s light stimulation at 478nm (blue) and 638nm (red) with continuous or pulsed optical stimulations with corresponding power ranging from 100 up to 1200 mW/mm² at the output of an optical fiber. Post mortem maps were recorded in the same animals to assess the cooling effect of blood flow. Post mortem histological analysis were carried out to assess whether high power light stimulations had phototoxic effects or could trigger non physiological functional activation. Temperature increase remains below physiological changes (0,5 -1°) for stimulations up to 400mW/mm² at 40Hz. . Histology did not show significant irreversible modifications or damage to the tissues. The spatial profile of light distribution and heat were correlated and demonstrate as expected a rapid attenuation with diatnce to the fiber.
Polarization-Sensitive Hyperspectral Imaging in vivo: A Multimode Dermoscope for Skin Analysis
NASA Astrophysics Data System (ADS)
Vasefi, Fartash; MacKinnon, Nicholas; Saager, Rolf B.; Durkin, Anthony J.; Chave, Robert; Lindsley, Erik H.; Farkas, Daniel L.
2014-05-01
Attempts to understand the changes in the structure and physiology of human skin abnormalities by non-invasive optical imaging are aided by spectroscopic methods that quantify, at the molecular level, variations in tissue oxygenation and melanin distribution. However, current commercial and research systems to map hemoglobin and melanin do not correlate well with pathology for pigmented lesions or darker skin. We developed a multimode dermoscope that combines polarization and hyperspectral imaging with an efficient analytical model to map the distribution of specific skin bio-molecules. This corrects for the melanin-hemoglobin misestimation common to other systems, without resorting to complex and computationally intensive tissue optical models. For this system's proof of concept, human skin measurements on melanocytic nevus, vitiligo, and venous occlusion conditions were performed in volunteers. The resulting molecular distribution maps matched physiological and anatomical expectations, confirming a technologic approach that can be applied to next generation dermoscopes and having biological plausibility that is likely to appeal to dermatologists.
Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI.
Erdoğan, Sinem B; Yücel, Meryem A; Akın, Ata
2014-02-15
Functional near infrared spectroscopy (fNIRS) is a promising method for monitoring cerebral hemodynamics with a wide range of clinical applications. fNIRS signals are contaminated with systemic physiological interferences from both the brain and superficial tissues, resulting in a poor estimation of the task related neuronal activation. In this study, we use the anatomical resolution of functional magnetic resonance imaging (fMRI) to extract scalp and brain vascular signals separately and construct an optically weighted spatial average of the fMRI blood oxygen level-dependent (BOLD) signal for characterizing the scalp signal contribution to fNIRS measurements. We introduce an extended superficial signal regression (ESSR) method for canceling physiology-based systemic interference where the effects of cerebral and superficial systemic interference are treated separately. We apply and validate our method on the optically weighted BOLD signals, which are obtained by projecting the fMRI image onto optical measurement space by use of the optical forward problem. The performance of ESSR method in removing physiological artifacts is compared to i) a global signal regression (GSR) method and ii) a superficial signal regression (SSR) method. The retrieved signals from each method are compared with the neural signals that represent the 'ground truth' brain activation cleaned from cerebral systemic fluctuations. We report significant improvements in the recovery of task induced neural activation with the ESSR method when compared to the other two methods as reflected in the Pearson R(2) coefficient and mean square error (MSE) metrics (two tailed paired t-tests, p<0.05). The signal quality is enhanced most when ESSR method is applied with higher spatial localization, lower inter-trial variability, a clear canonical waveform and higher contrast-to-noise (CNR) improvement (60%). Our findings suggest that, during a cognitive task i) superficial scalp signal contribution to fNIRS signals varies significantly among different regions on the forehead and ii) using an average scalp measurement together with a local measure of superficial hemodynamics better accounts for the systemic interference inherent in the brain as well as superficial scalp tissue. We conclude that maximizing the overlap between the optical pathlength of superficial and deeper penetration measurements is of crucial importance for accurate recovery of the evoked hemodynamic response in fNIRS recordings. © 2013 Elsevier Inc. All rights reserved.
Pichette, Julien; Laurence, Audrey; Angulo, Leticia; Lesage, Frederic; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frederic
2016-01-01
Abstract. Using light, we are able to visualize the hemodynamic behavior of the brain to better understand neurovascular coupling and cerebral metabolism. In vivo optical imaging of tissue using endogenous chromophores necessitates spectroscopic detection to ensure molecular specificity as well as sufficiently high imaging speed and signal-to-noise ratio, to allow dynamic physiological changes to be captured, isolated, and used as surrogate of pathophysiological processes. An optical imaging system is introduced using a 16-bands on-chip hyperspectral camera. Using this system, we show that up to three dyes can be imaged and quantified in a tissue phantom at video-rate through the optics of a surgical microscope. In vivo human patient data are presented demonstrating brain hemodynamic response can be measured intraoperatively with molecular specificity at high speed. PMID:27752519
Monte Carlo modeling of fluorescence in semi-infinite turbid media
NASA Astrophysics Data System (ADS)
Ong, Yi Hong; Finlay, Jarod C.; Zhu, Timothy C.
2018-02-01
The incident field size and the interplay of absorption and scattering can influence the in-vivo light fluence rate distribution and complicate the absolute quantification of fluorophore concentration in-vivo. In this study, we use Monte Carlo simulations to evaluate the effect of incident beam radius and optical properties to the fluorescence signal collected by isotropic detector placed on the tissue surface. The optical properties at the excitation and emission wavelengths are assumed to be identical. We compute correction factors to correct the fluorescence intensity for variations due to incident field size and optical properties. The correction factors are fitted to a 4-parameters empirical correction function and the changes in each parameter are compared for various beam radius over a range of physiologically relevant tissue optical properties (μa = 0.1 - 1 cm-1 , μs'= 5 - 40 cm-1 ).
Nanoscale optical interferometry with incoherent light
Li, Dongfang; Feng, Jing; Pacifici, Domenico
2016-01-01
Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications. PMID:26880171
Nanoscale optical interferometry with incoherent light.
Li, Dongfang; Feng, Jing; Pacifici, Domenico
2016-02-16
Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications.
Femtosecond laser dissection in C. elegans neural circuits
NASA Astrophysics Data System (ADS)
Samuel, Aravinthan D. T.; Chung, Samuel H.; Clark, Damon A.; Gabel, Christopher V.; Chang, Chieh; Murthy, Venkatesh; Mazur, Eric
2006-02-01
The nematode C. elegans, a millimeter-long roundworm, is a well-established model organism for studies of neural development and behavior, however physiological methods to manipulate and monitor the activity of its neural network have lagged behind the development of powerful methods in genetics and molecular biology. The small size and transparency of C. elegans make the worm an ideal test-bed for the development of physiological methods derived from optics and microscopy. We present the development and application of a new physiological tool: femtosecond laser dissection, which allows us to selectively ablate segments of individual neural fibers within live C. elegans. Femtosecond laser dissection provides a scalpel with submicrometer resolution, and we discuss its application in studies of neural growth, regenerative growth, and the neural basis of behavior.
Lee, Peter; Yan, Ping; Ewart, Paul; Kohl, Peter
2012-01-01
Whole-heart multi-parametric optical mapping has provided valuable insight into the interplay of electro-physiological parameters, and this technology will continue to thrive as dyes are improved and technical solutions for imaging become simpler and cheaper. Here, we show the advantage of using improved 2nd-generation voltage dyes, provide a simple solution to panoramic multi-parametric mapping, and illustrate the application of flash photolysis of caged compounds for studies in the whole heart. For proof of principle, we used the isolated rat whole-heart model. After characterising the blue and green isosbestic points of di-4-ANBDQBS and di-4-ANBDQPQ, respectively, two voltage and calcium mapping systems are described. With two newly custom-made multi-band optical filters, (1) di-4-ANBDQBS and fluo-4 and (2) di-4-ANBDQPQ and rhod-2 mapping are demonstrated. Furthermore, we demonstrate three-parameter mapping using di-4-ANBDQPQ, rhod-2 and NADH. Using off-the-shelf optics and the di-4-ANBDQPQ and rhod-2 combination, we demonstrate panoramic multi-parametric mapping, affording a 360° spatiotemporal record of activity. Finally, local optical perturbation of calcium dynamics in the whole heart is demonstrated using the caged compound, o-nitrophenyl ethylene glycol tetraacetic acid (NP-EGTA), with an ultraviolet light-emitting diode (LED). Calcium maps (heart loaded with di-4-ANBDQPQ and rhod-2) demonstrate successful NP-EGTA loading and local flash photolysis. All imaging systems were built using only a single camera. In conclusion, using novel 2nd-generation voltage dyes, we developed scalable techniques for multi-parametric optical mapping of the whole heart from one point of view and panoramically. In addition to these parameter imaging approaches, we show that it is possible to use caged compounds and ultraviolet LEDs to locally perturb electrophysiological parameters in the whole heart. PMID:22886365
NASA Astrophysics Data System (ADS)
Sugawa, Yoshihiko; Fukuda, Akihiro; Ohmi, Masato
2015-04-01
We have demonstrated dynamic analysis of the physiological function of eccrine sweat glands underneath skin surface by optical coherence tomography (OCT). In this paper, we propose a method for extraction of the specific eccrine sweat gland by means of the connected component extraction process and the adaptive threshold method, where the en face OCT images are constructed by the swept-source OCT. In the experiment, we demonstrate precise measurement of the volume of the sweat gland in response to the external stimulus.
Improved mathematical and computational tools for modeling photon propagation in tissue
NASA Astrophysics Data System (ADS)
Calabro, Katherine Weaver
Light interacts with biological tissue through two predominant mechanisms: scattering and absorption, which are sensitive to the size and density of cellular organelles, and to biochemical composition (ex. hemoglobin), respectively. During the progression of disease, tissues undergo a predictable set of changes in cell morphology and vascularization, which directly affect their scattering and absorption properties. Hence, quantification of these optical property differences can be used to identify the physiological biomarkers of disease with interest often focused on cancer. Diffuse reflectance spectroscopy is a diagnostic tool, wherein broadband visible light is transmitted through a fiber optic probe into a turbid medium, and after propagating through the sample, a fraction of the light is collected at the surface as reflectance. The measured reflectance spectrum can be analyzed with appropriate mathematical models to extract the optical properties of the tissue, and from these, a set of physiological properties. A number of models have been developed for this purpose using a variety of approaches -- from diffusion theory, to computational simulations, and empirical observations. However, these models are generally limited to narrow ranges of tissue and probe geometries. In this thesis, reflectance models were developed for a much wider range of measurement parameters, and influences such as the scattering phase function and probe design were investigated rigorously for the first time. The results provide a comprehensive understanding of the factors that influence reflectance, with novel insights that, in some cases, challenge current assumptions in the field. An improved Monte Carlo simulation program, designed to run on a graphics processing unit (GPU), was built to simulate the data used in the development of the reflectance models. Rigorous error analysis was performed to identify how inaccuracies in modeling assumptions can be expected to affect the accuracy of extracted optical property values from experimentally-acquired reflectance spectra. From this analysis, probe geometries that offer the best robustness against error in estimation of physiological properties from tissue, are presented. Finally, several in vivo studies demonstrating the use of reflectance spectroscopy for both research and clinical applications are presented.
Cooper, Bonnie; Sun, Hao; Lee, Barry B
2012-02-01
Gratings that contain luminance and chromatic components of different spatial frequencies were used to study the segregation of signals in luminance and chromatic pathways. Psychophysical detection and discrimination thresholds to these compound gratings, with luminance and chromatic components of the one either half or double the spatial frequency of the other, were measured in human observers. Spatial frequency tuning curves for detection of compound gratings followed the envelope of those for luminance and chromatic gratings. Different grating types were discriminable at detection threshold. Fourier analysis of physiological responses of macaque retinal ganglion cells to compound waveforms showed chromatic information to be restricted to the parvocellular pathway and luminance information to the magnocellular pathway. Taken together, the human psychophysical and macaque physiological data support the strict segregation of luminance and chromatic information in independent channels, with the magnocellular and parvocellular pathways, respectively, serving as likely the physiological substrates. © 2012 Optical Society of America
Individual Colorimetric Observer Model
Asano, Yuta; Fairchild, Mark D.; Blondé, Laurent
2016-01-01
This study proposes a vision model for individual colorimetric observers. The proposed model can be beneficial in many color-critical applications such as color grading and soft proofing to assess ranges of color matches instead of a single average match. We extended the CIE 2006 physiological observer by adding eight additional physiological parameters to model individual color-normal observers. These eight parameters control lens pigment density, macular pigment density, optical densities of L-, M-, and S-cone photopigments, and λmax shifts of L-, M-, and S-cone photopigments. By identifying the variability of each physiological parameter, the model can simulate color matching functions among color-normal populations using Monte Carlo simulation. The variabilities of the eight parameters were identified through two steps. In the first step, extensive reviews of past studies were performed for each of the eight physiological parameters. In the second step, the obtained variabilities were scaled to fit a color matching dataset. The model was validated using three different datasets: traditional color matching, applied color matching, and Rayleigh matches. PMID:26862905
NASA Astrophysics Data System (ADS)
Mooser, Matthias; Burri, Christian; Stoller, Markus; Luggen, David; Peyer, Michael; Arnold, Patrik; Meier, Christoph; Považay, Boris
2017-07-01
Ocular optical coherence tomography at the wavelengths ranges of 850 and 1060 nm have been integrated with a confocal scanning laser ophthalmoscope eye-tracker as a clinical commercial-class system. Collinear optics enables an exact overlap of the different channels to produce precisely overlapping depth-scans for evaluating the similarities and differences between the wavelengths to extract additional physiologic information. A reliable segmentation algorithm utilizing Graphcuts has been implemented and applied to automatically extract retinal and choroidal shape in cross-sections and volumes. The device has been tested in normals and pathologies including a cross-sectional and longitudinal study of myopia progress and control with a duplicate instrument in Asian children.
Brown, J Quincy; Vishwanath, Karthik; Palmer, Gregory M; Ramanujam, Nirmala
2009-02-01
Methods of optical spectroscopy that provide quantitative, physically or physiologically meaningful measures of tissue properties are an attractive tool for the study, diagnosis, prognosis, and treatment of various cancers. Recent development of methodologies to convert measured reflectance and fluorescence spectra from tissue to cancer-relevant parameters such as vascular volume, oxygenation, extracellular matrix extent, metabolic redox states, and cellular proliferation have significantly advanced the field of tissue optical spectroscopy. The number of publications reporting quantitative tissue spectroscopy results in the UV-visible wavelength range has increased sharply in the past three years, and includes new and emerging studies that correlate optically measured parameters with independent measures such as immunohistochemistry, which should aid in increased clinical acceptance of these technologies.
Target detection in insects: optical, neural and behavioral optimizations.
Gonzalez-Bellido, Paloma T; Fabian, Samuel T; Nordström, Karin
2016-12-01
Motion vision provides important cues for many tasks. Flying insects, for example, may pursue small, fast moving targets for mating or feeding purposes, even when these are detected against self-generated optic flow. Since insects are small, with size-constrained eyes and brains, they have evolved to optimize their optical, neural and behavioral target visualization solutions. Indeed, even if evolutionarily distant insects display different pursuit strategies, target neuron physiology is strikingly similar. Furthermore, the coarse spatial resolution of the insect compound eye might actually be beneficial when it comes to detection of moving targets. In conclusion, tiny insects show higher than expected performance in target visualization tasks. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Biophotonics Master studies: teaching and training experience at University of Latvia
NASA Astrophysics Data System (ADS)
Spigulis, Janis
2007-06-01
Two-year program for Master's studies on Biophotonics (Biomedical Optics) has been originally developed and carried out at University of Latvia since 1995. The Curriculum contains basic subjects like Fundamentals of Biomedical Optics, Medical Lightguides, Anatomy and Physiology, Lasers and Non-coherent Light Sources, Basic Physics, etc. Student laboratories, special English Terminology and Laboratory-Clinical Praxis are also involved as the training components, and Master project is the final step for the degree award. Life-long learning is supported by several E-courses and an extensive short course for medical laser users "Lasers and Bio-optics in Medicine". Recently a new inter-university European Social Fund project was started to adapt the program accordingly to the Bologna Declaration guidelines.
An insect-inspired model for visual binding I: learning objects and their characteristics.
Northcutt, Brandon D; Dyhr, Jonathan P; Higgins, Charles M
2017-04-01
Visual binding is the process of associating the responses of visual interneurons in different visual submodalities all of which are responding to the same object in the visual field. Recently identified neuropils in the insect brain termed optic glomeruli reside just downstream of the optic lobes and have an internal organization that could support visual binding. Working from anatomical similarities between optic and olfactory glomeruli, we have developed a model of visual binding based on common temporal fluctuations among signals of independent visual submodalities. Here we describe and demonstrate a neural network model capable both of refining selectivity of visual information in a given visual submodality, and of associating visual signals produced by different objects in the visual field by developing inhibitory neural synaptic weights representing the visual scene. We also show that this model is consistent with initial physiological data from optic glomeruli. Further, we discuss how this neural network model may be implemented in optic glomeruli at a neuronal level.
Optical tomography as adjunct to x-ray mammography: methods and results
NASA Astrophysics Data System (ADS)
Khayat, Mario; Ichalalene, Zahia; Mincu, Niculae; Leblond, Fredéric; Guilman, Olga; Djeziri, Salim
2007-02-01
Recent years have seen significant efforts deployed to apply optical imaging techniques in clinical indications. Optical mammography as an adjunct to X-ray mammography is one such application. 3D optical mammography relies on the sensitivity of near-infrared light to endogenous breast chromophores in order to generate in vivo functional views of the breast. This work presents prospective tissue characterization results from a multi-site clinical study targeting optical tomography as an adjunct to conventional mammography. A 2 nd -generation multi-wavelength time-domain acquisition system was used to scan a wide population of women presenting normal or suspicious X-ray mammograms. Application specific algorithms based on a diffusive model of light transport were used to quantify the breast's optical properties and derive 3D images of physiological indices. Using histopathological findings as a gold standard, results confirm that optically derived parameters provide statistically significant discrimination between malignant and benign tissue in wide population of subjects. The methodology developed for case reviews, lesion delineation and characterization allows for better translation of the optical data to the more traditional x-ray paradigm while maintaining efficacy. They also point to the need for guidelines that facilitate correlation of optical data if those results are to be confirmed in a clinical setting.
THz spectroscopy of whole blood, plasma and cells in mice of SHR line with various pathology
NASA Astrophysics Data System (ADS)
Panchenko, A.; Tyndyk, M.; Smolyanskaya, O.; Sulatskiy, M.; Kravtsenyuk, O.; Balbekin, N.; Khodzitsky, M.
2016-08-01
This paper is devoted to studying of optical properties of whole blood and blood plasma in SHR mice grafted Ehrlich's carcinoma and mice with chronic inflammation at the terahertz frequency range. Additionally physiological saline solution suspension of ascites Ehrlich's carcinoma cells was explored.
Brenner, Matthew; Mahon, Sari B.; Lee, Jangwoen; Kim, Jae; Mukai, David; Goodman, Seth; Kreuter, Kelly A.; Ahdout, Rebecca; Mohammad, Othman; Sharma, Vijay S.; Blackledge, William; Boss, Gerry R.
2010-01-01
Our purpose is to compare cobinamide to hydroxocobalamin in reversing cyanide (CN)–induced physiologic effects in an animal model using diffuse optical spectroscopy (DOS). Cyanide poisoning is a major threat worldwide. Cobinamide is a novel molecule that can bind two molecules of cyanide, has a much higher binding affinity than hydroxocobalamin, and is more water soluble. We investigated the ability of equimolar doses of cobinamide and hydroxocobalamin to reverse the effects of cyanide exposure in an animal model monitored continuously by DOS. Cyanide toxicity was induced in 16 New Zealand white rabbits by intravenous infusion. Animals were divided into three groups: controls (n=5) received saline following cyanide, hydroxocobalamin (N=6) following cyanide, and cobinamide (N=5) following cyanide. Cobinamide caused significantly faster and more complete recovery of oxy- and deoxyhemoglobin concentrations in cyanide-exposed animals than hydroxocobalamin- or saline-treated animals, with a recovery time constant of 13.8±7.1 min compared to 75.4±25.1 and 76.4±42.7 min, for hydroxocobalamin- and saline-treated animals, respectively (p<0.0001). This study indicates that cobinamide more rapidly and completely reverses the physiologic effects of cyanide than equimolar doses of cobalamin at the dose used in this study, and CN effects and response can be followed noninvasively using DOS. PMID:20210475
NASA Astrophysics Data System (ADS)
Masciotti, James M.; Rahim, Shaheed; Grover, Jarrett; Hielscher, Andreas H.
2007-02-01
We present a design for frequency domain instrument that allows for simultaneous gathering of magnetic resonance and diffuse optical tomographic imaging data. This small animal imaging system combines the high anatomical resolution of magnetic resonance imaging (MRI) with the high temporal resolution and physiological information provided by diffuse optical tomography (DOT). The DOT hardware comprises laser diodes and an intensified CCD camera, which are modulated up to 1 GHz by radio frequency (RF) signal generators. An optical imaging head is designed to fit inside the 4 cm inner diameter of a 9.4 T MRI system. Graded index fibers are used to transfer light between the optical hardware and the imaging head within the RF coil. Fiducial markers are integrated into the imaging head to allow the determination of the positions of the source and detector fibers on the MR images and to permit co-registration of MR and optical tomographic images. Detector fibers are arranged compactly and focused through a camera lens onto the photocathode of the intensified CCD camera.
Optical characterization of murine model's in-vivo skin using Mueller matrix polarimetric imaging
NASA Astrophysics Data System (ADS)
Mora-Núñez, Azael; Martinez-Ponce, Geminiano; Garcia-Torales, Guillermo
2015-12-01
Mueller matrix polarimetric imaging (MMPI) provides a complete characterization of an anisotropic optical medium. Subsequent single value decomposition allows image interpretation in terms of basic optical anisotropies, such as depolarization, diattenuation, and retardance. In this work, healthy in-vivo skin at different anatomical locations of a biological model (Rattus norvegicus) was imaged by the MMPI technique using 532nm coherent illumination. The body parts under study were back, abdomen, tail, and calvaria. Because skin components are randomly distributed and skin thickness depends on its location, polarization measures arise from the average over a single detection element (pixel) and on the number of free optical paths, respectively. Optical anisotropies over the imaged skin indicates, mainly, the presence of components related to the physiology of the explored region. In addition, a MMPI-based comparison between a tumor on the back of one test subject and proximal healthy skin was made. The results show that the single values of optical anisotropies can be helpful in distinguishing different areas of in-vivo skin and also lesions.
Real-time high-velocity resolution color Doppler OCT
NASA Astrophysics Data System (ADS)
Westphal, Volker; Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.
2001-05-01
Color Doppler optical coherence tomography (CDOCT), also called Optical Doppler Tomography) is a noninvasive optical imaging technique, which allows for micron-scale physiological flow mapping simultaneous with morphological OCT imaging. Current systems for real-time endoscopic optical coherence tomography (EOCT) would be enhanced by the capability to visualize sub-surface blood flow for applications in early cancer diagnosis and the management of bleeding ulcers. Unfortunately, previous implementations of CDOCT have either been sufficiently computationally expensive (employing Fourier or Hilbert transform techniques) to rule out real-time imaging of flow, or have been restricted to imaging of excessively high flow velocities when used in real time. We have developed a novel Doppler OCT signal-processing strategy capable of imaging physiological flow rates in real time. This strategy employs cross-correlation processing of sequential A-scans in an EOCT image, as opposed to autocorrelation processing as described previously. To measure Doppler shifts in the kHz range using this technique, it was necessary to stabilize the EOCT interferometer center frequency, eliminate parasitic phase noise, and to construct a digital cross correlation unit able to correlate signals of megahertz bandwidth by a fixed lag of up to a few ms. The performance of the color Doppler OCT system was demonstrated in a flow phantom, demonstrating a minimum detectable flow velocity of ~0.8 mm/s at a data acquisition rate of 8 images/second (with 480 A-scans/image) using a handheld probe. Dynamic flow as well as using it freehanded was shown. Flow was also detectable in a phantom in combination with a clinical usable endoscopic probe.
In vivo optical coherence tomography of stimulus-evoked intrinsic optical signals in mouse retinas
NASA Astrophysics Data System (ADS)
Wang, Benquan; Lu, Yiming; Yao, Xincheng
2016-09-01
Intrinsic optical signal (IOS) imaging promises a noninvasive method for advanced study and diagnosis of eye diseases. Before pursuing clinical applications, it is essential to understand anatomic and physiological sources of retinal IOSs and to establish the relationship between IOS distortions and eye diseases. The purpose of this study was designed to demonstrate the feasibility of in vivo IOS imaging of mouse models. A high spatiotemporal resolution spectral domain optical coherence tomography (SD-OCT) was employed for depth-resolved retinal imaging. A custom-designed animal holder equipped with ear bar and bite bar was used to minimize eye movements. Dynamic OCT imaging revealed rapid IOS from the photoreceptor's outer segment immediately after the stimulation delivery, and slow IOS changes were observed from inner retinal layers. Comparative photoreceptor IOS and electroretinography recordings suggested that the fast photoreceptor IOS may be attributed to the early stage of phototransduction before the hyperpolarization of retinal photoreceptor.
Estimates of Leaf Relative Water Content from Optical Polarization Measurements
NASA Astrophysics Data System (ADS)
Dahlgren, R. P.; Vanderbilt, V. C.; Daughtry, C. S. T.
2017-12-01
Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Existing approaches to remotely sensing canopy water status, such as the Crop Water Stress Index (CWSI) and the Equivalent Water Thickness (EWT), have limitations. The CWSI, based upon remotely sensing canopy radiant temperature in the thermal infrared spectral region, does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWT is based upon the physics of water-light interaction in the 900-2000nm spectral region, not plant physiology. Our goal, development of a remote sensing technique for estimating plant water status based upon measurements in the VIS/NIR spectral region, would potentially provide remote sensing access to plant dehydration physiology - to the cellular photochemistry and structural changes associated with water deficits in leaves. In this research, we used optical, crossed polarization filters to measure the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, for 78 corn (Zea mays) and soybean (Glycine max) leaves having relative water contents (RWC) between 0.60 and 0.98. Our results show that as RWC decreases R increases while T decreases. Our results tie R and T changes in the VIS/NIR to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future.
Yang, Hongli; Downs, J. Crawford; Burgoyne, Claude F.
2009-01-01
Purpose To characterize physiologic inter-eye differences in optic nerve head (ONH) architecture within six normal rhesus monkeys and compare them to inter-eye differences within three previously-reported cynomolgus monkeys with early experimental glaucoma (EEG). Methods Trephinated ONH and peripapillary sclera from both eyes of six normal monkeys were serial sectioned, 3D reconstructed, 3D delineated and parameterized. For each normal animal, and each parameter, physiologic inter-eye difference (PID) was calculated (both overall and regionally) by converting all OS data to OD configuration and subtracting the OS from the OD value and Physiologic Inter-eye Percent Difference (PIPD) was calculated as the PID divided by the measurement mean of the two eyes. For each EEG monkey, inter-eye (EEG minus normal) differences and percent differences for each parameter overall and regionally were compared to the PID and PIPD Maximums. Results For all parameters the PID Maximums were relatively small overall. Compared to overall PID maximums, overall inter-eye differences in EEG monkeys were greatest for laminar deformation and thickening, posterior scleral canal enlargement, cupping and prelaminar neural tissue thickening. Compared to the regional PID Maximums, the lamina cribrosa was posteriorly deformed centrally, inferiorly, inferonasally and superiorly and was thickened centrally. The prelaminar neural tissues were thickened inferiorly, inferonasally and superiorly. Conclusion These data provide the first characterization of PID/PIPD maximums for ONH neural and connective tissue parameters in normal monkeys and serve to further clarify the location and character of early ONH change in experimental glaucoma. However, because of the species differences, the findings in EEG need to be confirmed within EEG rhesus monkey eyes. PMID:18775866
NASA Astrophysics Data System (ADS)
Gurkov, Anton; Shchapova, Ekaterina; Bedulina, Daria; Baduev, Boris; Borvinskaya, Ekaterina; Meglinski, Igor; Timofeyev, Maxim
2016-11-01
Remote in vivo scanning of physiological parameters is a major trend in the development of new tools for the fields of medicine and animal physiology. For this purpose, a variety of implantable optical micro- and nanosensors have been designed for potential medical applications. At the same time, the important area of environmental sciences has been neglected in the development of techniques for remote physiological measurements. In the field of environmental monitoring and related research, there is a constant demand for new effective and quick techniques for the stress assessment of aquatic animals, and the development of proper methods for remote physiological measurements in vivo may significantly increase the precision and throughput of analyses in this field. In the present study, we apply pH-sensitive microencapsulated biomarkers to remotely monitor the pH of haemolymph in vivo in endemic amphipods from Lake Baikal, and we compare the suitability of this technique for stress assessment with that of common biochemical methods. For the first time, we demonstrate the possibility of remotely detecting a change in a physiological parameter in an aquatic organism under ecologically relevant stressful conditions and show the applicability of techniques using microencapsulated biomarkers for remote physiological measurements in environmental monitoring.
IOL calculation using paraxial matrix optics.
Haigis, Wolfgang
2009-07-01
Matrix methods have a long tradition in paraxial physiological optics. They are especially suited to describe and handle optical systems in a simple and intuitive manner. While these methods are more and more applied to calculate the refractive power(s) of toric intraocular lenses (IOL), they are hardly used in routine IOL power calculations for cataract and refractive surgery, where analytical formulae are commonly utilized. Since these algorithms are also based on paraxial optics, matrix optics can offer rewarding approaches to standard IOL calculation tasks, as will be shown here. Some basic concepts of matrix optics are introduced and the system matrix for the eye is defined, and its application in typical IOL calculation problems is illustrated. Explicit expressions are derived to determine: predicted refraction for a given IOL power; necessary IOL power for a given target refraction; refractive power for a phakic IOL (PIOL); predicted refraction for a thick lens system. Numerical examples with typical clinical values are given for each of these expressions. It is shown that matrix optics can be applied in a straightforward and intuitive way to most problems of modern routine IOL calculation, in thick or thin lens approximation, for aphakic or phakic eyes.
Course for undergraduate students: analysis of the retinal image quality of a human eye model
NASA Astrophysics Data System (ADS)
del Mar Pérez, Maria; Yebra, Ana; Fernández-Oliveras, Alicia; Ghinea, Razvan; Ionescu, Ana M.; Cardona, Juan C.
2014-07-01
In teaching of Vision Physics or Physiological Optics, the knowledge and analysis of the aberration that the human eye presents are of great interest, since this information allows a proper evaluation of the quality of the retinal image. The objective of the present work is that the students acquire the required competencies which will allow them to evaluate the optical quality of the human visual system for emmetropic and ammetropic eye, both with and without the optical compensation. For this purpose, an optical system corresponding to the Navarro-Escudero eye model, which allows calculating and evaluating the aberration of this eye model in different ammetropic conditions, was developed employing the OSLO LT software. The optical quality of the visual system will be assessed through determinations of the third and fifth order aberration coefficients, the impact diagram, wavefront analysis, calculation of the Point Spread Function and the Modulation Transfer Function for ammetropic individuals, with myopia or hyperopia, both with or without the optical compensation. This course is expected to be of great interest for student of Optics and Optometry Sciences, last courses of Physics or medical sciences related with human vision.
NASA Astrophysics Data System (ADS)
Guo, Shijun; Lyu, Jie; Zhang, Peiming
2017-08-01
In this paper, the teaching goals, teaching contents and teaching methods in biomedical optics course construction are discussed. From the dimension of teaching goals, students should master the principle of optical inspection on the human body, diagnosis and treatment of methodology and instruments, through the study of the theory and practice of this course, and can utilize biomedical optics methods to solve practical problems in the clinical medical engineering practice. From the dimension of teaching contents, based on the characteristics of biomedical engineering in medical colleges, the organic integration of engineering aspects, medical optical instruments, and biomedical aspects dispersed in human anatomy, human physiology, clinical medicine fundamental related to the biomedical optics is build. Noninvasive measurement of the human body composition and noninvasive optical imaging of the human body were taken as actual problems in biomedical optics fields. Typical medical applications such as eye optics and laser medicine were also integrated into the theory and practice teaching. From the dimension of teaching methods, referencing to organ-system based medical teaching mode, optical principle and instrument principle were taught by teachers from school of medical instruments, and the histological characteristics and clinical actual need in areas such as digestive diseases and urinary surgery were taught by teachers from school of basic medicine or clinical medicine of medical colleges. Furthermore, clinical application guidance would be provided by physician and surgeons in hospitals.
Chen, Yu-Wen; Guo, Jun-Yen; Tzeng, Shih-Yu; Chou, Ting-Chun; Lin, Ming-Jen; Huang, Lynn Ling-Huei; Yang, Chao-Chun; Hsu, Chao-Kai; Tseng, Sheng-Hao
2016-01-01
Spatially resolved diffuse reflectance spectroscopy (SRDRS) has been employed to quantify tissue optical properties and its interrogation volume is majorly controlled by the source-to-detector separations (SDSs). To noninvasively quantify properties of dermis, a SRDRS setup that includes SDS shorter than 1 mm is required. It will be demonstrated in this study that Monte Carlo simulations employing the Henyey-Greenstein phase function cannot always precisely predict experimentally measured diffuse reflectance at such short SDSs, and we speculated this could be caused by the non-negligible backward light scattering at short SDSs that cannot be properly modeled by the Henyey-Greenstein phase function. To accurately recover the optical properties and functional information of dermis using SRDRS, we proposed the use of the modified two-layer (MTL) geometry. Monte Carlo simulations and phantom experiment results revealed that the MTL probing geometry was capable of faithfully recovering the optical properties of upper dermis. The capability of the MTL geometry in probing the upper dermis properties was further verified through a swine study, and it was found that the measurement results were reasonably linked to histological findings. Finally, the MTL probe was utilized to study psoriatic lesions. Our results showed that the MTL probe was sensitive to the physiological condition of tissue volumes within the papillary dermis and could be used in studying the physiology of psoriasis. PMID:26977361
Chen, Yu-Wen; Guo, Jun-Yen; Tzeng, Shih-Yu; Chou, Ting-Chun; Lin, Ming-Jen; Huang, Lynn Ling-Huei; Yang, Chao-Chun; Hsu, Chao-Kai; Tseng, Sheng-Hao
2016-02-01
Spatially resolved diffuse reflectance spectroscopy (SRDRS) has been employed to quantify tissue optical properties and its interrogation volume is majorly controlled by the source-to-detector separations (SDSs). To noninvasively quantify properties of dermis, a SRDRS setup that includes SDS shorter than 1 mm is required. It will be demonstrated in this study that Monte Carlo simulations employing the Henyey-Greenstein phase function cannot always precisely predict experimentally measured diffuse reflectance at such short SDSs, and we speculated this could be caused by the non-negligible backward light scattering at short SDSs that cannot be properly modeled by the Henyey-Greenstein phase function. To accurately recover the optical properties and functional information of dermis using SRDRS, we proposed the use of the modified two-layer (MTL) geometry. Monte Carlo simulations and phantom experiment results revealed that the MTL probing geometry was capable of faithfully recovering the optical properties of upper dermis. The capability of the MTL geometry in probing the upper dermis properties was further verified through a swine study, and it was found that the measurement results were reasonably linked to histological findings. Finally, the MTL probe was utilized to study psoriatic lesions. Our results showed that the MTL probe was sensitive to the physiological condition of tissue volumes within the papillary dermis and could be used in studying the physiology of psoriasis.
Tan, Youhua; Sun, Dong; Wang, Jinzhi; Huang, Wenhao
2010-07-01
The physiological functions of human red blood cells (RBCs) play a crucial role to human health and are greatly influenced by their mechanical properties. Any alteration of the cell mechanics may cause human diseases. The osmotic condition is an important factor to the physiological environment, but its effect on RBCs has been little studied. To investigate this effect, robotic manipulation technology with optical tweezers is utilized in this paper to characterize the mechanical properties of RBCs in different osmotic conditions. The effectiveness of this technology is demonstrated first in the manipulation of microbeads. Then the optical tweezers are used to stretch RBCs to acquire the force-deformation relationships. To extract cell properties from the experimental data, a mechanical model is developed for RBCs in hypotonic conditions by extending our previous work , and the finite element model is utilized for RBCs in isotonic and hypertonic conditions. Through comparing the modeling results to the experimental data, the shear moduli of RBCs in different osmotic solutions are characterized, which shows that the cell stiffness increases with elevated osmolality. Furthermore, the property variation and potential biomedical significance of this study are discussed. In conclusion, this study indicates that the osmotic stress has a significant effect on the cell properties of human RBCs, which may provide insight into the pathology analysis and therapy of some human diseases.
Visual-servoing optical microscopy
Callahan, Daniel E.; Parvin, Bahram
2009-06-09
The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time: quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.
Visual-servoing optical microscopy
Callahan, Daniel E [Martinez, CA; Parvin, Bahram [Mill Valley, CA
2011-05-24
The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.
Visual-servoing optical microscopy
Callahan, Daniel E; Parvin, Bahram
2013-10-01
The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.
Rainbow Plasmonic Nanobubbles: Synergistic Activation of Gold Nanoparticle Clusters
Lukianova-Hleb, Ekaterina Y; Oginsky, Alexander O; Shenefelt, Derek L; Drezek, Rebekah A; Hafner, Jason H; Farach-Carson, Mary C; Lapotko, Dmitri O
2011-01-01
The synergistic physical and biological effects of selective targeting and activation of plasmonic nanoparticles were studied for a transient vapor nanobubble mode. Simultaneous optical activation of two plasmon resonances in multi-nanoparticle clusters significantly improved the selectivity and efficacy of the nanobubble generation through and was termed “rainbow plasmonic nanobubbles.” The rainbow nanobubble mechanism has been studied in water and in living cells in vitro. This mechanism provided maximal selectivity of the nanobubble generation in both models and therefore, can the therapeutic selectivity and optical contrast of gold nanoparticles in a heterogeneous physiological microenvironment at cell level. PMID:21804947
In vivo multimodal nonlinear optical imaging of mucosal tissue
NASA Astrophysics Data System (ADS)
Sun, Ju; Shilagard, Tuya; Bell, Brent; Motamedi, Massoud; Vargas, Gracie
2004-05-01
We present a multimodal nonlinear imaging approach to elucidate microstructures and spectroscopic features of oral mucosa and submucosa in vivo. The hamster buccal pouch was imaged using 3-D high resolution multiphoton and second harmonic generation microscopy. The multimodal imaging approach enables colocalization and differentiation of prominent known spectroscopic and structural features such as keratin, epithelial cells, and submucosal collagen at various depths in tissue. Visualization of cellular morphology and epithelial thickness are in excellent agreement with histological observations. These results suggest that multimodal nonlinear optical microscopy can be an effective tool for studying the physiology and pathology of mucosal tissue.
Rogge, Ryan A; Hansen, Jeffrey C
2015-01-01
Sedimentation velocity experiments measure the transport of molecules in solution under centrifugal force. Here, we describe a method for monitoring the sedimentation of very large biological molecular assemblies using the interference optical systems of the analytical ultracentrifuge. The mass, partial-specific volume, and shape of macromolecules in solution affect their sedimentation rates as reflected in the sedimentation coefficient. The sedimentation coefficient is obtained by measuring the solute concentration as a function of radial distance during centrifugation. Monitoring the concentration can be accomplished using interference optics, absorbance optics, or the fluorescence detection system, each with inherent advantages. The interference optical system captures data much faster than these other optical systems, allowing for sedimentation velocity analysis of extremely large macromolecular complexes that sediment rapidly at very low rotor speeds. Supramolecular oligomeric complexes produced by self-association of 12-mer chromatin fibers are used to illustrate the advantages of the interference optics. Using interference optics, we show that chromatin fibers self-associate at physiological divalent salt concentrations to form structures that sediment between 10,000 and 350,000S. The method for characterizing chromatin oligomers described in this chapter will be generally useful for characterization of any biological structures that are too large to be studied by the absorbance optical system. © 2015 Elsevier Inc. All rights reserved.
Report on a fundamental chromaticity diagram with physiologically significant axes
NASA Astrophysics Data System (ADS)
Vienot, Francoise
2002-06-01
The scope of TC 1-36 is to supplement the CIE colorimetric observers with color matching data that make a clear connection between the color specification and the underlying physiology. After careful examination of color matching data, TC 1- 36 has agreed on proposing a continuous fundamental observer with data from 10° to 1°. The 10° color matching measurements of Stiles and Burch (1959) will provide the basic data for this continuous fundamental observer. Fundamental response curves will be derived as a function of field size, taking into account the macular pigment, the ocular media and the photopigment optical densities.
The Physiology of Vision and the Process of Writing.
ERIC Educational Resources Information Center
Roberts, David Harrill
Acknowledging the importance of sight to the writing process, the paper elucidates the processes of vision related to the composing process. In the opening section the physics of light and vision, optic neuroanatomy, and cortical responses to visual stimuli are explained. Next, theories of vision and data mapping are examined and their…
Characterization of an enantioselective odorant receptor in the yellow fever mosquito aedes aegypti
USDA-ARS?s Scientific Manuscript database
In chemical communication systems, optical isomers have been shown to be differentially active at the physiological and behavioral levels. One enantiomer may serve as an attractant for one species while its antipode may function as a disruptant or repellent in another species or even within the sam...
Tankam, Patrice; He, Zhiguo; Chu, Ying-Ju; Won, Jungeun; Canavesi, Cristina; Lepine, Thierry; Hindman, Holly B; Topham, David J; Gain, Philippe; Thuret, Gilles; Rolland, Jannick P
2015-03-15
Gabor-domain optical coherence microscopy (GD-OCM) was applied ex vivo in the investigation of corneal cells and their surrounding microstructures with particular attention to the corneal endothelium. Experiments using fresh pig eyeballs, excised human corneal buttons from patients with Fuchs' endothelial dystrophy (FED), and healthy donor corneas were conducted. Results show in a large field of view (1 mm×1 mm) high definition images of the different cell types and their surrounding microstructures through the full corneal thickness at both the central and peripheral locations of porcine corneas. Particularly, an image of the endothelial cells lining the bottom of the cornea is highlighted. As compared to healthy human corneas, the corneas of individuals with FED show characteristic microstructural alterations of the Descemet's membrane and increased size and number of keratocytes. The GD-OCM-based imaging system developed may constitute a novel tool for corneal imaging and disease diagnosis. Also, importantly, it may provide insights into the mechanism of corneal physiology and pathology, particularly in diseases of the corneal endothelium.
Microgravity-Induced Fluid Shift and Ophthalmic Changes
Nelson, Emily S.; Mulugeta, Lealem; Myers, Jerry G.
2014-01-01
Although changes to visual acuity in spaceflight have been observed in some astronauts since the early days of the space program, the impact to the crew was considered minor. Since that time, missions to the International Space Station have extended the typical duration of time spent in microgravity from a few days or weeks to many months. This has been accompanied by the emergence of a variety of ophthalmic pathologies in a significant proportion of long-duration crewmembers, including globe flattening, choroidal folding, optic disc edema, and optic nerve kinking, among others. The clinical findings of affected astronauts are reminiscent of terrestrial pathologies such as idiopathic intracranial hypertension that are characterized by high intracranial pressure. As a result, NASA has placed an emphasis on determining the relevant factors and their interactions that are responsible for detrimental ophthalmic response to space. This article will describe the Visual Impairment and Intracranial Pressure syndrome, link it to key factors in physiological adaptation to the microgravity environment, particularly a cephalad shifting of bodily fluids, and discuss the implications for ocular biomechanics and physiological function in long-duration spaceflight. PMID:25387162
NASA Astrophysics Data System (ADS)
Cardoso, Vanessa F.; Martins, Pedro; Botelho, Gabriela; Rebouta, Luis; Lanceros-Méndez, Senentxu; Minas, Graca
2010-08-01
Biochemical analysis of physiological fluids using, for example, lab-on-a-chip devices requires accurate mixing of two or more fluids. This mixing can be assisted by acoustic microagitation using a piezoelectric material, such as the β-phase of poly(vinylidene fluoride) (β-PVDF). If the analysis is performed using optical absorption spectroscopy and β-PVDF is located in the optical path, the material and its conductive electrodes must be transparent. Moreover, if, to improve the transmission of the ultrasonic waves to the fluids, the piezoelectric transducer is placed inside the fluidic structures, its degradation must be assessed. In this paper, we report on the degradation properties of transparent conductive oxides, namely, indium tin oxide (ITO) and aluminum-doped zinc oxide, when they are used as electrodes for providing acoustic microagitation. The latter promotes mixing of chemicals involved in the measurement of uric acid concentration in physiological fluids. The results are compared with those for aluminum electrodes. We find that β-PVDF samples with ITO electrodes do not degrade either with or without acoustic microagitation.
NASA Technical Reports Server (NTRS)
Yang, Ye; Soyemi, Olusola O.; Landry, Michelle R.; Soller, Babs R.
2005-01-01
The influence of fat thickness on the diffuse reflectance spectra of muscle in the near infrared (NIR) region is studied by Monte Carlo simulations of a two-layer structure and with phantom experiments. A polynomial relationship was established between the fat thickness and the detected diffuse reflectance. The influence of a range of optical coefficients (absorption and reduced scattering) for fat and muscle over the known range of human physiological values was also investigated. Subject-to-subject variation in the fat optical coefficients and thickness can be ignored if the fat thickness is less than 5 mm. A method was proposed to correct the fat thickness influence. c2005 Optical Society of America.
Non-cladding optical fiber is available for detecting blood or liquids.
Takeuchi, Akihiro; Miwa, Tomohiro; Shirataka, Masuo; Sawada, Minoru; Imaizumi, Haruo; Sugibuchi, Hiroyuki; Ikeda, Noriaki
2010-10-01
Serious accidents during hemodialysis such as an undetected large amount of blood loss are often caused by venous needle dislodgement. A special plastic optical fiber with a low refractive index was developed for monitoring leakage in oil pipelines and in other industrial fields. To apply optical fiber as a bleeding sensor, we studied optical effects of soaking the fiber with liquids and blood in light-loss experimental settings. The non-cladding optical fiber that was used was the fluoropolymer, PFA fiber, JUNFLON™, 1 mm in diameter and 2 m in length. Light intensity was studied with an ordinary basic circuit with a light emitting source (880 nm) and photodiode set at both terminals of the fiber under certain conditions: bending the fiber, soaking with various mediums, or fixing the fiber with surgical tape. The soaking mediums were reverse osmosis (RO) water, physiological saline, glucose, porcine plasma, and porcine blood. The light intensities regressed to a decaying exponential function with the soaked length. The light intensity was not decreased at bending from 20 to 1 cm in diameter. The more the soaked length increased in all mediums, the more the light intensity decreased exponentially. The means of five estimated exponential decay constants were 0.050±0.006 standard deviation in RO water, 0.485±0.016 in physiological saline, 0.404±0.022 in 5% glucose, 0.503±0.038 in blood (Hct 40%), and 0.573±0.067 in plasma. The light intensity decreased from 5 V to about 1.5 V above 5 cm in the soaked length in mediums except for RO water and fixing with surgical tape. We confirmed that light intensity significantly and exponentially decreased with the increased length of the soaked fiber. This phenomena could ideally, clinically be applied to a bleed sensor.
Optical imaging of localized chemical events using programmable diamond quantum nanosensors
NASA Astrophysics Data System (ADS)
Rendler, Torsten; Neburkova, Jitka; Zemek, Ondrej; Kotek, Jan; Zappe, Andrea; Chu, Zhiqin; Cigler, Petr; Wrachtrup, Jörg
2017-03-01
Development of multifunctional nanoscale sensors working under physiological conditions enables monitoring of intracellular processes that are important for various biological and medical applications. By attaching paramagnetic gadolinium complexes to nanodiamonds (NDs) with nitrogen-vacancy (NV) centres through surface engineering, we developed a hybrid nanoscale sensor that can be adjusted to directly monitor physiological species through a proposed sensing scheme based on NV spin relaxometry. We adopt a single-step method to measure spin relaxation rates enabling time-dependent measurements on changes in pH or redox potential at a submicrometre-length scale in a microfluidic channel that mimics cellular environments. Our experimental data are reproduced by numerical simulations of the NV spin interaction with gadolinium complexes covering the NDs. Considering the versatile engineering options provided by polymer chemistry, the underlying mechanism can be expanded to detect a variety of physiologically relevant species and variables.
Yeh, Shu-Jen; Hanna, Charles F; Khalil, Omar S
2003-06-01
Most proposed noninvasive methods for glucose measurements do not consider the physiologic response of the body to changes in glucose concentration. Rather than consider the body as an inert matrix for the purpose of glucose measurement, we exploited the possibility that noninvasive measurements of glucose can be approached by investigating their effects on the skin's thermo-optical response. Glucose concentrations in humans were correlated with temperature-modulated localized reflectance signals at wavelengths between 590 and 935 nm, which do not correspond to any near-infrared glucose absorption wavelengths. Optical signal was collected while skin temperature was modulated between 22 and 38 degrees C over 2 h to generate a periodic set of cutaneous vasoconstricting and vasodilating events, as well as a periodic change in skin light scattering. The method was tested in a series of modified meal tolerance tests involving carbohydrate-rich meals and no-meal or high-protein/no-carbohydrate meals. The optical data correlated with glucose values. Changes in glucose concentrations resulting from a carbohydrate-rich meal were predicted with a model based on a carbohydrate-meal calibration run. For diabetic individuals, glucose concentrations were predicted with a standard error of prediction <1.5 mmol/L and a prediction correlation coefficient 0.73 in 80% of the cases. There were run-to-run differences in predicted glucose concentrations. Non-carbohydrate meals showed a high degree of scatter when predicted by a carbohydrate meal calibration model. Blood glucose concentrations alter thermally modulated optical signals, presumably through physiologic and physical effects. Temperature changes drive cutaneous vascular and refractive index responses in a way that mimics the effect of changes in glucose concentration. Run-to-run differences are attributable to site-to-site structural differences.
NASA Astrophysics Data System (ADS)
Samad, Manar D.; Bobzien, Jonna L.; Harrington, John W.; Iftekharuddin, Khan M.
2016-03-01
Autism Spectrum Disorders (ASD) can impair non-verbal communication including the variety and extent of facial expressions in social and interpersonal communication. These impairments may appear as differential traits in the physiology of facial muscles of an individual with ASD when compared to a typically developing individual. The differential traits in the facial expressions as shown by facial muscle-specific changes (also known as 'facial oddity' for subjects with ASD) may be measured visually. However, this mode of measurement may not discern the subtlety in facial oddity distinctive to ASD. Earlier studies have used intrusive electrophysiological sensors on the facial skin to gauge facial muscle actions from quantitative physiological data. This study demonstrates, for the first time in the literature, novel quantitative measures for facial oddity recognition using non-intrusive facial imaging sensors such as video and 3D optical cameras. An Institutional Review Board (IRB) approved that pilot study has been conducted on a group of individuals consisting of eight participants with ASD and eight typically developing participants in a control group to capture their facial images in response to visual stimuli. The proposed computational techniques and statistical analyses reveal higher mean of actions in the facial muscles of the ASD group versus the control group. The facial muscle-specific evaluation reveals intense yet asymmetric facial responses as facial oddity in participants with ASD. This finding about the facial oddity may objectively define measurable differential markers in the facial expressions of individuals with ASD.
Estimating the Relative Water Content of Single Leaves from Optical Polarization Measurements
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert
2016-01-01
Remotely sensing the water status of plants and the water content of canopies remain long-term goals of remote sensing research. For monitoring canopy water status, existing approaches such as the Crop Water Stress Index and the Equivalent Water Thickness have limitations. The CWSI does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWI is based upon the physics of water-light interaction, not plant physiology. In this research, we applied optical polarization techniques to monitor the VISNIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both changed nonlinearly as each leaf dried, R increasing and T decreasing. Our results tie changes in the VISNIR R and T to leaf physiological changes linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf and perhaps of a plant canopy might be possible in the future. However, using our approach to estimate the water status of a leaf does not appear possible at present, because our results display too much variability that we do not yet understand.
Estimating the Relative Water Content of Single Leaves from Optical Polarization Measurements.
NASA Astrophysics Data System (ADS)
Vanderbilt, V. C.; Daughtry, C. S. T.; Dahlgren, R. P.
2016-12-01
Remotely sensing the water status of plants and the water content of canopies remain long term goals of remote sensing research. For monitoring canopy water status, existing approaches such as the Crop Water Stress Index and the Equivalent Water Thickness have limitations. The CWSI does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWI is based upon the physics of water-light interaction, not plant physiology. In this research, we applied optical polarization techniques to monitor the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both changed nonlinearly as each leaf dried, R increasing and T decreasing. Our results tie changes in the VIS/NIR R and T to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future. However, using our approach to estimate the water status of a leaf does not appear possible at present, because our results display too much variability that we do not yet understand.
NASA Astrophysics Data System (ADS)
Wijesinghe, Ruchire Eranga; Lee, Seung-Yeol; Ravichandran, Naresh Kumar; Shirazi, Muhammad Faizan; Moon, Byungin; Jung, Hee-Young; Jeon, Mansik; Kim, Jeehyun
2017-04-01
The pathological and physiological defects in various types of fruits lead to large amounts of economical waste. It is well recognized that internal fruit defects due to pathological infections and physiological disorders can be effectively visualized at an initial stage of the disease using a well-known bio-photonic detection method called optical coherence tomography (OCT). This work investigates the use of OCT for identifying the morphological variations of anthracnose (bitter rot) disease infected and physiologically disordered Diospyros kaki (Asian Persimmon) fruits. An experiment was conducted using fruit samples that were carefully selected from persimmon orchards. Depth-resolved images with a high axial resolution were acquired using 850-nm-based spectral-domain OCT (SD-OCT) system. The obtained exemplary high-resolution two-dimensional and volumetric three-dimensional images revealed complementary morphological differences between healthy and defected samples. Moreover, the obtained depth-profile analysis results confirmed the disappearance of the healthy cell layers among the healthy-infected boundary regions. Thus, the proposed method has the potential to increase the diagnostic accuracy of the OCT technique used in agricultural plantations.
Kobayashi, Michiko; Shimizu, Hiroshi; Shioya, Suteaki
2007-05-01
At the end of beer brewing fermentation, yeast cells are collected and repitched for economical reasons. Although it is generally accepted that the physiological state of inoculated yeast cells affects their subsequent fermentation performance, the effect of serial-repitching on the physiological state of such yeast cells has not been well clarified. In this study, the fermentation performance of yeast cells during serial-repitching was investigated. After multiple repitchings, the specific growth rate and maximum optical density (OD(660)) decreased, and increases in isoamyl alcohol, which causes an undesirable flavor, and residual free amino acid nitrogen (FAN) concentrations were observed. The physiological state of individual cells before inoculation was characterized by flow cytometry using the fluorescent dyes dehydrorhodamine 123 (DHR) and bis-(1,3-dibutylbarbituric acid) trimethine oxonol (OXN). The fluorescence intensities of DHR, an indicator of reactive oxygen species (ROSs), and OXN, which indicates membrane potential, gradually increased as the number of serial-repitching cycles increased. Fluorescence intensity correlated strongly with cell growth. The subsequent fermentation performance can be predicted from this correlation.
Pulsed laser versus electrical energy for peripheral nerve stimulation
Wells, Jonathon; Konrad, Peter; Kao, Chris; Jansen, E. Duco; Mahadevan-Jansen, Anita
2010-01-01
Transient optical neural stimulation has previously been shown to elicit highly controlled, artifact-free potentials within the nervous system in a non-contact fashion without resulting in damage to tissue. This paper presents the physiologic validity of elicited nerve and muscle potentials from pulsed laser induced stimulation of the peripheral nerve in a comparative study with the standard method of electrically evoked potentials. Herein, the fundamental physical properties underlying the two techniques are contrasted. Key laser parameters for efficient optical stimulation of the peripheral nerve are detailed. Strength response curves are shown to be linear for each stimulation modality, although fewer axons can be recruited with optically evoked potentials. Results compare the relative transient energy requirements for stimulation using each technique and demonstrate that optical methods can selectively excite functional nerve stimulation. Adjacent stimulation and recording of compound nerve potentials in their entirety from optical and electrical stimulation are presented, with optical responses shown to be free of any stimulation artifact. Thus, use of a pulsed laser exhibits some advantages when compared to standard electrical means for excitation of muscle potentials in the peripheral nerve in the research domain and possibly for clinical diagnostics in the future. PMID:17537515
Changes in diffusion path length with old age in diffuse optical tomography
NASA Astrophysics Data System (ADS)
Bonnéry, Clément; Leclerc, Paul-Olivier; Desjardins, Michèle; Hoge, Rick; Bherer, Louis; Pouliot, Philippe; Lesage, Frédéric
2012-05-01
Diffuse, optical near infrared imaging is increasingly being used in various neurocognitive contexts where changes in optical signals are interpreted through activation maps. Statistical population comparison of different age or clinical groups rely on the relative homogeneous distribution of measurements across subjects in order to infer changes in brain function. In the context of an increasing use of diffuse optical imaging with older adult populations, changes in tissue properties and anatomy with age adds additional confounds. Few studies investigated these changes with age. Duncan et al. measured the so-called diffusion path length factor (DPF) in a large population but did not explore beyond the age of 51 after which physiological and anatomical changes are expected to occur [Pediatr. Res. 39(5), 889-894 (1996)]. With increasing interest in studying the geriatric population with optical imaging, we studied changes in tissue properties in young and old subjects using both magnetic resonance imaging (MRI)-guided Monte-Carlo simulations and time-domain diffuse optical imaging. Our results, measured in the frontal cortex, show changes in DPF that are smaller than previously measured by Duncan et al. in a younger population. The origin of these changes are studied using simulations and experimental measures.
Investigation of albumin-derived perfluorocarbon-based capsules by holographic optical trapping
Köhler, Jannis; Ruschke, Jegor; Ferenz, Katja Bettina; Esen, Cemal; Kirsch, Michael; Ostendorf, Andreas
2018-01-01
Albumin-derived perfluorocarbon-based capsules are promising as artificial oxygen carriers with high solubility. However, these capsules have to be studied further to allow initial human clinical tests. The aim of this paper is to provide and characterize a holographic optical tweezer to enable contactless trapping and moving of individual capsules in an environment that mimics physiological (in vivo) conditions most effectively in order to learn more about the artificial oxygen carrier behavior in blood plasma without recourse to animal experiments. Therefore, the motion behavior of capsules in a ring shaped or vortex beam is analyzed and optimized on account of determination of the optical forces in radial and axial direction. In addition, due to the customization and generation of dynamic phase holograms, the optical tweezer is used for first investigations on the aggregation behavior of the capsules and a statistical evaluation of the bonding in dependency of different capsule sizes is performed. The results show that the optical tweezer is sufficient for studying individual perfluorocarbon-based capsules and provide information about the interaction of these capsules for future use as artificial oxygen carriers. PMID:29552409
Bai, Wubin; Yang, Hongjun; Ma, Yinji; Chen, Hao; Shin, Jiho; Liu, Yonghao; Yang, Quansan; Kandela, Irawati; Liu, Zhonghe; Kang, Seung-Kyun; Wei, Chen; Haney, Chad R; Brikha, Anlil; Ge, Xiaochen; Feng, Xue; Braun, Paul V; Huang, Yonggang; Zhou, Weidong; Rogers, John A
2018-06-26
Optical technologies offer important capabilities in both biological research and clinical care. Recent interest is in implantable devices that provide intimate optical coupling to biological tissues for a finite time period and then undergo full bioresorption into benign products, thereby serving as temporary implants for diagnosis and/or therapy. The results presented here establish a silicon-based, bioresorbable photonic platform that relies on thin filaments of monocrystalline silicon encapsulated by polymers as flexible, transient optical waveguides for accurate light delivery and sensing at targeted sites in biological systems. Comprehensive studies of the mechanical and optical properties associated with bending and unfurling the waveguides from wafer-scale sources of materials establish general guidelines in fabrication and design. Monitoring biochemical species such as glucose and tracking physiological parameters such as oxygen saturation using near-infrared spectroscopic methods demonstrate modes of utility in biomedicine. These concepts provide versatile capabilities in biomedical diagnosis, therapy, deep-tissue imaging, and surgery, and suggest a broad range of opportunities for silicon photonics in bioresorbable technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hyvönen, Nuutti
2007-10-01
The aim of optical tomography is to reconstruct the optical properties inside a physical body, e.g. a neonatal head, by illuminating it with near-infrared light and measuring the outward flux of photons on the object boundary. Because a brain consists of strongly scattering tissue with imbedded cavities filled by weakly scattering cerebrospinal fluid, propagation of near-infrared photons in the human head can be treated by combining the diffusion approximation of the radiative transfer equation with geometrical optics to obtain the radiosity-diffusion forward model of optical tomography. At the moment, a disadvantage with the radiosity-diffusion model is that the locations of the transparent cavities must be known in advance in order to be able to reconstruct the physiologically interesting quantities, i.e., the absorption and the scatter in the strongly scattering brain tissue. In this work we show that the boundary measurement map of optical tomography is Fréchet differentiable with respect to the shape of a strongly convex nonscattering region. Using this result, we introduce a numerical algorithm for approximating an unknown nonscattering cavity by a ball if the background diffuse optical properties of the object are known. The functionality of the method is demonstrated through two-dimensional numerical experiments.
William Molyneux and the optometry content of his 1692 book Dioptrica Nova.
Goss, David A
2008-04-01
This paper provides an overview of the life of William Molyneux (1656-1698) and his book Dioptrica Nova, published in 1692. The first part of that book examines the geometrical optics of lenses, the eye, telescopes, and microscopes. The second part consists of commentaries on various topics, including spectacles, telescopes, and physiological diplopia.
ERIC Educational Resources Information Center
Misler, Stanley
2009-01-01
Stimulus-secretion coupling (SSC) in endocrine cells remains underappreciated as a subject for the study/teaching of general physiology. In the present article, we review key new electrophysiological, electrochemical, and fluorescence optical techniques for the study of exocytosis in single cells that have made this a fertile area for recent…
Interdisciplinary Applications of Autonomous Observation Systems
2008-01-01
analytical capabilities for describing the distributions and activities of marine microbes in relation to their physical, chemical and optical environment in...SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY...a sensitive indicator of physiology (light acclimation status) and also a key parameter in models of primary productivity. We are now continuing
Proceedings from the Workshop on Nanoscience for the Soldier
2001-02-09
Affordable, Durable, Flexible Enabled by Active Devices Miniature Ventilation, Cooling & Heating Multi-Functional, Hybrid Power Embedded Micro-Sensors...functional element • Rifle protection, back support & comfort, load bearing stability & interfaces with family of back packs & cooling/ heating system...Integrated physiological & medical sensors – Conductive or Fiber Optic fibers for Data & Power Distribution – Carbon Fiber Heating at wrists
Design of a dynamic optical tissue phantom to model extravasation pharmacokinetics
NASA Astrophysics Data System (ADS)
Zhang, Jane Y.; Ergin, Aysegul; Andken, Kerry Lee; Sheng, Chao; Bigio, Irving J.
2010-02-01
We describe an optical tissue phantom that enables the simulation of drug extravasation from microvessels and validates computational compartmental models of drug delivery. The phantom consists of a microdialysis tubing bundle to simulate the permeable blood vessels, immersed in either an aqueous suspension of titanium dioxide (TiO2) or a TiO2 mixed agarose scattering medium. Drug administration is represented by a dye circulated through this porous microdialysis tubing bundle. Optical pharmacokinetic (OP) methods are used to measure changes in the absorption coefficient of the scattering medium due to the arrival and diffusion of the dye. We have established particle sizedependent concentration profiles over time of phantom drug delivery by intravenous (IV) and intra-arterial (IA) routes. Additionally, pharmacokinetic compartmental models are implemented in computer simulations for the conditions studied within the phantom. The simulated concentration-time profiles agree well with measurements from the phantom. The results are encouraging for future optical pharmacokinetic method development, both physical and computational, to understand drug extravasation under various physiological conditions.
NASA Astrophysics Data System (ADS)
Song, Wei; Zhang, Rui; Zhang, Hao F.; Wei, Qing; Cao, Wenwu
2012-12-01
The physiological and pathological properties of retina are closely associated with various optical contrasts. Hence, integrating different ophthalmic imaging technologies is more beneficial in both fundamental investigation and clinical diagnosis of several blinding diseases. Recently, photoacoustic ophthalmoscopy (PAOM) was developed for in vivo retinal imaging in small animals, which demonstrated the capability of imaging retinal vascular networks and retinal pigment epithelium (RPE) at high sensitivity. We combined PAOM with traditional imaging modalities, such as fluorescein angiography (FA), spectral-domain optical coherence tomography (SD-OCT), and auto-fluorescence scanning laser ophthalmoscopy (AF-SLO), for imaging rats and mice. The multimodal imaging system provided more comprehensive evaluation of the retina based on the complementary imaging contrast mechanisms. The high-quality retinal images show that the integrated ophthalmic imaging system has great potential in the investigation of blinding disorders.
Novel optical methodologies in studying mechanical signal transduction in mammalian cells
NASA Technical Reports Server (NTRS)
Stamatas, G. N.; McIntire, L. V.
1999-01-01
For the last 3 decades evidence has been accumulating that some types of mammalian cells respond to their mechanically active environment by altering their morphology, growth rate, and metabolism. The study of such responses is very important in understanding, physiological and pathological conditions ranging from bone formation to atherosclerosis. Obtaining this knowledge has been the goal for an active research area in bioengineering termed cell mechanotransduction. The advancement of optical methodologies used in cell biology research has given the tools to elucidate cellular mechanisms that would otherwise be impossible to visualize. Combined with molecular biology techniques, they give engineers invaluable tools in understanding the chemical pathways involved in mechanotransduction. Herein we briefly review the current knowledge on mechanical signal transduction in mammalian cells, focusing on the application of novel optical techniques in the ongoing research.
NASA Astrophysics Data System (ADS)
Hsieh, Yao-Sheng; Wang, Chun-Yang; Ling, Yo-Wei; Chuang, Ming-Lung; Chuang, Ching-Cheng; Tsai, Jui-che; Lu, Chih-Wei; Sun, Chia-Wei
2010-02-01
Diffuse optical spectroscopic imaging (DOSI) is a technique to assess the spatial variation in absorption and scattering properties of the biological tissues and provides the monitoring of changes in concentrations of oxy-hemoglobin and deoxy-hemoglobin. In our preliminary study, the temporal tracings of hemodynamic oxygenation are measured with DOSI and venous occlusion test (VOT) from normal subjects, patients with heart failure and patients with sepsis in intensive care unit (ICU). In experiments, the obvious differences of hemodynamic signals can be observed among the three groups. The physiological relevance of VOT hemodynamics with respect to diseases is also discussed in this paper.
Nanospectrofluorometry inside single living cell by scanning near-field optical microscopy
NASA Astrophysics Data System (ADS)
Lei, F. H.; Shang, G. Y.; Troyon, M.; Spajer, M.; Morjani, H.; Angiboust, J. F.; Manfait, M.
2001-10-01
Near-field fluorescence spectra with subdiffraction limit spatial resolution have been taken in the proximity of mitochondrial membrane inside breast adenocarcinoma cells (MCF7) treated with the fluorescent dye (JC-1) by using a scanning near-field optical microscope coupled with a confocal laser microspectrofluorometer. The probe-sample distance control is based on a piezoelectric bimorph shear force sensor having a static spring constant k=5 μN/nm and a quality factor Q=40 in a physiological medium of viscosity η=1.0 cp. The sensitivity of the force sensor has been tested by imaging a MCF7 cell surface.
Integrated semiconductor optical sensors for chronic, minimally-invasive imaging of brain function.
Lee, Thomas T; Levi, Ofer; Cang, Jianhua; Kaneko, Megumi; Stryker, Michael P; Smith, Stephen J; Shenoy, Krishna V; Harris, James S
2006-01-01
Intrinsic optical signal (IOS) imaging is a widely accepted technique for imaging brain activity. We propose an integrated device consisting of interleaved arrays of gallium arsenide (GaAs) based semiconductor light sources and detectors operating at telecommunications wavelengths in the near-infrared. Such a device will allow for long-term, minimally invasive monitoring of neural activity in freely behaving subjects, and will enable the use of structured illumination patterns to improve system performance. In this work we describe the proposed system and show that near-infrared IOS imaging at wavelengths compatible with semiconductor devices can produce physiologically significant images in mice, even through skull.
NASA Technical Reports Server (NTRS)
Myers, J. G.; Eke, Chika; Werner, C.; Nelson, E. S.; Mulugeta, L.; Feola, A.; Raykin, J.; Samuels, B.; Ethier, C. R.
2016-01-01
Space flight impacts human physiology in many ways, the most immediate being the marked cephalad (headward) shift of fluid upon introduction into the microgravity environment. This physiological response to microgravity points to the redistribution of blood and interstitial fluid as a major factor in the loss of venous tone and reduction in heart muscle efficiency which impact astronaut performance. In addition, researchers have hypothesized that a reduction in astronaut visual acuity, part of the Visual Impairment and Intracranial Pressure (VIIP) syndrome, is associated with this redistribution of fluid. VIIP arises within several months of beginning space flight and includes a variety of ophthalmic changes including posterior globe flattening, distension of the optic nerve sheath, and kinking of the optic nerve. We utilize a suite of lumped parameter models to simulate microgravity-induced fluid redistribution in the cardiovascular, central nervous and ocular systems to provide initial and boundary data to a 3D finite element simulation of ocular biomechanics in VIIP. Specifically, the lumped parameter cardiovascular model acts as the primary means of establishing how microgravity, and the associated lack of hydrostatic gradient, impacts fluid redistribution. The cardiovascular model consists of 16 compartments, including three cerebrospinal fluid (CSF) compartments, three cranial blood compartments, and 10 thoracic and lower limb blood compartments. To assess the models capability to address variations in physiological parameters, we completed a formal uncertainty and sensitivity analysis that evaluated the relative importance of 42 input parameters required in the model on relative compartment flows and compartment pressures. Utilizing the model in a pulsatile flow configuration, the sensitivity analysis identified the ten parameters that most influenced each compartment pressure. Generally, each compartment responded appropriately to parameter variations associated with itself and adjacent compartments. However, several unexpected interactions between components, such as between the choroid plexus and the lower capillaries, were found, and are due to simplifications in the formulation of the model. The analysis illustrates that highly influential parameters and those that have unique influences within the model formulation must be tightly controlled for successful model application.
Feder, Idit; Duadi, Hamootal; Dreifuss, Tamar; Fixler, Dror
2016-10-01
Optical methods for detecting physiological state based on light-tissue interaction are noninvasive, inexpensive, simplistic, and thus very useful. The blood vessels in human tissue are the main cause of light absorbing and scattering. Therefore, the effect of blood vessels on light-tissue interactions is essential for optically detecting physiological tissue state, such as oxygen saturation, blood perfusion and blood pressure. We have previously suggested a new theoretical and experimental method for measuring the full scattering profile, which is the angular distribution of light intensity, of cylindrical tissues. In this work we will present experimental measurements of the full scattering profile of heterogenic cylindrical phantoms that include blood vessels. We show, for the first time that the vessel diameter influences the full scattering profile, and found higher reflection intensity for larger vessel diameters accordance to the shielding effect. For an increase of 60% in the vessel diameter the light intensity in the full scattering profile above 90° is between 9% to 40% higher, depending on the angle. By these results we claim that during respiration, when the blood-vessel diameter changes, it is essential to consider the blood-vessel diameter distribution in order to determine the optical path in tissues. A CT scan of the measured silicon-based phantoms. The phantoms contain the same blood volume in different blood-vessel diameters. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optical diagnostics of osteoblast cells and osteogenic drug screening
NASA Astrophysics Data System (ADS)
Kolanti, Elayaraja; Veerla, Sarath C.; Khajuria, Deepak K.; Roy Mahapatra, D.
2016-02-01
Microfluidic device based diagnostics involving optical fibre path, in situ imaging and spectroscopy are gaining importance due to recent advances in diagnostics instrumentation and methods, besides other factors such as low amount of reagent required for analysis, short investigation times, and potential possibilities to replace animal model based study in near future. It is possible to grow and monitor tissues in vitro in microfluidic lab-on-chip. It may become a transformative way of studying how cells interact with drugs, pathogens and biomaterials in physiologically relevant microenvironments. To a large extent, progress in developing clinically viable solutions has been constrained because of (i) contradiction between in vitro and in vivo results and (ii) animal model based and clinical studies which is very expensive. Our study here aims to evaluate the usefulness of microfluidic device based 3D tissue growth and monitoring approach to better emulate physiologically and clinically relevant microenvironments in comparison to conventional in vitro 2D culture. Moreover, the microfluidic methodology permits precise high-throughput investigations through real-time imaging while using very small amounts of reagents and cells. In the present study, we report on the details of an osteoblast cell based 3D microfluidic platform which we employ for osteogenic drug screening. The drug formulation is functionalized with fluorescence and other biomarkers for imaging and spectroscopy, respectively. Optical fibre coupled paths are used to obtain insight regarding the role of stress/flow pressure fluctuation and nanoparticle-drug concentration on the osteoblast growth and osteogenic properties of bone.
HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain
Huppert, Theodore J.; Diamond, Solomon G.; Franceschini, Maria A.; Boas, David A.
2009-01-01
Near-infrared spectroscopy (NIRS) is a noninvasive neuroimaging tool for studying evoked hemodynamic changes within the brain. By this technique, changes in the optical absorption of light are recorded over time and are used to estimate the functionally evoked changes in cerebral oxyhemoglobin and deoxyhemoglobin concentrations that result from local cerebral vascular and oxygen metabolic effects during brain activity. Over the past three decades this technology has continued to grow, and today NIRS studies have found many niche applications in the fields of psychology, physiology, and cerebral pathology. The growing popularity of this technique is in part associated with a lower cost and increased portability of NIRS equipment when compared with other imaging modalities, such as functional magnetic resonance imaging and positron emission tomography. With this increasing number of applications, new techniques for the processing, analysis, and interpretation of NIRS data are continually being developed. We review some of the time-series and functional analysis techniques that are currently used in NIRS studies, we describe the practical implementation of various signal processing techniques for removing physiological, instrumental, and motion-artifact noise from optical data, and we discuss the unique aspects of NIRS analysis in comparison with other brain imaging modalities. These methods are described within the context of the MATLAB-based graphical user interface program, HomER, which we have developed and distributed to facilitate the processing of optical functional brain data. PMID:19340120
NASA Astrophysics Data System (ADS)
Wang, Shang; Loehr, James A.; Larina, Irina V.; Rodney, George G.; Larin, Kirill V.
2016-03-01
The diaphragm, composed of skeletal muscle, plays an important role in respiration through its dynamic contraction. Genetic and molecular studies of the biomechanics of mouse diaphragm can provide great insights into an improved understanding and potential treatment of the disorders that lead to diaphragm dysfunction (i.e. muscular dystrophy). However, due to the small tissue size, mechanical assessment of mouse diaphragm tissue under its proper physiological conditions has been challenging. Here, we present the application of noncontact optical coherence elastography (OCE) for quantitative elastic characterization of ex vivo mouse diaphragm. Phase-sensitive optical coherence tomography was combined with a focused air-puff system to capture and measure the elastic wave propagation from tissue surface. Experiments were performed on wildtype and dystrophic mouse diaphragm tissues containing different levels of fibrosis. The OCE measurements of elastic wave propagation were conducted along both the longitudinal and transverse axis of the muscle fibers. Cross-correlation of the temporal displacement profiles from different spatial locations was utilized to obtain the propagation time delay, which was used to calculate the wave group velocity and to further quantify the tissue Young's modulus. Prior to and after OCE assessment, peak tetanic force was measured to monitor viability of the tissue during the elasticity measurements. Our experimental results indicate a positive correlation between fibrosis level and tissue stiffness, suggesting this elastic-wave-based OCE method could be a useful tool to monitor mechanical properties of skeletal muscle under physiological and pathological conditions.
A history of the optic nerve and its diseases.
Reeves, C; Taylor, D
2004-11-01
We will trace the history of ideas about optic nerve anatomy and function in the Western world from the ancient Greeks to the early 20th century and show how these influenced causal theories of optic nerve diseases. Greek and Roman humoral physiology needed a hollow optic nerve, the obstruction of which prevented the flow of visual spirit to and from the brain and resulted in blindness. Medieval physicians understood that the presence of a fixed dilated pupil indicated optic nerve obstruction, preventing the passage of visual spirit, and that cataract surgery in such cases would not restore sight. During the Renaissance, the organ of vision was transferred from the lens to the optic nerve, which was generally believed to be on the axis of the eye. The acuity of central vision (at the optic disc) was explained by the concentration of visual spirit where the optic nerve met the retina. The growth of anatomy and influence of mechanical philosophy from the 17th century led to visual spirit being replaced with the concept of nerve force, which later became associated with electricity travelling along nerve fibres. This coincided with discourse about the nature of the nervous system and a shift in orientation from understanding illness holistically in terms of an individual's humoral imbalance to the concept of organ-based diseases. Both the microscope and the ophthalmoscope allowed visualisation of the optic nerve, but problems of interpretation persisted until conceptual transformations in medical science were made.
A Multi-Scale Sampling Strategy for Detecting Physiologically Significant Signals in AVIRIS Imagery
NASA Technical Reports Server (NTRS)
Gamon, John A.; Lee, Lai-Fun; Qiu, Hong-Lie; Davis, Stephen; Roberts, Dar A.; Ustin, Susan L.
1998-01-01
Models of photosynthetic production at ecosystem and global scales require multiple input parameters specifying physical and physiological surface features. While certain physical parameters (e.g., absorbed photosynthetically active radiation) can be derived from current satellite sensors, other physiologically relevant measures (e.g., vegetation type, water status, carboxylation capacity, or photosynthetic light-use efficiency), are not generally directly available from current satellite sensors at the appropriate geographic scale. Consequently, many model parameters must be assumed or derived from independent sources, often at an inappropriate scale. An abundance of ecophysiological studies at the leaf and canopy scales suggests strong physiological control of vegetation-atmosphere CO2 and water vapor fluxes, particularly in evergreen vegetation subjected to diurnal or seasonal stresses. For example hot, dry conditions can lead to stomatal closure, and associated "downregulation" of photosynthetic biochemical processes, a phenomenon often manifested as a "midday photosynthetic depression". A recent study with the revised simple biosphere (SiB2) model demonstrated that photosynthetic downregulation can significantly impact global climate. However, at the global scale, the exact significance of downregulation remains unclear, largely because appropriate physiological measures are generally unavailable at this scale. Clearly, there is a need to develop reliable ways of extracting physiologically relevant information from remote sensing. Narrow-band spectrometers offer many opportunities for deriving physiological parameters needed for ecosystem and global scale photosynthetic models. Experimental studies on the ground at the leaf- to stand-scale have indicated that several narrow-band features can be used to detect plant physiological status. One physiological signal is caused by xanthophyll cycle pigment activity, and is often expressed as the Photochemical Reflectance Index (PRI). Because the xanthophyll cycle pigments are photoregulatory pigments closely linked to photosynthetic function, this index can be used to derive relative photosynthetic rates. An additional signal with physiological significance is the 970 nm water absorption band, which provides a measure of liquid water content. This feature has been quantified both using a simple 2-band ratio (900/970 nm, here referred to as the "Water Band Index" or WBI;), and using the "continuum removal" method. Current atmospheric correction methods for AVIRIS imagery also obtain quantitative expressions of surface liquid water absorption based on the 970 nm water band and may be comparable to ground-based estimates of water content using this feature. However, physiological interpretations of both the PRI and the WBI are best understood at the leaf and canopy scales, where complications of atmospheric interference and complex stand and landscape features can be minimized, and where experimental manipulations can be readily applied. Currently it is not known whether these physiological indices can be used to derive meaningful physiological information from AVIRIS imagery. In addition to the problem of atmospheric interference, another challenge is that any simple physiological index can be confounded by multiple factors unrelated to physiology, and this problem can become more severe at progressively larger spatial scales. For example, previous work has suggested that both the PRI and the WBI, are strongly correlated with other optical measures of canopy structure (e.g., the Normalized Difference Vegetation Index or green vegetation fraction), indicating a confounding effect of structure on physiological signals at the larger, landscape scale. Furthermore, the normal operating mode of most imaging spectrometers does not allow simultaneous, ground truthing at a level of detail needed for physiological sampling. Additionally, manipulative experiments of physiology are difficult to apply at a geographic scale suitable for comparison with remote imagery, which often works at spatial scales that are several orders of magnitude larger than those typically used for physiological studies. These limitations require the consideration of alternative approaches to validating physiological information derived from AVIRIS data. In this report, we present a multi-scale sampling approach to detecting physiologically significant signals in narrow-band spectra. This approach explores the multi-dimensional data space provided by narrow-band spectrometry, and combines AVIRIS imagery at a large scale, with ground spectral sampling at an intermediate scale, and detailed ecophysiological measurements at a fine scale, to examine seasonally and spatially changing relationships between multiple structural and physiological variables. Examples of this approach are provided by simultaneous sampling of the Normalized Difference Vegetation Index (NDVI), an index of fractional PAR interception and green vegetation cover, the Water Band Index (WBI, an index of liquid water absorption, and the Photochemical Reflectance Index (PRI, an index of xanthophyll cycle pigment activity and photosynthetic light-use efficiency. By directly linking changing optical properties sampled on the ground with measurable physiological states, we hope to develop a basis for interpreting similar signals in AVIRIS imagery.
Computer-Assisted Eye Examination: Background and Prospects.
1982-05-01
ipa crossed cylinders. 26, astigmatic charts, kerato- city if numbers. 7. facility. 8-14. efflcac. and meter. corneal astigmatism . lenticular ...Physiological optics, 20; Assessment of visual acuity, 21; Beginnings of subjective refraction, 23; Astigmatism , 24; The subjective optometer, 27; The...to correct astigmatism . Frequently included in the sub- jective examination are tests to determine eye motility and balance (heterophoria and duction
Single-sided lateral-field and phototransistor-based optoelectronic tweezers
NASA Technical Reports Server (NTRS)
Ohta, Aaron (Inventor); Chiou, Pei-Yu (Inventor); Hsu, Hsan-Yin (Inventor); Jamshidi, Arash (Inventor); Wu, Ming-Chiang (Inventor); Neale, Steven L. (Inventor)
2011-01-01
Described herein are single-sided lateral-field optoelectronic tweezers (LOET) devices which use photosensitive electrode arrays to create optically-induced dielectrophoretic forces in an electric field that is parallel to the plane of the device. In addition, phototransistor-based optoelectronic tweezers (PhOET) devices are described that allow for optoelectronic tweezers (OET) operation in high-conductivity physiological buffer and cell culture media.
2014-09-16
the display, matching the depth and vertical positioning of an identical reference or “target” object. This task served as a replication-and... cinema and computer games: A review.” Ophthalmic and Physiological Optics, 31, pp. 111-122. Hsu, J., Pizlo, Z., Chelberg, D. M., Babbs, C. F., and Delp
Changes in optical properties during heating of ex vivo liver tissues
NASA Astrophysics Data System (ADS)
Nagarajan, Vivek Krishna; Gogineni, Venkateshwara R.; White, Sarah B.; Yu, Bing
2017-02-01
Thermal ablation is the use of heat to induce cell death through coagulative necrosis. Ideally, complete ablation of tumor cells with no damage to surrounding critical structures such as blood vessels, nerves or even organs is desired. Ablation monitoring techniques are often employed to ensure optimal tumor ablation. In thermal tissue ablation, tissue damage is known to be dependent on the temperature and time of exposure. Aptly, current methods for monitoring ablation rely profoundly on local tissue temperature and duration of heating to predict the degree of tissue damage. However, such methods do not take into account the microstructural and physiological changes in tissues as a result of thermocoagulation. Light propagation within biological tissues is known to be dependent on the tissue microstructure and physiology. During tissue denaturation, changes in tissue structure alter light propagations in tissue which could be used to directly assess the extent of thermal tissue damage. We report the use of a spectroscopic system for monitoring the tissue optical properties during heating of ex vivo liver tissues. We observed that during tissue denaturation, continuous changes in wavelength-averaged μa(λ) and μ's(λ) followed a sigmoidal trend and are correlated with damage predicted by Arrhenius model.
NASA Astrophysics Data System (ADS)
Huang, Pin-Chieh; Pande, Paritosh; Shelton, Ryan L.; Joa, Frank; Moore, Dave; Gillman, Elisa; Kidd, Kimberly; Nolan, Ryan M.; Odio, Mauricio; Carr, Andrew; Boppart, Stephen A.
2017-03-01
Influenced by both the intrinsic viscoelasticity of the tissue constituents and the time-evolved redistribution of fluid within the tissue, the biomechanical response of skin can reflect not only localized pathology but also systemic physiology of an individual. While clinical diagnosis of skin pathologies typically relies on visual inspection and manual palpation, a more objective and quantitative approach for tissue characterization is highly desirable. Optical coherence tomography (OCT) is an interferometry-based imaging modality that enables in vivo assessment of cross-sectional tissue morphology with micron-scale resolution, which surpasses those of most standard clinical imaging tools, such as ultrasound imaging and magnetic resonance imaging. This pilot study investigates the feasibility of characterizing the biomechanical response of in vivo human skin using OCT. OCT-based quantitative metrics were developed and demonstrated on the human subject data, where a significant difference between deformed and nondeformed skin was revealed. Additionally, the quantified postindentation recovery results revealed differences between aged (adult) and young (infant) skin. These suggest that OCT has the potential to quantitatively assess the mechanically perturbed skin as well as distinguish different physiological conditions of the skin, such as changes with age or disease.
Remote sensing of plant functional types.
Ustin, Susan L; Gamon, John A
2010-06-01
Conceptually, plant functional types represent a classification scheme between species and broad vegetation types. Historically, these were based on physiological, structural and/or phenological properties, whereas recently, they have reflected plant responses to resources or environmental conditions. Often, an underlying assumption, based on an economic analogy, is that the functional role of vegetation can be identified by linked sets of morphological and physiological traits constrained by resources, based on the hypothesis of functional convergence. Using these concepts, ecologists have defined a variety of functional traits that are often context dependent, and the diversity of proposed traits demonstrates the lack of agreement on universal categories. Historically, remotely sensed data have been interpreted in ways that parallel these observations, often focused on the categorization of vegetation into discrete types, often dependent on the sampling scale. At the same time, current thinking in both ecology and remote sensing has moved towards viewing vegetation as a continuum rather than as discrete classes. The capabilities of new remote sensing instruments have led us to propose a new concept of optically distinguishable functional types ('optical types') as a unique way to address the scale dependence of this problem. This would ensure more direct relationships between ecological information and remote sensing observations.
NASA Astrophysics Data System (ADS)
Mazis, A.; Hiller, J.; Morgan, P.; Awada, T.; Stoerger, V.
2017-12-01
High throughput plant phenotyping is increasingly being used to assess morphological and biophysical traits of economically important crops in agriculture. In this study, the potential application of this technique in natural resources management, through the characterization of woody plants regeneration, establishment, growth, and responses to water and nutrient manipulations was assessed. Two woody species were selected for this study, Quercus prinoides and Quercus bicolor. Seeds were collected from trees growing at the edge of their natural distribution in Nebraska and Missouri, USA. Seeds were germinated in the greenhouse and transferred to the Nebraska Innovation Campus Lemnatec3D High Throughput facility at the University of Nebraska-Lincoln. Seedlings subjected to water and N manipulations, were imaged twice or three times a week using four cameras (Visible, Fluorescence, Infrared and Hyperspectral), throughout the growing season. Traditional leaf to plant levels ecophysiological measurements were concurrently acquired to assess the relationship between these two techniques. These include gas exchange (LI 6400 and LI 6800, LICOR Inc., Lincoln NE), chlorophyll content, optical characteristics (Ocean Optics USB200), water and osmotic potentials, leaf area and weight and carbon isotope ratio. In the presentation, we highlight results on the potential use of high throughput plant phenotyping techniques to assess the morphology and physiology of woody species including responses to water availability and nutrient manipulation, and its broader application under field conditions and natural resources management. Also, we explore the different capabilities imaging provides us for modeling the plant physiological and morphological growth and how it can complement the current techniques
Xu, Mengchen; Lerner, Amy L; Funkenbusch, Paul D; Richhariya, Ashutosh; Yoon, Geunyoung
2018-02-01
The optical performance of the human cornea under intraocular pressure (IOP) is the result of complex material properties and their interactions. The measurement of the numerous material parameters that define this material behavior may be key in the refinement of patient-specific models. The goal of this study was to investigate the relative contribution of these parameters to the biomechanical and optical responses of human cornea predicted by a widely accepted anisotropic hyperelastic finite element model, with regional variations in the alignment of fibers. Design of experiments methods were used to quantify the relative importance of material properties including matrix stiffness, fiber stiffness, fiber nonlinearity and fiber dispersion under physiological IOP. Our sensitivity results showed that corneal apical displacement was influenced nearly evenly by matrix stiffness, fiber stiffness and nonlinearity. However, the variations in corneal optical aberrations (refractive power and spherical aberration) were primarily dependent on the value of the matrix stiffness. The optical aberrations predicted by variations in this material parameter were sufficiently large to predict clinically important changes in retinal image quality. Therefore, well-characterized individual variations in matrix stiffness could be critical in cornea modeling in order to reliably predict optical behavior under different IOPs or after corneal surgery.
Critical Review of Noninvasive Optical Technologies for Wound Imaging
Jayachandran, Maanasa; Rodriguez, Suset; Solis, Elizabeth; Lei, Jiali; Godavarty, Anuradha
2016-01-01
Significance: Noninvasive imaging approaches can provide greater information about a wound than visual inspection during the wound healing and treatment process. This review article focuses on various optical imaging techniques developed to image different wound types (more specifically ulcers). Recent Advances: The noninvasive optical imaging approaches in this review include hyperspectral imaging, multispectral imaging, near-infrared spectroscopy (NIRS), diffuse reflectance spectroscopy, optical coherence tomography, laser Doppler imaging, laser speckle imaging, spatial frequency domain imaging, and fluorescence imaging. The various wounds imaged using these techniques include open wounds, chronic wounds, diabetic foot ulcers, decubitus ulcers, venous leg ulcers, and burns. Preliminary work in the development and implementation of a near-infrared optical scanner for wound imaging as a noncontact hand-held device is briefly described. The technology is based on NIRS and has demonstrated its potential to differentiate a healing from nonhealing wound region. Critical Issues: While most of the optical imaging techniques can penetrate few hundred microns to a 1–2 mm from the wound surface, NIRS has the potential to penetrate deeper, demonstrating the potential to image internal wounds. Future Directions: All the technologies are currently at various stages of translational efforts to the clinic, with NIRS holding a greater promise for physiological assessment of the wounds internal, beyond the gold-standard visual assessment. PMID:27602254
NASA Astrophysics Data System (ADS)
Lin, Yuting; Thayer, Dave; Nalcioglu, Orhan; Gulsen, Gultekin
2011-10-01
We present a magnetic resonance (MR)-guided near-infrared dynamic contrast enhanced diffuse optical tomography (DCE-DOT) system for characterization of tumors using an optical contrast agent (ICG) and a MR contrast agent [Gd-diethylenetriaminepentaacetic acid (DTPA)] in a rat model. Both ICG and Gd-DTPA are injected and monitored simultaneously using a combined MRI-DOT system, resulting in accurate co-registration between two imaging modalities. Fisher rats bearing R3230 breast tumor are imaged using this hybrid system. For the first time, enhancement kinetics of the exogenous contrast ICG is recovered from the DCE-DOT data using MR anatomical a priori information. As tumors grow, they undergo necrosis and the tissue transforms from viable to necrotic. The results show that the physiological changes between viable and necrotic tissue can be differentiated more accurately based on the ICG enhancement kinetics when MR anatomical information is utilized.
Koenderink, Jan; Wijntjes, Maarten; van Doorn, Andrea
2013-01-01
The “zograscope” is a “visual aid” (commonly known as “optical machine” in the 18th century) invented in the mid-18th century, and in general use until the early 20th century. It was intended to view single pictures (thus not stereographic pairs) with both eyes. The optics approximately eliminates the physiological cues (binocular disparity, vergence, accommodation, movement parallax, and image blur) that might indicate the flatness of the picture surface. The spatial structure of pictorial space is due to the remaining pictorial cues. As a consequence, many (or perhaps most) observers are aware of a heightened “plasticity” of the pictorial content for zograscopic as compared with natural viewing. We discuss the optics of the zograscope in some detail. Such an analysis is not available in the literature, whereas common “explanations” of the apparatus are evidently nonsensical. We constructed a zograscope, using modern parts, and present psychophysical data on its performance. PMID:23799196
Understanding Super-Resolution Nanoscopy and Its Biological Applications in Cell Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Dehong; Zhao, Baoming; Xie, Yumei
2013-01-01
Optical microscopy has been an ideal tool to study phenomena in live cells because visible light at reasonable intensity does not perturb much of the normal biological functions. However, optical resolution using visible light is significantly limited by the wavelength. Overcoming this diffraction-limit barrier will reveal biological mechanisms, cellular structures, and physiological processes at nanometer scale, orders of magnitude lower than current optical microscopy. Although this appears to be a daunting task, recently developed photoswitchable probes enable reconstruction of individual images into a super-resolution image, thus the emergence of nanoscopy. Harnessing the resolution power of nanoscopy, we report here nano-resolutionmore » fluorescence imaging of microtubules and their network structures in biological cells. The super-resolution nanoscopy successfully resolved nanostructures of microtubule network—a daunting task that cannot be completed using conventional wide-field microscopy.« less
Zhang, Qiuxiang; Lu, Rongwen; Wang, Benquan; Messinger, Jeffrey D.; Curcio, Christine A.; Yao, Xincheng
2015-01-01
Transient intrinsic optical signal (IOS) changes have been observed in retinal photoreceptors, suggesting a unique biomarker for eye disease detection. However, clinical deployment of IOS imaging is challenging due to unclear IOS sources and limited signal-to-noise ratios (SNRs). Here, by developing high spatiotemporal resolution optical coherence tomography (OCT) and applying an adaptive algorithm for IOS processing, we were able to record robust IOSs from single-pass measurements. Transient IOSs, which might reflect an early stage of light phototransduction, are consistently observed in the photoreceptor outer segment almost immediately (<4 ms) after retinal stimulation. Comparative studies of dark- and light-adapted retinas have demonstrated the feasibility of functional OCT mapping of rod and cone photoreceptors, promising a new method for early disease detection and improved treatment of diseases such as age-related macular degeneration (AMD) and other eye diseases that can cause photoreceptor damage. PMID:25901915
Towards an Analytical Age-Dependent Model of Contrast Sensitivity Functions for an Ageing Society
Joulan, Karine; Brémond, Roland
2015-01-01
The Contrast Sensitivity Function (CSF) describes how the visibility of a grating depends on the stimulus spatial frequency. Many published CSF data have demonstrated that contrast sensitivity declines with age. However, an age-dependent analytical model of the CSF is not available to date. In this paper, we propose such an analytical CSF model based on visual mechanisms, taking into account the age factor. To this end, we have extended an existing model from Barten (1999), taking into account the dependencies of this model's optical and physiological parameters on age. Age-dependent models of the cones and ganglion cells densities, the optical and neural MTF, and optical and neural noise are proposed, based on published data. The proposed age-dependent CSF is finally tested against available experimental data, with fair results. Such an age-dependent model may be beneficial when designing real-time age-dependent image coding and display applications. PMID:26078994
Compressed single pixel imaging in the spatial frequency domain
Torabzadeh, Mohammad; Park, Il-Yong; Bartels, Randy A.; Durkin, Anthony J.; Tromberg, Bruce J.
2017-01-01
Abstract. We have developed compressed sensing single pixel spatial frequency domain imaging (cs-SFDI) to characterize tissue optical properties over a wide field of view (35 mm×35 mm) using multiple near-infrared (NIR) wavelengths simultaneously. Our approach takes advantage of the relatively sparse spatial content required for mapping tissue optical properties at length scales comparable to the transport scattering length in tissue (ltr∼1 mm) and the high bandwidth available for spectral encoding using a single-element detector. cs-SFDI recovered absorption (μa) and reduced scattering (μs′) coefficients of a tissue phantom at three NIR wavelengths (660, 850, and 940 nm) within 7.6% and 4.3% of absolute values determined using camera-based SFDI, respectively. These results suggest that cs-SFDI can be developed as a multi- and hyperspectral imaging modality for quantitative, dynamic imaging of tissue optical and physiological properties. PMID:28300272
The concept of geodesic curvature applied to optical surfaces.
Barbero, Sergio
2015-07-01
To propose geodesic curvature as a metric to characterise how an optical surface locally differs from axial symmetry. To derive equations to evaluate geodesic curvatures of arbitrary surfaces expressed in polar coordinates. The concept of geodesic curvature is explained in detail as compared to other curvature-based metrics. Starting with the formula representing a surface as function of polar coordinates, an equation for the geodesic curvature is obtained depending only on first and second radial and first order angular derivatives of the surface function. The potential of the geodesic curvature is illustrated using different surface tests. Geodesic curvature reveals local axial asymmetries more sharply than other types of curvatures such as normal curvatures. Geodesic curvature maps could be used to characterise local axial asymmetries for relevant optometry applications such as corneal topography anomalies (keratoconus) or ophthalmic lens metrology. © 2015 The Authors Ophthalmic & Physiological Optics © 2015 The College of Optometrists.
Molecular expressions: exploring the world of optics and microscopy. http://microscopy.fsu.edu.
Eliceiri, Kevin W
2004-08-01
Our knowledge of the structure, dynamics and physiology of a cell has increased significantly in the last ten years through the emergence of new optical imaging modalities such as optical sectioning microscopy, computer- enhanced video microscopy and laser-scanning microscopy. These techniques together with the use of genetically engineered fluorophores have helped scientists visualize the 3-dimensional dynamic processes of living cells. However as powerful as these imaging tools are, they can often be difficult to understand and fully utilize. Below I will discuss my favorite website: The Molecular Expressions Web Site that endeavors to present the power of microscopy to its visitors. The Molecular Expressions group does a remarkable job of not only clearly presenting the principles behind these techniques in a manner approachable by lay and scientific audiences alike but also provides representative data from each as well.
NASA Astrophysics Data System (ADS)
Ushenko, Yu. A.
2015-06-01
The results of a new physical study of polarization manifestations of laser autofluorescence of optically anisotropic structures in human female reproductive tissues are presented. A Mueller-matrix model of describing the complex anisotropy (linear and circular birefringence, linear and circular dichroism) of such biological layers is proposed. Interrelations between mechanisms of optical anisotropy and polarization manifestations of laser autofluorescence of histological layers of the uterine cervix tissue in different spectral regions are determined. Magnitudes and variation ranges of statistical moments from the first to the fourth order describing the distributions of azimuthally stable elements of Mueller matrices of autofluorescence in human female reproductive tissues in different physiological states are found. The informative value of the proposed method is determined and the differentiation of histological biopsy sections of benign (dysplasia) and malignant (adenocarcinoma) uterine cervix tumors is implemented for the first time.
Luminescent sensing and imaging of oxygen: Fierce competition to the Clark electrode
2015-01-01
Luminescence‐based sensing schemes for oxygen have experienced a fast growth and are in the process of replacing the Clark electrode in many fields. Unlike electrodes, sensing is not limited to point measurements via fiber optic microsensors, but includes additional features such as planar sensing, imaging, and intracellular assays using nanosized sensor particles. In this essay, I review and discuss the essentials of (i) common solid‐state sensor approaches based on the use of luminescent indicator dyes and host polymers; (ii) fiber optic and planar sensing schemes; (iii) nanoparticle‐based intracellular sensing; and (iv) common spectroscopies. Optical sensors are also capable of multiple simultaneous sensing (such as O2 and temperature). Sensors for O2 are produced nowadays in large quantities in industry. Fields of application include sensing of O2 in plant and animal physiology, in clinical chemistry, in marine sciences, in the chemical industry and in process biotechnology. PMID:26113255
NASA Astrophysics Data System (ADS)
Zhang, Qiuxiang; Lu, Rongwen; Wang, Benquan; Messinger, Jeffrey D.; Curcio, Christine A.; Yao, Xincheng
2015-04-01
Transient intrinsic optical signal (IOS) changes have been observed in retinal photoreceptors, suggesting a unique biomarker for eye disease detection. However, clinical deployment of IOS imaging is challenging due to unclear IOS sources and limited signal-to-noise ratios (SNRs). Here, by developing high spatiotemporal resolution optical coherence tomography (OCT) and applying an adaptive algorithm for IOS processing, we were able to record robust IOSs from single-pass measurements. Transient IOSs, which might reflect an early stage of light phototransduction, are consistently observed in the photoreceptor outer segment almost immediately (<4 ms) after retinal stimulation. Comparative studies of dark- and light-adapted retinas have demonstrated the feasibility of functional OCT mapping of rod and cone photoreceptors, promising a new method for early disease detection and improved treatment of diseases such as age-related macular degeneration (AMD) and other eye diseases that can cause photoreceptor damage.
Choe, Regine; Konecky, Soren D.; Corlu, Alper; Lee, Kijoon; Durduran, Turgut; Busch, David R.; Pathak, Saurav; Czerniecki, Brian J.; Tchou, Julia; Fraker, Douglas L.; DeMichele, Angela; Chance, Britton; Arridge, Simon R.; Schweiger, Martin; Culver, Joseph P.; Schnall, Mitchell D.; Putt, Mary E.; Rosen, Mark A.; Yodh, Arjun G.
2009-01-01
We have developed a novel parallel-plate diffuse optical tomography (DOT) system for three-dimensional in vivo imaging of human breast tumor based on large optical data sets. Images of oxy-, deoxy-, total-hemoglobin concentration, blood oxygen saturation, and tissue scattering were reconstructed. Tumor margins were derived using the optical data with guidance from radiology reports and Magnetic Resonance Imaging. Tumor-to-normal ratios of these endogenous physiological parameters and an optical index were computed for 51 biopsy-proven lesions from 47 subjects. Malignant cancers (N=41) showed statistically significant higher total hemoglobin, oxy-hemoglobin concentration, and scattering compared to normal tissue. Furthermore, malignant lesions exhibited a two-fold average increase in optical index. The influence of core biopsy on DOT results was also explored; the difference between the malignant group measured before core biopsy and the group measured more than one week after core biopsy was not significant. Benign tumors (N=10) did not exhibit statistical significance in the tumor-to-normal ratios of any parameter. Optical index and tumor-to-normal ratios of total hemoglobin, oxy-hemoglobin concentration, and scattering exhibited high area under the receiver operating characteristic curve values from 0.90 to 0.99, suggesting good discriminatory power. The data demonstrate that benign and malignant lesions can be distinguished by quantitative three-dimensional DOT. PMID:19405750
Sun, Yu; Papin, Charlotte; Azorin-Peris, Vicente; Kalawsky, Roy; Greenwald, Stephen; Hu, Sijung
2012-03-01
Imaging photoplethysmography (PPG) is able to capture useful physiological data remotely from a wide range of anatomical locations. Recent imaging PPG studies have concentrated on two broad research directions involving either high-performance cameras and or webcam-based systems. However, little has been reported about the difference between these two techniques, particularly in terms of their performance under illumination with ambient light. We explore these two imaging PPG approaches through the simultaneous measurement of the cardiac pulse acquired from the face of 10 male subjects and the spectral characteristics of ambient light. Measurements are made before and after a period of cycling exercise. The physiological pulse waves extracted from both imaging PPG systems using the smoothed pseudo-Wigner-Ville distribution yield functional characteristics comparable to those acquired using gold standard contact PPG sensors. The influence of ambient light intensity on the physiological information is considered, where results reveal an independent relationship between the ambient light intensity and the normalized plethysmographic signals. This provides further support for imaging PPG as a means for practical noncontact physiological assessment with clear applications in several domains, including telemedicine and homecare. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).
An Implantable Neural Sensing Microsystem with Fiber-Optic Data Transmission and Power Delivery
Park, Sunmee; Borton, David A.; Kang, Mingyu; Nurmikko, Arto V.; Song, Yoon-Kyu
2013-01-01
We have developed a prototype cortical neural sensing microsystem for brain implantable neuroengineering applications. Its key feature is that both the transmission of broadband, multichannel neural data and power required for the embedded microelectronics are provided by optical fiber access. The fiber-optic system is aimed at enabling neural recording from rodents and primates by converting cortical signals to a digital stream of infrared light pulses. In the full microsystem whose performance is summarized in this paper, an analog-to-digital converter and a low power digital controller IC have been integrated with a low threshold, semiconductor laser to extract the digitized neural signals optically from the implantable unit. The microsystem also acquires electrical power and synchronization clocks via optical fibers from an external laser by using a highly efficient photovoltaic cell on board. The implantable unit employs a flexible polymer substrate to integrate analog and digital microelectronics and on-chip optoelectronic components, while adapting to the anatomical and physiological constraints of the environment. A low power analog CMOS chip, which includes preamplifier and multiplexing circuitry, is directly flip-chip bonded to the microelectrode array to form the cortical neurosensor device. PMID:23666130
Hickman, DaShawn A; Syal, Gaurav; Fausther, Michel; Lavoie, Elise G; Goree, Jessica R; Storrie, Brian; Dranoff, Jonathan A
2014-11-01
Portal fibroblasts (PF) are one of the two primary cell types contributing to the myofibroblast population of the liver and are thus essential to the pathogenesis of liver fibrosis. Monocyte chemoattractant protein-1 (MCP-1) is a known profibrogenic chemokine that may be of particular importance in biliary fibrosis. We examined the effect of MCP-1 on release of matrix metalloproteinase-9 (MMP-9) by rat PF. We found that MCP-1 blocks PF release of MMP-9 in a posttranslational fashion. We employed an optical and electron microscopic approach to determine the mechanism of this downregulation. Our data demonstrated that, in the presence of MCP-1, MMP-9-containing vesicles were shunted to a lysosome-like compartment. This is the first report of a secretory protein to be so regulated in fibrogenic cells. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Polarization visualization of changes of anisotropic meat structure
NASA Astrophysics Data System (ADS)
Blokhina, Anastasia A.; Ryzhova, Victoria A.; Kleshchenok, Maksim A.; Lobanova, Anastasiya Y.
2017-06-01
The main aspect in developing methods for optical diagnostics and visualization of biological tissues using polarized radiation is the transformation analysis of the state of light polarization when it is scattered by the medium. The polarization characteristic spatial distributions of the detected scattered radiation, in particular the degree of depolarization, have a pronounced anisotropy. The presence of optical anisotropy can provide valuable additional information on the structural features of the biological object and its physiological status. Analysis of the polarization characteristics of the scattered radiation of biological tissues in some cases provides a qualitatively new results in the study of biological samples. These results can be used in medicine and food industry.
NASA Astrophysics Data System (ADS)
Sugawa, Yoshihiko; Fukuda, Akihiro; Ohmi, Masato
2015-03-01
We have demonstrated dynamic analysis of the physiological function of eccrine sweat glands underneath skin surface by optical coherence tomography (OCT). We propose a method for extraction of the target eccrine sweat gland by use of the connected component extraction process and the adaptive threshold method, where the en-face OCT images are constructed by the SS-OCT. Furthermore, we demonstrate precise measurement of instantaneous volume of the sweat gland in response to the external stimulus. The dynamic change of instantaneous volume of eccrine sweat gland in mental sweating is performed by this method during the period of 300 sec with the frame intervals of 3.23 sec.
[The eye, the optic system and its anomalies].
Cohen, S Y
1993-09-15
The eye is a perceptive system with extremely complex physiology, although its optical properties can be assimilated to those of spherical diopters. Various approximations make it possible to reduce the eyeball to a single convex diopter. With a normal eye the image of an object situated ad infinitum focuses on the retina. The normal eye is called emmetropic. Otherwise, the eye is called ametropic. Several types of ametropy exist. When the image focuses in front of the retina the eye is said to be myopic. When the image focuses behind the retina the eye is called hypermetropic (or hyperopic). When the image of an object differs according to various focusing axes, the eye is said to be astigmatic.
Vigouroux, M; Bertrand, B; Farget, V; Plailly, J; Royet, J P
2005-03-15
A design for a semi-automatic olfactometric system is described for PET and fMRI experiments. The olfactometer presents several advantages because it enables the use of an 'infinite' number of odorants and the synchronization of stimuli with breathing. These advantages mean that the subject is recorded while breathing normally during olfactory judgment tasks. In addition, the design includes a system for recording the behavioral (rating scale) and physiological (breathing, electrodermal reaction (ED), plethysmography (PL)) signals given by the subject. Both systems present the advantage of being compatible with fMRI magnetic fields since no ferrous material is used in the Faraday cage and signals are transmitted via an optical transmission interface to an acquisition system.
2013-09-01
Piezoelectronics Model 137A23 ICP Blast Pressure Sensor). Figure 8. Metal plates located behind the driver nozzle plate can be removed to...physiological IOP values. Another 10% of eyes received for study were excluded because the B-scan and UBM ultrasonic pre-screening demonstrated the
Wavelet analysis of biological tissue's Mueller-matrix images
NASA Astrophysics Data System (ADS)
Tomka, Yu. Ya.
2008-05-01
The interrelations between statistics of the 1st-4th orders of the ensemble of Mueller-matrix images and geometric structure of birefringent architectonic nets of different morphological structure have been analyzed. The sensitivity of asymmetry and excess of statistic distributions of matrix elements Cik to changing of orientation structure of optically anisotropic protein fibrils of physiologically normal and pathologically changed biological tissues architectonics has been shown.
Laser-Induced Thermal Damage of Skin
1977-12-01
identify by block number) Skin Burns Skin Model Laser Effects \\Thermal Predictions 20 ABSTRACT (Continue on reverse side it necessary and identify by...block number) A computerized model was developed for predicting thermal damage of skin by laser exposures. Thermal, optical, and physiological data are...presented for the model. Model predictions of extent of irreversible damage were compared with histologic determinations of the extent of damage
NASA Astrophysics Data System (ADS)
Delbeck, Sven; Küpper, Lukas; Heise, Herbert M.
2018-02-01
Spectroscopic analysis of different biofluids and bodyfluid-like media has been realized by using tapered flat silver halide fiber elements as infrared biosensors. Optical stability and biocompatibility testing of the sensor elements have been performed with in-vitro samples under representative physiological conditions. After improving the reproducibility of manufacturing the sensor elements, the incoupling of radiation and the general handling including their chemical composition characterization, the fiber sensors were further optimized for the experiments. Stability tests in physiological solutions as well as porcine blood have shown that best results for biospectroscopic applications are available for the mid-IR fingerprint region, with the most stable behaviour as analyzed by the single-beam spectra. Despite several contrary reports, the silver halide material tested is toxic to cell lines chosen from the DIN standard specification for biocompatibility testing. Spectral changes as well as the results based on the DIN standard showed that pretreatment of the fibers is unavoidable to prevent direct contact of cells or human tissue and the silver halide material. Further applications of tapered flat silver halide fibers for the quantification of analytes in bodyfluids have also been tested by ensheathing the fiber-optic sensor element with a dialysis membrane. With the successfully produced prototype, results of diffusion rates and performance of a membrane-ensheathed fiber probe have been obtained. An invitro monitoring fiber sensor was developed aiming at the implantation of a microdialysis system for the analytical quantification of biomolecules such as glucose, lactate and others.
Optical control and study of biological processes at the single-cell level in a live organism
NASA Astrophysics Data System (ADS)
Feng, Zhiping; Zhang, Weiting; Xu, Jianmin; Gauron, Carole; Ducos, Bertrand; Vriz, Sophie; Volovitch, Michel; Jullien, Ludovic; Weiss, Shimon; Bensimon, David
2013-07-01
Living organisms are made of cells that are capable of responding to external signals by modifying their internal state and subsequently their external environment. Revealing and understanding the spatio-temporal dynamics of these complex interaction networks is the subject of a field known as systems biology. To investigate these interactions (a necessary step before understanding or modelling them) one needs to develop means to control or interfere spatially and temporally with these processes and to monitor their response on a fast timescale (< minute) and with single-cell resolution. In 2012, an EMBO workshop on ‘single-cell physiology’ (organized by some of us) was held in Paris to discuss those issues in the light of recent developments that allow for precise spatio-temporal perturbations and observations. This review will be largely based on the investigations reported there. We will first present a non-exhaustive list of examples of cellular interactions and developmental pathways that could benefit from these new approaches. We will review some of the novel tools that have been developed for the observation of cellular activity and then discuss the recent breakthroughs in optical super-resolution microscopy that allow for optical observations beyond the diffraction limit. We will review the various means to photo-control the activity of biomolecules, which allow for local perturbations of physiological processes. We will end up this review with a report on the current status of optogenetics: the use of photo-sensitive DNA-encoded proteins as sensitive reporters and efficient actuators to perturb and monitor physiological processes.
Junker, Laura V; Ensminger, Ingo
2016-12-01
Rapid developments in remote-sensing of vegetation and high-throughput precision plant phenotyping promise a range of real-life applications using leaf optical properties for non-destructive assessment of plant performance. Use of leaf optical properties for assessing plant performance requires the ability to use photosynthetic pigments as proxies for physiological properties and the ability to detect these pigments fast, reliably and at low cost. We describe a simple and cost-effective protocol for the rapid analysis of chlorophylls, carotenoids and tocopherols using high-performance liquid chromatography (HPLC). Many existing methods are based on the expensive solvent acetonitrile, take a long time or do not include lutein epoxide and α-carotene. We aimed to develop an HPLC method which separates all major chlorophylls and carotenoids as well as lutein epoxide, α-carotene and α-tocopherol. Using a C 30 -column and a mobile phase with a gradient of methanol, methyl-tert-butyl-ether (MTBE) and water, our method separates the above pigments and isoprenoids within 28 min. The broad applicability of our method is demonstrated using samples from various plant species and tissue types, e.g. leaves of Arabidopsis and avocado plants, several deciduous and conifer tree species, various crops, stems of parasitic dodder, fruit of tomato, roots of carrots and Chlorella algae. In comparison to previous methods, our method is very affordable, fast and versatile and can be used to analyze all major photosynthetic pigments that contribute to changes in leaf optical properties and which are of interest in most ecophysiological studies. © 2016 Scandinavian Plant Physiology Society.
NASA Astrophysics Data System (ADS)
Cardenas, Nelson; Yu, Lingfeng; Mohanty, Samarendra K.
2011-03-01
Interaction of red blood cells (RBC) with optical tweezers has been found to differ under varied physiological and pathological conditions as compared to its normal conditions. Earlier, we reported difference in rotation of trapped RBC in hypertonic conditions for detection of malaria infection. Disk-like RBC when trapped in optical tweezers get oriented in the vertical plane to maximize interaction with trapping beam. However, classical bright field, phase contrast or epifluorescence microscopy cannot confirm its orientation, thus leading to ambiguous conclusions such as folding of RBC during trapping by some researchers. Now, with use of digital holographic microscopy (DHM), we achieved high axial sensitivity that confirmed orientation of trapped red blood cell. Further, DHM enabled quantitative phase imaging of RBC under hypertonic condition. Dynamic changes of rotating RBC under optical tweezers at different trapping laser power were evaluated by the use of DHM. The deviation from linear dependence of rotation speed of RBC on laser power, was attributed towards deformation of RBC shape due to higher laser power (or speed).
Specialized project in biophotonics
NASA Astrophysics Data System (ADS)
Garcia Martin, Agueda L.; Sastriques-Silva, Pedro O.; Martinez-Fundora, Julia N.; Augier Calderin, Angel G.; Lopez-Cepero, Xonia
2000-06-01
As science advances, it is more evident the necessity of a health interdisciplinary approach in Medicine. In the case of medical applications of light, the knowledge of the use of dispositives, equipment, diagnostic and treatment means, as well as the bases for the use of this update technologies is required. At the present moment, the outstanding work of specialized professionals of different profiles requires personnel with high professional formation in keeping with the latest trends in science and technology. The authors present here an Specialized Project in Biophotonics, with the aim of increasing the professional preparation of university graduates with an ample profile--physicists and engineers--who work in Biomedical Optics, thus contributing to the specialized formation of medic and paramedic personnel. The course is structured into six-subject-modules and into two phases. As to the basic professional formation, each one attending this course, will select between two variants of the Basic Formation Postgraduate Course: Anatomy and Physiology, Physical Bioenergetics, Clinic Bioenergetics; or Physics in Medicine, Optics and Applied Information Theory, depending on the student's professional profile. In the second phase, the General Formation Postgraduate Course: Biomedical Optics, Optical Bioenergetics and Laser in Medicine.
Review of optical breast imaging and spectroscopy
NASA Astrophysics Data System (ADS)
Grosenick, Dirk; Rinneberg, Herbert; Cubeddu, Rinaldo; Taroni, Paola
2016-09-01
Diffuse optical imaging and spectroscopy of the female breast is an area of active research. We review the present status of this field and discuss the broad range of methodologies and applications. Starting with a brief overview on breast physiology, the remodeling of vasculature and extracellular matrix caused by solid tumors is highlighted that is relevant for contrast in optical imaging. Then, the various instrumental techniques and the related methods of data analysis and image generation are described and compared including multimodality instrumentation, fluorescence mammography, broadband spectroscopy, and diffuse correlation spectroscopy. We review the clinical results on functional properties of malignant and benign breast lesions compared to host tissue and discuss the various methods to improve contrast between healthy and diseased tissue, such as enhanced spectroscopic information, dynamic variations of functional properties, pharmacokinetics of extrinsic contrast agents, including the enhanced permeability and retention effect. We discuss research on monitoring neoadjuvant chemotherapy and on breast cancer risk assessment as potential clinical applications of optical breast imaging and spectroscopy. Moreover, we consider new experimental approaches, such as photoacoustic imaging and long-wavelength tissue spectroscopy.
Optic nerve axons and acquired alterations in the appearance of the optic disc.
Wirtschafter, J D
1983-01-01
The pathophysiologic events in optic nerve axons have recently been recognized as crucial to an understanding of clinically significant acquired alterations in the ophthalmoscopic appearance of the optic disc. Stasis and related abnormalities of axonal transport appear to explain most aspects of optic nerve head swelling, including optic disc drusen and retinal cottonwool spots. Loss of axoplasm and axonal death can be invoked to interpret optic disc pallor, thinning and narrowing of rim tissue, changes in the size and outline of the optic cup, laminar dots, atrophy of the retinal nerve fiber layer, and acquired demyelination and myelination of the retinal nerve fiber layer. It is speculated that the axons may also play a role in the mechanical support of the lamina cribrosa in resisting the pressure gradient across the pars scleralis of the optic nerve head. Axons and their associated glial cells may be involved in those cases where "reversibility" of cupping of the optic disc has been reported. The structure, physiology, and experimental pathologic findings of the optic nerve head have been reviewed. Many aspects concerning the final anatomic appearance of the optic nerve head have been explained. However, many questions remain concerning the intermediate mechanisms by which increased intracranial pressure retards the various components of axonal transport in papilledema and by which increased IOP causes axonal loss in glaucoma. Investigation of the molecular biology of axonal constituents and their responses to abnormalities in their physical and chemical milieu could extend our understanding of the events that result from mechanical compression and local ischemia. Moreover, we have identified a need to further explore the role of axons in the pathophysiology of optic disc cupping. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 11 FIGURE 12 FIGURE 13 PMID:6203209
Flores-Rodríguez, Patricia; Gili, Pablo; Martín-Ríos, María Dolores; Grifol-Clar, Eulalia
2013-03-01
To compare optic disc area measurement between optic nerve head drusen (ONHD) and control subjects using fundus photography, time-domain optical coherence tomography (TD-OCT) and spectral-domain optical coherence tomography (SD-OCT). We also made a comparison between each of the three techniques. We performed our study on 66 eyes (66 patients) with ONHD and 70 healthy control subjects (70 controls) with colour ocular fundus photography at 20º (Zeiss FF 450 IR plus), TD-OCT (Stratus OCT) with the Fast Optic Disc protocol and SD-OCT (Cirrus OCT) with the Optic Disc Cube 200 × 200 protocol for measurement of the optic disc area. The measurements were made by two observers and in each measurement a correction of the image magnification factor was performed. Measurement comparison using the Student's t-test/Mann-Whitney U test, the intraclass correlation coefficient, Pearson/Spearman rank correlation coefficient and the Bland-Altman plot was performed in the statistical analysis. Mean and standard deviation (SD) of the optic disc area in ONHD and in controls was 2.38 (0.54) mm(2) and 2.54 (0.42) mm(2), respectively with fundus photography; 2.01 (0.56) mm(2) and 1.66 (0.37) mm(2), respectively with TD-OCT, and 2.03 (0.49) mm(2) and 1.75 (0.38) mm(2), respectively with SD-OCT. In ONHD and controls, repeatability of optic disc area measurement was excellent with fundus photography and optical coherence tomography (TD-OCT and SD-OCT), but with a low degree of agreement between both techniques. Optic disc area measurement is smaller in ONHD compared to healthy subjects with fundus photography, unlike time-domain and spectral-domain optical coherence tomography in which the reverse is true. Both techniques offer good repeatability, but a low degree of correlation and agreement, which means that optic disc area measurement is not interchangeable or comparable between techniques. Ophthalmic & Physiological Optics © 2013 The College of Optometrists.
Porcar-Castell, Albert; Tyystjärvi, Esa; Atherton, Jon; van der Tol, Christiaan; Flexas, Jaume; Pfündel, Erhard E; Moreno, Jose; Frankenberg, Christian; Berry, Joseph A
2014-08-01
Chlorophyll a fluorescence (ChlF) has been used for decades to study the organization, functioning, and physiology of photosynthesis at the leaf and subcellular levels. ChlF is now measurable from remote sensing platforms. This provides a new optical means to track photosynthesis and gross primary productivity of terrestrial ecosystems. Importantly, the spatiotemporal and methodological context of the new applications is dramatically different compared with most of the available ChlF literature, which raises a number of important considerations. Although we have a good mechanistic understanding of the processes that control the ChlF signal over the short term, the seasonal link between ChlF and photosynthesis remains obscure. Additionally, while the current understanding of in vivo ChlF is based on pulse amplitude-modulated (PAM) measurements, remote sensing applications are based on the measurement of the passive solar-induced chlorophyll fluorescence (SIF), which entails important differences and new challenges that remain to be solved. In this review we introduce and revisit the physical, physiological, and methodological factors that control the leaf-level ChlF signal in the context of the new remote sensing applications. Specifically, we present the basis of photosynthetic acclimation and its optical signals, we introduce the physical and physiological basis of ChlF from the molecular to the leaf level and beyond, and we introduce and compare PAM and SIF methodology. Finally, we evaluate and identify the challenges that still remain to be answered in order to consolidate our mechanistic understanding of the remotely sensed SIF signal. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Osseiran, Sam; Wang, Hequn; Evans, Conor L.
2017-02-01
Over the past decade, nonlinear optical microscopy has seen a dramatic rise in its use in research settings due to its noninvasiveness, enhanced penetration depth, intrinsic optical sectioning, and the ability to probe chemical compounds with molecular specificity without exogenous contrast agents. Nonlinear optical techniques including two-photon excitation fluorescence (2PEF), fluorescence lifetime imaging microscopy (FLIM), second harmonic generation (SHG), coherent anti-Stokes and stimulated Raman scattering (CARS and SRS, respectively), as well as transient and sum frequency absorption (TA and SFA, respectively), have been widely used to explore the physiology and microanatomy of skin. Recently, these modalities have shed light on dermal processes that could not have otherwise been observed, including the spatiotemporal monitoring of cosmetics and pharmaceuticals. However, a challenge quickly arises when studying such chemicals in a dermatological context: many exogenous compounds have optical signatures that can interfere with the signals that would otherwise be acquired from intact skin. For example, oily solvents exhibit strong signals when probing CH2 vibrations with CARS/SRS; chemical sun filters appear bright in 2PEF microscopy; and darkly colored compounds readily absorb light across a broad spectrum, producing strong TA/SFA signals. Thus, this discussion will first focus on the molecular contrast in skin that can be probed using the aforementioned nonlinear optical techniques. This will be followed by an overview of strategies that take advantage of the exogenous compounds' optical signatures to probe spatiotemporal dynamics while preserving endogenous information from skin.
NASA Astrophysics Data System (ADS)
Millán, María S.
2012-10-01
On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.
Distance Estimation to Flashes in a Simulated Night Vision Environment
2007-12-01
indirect perception, which has influenced theorists since, is Hermann von Helmholtz’s theory of unconscious conclusions or unconscious inference [6...Goldstein et al. (Eds.), Blackwell handbook of perception (pp. 53-91). Malden, MA: Blackwell Publishers. [6] Helmholtz, H. von (1867/1925). Treatise on...physiological optics (from 3rd German edition, Vol. III). New York: Dover Publications. [7] Helmholtz, H. von (1878/1968). The facts of perception. In
Thomas Young's investigations in gradient-index optics.
Atchison, David A; Charman, W Neil
2011-05-01
James Clerk Maxwell is usually recognized as being the first, in 1854, to consider using inhomogeneous media in optical systems. However, some 50 years earlier, Thomas Young, stimulated by his interest in the optics of the eye and accommodation, had already modeled some applications of gradient-index optics. These applications included using an axial gradient to provide spherical aberration-free optics and a spherical gradient to describe the optics of the atmosphere and the eye lens. We evaluated Young's contributions. We attempted to derive Young's equations for axial and spherical refractive index gradients. Raytracing was used to confirm accuracy of formula. We did not confirm Young's equation for the axial gradient to provide aberration-free optics but derived a slightly different equation. We confirmed the correctness of his equations for deviation of rays in a spherical gradient index and for the focal length of a lens with a nucleus of fixed index surrounded by a cortex of reducing index toward the edge. Young claimed that the equation for focal length applied to a lens with part of the constant index nucleus of the sphere removed, such that the loss of focal length was a quarter of the thickness removed, but this is not strictly correct. Young's theoretical work in gradient-index optics received no acknowledgment from either his contemporaries or later authors. Although his model of the eye lens is not an accurate physiological description of the human lens, with the index reducing least quickly at the edge, it represented a bold attempt to approximate the characteristics of the lens. Thomas Young's work deserves wider recognition.
Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements
Lim, Liang; Nichols, Brandon; Rajaram, Narasimhan; Tunnell, James W.
2011-01-01
Diffuse reflectance and fluorescence spectroscopy are popular research techniques for noninvasive disease diagnostics. Most systems include an optical fiber probe that transmits and collects optical spectra in contact with the suspected lesion. The purpose of this study is to investigate probe pressure effects on human skin spectroscopic measurements. We conduct an in-vivo experiment on human skin tissue to study the short-term (<2 s) and long-term (>30 s) effects of probe pressure on diffuse reflectance and fluorescence measurements. Short-term light probe pressure (P0 < 9 mN∕mm2) effects are within 0 ± 10% on all physiological properties extracted from diffuse reflectance and fluorescence measurements, and less than 0 ± 5% for diagnostically significant physiological properties. Absorption decreases with site-specific variations due to blood being compressed out of the sampled volume. Reduced scattering coefficient variation is site specific. Intrinsic fluorescence shows a large standard error, although no specific pressure-related trend is observed. Differences in tissue structure and morphology contribute to site-specific probe pressure effects. Therefore, the effects of pressure can be minimized when the pressure is small and applied for a short amount of time; however, long-term and large pressures induce significant distortions in measured spectra. PMID:21280899
Efferent influences on the bioelectrical activity of the retina in primates.
Ortiz, Gonzalo; Odom, J Vernon; Passaglia, Christopher L; Tzekov, Radouil T
2017-02-01
The existence of retinopetal (sometimes referred to as "efferent" or "centrifugal") axons in the mammalian optic nerve is a topic of long-standing debate. Opposition is fading as efferent innervation of the retina has now been widely documented in rodents and other animals. The existence and function of an efferent system in humans and non-human primates has not, though, been definitively established. Such a feedback pathway could have important functional, clinical, and experimental significance to the field of vision science and ophthalmology. Following a comprehensive literature review (PubMed and Google Scholar, until July 2016), we present evidence regarding a system that can influence the bioelectrical activity of the retina in primates. Anatomical and physiological evidences are presented separately. Improvements in histological staining and the advent of retrograde nerve fiber tracers have allowed for more confidence in the identification of efferent optic nerve fibers, including back to their point of origin. Even with the accumulation of more modern anatomical and physiological evidence, some limitations and uncertainties about crucial details regarding the origins and role of a top-down, efferent system still exist. However, the summary of the evidence from earlier and more modern studies makes a compelling case in support of such a system in humans and non-human primates.
Rose Bengal Photothrombosis by Confocal Optical Imaging In Vivo: A Model of Single Vessel Stroke.
Talley Watts, Lora; Zheng, Wei; Garling, R Justin; Frohlich, Victoria C; Lechleiter, James Donald
2015-06-23
In vivo imaging techniques have increased in utilization due to recent advances in imaging dyes and optical technologies, allowing for the ability to image cellular events in an intact animal. Additionally, the ability to induce physiological disease states such as stroke in vivo increases its utility. The technique described herein allows for physiological assessment of cellular responses within the CNS following a stroke and can be adapted for other pathological conditions being studied. The technique presented uses laser excitation of the photosensitive dye Rose Bengal in vivo to induce a focal ischemic event in a single blood vessel. The video protocol demonstrates the preparation of a thin-skulled cranial window over the somatosensory cortex in a mouse for the induction of a Rose Bengal photothrombotic event keeping injury to the underlying dura matter and brain at a minimum. Surgical preparation is initially performed under a dissecting microscope with a custom-made surgical/imaging platform, which is then transferred to a confocal microscope equipped with an inverted objective adaptor. Representative images acquired utilizing this protocol are presented as well as time-lapse sequences of stroke induction. This technique is powerful in that the same area can be imaged repeatedly on subsequent days facilitating longitudinal in vivo studies of pathological processes following stroke.
Full scattering profile for detecting physiological tissue properties
NASA Astrophysics Data System (ADS)
Duadi, Hamootal; Fixler, Dror
2017-02-01
Light reflectance and transmission from soft tissue has been utilized in noninvasive clinical measurement devices such as the photoplethysmograph (PPG) and reflectance pulse oximeter. Most methods of near infrared (NIR) spectroscopy focus on the volume reflectance from a semi-infinite sample, while very few measure transmission. We have previously shown that examining the full scattering profile (FSP), which is the angular distribution of exiting photons, provides more comprehensive information when measuring from a cylindrical tissue, such as earlobe, fingertip and pinched tissue. Our hypothesis is that the change in blood vessel diameter is more significant than the change in optical properties. The findings of this work demonstrate a realistic model for optical tissue measurements such as NIR spectroscopy, PPG and pulse oximetery.
Design of "Eye Closure" system for the stealth of photo-electric equipments
NASA Astrophysics Data System (ADS)
Zhang, Y.; Hua, W. S.; Li, G.
2012-10-01
Based on the optical activity of liquid crystal, a new approach for the stealth of "cat's eye" targets is proposed in this paper. It imitates the physiological close reaction of human eyes when strong light irradiates eyes. With this approach, the "cat's eye" effect will vanish, which is applied in restricting photo-electric equipments being detected and located by active laser detection system. The structure and working principle of the design are presented. The drive circuit is given to control the optical switch automatically. Feasibility of this design is demonstrated by experimental method. The measured data illustrate that the proposed approach is effective to eliminate the "cat's eye" effect, so as to enhancing the viability of photo-electric equipments on the battlefield.
NASA Technical Reports Server (NTRS)
Tucker, C. J.; Garratt, M. W.
1977-01-01
A stochastic leaf radiation model based upon physical and physiological properties of dicot leaves has been developed. The model accurately predicts the absorbed, reflected, and transmitted radiation of normal incidence as a function of wavelength resulting from the leaf-irradiance interaction over the spectral interval of 0.40-2.50 micron. The leaf optical system has been represented as Markov process with a unique transition matrix at each 0.01-micron increment between 0.40 micron and 2.50 micron. Probabilities are calculated at every wavelength interval from leaf thickness, structure, pigment composition, and water content. Simulation results indicate that this approach gives accurate estimations of actual measured values for dicot leaf absorption, reflection, and transmission as a function of wavelength.
Electrical Impedance Tomography of Electrolysis
Meir, Arie; Rubinsky, Boris
2015-01-01
The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations. PMID:26039686
Li, Hui; Cui, Quan; Zhang, Zhihong; Luo, Qingming
2015-01-01
Background The nonlinear optical microscopy has become the current state-of-the-art for intravital imaging. Due to its advantages of high resolution, superior tissue penetration, lower photodamage and photobleaching, as well as intrinsic z-sectioning ability, this technology has been widely applied in immunoimaging for a decade. However, in terms of monitoring immune events in native physiological environment, the conventional nonlinear optical microscope system has to be optimized for live animal imaging. Generally speaking, three crucial capabilities are desired, including high-speed, large-area and multicolor imaging. Among numerous high-speed scanning mechanisms used in nonlinear optical imaging, polygon scanning is not only linearly but also dispersion-freely with high stability and tunable rotation speed, which can overcome disadvantages of multifocal scanning, resonant scanner and acousto-optical deflector (AOD). However, low frame rate, lacking large-area or multicolor imaging ability make current polygonbased nonlinear optical microscopes unable to meet the requirements of immune event monitoring. Methods We built up a polygon-based nonlinear optical microscope system which was custom optimized for immunoimaging with high-speed, large-are and multicolor imaging abilities. Results Firstly, we validated the imaging performance of the system by standard methods. Then, to demonstrate the ability to monitor immune events, migration of immunocytes observed by the system based on typical immunological models such as lymph node, footpad and dorsal skinfold chamber are shown. Finally, we take an outlook for the possible advance of related technologies such as sample stabilization and optical clearing for more stable and deeper intravital immunoimaging. Conclusions This study will be helpful for optimizing nonlinear optical microscope to obtain more comprehensive and accurate information of immune events. PMID:25694951
Morgan, Jessica I W
2016-05-01
Over the past 25 years, optical coherence tomography (OCT) and adaptive optics (AO) ophthalmoscopy have revolutionised our ability to non-invasively observe the living retina. The purpose of this review is to highlight the techniques and human clinical applications of recent advances in OCT and adaptive optics scanning laser/light ophthalmoscopy (AOSLO) ophthalmic imaging. Optical coherence tomography retinal and optic nerve head (ONH) imaging technology allows high resolution in the axial direction resulting in cross-sectional visualisation of retinal and ONH lamination. Complementary AO ophthalmoscopy gives high resolution in the transverse direction resulting in en face visualisation of retinal cell mosaics. Innovative detection schemes applied to OCT and AOSLO technologies (such as spectral domain OCT, OCT angiography, confocal and non-confocal AOSLO, fluorescence, and AO-OCT) have enabled high contrast between retinal and ONH structures in three dimensions and have allowed in vivo retinal imaging to approach that of histological quality. In addition, both OCT and AOSLO have shown the capability to detect retinal reflectance changes in response to visual stimuli, paving the way for future studies to investigate objective biomarkers of visual function at the cellular level. Increasingly, these imaging techniques are being applied to clinical studies of the normal and diseased visual system. Optical coherence tomography and AOSLO technologies are capable of elucidating the structure and function of the retina and ONH noninvasively with unprecedented resolution and contrast. The techniques have proven their worth in both basic science and clinical applications and each will continue to be utilised in future studies for many years to come. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.
Rohrbach, Daniel J.; Muffoletto, Daniel; Huihui, Jonathan; Saager, Rolf; Keymel, Kenneth; Paquette, Anne; Morgan, Janet; Zeitouni, Nathalie; Sunar, Ulas
2014-01-01
Rationale and Objectives The treatment of nonmelanoma skin cancer (NMSC) is usually by surgical excision or Mohs micrographic surgery and alternatively may include photodynamic therapy (PDT). To guide surgery and to optimize PDT, information about the tumor structure, optical parameters, and vasculature is desired. Materials and Methods Spatial frequency domain imaging (SFDI) can map optical absorption, scattering, and fluorescence parameters that can enhance tumor contrast and quantify light and photosensitizer dose. High frequency ultrasound (HFUS) imaging can provide high-resolution tumor structure and depth, which is useful for both surgery and PDT planning. Results Here, we present preliminary results from our recently developed clinical instrument for patients with NMSC. We quantified optical absorption and scattering, blood oxygen saturation (StO2), and total hemoglobin concentration (THC) with SFDI and lesion thickness with ultrasound. These results were compared to histological thickness of excised tumor sections. Conclusions SFDI quantified optical parameters with high precision, and multiwavelength analysis enabled 2D mappings of tissue StO2 and THC. HFUS quantified tumor thickness that correlated well with histology. The results demonstrate the feasibility of the instrument for noninvasive mapping of optical, physiological, and ultrasound contrasts in human skin tumors for surgery guidance and therapy planning. PMID:24439339
NASA Astrophysics Data System (ADS)
Liu, J.; Wong, D. W. K.; Lim, J. H.; Li, H.; Tan, N. M.; Wong, T. Y.
2009-02-01
Glaucoma is an irreversible ocular disease leading to permanent blindness. However, early detection can be effective in slowing or halting the progression of the disease. Physiologically, glaucoma progression is quantified by increased excavation of the optic cup. This progression can be quantified in retinal fundus images via the optic cup to disc ratio (CDR), since in increased glaucomatous neuropathy, the relative size of the optic cup to the optic disc is increased. The ARGALI framework constitutes of various segmentation approaches employing level set, color intensity thresholds and ellipse fitting for the extraction of the optic cup and disc from retinal images as preliminary steps. Following this, different combinations of the obtained results are then utilized to calculate the corresponding CDR values. The individual results are subsequently fused using a neural network. The learning function of the neural network is trained with a set of 100 retinal images For testing, a separate set 40 images is then used to compare the obtained CDR against a clinically graded CDR, and it is shown that the neural network-based result performs better than the individual components, with 96% of the results within intra-observer variability. The results indicate good promise for the further development of ARGALI as a tool for the early detection of glaucoma.
Spatial and temporal variability in response to hybrid electro-optical stimulation
NASA Astrophysics Data System (ADS)
Duke, Austin R.; Lu, Hui; Jenkins, Michael W.; Chiel, Hillel J.; Jansen, E. Duco
2012-06-01
Hybrid electro-optical neural stimulation is a novel paradigm combining the advantages of optical and electrical stimulation techniques while reducing their respective limitations. However, in order to fulfill its promise, this technique requires reduced variability and improved reproducibility. Here we used a comparative physiological approach to aid the further development of this technique by identifying the spatial and temporal factors characteristic of hybrid stimulation that may contribute to experimental variability and/or a lack of reproducibility. Using transient pulses of infrared light delivered simultaneously with a bipolar electrical stimulus in either the marine mollusk Aplysia californica buccal nerve or the rat sciatic nerve, we determined the existence of a finite region of excitability with size altered by the strength of the optical stimulus and recruitment dictated by the polarity of the electrical stimulus. Hybrid stimulation radiant exposures yielding 50% probability of firing (RE50) were shown to be negatively correlated with the underlying changes in electrical stimulation threshold over time. In Aplysia, but not in the rat sciatic nerve, increasing optical radiant exposures (J cm-2) beyond the RE50 ultimately resulted in inhibition of evoked potentials. Accounting for the sources of variability identified in this study increased the reproducibility of stimulation from 35% to 93% in Aplysia and 23% to 76% in the rat with reduced variability.
Gamma-Ray Focusing Optics for Small Animal Imaging
NASA Technical Reports Server (NTRS)
Pivovaroff, M. J.; Barber, W. C.; Craig, W. W.; Hasegawa, B. H.; Ramsey, B. D.; Taylor, C.
2004-01-01
There is a well-established need for high-resolution radionuclide imaging techniques that provide non-invasive measurement of physiological function in small animals. We, therefore, have begun developing a small animal radionuclide imaging system using grazing incidence mirrors to focus low-energy gamma-rays emitted by I-125, and other radionuclides. Our initial prototype optic, fabricated from thermally-formed glass, demonstrated a resolution of 1500 microns, consistent with the performance predicted by detailed simulations. More recently, we have begun constructing mirrors using a replication technique that reduces low spatial frequency errors in the mirror surface, greatly improving the resolution. Each technique offers particular advantages: e.g., multilayer coatings are easily deposited on glass, while superior resolution is possible with replicated optics. Scaling the results from our prototype optics, which only have a few nested shells, to system where the lens has a full complement of several tens of nested shells, a sensitivity of approx. 1 cps/micro Ci is possible, with the exact number dependent on system magnification and radionuclide species. (Higher levels of efficiency can be obtained with multi-optic imaging systems.) The gamma-ray lens will achieve a resolution as good as 100 microns, independent of the final sensitivity. The combination of high spatial resolution and modest sensitivity will enable in vivo single photon emission imaging studies in small animals.
NASA Astrophysics Data System (ADS)
Torjesen, Alyssa; Istfan, Raeef; Roblyer, Darren
2017-03-01
Frequency-domain diffuse optical spectroscopy (FD-DOS) utilizes intensity-modulated light to characterize optical scattering and absorption in thick tissue. Previous FD-DOS systems have been limited by large device footprints, complex electronics, high costs, and limited acquisition speeds, all of which complicate access to patients in the clinical setting. We have developed a new digital DOS (dDOS) system, which is relatively compact and inexpensive, allowing for simplified clinical use, while providing unprecedented measurement speeds. The dDOS system utilizes hardware-integrated custom board-level direct digital synthesizers and an analog-to-digital converter to generate frequency sweeps and directly measure signals utilizing undersampling at six wavelengths modulated at discrete frequencies from 50 to 400 MHz. Wavelength multiplexing is utilized to achieve broadband frequency sweep measurements acquired at over 97 Hz. When compared to a gold-standard DOS system, the accuracy of optical properties recovered with the dDOS system was within 5.3% and 5.5% for absorption and reduced scattering coefficient extractions, respectively. When tested in vivo, the dDOS system was able to detect physiological changes throughout the cardiac cycle. The new FD-dDOS system is fast, inexpensive, and compact without compromising measurement quality.
Prakash, Neal; Uhleman, Falk; Sheth, Sameer A.; Bookheimer, Susan; Martin, Neil; Toga, Arthur W.
2009-01-01
Resection of a cerebral arteriovenous malformation (AVM), epileptic focus, or glioma, ideally has a prerequisite of microscopic delineation of the lesion borders in relation to the normal gray and white matter that mediate critical functions. Currently, Wada testing and functional magnetic resonance imaging (fMRI) are used for preoperative mapping of critical function, whereas electrical stimulation mapping (ESM) is used for intraoperative mapping. For lesion delineation, MRI and positron emission tomography (PET) are used preoperatively, whereas microscopy and histological sectioning are used intraoperatively. However, for lesions near eloquent cortex, these imaging techniques may lack sufficient resolution to define the relationship between the lesion and language function, and thus not accurately determine which patients will benefit from neurosurgical resection of the lesion without iatrogenic aphasia. Optical techniques such as intraoperative optical imaging of intrinsic signals (iOIS) show great promise for the precise functional mapping of cortices, as well as delineation of the borders of AVMs, epileptic foci, and gliomas. Here we first review the physiology of neuroimaging, and then progress towards the validation and justification of using intraoperative optical techniques, especially in relation to neurosurgical planning of resection AVMs, epileptic foci, and gliomas near or in eloquent cortex. We conclude with a short description of potential novel intraoperative optical techniques. PMID:18786643
Jiang, Hong-Xin; Cui, Yunxi; Zhao, Ting; Fu, Hai-Wei; Koirala, Deepak; Punnoose, Jibin Abraham; Kong, De-Ming; Mao, Hanbin
2015-01-01
G-triplexes are non-canonical DNA structures formed by G-rich sequences with three G-tracts. Putative G-triplex-forming sequences are expected to be more prevalent than putative G-quadruplex-forming sequences. However, the research on G-triplexes is rare. In this work, the effects of molecular crowding and several physiologically important metal ions on the formation and stability of G-triplexes were examined using a combination of circular dichroism, thermodynamics, optical tweezers and calorimetry techniques. We determined that molecular crowding conditions and cations, such as Na+, K+, Mg2+ and Ca2+, promote the formation of G-triplexes and stabilize these structures. Of these four metal cations, Ca2+ has the strongest stabilizing effect, followed by K+, Mg2+, and Na+ in a decreasing order. The binding of K+ to G-triplexes is accompanied by exothermic heats, and the binding of Ca2+ with G-triplexes is characterized by endothermic heats. G-triplexes formed from two G-triad layers are not stable at physiological temperatures; however, G-triplexes formed from three G-triads exhibit melting temperatures higher than 37°C, especially under the molecular crowding conditions and in the presence of K+ or Ca2+. These observations imply that stable G-triplexes may be formed under physiological conditions. PMID:25787838
Biophysics: Breaking the Nanometer Barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Block, Steven
2006-03-20
A new field of scientific exploration – single molecule biophysics – is currently reshaping and redefining our understanding of the mechanochemistry of life. The development of laser-based optical traps, or ‘optical tweezers,’ has allowed for physiological assessments of such precision that bio-molecules can now be measured and studied one at a time. In this colloquium, Professor Block will present findings based on his group’s construction of optical trapping instrumentation that has broken the nanometer barrier, allowing researchers to study single-molecule displacements on the Angstrom level. Focusing on RNA polymerase, the motor enzyme responsible for transcribing the genetic code contained inmore » DNA, Block’s group has been able to measure, in real time, the motion of a single molecule of RNA polymerase as it moves from base to base along the DNA template. A remarkable opportunity to gain insight into one of the most fundamental biological processes of life, this colloquium can not be missed!« less
NASA Astrophysics Data System (ADS)
Lal, Cerine; McGrath, James; Subhash, Hrebesh; Rani, Sweta; Ritter, Thomas; Leahy, Martin
2016-03-01
Optical Coherence Tomography (OCT) is a non-invasive 3 dimensional optical imaging modality that enables high resolution cross sectional imaging in biological tissues and materials. Its high axial and lateral resolution combined with high sensitivity, imaging depth and wide field of view makes it suitable for wide variety of high resolution medical imaging applications at clinically relevant speed. With the advent of swept source lasers, the imaging speed of OCT has increased considerably in recent years. OCT has been used in ophthalmology to study dynamic changes occurring in the cornea and iris, thereby providing physiological and pathological changes that occur within the anterior segment structures such as in glaucoma, during refractive surgery, lamellar keratoplasty and corneal diseases. In this study, we assess the changes in corneal thickness in the anterior segment of the eye during wound healing process in a rat corneal burn model following stem cell therapy using high speed swept source OCT.
NASA Astrophysics Data System (ADS)
Romo-Cárdenas, Gerardo S.; Sanchez-Lopez, Juan D.; Nieto-Hipolito, Juan I.; Cosio-León, María.; Luque-Morales, Priscy; Vazquez-Briseno, Mabel
2016-09-01
It has been established the importance of a constant glucose monitoring in order to keep a regular control for diabetes patients. Several medical studies accept the necessity of exploring alternatives for the traditional digital glucometer, given the pain and discomfort related to this technique, which can lead to a compromised control of the disease. Several efforts based on the application of IR spectroscopy had been done with favorable, yet not conclusive results. Therefore it's necessary to apply a comprehensive and interdisciplinary study based on the biochemical and optical properties of the glucose in the human body, in order to understand the interaction between this substance, its surroundings and IR light. These study propose a comprehensive approach of the glucose and IR light interaction, considering and combining important biochemical, physiological and optical properties, as well as some machine learning techniques for the data analysis. The results of this work would help to define the right parameters aiming to obtain an optical glucose quantification system and protocol.
Optogenetic feedback control of neural activity
Newman, Jonathan P; Fong, Ming-fai; Millard, Daniel C; Whitmire, Clarissa J; Stanley, Garrett B; Potter, Steve M
2015-01-01
Optogenetic techniques enable precise excitation and inhibition of firing in specified neuronal populations and artifact-free recording of firing activity. Several studies have suggested that optical stimulation provides the precision and dynamic range requisite for closed-loop neuronal control, but no approach yet permits feedback control of neuronal firing. Here we present the ‘optoclamp’, a feedback control technology that provides continuous, real-time adjustments of bidirectional optical stimulation in order to lock spiking activity at specified targets over timescales ranging from seconds to days. We demonstrate how this system can be used to decouple neuronal firing levels from ongoing changes in network excitability due to multi-hour periods of glutamatergic or GABAergic neurotransmission blockade in vitro as well as impinging vibrissal sensory drive in vivo. This technology enables continuous, precise optical control of firing in neuronal populations in order to disentangle causally related variables of circuit activation in a physiologically and ethologically relevant manner. DOI: http://dx.doi.org/10.7554/eLife.07192.001 PMID:26140329
Atkins, Norman; Ren, Shifang; Hatcher, Nathan; Burgoon, Penny W; Mitchell, Jennifer W; Sweedler, Jonathan V; Gillette, Martha U
2018-06-20
Daily oscillations of brain and body states are under complex temporal modulation by environmental light and the hypothalamic suprachiasmatic nucleus (SCN), the master circadian clock. To better understand mediators of differential temporal modulation, we characterize neuropeptide releasate profiles by nonselective capture of secreted neuropeptides in an optic nerve horizontal SCN brain slice model. Releasates are collected following electrophysiological stimulation of the optic nerve/retinohypothalamic tract under conditions that alter the phase of the SCN activity state. Secreted neuropeptides are identified by intact mass via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We found time-of-day-specific suites of peptides released downstream of optic nerve stimulation. Peptide release was modified differentially with respect to time-of-day by stimulus parameters and by inhibitors of glutamatergic or PACAPergic neurotransmission. The results suggest that SCN physiology is modulated by differential peptide release of both known and unexpected peptides that communicate time-of-day-specific photic signals via previously unreported neuropeptide signatures.
NASA Technical Reports Server (NTRS)
Carter, Gregory A.; Knapp, Alan K.
2000-01-01
A number of studies have linked responses in leaf spectral reflectance, transmittance or absorptance to physiological stress. A variety of stressors including dehydration, flooding,freezing, ozone, herbicides, competition, disease, insects and deficiencies in ectomycorrhizal development and N fertilization have been imposed on species ranging from grasses to conifers and deciduous trees. In this cases, the maximum difference in reflectance within the 400 - 850 nm wavelength range between control and stressed states occurred as a reflectance increase at wavelength near 700 nm. In studies that included transmittance and absorptance as well as reflectance, maximum differences occurred as increases and decreases, respectively, near 700 nm. This common optical response to stress could be simulated closely by varying the chlorophyll concentrations in senescent leaves of five species. The optical response to stress near 700 nm, as well as corresponding changes in reflectance that occur in the green-yellow spectrum, can be explained by the general tendency of stress to reduce leaf chlorophyll concentration.
Luminescent sensing and imaging of oxygen: fierce competition to the Clark electrode.
Wolfbeis, Otto S
2015-08-01
Luminescence-based sensing schemes for oxygen have experienced a fast growth and are in the process of replacing the Clark electrode in many fields. Unlike electrodes, sensing is not limited to point measurements via fiber optic microsensors, but includes additional features such as planar sensing, imaging, and intracellular assays using nanosized sensor particles. In this essay, I review and discuss the essentials of (i) common solid-state sensor approaches based on the use of luminescent indicator dyes and host polymers; (ii) fiber optic and planar sensing schemes; (iii) nanoparticle-based intracellular sensing; and (iv) common spectroscopies. Optical sensors are also capable of multiple simultaneous sensing (such as O2 and temperature). Sensors for O2 are produced nowadays in large quantities in industry. Fields of application include sensing of O2 in plant and animal physiology, in clinical chemistry, in marine sciences, in the chemical industry and in process biotechnology. © 2015 The Author. Bioessays published by WILEY Periodicals, Inc.
The importance of optical methods for non-invasive measurements in the skin care industry
NASA Astrophysics Data System (ADS)
Stamatas, Georgios N.
2010-02-01
Pharmaceutical and cosmetic industries are concerned with treating skin disease, as well as maintaining and promoting skin health. They are dealing with a unique tissue that defines our body in space. As such, skin provides not only the natural boundary with the environment inhibiting body dehydration as well as penetration of exogenous aggressors to the body, it is also ideally situated for optical measurements. A plurality of spectroscopic and imaging methods is being used to understand skin physiology and pathology and document the effects of topically applied products on the skin. The obvious advantage of such methods over traditional biopsy techniques is the ability to measure the cutaneous tissue in vivo and non-invasively. In this work, we will review such applications of various spectroscopy and imaging methods in skin research that is of interest the cosmetic and pharmaceutical industry. Examples will be given on the importance of optical techniques in acquiring new insights about acne pathogenesis and infant skin development.
Optimizing the optical wavelength for the photoacoustic imaging of inflammatory arthritis
NASA Astrophysics Data System (ADS)
Jo, Janggun; Xu, Guan; Hu, Jack; Francis, Sheeja; Marquardt, April; Yuan, Jie; Girish, Gandikota; Wang, Xueding
2015-03-01
With the capability of assessing high resolution optical information in soft tissues at imaging depth up to several centimeters, innovative biomedical photoacoustic imaging (PAI) offers benefits to diagnosis and treatment monitoring of inflammatory arthritis, particularly in combination with more established ultrasonography (US). In this work, a PAI and US dual-modality system facilitating both imaging functions in a real-time fashion was developed and initially tested for its clinical performance on patients with active inflammatory arthritis. Photoacoustic (PA) images of metacarpophalangeal (MCP) joints were acquired at 580-nm wavelength that provides a desired balance between optical absorption of blood and attenuation in background tissue. The results from six patients and six normal volunteers used as a control demonstrated the satisfactory sensitivity of PAI in assessing the physiological changes in the joints, specifically enhanced blood flow as a result of active synovitis. This preliminary study suggests that PAI, by revealing vascular features suggestive of joint inflammation, could be a valuable supplement to musculoskeletal US for rheumatology clinic.
In Situ Optical Mapping of Voltage and Calcium in the Heart
Ewart, Paul; Ashley, Euan A.; Loew, Leslie M.; Kohl, Peter; Bollensdorff, Christian; Woods, Christopher E.
2012-01-01
Electroanatomic mapping the interrelation of intracardiac electrical activation with anatomic locations has become an important tool for clinical assessment of complex arrhythmias. Optical mapping of cardiac electrophysiology combines high spatiotemporal resolution of anatomy and physiological function with fast and simultaneous data acquisition. If applied to the clinical setting, this could improve both diagnostic potential and therapeutic efficacy of clinical arrhythmia interventions. The aim of this study was to explore this utility in vivo using a rat model. To this aim, we present a single-camera imaging and multiple light-emitting-diode illumination system that reduces economic and technical implementation hurdles to cardiac optical mapping. Combined with a red-shifted calcium dye and a new near-infrared voltage-sensitive dye, both suitable for use in blood-perfused tissue, we demonstrate the feasibility of in vivo multi-parametric imaging of the mammalian heart. Our approach combines recording of electrophysiologically-relevant parameters with observation of structural substrates and is adaptable, in principle, to trans-catheter percutaneous approaches. PMID:22876327
Stiefel, Philipp; Zambelli, Tomaso
2013-01-01
In their natural environment, bacteria often behave differently than they do under laboratory conditions. To gain insight into the physiology of bacteria in situ, dedicated approaches are required to monitor their adaptations and specific behaviors under environmental conditions. Optical microscopy is crucial for the observation of fundamental characteristics of bacteria, such as cell shape, size, and marker gene expression. Here, fluidic force microscopy (FluidFM) was exploited to isolate optically selected bacteria for subsequent identification and characterization. In this study, bacteriochlorophyll-producing bacteria, which can be visualized due to their characteristic fluorescence in the infrared range, were isolated from leaf washes. Bacterial communities from the phyllosphere were investigated because they harbor genes indicative of aerobic anoxygenic photosynthesis. Our data show that different species of Methylobacterium express their photosystem in planta, and they show a distinct pattern of bacteriochlorophyll production under laboratory conditions that is dependent on supplied carbon sources. PMID:23770907
Ford, Matthew R.; Roy, Abhijit Sinha; Rollins, Andrew M.; Dupps, William J.
2014-01-01
PURPOSE To noninvasively evaluate the effects of corneal hydration and collagen crosslinking (CXL) on the mechanical behavior of the cornea. SETTING Cleveland Clinic Cole Eye Institute, Cleveland, Ohio, USA. DESIGN Experimental study. METHODS An optical coherence elastography (OCE) technique was used to measure the displacement behavior of 5 pairs of debrided human donor globes in 3 serial states as follows: edematous, normal thickness, and after riboflavin–ultraviolet-A–mediated CXL. During micromotor-controlled axial displacements with a curved goniolens at physiologic intraocular pressure (IOP), serial optical coherence tomography scans were obtained to allow high-resolution intrastromal speckle tracking and displacement measurements over the central 4.0 mm of the cornea. RESULTS With no imposed increase in IOP, the mean lateral to imposed axial displacement ratios were 0.035 μm/μm ± 0.037 (SD) in edematous corneas, 0.021 ± 0.02 μm/μm in normal thickness corneas, and 0.014 ± 0.009 μm/μm in post-CXL corneas. The differences were statistically significant (P<.05, analysis of variance) and indicated a 40% increase in lateral stromal resistance with deturgescence and a further 33% mean increase in relative stiffness with CXL. CONCLUSIONS Serial perturbations of the corneal hydration state and CXL had significant effects on corneal biomechanical behavior. With an axially applied stress from a nonapplanating contact lens, displacements along the direction of the collagen lamellae were 2 orders of magnitude lower than axial deformations. These experiments show the ability of OCE to quantify clinically relevant mechanical property differences under physiologic conditions. Financial Disclosures Proprietary or commercial disclosures are listed after the references. PMID:24767794
Wilson, Robert H; Crouzet, Christian; Torabzadeh, Mohammad; Bazrafkan, Afsheen; Farahabadi, Maryam H; Jamasian, Babak; Donga, Dishant; Alcocer, Juan; Zaher, Shuhab M; Choi, Bernard; Akbari, Yama; Tromberg, Bruce J
2017-10-01
Quantifying rapidly varying perturbations in cerebral tissue absorption and scattering can potentially help to characterize changes in brain function caused by ischemic trauma. We have developed a platform for rapid intrinsic signal brain optical imaging using macroscopically structured light. The device performs fast, multispectral, spatial frequency domain imaging (SFDI), detecting backscattered light from three-phase binary square-wave projected patterns, which have a much higher refresh rate than sinusoidal patterns used in conventional SFDI. Although not as fast as "single-snapshot" spatial frequency methods that do not require three-phase projection, square-wave patterns allow accurate image demodulation in applications such as small animal imaging where the limited field of view does not allow single-phase demodulation. By using 655, 730, and 850 nm light-emitting diodes, two spatial frequencies ([Formula: see text] and [Formula: see text]), three spatial phases (120 deg, 240 deg, and 360 deg), and an overall camera acquisition rate of 167 Hz, we map changes in tissue absorption and reduced scattering parameters ([Formula: see text] and [Formula: see text]) and oxy- and deoxyhemoglobin concentration at [Formula: see text]. We apply this method to a rat model of cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) to quantify hemodynamics and scattering on temporal scales ([Formula: see text]) ranging from tens of milliseconds to minutes. We observe rapid concurrent spatiotemporal changes in tissue oxygenation and scattering during CA and following CPR, even when the cerebral electrical signal is absent. We conclude that square-wave SFDI provides an effective technical strategy for assessing cortical optical and physiological properties by balancing competing performance demands for fast signal acquisition, small fields of view, and quantitative information content.
Investigation of luminescence from LuAG: Mn4+ for physiological temperature sensing
NASA Astrophysics Data System (ADS)
Li, Fei; Cai, Jiajia; Chi, FengFeng; Chen, Yonghu; Duan, Changkui; Yin, Min
2017-04-01
Optical thermometry based on luminescent materials has garnered much attention due to its many advantages. But higher sensitivity is still expected in physiological temperature range which is of special significance in medicine and biology. For this purpose, quadrivalent manganese doped lutetium aluminum garnet, Lu3Al5O12: Mn4+, or simply LuAG: Mn4+, has been successfully synthesized by sol-gel method and its temperature dependent luminescence has been investigated in the present work. Compared to the common red emission phosphors Y3Al5O12: Mn4+ (YAG:Mn4+) with same structure, LuAG:Mn4+ has a stronger crystal field strength and a higher thermal-quenching activation energy (ΔE) of 5732 cm-1. Rapid thermal quenching of the Mn4+ luminescence occurred above room temperature around 90 °C for our LuAG:Mn4+ sample. Temperature dependent decay curves of Mn4+ emission from LuAG:Mn4+ revealed that an extraordinary high sensitivity can be achieved from luminescence lifetime measurements covering physiological temperature range with a sensitivity of 3.75% K-1 at 38 °C.
Physiological monitoring and control in hemodialysis: state of the art and outlook.
Kraemer, Matthias
2006-09-01
Medical devices for monitoring and feedback control of physiological parameters of the dialysis patient were introduced in the early 1990s. They have a wide range of applications, aiming at increasing the safety and ensuring the efficiency of the treatment, and at an improved restoration of physiological conditions, leading to an overall reduction in morbidity and mortality. Such devices include sensors for the measurement of temperature, optical parameters and sound speed in blood, and electrical characteristics of the human body, and other parameters. Essential for the development of these devices is a detailed understanding of the pathophysiological background of a therapeutical problem. There is still a large potential to introduce new devices for further therapy improvement and automation. Also, the size of the hemodialysis market appears attractive; however, a new product has to meet several specific requirements in order to also become commercially successful. This review describes the therapeutic and technical principles of several available devices, reports on concepts for possible future devices, and presents a short overview on the market environment.
2001-10-25
inner retina. The device is intended as a treatment to blindness. Specifically, degenerative disorders of the retina such as retinitis pigmentosa ...Trullemans C., Chronic electrical stimulation of the optic nerve in a retinitis pigmentosa blind volunteer. Inv. Ophth. Vis. Sci., 1999, 40: S783...stimulation delivered to the retinal tissue is derived from two stimulation channels of the 100 channel neurostimulation electronics [9]. Power and
Predictive Models of Human Visual Processes in Aerosystems.
1979-11-01
Physiology, 190:139-154. Wiesel, T. N. and D. H. Hubel, 1966. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey...receiving a disproportionate share as reflected in the magnification factor in the retinotopic map of the dorsal lateral geniculate (Malpeli and Baker...optic chiasm before reaching its targets in the dorsal region of the lateral geniculate of the thalmus and the superior colliculus in the brain stem
NASA Astrophysics Data System (ADS)
Zimmermann, Bernhard B.; Fang, Qianqian; Boas, David A.; Carp, Stefan A.
2016-01-01
Frequency domain near-infrared spectroscopy (FD-NIRS) has proven to be a reliable method for quantification of tissue absolute optical properties. We present a full-sampling direct analog-to-digital conversion FD-NIR imager. While we developed this instrument with a focus on high-speed optical breast tomographic imaging, the proposed design is suitable for a wide-range of biophotonic applications where fast, accurate quantification of absolute optical properties is needed. Simultaneous dual wavelength operation at 685 and 830 nm is achieved by concurrent 67.5 and 75 MHz frequency modulation of each laser source, respectively, followed by digitization using a high-speed (180 MS/s) 16-bit A/D converter and hybrid FPGA-assisted demodulation. The instrument supports 25 source locations and features 20 concurrently operating detectors. The noise floor of the instrument was measured at <1.4 pW/√Hz, and a dynamic range of 115+ dB, corresponding to nearly six orders of magnitude, has been demonstrated. Titration experiments consisting of 200 different absorption and scattering values were conducted to demonstrate accurate optical property quantification over the entire range of physiologically expected values.
Zimmermann, Bernhard B.; Fang, Qianqian; Boas, David A.; Carp, Stefan A.
2016-01-01
Abstract. Frequency domain near-infrared spectroscopy (FD-NIRS) has proven to be a reliable method for quantification of tissue absolute optical properties. We present a full-sampling direct analog-to-digital conversion FD-NIR imager. While we developed this instrument with a focus on high-speed optical breast tomographic imaging, the proposed design is suitable for a wide-range of biophotonic applications where fast, accurate quantification of absolute optical properties is needed. Simultaneous dual wavelength operation at 685 and 830 nm is achieved by concurrent 67.5 and 75 MHz frequency modulation of each laser source, respectively, followed by digitization using a high-speed (180 MS/s) 16-bit A/D converter and hybrid FPGA-assisted demodulation. The instrument supports 25 source locations and features 20 concurrently operating detectors. The noise floor of the instrument was measured at <1.4 pW/√Hz, and a dynamic range of 115+ dB, corresponding to nearly six orders of magnitude, has been demonstrated. Titration experiments consisting of 200 different absorption and scattering values were conducted to demonstrate accurate optical property quantification over the entire range of physiologically expected values. PMID:26813081
Visual-Cerebellar Pathways and Their Roles in the Control of Avian Flight.
Wylie, Douglas R; Gutiérrez-Ibáñez, Cristián; Gaede, Andrea H; Altshuler, Douglas L; Iwaniuk, Andrew N
2018-01-01
In this paper, we review the connections and physiology of visual pathways to the cerebellum in birds and consider their role in flight. We emphasize that there are two visual pathways to the cerebellum. One is to the vestibulocerebellum (folia IXcd and X) that originates from two retinal-recipient nuclei that process optic flow: the nucleus of the basal optic root (nBOR) and the pretectal nucleus lentiformis mesencephali (LM). The second is to the oculomotor cerebellum (folia VI-VIII), which receives optic flow information, mainly from LM, but also local visual motion information from the optic tectum, and other visual information from the ventral lateral geniculate nucleus (Glv). The tectum, LM and Glv are all intimately connected with the pontine nuclei, which also project to the oculomotor cerebellum. We believe this rich integration of visual information in the cerebellum is important for analyzing motion parallax that occurs during flight. Finally, we extend upon a suggestion by Ibbotson (2017) that the hypertrophy that is observed in LM in hummingbirds might be due to an increase in the processing demands associated with the pathway to the oculomotor cerebellum as they fly through a cluttered environment while feeding.
Ultrathin forward-imaging short multimode fiber probe for full-field optical coherence microscopy
NASA Astrophysics Data System (ADS)
Sato, Manabu; Saito, Daisuke; Shouji, Kou; Kurotani, Reiko; Abe, Hiroyuki; Nishidate, Izumi
2016-12-01
To extend the applications of optical coherence tomography (OCT) to the fields of physiology and clinical medicine, less invasive, robust, and reliable optical probes are required. Thus, we demonstrate an ultrathin forward-imaging short multimode fiber (SMMF) optical coherence microscopy (OCM) probe with a 50 μm core diameter, 125 μm total diameter, and 5.12 mm length. Imaging conditions and magnification were analyzed, and they correspond closely to the measured results. The dispersion of the SMMF was investigated, and the modal dispersion coefficient was found to be 2.3% of the material dispersion coefficient. The axial resolution was minimized at 2.15 μm using a 0.885-mm-thick dispersion compensator. The lateral resolution was evaluated to be 4.38 μm using a test pattern. The contrast of the OCM images was 5.7 times higher than that of the signal images owing to the coherence gate. The depth of focus and diameter of the field of view were measured to be 60 μm and 40-50 μm, respectively. OCM images of the dried fins of small fish (Medaka) were measured and internal structures could be recognized.
Improved fixation quality provided by a Bessel beacon in an adaptive optics system.
Lambert, Andrew J; Daly, Elizabeth M; Dainty, Christopher J
2013-07-01
We investigate whether a structured probe beam that creates the beacon for use in a retinal imaging adaptive optics system can provide useful side effects. In particular we investigate whether a Bessel beam that is seen by the subject as a set of concentric rings has a dampening effect on fixation variations of the subject under observation. This calming effect would allow longer periods of observation, particularly for patients with abnormal fixation. An experimental adaptive optics system developed for retinal imaging is used to monitor the fluctuations in aberrations for artificial and human subjects. The probe beam is alternated between a traditional beacon and one provided by a Bessel beam created by SLM. Time-frequency analysis is used to indicate the differences in power and time variation during fixation depending on whether the Bessel beam or the traditional beacon is employed. Comparison is made with the response for an artificial eye to discount systemic variations. Significant evidence is accrued to indicate the reduced fluctuations in fixation when the Bessel beam is employed to create the beacon. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.
Superresolving dendritic spine morphology with STED microscopy under holographic photostimulation
Lauterbach, Marcel Andreas; Guillon, Marc; Desnos, Claire; Khamsing, Dany; Jaffal, Zahra; Darchen, François; Emiliani, Valentina
2016-01-01
Abstract. Emerging all-optical methods provide unique possibilities for noninvasive studies of physiological processes at the cellular and subcellular scale. On the one hand, superresolution microscopy enables observation of living samples with nanometer resolution. On the other hand, light can be used to stimulate cells due to the advent of optogenetics and photolyzable neurotransmitters. To exploit the full potential of optical stimulation, light must be delivered to specific cells or even parts of cells such as dendritic spines. This can be achieved with computer generated holography (CGH), which shapes light to arbitrary patterns by phase-only modulation. We demonstrate here in detail how CGH can be incorporated into a stimulated emission depletion (STED) microscope for photostimulation of neurons and monitoring of nanoscale morphological changes. We implement an original optical system to allow simultaneous holographic photostimulation and superresolution STED imaging. We present how synapses can be clearly visualized in live cells using membrane stains either with lipophilic organic dyes or with fluorescent proteins. We demonstrate the capabilities of this microscope to precisely monitor morphological changes of dendritic spines after stimulation. These all-optical methods for cell stimulation and monitoring are expected to spread to various fields of biological research in neuroscience and beyond. PMID:27413766
A novel optical probe for pH sensing in gastro-esophageal apparatus
NASA Astrophysics Data System (ADS)
Baldini, F.; Ghini, G.; Giannetti, A.; Senesi, F.; Trono, C.
2011-03-01
Monitoring gastric pH for long periods, usually 24 h, may be essential in analyzing the physiological pattern of acidity, in obtaining information on changes in activity during peptic ulcer disease, and in assessing the effect of antisecretory drugs. Gastro-esophageal reflux, which causes a pH decrease in the esophagus content from pH 7 even down to pH 2, can determine esophagitis with possible strictures and Barrett's esophagus. One of the difficulties of the optical measurement of pH in the gastro-esophageal apparatus lies in the required extended working range from 1 to 8 pH units. The present paper deals with a novel optical pH sensor, using methyl red as optical pH indicator. Contrary to all acidbase indicators characterized by working ranges limited to 2-3 pH units, methyl red, after its covalent immobilization on controlled pore glass (CPG), is characterized by a wide working range which fits with the clinical requirements. The novel probe design here described is suitable for gastro-esophageal applications and allows the optimization of the performances of the CPG with the immobilised indicator. This leads to a very simple configuration characterized by a very fast response time.
Simulation of fluorescent measurements in the human skin
NASA Astrophysics Data System (ADS)
Meglinski, Igor V.; Sinichkin, Yurii P.; Utz, Sergei R.; Pilipenko, Helena A.
1995-05-01
Reflectance and fluorescence spectroscopy are successfully used for skin disease diagnostics. Human skin optical parameters are defined by its turbid, scattering properties with nonuniform absorption and fluorescence chromophores distribution, its multilayered structure, and variability under different physiological and pathological conditions. Theoretical modeling of light propagation in skin could improve the understanding of these condition and may be useful in the interpretation of in vivo reflectance and autofluorescence (AF) spectra. Laser application in medical optical tomography, tissue spectroscopy, and phototherapy stimulates the development of optical and mathematical light-tissue interaction models allowing to account the specific features of laser beam and tissue inhomogeneities. This paper presents the version of a Monte Carlo method for simulating of optical radiation propagation in biotissue and highly scattering media, allowing for 3D geometry of a medium. The simulation is based on use of Green's function of medium response to single external pulse. The process of radiation propagation is studied in the area with given boundary conditions, taking into account the processes of reflection and refraction at the boundaries of layers inside the medium under study. Results of Monte Carlo simulation were compared with experimental investigations and demonstrated good agreement.
In−Vitro and In−Vivo Noise Analysis for Optical Neural Recording
Foust, Amanda J.; Schei, Jennifer L.; Rojas, Manuel J.; Rector, David M.
2008-01-01
Laser diodes (LD) are commonly used for optical neural recordings in chronically recorded animals and humans, primarily due to their brightness and small size. However, noise introduced by LDs may counteract the benefits of brightness when compared to low−noise light emitting diodes (LEDs). To understand noise sources in optical recordings, we systematically compared instrument and physiological noise profiles in two recording paradigms. A better understanding of noise sources will help improve optical recordings and make them more practical with fewer averages. We stimulated lobster nerves and rat cortex, then compared the root mean square (RMS) noise and signal−to−noise ratios (SNRs) of data obtained with LED, superluminescent diode (SLD) and LD illumination for different numbers of averages. The LED data exhibited significantly higher SNRs in fewer averages than LD data in all recordings. In the absence of tissue, LED noise increased linearly with intensity, while LD noise increased sharply in the transition to lasing and settled to noise levels significantly higher than the LED’s, suggesting that speckle noise contributed to the LD’s higher noise and lower SNRs. Our data recommend low coherence and portable light sources for in−vivo chronic neural recording applications. PMID:19021365
Taylor, John J; Bambrick, Rachel; Brand, Andrew; Bray, Nathan; Dutton, Michelle; Harper, Robert A; Hoare, Zoe; Ryan, Barbara; Edwards, Rhiannon T; Waterman, Heather; Dickinson, Christine
2017-07-01
To compare the performance of near vision activities using additional portable electronic vision enhancement systems (p-EVES), to using optical magnifiers alone, by individuals with visual impairment. A total of 100 experienced optical aid users were recruited from low vision clinics at Manchester Royal Eye Hospital, Manchester, UK, to a prospective two-arm cross-over randomised controlled trial. Reading, performance of near vision activities, and device usage were evaluated at baseline; and at the end of each study arm (Intervention A: existing optical aids plus p-EVES; Intervention B: optical aids only) which was after 2 and 4 months. A total of 82 participants completed the study. Overall, maximum reading speed for high contrast sentences was not statistically significantly different for optical aids and p-EVES, although the critical print size and threshold print size which could be accessed with p-EVES were statistically significantly smaller (p < 0.001 in both cases). The optical aids were used for a larger number of tasks (p < 0.001), and used more frequently (p < 0.001). However p-EVES were preferred for leisure reading by 70% of participants, and allowed longer duration of reading (p < 0.001). During the study arm when they had a p-EVES device, participants were able to carry out more tasks independently (p < 0.001), and reported less difficulty with a range of near vision activities (p < 0.001). The study provides evidence that p-EVES devices can play a useful role in supplementing the range of low vision aids used to reduce activity limitation for near vision tasks. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Berke, Ian M.; Miola, Joseph P.; David, Michael A.; Smith, Melanie K.; Price, Christopher
2016-01-01
In situ, cells of the musculoskeletal system reside within complex and often interconnected 3-D environments. Key to better understanding how 3-D tissue and cellular environments regulate musculoskeletal physiology, homeostasis, and health is the use of robust methodologies for directly visualizing cell-cell and cell-matrix architecture in situ. However, the use of standard optical imaging techniques is often of limited utility in deep imaging of intact musculoskeletal tissues due to the highly scattering nature of biological tissues. Drawing inspiration from recent developments in the deep-tissue imaging field, we describe the application of immersion based optical clearing techniques, which utilize the principle of refractive index (RI) matching between the clearing/mounting media and tissue under observation, to improve the deep, in situ imaging of musculoskeletal tissues. To date, few optical clearing techniques have been applied specifically to musculoskeletal tissues, and a systematic comparison of the clearing ability of optical clearing agents in musculoskeletal tissues has yet to be fully demonstrated. In this study we tested the ability of eight different aqueous and non-aqueous clearing agents, with RIs ranging from 1.45 to 1.56, to optically clear murine knee joints and cortical bone. We demonstrated and quantified the ability of these optical clearing agents to clear musculoskeletal tissues and improve both macro- and micro-scale imaging of musculoskeletal tissue across several imaging modalities (stereomicroscopy, spectroscopy, and one-, and two-photon confocal microscopy) and investigational techniques (dynamic bone labeling and en bloc tissue staining). Based upon these findings we believe that optical clearing, in combination with advanced imaging techniques, has the potential to complement classical musculoskeletal analysis techniques; opening the door for improved in situ investigation and quantification of musculoskeletal tissues. PMID:26930293
Berke, Ian M; Miola, Joseph P; David, Michael A; Smith, Melanie K; Price, Christopher
2016-01-01
In situ, cells of the musculoskeletal system reside within complex and often interconnected 3-D environments. Key to better understanding how 3-D tissue and cellular environments regulate musculoskeletal physiology, homeostasis, and health is the use of robust methodologies for directly visualizing cell-cell and cell-matrix architecture in situ. However, the use of standard optical imaging techniques is often of limited utility in deep imaging of intact musculoskeletal tissues due to the highly scattering nature of biological tissues. Drawing inspiration from recent developments in the deep-tissue imaging field, we describe the application of immersion based optical clearing techniques, which utilize the principle of refractive index (RI) matching between the clearing/mounting media and tissue under observation, to improve the deep, in situ imaging of musculoskeletal tissues. To date, few optical clearing techniques have been applied specifically to musculoskeletal tissues, and a systematic comparison of the clearing ability of optical clearing agents in musculoskeletal tissues has yet to be fully demonstrated. In this study we tested the ability of eight different aqueous and non-aqueous clearing agents, with RIs ranging from 1.45 to 1.56, to optically clear murine knee joints and cortical bone. We demonstrated and quantified the ability of these optical clearing agents to clear musculoskeletal tissues and improve both macro- and micro-scale imaging of musculoskeletal tissue across several imaging modalities (stereomicroscopy, spectroscopy, and one-, and two-photon confocal microscopy) and investigational techniques (dynamic bone labeling and en bloc tissue staining). Based upon these findings we believe that optical clearing, in combination with advanced imaging techniques, has the potential to complement classical musculoskeletal analysis techniques; opening the door for improved in situ investigation and quantification of musculoskeletal tissues.
Quantitative analysis of eyes and other optical systems in linear optics.
Harris, William F; Evans, Tanya; van Gool, Radboud D
2017-05-01
To show that 14-dimensional spaces of augmented point P and angle Q characteristics, matrices obtained from the ray transference, are suitable for quantitative analysis although only the latter define an inner-product space and only on it can one define distances and angles. The paper examines the nature of the spaces and their relationships to other spaces including symmetric dioptric power space. The paper makes use of linear optics, a three-dimensional generalization of Gaussian optics. Symmetric 2 × 2 dioptric power matrices F define a three-dimensional inner-product space which provides a sound basis for quantitative analysis (calculation of changes, arithmetic means, etc.) of refractive errors and thin systems. For general systems the optical character is defined by the dimensionally-heterogeneous 4 × 4 symplectic matrix S, the transference, or if explicit allowance is made for heterocentricity, the 5 × 5 augmented symplectic matrix T. Ordinary quantitative analysis cannot be performed on them because matrices of neither of these types constitute vector spaces. Suitable transformations have been proposed but because the transforms are dimensionally heterogeneous the spaces are not naturally inner-product spaces. The paper obtains 14-dimensional spaces of augmented point P and angle Q characteristics. The 14-dimensional space defined by the augmented angle characteristics Q is dimensionally homogenous and an inner-product space. A 10-dimensional subspace of the space of augmented point characteristics P is also an inner-product space. The spaces are suitable for quantitative analysis of the optical character of eyes and many other systems. Distances and angles can be defined in the inner-product spaces. The optical systems may have multiple separated astigmatic and decentred refracting elements. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
NASA Astrophysics Data System (ADS)
Lu, Yiming; Wang, Benquan; Yao, Xincheng
2017-02-01
Transient retinal phototropism (TRP) has been observed in rod photoreceptors activated by oblique visible light flashes. Time-lapse confocal microscopy and optical coherence tomography (OCT) revealed rod outer segment (ROS) movements as the physical source of TRP. However, the physiological source of TRP is still not well understood. In this study, concurrent TRP and electroretinogram (ERG) measurements disclosed a remarkably earlier onset time of the ROS movements (<=10 ms) than that ( 38 ms) of the ERG a-wave. Furthermore, low sodium treatment reversibly blocked the photoreceptor ERG a-wave, which is known to reflect hyperpolarization of retinal photoreceptors, but preserved the TRP associated rod OS movements well. Our experimental results and theoretical analysis suggested that the physiological source of TRP might be attributed to early stages of phototransduction, before the hyperpolarization of retinal photoreceptors.
Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging.
Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda
2016-07-25
Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes.
Modeling learning in brain stem and cerebellar sites responsible for VOR plasticity
NASA Technical Reports Server (NTRS)
Quinn, K. J.; Didier, A. J.; Baker, J. F.; Peterson, B. W.
1998-01-01
A simple model of vestibuloocular reflex (VOR) function was used to analyze several hypotheses currently held concerning the characteristics of VOR plasticity. The network included a direct vestibular pathway and an indirect path via the cerebellum. An optimization analysis of this model suggests that regulation of brain stem sites is critical for the proper modification of VOR gain. A more physiologically plausible learning rule was also applied to this network. Analysis of these simulation results suggests that the preferred error correction signal controlling gain modification of the VOR is the direct output of the accessory optic system (AOS) to the vestibular nuclei vs. a signal relayed through the cerebellum via floccular Purkinje cells. The potential anatomical and physiological basis for this conclusion is discussed, in relation to our current understanding of the latency of the adapted VOR response.
Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging
Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda
2016-01-01
Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes. PMID:27453176
Zhao, Y J; Liu, Y; Sun, Y C; Wang, Y
2017-08-18
To explore a three-dimensional (3D) data fusion and integration method of optical scanning tooth crowns and cone beam CT (CBCT) reconstructing tooth roots for their natural transition in the 3D profile. One mild dental crowding case was chosen from orthodontics clinics with full denture. The CBCT data were acquired to reconstruct the dental model with tooth roots by Mimics 17.0 medical imaging software, and the optical impression was taken to obtain the dentition model with high precision physiological contour of crowns by Smart Optics dental scanner. The two models were doing 3D registration based on their common part of the crowns' shape in Geomagic Studio 2012 reverse engineering software. The model coordinate system was established by defining the occlusal plane. crown-gingiva boundary was extracted from optical scanning model manually, then crown-root boundary was generated by offsetting and projecting crown-gingiva boundary to the root model. After trimming the crown and root models, the 3D fusion model with physiological contour crown and nature root was formed by curvature continuity filling algorithm finally. In the study, 10 patients with dentition mild crowded from the oral clinics were followed up with this method to obtain 3D crown and root fusion models, and 10 high qualification doctors were invited to do subjective evaluation of these fusion models. This study based on commercial software platform, preliminarily realized the 3D data fusion and integration method of optical scanning tooth crowns and CBCT tooth roots with a curvature continuous shape transition. The 10 patients' 3D crown and root fusion models were constructed successfully by the method, and the average score of the doctors' subjective evaluation for these 10 models was 8.6 points (0-10 points). which meant that all the fusion models could basically meet the need of the oral clinics, and also showed the method in our study was feasible and efficient in orthodontics study and clinics. The method of this study for 3D crown and root data fusion could obtain an integrate tooth or dental model more close to the nature shape. CBCT model calibration may probably improve the precision of the fusion model. The adaptation of this method for severe dentition crowding and micromaxillary deformity needs further research.
Combining morphometric features and convolutional networks fusion for glaucoma diagnosis
NASA Astrophysics Data System (ADS)
Perdomo, Oscar; Arevalo, John; González, Fabio A.
2017-11-01
Glaucoma is an eye condition that leads to loss of vision and blindness. Ophthalmoscopy exam evaluates the shape, color and proportion between the optic disc and physiologic cup, but the lack of agreement among experts is still the main diagnosis problem. The application of deep convolutional neural networks combined with automatic extraction of features such as: the cup-to-disc distance in the four quadrants, the perimeter, area, eccentricity, the major radio, the minor radio in optic disc and cup, in addition to all the ratios among the previous parameters may help with a better automatic grading of glaucoma. This paper presents a strategy to merge morphological features and deep convolutional neural networks as a novel methodology to support the glaucoma diagnosis in eye fundus images.
Space flight-associated neuro-ocular syndrome (SANS).
Lee, Andrew G; Mader, Thomas H; Gibson, C Robert; Brunstetter, Tyson J; Tarver, William J
2018-03-12
Interesting novel and somewhat perplexing physiologic and pathologic neuro-ocular findings have been documented in astronauts during and after long duration space flight (LDSF). These findings collectively have been termed the "space flight-associated neuro-ocular syndrome" (SANS). The National Aeronautics and Space Administration (NASA) in the United States has meticulously and prospectively documented the clinical, ultrasound, optical coherence tomography imaging, and radiographic findings of SANS including unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and nerve fiber layer infarcts (i.e., cotton wool spots). NASA and collaborating researchers continue to study SANS in preparation for future manned missions to space, including continued trips to the ISS, a return to the moon, or perhaps new voyages to the asteroid belt, or the planet, Mars.
Histogram analysis for smartphone-based rapid hematocrit determination
Jalal, Uddin M.; Kim, Sang C.; Shim, Joon S.
2017-01-01
A novel and rapid analysis technique using histogram has been proposed for the colorimetric quantification of blood hematocrits. A smartphone-based “Histogram” app for the detection of hematocrits has been developed integrating the smartphone embedded camera with a microfluidic chip via a custom-made optical platform. The developed histogram analysis shows its effectiveness in the automatic detection of sample channel including auto-calibration and can analyze the single-channel as well as multi-channel images. Furthermore, the analyzing method is advantageous to the quantification of blood-hematocrit both in the equal and varying optical conditions. The rapid determination of blood hematocrits carries enormous information regarding physiological disorders, and the use of such reproducible, cost-effective, and standard techniques may effectively help with the diagnosis and prevention of a number of human diseases. PMID:28717569
Liu, Mengyang; Chen, Zhe; Zabihian, Behrooz; Sinz, Christoph; Zhang, Edward; Beard, Paul C.; Ginner, Laurin; Hoover, Erich; Minneman, Micheal P.; Leitgeb, Rainer A.; Kittler, Harald; Drexler, Wolfgang
2016-01-01
Cutaneous blood flow accounts for approximately 5% of cardiac output in human and plays a key role in a number of a physiological and pathological processes. We show for the first time a multi-modal photoacoustic tomography (PAT), optical coherence tomography (OCT) and OCT angiography system with an articulated probe to extract human cutaneous vasculature in vivo in various skin regions. OCT angiography supplements the microvasculature which PAT alone is unable to provide. Co-registered volumes for vessel network is further embedded in the morphologic image provided by OCT. This multi-modal system is therefore demonstrated as a valuable tool for comprehensive non-invasive human skin vasculature and morphology imaging in vivo. PMID:27699106
Plant photonics: application of optical coherence tomography to monitor defects and rots in onion
NASA Astrophysics Data System (ADS)
Meglinski, I. V.; Buranachai, C.; Terry, L. A.
2010-04-01
The incidence of physiological and/or pathological defects in many fresh produce types is still unacceptably high and accounts for a large proportion of waste. With increasing interest in food security their remains strong demand in developing reliable and cost effective technologies for non-destructive screening of internal defects and rots, these being deemed unacceptable by consumers. It is well recognized that the internal defects and structure of turbid scattering media can be effectively visualized by using optical coherence tomography (OCT). In the present study, the high spatial resolution and advantages of OCT have been demonstrated for imaging the skins and outer laminae (concentric tissue layers) of intact whole onion bulbs with a view to non-invasively visualizing potential incidence/severity of internal defects.
Micromirror structured illumination microscope for high-speed in vivo drosophila brain imaging.
Masson, A; Pedrazzani, M; Benrezzak, S; Tchenio, P; Preat, T; Nutarelli, D
2014-01-27
Genetic tools and especially genetically encoded fluorescent reporters have given a special place to optical microscopy in drosophila neurobiology research. In order to monitor neural networks activity, high speed and sensitive techniques, with high spatial resolution are required. Structured illumination microscopies are wide-field approaches with optical sectioning ability. Despite the large progress made with the introduction of the HiLo principle, they did not meet the criteria of speed and/or spatial resolution for drosophila brain imaging. We report on a new implementation that took advantage of micromirror matrix technology to structure the illumination. Thus, we showed that the developed instrument exhibits a spatial resolution close to that of confocal microscopy but it can record physiological responses with a speed improved by more than an order a magnitude.
Closed-Loop and Activity-Guided Optogenetic Control
Grosenick, Logan; Marshel, James H.; Deisseroth, Karl
2016-01-01
Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals. PMID:25856490
Autoradiographic method for quantitation of deposition and distribution of radiocalcium in bone
Lawrence Riggs, B; Bassingthwaighte, James B.; Jowsey, Jenifer; Peter Pequegnat, E
2010-01-01
A method is described for quantitating autoradiographs of bone-seeking isotopes in microscopic sections of bone. Autoradiographs of bone sections containing 45Ca and internal calibration standards are automatically scanned with a microdensitometer. The digitized optical density output is stored on magnetic tape and is converted by computer to equivalent activity of 45Ca per gram of bone. The computer determines the total 45Ca uptake in the bone section and, on the basis of optical density and anatomic position, quantitatively divides the uptake into 4 components, each representing a separate physiologic process (bone formation, secondary mineralization, diffuse long-term exchange, and surface short-term exchange). The method is also applicable for quantitative analysis of microradiographs of bone sections for mineral content and density. PMID:5416906
Advances in functional X-ray imaging techniques and contrast agents
Chen, Hongyu; Rogalski, Melissa M.
2012-01-01
X-rays have been used for non-invasive high-resolution imaging of thick biological specimens since their discovery in 1895. They are widely used for structural imaging of bone, metal implants, and cavities in soft tissue. Recently, a number of new contrast methodologies have emerged which are expanding X-ray’s biomedical applications to functional as well as structural imaging. These techniques are promising to dramatically improve our ability to study in situ biochemistry and disease pathology. In this review, we discuss how X-ray absorption, X-ray fluorescence, and X-ray excited optical luminescence can be used for physiological, elemental, and molecular imaging of vasculature, tumours, pharmaceutical distribution, and the surface of implants. Imaging of endogenous elements, exogenous labels, and analytes detected with optical indicators will be discussed. PMID:22962667
Nocturnality constrains morphological and functional diversity in the eyes of reef fishes.
Schmitz, Lars; Wainwright, Peter C
2011-11-19
Ambient light levels are often considered to drive the evolution of eye form and function. Diel activity pattern is the main mechanism controlling the visual environment of teleost reef fish, with day-active (diurnal) fish active in well-illuminated conditions, whereas night-active (nocturnal) fish cope with dim light. Physiological optics predicts several specific evolutionary responses to dim-light vision that should be reflected in visual performance features of the eye. We analyzed a large comparative dataset on morphological traits of the eyes in 265 species of teleost reef fish in 43 different families. The eye morphology of nocturnal reef teleosts is characterized by a syndrome that indicates better light sensitivity, including large relative eye size, high optical ratio and large, rounded pupils. Improved dim-light image formation comes at the cost of reduced depth of focus and reduction of potential accommodative lens movement. Diurnal teleost reef fish, released from the stringent functional requirements of dim-light vision have much higher morphological and optical diversity than nocturnal species, with large ranges of optical ratio, depth of focus, and lens accommodation. Physical characteristics of the environment are an important factor in the evolution and diversification of the vertebrate eye. Both teleost reef fish and terrestrial amniotes meet the functional requirements of dim-light vision with a similar evolutionary response of morphological and optical modifications. The trade-off between improved dim-light vision and reduced optical diversity may be a key factor in explaining the lower trophic diversity of nocturnal reef teleosts.
Light gradients and optical microniches in coral tissues.
Wangpraseurt, Daniel; Larkum, Anthony W D; Ralph, Peter J; Kühl, Michael
2012-01-01
Light quantity and quality are among the most important factors determining the physiology and stress response of zooxanthellate corals. Yet, almost nothing is known about the light field that Symbiodinium experiences within their coral host, and the basic optical properties of coral tissue are unknown. We used scalar irradiance microprobes to characterize vertical and lateral light gradients within and across tissues of several coral species. Our results revealed the presence of steep light gradients with photosynthetically available radiation decreasing by about one order of magnitude from the tissue surface to the coral skeleton. Surface scalar irradiance was consistently higher over polyp tissue than over coenosarc tissue in faviid corals. Coral bleaching increased surface scalar irradiance by ~150% (between 500 and 700 nm) relative to a healthy coral. Photosynthesis peaked around 300 μm within the tissue, which corresponded to a zone exhibiting strongest depletion of scalar irradiance. Deeper coral tissue layers, e.g., ~1000 μm into aboral polyp tissues, harbor optical microniches, where only ~10% of the incident irradiance remains. We conclude that the optical microenvironment of corals exhibits strong lateral and vertical gradients of scalar irradiance, which are affected by both tissue and skeleton optical properties. Our results imply that zooxanthellae populations inhabit a strongly heterogeneous light environment and highlight the presence of different optical microniches in corals; an important finding for understanding the photobiology, stress response, as well as the phenotypic and genotypic plasticity of coral symbionts.
Light gradients and optical microniches in coral tissues
Wangpraseurt, Daniel; Larkum, Anthony W. D.; Ralph, Peter J.; Kühl, Michael
2012-01-01
Light quantity and quality are among the most important factors determining the physiology and stress response of zooxanthellate corals. Yet, almost nothing is known about the light field that Symbiodinium experiences within their coral host, and the basic optical properties of coral tissue are unknown. We used scalar irradiance microprobes to characterize vertical and lateral light gradients within and across tissues of several coral species. Our results revealed the presence of steep light gradients with photosynthetically available radiation decreasing by about one order of magnitude from the tissue surface to the coral skeleton. Surface scalar irradiance was consistently higher over polyp tissue than over coenosarc tissue in faviid corals. Coral bleaching increased surface scalar irradiance by ~150% (between 500 and 700 nm) relative to a healthy coral. Photosynthesis peaked around 300 μm within the tissue, which corresponded to a zone exhibiting strongest depletion of scalar irradiance. Deeper coral tissue layers, e.g., ~1000 μm into aboral polyp tissues, harbor optical microniches, where only ~10% of the incident irradiance remains. We conclude that the optical microenvironment of corals exhibits strong lateral and vertical gradients of scalar irradiance, which are affected by both tissue and skeleton optical properties. Our results imply that zooxanthellae populations inhabit a strongly heterogeneous light environment and highlight the presence of different optical microniches in corals; an important finding for understanding the photobiology, stress response, as well as the phenotypic and genotypic plasticity of coral symbionts. PMID:22969755
Carpenter, C. M.; Rakow-Penner, R.; Jiang, S.; Pogue, B. W.; Glover, G. H.; Paulsen, K. D.
2010-01-01
Purpose: The modulation of tissue hemodynamics has important clinical value in medicine for both tumor diagnosis and therapy. As an oncological tool, increasing tissue oxygenation via modulation of inspired gas has been proposed as a method to improve cancer therapy and determine radiation sensitivity. As a radiological tool, inducing changes in tissue total hemoglobin may provide a means to detect and characterize malignant tumors by providing information about tissue vascular function. The ability to change and measure tissue hemoglobin and oxygenation concentrations in the healthy breast during administration of three different types of modulated gas stimuli (oxygen∕carbogen, air∕carbogen, and air∕oxygen) was investigated. Methods: Subjects breathed combinations of gases which were modulated in time. MR-guided diffuse optical tomography measured total hemoglobin and oxygen saturation in the breast every 30 s during the 16 min breathing stimulus. Metrics of maximum correlation and phase lag were calculated by cross correlating the measured hemodynamics with the stimulus. These results were compared to an air∕air control to determine the hemodynamic changes compared to the baseline physiology. Results: This study demonstrated that a gas stimulus consisting of alternating oxygen∕carbogen induced the largest and most robust hemodynamic response in healthy breast parenchyma relative to the changes that occurred during the breathing of room air. This stimulus caused increases in total hemoglobin and oxygen saturation during the carbogen phase of gas inhalation, and decreases during the oxygen phase. These findings are consistent with the theory that oxygen acts as a vasoconstrictor, while carbogen acts as a vasodilator. However, difficulties in inducing a consistent change in tissue hemoglobin and oxygenation were observed because of variability in intersubject physiology, especially during the air∕oxygen or air∕carbogen modulated breathing protocols. Conclusions: MR-guided diffuse optical imaging is a unique tool that can measure tissue hemodynamics in the breast during modulated breathing. This technique may have utility in determining the therapeutic potential of pretreatment tissue oxygenation or in investigating vascular function. Future gas modulation studies in the breast should use a combination of oxygen and carbogen as the functional stimulus. Additionally, control measures of subject physiology during air breathing are critical for robust measurements. PMID:20443485
Jiang, Xiao-jun; Lu, Xu-liang; Pan, Jia-liang; Zhang, Shuan-qin
2015-07-01
Due to the life characteristics such as physiological structure and transpiration, plants have unique optical and infrared features. In the optical band, because of the common effects of chlorophyll and water, plant leafs show spectral reflectance characteristics change in 550, 680, 1400 and 1900 nm significantly. In the infrared wave band, driven by transpiration, plants could regulate temperature on their own initiative, which make the infrared characteristics of plants different from artificial materials. So palnt bionic materials were proposed to simulate optical and infrared characteristics of plants. By analyzing formation mechanism of optical and infrared features about green plants, the component design and heat-transfer process of plants bionic materials were studied, above these the heat-transfer control formulation was established. Based on water adsorption/release compound, optical pigments and other man-made materials, plant bionic materials preparation methods were designed which could simulate the optical and infrared features of green plants. By chemical casting methods plant bionic material films were prepared, which use polyvinyl alcohol as film forming and water adsorption/release compound, and use optical pigments like chrome green and macromolecule yellow as colouring materials. The research conclusions achieved by testings figured out: water adsorption/release testing showed that the plant bionic materials with a certain thickness could absorb 1.3 kg water per square meter, which could satisfy the water usage of transpiration simulation one day; the optical and infrared simulated effect tests indicated that the plant bionic materials could preferably simulate the spectral reflective performance of green plants in optical wave band (380-2500 nm, expecially in 1400 and 1900 nm which were water absorption wave band of plants), and also it had similar daily infrared radiation variations with green plants, daily average radiation temperature difference was 0.37 degrees C, maximum radiation temperature difference was 0.9 degrees C; so according to the testing results, the materials behave well plant bionic performance.
NASA Astrophysics Data System (ADS)
Sdobnov, Anton Yu; Tuchin, Valery V.; Lademann, Juergen; E Darvin, Maxim
2017-07-01
Confocal Raman microscopy (CRM) is employed to study the skin physiology, drug permeation and skin disease monitoring. In order to increase the depth of investigations, the effect of optical clearing was observed on porcine ear skin ex vivo. The optical clearing agents (OCAs) glycerol and iohexol (Omnipaque™) were applied to the porcine ear skin and investigated by CRM after 30 and 60 min of treatment. The extent of optical clearing by utilizing concentrations of 70% glycerol and 100% Omnipaque™ was evaluated. The intensity of the skin-related Raman peaks significantly increased starting from the depth 160 µm for Omnipaque™ and 40 µm for glycerol (p ⩽ 0.05) after 60 min of treatment. The OCAs’ influence on the collagen hydration in the deep-located dermis was investigated. Both OCAs induce skin dehydration, but the effect of glycerol treatment (30 min and 60 min) is stronger. The obtained results demonstrate that with increasing the treatment time, both glycerol and Omnipaque™ solutions improve the optical clearing of porcine skin making the deep-located dermal regions able for investigations. At the used concentrations and time intervals, glycerol is more effective than Omnipaque™. However, Omnipaque™ is more promising than glycerol for future in vivo applications as it is an already approved pharmaceutic substance without any known impact on the skin structure.
Optical biopsy fiber-based fluorescence spectroscopy instrumentation
NASA Astrophysics Data System (ADS)
Katz, Alvin; Ganesan, Singaravelu; Yang, Yuanlong; Tang, Gui C.; Budansky, Yury; Celmer, Edward J.; Savage, Howard E.; Schantz, Stimson P.; Alfano, Robert R.
1996-04-01
Native fluorescence spectroscopy of biomolecules has emerged as a new modality to the medical community in characterizing the various physiological conditions of tissues. In the past several years, many groups have been working to introduce the spectroscopic methods to diagnose cancer. Researchers have successfully used native fluorescence to distinguish cancerous from normal tissue samples in rat and human tissue. We have developed three generations of instruments, called the CD-scan, CD-ratiometer and CD-map, to allow the medical community to use optics for diagnosing tissue. Using ultraviolet excitation and emission spectral measurements on both normal and cancerous tissue of the breast, gynecology, colon, and aerodigestive tract can be separated. For example, from emission intensities at 340 nm to 440 nm (300 nm excitation), a statistically consistent difference between malignant tissue and normal or benign tissue is observed. In order to utilize optical biopsy techniques in a clinical setting, the CD-scan instrument was developed, which allows for rapid and reliable in-vitro and in-vivo florescence measurements of the aerodigestive tract with high accuracy. The instrumentation employs high sensitivity detection techniques which allows for lamp excitation, small diameter optical fiber probes; the higher spatial resolution afforded by the small diameter probes can increase the ability to detect smaller tumors. The fiber optic probes allow for usage in the aerodigestive tract, cervix and colon. Needle based fiber probes have been developed for in-vivo detection of breast cancer.
Nervous control of reproduction in Octopus vulgaris: a new model.
Di Cristo, Carlo
2013-06-01
The classic study of Wells and Wells on the control of reproduction in Octopus demonstrated that the activity of the subpedunculate lobe of the brain and environmental illumination both inhibit the release of an unknown gonadotropin from the optic gland. This inhibitory control may be exerted by the neuropeptide Phe-Met-Arg-Phe-NH₂ (FMRFamide). It was later demonstrated that the olfactory lobe is also likely to be involved in the control of optic gland activity. The presence of gonadotropin-releasing hormone in the olfactory lobe suggested that it might exert an excitatory action on optic gland activity. Other neuropeptides have now been localised in the olfactory lobe: neuropeptide Y, galanin, corticotropin-releasing factor, Ala-Pro-Gly-Trp-NH₂ (APGWamide), as well as steroidogenic enzymes and an oestrogen receptor orthologue. This supports the hypothesis that this lobe may also play a part in the control of reproduction in Octopus. The olfactory lobe receives distant chemical stimuli and also appears to be an integrative centre containing a variety of neuropeptides involved in controlling the onset of sexual maturation of Octopus, via the optic gland hormone. This review attempts to summarise current knowledge about the role of the olfactory lobe and optic gland in the control of sexual maturation in Octopus, in the light of new findings and in the context of molluscan comparative physiology.
NASA Astrophysics Data System (ADS)
Jeon, Sung W.; Shure, Mark A.; Baker, Kenneth B.; Chahlavi, Ali; Hatoum, Nagi; Turbay, Massud; Rollins, Andrew M.; Rezai, Ali R.; Huang, David
2005-04-01
Deep Brain Stimulation (DBS) is FDA-approved for the treatment of Parkinson's disease and essential tremor. Currently, placement of DBS leads is guided through a combination of anatomical targeting and intraoperative microelectrode recordings. The physiological mapping process requires several hours, and each pass of the microelectrode into the brain increases the risk of hemorrhage. Optical Coherence Domain Reflectometry (OCDR) in combination with current methodologies could reduce surgical time and increase accuracy and safety by providing data on structures some distance ahead of the probe. For this preliminary study, we scanned a rat brain in vitro using polarization-insensitive Optical Coherence Tomography (OCT). For accurate measurement of intensity and attenuation, polarization effects arising from tissue birefringence are removed by polarization diversity detection. A fresh rat brain was sectioned along the coronal plane and immersed in a 5 mm cuvette with saline solution. OCT images from a 1294 nm light source showed depth profiles up to 2 mm. Light intensity and attenuation rate distinguished various tissue structures such as hippocampus, cortex, external capsule, internal capsule, and optic tract. Attenuation coefficient is determined by linear fitting of the single scattering regime in averaged A-scans where Beer"s law is applicable. Histology showed very good correlation with OCT images. From the preliminary study using OCT, we conclude that OCDR is a promising approach for guiding DBS probe placement.
United States Air Force Graduate Student Research Program. Program Technical rept. Volume 1.
1988-12-01
Notre Dame, IN 46556 (219) 239-5430 xv Paul R. Tanner Degree: B.A., Psychology, 1986 Dept. of Physiology Specialty: Sensory Neurophysiology Meharry...administrative arrangement of the program. It has been a rewarding and enlightening research experience at the Air Force Armament Laboratory at Eglin AFB. Dr... enlighten me on the possibilities of continuing my research effort in the future. 31-3 I. INTRODUCTION: The use of optical technology for communications
Physiological Optics of the Eye of the Juvenile Lemon Shark (Negaprion brevirostris).
1980-05-01
fUr Lher affects of ametropia ) is the distance between the second nodal point vI lhe -’otoreceptor layer. This dimension is known as the posterior...gauge on the negative effect of ametropia on visual acuity, t the size of these retinal blur circles can be calculated using the schematic eye, 96...the working distance between retinoscopist and subject eye. My retinoscopic measurements of the underwater ametropia in juvenile lemon sharks have been
Multi-scale Functional and Molecular Photoacoustic Tomography
Yao, Junjie; Xia, Jun; Wang, Lihong V.
2015-01-01
Photoacoustic tomography (PAT) combines rich optical absorption contrast with the high spatial resolution of ultrasound at depths in tissue. The high scalability of PAT has enabled anatomical imaging of biological structures ranging from organelles to organs. The inherent functional and molecular imaging capabilities of PAT have further allowed it to measure important physiological parameters and track critical cellular activities. Integration of PAT with other imaging technologies provides complementary capabilities and can potentially accelerate the clinical translation of PAT. PMID:25933617
NASA Astrophysics Data System (ADS)
Kumar, Alla S.; Clark, Joseph; Beyette, Fred R., Jr.
2009-02-01
Neonatal jaundice is a medical condition which occurs in newborns as a result of an imbalance between the production and elimination of bilirubin. The excess bilirubin in the blood stream diffuses into the surrounding tissue leading to a yellowing of the skin. As the bilirubin levels rise in the blood stream, there is a continuous exchange between the extra vascular bilirubin and bilirubin in the blood stream. Exposure to phototherapy alters the concentration of bilirubin in the vascular and extra vascular regions by causing bilirubin in the skin layers to be broken down. Thus, the relative concentration of extra vascular bilirubin is reduced leading to a diffusion of bilirubin out of the vascular region. Diffuse reflectance spectra from human skin contains physiological and structural information of the skin and nearby tissue. A diffuse reflectance spectrum must be captured before and after blanching in order to isolate the intravascular and extra vascular bilirubin. A new mathematical model is proposed with extra vascular bilirubin concentration taken into consideration along with other optical parameters in defining the diffuse reflectance spectrum from human skin. A nonlinear optimization algorithm has been adopted to extract the optical properties (including bilirubin concentration) from the skin reflectance spectrum. The new system model and nonlinear algorithm have been combined to enable extraction of Bilirubin concentrations within an average error of 10%.
Robles, Estuardo
2017-09-01
In no vertebrate species do we possess an accurate, comprehensive tally of neuron types in the brain. This is in no small part due to the vast diversity of neuronal types that comprise complex vertebrate nervous systems. A fundamental goal of neuroscience is to construct comprehensive catalogs of cell types defined by structure, connectivity, and physiological response properties. This type of information will be invaluable for generating models of how assemblies of neurons encode and distribute sensory information and correspondingly alter behavior. This review summarizes recent efforts in the larval zebrafish to construct sensory projectomes, comprehensive analyses of axonal morphologies in sensory axon tracts. Focusing on the olfactory and optic tract, these studies revealed principles of sensory information processing in the olfactory and visual systems that could not have been directly quantified by other methods. In essence, these studies reconstructed the optic and olfactory tract in a virtual manner, providing insights into patterns of neuronal growth that underlie the formation of sensory axon tracts. Quantitative analysis of neuronal diversity revealed organizing principles that determine information flow through sensory systems in the zebrafish that are likely to be conserved across vertebrate species. The generation of comprehensive cell type classifications based on structural, physiological, and molecular features will lead to testable hypotheses on the functional role of individual sensory neuron subtypes in controlling specific sensory-evoked behaviors.
Method to investigate temporal dynamics of ganglion and other retinal cells in the living human eye
NASA Astrophysics Data System (ADS)
Kurokawa, Kazuhiro; Liu, Zhuolin; Crowell, James; Zhang, Furu; Miller, Donald T.
2018-02-01
The inner retina is critical for visual processing, but much remains unknown about its neural circuitry and vulnerability to disease. A major bottleneck has been our inability to observe the structure and function of the cells composing these retinal layers in the living human eye. Here, we present a noninvasive method to observe both structural and functional information. Adaptive optics optical coherence tomography (AO-OCT) is used to resolve the inner retinal cells in all three dimensions and novel post processing algorithms are applied to extract structure and physiology down to the cellular level. AO-OCT captured the 3D mosaic of individual ganglion cell somas, retinal nerve fiber bundles of micron caliber, and microglial cells, all in exquisite detail. Time correlation analysis of the AO-OCT videos revealed notable temporal differences between the principal layers of the inner retina. The GC layer was more dynamic than the nerve fiber and inner plexiform layers. At the cellular level, we applied a customized correlation method to individual GCL somas, and found a mean time constant of activity of 0.57 s and spread of +/-0.1 s suggesting a range of physiological dynamics even in the same cell type. Extending our method to slower dynamics (from minutes to one year), time-lapse imaging and temporal speckle contrast revealed appendage and soma motion of resting microglial cells at the retinal surface.
Normal-tension glaucoma (Low-tension glaucoma)
Anderson, Douglas R
2011-01-01
Glaucoma is now considered an abnormal physiology in the optic nerve head that interacts with the level of intraocular pressure (IOP), with the degree and rate of damage depending on the IOP and presumably the degree of abnormal physiology. Diagnosis of normal-tension glaucoma (NTG), defined as glaucoma without a clearly abnormal IOP, depends on recognizing symptoms and signs associated with optic nerve vulnerability, in addition to absence of other explanations for disc abnormality and visual field loss. Among the findings are a halo or crescent of absence of retinal pigment epithelium around the disc, bilateral pre-chiasmal visual field defects, splinter hemorrhages at the disc margin, vascular dysregulation (low blood pressure, cold hands and feet, migraine headache with aura, and the like), or a family history of glaucoma. Possibly relevant, is a history of hemodynamic crisis, arterial obstructive disease, or sleep apnea. Neurological evaluation with imaging is needed only for atypical cases or ones that progress unexpectedly. Management follows the same principle of other chronic glaucomas, to lower the IOP by a substantial amount, enough to prevent disabling visual loss. However, many NTG cases are non-progressive. Therefore, it may often be wisein mild cases to determine whether the case is progressive and the rate of progression before deciding on how aggressivene to be with therapy. Efforts at neuroprotection and improvement in blood flow have not yet been shown effective. PMID:21150042
Optical coherence tomography in diagnosing cervical cancer
NASA Astrophysics Data System (ADS)
Kuznetzova, Irina A.; Shakhova, Natalia M.; Kachalina, Tatiana S.; Gladkova, Natalia D.; Myakov, Alexey V.; Iksanov, Rashid R.; Feldchtein, Felix I.
2000-05-01
Cervical cancer remains one of the most significant problem in oncogynecology. It tends towards treatment approaches that provide termination of pathological processes along with preservation of the patient's life quality. There is a need in earlier and more accurate diagnosis of pathological states, objective assessment of physiological processes, and adequate monitoring of the course of treatment. In our previous publications we have reported unique capabilities of the Optical Coherence Tomography (OCT) to image in vivo the mucosa structure of the cervix and to monitor various physiological and pathological alterations. In this report, we present results of OCT application to diagnose different stages of cervical cancer and to control its treatment at early stages. We have performed OCT-colposcopy in 11 female patients with cervical cancer to derive OCT criteria of this disease, to provide exact demarcation of a pathological area, and to determine a real size of a tumor. We have found that, in general, borders of a tumor, defined visually and detected with OCT by violation of the basement membrane in exocervix, do not coincide. The mismatch depends on a stage of cancer and can be as much as several millimeters. This information is especially important for evaluation of linear dimension of tumors with 3 - 5 mm invasion and also for differential diagnosis between the T1 and T2 stages with cancer extension onto vagina.
Campos, Laise M; Rios, Eduardo A; Guapyassu, Livia; Midlej, Victor; Atella, Georgia C; Herculano-Houzel, Suzana; Benchimol, Marlene; Mermelstein, Claudia
2016-01-01
The cholesterol synthesis inhibitor simvastatin, which is used to treat cardiovascular diseases, has severe collateral effects. We decided to comprehensively study the effects of simvastatin in zebrafish development and in myogenesis, because zebrafish has been used as a model to human diseases, due to its handling easiness, the optical clarity of its embryos, and the availability of physiological and structural methodologies. Furthermore, muscle is an important target of the drug. We used several simvastatin concentrations at different zebrafish developmental stages and studied survival rate, morphology, and physiology of the embryos. Our results show that high levels of simvastatin induce structural damage whereas low doses induce minor structural changes, impaired movements, and reduced heart beating. Morphological alterations include changes in embryo and somite size and septa shape. Physiological changes include movement reduction and slower heartbeat. These effects could be reversed by the addition of exogenous cholesterol. Moreover, we quantified the total cell number during zebrafish development and demonstrated a large reduction in cell number after statin treatment. Since we could classify the alterations induced by simvastatin in three distinct phenotypes, we speculate that simvastatin acts through more than one mechanism and could affect both cell replication and/or cell death and muscle function. Our data can contribute to the understanding of the molecular and cellular basis of the mechanisms of action of simvastatin. PMID:27444151
Campos, Laise M; Rios, Eduardo A; Guapyassu, Livia; Midlej, Victor; Atella, Georgia C; Herculano-Houzel, Suzana; Benchimol, Marlene; Mermelstein, Claudia; Costa, Manoel L
2016-11-01
The cholesterol synthesis inhibitor simvastatin, which is used to treat cardiovascular diseases, has severe collateral effects. We decided to comprehensively study the effects of simvastatin in zebrafish development and in myogenesis, because zebrafish has been used as a model to human diseases, due to its handling easiness, the optical clarity of its embryos, and the availability of physiological and structural methodologies. Furthermore, muscle is an important target of the drug. We used several simvastatin concentrations at different zebrafish developmental stages and studied survival rate, morphology, and physiology of the embryos. Our results show that high levels of simvastatin induce structural damage whereas low doses induce minor structural changes, impaired movements, and reduced heart beating. Morphological alterations include changes in embryo and somite size and septa shape. Physiological changes include movement reduction and slower heartbeat. These effects could be reversed by the addition of exogenous cholesterol. Moreover, we quantified the total cell number during zebrafish development and demonstrated a large reduction in cell number after statin treatment. Since we could classify the alterations induced by simvastatin in three distinct phenotypes, we speculate that simvastatin acts through more than one mechanism and could affect both cell replication and/or cell death and muscle function. Our data can contribute to the understanding of the molecular and cellular basis of the mechanisms of action of simvastatin. © 2016 by the Society for Experimental Biology and Medicine.
Acoustic Signal Processing in Photorefractive Optical Systems.
NASA Astrophysics Data System (ADS)
Zhou, Gan
This thesis discusses applications of the photorefractive effect in the context of acoustic signal processing. The devices and systems presented here illustrate the ideas and optical principles involved in holographic processing of acoustic information. The interest in optical processing stems from the similarities between holographic optical systems and contemporary models for massively parallel computation, in particular, neural networks. An initial step in acoustic processing is the transformation of acoustic signals into relevant optical forms. A fiber-optic transducer with photorefractive readout transforms acoustic signals into optical images corresponding to their short-time spectrum. The device analyzes complex sound signals and interfaces them with conventional optical correlators. The transducer consists of 130 multimode optical fibers sampling the spectral range of 100 Hz to 5 kHz logarithmically. A physical model of the human cochlea can help us understand some characteristics of human acoustic transduction and signal representation. We construct a life-sized cochlear model using elastic membranes coupled with two fluid-filled chambers, and use a photorefractive novelty filter to investigate its response. The detection sensitivity is determined to be 0.3 angstroms per root Hz at 2 kHz. Qualitative agreement is found between the model response and physiological data. Delay lines map time-domain signals into space -domain and permit holographic processing of temporal information. A parallel optical delay line using dynamic beam coupling in a rotating photorefractive crystal is presented. We experimentally demonstrate a 64 channel device with 0.5 seconds of time-delay and 167 Hz bandwidth. Acoustic signal recognition is described in a photorefractive system implementing the time-delay neural network model. The system consists of a photorefractive optical delay-line and a holographic correlator programmed in a LiNbO_3 crystal. We demonstrate the recognition of synthesized chirps as well as spoken words. A photorefractive ring resonator containing an optical delay line can learn temporal information through self-organization. We experimentally investigate a system that learns by itself and picks out the most-frequently -presented signals from the input. We also give results demonstrating the separation of two orthogonal temporal signals into two competing ring resonators.
A Closer Look at Schlemm's Canal Cell Physiology: Implications for Biomimetics.
Dautriche, Cula N; Tian, Yangzi; Xie, Yubing; Sharfstein, Susan T
2015-09-21
Among ocular pathologies, glaucoma is the second leading cause of progressive vision loss, expected to affect 80 million people worldwide by 2020. A primary cause of glaucoma appears to be damage to the conventional outflow tract. Conventional outflow tissues, a composite of the trabecular meshwork and the Schlemm's canal, regulate and maintain homeostatic responses to intraocular pressure. In glaucoma, filtration of aqueous humor into the Schlemm's canal is hindered, leading to an increase in intraocular pressure and subsequent damage to the optic nerve, with progressive vision loss. The Schlemm's canal encompasses a unique endothelium. Recent advances in culturing and manipulating Schlemm's canal cells have elucidated several aspects of their physiology, including ultrastructure, cell-specific marker expression, and biomechanical properties. This review highlights these advances and discusses implications for engineering a 3D, biomimetic, in vitro model of the Schlemm's canal endothelium to further advance glaucoma research, including drug testing and gene therapy screening.
Mechanical deformation induces depolarization of neutrophils.
Ekpenyong, Andrew E; Toepfner, Nicole; Fiddler, Christine; Herbig, Maik; Li, Wenhong; Cojoc, Gheorghe; Summers, Charlotte; Guck, Jochen; Chilvers, Edwin R
2017-06-01
The transition of neutrophils from a resting state to a primed state is an essential requirement for their function as competent immune cells. This transition can be caused not only by chemical signals but also by mechanical perturbation. After cessation of either, these cells gradually revert to a quiescent state over 40 to 120 min. We use two biophysical tools, an optical stretcher and a novel microcirculation mimetic, to effect physiologically relevant mechanical deformations of single nonadherent human neutrophils. We establish quantitative morphological analysis and mechanical phenotyping as label-free markers of neutrophil priming. We show that continued mechanical deformation of primed cells can cause active depolarization, which occurs two orders of magnitude faster than by spontaneous depriming. This work provides a cellular-level mechanism that potentially explains recent clinical studies demonstrating the potential importance, and physiological role, of neutrophil depriming in vivo and the pathophysiological implications when this deactivation is impaired, especially in disorders such as acute lung injury.
Magnetic Resonance Imaging of Electrolysis.
Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris
2015-01-01
This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research. PMID:25659942
Effect of spatial coherence of light on the photoregulation processes in cells
NASA Astrophysics Data System (ADS)
Budagovsky, A. V.; Solovykh, N. V.; Yankovskaya, M. B.; Maslova, M. V.; Budagovskaya, O. N.; Budagovsky, I. A.
2016-07-01
The effect of the statistical properties of light on the value of the photoinduced reaction of the biological objects, which differ in the morphological and physiological characteristics, the optical properties, and the size of cells, was studied. The fruit of apple trees, the pollen of cherries, the microcuttings of blackberries in vitro, and the spores and the mycelium of fungi were irradiated by quasimonochromatic light fluxes with identical energy parameters but different values of coherence length and radius of correlation. In all cases, the greatest stimulation effect occurred when the cells completely fit in the volume of the coherence of the field, while both temporal and spatial coherence have a significant and mathematically certain impact on the physiological activity of cells. It was concluded that not only the spectral, but also the statistical (coherent) properties of the acting light play an important role in the photoregulation process.
[Spatial orientation of the facies patellaris femoris].
Hassenpflug, J; Hiss, E; Blauth, W
1987-01-01
The present article reports on the geometrical conditions of the physiological movement of the patella. The geometrical shape of 18 femoral condyles and patella sliding areas was investigated in order to describe basic data for the design of endoprostheses. Surface and direction of the facies patellaris femoris were determined by means of radiographic, mechanical and optical measurements. The curvature of the deepest patella sliding groove proves a constant correlation with the dorsal condylar curvature. In the frontal plane the lowest points of the sliding area run with a dispersion of +/- 4 degrees to the vertical line related to the transverse tangent on the dorsal condylar surface. Considering deviations of leg alignment the measures come close to an angle of about 0 degrees. So the direction of the patella sliding groove differs from the normal valgus position of the distal femur. Therefore in artificial knee replacement a lateral tilt of the patella sliding groove should not be propagated as 'physiological'.
Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms.
Liu, Tsung-Li; Upadhyayula, Srigokul; Milkie, Daniel E; Singh, Ved; Wang, Kai; Swinburne, Ian A; Mosaliganti, Kishore R; Collins, Zach M; Hiscock, Tom W; Shea, Jamien; Kohrman, Abraham Q; Medwig, Taylor N; Dambournet, Daphne; Forster, Ryan; Cunniff, Brian; Ruan, Yuan; Yashiro, Hanako; Scholpp, Steffen; Meyerowitz, Elliot M; Hockemeyer, Dirk; Drubin, David G; Martin, Benjamin L; Matus, David Q; Koyama, Minoru; Megason, Sean G; Kirchhausen, Tom; Betzig, Eric
2018-04-20
True physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes that we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution, without inducing undue stress on either. We combined lattice light-sheet microscopy with adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across different organisms and developmental stages and may offer insights into how cells harness their intrinsic variability to adapt to different physiological environments. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Chemotaxis of Cell Populations through Confined Spaces at Single-Cell Resolution
Tong, ZiQiu; Balzer, Eric M.; Dallas, Matthew R.; Hung, Wei-Chien; Stebe, Kathleen J.; Konstantopoulos, Konstantinos
2012-01-01
Cell migration is crucial for both physiological and pathological processes. Current in vitro cell motility assays suffer from various drawbacks, including insufficient temporal and/or optical resolution, or the failure to include a controlled chemotactic stimulus. Here, we address these limitations with a migration chamber that utilizes a self-sustaining chemotactic gradient to induce locomotion through confined environments that emulate physiological settings. Dynamic real-time analysis of both population-scale and single-cell movement are achieved at high resolution. Interior surfaces can be functionalized through adsorption of extracellular matrix components, and pharmacological agents can be administered to cells directly, or indirectly through the chemotactic reservoir. Direct comparison of multiple cell types can be achieved in a single enclosed system to compare inherent migratory potentials. Our novel microfluidic design is therefore a powerful tool for the study of cellular chemotaxis, and is suitable for a wide range of biological and biomedical applications. PMID:22279529
Operation of an experimental algal gas exchanger for use in a CELSS
NASA Technical Reports Server (NTRS)
Smernoff, David T.; Wharton, Robert A., Jr.; Averner, Maurice M.
1987-01-01
Concepts of a CELSS anticipate the use of photosynthetic organisms for air revitalization. The rates of production and uptake of carbon dioxide and oxygen between the crew and the photosynthetic organisms are mismatched. An algal system used for gas exchange only will have the difficulty of an accumulation or depletion of these gases beyond physiologically tolerable limits. The results of a study designed to test the feasibility of using environmental manipulations to maintain physiologically appropriate atmospheres for algae (Chlorella pyrenoidosa) and mice (Mus musculus strain DW/J) in a gas-closed system is reported. Specifically, the atmosphere behavior of this system with Chlorella grown on nitrate or urea and at different light intensities and optical densities is considered. Manipulation of both the photosynthetic rate and the assimilatory quotient of the alga has been found to reduce the mismatch of gas requirements and allow operation of the system in a gas-stable manner.
Revisiting the role of erythropoietin for treatment of ocular disorders
Shirley Ding, S L; Leow, S N; Munisvaradass, R; Koh, E H; Bastion, M L C; Then, K Y; Kumar, S; Mok, P L
2016-01-01
Erythropoietin (EPO) is a glycoprotein hormone conventionally thought to be responsible only in producing red blood cells in our body. However, with the discovery of the presence of EPO and EPO receptors in the retinal layers, the EPO seems to have physiological roles in the eye. In this review, we revisit the role of EPO in the eye. We look into the biological role of EPO in the development of the eye and the physiologic roles that it has. Apart from that, we seek to understand the mechanisms and pathways of EPO that contributes to the therapeutic and pathological conditions of the various ocular disorders such as diabetic retinopathy, retinopathy of prematurity, glaucoma, age-related macular degeneration, optic neuritis, and retinal detachment. With these understandings, we discuss the clinical applications of EPO for treatment of ocular disorders, modes of administration, EPO formulations, current clinical trials, and its future directions. PMID:27285322
Perna, Angelica; Iannaccone, Alessandro; Cobellis, Luigi; De Luca, Antonio
2014-01-01
The WFS1 gene, encoding a transmembrane glycoprotein of the endoplasmic reticulum called wolframin, is mutated in Wolfram syndrome, an autosomal recessive disorder defined by the association of diabetes mellitus, optic atrophy, and further organ abnormalities. Disruption of the WFS1 gene in mice causes progressive β-cell loss in the pancreas and impaired stimulus-secretion coupling in insulin secretion. However, little is known about the physiological functions of this protein. We investigated the immunohistochemical expression of wolframin in human placenta throughout pregnancy in normal women and diabetic pregnant women. In normal placenta, there was a modulation of wolframin throughout pregnancy with a strong level of expression during the first trimester and a moderate level in the third trimester of gestation. In diabetic women, wolframin expression was strongly reduced in the third trimester of gestation. The pattern of expression of wolframin in normal placenta suggests that this protein may be required to sustain normal rates of cytotrophoblast cell proliferation during the first trimester of gestation. The decrease in wolframin expression in diabetic placenta suggests that this protein may participate in maintaining the physiologic glucose homeostasis in this organ. PMID:24588001
Fernández-Castané, Alfred; Li, Hong; Thomas, Owen R T; Overton, Tim W
2018-06-01
The development of a simple pH-stat fed-batch fermentation strategy for the production of Magnetospirillum gryphiswaldense MSR-1 and magnetosomes (nanoscale magnetic organelles with biotechnological applications) is described. Flow cytometry was exploited as a powerful analytical tool for process development, enabling rapid monitoring of cell morphology, physiology and polyhydroxyalkanoate production. The pH-stat fed-batch growth strategy was developed by varying the concentrations of the carbon source (lactic acid) and the alternative electron acceptor (sodium nitrate) in the feed. Growth conditions were optimized on the basis of biomass concentration, cellular magnetism (indicative of magnetosome production), and intracellular iron concentration. The highest biomass concentration and cellular iron content achieved were an optical density at 565 nm of 15.5 (equivalent to 4.2 g DCW·L -1 ) and 33.1 mg iron·g -1 DCW, respectively. This study demonstrates the importance of analyzing bacterial physiology during fermentation development and will potentially aid the industrial production of magnetosomes, which can be used in a wide range of biotechnology and healthcare applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ding, Yichen; Yu, Jing; Abiri, Arash; Abiri, Parinaz; Lee, Juhyun; Chang, Chih-Chiang; Baek, Kyung In; Sevag Packard, René R.; Hsiai, Tzung K.
2018-02-01
There currently is a limited ability to interactively study developmental cardiac mechanics and physiology. We therefore combined light-sheet fluorescence microscopy (LSFM) with virtual reality (VR) to provide a hybrid platform for 3- dimensional (3-D) architecture and time-dependent cardiac contractile function characterization. By taking advantage of the rapid acquisition, high axial resolution, low phototoxicity, and high fidelity in 3-D and 4-D (3-D spatial + 1-D time or spectra), this VR-LSFM hybrid methodology enables interactive visualization and quantification otherwise not available by conventional methods such as routine optical microscopes. We hereby demonstrate multi-scale applicability of VR-LSFM to 1) interrogate skin fibroblasts interacting with a hyaluronic acid-based hydrogel, 2) navigate through the endocardial trabecular network during zebrafish development, and 3) localize gene therapy-mediated potassium channel expression in adult murine hearts. We further combined our batch intensity normalized segmentation (BINS) algorithm with deformable image registration (DIR) to interface a VR environment for the analysis of cardiac contraction. Thus, the VR-LSFM hybrid platform demonstrates an efficient and robust framework for creating a user-directed microenvironment in which we uncovered developmental cardiac mechanics and physiology with high spatiotemporal resolution.
Live imaging of rat embryos with Doppler swept-source optical coherence tomography
NASA Astrophysics Data System (ADS)
Larina, Irina V.; Furushima, Kenryo; Dickinson, Mary E.; Behringer, Richard R.; Larin, Kirill V.
2009-09-01
The rat has long been considered an excellent system to study mammalian embryonic cardiovascular physiology, but has lacked the extensive genetic tools available in the mouse to be able to create single gene mutations. However, the recent establishment of rat embryonic stem cell lines facilitates the generation of new models in the rat embryo to link changes in physiology with altered gene function to define the underlying mechanisms behind congenital cardiovascular birth defects. Along with the ability to create new rat genotypes there is a strong need for tools to analyze phenotypes with high spatial and temporal resolution. Doppler OCT has been previously used for 3-D structural analysis and blood flow imaging in other model species. We use Doppler swept-source OCT for live imaging of early postimplantation rat embryos. Structural imaging is used for 3-D reconstruction of embryo morphology and dynamic imaging of the beating heart and vessels, while Doppler-mode imaging is used to visualize blood flow. We demonstrate that Doppler swept-source OCT can provide essential information about the dynamics of early rat embryos and serve as a basis for a wide range of studies on functional evaluation of rat embryo physiology.
Live imaging of rat embryos with Doppler swept-source optical coherence tomography
Larina, Irina V.; Furushima, Kenryo; Dickinson, Mary E.; Behringer, Richard R.; Larin, Kirill V.
2009-01-01
The rat has long been considered an excellent system to study mammalian embryonic cardiovascular physiology, but has lacked the extensive genetic tools available in the mouse to be able to create single gene mutations. However, the recent establishment of rat embryonic stem cell lines facilitates the generation of new models in the rat embryo to link changes in physiology with altered gene function to define the underlying mechanisms behind congenital cardiovascular birth defects. Along with the ability to create new rat genotypes there is a strong need for tools to analyze phenotypes with high spatial and temporal resolution. Doppler OCT has been previously used for 3-D structural analysis and blood flow imaging in other model species. We use Doppler swept-source OCT for live imaging of early postimplantation rat embryos. Structural imaging is used for 3-D reconstruction of embryo morphology and dynamic imaging of the beating heart and vessels, while Doppler-mode imaging is used to visualize blood flow. We demonstrate that Doppler swept-source OCT can provide essential information about the dynamics of early rat embryos and serve as a basis for a wide range of studies on functional evaluation of rat embryo physiology. PMID:19895102
NASA Astrophysics Data System (ADS)
Li, Gang; Yu, Yue; Zhang, Cui; Lin, Ling
2017-09-01
The oxygen saturation is one of the important parameters to evaluate human health. This paper presents an efficient optimization method that can improve the accuracy of oxygen saturation measurement, which employs an optical frequency division triangular wave signal as the excitation signal to obtain dynamic spectrum and calculate oxygen saturation. In comparison to the traditional method measured RMSE (root mean square error) of SpO2 which is 0.1705, this proposed method significantly reduced the measured RMSE which is 0.0965. It is notable that the accuracy of oxygen saturation measurement has been improved significantly. The method can simplify the circuit and bring down the demand of elements. Furthermore, it has a great reference value on improving the signal to noise ratio of other physiological signals.
[Application value of corneal hysteresis in diagnosis and treatment of glaucoma].
He, L Y; Liang, L; Zhu, M N
2017-02-11
Glaucoma is the first leading cause of irreversible blindness world widely, but the pathogenesis was still unclear. The collagen fibers from cornea and sclera connect to each other and both of them have similar extracellular matrix components. The biomechanical characteristics of optic nerve lamina cribrosa may associated with the biomechanical properties of the cornea. Therefore, the study of corneal physiological can indirectly reflex the compression and damage in optic nerve lamina cribrosa. The technical developments in corneal hysteresis examination had been updated these years constantly. Many researches implicated that low corneal hysteresis involved in pathogenesis and progression of glaucoma which refresh our recognition of the relationship between cornea and glaucoma. This review summarized the characteristics of corneal hysteresis, the examination and the connection with glaucoma to provide the reference for clinical work. (Chin J Ophthalmol, 2017, 53: 140-143) .
Optical Spectroscopy and Imaging for the Noninvasive Evaluation of Engineered Tissues
Rice, William L.; Hronik-Tupaj, Marie; Kaplan, David L.
2008-01-01
Optical spectroscopy and imaging approaches offer the potential to noninvasively assess different aspects of the cellular, extracellular matrix, and scaffold components of engineered tissues. In addition, the combination of multiple imaging modalities within a single instrument is highly feasible, allowing acquisition of complementary information related to the structure, organization, biochemistry, and physiology of the sample. The ability to characterize and monitor the dynamic interactions that take place as engineered tissues develop promises to enhance our understanding of the interdependence of processes that ultimately leads to functional tissue outcomes. It is expected that this information will impact significantly upon our abilities to optimize the design of biomaterial scaffolds, bioreactors, and cell systems. Here, we review the principles and performance characteristics of the main methodologies that have been exploited thus far, and we present examples of corresponding tissue engineering studies. PMID:18844604
Raman sorting and identification of single living micro-organisms with optical tweezers
NASA Astrophysics Data System (ADS)
Xie, Changan; Chen, De; Li, Yong-Qing
2005-07-01
We report on a novel technique for sorting and identification of single biological cells and food-borne bacteria based on laser tweezers and Raman spectroscopy (LTRS). With this technique, biological cells of different physiological states in a sample chamber were identified by their Raman spectral signatures and then they were selectively manipulated into a clean collection chamber with optical tweezers through a microchannel. As an example, we sorted the live and dead yeast cells into the collection chamber and validated this with a standard staining technique. We also demonstrated that bacteria existing in spoiled foods could be discriminated from a variety of food particles based on their characteristic Raman spectra and then isolated with laser manipulation. This label-free LTRS sorting technique may find broad applications in microbiology and rapid examination of food-borne diseases.
Real-time Raman spectroscopy of optically trapped living cells and organelles
NASA Astrophysics Data System (ADS)
Xie, Changan; Goodman, Charles; Dinno, Mumtaz A.; Li, Yong-Qing
2004-12-01
We report on real-time Raman spectroscopic studies of optically trapped living cells and organelles using an inverted confocal laser-tweezers-Raman-spectroscopy (LTRS) system. The LTRS system was used to hold a single living cell in a physiological solution or to hold a functional organelle within a living cell and consequently measured its Raman spectra. We have measured the changes in Raman spectra of a trapped yeast cell as the function of the temperature of the bathing solution and studied the irreversible cell degeneration during the heat denaturation. In addition, we measured the in-vitro Raman spectra of the nuclei within living pine cells and B. sporeformer, Strep. salivarius, and E. coli bacteria suspended in solution and showed the possibility of using LTRS system as a sensor for rapid identification of microbes in a fluid.
A compact Acousto-Optic Lens for 2D and 3D femtosecond based 2-photon microscopy.
Kirkby, Paul A; Srinivas Nadella, K M Naga; Silver, R Angus
2010-06-21
We describe a high speed 3D Acousto-Optic Lens Microscope (AOLM) for femtosecond 2-photon imaging. By optimizing the design of the 4 AO Deflectors (AODs) and by deriving new control algorithms, we have developed a compact spherical AOL with a low temporal dispersion that enables 2-photon imaging at 10-fold lower power than previously reported. We show that the AOLM can perform high speed 2D raster-scan imaging (>150 Hz) without scan rate dependent astigmatism. It can deflect and focus a laser beam in a 3D random access sequence at 30 kHz and has an extended focusing range (>137 mum; 40X 0.8NA objective). These features are likely to make the AOLM a useful tool for studying fast physiological processes distributed in 3D space.
NASA Astrophysics Data System (ADS)
Gillies, D.; Gamal, W.; Downes, A.; Reinwald, Y.; Yang, Y.; El Haj, A.; Bagnaninchi, P. O.
2017-02-01
There is an unmet need in tissue engineering for non-invasive, label-free monitoring of cell mechanical behaviour in their physiological environment. Here, we describe a novel optical coherence phase microscopy (OCPM) set-up which can map relative cell mechanical behaviour in monolayers and 3D systems non-invasively, and in real-time. 3T3 and MCF-7 cells were investigated, with MCF-7 demonstrating an increased response to hydrostatic stimulus indicating MCF-7 being softer than 3T3. Thus, OCPM shows the ability to provide qualitative data on cell mechanical behaviour. Quantitative measurements of 6% agarose beads have been taken with commercial Cell Scale Microsquisher system demonstrating that their mechanical properties are in the same order of magnitude of cells, indicating that this is an appropriate test sample for the novel method described.
Limits of colour vision in dim light.
Kelber, Almut; Lind, Olle
2010-09-01
Humans and most vertebrates have duplex retinae with multiple cone types for colour vision in bright light, and one single rod type for achromatic vision in dim light. Instead of comparing signals from multiple spectral types of photoreceptors, such species use one highly sensitive receptor type thus improving the signal-to-noise ratio at night. However, the nocturnal hawkmoth Deilephila elpenor, the nocturnal bee Xylocopa tranquebarica and the nocturnal gecko Tarentola chazaliae can discriminate colours at extremely dim light intensities. To be able to do so, they sacrifice spatial and temporal resolution in favour of colour vision. We review what is known about colour vision in dim light, and compare colour vision thresholds with the optical sensitivity of the photoreceptors in selected animal species with lens and compound eyes. © 2010 The Authors, Ophthalmic and Physiological Optics © 2010 The College of Optometrists.
Means and methods for cytometric therapies
Gillies, George T.; Fillmore, Helen; Broaddus, William C.; Evans, III, Boyd M.; Allison, Stephen W.
2013-03-26
A functionalized tip is incorporated into catheters for the cytometric delivery of cells into the brain and other body parts. For use in the brain, the tip forms part of a neurosurgical probe having a proximal end and a distal end. In addition to the functionalized tip, the probe has at least one cell slurry delivery lumen and a plurality of optical fibers configured along the probe, terminating in the tip to provide the photo-optical capability needed to monitor the viability and physiological behavior of the grafted cells as well as certain characteristics of the cellular environment. Details are also presented of the use of a neurocatheter having a cytometric tip of the type disclosed in the invention, as employed within the context of a feedback and control system for regulating the number of cells delivered to the brain of a patient.
NASA Technical Reports Server (NTRS)
Spencer, Dwight C.
1996-01-01
Hoover et. al. built and tested two imaging Schwarzschild multilayer microscopes. These instruments were constructed as prototypes for the "Water Window Imaging X-Ray Microscope," which is a doubly reflecting, multilayer x-ray microscope configured to operate within the "water window." The "water window" is the narrow region of the x-ray spectrum between the K absorption edges of oxygen (lamda = 23.3 Angstroms) and of carbon (lamda = 43.62 Angstroms), where water is relatively highly transmissive and carbon is highly absorptive. This property of these materials, thus permits the use of high resolution multilayer x-ray microscopes for producing high contrast images of carbon-based structures within the aqueous physiological environments of living cells. We report the design, fabrication and testing of multilayer optics that operate in this regime.
NASA Astrophysics Data System (ADS)
Landrock, Clinton K.
Falls are the leading cause of all external injuries. Outcomes of falls include the leading cause of traumatic brain injury and bone fractures, and high direct medical costs in the billions of dollars. This work focused on developing three areas of enabling component technology to be used in postural control monitoring tools targeting the mitigation of falls. The first was an analysis tool based on stochastic fractal analysis to reliably measure levels of motor control. The second focus was on thin film wearable pressure sensors capable of relaying data for the first tool. The third was new thin film advanced optics for improving phototherapy devices targeting postural control disorders. Two populations, athletes and elderly, were studied against control groups. The results of these studies clearly show that monitoring postural stability in at-risk groups can be achieved reliably, and an integrated wearable system can be envisioned for both monitoring and treatment purposes. Keywords: electro-active polymer, ionic polymer-metal composite, postural control, motor control, fall prevention, sports medicine, fractal analysis, physiological signals, wearable sensors, phototherapy, photobiomodulation, nano-optics.
Sharma, Manu; Marple, Eric; Reichenberg, Jason; Tunnell, James W.
2014-01-01
The design and characterization of an instrument combining Raman, fluorescence, and reflectance spectroscopic modalities is presented. Instrument development has targeted skin cancer applications as a novel fiber-optic probe has been specially designed to interrogate cutaneous lesions. The instrument is modular and both its software and hardware components are described in depth. Characterization of the fiber-optic probe is also presented, which details the probe's ability to measure diagnostically important parameters such as intrinsic fluorescence and absorption and reduced scattering coefficients along with critical performance metrics such as high Raman signal-to-noise ratios at clinically practical exposure times. Validation results using liquid phantoms show that the probe and system can extract absorption and scattering coefficients with less than 10% error. As the goal is to use the instrument for the clinical early detection of skin cancer, preliminary clinical data are also presented, which indicates our system's ability to measure physiological quantities such as relative collagen and nicotinamide adenine dinucleotide concentration, oxygen saturation, blood volume fraction, and mean vessel diameter. PMID:25173240
Christoph Scheiner's eye studies.
Daxecker, F
1992-01-01
Christoph Scheiner was born in 1573 or 1575. In 1595 he entered into the Order of the Jesuits; he died in 1650. In 1619 his book Oculus, dealing with the optics of the eye, appeared in Innsbruck. The invention of the telescope was of utmost importance for progress in astronomical and physical research. Scheiner himself built telescopes and discovered the sunspots. As a result, an unpleasant priority dispute with Galilei ensued. From 1624 onwards, Scheiner was in Rome, where his main work Rosa Ursina was published in 1630. A part of this book deals with the physiological optics of the eye as well. Some of his discoveries and experiments are taken from these two books: determination of the radius of curvature of the cornea, discovery of the nasal exit of the optic nerve, increase in the radius of curvature of the lens in case of accommodation, Scheiner's procedure (double images with ametropia), refractive indices of various parts of the eye, Scheiner's experiment. Without any doubt, Christoph Scheiner belongs to the foremost scientists of the first half of the 17th century.
NASA Astrophysics Data System (ADS)
Keene, Samuel T.; Cerussi, Albert E.; Warren, Robert V.; Hill, Brian; Roblyer, Darren; Leproux, AnaÑ--s.; Durkin, Amanda F.; O'Sullivan, Thomas D.; Haghany, Hosain; Mantulin, William W.; Tromberg, Bruce J.
2013-03-01
Instrument equivalence and quality control are critical elements of multi-center clinical trials. We currently have five identical Diffuse Optical Spectroscopic Imaging (DOSI) instruments enrolled in the American College of Radiology Imaging Network (ACRIN, #6691) trial located at five academic clinical research sites in the US. The goal of the study is to predict the response of breast tumors to neoadjuvant chemotherapy in 60 patients. In order to reliably compare DOSI measurements across different instruments, operators and sites, we must be confident that the data quality is comparable. We require objective and reliable methods for identifying, correcting, and rejecting low quality data. To achieve this goal, we developed and tested an automated quality control algorithm that rejects data points below the instrument noise floor, improves tissue optical property recovery, and outputs a detailed data quality report. Using a new protocol for obtaining dark-noise data, we applied the algorithm to ACRIN patient data and successfully improved the quality of recovered physiological data in some cases.
Optical cell cleaning with NIR femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten
2015-03-01
Femtosecond laser microscopes have been used as both micro and nanosurgery tools. The optical knock-out of undesired cells in multiplex cell clusters shall be further reported on in this study. Femtosecond laser-induced cell death is beneficial due to the reduced collateral side effects and therefore can be used to selectively destroy target cells within monolayers, as well as within 3D tissues, all the while preserving cells of interest. This is an important characteristic for the application in stem cell research and cancer treatment. Non-precise damage compromises the viability of neighboring cells by inducing side effects such as stress to the cells surrounding the target due to the changes in the microenvironment, resulting from both the laser and laser-exposed cells. In this study, optimum laser parameters for optical cleaning by isolating single cells and cell colonies are exploited through the use of automated software control. Physiological equilibrium and cellular responses to the laser induced damages are also investigated. Cell death dependence on laser focus, determination and selectivity of intensity/dosage, controllable damage and cell recovery mechanisms are discussed.
Fluorescence-based assay as a new screening tool for toxic chemicals
Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey
2016-01-01
Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients. PMID:27653274
Fluorescence-based assay as a new screening tool for toxic chemicals.
Moczko, Ewa; Mirkes, Evgeny M; Cáceres, César; Gorban, Alexander N; Piletsky, Sergey
2016-09-22
Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.
Fluorescence-based assay as a new screening tool for toxic chemicals
NASA Astrophysics Data System (ADS)
Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey
2016-09-01
Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.
Optical path of infrared neural stimulation in the guinea pig and cat cochlea
NASA Astrophysics Data System (ADS)
Rajguru, Suhrud M.; Hwang, Margaret; Moreno, Laura E.; Matic, Agnella I.; Stock, Stuart R.; Richter, Claus-Peter
2011-03-01
It has been demonstrated previously that infrared neural stimulation (INS) can be used to stimulate spiral ganglion cells in the cochlea. With INS, neural stimulation can be achieved without direct contact of the radiation source and the tissue and is spatially well resolved. The presence of fluids or bone between the target structure and the radiation source may lead to absorption or scattering of the radiation and limit the efficacy of INS. To develop INS based cochlear implants, it is critical to determine the beam path of the radiation in the cochlea. In the present study, we utilized noninvasive X-ray microtomography (microCT) to visualize the orientation and location of the optical fiber within the guinea pig and cat cochlea. Overall, the results indicated that the optical fiber was directed towards the spiral ganglion cells in the cochlea and not the nerve fibers in the center of the modiolus. The fiber was approximately 300 μm away from the target structures. In future studies, results from the microCT will be correlated with physiology obtained from recordings in the midbrain.
Noninvasive photoacoustic identification and imaging of gut microbes.
Huang, Xiaoxiao; Shi, Ying; Liu, Yajing; Xu, Hongzhi; Liu, Yu; Xiao, Chuanxing; Ren, Jianlin; Nie, Liming
2017-08-01
Homeostasis of the gut microbiota is indispensable for various physiological functions. Its composition and activity co-develop with the host, and especially associate with human colorectal cancer. However, current composition identification methods are complicated and not timely without spatial distribution information. In this Letter, we explored the photoacoustic imaging (PAI) technique to characterize the composition and quantify the proportions of the gut microbes after optical probe labeling. Our experimental results demonstrated that PAI has the potential to identify different gut bacterial species on the spot.
Complex degree of mutual anisotropy in diagnostics of biological tissues physiological changes
NASA Astrophysics Data System (ADS)
Ushenko, Yu. A.; Dubolazov, O. V.; Karachevtcev, A. O.; Zabolotna, N. I.
2011-05-01
To characterize the degree of consistency of parameters of the optically uniaxial birefringent protein nets of blood plasma a new parameter - complex degree of mutual anisotropy is suggested. The technique of polarization measuring the coordinate distributions of the complex degree of mutual anisotropy of blood plasma is developed. It is shown that statistic approach to the analysis of complex degree of mutual anisotropy distributions of blood plasma is effective in the diagnosis and differentiation of acute inflammation - acute and gangrenous appendicitis.
Complex degree of mutual anisotropy in diagnostics of biological tissues physiological changes
NASA Astrophysics Data System (ADS)
Ushenko, Yu. A.; Dubolazov, A. V.; Karachevtcev, A. O.; Zabolotna, N. I.
2011-09-01
To characterize the degree of consistency of parameters of the optically uniaxial birefringent protein nets of blood plasma a new parameter - complex degree of mutual anisotropy is suggested. The technique of polarization measuring the coordinate distributions of the complex degree of mutual anisotropy of blood plasma is developed. It is shown that statistic approach to the analysis of complex degree of mutual anisotropy distributions of blood plasma is effective in the diagnosis and differentiation of acute inflammation - acute and gangrenous appendicitis.
Nocturnality constrains morphological and functional diversity in the eyes of reef fishes
2011-01-01
Background Ambient light levels are often considered to drive the evolution of eye form and function. Diel activity pattern is the main mechanism controlling the visual environment of teleost reef fish, with day-active (diurnal) fish active in well-illuminated conditions, whereas night-active (nocturnal) fish cope with dim light. Physiological optics predicts several specific evolutionary responses to dim-light vision that should be reflected in visual performance features of the eye. Results We analyzed a large comparative dataset on morphological traits of the eyes in 265 species of teleost reef fish in 43 different families. The eye morphology of nocturnal reef teleosts is characterized by a syndrome that indicates better light sensitivity, including large relative eye size, high optical ratio and large, rounded pupils. Improved dim-light image formation comes at the cost of reduced depth of focus and reduction of potential accommodative lens movement. Diurnal teleost reef fish, released from the stringent functional requirements of dim-light vision have much higher morphological and optical diversity than nocturnal species, with large ranges of optical ratio, depth of focus, and lens accommodation. Conclusions Physical characteristics of the environment are an important factor in the evolution and diversification of the vertebrate eye. Both teleost reef fish and terrestrial amniotes meet the functional requirements of dim-light vision with a similar evolutionary response of morphological and optical modifications. The trade-off between improved dim-light vision and reduced optical diversity may be a key factor in explaining the lower trophic diversity of nocturnal reef teleosts. PMID:22098687
Rao, Harsha L; Kumbar, Tukaram; Addepalli, Uday K; Bharti, Neha; Senthil, Sirisha; Choudhari, Nikhil S; Garudadri, Chandra S
2012-02-29
To evaluate the influence of a control group on the diagnostic accuracy of spectral-domain optical coherence tomography (SD-OCT) in early glaucoma. In a diagnostic, case-control study, 119 eyes of 60 normal subjects with no findings suspicious for glaucoma (control cohort 1); 76 eyes of 41 subjects referred by general ophthalmologists as glaucoma suspects based on optic disc morphology, but found by glaucoma experts to be normal but with physiological variations in their optic nerves (control cohort 2); and 65 eyes of 46 early-glaucoma patients (cases) underwent imaging of the optic nerve head (ONH), retinal nerve fiber layer (RNFL), and ganglion cell complex (GCC) by SD-OCT. Areas under the receiver operating characteristic curves (AUC) of ONH parameters discriminating glaucomatous eyes from normal eyes of control cohort 2 were significantly lesser (P < 0.001) than those discriminating glaucomatous eyes from normal eyes of control cohort 1. AUCs of RNFL parameters discriminating glaucomatous eyes from normal eyes of control cohorts 2 and 1 were comparable. Although the AUCs of GCC thickness parameters were comparable, AUCs of GCC focal and global loss volume in control cohort 2 (0.684 and 0.671. respectively) were significantly less (P < 0.05) than in control cohort 1 (0.881 and 0.841, respectively). The effectiveness of most SD-OCT parameters in detecting glaucoma significantly decreased when evaluated against a clinically relevant control group with suspicious-looking optic nerves compared with that against a control group consisting of normal subjects with no findings suspicious for glaucoma.
Changes in hemodynamics and light scattering during cortical spreading depression
NASA Astrophysics Data System (ADS)
Li, Pengcheng; Yang, Yuanyuan; Luo, Qingming
2005-01-01
Cortical spreading depression (CSD) has been known to play an important role in the mechanism of migraine, stroke and brain injure. Optical imaging of intrinsic signals has been shown a powerful method for characterizing the spatial and temporal pattern of the propagation of CSD. However, the possible physiological mechanisms underlying the intrinsic optical signal (IOS) during CSD still remain incompletely understood. In this study, a spectroscopic recording of the change in optical intrinsic signal during CSD was performed and an analysis method based on the modified Beer-Lambert law was used to estimate the changes in the concentration of HbO2 and Hb, and changes in light scattering from the spectra data. The CSD were induced by pinprick in 10 α-chloralose/urethane anesthetized Sprague-Dawley rats. In all experiments, four-phasic changes in optical reflectance were observed at 450 nm ~ 570 nm, and triphasic changes in optical reflectance were observed in the range of 570 nm ~750 nm. But at 750 nm ~ 850 nm, only biphasic changes of optical signal were detected. Converting the spectra data to the changes in light scattering and concentration of Hb and HbO2, we found that the CSD induced an initial increase in concentration of HbO2 (amplitude: 9.0+/-3.7%), which was 26.2+/-18.6 s earlier than the onset of increase of Hb concentration. Furthermore, the concentration of HbO2 showed a four-phasic change, whereas the concentration of Hb only showed a biphasic change. For the changes in light scattering during CSD, a triphasic change was observed.
Anatomy and physiology of the afferent visual system.
Prasad, Sashank; Galetta, Steven L
2011-01-01
The efficient organization of the human afferent visual system meets enormous computational challenges. Once visual information is received by the eye, the signal is relayed by the retina, optic nerve, chiasm, tracts, lateral geniculate nucleus, and optic radiations to the striate cortex and extrastriate association cortices for final visual processing. At each stage, the functional organization of these circuits is derived from their anatomical and structural relationships. In the retina, photoreceptors convert photons of light to an electrochemical signal that is relayed to retinal ganglion cells. Ganglion cell axons course through the optic nerve, and their partial decussation in the chiasm brings together corresponding inputs from each eye. Some inputs follow pathways to mediate pupil light reflexes and circadian rhythms. However, the majority of inputs arrive at the lateral geniculate nucleus, which relays visual information via second-order neurons that course through the optic radiations to arrive in striate cortex. Feedback mechanisms from higher cortical areas shape the neuronal responses in early visual areas, supporting coherent visual perception. Detailed knowledge of the anatomy of the afferent visual system, in combination with skilled examination, allows precise localization of neuropathological processes and guides effective diagnosis and management of neuro-ophthalmic disorders. Copyright © 2011 Elsevier B.V. All rights reserved.
Multispectral Stokes polarimetry for dermatoscopic imaging
NASA Astrophysics Data System (ADS)
Castillejos, Y.; Martínez-Ponce, Geminiano; Mora-Nuñez, Azael; Castro-Sanchez, R.
2015-12-01
Most of skin pathologies, including melanoma and basal/squamous cell carcinoma, are related to alterations in external and internal order. Usually, physicians rely on their empirical expertise to diagnose these ills normally assisted with dermatoscopes. When there exists skin cancer suspicion, a cytology or biopsy is made, but both laboratory tests imply an invasive procedure. In this regard, a number of non-invasive optical techniques have been proposed recently to improve the diagnostic certainty and assist in the early detection of cutaneous cancer. Herein, skin optical properties are derived with a multispectral polarimetric dermatoscope using three different illumination wavelength intervals centered at 470, 530 and 635nm. The optical device consist of two polarizing elements, a quarter-wave plate and a linear polarizer, rotating at a different angular velocity and a CCD array as the photoreceiver. The modulated signal provided by a single pixel in the acquired image sequence is analyzed with the aim of computing the Stokes parameters. Changes in polarization state of selected wavelengths provide information about the presence of skin pigments such as melanin and hemoglobin species as well as collagen structure, among other components. These skin attributes determine the local physiology or pathology. From the results, it is concluded that optical polarimetry will provide additional elements to dermatologists in their diagnostic task.
NASA Astrophysics Data System (ADS)
He, Huarui; Uray, Georg; Wolfbeis, Otto S.
1991-09-01
This paper presents a method for optically sensing enantiomers (optical isomers) of biological amines such as norephedrine, and drugs such as the (Beta) -blocker propranolol. It is based on the use of a new lipophilic aromatic ammonium ion carrier (DODD) and a highly fluorescent lipophilic proton carrier (DZ 49) dissolved in a pvc membrane. Recognition of one of the enantiomers is accomplished by specific interaction of the amine with the optically active lipophilic substrate in a pvc membrane. The amine, which is present as an ammonium ion at physiological pH, is carried into the pvc membranes. Simultaneously, a proton is released from the proton carrier (a lipophilic xanthene dye) that thereby undergoes a change in both color and fluorescence intensity. The sensors respond to three analytes in the concentration range from 0.01 to 10 mM for propranolol, 0.3 to 100 mM for norephedrine, and 1 to 100 mM for 1-phenylethylamine. The selectivity coefficients (Kopt) are 0.8, 0.7, and 0.8 for propranolol, norephedrine,a nd 1-phenylethylamine, respectively. It is of potential utility for specifically recognizing one out of several isomers, in particular bioactive amines, where one form usually is active only. The carrier showed stronger affinity for compounds which contain naphthyl rather than phenyl substituents.
NASA Astrophysics Data System (ADS)
Sakota, D.; Sakamoto, R.; Sobajima, H.; Yokoyama, N.; Yokoyama, Y.; Waguri, S.; Ohuchi, K.; Takatani, S.
2008-02-01
Cardiovascular devices such as heart-lung machine generate un-physiological level of shear stress to damage red blood cells, leading to hemolysis. The diagnostic techniques of cell damages, however, have not yet been established. In this study, the time-resolved optical spectroscopy was applied to quantify red blood cell (RBC) damages caused by the extracorporeal circulation system. Experimentally, the fresh porcine blood was subjected to varying degrees of shear stress in the rotary blood pump, followed with measurement of the time-resolved transmission characteristics using the pico-second pulses at 651 nm. The propagated optical energy through the blood specimen was detected using a streak camera. The data were analyzed in terms of the mean cell volume (MCV) and mean cell hemoglobin concentration (MCHC) measured separately versus the energy and propagation time of the light pulses. The results showed that as the circulation time increased, the MCV increased with decrease in MCHC. It was speculated that the older RBCs with smaller size and fragile membrane properties had been selectively destroyed by the shear stress. The time-resolved optical spectroscopy is a useful technique in quantifying the RBCs' damages by measuring the energy and propagation time of the ultra-short light pulses through the blood.
Baliyan, Anjli; Usha, Sruthi Prasood; Gupta, Banshi D; Gupta, Rani; Sharma, Enakshi Khular
2017-10-01
A label-free technique for the detection of triacylglycerides by a localized surface plasmon resonance (LSPR)-based biosensor is demonstrated. An LSPR-based fiber-optic sensor probe is fabricated by immobilizing lipase enzyme on silver nanoparticles (Ag-NPs) coated on an unclad segment of a plastic clad optical fiber. The size and shape of nanoparticles were characterized by high-resolution transmission electron microscopy and UV-visible spectroscopy. The peak absorbance wavelength changes with concentration of triacylglycerides surrounding the sensor probe, and sensitivity is estimated from shift in the peak absorbance wavelength as a function of concentration. The fabricated sensor was characterized for the concentration of triacylglyceride solution in the range 0 to 7 mM. The sensor shows the best sensitivity at a temperature of 37°C and pH 7.4 of the triacylglycerides emulsion with a response time of 40 s. A sensitivity of 28.5 nm/mM of triacylglyceride solution is obtained with a limit of detection of 0.016 mM in the entire range of triacylglycerides. This compact biosensor shows good selectivity, stability, and reproducibility in the entire physiological range of triacylglycerides and is well-suited to real-time online monitoring and remote sensing. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Automatic non-proliferative diabetic retinopathy screening system based on color fundus image.
Xiao, Zhitao; Zhang, Xinpeng; Geng, Lei; Zhang, Fang; Wu, Jun; Tong, Jun; Ogunbona, Philip O; Shan, Chunyan
2017-10-26
Non-proliferative diabetic retinopathy is the early stage of diabetic retinopathy. Automatic detection of non-proliferative diabetic retinopathy is significant for clinical diagnosis, early screening and course progression of patients. This paper introduces the design and implementation of an automatic system for screening non-proliferative diabetic retinopathy based on color fundus images. Firstly, the fundus structures, including blood vessels, optic disc and macula, are extracted and located, respectively. In particular, a new optic disc localization method using parabolic fitting is proposed based on the physiological structure characteristics of optic disc and blood vessels. Then, early lesions, such as microaneurysms, hemorrhages and hard exudates, are detected based on their respective characteristics. An equivalent optical model simulating human eyes is designed based on the anatomical structure of retina. Main structures and early lesions are reconstructed in the 3D space for better visualization. Finally, the severity of each image is evaluated based on the international criteria of diabetic retinopathy. The system has been tested on public databases and images from hospitals. Experimental results demonstrate that the proposed system achieves high accuracy for main structures and early lesions detection. The results of severity classification for non-proliferative diabetic retinopathy are also accurate and suitable. Our system can assist ophthalmologists for clinical diagnosis, automatic screening and course progression of patients.
Park, Si-Woon; Butler, Andrew J.; Cavalheiro, Vanessa; Alberts, Jay L.; Wolf, Steven L.
2013-01-01
The authors examined serial changes in optical topography in a stroke patient performing a functional task, as well as clinical and physiologic measures while undergoing constraint-induced therapy (CIT). A 73-year-old right hemiparetic patient, who had a subcortical stroke 4 months previously, received 2 weeks of CIT. During the therapy, daily optical topography imaging using near-infrared light was measured serially while the participant performed a functional key-turning task. Clinical outcome measures included the Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and functional key grip test. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) were also used to map cortical areas and hemodynamic brain responses, respectively. Optical topography measurement showed an overall decrease in oxy-hemoglobin concentration in both hemispheres as therapy progressed and the laterality index increased toward the contralateral hemisphere. An increased TMS motor map area was observed in the contralateral cortex following treatment. Posttreatment fMRI showed bilateral primary motor cortex activation, although slightly greater in the contralateral hemisphere, during affected hand movement. Clinical scores revealed marked improvement in functional activities. In one patient who suffered a stroke, 2 weeks of CIT led to improved function and cortical reorganization in the hemisphere contralateral to the affected hand. PMID:15228805
Noninvasive detection of cardiovascular pulsations by optical Doppler techniques
NASA Astrophysics Data System (ADS)
Hong, HyunDae; Fox, Martin D.
1997-10-01
A system has been developed based on the measurement of skin surface vibration that can be used to detect the underlying vascular wall motion of superficial arteries and the chest wall. Data obtained from tissue phantoms suggested that the detected signals were related to intravascular pressure, an important clinical and physiological parameter. Unlike the conventional optical Doppler techniques that have been used to measure blood perfusion in skin layers and blood flow within superficial arteries, the present system was optimized to pick up skin vibrations. An optical interferometer with a 633-nm He:Ne laser was utilized to detect micrometer displacements of the skin surface. Motion velocity profiles of the skin surface near each superficial artery and auscultation points on a chest for the two heart valve sounds exhibited distinctive profiles. The theoretical and experimental results demonstrated that the system detected the velocity of skin movement, which is related to the time derivative of the pressure. The system also reduces the loading effect on the pulsation signals and heart sounds produced by the conventional piezoelectric vibration sensors. The system's sensitivity, which could be optimized further, was 366.2 micrometers /s for the present research. Overall, optical cardiovascular vibrometry has the potential to become a simple noninvasive approach to cardiovascular screening.
Multi-Wavelength Based Optical Density Sensor for Autonomous Monitoring of Microalgae
Jia, Fei; Kacira, Murat; Ogden, Kimberly L.
2015-01-01
A multi-wavelength based optical density sensor unit was designed, developed, and evaluated to monitor microalgae growth in real time. The system consisted of five main components including: (1) laser diode modules as light sources; (2) photodiodes as detectors; (3) driver circuit; (4) flow cell; and (5) sensor housing temperature controller. The sensor unit was designed to be integrated into any microalgae culture system for both real time and non-real time optical density measurements and algae growth monitoring applications. It was shown that the sensor unit was capable of monitoring the dynamics and physiological changes of the microalgae culture in real-time. Algae biomass concentration was accurately estimated with optical density measurements at 650, 685 and 780 nm wavelengths used by the sensor unit. The sensor unit was able to monitor cell concentration as high as 1.05 g·L−1 (1.51 × 108 cells·mL−1) during the culture growth without any sample preparation for the measurements. Since high cell concentrations do not need to be diluted using the sensor unit, the system has the potential to be used in industrial microalgae cultivation systems for real time monitoring and control applications that can lead to improved resource use efficiency. PMID:26364640
NASA Astrophysics Data System (ADS)
Fernandes, Mariana S.; Correia, José H.; Mendes, Paulo M.
2011-05-01
Wearable devices are used to record several physiological signals, providing unobtrusive and continuous monitoring. A main challenge in these systems is to develop new recording sensors, specially envisioning bioelectric activity detection. Available devices are difficult to integrate, mainly due to the amount of electrical wires and components needed. This work proposes a fiber-optic based device, which basis of operation relies on the electro-optic effect. A Lithium Niobate (LiBnO3) Mach-Zehnder Interferometer (MZI) modulator is used as the core sensing component, followed by a signal conversion and processing stage. Tests were performed in order to validate the proposed acquisition system in terms of signal amplification and quality, stability and frequency response. A light source with a wavelength operation of 1530- 1565 nm was used. The modulated intensity is amplified and converted to an output voltage with a high transimpedance gain. The filtering and electric amplification included a 50Hz notch filter, a bandpass filter with a -3 dB bandwidth from 0.50 to 35 Hz. The obtained system performance on key elements such as sensitivity, frequency content, and signal quality, have shown that the proposed acquisition system allows the development of new wearable bioelectric monitoring solutions based on optical technologies.
Multisensor Instrument for Real-Time Biological Monitoring
NASA Technical Reports Server (NTRS)
Zhang, Sean (Zhanxiang); Xu, Guoda; Qiu, Wei; Lin, Freddie
2004-01-01
The figure schematically depicts an instrumentation system, called a fiber optic-based integration system (FOBIS), that is undergoing development to enable real-time monitoring of fluid cell cultures, bioprocess flows, and the like. The FOBIS design combines a micro flow cytometer (MFC), a microphotometer (MP), and a fluorescence-spectrum- or binding-force-measuring micro-sensor (MS) in a single instrument that is capable of measuring multiple biological parameters simultaneously or sequentially. The fiber-optic-based integration system is so named because the MFC, the MP, and the MS are integrated into a single optical system that is coupled to light sources and photometric equipment via optical fibers. The optical coupling components also include a wavelength-division multiplexer and diffractive optical elements. The FOBIS includes a laserdiode- and fiber-optic-based optical trapping subsystem (optical tweezers ) with microphotometric and micro-sensing capabilities for noninvasive confinement and optical measurement of relevant parameters of a single cell or other particle. Some of the measurement techniques implemented together by the FOBIS have long been used separately to obtain basic understanding of the optical properties of individual cells and other organisms, the optical properties of populations of organisms, and the interrelationships among these properties, physiology of the organisms, and physical processes that govern the media that surround the organisms. For example, flow cytometry yields information on numerical concentrations, cross-sectional areas, and types of cells or other particles. Micro-sensing can be used to measure pH and concentrations of oxygen, carbon dioxide, glucose, metabolites, calcium, and antigens in a cell-culture fluid, thereby providing feedback that can be helpful in improving control over a bioprocess. Microphotometry (including measurements of scattering and fluorescence) can yield further information about optically trapped individual particles. In addition to the multifunctionality not previously available in a single biological monitoring system, the FOBIS offers advantages of low mass, sensitivity, accuracy, portability, low cost, compactness (the overall dimensions of the fully developed FOBIS sensor head are expected to be less than 1 by 1 by 2 cm), and immunity to electromagnetic interference at suboptical frequencies. FOBIS could be useful in a variety of laboratory and field settings in such diverse endeavors as medical, veterinary, and general biological research; medical and veterinary diagnosis monitoring of industrial bioprocesses; and analysis of biological contaminants in air, water, and food.
Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies.
Ayub, Suleman; Gentet, Luc J; Fiáth, Richárd; Schwaerzle, Michael; Borel, Mélodie; David, François; Barthó, Péter; Ulbert, István; Paul, Oliver; Ruther, Patrick
2017-09-01
This article reports on the development, i.e., the design, fabrication, and validation of an implantable optical neural probes designed for in vivo experiments relying on optogenetics. The probes comprise an array of ten bare light-emitting diode (LED) chips emitting at a wavelength of 460 nm and integrated along a flexible polyimide-based substrate stiffened using a micromachined ladder-like silicon structure. The resulting mechanical stiffness of the slender, 250-μm-wide, 65-μm-thick, and 5- and 8-mm-long probe shank facilitates its implantation into neural tissue. The LEDs are encapsulated by a fluropolymer coating protecting the implant against the physiological conditions in the brain. The electrical interface to the external control unit is provided by 10-μm-thick, highly flexible polyimide cables making the probes suitable for both acute and chronic in vivo experiments. Optical and electrical properties of the probes are reported, as well as their in vivo validation in acute optogenetic studies in transgenic mice. The depth-dependent optical stimulation of both excitatory and inhibitory neurons is demonstrated by altering the brain activity in the cortex and the thalamus. Local network responses elicited by 20-ms-long light pulses of different optical power (20 μW and 1 mW), as well as local modulation of single unit neuronal activity to 1-s-long light pulses with low optical intensity (17 μW) are presented. The ability to modulate neural activity makes these devices suitable for a broad variety of optogenetic experiments.
Yücel, Meryem A.; Selb, Juliette; Boas, David A.; Cash, Sydney S.; Cooper, Robert J.
2013-01-01
As the applications of near-infrared spectroscopy (NIRS) continue to broaden and long-term clinical monitoring becomes more common, minimizing signal artifacts due to patient movement becomes more pressing. This is particularly true in applications where clinically and physiologically interesting events are intrinsically linked to patient movement, as is the case in the study of epileptic seizures. In this study, we apply an approach common in the application of EEG electrodes to the application of specialized NIRS optical fibers. The method provides improved optode-scalp coupling through the use of miniaturized optical fiber tips fixed to the scalp using collodion, a clinical adhesive. We investigate and quantify the performance of this new method in minimizing motion artifacts in healthy subjects, and apply the technique to allow continuous NIRS monitoring throughout epileptic seizures in two epileptic in-patients. Using collodion-fixed fibers reduces the percent signal change of motion artifacts by 90 % and increases the SNR by 6 and 3 fold at 690 and 830 nm wavelengths respectively when compared to a standard Velcro-based array of optical fibers. The change in both HbO and HbR during motion artifacts is found to be statistically lower for the collodion-fixed fiber probe. The collodion-fixed optical fiber approach has also allowed us to obtain good quality NIRS recording of three epileptic seizures in two patients despite excessive motion in each case. PMID:23796546
Anatomy of the eye from the view of Ibn Al-Haitham (965-1039). The founder of modern optics.
Unal, Nedim; Elcioglu, Omur
2009-03-01
Ibn Al-Haitham (known as Alhazen in Latin [965 Basra, Iraq-1039, Cairo, Egypt]) was a scientist who played an important role in the middle age Islam world. He wrote many books and novels, but only 90 of them are known. His main book Kitab al-Manazir was translated into Western languages in the late twelfth century, and in the early thirteenth century. In this book, he formulated many hypotheses on optical science. The book, which is also known as Optic treasure (opticae thesaurus), affected many famous Western scientists. He became an authority until the seventeenth century in the Eastern and Western countries. Roger Bacon (1212-1294), who made radical changes in the Western optical traditions, reconfirmed Ibn Al-Haitham's findings. Ibn al-Haitham began his book Kitab al-Manazir with the anatomy and physiology of the eye. He specifically described cornea, humor aqueous, lens, and corpus vitreum. He examined the effect of light on seeing. He caused changes in the prevailing ideas of his age, and suggested that light came from objects, not from the eye. He provided information regarding the optic nerve, retina, iris, and conjunctiva. He showed the system of the eye as a dioptric, and the relations between the parts of the eye. It is understood that he mastered all knowledge on the structure of the eye in his century. The best proof of this is the eye picture that he drew.
Optical imaging probes in oncology
Martelli, Cristina; Dico, Alessia Lo; Diceglie, Cecilia; Lucignani, Giovanni; Ottobrini, Luisa
2016-01-01
Cancer is a complex disease, characterized by alteration of different physiological molecular processes and cellular features. Keeping this in mind, the possibility of early identification and detection of specific tumor biomarkers by non-invasive approaches could improve early diagnosis and patient management. Different molecular imaging procedures provide powerful tools for detection and non-invasive characterization of oncological lesions. Clinical studies are mainly based on the use of computed tomography, nuclear-based imaging techniques and magnetic resonance imaging. Preclinical imaging in small animal models entails the use of dedicated instruments, and beyond the already cited imaging techniques, it includes also optical imaging studies. Optical imaging strategies are based on the use of luminescent or fluorescent reporter genes or injectable fluorescent or luminescent probes that provide the possibility to study tumor features even by means of fluorescence and luminescence imaging. Currently, most of these probes are used only in animal models, but the possibility of applying some of them also in the clinics is under evaluation. The importance of tumor imaging, the ease of use of optical imaging instruments, the commercial availability of a wide range of probes as well as the continuous description of newly developed probes, demonstrate the significance of these applications. The aim of this review is providing a complete description of the possible optical imaging procedures available for the non-invasive assessment of tumor features in oncological murine models. In particular, the characteristics of both commercially available and newly developed probes will be outlined and discussed. PMID:27145373
Utilizing a Tower Based System for Optical Sensing of Ecosystem Carbon Fluxes
NASA Astrophysics Data System (ADS)
Huemmrich, K. F.; Corp, L. A.; Middleton, E.; Campbell, P. K. E.; Landis, D.; Kustas, W. P.
2015-12-01
Optical sampling of spectral reflectance and solar induced fluorescence provide information on the physiological status of vegetation that can be used to infer stress responses and estimates of production. Multiple repeated observations are required to observe the effects of changing environmental conditions on vegetation. This study examines the use of optical signals to determine inputs to a light use efficiency (LUE) model describing productivity of a cornfield where repeated observations of carbon flux, spectral reflectance and fluorescence were collected. Data were collected at the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) fields (39.03°N, 76.85°W) at USDA Beltsville Agricultural Research Center. Agricultural Research Service researchers measured CO2 fluxes using eddy covariance methods throughout the growing season. Optical measurements were made from the nearby tower supporting the NASA FUSION sensors. The sensor system consists of two dual channel, upward and downward looking, spectrometers used to simultaneously collect high spectral resolution measurements of reflected and fluoresced light from vegetation canopies at multiple view angles. Estimates of chlorophyll fluorescence, combined with measures of vegetation pigment content and the Photosynthetic Reflectance Index (PRI) derived from the spectral reflectance are compared with CO2 fluxes over diurnal periods for multiple days. The relationships among the different optical measurements indicate that they are providing different types of information on the vegetation and that combinations of these measurements provide improved retrievals of CO2 fluxes than any index alone
Pavan, Andrea; Marotti, Rosilari Bellacosa; Mather, George
2013-05-31
Motion and form encoding are closely coupled in the visual system. A number of physiological studies have shown that neurons in the striate and extrastriate cortex (e.g., V1 and MT) are selective for motion direction parallel to their preferred orientation, but some neurons also respond to motion orthogonal to their preferred spatial orientation. Recent psychophysical research (Mather, Pavan, Bellacosa, & Casco, 2012) has demonstrated that the strength of adaptation to two fields of transparently moving dots is modulated by simultaneously presented orientation signals, suggesting that the interaction occurs at the level of motion integrating receptive fields in the extrastriate cortex. In the present psychophysical study, we investigated whether motion-form interactions take place at a higher level of neural processing where optic flow components are extracted. In Experiment 1, we measured the duration of the motion aftereffect (MAE) generated by contracting or expanding dot fields in the presence of either radial (parallel) or concentric (orthogonal) counterphase pedestal gratings. To tap the stage at which optic flow is extracted, we measured the duration of the phantom MAE (Weisstein, Maguire, & Berbaum, 1977) in which we adapted and tested different parts of the visual field, with orientation signals presented either in the adapting (Experiment 2) or nonadapting (Experiments 3 and 4) sectors. Overall, the results showed that motion adaptation is suppressed most by orientation signals orthogonal to optic flow direction, suggesting that motion-form interactions also take place at the global motion level where optic flow is extracted.
Quantification and Reconstruction in Photoacoustic Tomography
NASA Astrophysics Data System (ADS)
Guo, Zijian
Optical absorption is closely associated with many physiological important parameters, such as the concentration and oxygen saturation of hemoglobin. Conventionally, accurate quantification in PAT requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. We demonstrate the method using the optical-resolution photoacoustic microscopy (OR-PAM) and the acoustical-resolution photoacoustic microscopy (AR-PAM) in the optical ballistic regime and in the optical diffusive regime, respectively. The data acquisition speed in photoacoustic computed tomography (PACT) is limited by the laser repetition rate and the number of parallel ultrasound detecting channels. Reconstructing an image with fewer measurements can effectively accelerate the data acquisition and reduce the system cost. We adapted Compressed Sensing (CS) for the reconstruction in PACT. CS-based PACT was implemented as a non-linear conjugate gradient descent algorithm and tested with both phantom and in vivo experiments. Speckles have been considered ubiquitous in all scattering-based coherent imaging technologies. As a coherent imaging modality based on optical absorption, photoacoustic (PA) tomography (PAT) is generally devoid of speckles. PAT suppresses speckles by building up prominent boundary signals, via a mechanism similar to that of specular reflection. When imaging smooth boundary absorbing targets, the speckle visibility in PAT, which is defined as the ratio of the square root of the average power of speckles to that of boundaries, is inversely proportional to the square root of the absorber density. If the surfaces of the absorbing targets have uncorrelated height fluctuations, however, the boundary features may become fully developed speckles. The findings were validated by simulations and experiments. The first- and second-order statistics of PAT speckles were also studied experimentally. While the amplitude of the speckles follows a Gaussian distribution, the autocorrelation of the speckle patterns tracks that of the system point spread function.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Fan, Yifeng; Zhang, Yongguang; Chou, Shuren; Ju, Weimin; Chen, Jing M.
2016-09-01
An automated spectroscopy system, which is divided into fix-angle and multi-angle subsystems, for collecting simultaneous, continuous and long-term measurements of canopy hyper-spectra in a crop ecosystem is developed. The fix-angle subsystem equips two spectrometers: one is HR2000+ (OceanOptics) covering the spectral range 200-1100 nm with 1.0 nm spectral resolution, and another one is QE65PRO (OceanOptics) providing 0.1 nm spectral resolution within the 730-780 nm spectral range. Both spectrometers connect a cosine-corrected fiber-optic fixed up-looking to collect the down-welling irradiance and a bare fiber-optic to measure the up-welling radiance from the vegetation. An inline fiber-optic shutter FOS-2x2-TTL (OceanOptics) is used to switch between input fibers to collect the signal from either the canopy or sky at one time. QE65PRO is used to permit estimation of vegetation Sun-Induced Fluorescence (SIF) in the O2-A band. The data collection scheme includes optimization of spectrometer integration time to maximize the signal to noise ratio and measurement of instrument dark currency. The multi-angle subsystem, which can help understanding bidirectional reflectance effects, alternatively use HR4000 (OceanOptics) providing 0.1 nm spectral resolution within the 680-800 nm spectral range to measure multi-angle SIF. This subsystem additionally includes a spectrometer Unispec-DC (PPSystems) featuring both up-welling and down-welling channels with 3 nm spectral resolution covering the 300-1100 nm spectral range. Two down-looking fiber-optics are mounted on a rotating device PTU-D46 (FLIR Systems), which can rotate horizontally and vertically at 10° angular step widths. Observations can be used to calculate canopy reflectance, vegetation indices and SIF for monitoring plant physiological processes.
Integrated Photoacoustic Ophthalmoscopy and Spectral-domain Optical Coherence Tomography
Jiao, Shuliang; Zhang, Hao F.
2013-01-01
Both the clinical diagnosis and fundamental investigation of major ocular diseases greatly benefit from various non-invasive ophthalmic imaging technologies. Existing retinal imaging modalities, such as fundus photography1, confocal scanning laser ophthalmoscopy (cSLO)2, and optical coherence tomography (OCT)3, have significant contributions in monitoring disease onsets and progressions, and developing new therapeutic strategies. However, they predominantly rely on the back-reflected photons from the retina. As a consequence, the optical absorption properties of the retina, which are usually strongly associated with retinal pathophysiology status, are inaccessible by the traditional imaging technologies. Photoacoustic ophthalmoscopy (PAOM) is an emerging retinal imaging modality that permits the detection of the optical absorption contrasts in the eye with a high sensitivity4-7 . In PAOM nanosecond laser pulses are delivered through the pupil and scanned across the posterior eye to induce photoacoustic (PA) signals, which are detected by an unfocused ultrasonic transducer attached to the eyelid. Because of the strong optical absorption of hemoglobin and melanin, PAOM is capable of non-invasively imaging the retinal and choroidal vasculatures, and the retinal pigment epithelium (RPE) melanin at high contrasts 6,7. More importantly, based on the well-developed spectroscopic photoacoustic imaging5,8 , PAOM has the potential to map the hemoglobin oxygen saturation in retinal vessels, which can be critical in studying the physiology and pathology of several blinding diseases 9 such as diabetic retinopathy and neovascular age-related macular degeneration. Moreover, being the only existing optical-absorption-based ophthalmic imaging modality, PAOM can be integrated with well-established clinical ophthalmic imaging techniques to achieve more comprehensive anatomic and functional evaluations of the eye based on multiple optical contrasts6,10 . In this work, we integrate PAOM and spectral-domain OCT (SD-OCT) for simultaneously in vivo retinal imaging of rat, where both optical absorption and scattering properties of the retina are revealed. The system configuration, system alignment and imaging acquisition are presented. PMID:23354081
In Vivo Confocal Intrinsic Optical Signal Identification of Localized Retinal Dysfunction
Zhang, Qiu-Xiang; Lu, Rong-Wen; Curcio, Christine A.; Yao, Xin-Cheng
2012-01-01
Purpose. The purposes of this study were to investigate the physiological mechanism of stimulus-evoked fast intrinsic optical signals (IOSs) recorded in dynamic confocal imaging of the retina, and to demonstrate the feasibility of in vivo confocal IOS mapping of localized retinal dysfunctions. Methods. A rapid line-scan confocal ophthalmoscope was constructed to achieve in vivo confocal IOS imaging of frog (Rana pipiens) retinas at cellular resolution. In order to investigate the physiological mechanism of confocal IOS, comparative IOS and electroretinography (ERG) measurements were made using normal frog eyes activated by variable-intensity stimuli. A dynamic spatiotemporal filtering algorithm was developed to reject the contamination of hemodynamic changes on fast IOS recording. Laser-injured frog eyes were employed to test the potential of confocal IOS mapping of localized retinal dysfunctions. Results. Comparative IOS and ERG experiments revealed a close correlation between the confocal IOS and retinal ERG, particularly the ERG a-wave, which has been widely used to evaluate photoreceptor function. IOS imaging of laser-injured frog eyes indicated that the confocal IOS could unambiguously detect localized (30 μm) functional lesions in the retina before a morphological abnormality is detectable. Conclusions. The confocal IOS predominantly results from retinal photoreceptors, and can be used to map localized photoreceptor lesion in laser-injured frog eyes. We anticipate that confocal IOS imaging can provide applications in early detection of age-related macular degeneration, retinitis pigmentosa, and other retinal diseases that can cause pathological changes in the photoreceptors. PMID:23150616
NASA Astrophysics Data System (ADS)
Poole, Kristin M.; Patil, Chetan A.; Nelson, Christopher E.; McCormack, Devin R.; Madonna, Megan C.; Duvall, Craig L.; Skala, Melissa C.
2014-03-01
Peripheral arterial disease (PAD) is an atherosclerotic disease of the extremities that leads to high rates of myocardial infarction and stroke, increased mortality, and reduced quality of life. PAD is especially prevalent in diabetic patients, and is commonly modeled by hind limb ischemia in mice to study collateral vessel development and test novel therapies. Current techniques used to assess recovery cannot obtain quantitative, physiological data non-invasively. Here, we have applied hyperspectral imaging and swept source optical coherence tomography (OCT) to study longitudinal changes in blood oxygenation and vascular morphology, respectively, intravitally in the diabetic mouse hind limb ischemia model. Additionally, recommended ranges for controlling physiological variability in blood oxygenation with respect to respiration rate and body core temperature were determined from a control animal experiment. In the longitudinal study with diabetic mice, hyperspectral imaging data revealed the dynamics of blood oxygenation recovery distally in the ischemic footpad. In diabetic mice, there is an early increase in oxygenation that is not sustained in the long term. Quantitative analysis of vascular morphology obtained from Hessian-filtered speckle variance OCT volumes revealed temporal dynamics in vascular density, total vessel length, and vessel diameter distribution in the adductor muscle of the ischemic limb. The combination of hyperspectral imaging and speckle variance OCT enabled acquisition of novel functional and morphological endpoints from individual animals, and provides a more robust platform for future preclinical evaluations of novel therapies for PAD.
NASA Astrophysics Data System (ADS)
Walpitagama, Milanga; Kaslin, Jan; Nugegoda, Dayanthi; Wlodkowic, Donald
2016-12-01
The fish embryo toxicity (FET) biotest performed on embryos of zebrafish (Danio rerio) has gained significant popularity as a rapid and inexpensive alternative approach in chemical hazard and risk assessment. The FET was designed to evaluate acute toxicity on embryonic stages of fish exposed to the test chemical. The current standard, similar to most traditional methods for evaluating aquatic toxicity provides, however, little understanding of effects of environmentally relevant concentrations of chemical stressors. We postulate that significant environmental effects such as altered motor functions, physiological alterations reflected in heart rate, effects on development and reproduction can occur at sub-lethal concentrations well below than LC10. Behavioral studies can, therefore, provide a valuable integrative link between physiological and ecological effects. Despite the advantages of behavioral analysis development of behavioral toxicity, biotests is greatly hampered by the lack of dedicated laboratory automation, in particular, user-friendly and automated video microscopy systems. In this work we present a proof-of-concept development of an optical system capable of tracking embryonic vertebrates behavioral responses using automated and vastly miniaturized time-resolved video-microscopy. We have employed miniaturized CMOS cameras to perform high definition video recording and analysis of earliest vertebrate behavioral responses. The main objective was to develop a biocompatible embryo positioning structures that were suitable for high-throughput imaging as well as video capture and video analysis algorithms. This system should support the development of sub-lethal and behavioral markers for accelerated environmental monitoring.
Zhuo, Shuangmu; Chen, Jianxin; Luo, Tianshu; Zou, Dingsong
2006-08-21
A Multimode nonlinear optical imaging technique based on the combination of multichannel mode and Lambda mode is developed to investigate human dermis. Our findings show that this technique not only improves the image contrast of the structural proteins of extracellular matrix (ECM) but also provides an image-guided spectral analysis method to identify both cellular and ECM intrinsic components including collagen, elastin, NAD(P)H and flavin. By the combined use of multichannel mode and Lambda mode in tandem, the obtained in-depth two photon-excited fluorescence (TPEF) and second-harmonic generation (SHG) imaging and TPEF/SHG signals depth-dependence decay can offer a sensitive tool for obtaining quantitative tissue structural and biochemical information. These results suggest that the technique has the potential to provide more accurate information for determining tissue physiological and pathological states.
Enantio-selective optode for the β-blocker propranolol
NASA Astrophysics Data System (ADS)
He, Huarui; Uray, Georg; Wolfbeis, Otto S.
1991-03-01
We present a scheme for sensing optical isomers (enantiomers) of biogenic amines such as the Bblocker propranolol. Recognition of one of the enantiomers of propranolol is accomplished by specific interaction of the amine (which is present in the protonated ammonium form at physiological pH) with an optically active substrate (dibutyl tartrate) in a pvc membrane. As the ammonium ion is carried into the pvc membrane a proton is simultaneously released from the proton carrier (a lipophilic phenolic xanthene dye which undergoes protolytic dissociation in the pvc membrane) which thereby suffers a color change. The sensor responds to propranolol but also to other biogenic amines such as 1-phenylethylamine and norephedrine in the 20 pM to 10 mM range but has a pH-dependent response. The selectivity factors depend on the type of receptor and range from 0. 0 to 0. 30.
Correlating microscopy techniques and ToF-SIMS analysis of fully grown mammalian oocytes.
Gulin, Alexander; Nadtochenko, Victor; Astafiev, Artyom; Pogorelova, Valentina; Rtimi, Sami; Pogorelov, Alexander
2016-06-20
The 2D-molecular thin film analysis protocol for fully grown mice oocytes is described using an innovative approach. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical microscopy imaging were applied to the same mice oocyte section on the same sample holder. A freeze-dried mice oocyte was infiltrated into embedding media, e.g. Epon, and then was cut with a microtome and 2 μm thick sections were transferred onto an ITO coated conductive glass. Mammalian oocytes can contain "nucleolus-like body" (NLB) units and ToF-SIMS analysis was used to investigate the NLB composition. The ion-spatial distribution in the cell components was identified and compared with the images acquired by SEM, AFM and optical microscopy. This study presents a significant advancement in cell embryology, cell physiology and cancer-cell biochemistry.
NASA Astrophysics Data System (ADS)
Balasubramanian, Priya S.; Guo, Jiaqi; Yao, Xinwen; Qu, Dovina; Lu, Helen H.; Hendon, Christine P.
2017-02-01
The directionality of collagen fibers across the anterior cruciate ligament (ACL) as well as the insertion of this key ligament into bone are important for understanding the mechanical integrity and functionality of this complex tissue. Quantitative analysis of three-dimensional fiber directionality is of particular interest due to the physiological, mechanical, and biological heterogeneity inherent across the ACL-to-bone junction, the behavior of the ligament under mechanical stress, and the usefulness of this information in designing tissue engineered grafts. We have developed an algorithm to characterize Optical Coherence Tomography (OCT) image volumes of the ACL. We present an automated algorithm for measuring ligamentous fiber angles, and extracting attenuation and backscattering coefficients of ligament, interface, and bone regions within mature and immature bovine ACL insertion samples. Future directions include translating this algorithm for real time processing to allow three-dimensional volumetric analysis within dynamically moving samples.
A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy
Kirkby, Paul A.; Naga Srinivas, N.K.M.; Silver, R. Angus
2010-01-01
We describe a high speed 3D Acousto-Optic Lens Microscope (AOLM) for femtosecond 2-photon imaging. By optimizing the design of the 4 AO Deflectors (AODs) and by deriving new control algorithms, we have developed a compact spherical AOL with a low temporal dispersion that enables 2-photon imaging at 10-fold lower power than previously reported. We show that the AOLM can perform high speed 2D raster-scan imaging (>150 Hz) without scan rate dependent astigmatism. It can deflect and focus a laser beam in a 3D random access sequence at 30 kHz and has an extended focusing range (>137 μm; 40X 0.8NA objective). These features are likely to make the AOLM a useful tool for studying fast physiological processes distributed in 3D space PMID:20588506
NASA Astrophysics Data System (ADS)
Wang, Chun-Chin; Li, Feng-Chieh; Lin, Sung-Jan; Lo, Wen; Dong, Chen-Yuan
2007-07-01
In this investigation, we used in vivo nonlinear optical microscopy to image normal and carcinogen DMBA treated skin tissues of nude mice. We acquired two-photon autofluroescence and second harmonic generation (SHG) images of the skin tissue, and applied the ASI (Autofluorescence versus SHG Index) to the resulting image. This allows us to visualize and quantify the interaction between mouse skin cells and the surrounding connective tissue. We found that as the imaging depth increases, ASI has a different distribution in the normal and the treated skin tissues. Since the DMBA treated skin eventually became squamous cell carcinoma (SCC), our results show that the physiological changes to mouse skin en route to become cancer can be effectively tracked by multiphoton microscopy. We envision this approach to be effective in studying tumor biology and tumor treatment procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodos, W.
Collisions with wind turbines can be a problem for many species of birds. Of particular concern are collisions by eagles and other protected species. This research study used the laboratory methods of physiological optics, animal psychophysics, and retinal electrophysiology to analyze the causes of collisions and to evaluate visual deterrents based on the results of this analysis. Bird collisions with the seemingly slow-moving turbines seem paradoxical given the superb vision that most birds, especially raptors, possess. However, our optical analysis indicated that as the eye approaches the rotating blades, the retinal image of the blade (which is the information thatmore » is transmitted to the animal's brain) increases in velocity until it is moving so fast that the retina cannot keep up with it. At this point, the retinal image becomes a transparent blur that the bird probably interprets as a safe area to fly through, with disastrous consequences. This phenomenon is called"motion smear" or"motion blur."« less
Dynamic optical imaging of vascular and metabolic reactivity in rheumatoid joints.
Lasker, Joseph M; Fong, Christopher J; Ginat, Daniel T; Dwyer, Edward; Hielscher, Andreas H
2007-01-01
Dynamic optical imaging is increasingly applied to clinically relevant areas such as brain and cancer imaging. In this approach, some external stimulus is applied and changes in relevant physiological parameters (e.g., oxy- or deoxyhemoglobin concentrations) are determined. The advantage of this approach is that the prestimulus state can be used as a reference or baseline against which the changes can be calibrated. Here we present the first application of this method to the problem of characterizing joint diseases, especially effects of rheumatoid arthritis (RA) in the proximal interphalangeal finger joints. Using a dual-wavelength tomographic imaging system together with previously implemented model-based iterative image reconstruction schemes, we have performed initial dynamic imaging case studies on a limited number of healthy volunteers and patients diagnosed with RA. Focusing on three cases studies, we illustrated our major finds. These studies support our hypothesis that differences in the vascular reactivity exist between affected and unaffected joints.
Mid-Ir Cavity Ring-Down Spectrometer for Biological Trace Nitric Oxide Detection
NASA Astrophysics Data System (ADS)
Kan, Vincent; Ragab, Ahemd; Stsiapura, Vitali; Lehmann, Kevin K.; Gaston, Benjamin M.
2011-06-01
S-nitrosothiols have received much attention in biochemistry and medicine as donors of nitrosonium ion (NO^+) and nitric oxide (NO) - physiologically active molecules involved in vasodilation and signal transduction. Determination of S-nitrosothiols content in cells and tissues is of great importance for fundamental research and medical applications. We will report on our ongoing development of a instrument to measure trace levels of nitric oxide gas (NO), released from S-nitrosothiols after exposure to UV light (340 nm) or reaction with L-Cysteine+CuCl mixture. The instrument uses the method of cavity ring-down spectroscopy, probing rotationally resolved lines in the vibrational fundamental transition near 5.2 μm. The laser source is a continuous-wave, room temperature external cavity quantum cascade laser. An acousto-optic modulator is used to abruptly turn off the optical power incident on the cavity when the laser and cavity pass through resonance.
Space Flight-Associated Neuro-ocular Syndrome.
Lee, Andrew G; Mader, Thomas H; Gibson, C Robert; Tarver, William
2017-09-01
New and unique physiologic and pathologic systemic and neuro-ocular responses have been documented in astronauts during and after long-duration space flight. Although the precise cause remains unknown, space flight-associated neuro-ocular syndrome (SANS) has been adopted as an appropriate descriptive term. The Space Medicine Operations Division of the US National Aeronautics and Space Administration (NASA) has documented the variable occurrence of SANS in astronauts returning from long-duration space flight on the International Space Station. These clinical findings have included unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and nerve fiber layer infarcts. The clinical findings of SANS have been correlated with structural changes on intraorbital and intracranial magnetic resonance imaging and in-flight and terrestrial ultrasonographic studies and ocular optical coherence tomography. Further study of SANS is ongoing for consideration of future manned missions to space, including a return trip to the moon or Mars.
Li, Dongyu; Tian, Linlin; Huang, Zhen; Shao, Lexi; Quan, Jun; Wang, Yuxiao
2016-04-01
Hexagonal phase NaLuF4:Yb3+/Er3+ nanorods were synthesized hydrothermally. An analysis of the intense green upconversion emissions at 525 nm and 550 nm in hexagonal phase NaLuF4:Yb3/+Er3+ nanorods under excitation power density of 4.2 W/cm2 available from a diode laser emitting at 976 nm, have been undertaken. Fluorescence intensity ratio (FIR) variation of temperature-sensitive green upconversion emissions at 525 nm and 550 nm in this material was recorded in the physiological range from 295 to 343 K. The maximum sensitivity derived from the FIR technique of the green upconversion emissions is approximately 0.0044 K-1. Experimental results implied that hexagonal phase NaLuF4:Yb3/+Er3+ nanorods was a potential candidate for optical temperature sensor.
Schwarz, Mathias; Buehler, Andreas; Aguirre, Juan; Ntziachristos, Vasilis
2016-01-01
Optical imaging plays a major role in disease detection in dermatology. However, current optical methods are limited by lack of three-dimensional detection of pathophysiological parameters within skin. It was recently shown that single-wavelength optoacoustic (photoacoustic) mesoscopy resolves skin morphology, i.e. melanin and blood vessels within epidermis and dermis. In this work we employed illumination at multiple wavelengths for enabling three-dimensional multispectral optoacoustic mesoscopy (MSOM) of natural chromophores in human skin in vivo operating at 15-125 MHz. We employ a per-pulse tunable laser to inherently co-register spectral datasets, and reveal previously undisclosed insights of melanin, and blood oxygenation in human skin. We further reveal broadband absorption spectra of specific skin compartments. We discuss the potential of MSOM for label-free visualization of physiological biomarkers in skin in vivo. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multiparameter vision testing apparatus
NASA Technical Reports Server (NTRS)
Hunt, S. R., Jr.; Homkes, R. J.; Poteate, W. B.; Sturgis, A. C. (Inventor)
1975-01-01
Compact vision testing apparatus is described for testing a large number of physiological characteristics of the eyes and visual system of a human subject. The head of the subject is inserted into a viewing port at one end of a light-tight housing containing various optical assemblies. Visual acuity and other refractive characteristics and ocular muscle balance characteristics of the eyes of the subject are tested by means of a retractable phoroptor assembly carried near the viewing port and a film cassette unit carried in the rearward portion of the housing (the latter selectively providing a variety of different visual targets which are viewed through the optical system of the phoroptor assembly). The visual dark adaptation characteristics and absolute brightness threshold of the subject are tested by means of a projector assembly which selectively projects one or both of a variable intensity fixation target and a variable intensity adaptation test field onto a viewing screen located near the top of the housing.
Ho, Leon C.; Wang, Bo; Conner, Ian P.; van der Merwe, Yolandi; Bilonick, Richard A.; Kim, Seong-Gi; Wu, Ed X.; Sigal, Ian A.; Wollstein, Gadi; Schuman, Joel S.; Chan, Kevin C.
2015-01-01
Purpose. Excitotoxicity has been linked to the pathogenesis of ocular diseases and injuries and may involve early degeneration of both anterior and posterior visual pathways. However, their spatiotemporal relationships remain unclear. We hypothesized that the effects of excitotoxic retinal injury (ERI) on the visual system can be revealed in vivo by diffusion tensor magnetic resonance imagining (DTI), manganese-enhanced magnetic resonance imagining (MRI), and optical coherence tomography (OCT). Methods. Diffusion tensor MRI was performed at 9.4 Tesla to monitor white matter integrity changes after unilateral N-methyl-D-aspartate (NMDA)-induced ERI in six Sprague-Dawley rats and six C57BL/6J mice. Additionally, four rats and four mice were intravitreally injected with saline to compare with NMDA-injected animals. Optical coherence tomography of the retina and manganese-enhanced MRI of anterograde transport were evaluated and correlated with DTI parameters. Results. In the rat optic nerve, the largest axial diffusivity decrease and radial diffusivity increase occurred within the first 3 and 7 days post ERI, respectively, suggestive of early axonal degeneration and delayed demyelination. The optic tract showed smaller directional diffusivity changes and weaker DTI correlations with retinal thickness compared with optic nerve, indicative of anterograde degeneration. The splenium of corpus callosum was also reorganized at 4 weeks post ERI. The DTI profiles appeared comparable between rat and mouse models. Furthermore, the NMDA-injured visual pathway showed reduced anterograde manganese transport, which correlated with diffusivity changes along but not perpendicular to optic nerve. Conclusions. Diffusion tensor MRI, manganese-enhanced MRI, and OCT provided an in vivo model system for characterizing the spatiotemporal changes in white matter integrity, the eye–brain relationships and structural–physiological relationships in the visual system after ERI. PMID:26066747
NASA Astrophysics Data System (ADS)
Cowles, T. J.; Barth, J. A.; Wingard, C. E.; Desiderio, R. A.; Letelier, R. M.; Pierce, S. D.
2002-12-01
Mesoscale mapping of the hydrographic and bio-optical properties of the Northern California Current System was conducted during spring and summer 2000, 2001, and 2002 off the Oregon coast. A towed, undulating vehicle carried a CTD, two fluorometers, a multi-wavelength absorption and attenuation meter (ac-9), and a PAR sensor. In addition, an ac-9 and a Fast Repetition Rate fluorometer (FRRf) collected bio-optical data on surface waters throughout the mesoscale surveys. Multiple onshore-offshore transect lines provided repeated crossings of velocity jet and frontal boundaries, and allowed resolution of physical and bio-optical parameters on horizontal scales of 1km or less and on vertical scales of 1-2m. Our multi-year results permit assessment of the linkages and the degree of coupling between physical and bio-optical patterns during strong upwelling and strong downwelling events, as well as during low-wind relaxation intervals. The location of the coastal jet and the upwelling front fluctuated considerably under the variable forcing regime, with more extensive mesoscale structure in all parameters in late summer relative to spring, as current meanders developed around subsurface topography (Heceta Bank) and moved offshore near Cape Blanco. Sharp horizontal gradients in autotrophic biomass were observed across the boundaries of the coastal jet and the upwelling front, with chlorophyll levels often in excess of 5-10 mg m-3 on the inshore side of the fronts. Horizontal gradients also were observed in the spectral slope of attenuation and dissolved absorption as well as in the physiological properties of the autotrophic assemblages (as determined with FRRf). Details of the spatial correlations of physical and bio-optical parameters will be presented.
Customized three-dimensional printed optical phantoms with user defined absorption and scattering
NASA Astrophysics Data System (ADS)
Pannem, Sanjana; Sweer, Jordan; Diep, Phuong; Lo, Justine; Snyder, Michael; Stueber, Gabriella; Zhao, Yanyu; Tabassum, Syeda; Istfan, Raeef; Wu, Junjie; Erramilli, Shyamsunder; Roblyer, Darren M.
2016-03-01
The use of reliable tissue-simulating phantoms spans multiple applications in spectroscopic imaging including device calibration and testing of new imaging procedures. Three-dimensional (3D) printing allows for the possibility of optical phantoms with arbitrary geometries and spatially varying optical properties. We recently demonstrated the ability to 3D print tissue-simulating phantoms with customized absorption (μa) and reduced scattering (μs`) by incorporating nigrosin, an absorbing dye, and titanium dioxide (TiO2), a scattering agent, to acrylonitrile butadiene styrene (ABS) during filament extrusion. A physiologically relevant range of μa and μs` was demonstrated with high repeatability. We expand our prior work here by evaluating the effect of two important 3D-printing parameters, percent infill and layer height, on both μa and μs`. 2 cm3 cubes were printed with percent infill ranging from 10% to 100% and layer height ranging from 0.15 to 0.40 mm. The range in μa and μs` was 27.3% and 19.5% respectively for different percent infills at 471 nm. For varying layer height, the range in μa and μs` was 27.8% and 15.4% respectively at 471 nm. These results indicate that percent infill and layer height substantially alter optical properties and should be carefully controlled during phantom fabrication. Through the use of inexpensive hobby-level printers, the fabrication of optical phantoms may advance the complexity and availability of fully customizable phantoms over multiple spatial scales. This technique exhibits a wider range of adaptability than other common methods of fabricating optical phantoms and may lead to improved instrument characterization and calibration.
Bühren, Jens; Yoon, Geunyoung; MacRae, Scott; Huxlin, Krystel
2010-01-01
PURPOSE To simulate the simultaneous contribution of optical zone decentration and pupil dilation on retinal image quality using wavefront error data from a myopic photorefractive keratectomy (PRK) cat model. METHODS Wavefront error differences were obtained from five cat eyes 19±7 weeks (range: 12 to 24 weeks) after spherical myopic PRK for −6.00 diopters (D) (three eyes) and −10.00 D (two eyes). A computer model was used to simulate decentration of a 6-mm sub-aperture relative to the measured wavefront error difference. Changes in image quality (visual Strehl ratio based on the optical transfer function [VSOTF]) were computed for simulated decentrations from 0 to 1500 μm over pupil diameters of 3.5 to 6.0 mm in 0.5-mm steps. For each eye, a bivariate regression model was applied to calculate the simultaneous contribution of pupil dilation and decentration on the pre- to postoperative change of the log VSOTF. RESULTS Pupil diameter and decentration explained up to 95% of the variance of VSOTF change (adjusted R2=0.95). Pupil diameter had a higher impact on VSOTF (median β=−0.88, P<.001) than decentration (median β= −0.45, P<.001). If decentration-induced lower order aberrations were corrected, the impact of decentration further decreased (β= −0.26) compared to the influence of pupil dilation (β= −0.95). CONCLUSIONS Both pupil dilation and decentration of the optical zone affected the change of retinal image quality (VSOTF) after myopic PRK with decentration exerting a lower impact on VSOTF change. Thus, under physiological conditions pupil dilation is likely to have more effect on VSOTF change after PRK than optical zone decentration. PMID:20229950
Bühren, Jens; Yoon, Geunyoung; MacRae, Scott; Huxlin, Krystel
2010-03-01
To simulate the simultaneous contribution of optical zone decentration and pupil dilation on retinal image quality using wavefront error data from a myopic photorefractive keratectomy (PRK) cat model. Wavefront error differences were obtained from five cat eyes 19+/-7 weeks (range: 12 to 24 weeks) after spherical myopic PRK for -6.00 diopters (D) (three eyes) and -10.00 D (two eyes). A computer model was used to simulate decentration of a 6-mm sub-aperture relative to the measured wavefront error difference. Changes in image quality (visual Strehl ratio based on the optical transfer function [VSOTF]) were computed for simulated decentrations from 0 to 1500 mum over pupil diameters of 3.5 to 6.0 mm in 0.5-mm steps. For each eye, a bivariate regression model was applied to calculate the simultaneous contribution of pupil dilation and decentration on the pre- to postoperative change of the log VSOTF. Pupil diameter and decentration explained up to 95% of the variance of VSOTF change (adjusted R(2)=0.95). Pupil diameter had a higher impact on VSOTF (median beta=-0.88, P<.001) than decentration (median beta=-0.45, P<.001). If decentration-induced lower order aberrations were corrected, the impact of decentration further decreased (beta=-0.26) compared to the influence of pupil dilation (beta=-0.95). Both pupil dilation and decentration of the optical zone affected the change of retinal image quality (VSOTF) after myopic PRK with decentration exerting a lower impact on VSOTF change. Thus, under physiological conditions pupil dilation is likely to have more effect on VSOTF change after PRK than optical zone decentration. Copyright 2010, SLACK Incorporated.
Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures
NASA Astrophysics Data System (ADS)
Hennige, S. J.; Suggett, D. J.; Warner, M. E.; McDougall, K. E.; Smith, D. J.
2009-03-01
Light is often the most abundant resource within the nutrient-poor waters surrounding coral reefs. Consequently, zooxanthellae ( Symbiodinium spp.) must continually photoacclimate to optimise productivity and ensure coral success. In situ coral photobiology is becoming dominated by routine assessments using state-of-the-art non-invasive bio-optical or chlorophyll a fluorescence (bio-physical) techniques. Multiple genetic types of Symbiodinium are now known to exist; however, little focus has been given as to how these types differ in terms of characteristics that are observable using these techniques. Therefore, this investigation aimed to revisit and expand upon a pivotal study by Iglesias-Prieto and Trench (1994) by comparing the photoacclimation characteristics of different Symbiodinium types based on their bio-physical (chlorophyll a fluorescence, reaction centre counts) and bio-optical (optical absorption, pigment concentrations) ‘signatures’. Signatures described here are unique to Symbiodinium type and describe phenotypic responses to set conditions, and hence are not suitable to describe taxonomic structure of in hospite Symbiodinium communities. In this study, eight Symbiodinium types from clades and sub-clades (A-B, F) were grown under two PFDs (Photon Flux Density) and examined. The photoacclimation response by Symbiodinium was highly variable between algal types for all bio-physical and for many bio-optical measurements; however, a general preference to modifying reaction centre content over effective antennae-absorption was observed. Certain bio-optically derived patterns, such as light absorption, were independent of algal type and, when considered per photosystem, were matched by reaction centre stoichiometry. Only by better understanding genotypic and phenotypic variability between Symbiodinium types can future studies account for the relative taxonomic and physiological contribution by Symbiodinium to coral acclimation.
Optical imaging of neural and hemodynamic brain activity
NASA Astrophysics Data System (ADS)
Schei, Jennifer Lynn
Optical imaging technologies can be used to record neural and hemodynamic activity. Neural activity elicits physiological changes that alter the optical tissue properties. Specifically, changes in polarized light are concomitant with neural depolarization. We measured polarization changes from an isolated lobster nerve during action potential propagation using both reflected and transmitted light. In transmission mode, polarization changes were largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. To overcome irregular cell orientation found in the brain, we measured polarization changes from a nerve tied in a knot. Our results show that neural activation produces polarization changes that can be imaged even without regular cell orientations. Neural activation expends energy resources and elicits metabolic delivery through blood vessel dilation, increasing blood flow and volume. We used spectroscopic imaging techniques combined with electrophysiological measurements to record evoked neural and hemodynamic responses from the auditory cortex of the rat. By using implantable optics, we measured responses across natural wake and sleep states, as well as responses following different amounts of sleep deprivation. During quiet sleep, evoked metabolic responses were larger compared to wake, perhaps because blood vessels were more compliant. When animals were sleep deprived, evoked hemodynamic responses were smaller following longer periods of deprivation. These results suggest that prolonged neural activity through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic sleep disturbances could push the vasculature to critical limits, leading to metabolic deficit and the potential for tissue trauma.
[Clinical, morphological and molecular biological characteristics of the aging eye].
Böhm, M R R; Thomasen, H; Parnitzke, F; Steuhl, K-P
2017-02-01
The physiological aging of the eye is associated with loss of visual function. Age-related changes of the eye can result in ophthalmological diseases. The aim of this article is to display morphological, histological and molecular biological alterations of the aging eye. A web-based search and review of the literature for aging of the visual system including cornea, lens, vitreous humor, retina, retinal pigment epithelium (RPE), choroidea and optic nerve were carried out. The most important results related to morphological, histological and molecular biological changes are summarized. Age-related, morphological alterations can be found in preretinal structures, e. g. cornea, lens and vitreous humor, as well as neuronal structures, such as the retina. In addition to negligible clinical signs of the aging eye, there are clinically relevant changes which can develop into pathological ophthalmological diseases. These transitions from age-related alterations to relevant ophthalmological diseases, e. g. age-related macular degeneration and glaucoma are continuous. An understanding of aging could provide predictive factors to detect the conversion of physiological aging into pathological conditions. The derivation of physiological markers or new approaches to detection and treatment of disease-related entities associated with the risk factor aging are desirable. Translational approaches in clinical and basic science are necessary to provide new therapeutic options for relevant ophthalmological diseases in the future.
Common features in diverse insect clocks.
Numata, Hideharu; Miyazaki, Yosuke; Ikeno, Tomoko
2015-01-01
This review describes common features among diverse biological clocks in insects, including circadian, circatidal, circalunar/circasemilunar, and circannual clocks. These clocks control various behaviors, physiological functions, and developmental events, enabling adaptation to periodic environmental changes. Circadian clocks also function in time-compensation for celestial navigation and in the measurement of day or night length for photoperiodism. Phase response curves for such clocks reported thus far exhibit close similarities; specifically, the circannual clock in Anthrenus verbasci shows striking similarity to circadian clocks in its phase response. It is suggested that diverse biological clocks share physiological properties in their phase responses irrespective of period length. Molecular and physiological mechanisms are best understood for the optic-lobe and mid-brain circadian clocks, although there is no direct evidence that these clocks are involved in rhythmic phenomena other than circadian rhythms in daily events. Circadian clocks have also been localized in peripheral tissues, and research on their role in various rhythmic phenomena has been started. Although clock genes have been identified as controllers of circadian rhythms in daily events, some of these genes have also been shown to be involved in photoperiodism and possibly in time-compensated celestial navigation. In contrast, there is no experimental evidence indicating that any known clock gene is involved in biological clocks other than circadian clocks.
The electromagnetic response of human skin in the millimetre and submillimetre wave range.
Feldman, Yuri; Puzenko, Alexander; Ben Ishai, Paul; Caduff, Andreas; Davidovich, Issak; Sakran, Fadi; Agranat, Aharon J
2009-06-07
Recent studies of the minute morphology of the skin by optical coherence tomography revealed that the sweat ducts in human skin are helically shaped tubes, filled with a conductive aqueous solution. This, together with the fact that the dielectric permittivity of the dermis is higher than that of the epidermis, brings forward the supposition that as electromagnetic entities, the sweat ducts could be regarded as low Q helical antennas. The implications of this statement were further investigated by electromagnetic simulation and experiment of the in vivo reflectivity of the skin of subjects under varying physiological conditions (Feldman et al 2008 Phys. Rev. Lett. 100 128102). The simulation and experimental results are in a good agreement and both demonstrate that sweat ducts in the skin could indeed behave as low Q antennas. Thus, the skin spectral response in the sub-Terahertz region is governed by the level of activity of the perspiration system and shows the minimum of reflectivity at some frequencies in the frequency band of 75-110 GHz. It is also correlated to physiological stress as manifested by the pulse rate and the systolic blood pressure. As such, it has the potential to become the underlying principle for remote sensing of the physiological parameters and the mental state of the examined subject.
To boldly glow ... applications of laser scanning confocal microscopy in developmental biology.
Paddock, S W
1994-05-01
The laser scanning confocal microscope (LSCM) is now established as an invaluable tool in developmental biology for improved light microscope imaging of fluorescently labelled eggs, embryos and developing tissues. The universal application of the LSCM in biomedical research has stimulated improvements to the microscopes themselves and the synthesis of novel probes for imaging biological structures and physiological processes. Moreover the ability of the LSCM to produce an optical series in perfect register has made computer 3-D reconstruction and analysis of light microscope images a practical option.
Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D
2014-10-01
Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.
Sanderson, Michael J.; Smith, Ian; Parker, Ian; Bootman, Martin D.
2016-01-01
Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. PMID:25275114
Selective labeling of retinal ganglion cells with calcium indicators by retrograde loading in vitro
Behrend, Matthew R.; Ahuja, Ashish K.; Humayun, Mark S.; Weiland, James D.; Chow, Robert H.
2012-01-01
Here we present a retrograde loading technique that makes it possible for the first time to rapidly load a calcium indicator in the majority of retinal ganglion cells (RGCs) in salamander retina, and then to observe physiological activity of these dye-loaded cells. Dextran-conjugated calcium indicator, dissolved in water, was applied to the optic nerve stump. Following dye loading, the isolated retina was mounted on a microelectrode array to demonstrate that electrical activity and calcium activity were preserved, as the retina responded to electrical stimuli. PMID:19428523
Estimation of tissue optical parameters with hyperspectral imaging and spectral unmixing
NASA Astrophysics Data System (ADS)
Lu, Guolan; Qin, Xulei; Wang, Dongsheng; Chen, Zhuo G.; Fei, Baowei
2015-03-01
Early detection of oral cancer and its curable precursors can improve patient survival and quality of life. Hyperspectral imaging (HSI) holds the potential for noninvasive early detection of oral cancer. The quantification of tissue chromophores by spectral unmixing of hyperspectral images could provide insights for evaluating cancer progression. In this study, non-negative matrix factorization has been applied for decomposing hyperspectral images into physiologically meaningful chromophore concentration maps. The approach has been validated by computer-simulated hyperspectral images and in vivo tumor hyperspectral images from a head and neck cancer animal model.
Jonas, Jost B; Wang, Ningli; Yang, Diya
2016-01-01
The main proven risk factor for glaucomatous optic neuropathy (GON) is an intraocular pressure (IOP) higher than the pressure sensibility of the optic nerve head allows. Fulfilling Koch postulates, numerous studies have shown that the presence of high IOP leads to GON, that lowering IOP stops the progression of GON, and that a re-increase in IOP again causes the progression of GON. There are, however, many patients with glaucoma who have statistically normal or low IOP, and despite low IOP values, they develop progressing GON. These observations led to findings that IOP is only 1 of 2 determinants of the translamina cribrosa pressure difference (TLCPD), which is the main pressure-related parameter for the physiology and pathophysiology of the optic nerve head. The second parameter influencing TLCPD is orbital cerebrospinal fluid pressure (CSFP) as the counter pressure against IOP across the lamina cribrosa. Recent experimental and clinical studies have suggested that a low CSFP could be associated with GON in normal-pressure glaucoma. These investigations included studies with an experimental long-term reduction in CSFP in monkeys, population-based studies, and clinical retrospective and prospective investigations on patients with normal-pressure glaucoma. Besides TLCPD, other ocular parameters influenced by CSFP may be choroidal thickness, retinal vein pressure and diameter, occurrence of retinal vein occlusions, and occurrence and severity of diabetic retinopathy.
NASA Astrophysics Data System (ADS)
Stegehuis, Paulien L.; Boogerd, Leonora S. F.; Inderson, Akin; Veenendaal, Roeland A.; van Gerven, P.; Bonsing, Bert A.; Sven Mieog, J.; Amelink, Arjen; Veselic, Maud; Morreau, Hans; van de Velde, Cornelis J. H.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke; Robinson, Dominic J.; Vahrmeijer, Alexander L.
2017-02-01
Endoscopic ultrasound-guided fine needle aspirations (EUS-FNA) of pancreatic masses suffer from sample errors and low-negative predictive values. Fiber-optic spectroscopy in the visible to near-infrared wavelength spectrum can noninvasively extract physiological parameters from tissue and has the potential to guide the sampling process and reduce sample errors. We assessed the feasibility of single fiber (SF) reflectance spectroscopy measurements during EUS-FNA of pancreatic masses and its ability to distinguish benign from malignant pancreatic tissue. A single optical fiber was placed inside a 19-gauge biopsy needle during EUS-FNA and at least three reflectance measurements were taken prior to FNA. Spectroscopy measurements did not cause any related adverse events and prolonged procedure time with ˜5 min. An accurate correlation between spectroscopy measurements and cytology could be made in nine patients (three benign and six malignant). The oxygen saturation and bilirubin concentration were significantly higher in benign tissue compared with malignant tissue (55% versus 21%, p=0.038; 166 μmol/L versus 17 μmol/L, p=0.039, respectively). To conclude, incorporation of SF spectroscopy during EUS-FNA was feasible, safe, and relatively quick to perform. The optical properties of benign and malignant pancreatic tissue are different, implying that SF spectroscopy can potentially guide the FNA sampling.
Palette of fluorinated voltage-sensitive hemicyanine dyes
Yan, Ping; Acker, Corey D.; Zhou, Wen-Liang; Lee, Peter; Bollensdorff, Christian; Negrean, Adrian; Lotti, Jacopo; Sacconi, Leonardo; Antic, Srdjan D.; Kohl, Peter; Mansvelder, Huibert D.; Pavone, Francesco S.; Loew, Leslie M.
2012-01-01
Optical recording of membrane potential permits spatially resolved measurement of electrical activity in subcellular regions of single cells, which would be inaccessible to electrodes, and imaging of spatiotemporal patterns of action potential propagation in excitable tissues, such as the brain or heart. However, the available voltage-sensitive dyes (VSDs) are not always spectrally compatible with newly available optical technologies for sensing or manipulating the physiological state of a system. Here, we describe a series of 19 fluorinated VSDs based on the hemicyanine class of chromophores. Strategic placement of the fluorine atoms on the chromophores can result in either blue or red shifts in the absorbance and emission spectra. The range of one-photon excitation wavelengths afforded by these new VSDs spans 440–670 nm; the two-photon excitation range is 900–1,340 nm. The emission of each VSD is shifted by at least 100 nm to the red of its one-photon excitation spectrum. The set of VSDs, thus, affords an extended toolkit for optical recording to match a broad range of experimental requirements. We show the sensitivity to voltage and the photostability of the new VSDs in a series of experimental preparations ranging in scale from single dendritic spines to whole heart. Among the advances shown in these applications are simultaneous recording of voltage and calcium in single dendritic spines and optical electrophysiology recordings using two-photon excitation above 1,100 nm. PMID:23169660
PDT dose dosimetry for Photofrin-mediated pleural photodynamic therapy (pPDT)
NASA Astrophysics Data System (ADS)
Ong, Yi Hong; Kim, Michele M.; Finlay, Jarod C.; Dimofte, Andreea; Singhal, Sunil; Glatstein, Eli; Cengel, Keith A.; Zhu, Timothy C.
2018-01-01
Photosensitizer fluorescence excited by photodynamic therapy (PDT) treatment light can be used to monitor the in vivo concentration of the photosensitizer and its photobleaching. The temporal integral of the product of in vivo photosensitizer concentration and light fluence is called PDT dose, which is an important dosimetry quantity for PDT. However, the detected photosensitizer fluorescence may be distorted by variations in the absorption and scattering of both excitation and fluorescence light in tissue. Therefore, correction of the measured fluorescence for distortion due to variable optical properties is required for absolute quantification of photosensitizer concentration. In this study, we have developed a four-channel PDT dose dosimetry system to simultaneously acquire light dosimetry and photosensitizer fluorescence data. We measured PDT dose at four sites in the pleural cavity during pleural PDT. We have determined an empirical optical property correction function using Monte Carlo simulations of fluorescence for a range of physiologically relevant tissue optical properties. Parameters of the optical property correction function for Photofrin fluorescence were determined experimentally using tissue-simulating phantoms. In vivo measurements of photosensitizer fluorescence showed negligible photobleaching of Photofrin during the PDT treatment, but large intra- and inter-patient heterogeneities of in vivo Photofrin concentration are observed. PDT doses delivered to 22 sites in the pleural cavity of 8 patients were different by 2.9 times intra-patient and 8.3 times inter-patient.
Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review
Iordachita, Iulian I.; Tokuda, Junichi; Hata, Nobuhiko; Liu, Xuan; Seifabadi, Reza; Xu, Sheng; Wood, Bradford; Fischer, Gregory S.
2017-01-01
Magnetic Resonance Imaging (MRI) provides both anatomical imaging with excellent soft tissue contrast and functional MRI imaging (fMRI) of physiological parameters. The last two decades have witnessed the manifestation of increased interest in MRI-guided minimally invasive intervention procedures and fMRI for rehabilitation and neuroscience research. Accompanying the aspiration to utilize MRI to provide imaging feedback during interventions and brain activity for neuroscience study, there is an accumulated effort to utilize force sensors compatible with the MRI environment to meet the growing demand of these procedures, with the goal of enhanced interventional safety and accuracy, improved efficacy and rehabilitation outcome. This paper summarizes the fundamental principles, the state of the art development and challenges of fiber optic force sensors for MRI-guided interventions and rehabilitation. It provides an overview of MRI-compatible fiber optic force sensors based on different sensing principles, including light intensity modulation, wavelength modulation, and phase modulation. Extensive design prototypes are reviewed to illustrate the detailed implementation of these principles. Advantages and disadvantages of the sensor designs are compared and analyzed. A perspective on the future development of fiber optic sensors is also presented which may have additional broad clinical applications. Future surgical interventions or rehabilitation will rely on intelligent force sensors to provide situational awareness to augment or complement human perception in these procedures. PMID:28652857
NASA Astrophysics Data System (ADS)
Cilip, Christopher Michael
Development of a noninvasive vasectomy technique may eliminate male fear of complications (incision, bleeding, infection, and scrotal pain) and result in a more popular procedure. These studies build off previous studies that report the ability to thermally target tissue substructures with near infrared laser radiation while maintaining a healthy superficial layer of tissue through active surface cooling. Initial studies showed the ability to increase the working depth compared to that of common dermatological procedures and the translation into an ex vivo canine model targeting the vas deferens in a noninvasive laser vasectomy. Laser and cooling parameter optimization was required to determine the best possible wavelength for a safe transition to an in vivo canine model. Optical clearing agents were investigated as a mechanism to decrease tissue scattering during in vivo procedures to increase optical penetration depth and reduce the overall power required. Optical and thermal computer models were developed to determine the efficacy for a successful transition into a human model. Common clinical imaging modalities (ultrasound, high frequency ultrasound, and optical coherence tomography) were tested as possible candidates for real-time imaging feedback to determine surgical success. Finally, a noninvasive laser vasectomy prototype clamp incorporating laser, cooling, and control in a single package was designed and tested in vivo. Occlusion of the canine vas deferens able to withstand physiological burst pressures measured postoperative was shown during acute and chronic studies. This procedure is ready for azoospermia and recanalization studies in a clinical setting.
NASA Astrophysics Data System (ADS)
Gurley, Katelyn; Shang, Yu; Yu, Guoqiang
2012-07-01
This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.
Gurley, Katelyn; Shang, Yu
2012-01-01
Abstract. This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (V˙O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and V˙O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (rV˙O2). The rBF and rV˙O2 signals were calibrated with absolute baseline BF and V˙O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology. PMID:22894482
Photoreceptor disc shedding in the living human eye
Kocaoglu, Omer P.; Liu, Zhuolin; Zhang, Furu; Kurokawa, Kazuhiro; Jonnal, Ravi S.; Miller, Donald T.
2016-01-01
Cone photoreceptors undergo a daily cycle of renewal and shedding of membranous discs in their outer segments (OS), the portion responsible for light capture. These physiological processes are fundamental to maintaining photoreceptor health, and their dysfunction is associated with numerous retinal diseases. While both processes have been extensively studied in animal models and postmortem eyes, little is known about them in the living eye, in particular human. In this study, we report discovery of the optical signature associated with disc shedding using a method based on adaptive optics optical coherence tomography (AO-OCT) in conjunction with post-processing methods to track and monitor individual cone cells in 4D. The optical signature of disc shedding is characterized by an abrupt transient loss in the cone outer segment tip (COST) reflection followed by its return that is axially displaced anteriorly. Using this signature, we measured the temporal and spatial properties of shedding events in three normal subjects. Average duration of the shedding event was 8.8 ± 13.4 minutes, and average length loss of the OS was 2.1 μm (7.0% of OS length). Prevalence of cone shedding was highest in the morning (14.3%) followed by the afternoon (5.7%) and evening (4.0%), with load distributed across the imaged patch. To the best of our knowledge these are the first images of photoreceptor disc shedding in the living retina. PMID:27895995
Applications of optical manipulation in plant biology
NASA Astrophysics Data System (ADS)
Buer, Charles S.
Measuring small forces in biology is important for determining basic physiological parameters of a cell. The plant cell wall provides a primary defense and presents a barrier to research. Magnitudes of small forces are impossible to measure with mechanical transducers, glass needles, atomic force microscopy, or micropipet-based force transduction due to the cell wall. Therefore, a noninvasive method of breaching the plant cell wall to access the symplastic region of the cell is required. Laser light provides sub-micrometer positioning, particle manipulation without mechanical contact, and piconewton force determination. Consequently, the extension of laser microsurgery to expand an experimental tool for plant biology encompassed the overall objective. A protocol was developed for precisely inserting microscopic objects into the periplasmic region of plant callus cells using laser microsurgery. Ginkgo biloba and Agrobacterium rhizogenes were used as the model system for developing the optical tweezers and scalpel techniques. Better than 95% survival was achieved after plasmolyzing G. biloba cells, ablating a 2-4 μm hole through the cell wall using a pulsed UV laser beam, trapping and manipulating bacteria into the periplasmic region, and deplasmolyzing the cells. Optical trapping experiments implied a difference existed between the bacteria models. Determining the optical trapping efficiency of Agrobacterium rhizogenes and A. tumefaciens strains indicated the A. rhizogenes strain, ATCC 11325, was significantly less efficiently trapped than strains A4 and ATCC 15834 and the A. tumefaciens strain LBA4404. Differences were also found in capsule generation, growth media viscosity, and transmission electron microscopy negative staining implying that a difference in surface structure exists. Calcofluor fluorescence suggests the difference involves an exopolysaccharide. Callus cell plasmolysis revealed Hechtian strands interconnecting the plasma membrane and the cell wall. The spring tension of these strands was measured in normal and cold-hardened G. biloba and N. tabacum callus cells. There was little change in flexibility between the groups of cultured cells in either species studied. Microspheres were attached to Hechtian strands in normal cultured Nicotiana tabacum and the cells were deplasmolyzed and replasmolyzed to determine the fate of Hechtian strands. The microspheres either moved to the plasma membrane and adhered or moved to the cell wall and adhered. The attached microspheres occasionally moved independently on the same strand. Inserted microspheres provided a visual probe to follow physiological events within a plant cell.
Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A; Abookasis, David
2017-11-10
Heat stress (HS) is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological, and hematological changes. The goal of the present research was to detect variations in optical properties (absorption, reduced scattering, and refractive index coefficients) of mouse brain tissue during HS by using near-infrared (NIR) spatial light modulation. NIR spatial patterns with different spatial phases were used to differentiate the effects of tissue scattering from those of absorption. Decoupling optical scattering from absorption enabled the quantification of a tissue's chemical constituents (related to light absorption) and structural properties (related to light scattering). Technically, structured light patterns at low and high spatial frequencies of six wavelengths ranging between 690 and 970 nm were projected onto the mouse scalp surface while diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse scalp. Concurrently to pattern projection, brain temperature was measured with a thermal camera positioned slightly off angle from the mouse head while core body temperature was monitored by thermocouple probe. Data analysis demonstrated variations from baseline measurements in a battery of intrinsic brain properties following HS.
Optical diffraction for measurements of nano-mechanical bending
NASA Astrophysics Data System (ADS)
Hermans, Rodolfo I.; Dueck, Benjamin; Ndieyira, Joseph Wafula; McKendry, Rachel A.; Aeppli, Gabriel
2016-06-01
We explore and exploit diffraction effects that have been previously neglected when modelling optical measurement techniques for the bending of micro-mechanical transducers such as cantilevers for atomic force microscopy. The illumination of a cantilever edge causes an asymmetric diffraction pattern at the photo-detector affecting the calibration of the measured signal in the popular optical beam deflection technique (OBDT). The conditions that avoid such detection artefacts conflict with the use of smaller cantilevers. Embracing diffraction patterns as data yields a potent detection technique that decouples tilt and curvature and simultaneously relaxes the requirements on the illumination alignment and detector position through a measurable which is invariant to translation and rotation. We show analytical results, numerical simulations and physiologically relevant experimental data demonstrating the utility of the diffraction patterns. We offer experimental design guidelines and quantify possible sources of systematic error in OBDT. We demonstrate a new nanometre resolution detection method that can replace OBDT, where diffraction effects from finite sized or patterned cantilevers are exploited. Such effects are readily generalized to cantilever arrays, and allow transmission detection of mechanical curvature, enabling instrumentation with simpler geometry. We highlight the comparative advantages over OBDT by detecting molecular activity of antibiotic Vancomycin.
Magneto-optical nanoparticles for cyclic magnetomotive photoacoustic imaging
NASA Astrophysics Data System (ADS)
Arnal, Bastien; Yoon, Soon Joon; Li, Junwei; Gao, Xiaohu; O'Donnell, Matthew
2018-05-01
Photoacoustic imaging is a highly promising tool to visualize molecular events with deep tissue penetration. Like most other modalities, however, image contrast under in vivo conditions is far from optimal due to background signals from tissue. Using iron oxide-gold core-shell nanoparticles, we previously demonstrated that magnetomotive photoacoustic (mmPA) imaging can dramatically reduce the influence of background signals and produce high-contrast molecular images. Here we report two significant advances toward clinical translation of this technology. First, we introduce a new class of compact, uniform, magneto-optically coupled core-shell nanoparticle, prepared through localized copolymerization of polypyrrole (PPy) on an iron oxide nanoparticle surface. The resulting iron oxide-PPy nanoparticles solve the photo-instability and small-scale synthesis problems previously encountered by the gold coating approach, and extend the large optical absorption coefficient of the particles beyond 1000 nm in wavelength. In parallel, we have developed a new generation of mmPA imaging featuring cyclic magnetic motion and ultrasound speckle tracking, with an image capture frame rate several hundred times faster than the photoacoustic speckle tracking method demonstrated previously. These advances enable robust artifact elimination caused by physiologic motion and first application of the mmPA technology in vivo for sensitive tumor imaging.
Modulation and multiplexing in ultra-broadband photonic internet: Part II
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2011-06-01
In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.
Ultra-broadband photonic internet
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2011-06-01
In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.
Modulation and multiplexing in ultra-broadband photonic internet: Part I
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2011-06-01
In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.
Nanomaterials for in vivo imaging of mechanical forces and electrical fields
NASA Astrophysics Data System (ADS)
Mehlenbacher, Randy D.; Kolbl, Rea; Lay, Alice; Dionne, Jennifer A.
2018-02-01
Cellular signalling is governed in large part by mechanical forces and electromagnetic fields. Mechanical forces play a critical role in cell differentiation, tissue organization and diseases such as cancer and heart disease; electrical fields are essential for intercellular communication, muscle contraction, neural signalling and sensory perception. Therefore, quantifying a biological system's forces and fields is crucial for understanding physiology and disease pathology and for developing medical tools for repair and recovery. This Review highlights advances in sensing mechanical forces and electrical fields in vivo, focusing on optical probes. The emergence of biocompatible optical probes, such as genetically encoded voltage indicators, molecular rotors, fluorescent dyes, semiconducting nanoparticles, plasmonic nanoparticles and lanthanide-doped upconverting nanoparticles, offers exciting opportunities to push the limits of spatial and temporal resolution, stability, multi-modality and stimuli sensitivity in bioimaging. We further discuss the materials design principles behind these probes and compare them across various metrics to facilitate sensor selection. Finally, we examine which advances are necessary to fully unravel the role of mechanical forces and electrical fields in vivo, such as the ability to probe the vectorial nature of forces, the development of combined force and field sensors, and the design of efficient optical actuators.
Wang, Sheng; Chen, Xuanze; Chang, Lei; Ding, Miao; Xue, Ruiying; Duan, Haifeng; Sun, Yujie
2018-06-05
Fluorescent probes with multimodal and multilevel imaging capabilities are highly valuable as imaging with such probes not only can obtain new layers of information but also enable cross-validation of results under different experimental conditions. In recent years, the development of genetically encoded reversibly photoswitchable fluorescent proteins (RSFPs) has greatly promoted the application of various kinds of live-cell nanoscopy approaches, including reversible saturable optical fluorescence transitions (RESOLFT) and stochastic optical fluctuation imaging (SOFI). However, these two classes of live-cell nanoscopy approaches require different optical characteristics of specific RSFPs. In this work, we developed GMars-T, a monomeric bright green RSFP which can satisfy both RESOLFT and photochromic SOFI (pcSOFI) imaging in live cells. We further generated biosensor based on bimolecular fluorescence complementation (BiFC) of GMars-T which offers high specificity and sensitivity in detecting and visualizing various protein-protein interactions (PPIs) in different subcellular compartments under physiological conditions (e.g., 37 °C) in live mammalian cells. Thus, the newly developed GMars-T can serve as both structural imaging probe with multimodal super-resolution imaging capability and functional imaging probe for reporting PPIs with high specificity and sensitivity based on its derived biosensor.
Establishment of a sensor testbed at NIST for plant productivity monitoring
NASA Astrophysics Data System (ADS)
Allen, D. W.; Hutyra, L.; Reinmann, A.; Trlica, A.; Marrs, J.; Jones, T.; Whetstone, J. R.; Logan, B.; Reblin, J.
2017-12-01
Accurate assessments of biogenic carbon fluxes is challenging. Correlating optical signatures to plant activity allows for monitoring large regions. New methods, including solar-induced fluorescence (SIF), promise to provide more timely and accurate estimate of plant activity, but we are still developing a full understanding of the mechanistic leakage between plant assimilation of carbon and SIF. We have initiated a testbed to facilitate the evaluation of sensors and methods for remote monitoring of plant activity at the NIST headquarters. The test bed utilizes a forested area of mature trees in a mixed urban environment. A 1 hectare plot within the 26 hectare forest has been instrumented for ecophysiological measurements with an edge (100 m long) that is persistently monitored with multimodal optical sensors (SIF spectrometers, hyperspectral imagers, thermal infrared imaging, and lidar). This biological testbed has the advantage of direct access to the national scales maintained by NIST of measurements related to both the physical and optical measurements of interest. We offer a description of the test site, the sensors, and preliminary results from the first season of observations for ecological, physiological, and remote sensing based estimates of ecosystem productivity.
Metabolic microscopy of head and neck cancer organoids
NASA Astrophysics Data System (ADS)
Shah, Amy T.; Skala, Melissa C.
2016-03-01
Studies for head and neck cancer have primarily relied on cell lines or in vivo animal studies. However, a technique that combines the benefits of high-throughput in vitro studies with a complex, physiologically relevant microenvironment would be advantageous for understanding drug effects. Organoids provide a unique platform that fulfills these goals. Organoids are generated from excised and digested tumor tissue and are grown in culture. Fluorescence microscopy provides high-resolution images on a similar spatial scale as organoids. In particular, autofluorescence imaging of the metabolic cofactors NAD(P)H and FAD can provide insight into response to anti-cancer treatment. The optical redox ratio reflects relative amounts of NAD(P)H and FAD, and the fluorescence lifetime reflects enzyme activity of NAD(P)H and FAD. This study optimizes and characterizes the generation and culture of organoids grown from head and neck cancer tissue. Additionally, organoids were treated for 24 hours with a standard chemotherapy, and metabolic response in the organoids was measured using optical metabolic imaging. Ultimately, combining head and neck cancer organoids with optical metabolic imaging could be applied to test drug sensitivity for drug development studies as well as treatment planning for cancer patients.
NASA Astrophysics Data System (ADS)
Abookasis, David; Shochat, Ariel
2016-03-01
We present a comparative evaluation of five different neuroprotective drugs in the early phase following focal traumatic brain injury (TBI) in mouse intact head. The effectiveness of these drugs in terms of changes in brain tissue morphology and hemodynamic properties was experimentally evaluated through analysis of the optical absorption coefficient and spectral reduced scattering parameters in the range of 650-1000 nm. Anesthetized male mice (n=50 and n=10 control) were subjected to weight drop model mimics real life focal head trauma. Monitoring the effect of injury and neuroprotective drugs was obtained by using a diffuse reflectance spectroscopy system utilizing independent source-detector separation and location. Result indicates that administration of minocycline improve hemodynamic and reduced the level of tissue injury at an early phase post-injury while hypertonic saline treatment decrease brain water content. These findings highlight the heterogeneity between neuroprotective drugs and the ongoing controversy among researchers regarding which drug therapy is preferred for treatment of TBI. On the other hand, our results show the capability of optical spectroscopy technique to noninvasively study brain function following injury and drug therapy.
Nocturnal vision and landmark orientation in a tropical halictid bee.
Warrant, Eric J; Kelber, Almut; Gislén, Anna; Greiner, Birgit; Ribi, Willi; Wcislo, William T
2004-08-10
Some bees and wasps have evolved nocturnal behavior, presumably to exploit night-flowering plants or avoid predators. Like their day-active relatives, they have apposition compound eyes, a design usually found in diurnal insects. The insensitive optics of apposition eyes are not well suited for nocturnal vision. How well then do nocturnal bees and wasps see? What optical and neural adaptations have they evolved for nocturnal vision? We studied female tropical nocturnal sweat bees (Megalopta genalis) and discovered that they are able to learn landmarks around their nest entrance prior to nocturnal foraging trips and to use them to locate the nest upon return. The morphology and optics of the eye, and the physiological properties of the photoreceptors, have evolved to give Megalopta's eyes almost 30 times greater sensitivity to light than the eyes of diurnal worker honeybees, but this alone does not explain their nocturnal visual behavior. This implies that sensitivity is improved by a strategy of photon summation in time and in space, the latter of which requires the presence of specialized cells that laterally connect ommatidia into groups. First-order interneurons, with significantly wider lateral branching than those found in diurnal bees, have been identified in the first optic ganglion (the lamina ganglionaris) of Megalopta's optic lobe. We believe that these cells have the potential to mediate spatial summation. Despite the scarcity of photons, Megalopta is able to visually orient to landmarks at night in a dark forest understory, an ability permitted by unusually sensitive apposition eyes and neural photon summation.
Single molecule RNA folding studied with optical trapping
NASA Astrophysics Data System (ADS)
Vieregg, Jeffrey Robert
The RNA folding problem (predicting the equilibrium structure and folding pathway of an RNA molecule from its sequence) is one of the classic problems of biophysics. Recent discoveries of many new functions for RNA have increased its importance, and new instrumental techniques have provided new ways to characterize molecular behavior. In particular, optical trapping (optical tweezers) allows controlled mechanical force to be applied to single RNA molecules while their end-to-end extension is monitored in real time. This enables characterization of RNA folding dynamics at a level unreachable by traditional bulk methods. Furthermore, recent advances in statistical mechanics make it possible to recover equilibrium quantities such as free energy from reactions which occur away from equilibrium. This dissertation describes the application of optical trapping and non-equilibrium statistical mechanics to quantitatively characterize folding of RNA secondary structures. By measuring the folding free energy of several specially designed hairpins in solutions containing various amounts of sodium and potassium, we were able to determine that RNA secondary structure thermodynamics depends not only on monovalent cation concentration but also surprisingly, on species. We also investigated the temperature dependence of hairpin folding thermodynamics and kinetics, which provided a direct measurement of enthalpy and entropy for RNA folding at physiological temperatures. We found that the folding pathway was quite sensitive to both salt and temperature, as measured by the folding success rate of a biologically important hairpin from the HIV-1 viral genome. Finally, I discuss modeling of force-induced RNA folding and unfolding, as well as a series of efforts which have dramatically improved the performance of our optical trapping instrument.
Pavan, Andrea; Marotti, Rosilari Bellacosa; Mather, George
2013-01-01
Motion and form encoding are closely coupled in the visual system. A number of physiological studies have shown that neurons in the striate and extrastriate cortex (e.g., V1 and MT) are selective for motion direction parallel to their preferred orientation, but some neurons also respond to motion orthogonal to their preferred spatial orientation. Recent psychophysical research (Mather, Pavan, Bellacosa, & Casco, 2012) has demonstrated that the strength of adaptation to two fields of transparently moving dots is modulated by simultaneously presented orientation signals, suggesting that the interaction occurs at the level of motion integrating receptive fields in the extrastriate cortex. In the present psychophysical study, we investigated whether motion-form interactions take place at a higher level of neural processing where optic flow components are extracted. In Experiment 1, we measured the duration of the motion aftereffect (MAE) generated by contracting or expanding dot fields in the presence of either radial (parallel) or concentric (orthogonal) counterphase pedestal gratings. To tap the stage at which optic flow is extracted, we measured the duration of the phantom MAE (Weisstein, Maguire, & Berbaum, 1977) in which we adapted and tested different parts of the visual field, with orientation signals presented either in the adapting (Experiment 2) or nonadapting (Experiments 3 and 4) sectors. Overall, the results showed that motion adaptation is suppressed most by orientation signals orthogonal to optic flow direction, suggesting that motion-form interactions also take place at the global motion level where optic flow is extracted. PMID:23729767
Yu, Songlin; Li, Dachao; Chong, Hao; Sun, Changyue; Yu, Haixia; Xu, Kexin
2013-01-01
Because mid-infrared (mid-IR) spectroscopy is not a promising method to noninvasively measure glucose in vivo, a method for minimally invasive high-precision glucose determination in vivo by mid-IR laser spectroscopy combined with a tunable laser source and small fiber-optic attenuated total reflection (ATR) sensor is introduced. The potential of this method was evaluated in vitro. This research presents a mid-infrared tunable laser with a broad emission spectrum band of 9.19 to 9.77μm(1024~1088 cm−1) and proposes a method to control and stabilize the laser emission wavelength and power. Moreover, several fiber-optic ATR sensors were fabricated and investigated to determine glucose in combination with the tunable laser source, and the effective sensing optical length of these sensors was determined for the first time. In addition, the sensitivity of this system was four times that of a Fourier transform infrared (FT-IR) spectrometer. The noise-equivalent concentration (NEC) of this laser measurement system was as low as 3.8 mg/dL, which is among the most precise glucose measurements using mid-infrared spectroscopy. Furthermore, a partial least-squares regression and Clarke error grid were used to quantify the predictability and evaluate the prediction accuracy of glucose concentration in the range of 5 to 500 mg/dL (physiologically relevant range: 30~400 mg/dL). The experimental results were clinically acceptable. The high sensitivity, tunable laser source, low NEC and small fiber-optic ATR sensor demonstrate an encouraging step in the work towards precisely monitoring glucose levels in vivo. PMID:24466493
Hemphill, Ashton S; Shen, Yuecheng; Liu, Yan; Wang, Lihong V
2017-11-27
In biological applications, optical focusing is limited by the diffusion of light, which prevents focusing at depths greater than ∼1 mm in soft tissue. Wavefront shaping extends the depth by compensating for phase distortions induced by scattering and thus allows for focusing light through biological tissue beyond the optical diffusion limit by using constructive interference. However, due to physiological motion, light scattering in tissue is deterministic only within a brief speckle correlation time. In in vivo tissue, this speckle correlation time is on the order of milliseconds, and so the wavefront must be optimized within this brief period. The speed of digital wavefront shaping has typically been limited by the relatively long time required to measure and display the optimal phase pattern. This limitation stems from the low speeds of cameras, data transfer and processing, and spatial light modulators. While binary-phase modulation requiring only two images for the phase measurement has recently been reported, most techniques require at least three frames for the full-phase measurement. Here, we present a full-phase digital optical phase conjugation method based on off-axis holography for single-shot optical focusing through scattering media. By using off-axis holography in conjunction with graphics processing unit based processing, we take advantage of the single-shot full-phase measurement while using parallel computation to quickly reconstruct the phase map. With this system, we can focus light through scattering media with a system latency of approximately 9 ms, on the order of the in vivo speckle correlation time.
Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells
Kelbauskas, Laimonas; Shetty, Rishabh; Cao, Bin; Wang, Kuo-Chen; Smith, Dean; Wang, Hong; Chao, Shi-Hui; Gangaraju, Sandhya; Ashcroft, Brian; Kritzer, Margaret; Glenn, Honor; Johnson, Roger H.; Meldrum, Deirdre R.
2017-01-01
Quantitative three-dimensional (3D) computed tomography (CT) imaging of living single cells enables orientation-independent morphometric analysis of the intricacies of cellular physiology. Since its invention, x-ray CT has become indispensable in the clinic for diagnostic and prognostic purposes due to its quantitative absorption-based imaging in true 3D that allows objects of interest to be viewed and measured from any orientation. However, x-ray CT has not been useful at the level of single cells because there is insufficient contrast to form an image. Recently, optical CT has been developed successfully for fixed cells, but this technology called Cell-CT is incompatible with live-cell imaging due to the use of stains, such as hematoxylin, that are not compatible with cell viability. We present a novel development of optical CT for quantitative, multispectral functional 4D (three spatial + one spectral dimension) imaging of living single cells. The method applied to immune system cells offers truly isotropic 3D spatial resolution and enables time-resolved imaging studies of cells suspended in aqueous medium. Using live-cell optical CT, we found a heterogeneous response to mitochondrial fission inhibition in mouse macrophages and differential basal remodeling of small (0.1 to 1 fl) and large (1 to 20 fl) nuclear and mitochondrial structures on a 20- to 30-s time scale in human myelogenous leukemia cells. Because of its robust 3D measurement capabilities, live-cell optical CT represents a powerful new tool in the biomedical research field. PMID:29226240
NASA Astrophysics Data System (ADS)
Hemphill, Ashton S.; Shen, Yuecheng; Liu, Yan; Wang, Lihong V.
2017-11-01
In biological applications, optical focusing is limited by the diffusion of light, which prevents focusing at depths greater than ˜1 mm in soft tissue. Wavefront shaping extends the depth by compensating for phase distortions induced by scattering and thus allows for focusing light through biological tissue beyond the optical diffusion limit by using constructive interference. However, due to physiological motion, light scattering in tissue is deterministic only within a brief speckle correlation time. In in vivo tissue, this speckle correlation time is on the order of milliseconds, and so the wavefront must be optimized within this brief period. The speed of digital wavefront shaping has typically been limited by the relatively long time required to measure and display the optimal phase pattern. This limitation stems from the low speeds of cameras, data transfer and processing, and spatial light modulators. While binary-phase modulation requiring only two images for the phase measurement has recently been reported, most techniques require at least three frames for the full-phase measurement. Here, we present a full-phase digital optical phase conjugation method based on off-axis holography for single-shot optical focusing through scattering media. By using off-axis holography in conjunction with graphics processing unit based processing, we take advantage of the single-shot full-phase measurement while using parallel computation to quickly reconstruct the phase map. With this system, we can focus light through scattering media with a system latency of approximately 9 ms, on the order of the in vivo speckle correlation time.
NASA Astrophysics Data System (ADS)
Huemmrich, K. F.; Middleton, E.; Corp, L. A.; Campbell, P. K.; Kustas, W. P.
2014-12-01
Optical sampling of spectral reflectance and solar induced fluorescence provide information on the physiological status of vegetation that can be used to infer stress responses and estimates of production. Multiple repeated observations are required to observe the effects of changing environmental conditions on vegetation. This study examines the use of optical signals to determine inputs to a light use efficiency (LUE) model describing productivity of a cornfield where repeated observations of carbon flux, spectral reflectance and fluorescence were collected. Data were collected at the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) fields (39.03°N, 76.85°W) at USDA Beltsville Agricultural Research Center. Agricultural Research Service researchers measured CO2 fluxes using eddy covariance methods throughout the growing season. Optical measurements were made from the nearby tower supporting the NASA FUSION sensors. The sensor system consists of two dual channel, upward and downward looking, spectrometers used to simultaneously collect high spectral resolution measurements of reflected and fluoresced light from vegetation canopies. Estimates of chlorophyll fluorescence, combined with measures of vegetation pigment content and the Photosynthetic Reflectance Index (PRI) derived from the spectral reflectance are compared with CO2 fluxes over diurnal periods for multiple days. PRI detects changes in Xanthophyll cycle pigments using reflectance at 531 nm compared to a reference band at 570 nm. The relationships among the different optical measurements indicate that they are providing different types of information on the vegetation and that combinations of these measurements provide improved retrievals of CO2 fluxes than any index alone.
NASA Astrophysics Data System (ADS)
Huemmrich, K. F.; Corp, L.; Campbell, P. K.; Cook, B. D.; Middleton, E.; Cheng, Y.; Zhang, Q.; Russ, A.; Kustas, W. P.
2013-12-01
Optical sampling of spectral reflectance and solar induced fluorescence provide information on the physiological status of vegetation that can be used to infer stress responses and estimates of production. Multiple repeated observations can observe the effects of changing environmental conditions on vegetation. This study examines the use of optical signals to determine inputs to a light use efficiency (LUE) model describing productivity of a cornfield where repeated observations of carbon flux, spectral reflectance and fluorescence were collected. Data were collected at the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) fields (39.03°N, 76.85°W) at USDA Beltsville Agricultural Research Center. Agricultural Research Service researchers measured CO2 fluxes using eddy covariance methods throughout the growing season. Optical measurements were made from the nearby tower supporting the NASA FUSION sensors. This sensor system consists of two dual channel, upward and downward looking, spectrometers used to simultaneously collect high spectral resolution measurements of reflected and fluoresced light from vegetation canopies. Estimates of chlorophyll fluorescence, combined with measures of vegetation pigment content and the Photosynthetic Reflectance Index (PRI) derived from the spectral reflectance are compared with CO2 fluxes over diurnal periods for multiple days. PRI detects changes in Xanthophyll cycle pigments using reflectance at 531 nm compared to a reference band at 570 nm. The relationships among the different optical measurements indicate that they are providing different types of information on the vegetation and that combinations of these measurements provide improved retrievals of CO2 fluxes than any index alone.
Optical Sensors for Detection of Amino Acids.
Pettiwala, Aafrin M; Singh, Prabhat K
2017-11-06
Amino acids are crucially involved in a myriad of biological processes. Any aberrant changes in physiological level of amino acids often manifest in common metabolic disorders, serious neurological conditions and cardiovascular diseases. Thus, devising methods for detection of trace amounts of amino acids becomes highly elemental to their efficient clinical diagnosis. Recently, the domain of developing optical sensors for detection of amino acids has witnessed significant activity which is the focus of the current review article. We undertook a detailed search of the peer-reviewed literature that primarily deals with optical sensors for amino acids and focuses on the use of different type of materials as a sensing platform. Ninety-five papers have been included in the review, majority of which deals with optical sensors. We attempt to systematically classify these contributions based on applications of various chemical and biological scaffolds such as polymers, supramolecular assemblies, nanoparticles, DNA, heparin etc. for the sensing of amino acids. This review identifies that supramolecular assemblies and nanomaterial continue to be commonly used materials to devise sensors for amino acids followed by surfactant assemblies. The broad implications of amino acids in human health and diagnosis have stirred a lot of interest to develop optimized optical detection systems for amino acids in recent years, using different materials based on chemical and biological scaffolds. We have also attempted to highlight the merits and demerits of some of the noteworthy sensor systems to instigate further efforts for constructing amino acids sensor based on unconventional concepts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Halámek, Jan; Zhou, Jian; Halámková, Lenka; Bocharova, Vera; Privman, Vladimir; Wang, Joseph; Katz, Evgeny
2011-11-15
Biomolecular logic systems processing biochemical input signals and producing "digital" outputs in the form of YES/NO were developed for analysis of physiological conditions characteristic of liver injury, soft tissue injury, and abdominal trauma. Injury biomarkers were used as input signals for activating the logic systems. Their normal physiological concentrations were defined as logic-0 level, while their pathologically elevated concentrations were defined as logic-1 values. Since the input concentrations applied as logic 0 and 1 values were not sufficiently different, the output signals being at low and high values (0, 1 outputs) were separated with a short gap making their discrimination difficult. Coupled enzymatic reactions functioning as a biomolecular signal processing system with a built-in filter property were developed. The filter process involves a partial back-conversion of the optical-output-signal-yielding product, but only at its low concentrations, thus allowing the proper discrimination between 0 and 1 output values.
Hung, San-Shan; Chang, Chih-Yuan; Hsu, Cheng-Jui; Chen, Shih-Wei
2012-01-01
A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building's envelope concrete material; therefore, the physiological signals (temperature and humidity) within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics) is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC) combined with temperature and humidity sensors (T/H sensors) for the design of a smart temperature and humidity information material (STHIM) that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF) to the Building Physiology Information System (BPIS). This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments.
NASA Astrophysics Data System (ADS)
Xu, Lizhi; Gutbrod, Sarah R.; Bonifas, Andrew P.; Su, Yewang; Sulkin, Matthew S.; Lu, Nanshu; Chung, Hyun-Joong; Jang, Kyung-In; Liu, Zhuangjian; Ying, Ming; Lu, Chi; Webb, R. Chad; Kim, Jong-Seon; Laughner, Jacob I.; Cheng, Huanyu; Liu, Yuhao; Ameen, Abid; Jeong, Jae-Woong; Kim, Gwang-Tae; Huang, Yonggang; Efimov, Igor R.; Rogers, John A.
2014-02-01
Means for high-density multiparametric physiological mapping and stimulation are critically important in both basic and clinical cardiology. Current conformal electronic systems are essentially 2D sheets, which cannot cover the full epicardial surface or maintain reliable contact for chronic use without sutures or adhesives. Here we create 3D elastic membranes shaped precisely to match the epicardium of the heart via the use of 3D printing, as a platform for deformable arrays of multifunctional sensors, electronic and optoelectronic components. Such integumentary devices completely envelop the heart, in a form-fitting manner, and possess inherent elasticity, providing a mechanically stable biotic/abiotic interface during normal cardiac cycles. Component examples range from actuators for electrical, thermal and optical stimulation, to sensors for pH, temperature and mechanical strain. The semiconductor materials include silicon, gallium arsenide and gallium nitride, co-integrated with metals, metal oxides and polymers, to provide these and other operational capabilities. Ex vivo physiological experiments demonstrate various functions and methodological possibilities for cardiac research and therapy.
Noninvasive optical monitoring multiple physiological parameters response to cytokine storm
NASA Astrophysics Data System (ADS)
Li, Zebin; Li, Ting
2018-02-01
Cancer and other disease originated by immune or genetic problems have become a main cause of death. Gene/cell therapy is a highlighted potential method for the treatment of these diseases. However, during the treatment, it always causes cytokine storm, which probably trigger acute respiratory distress syndrome and multiple organ failure. Here we developed a point-of-care device for noninvasive monitoring cytokine storm induced multiple physiological parameters simultaneously. Oxy-hemoglobin, deoxy-hemoglobin, water concentration and deep-tissue/tumor temperature variations were simultaneously measured by extended near infrared spectroscopy. Detection algorithms of symptoms such as shock, edema, deep-tissue fever and tissue fibrosis were developed and included. Based on these measurements, modeling of patient tolerance and cytokine storm intensity were carried out. This custom device was tested on patients experiencing cytokine storm in intensive care unit. The preliminary data indicated the potential of our device in popular and milestone gene/cell therapy, especially, chimeric antigen receptor T-cell immunotherapy (CAR-T).
Hung, San-Shan; Chang, Chih-Yuan; Hsu, Cheng-Jui; Chen, Shih-Wei
2012-01-01
A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building's envelope concrete material; therefore, the physiological signals (temperature and humidity) within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics) is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC) combined with temperature and humidity sensors (T/H sensors) for the design of a smart temperature and humidity information material (STHIM) that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF) to the Building Physiology Information System (BPIS). This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments. PMID:23012529
Dias, Diego T; Ushida, Michele; Sousa, Marina C; Dorairaj, Syril; Biteli, Luis G; Leite, Mauro T; Paranhos, Augusto; Prata, Tiago S
2016-01-01
Among all glaucoma suspects, eyes with optic nerve head features suspicious or suggestive of early glaucoma are probably those that offer the greatest challenge for clinicians. In contrast with the robust longitudinal data published on ocular hypertension, there is no specific management guideline for these patients. Therefore, evaluating eyes with suspicious optic disc appearance and normal intraocular pressure (IOP), we sought to investigate potential differences in clinical and epidemiological characteristics to differentiate those with normal-tension glaucoma (NTG) from those with presumed large physiological optic disc cups (pLPC). In this observational case-control study, we consecutively enrolled individuals with pLPC and NTG. All eyes had vertical cup-to-disc ratio (VCDR)≥0.6 and untreated IOP<21 mmHg. Glaucomatous eyes had reproducible visual field defects. Eyes with pLPC required normal visual fields and ≥30 months of follow-up with no evidence of glaucomatous neuropathy. Clinical and epidemiological parameters were compared between groups. Eighty-four individuals with pLPC and 40 NTG patients were included. Regarding our main results, NTG patients were significantly older and with a higher prevalence of Japanese descendants (p<0.01). Not only did pLPC eyes have smaller mean VCDR, but also larger optic discs (p≤0.04). There were no significant differences for gender, central corneal thickness, and spherical equivalent (p≥0.38). Significant odds ratios (OR) were found for race (OR = 2.42; for Japanese ancestry), age (OR = 1.05), VCDR (OR = 5.03), and disc size (OR = 0.04; p≤0.04). In conclusion, in patients with suspicious optic disc and normal IOP, those with older age, Japanese ancestry, smaller optic discs, and larger VCDR are more likely to have NTG, and therefore, deserve deeper investigation and closer monitoring.
Entz, Michael; King, D Ryan; Poelzing, Steven
2017-12-01
With the sudden increase in affordable manufacturing technologies, the relationship between experimentalists and the designing process for laboratory equipment is rapidly changing. While experimentalists are still dependent on engineers and manufacturers for precision electrical, mechanical, and optical equipment, it has become a realistic option for in house manufacturing of other laboratory equipment with less precise design requirements. This is possible due to decreasing costs and increasing functionality of desktop three-dimensional (3-D) printers and 3-D design software. With traditional manufacturing methods, iterative design processes are expensive and time consuming, and making more than one copy of a custom piece of equipment is prohibitive. Here, we provide an overview to design a tissue bath and stabilizer for a customizable, suspended, whole heart optical mapping apparatus that can be produced significantly faster and less expensive than conventional manufacturing techniques. This was accomplished through a series of design steps to prevent fluid leakage in the areas where the optical imaging glass was attached to the 3-D printed bath. A combination of an acetone dip along with adhesive was found to create a water tight bath. Optical mapping was used to quantify cardiac conduction velocity and action potential duration to compare 3-D printed baths to a bath that was designed and manufactured in a machine shop. Importantly, the manufacturing method did not significantly affect conduction, action potential duration, or contraction, suggesting that 3-D printed baths are equally effective for optical mapping experiments. NEW & NOTEWORTHY This article details three-dimensional printable equipment for use in suspended whole heart optical mapping experiments. This equipment is less expensive than conventional manufactured equipment as well as easily customizable to the experimentalist. The baths can be waterproofed using only a three-dimensional printer, acetone, a glass microscope slide, c-clamps, and adhesive. Copyright © 2017 the American Physiological Society.
Optical Electrophysiology in the Developing Heart.
Thomas, Kandace; Goudy, Julie; Henley, Trevor; Bressan, Michael
2018-05-11
The heart is the first organ system to form in the embryo. Over the course of development, cardiomyocytes with differing morphogenetic, molecular, and physiological characteristics are specified and differentiate and integrate with one another to assemble a coordinated electromechanical pumping system that can function independently of any external stimulus. As congenital malformation of the heart presents the leading class of birth defects seen in humans, the molecular genetics of heart development have garnered much attention over the last half century. However, understanding how genetic perturbations manifest at the level of the individual cell function remains challenging to investigate. Some of the barriers that have limited our capacity to construct high-resolution, comprehensive models of cardiac physiological maturation are rapidly being removed by advancements in the reagents and instrumentation available for high-speed live imaging. In this review, we briefly introduce the history of imaging approaches for assessing cardiac development, describe some of the reagents and tools required to perform live imaging in the developing heart, and discuss how the combination of modern imaging modalities and physiological probes can be used to scale from subcellular to whole-organ analysis. Through these types of imaging approaches, critical insights into the processes of cardiac physiological development can be directly examined in real-time. Moving forward, the synthesis of modern molecular biology and imaging approaches will open novel avenues to investigate the mechanisms of cardiomyocyte maturation, providing insight into the etiology of congenital heart defects, as well as serving to direct approaches for designing stem-cell or regenerative medicine protocols for clinical application.
Detection of low-amplitude in vivo intrinsic signals from an optical imager of retinal function
NASA Astrophysics Data System (ADS)
Barriga, Eduardo S.; T'so, Dan; Pattichis, Marios; Kwon, Young; Kardon, Randy; Abramoff, Michael; Soliz, Peter
2006-02-01
In the early stages of some retinal diseases, such as glaucoma, loss of retinal activity may be difficult to detect with today's clinical instruments. Many of today's instruments focus on detecting changes in anatomical structures, such as the nerve fiber layer. Our device, which is based on a modified fundus camera, seeks to detect changes in optical signals that reflect functional changes in the retina. The functional imager uses a patterned stimulus at wavelength of 535nm. An intrinsic functional signal is collected at a near infrared wavelength. Measured changes in reflectance in response to the visual stimulus are on the order of 0.1% to 1% of the total reflected intensity level, which makes the functional signal difficult to detect by standard methods because it is masked by other physiological signals and by imaging system noise. In this paper, we analyze the video sequences from a set of 60 experiments with different patterned stimuli from cats. Using a set of statistical techniques known as Independent Component Analysis (ICA), we estimate the signals present in the videos. Through controlled simulation experiments, we quantify the limits of signal strength in order to detect the physiological signal of interest. The results of the analysis show that, in principle, signal levels of 0.1% (-30dB) can be detected. The study found that in 86% of the animal experiments the patterned stimuli effects on the retina can be detected and extracted. The analysis of the different responses extracted from the videos can give an insight of the functional processes present during the stimulation of the retina.
Aqueous synthesis of highly luminescent AgInS2-ZnS quantum dots and their biological applications
NASA Astrophysics Data System (ADS)
Regulacio, Michelle D.; Win, Khin Yin; Lo, Seong Loong; Zhang, Shuang-Yuan; Zhang, Xinhai; Wang, Shu; Han, Ming-Yong; Zheng, Yuangang
2013-02-01
Highly emissive and air-stable AgInS2-ZnS quantum dots (ZAIS QDs) with quantum yields of up to 20% have been successfully synthesized directly in aqueous media in the presence of polyacrylic acid (PAA) and mercaptoacetic acid (MAA) as stabilizing and reactivity-controlling agents. The as-prepared water-dispersible ZAIS QDs are around 3 nm in size, possess the tetragonal chalcopyrite crystal structure, and exhibit long fluorescence lifetimes (>100 ns). In addition, these ZAIS QDs are found to exhibit excellent optical and colloidal stability in physiologically relevant pH values as well as very low cytotoxicity, which render them particularly suitable for biological applications. Their potential use in biological labelling of baculoviral vectors is demonstrated.Highly emissive and air-stable AgInS2-ZnS quantum dots (ZAIS QDs) with quantum yields of up to 20% have been successfully synthesized directly in aqueous media in the presence of polyacrylic acid (PAA) and mercaptoacetic acid (MAA) as stabilizing and reactivity-controlling agents. The as-prepared water-dispersible ZAIS QDs are around 3 nm in size, possess the tetragonal chalcopyrite crystal structure, and exhibit long fluorescence lifetimes (>100 ns). In addition, these ZAIS QDs are found to exhibit excellent optical and colloidal stability in physiologically relevant pH values as well as very low cytotoxicity, which render them particularly suitable for biological applications. Their potential use in biological labelling of baculoviral vectors is demonstrated. Electronic supplementary information (ESI) available: Quantum yields, EDX spectrum and photoluminescence decay curves. See DOI: 10.1039/c3nr34159c
Signal percolation through plants and the shape of the calcium signature.
Plieth, Christoph
2010-04-01
Plants respond to almost any kind of external stimulus with transients in their cytoplasmic free calcium concentration ([Ca(2+)](c)). A huge variety of kinetics recorded by optical techniques has been reported in the past. This variety has been credited the specificity needed to explain how information about incoming stimuli is evaluated by the organism and turned into the right physiological responses which provide advantages for survival and reproduction. A physiological response often takes place away from the site of stimulation. This requires cell-to-cell communication. Hence, responding cells are not necessarily directly stimulated but rather receive an indirect stimulus via cell-to-cell communication. It appears unlikely that the '[Ca(2+)](c) signature' in the primarily stimulated cell is conveyed over long distances via cell-to-cell communication from the 'receptor cells' to the 'effector cells'. Here, a novel aspect is highlighted to explain the variety of [Ca(2+)] kinetics seen by integrating methods of [Ca(2+)](c) recording. Plants can generally be seen as cellular automata with specific morphology and capable for cell-to-cell communication. Just a few rules are needed to demonstrate how waves of [Ca(2+)](c)-increases percolate through the organism and thereby deliver a broad variety of 'signatures'. Modelling intercellular signalling may be a possible way to find explanations for different kinds of signal transmission, signal amplification, wave formation, oscillations and stimulus-response coupling. The basic examples presented here show that care has to be taken when interpreting cellular '[Ca(2+)](c) signatures' recorded by optical techniques which integrate over a big number of cells or even whole plants.
NASA Astrophysics Data System (ADS)
Kutai-Asis, Hofit; Barbiro-Michaely, Efrat; Deutsch, Assaf; Mayevsky, Avraham
2006-02-01
In our previous publication (Mayevsky et al SPIE 5326: 98-105, 2004) we described a multiparametric fiber optic system enabling the evaluation of 4 physiological parameters as indicators of tissue vitality. Since the correlation between the various parameters may differ in various pathophysiological conditions there is a need for an objective quantitative index that will integrate the relative changes measured in real time by the multiparametric monitoring system into a single number-vitality index. Such an approach to calculate tissue vitality index is critical for the possibility to use such an instrument in clinical environments. In the current presentation we are reporting our preliminary results indicating that calculation of an objective tissue vitality index is feasible. We used an intuitive empirical approach based on the comparison between the calculated index by the computer and the subjective evaluation made by an expert in the field of physiological monitoring. We used the in vivo brain of rats as an animal model in our current studies. The rats were exposed to anoxia, ischemia and cortical spreading depression and the responses were recorded in real time. At the end of the monitoring session the results were analyzed and the tissue vitality index was calculated offline. Mitochondrial NADH, tissue blood flow and oxy-hemoglobin were used to calculate the vitality index of the brain in vivo, where each parameter received a different weight, in each experiment type based on their significance. It was found that the mitochondrial NADH response was the main factor affected the calculated vitality index.
Gao, Tina Y; Anstice, Nicola; Babu, Raiju J; Black, Joanna M; Bobier, William R; Dai, Shuan; Guo, Cindy X; Hess, Robert F; Jenkins, Michelle; Jiang, Yannan; Kearns, Lisa; Kowal, Lionel; Lam, Carly S Y; Pang, Peter C K; Parag, Varsha; South, Jayshree; Staffieri, Sandra Elfride; Wadham, Angela; Walker, Natalie; Thompson, Benjamin
2018-03-01
Optical treatment alone can improve visual acuity (VA) in children with amblyopia, thus clinical trials investigating additional amblyopia therapies (such as patching or videogames) for children require a preceding optical treatment phase. Emerging therapies for adult patients are entering clinical trials. It is unknown whether optical treatment is effective for adults with amblyopia and whether an optical correction phase is required for trials involving adults. We examined participants who underwent optical treatment in the Binocular Treatment for Amblyopia using Videogames (BRAVO) clinical trial (ANZCTR ID: ACTRN12613001004752). Participants were recruited in three age groups (7 to 12, 13 to 17, or ≥18 years), and had unilateral amblyopia due to anisometropia and/or strabismus, with amblyopic eye VA of 0.30-1.00 logMAR (6/12 to 6/60, 20/40 to 20/200). Corrective lenses were prescribed based on cycloplegic refraction to fully correct any anisometropia. VA was assessed using the electronic visual acuity testing algorithm (e-ETDRS) test and near stereoacuity was assessed using the Randot Preschool Test. Participants were assessed every four weeks up to 16 weeks, until either VA was stable or until amblyopic eye VA improved to better than 0.30 logMAR, rendering the participant ineligible for the trial. Eighty participants (mean age 24.6 years, range 7.6-55.5 years) completed four to 16 weeks of optical treatment. A small but statistically significant mean improvement in amblyopic eye VA of 0.05 logMAR was observed (S.D. 0.08 logMAR; paired t-test p < 0.0001). Twenty-five participants (31%) improved by ≥1 logMAR line and of these, seven (9%) improved by ≥2 logMAR lines. Stereoacuity improved in 15 participants (19%). Visual improvements were not associated with age, presence of strabismus, or prior occlusion treatment. Two adult participants withdrew due to intolerance to anisometropic correction. Sixteen out of 80 participants (20%) achieved better than 0.30 logMAR VA in the amblyopic eye after optical treatment. Nine of these participants attended additional follow-up and four (44%) showed further VA improvements. Improvements from optical treatment resulted in one-fifth of participants becoming ineligible for the main clinical trial. Studies investigating additional amblyopia therapies must include an appropriate optical treatment only phase and/or parallel treatment group regardless of patient age. Optical treatment of amblyopia in adult patients warrants further investigation. © 2018 The Authors Ophthalmic & Physiological Optics © 2018 The College of Optometrists.
Stevenson, Tyler J; Small, Thomas W; Ball, Gregory F; Moore, Ignacio T
2012-08-01
Seasonal breeding in temperate zone vertebrates is characterised by pronounced variation in both central and peripheral reproductive physiology as well as behaviour. In contrast, many tropical species have a comparatively longer and less of a seasonal pattern of breeding than their temperate zone counterparts. These extended, more "flexible" reproductive periods may be associate with a lesser degree of annual variation in reproductive physiology. Here we investigated variation in the neuroendocrine control of reproduction in relation to the changes in the neural song control system in a tropical breeding songbird the rufous-collared sparrows (Zonotrichia capensis). Using in situ hybridization, we show that the optical density of GnRH1 mRNA expression is relatively constant across pre-breeding and breeding states. However, males were found to have significantly greater expression compared to females regardless of breeding state. Both males and females showed marked variation in measures of peripheral reproductive physiology with greater gonadal volumes and concentrations of sex steroids in the blood (i.e. testosterone in males; estrogen in females) during the breeding season as compared to the pre-breeding season. These findings suggest that the environmental cues regulating breeding in a tropical breeding bird ultimately exert their effects on physiology at the level of the median eminence and regulate the release of GnRH1. In addition, histological analysis of the song control system HVC, RA and Area X revealed that breeding males had significantly larger volumes of these brain nuclei as compared to non-breeding males, breeding females, and non-breeding females. Females did not exhibit a significant difference in the size of song control regions across breeding states. Together, these data show a marked sex difference in the extent to which there is breeding-associated variation in reproductive physiology and brain plasticity that is dependent on the reproductive state in a tropical breeding songbird. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kant, Ravi; Tabassum, Rana; Gupta, Banshi D.
2017-05-01
Caffeine is the most popular psychoactive drug consumed in the world for improving alertness and enhancing wakefulness. However, caffeine consumption beyond limits can result in lot of physiological complications in human beings. In this work, we report a novel detection scheme for caffeine integrating nanohybrid membranes of reduced graphene oxide (rGO) in chitosan modified silica sol gel (rGO: chitosan: silica sol gel) with fiber optic surface plasmon resonance. The chemically synthesized nanohybrid membrane forming the sensing route has been dip coated over silver coated unclad central portion of an optical fiber. The sensor works on the mechanism of modification of dielectric function of sensing layer on exposure to analyte solution which is manifested in terms of red shift in resonance wavelength. The concentration of rGO in polymer network of chitosan and silica sol gel and dipping time of the silver coated probe in the solution of nanohybrid membrane have been optimized to extricate the supreme performance of the sensor. The optimized sensing probe possesses a reasonably good sensitivity and follows an exponentially declining trend within the entire investigating range of caffeine concentration. The sensor boasts of an unparalleled limit of detection value of 1.994 nM and works well in concentration range of 0-500 nM with a response time of 16 s. The impeccable sensor methodology adopted in this work combining fiber optic SPR with nanotechnology furnishes a novel perspective for caffeine determination in commercial foodstuffs and biological fluids.
What the bird’s brain tells the bird’s eye: the function of descending input to the avian retina
Wilson, Martin; Lindstrom, Sarah H.
2012-01-01
As Cajal discovered in the late 19th century, the bird retina receives a substantial input from the brain. Approximately 10,000 fibers originating in a small midbrain nucleus, the isthmo-optic nucleus, terminate in each retina. The input to the isthmo-optic nucleus is chiefly from the optic tectum which, in the bird, is the primary recipient of retinal input. These neural elements constitute a closed loop, the Centrifugal Visual System (CVS), beginning and ending in the retina, that delivers positive feedback to active ganglion cells. Several features of the system are puzzling. All fibers from the isthmo-optic nucleus terminate in the ventral retina and an unusual axon-bearing amacrine cell, the Target Cell, is the postsynaptic partner of these fibers. While the rest of the CVS is orderly and retinotopic, Target Cell axons project seemingly at random, mostly to distant parts of the retina. We review here the most significant features of the anatomy and physiology of the CVS with a view to understanding its function. We suggest that many of the facts about this system, including some that are otherwise difficult to explain, can be accommodated within the hypothesis that the images of shadows cast on the ground or on objects in the environment, initiate a rapid and parallel search of the sky for a possible aerial predator. If a predator is located, shadow and predator would be temporarily linked together and tracked by the CVS. PMID:21524338
Navarro, Rafael; Palos, Fernando; Lanchares, Elena; Calvo, Begoña; Cristóbal, José A
2009-01-01
To develop a realistic model of the optomechanical behavior of the cornea after curved relaxing incisions to simulate the induced astigmatic change and predict the optical aberrations produced by the incisions. ICMA Consejo Superior de Investigaciones Científicas and Universidad de Zaragoza, Zaragoza, Spain. A 3-dimensional finite element model of the anterior hemisphere of the ocular surface was used. The corneal tissue was modeled as a quasi-incompressible, anisotropic hyperelastic constitutive behavior strongly dependent on the physiological collagen fibril distribution. Similar behaviors were assigned to the limbus and sclera. With this model, some corneal incisions were computer simulated after the Lindstrom nomogram. The resulting geometry of the biomechanical simulation was analyzed in the optical zone, and finite ray tracing was performed to compute refractive power and higher-order aberrations (HOAs). The finite-element simulation provided new geometry of the corneal surfaces, from which elevation topographies were obtained. The surgically induced astigmatism (SIA) of the simulated incisions according to the Lindstrom nomogram was computed by finite ray tracing. However, paraxial computations would yield slightly different results (undercorrection of astigmatism). In addition, arcuate incisions would induce significant amounts of HOAs. Finite-element models, together with finite ray-tracing computations, yielded realistic simulations of the biomechanical and optical changes induced by relaxing incisions. The model reproduced the SIA indicated by the Lindstrom nomogram for the simulated incisions and predicted a significant increase in optical aberrations induced by arcuate keratotomy.
Roriz, Paulo; Carvalho, Lídia; Frazão, Orlando; Santos, José Luís; Simões, José António
2014-04-11
In vivo measurement, not only in animals but also in humans, is a demanding task and is the ultimate goal in experimental biomechanics. For that purpose, measurements in vivo must be performed, under physiological conditions, to obtain a database and contribute for the development of analytical models, used to describe human biomechanics. The knowledge and control of the mechanisms involved in biomechanics will allow the optimization of the performance in different topics like in clinical procedures and rehabilitation, medical devices and sports, among others. Strain gages were first applied to bone in a live animal in 40's and in 80's for the first time were applied fibre optic sensors to perform in vivo measurements of Achilles tendon forces in man. Fibre optic sensors proven to have advantages compare to conventional sensors and a great potential for biomechanical and biomedical applications. Compared to them, they are smaller, easier to implement, minimally invasive, with lower risk of infection, highly accurate, well correlated, inexpensive and multiplexable. The aim of this review article is to give an overview about the evolution of the experimental techniques applied in biomechanics, from conventional to fibre optic sensors. In the next sections the most relevant contributions of these sensors, for strain and force in biomechanical applications, will be presented. Emphasis was given to report of in vivo experiments and clinical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tissues viability and blood flow sensing based on a new nanophotonics method
NASA Astrophysics Data System (ADS)
Yariv, Inbar; Haddad, Menashe; Duadi, Hamootal; Motiei, Menachem; Fixler, Dror
2018-02-01
Extracting optical parameters of turbid medium (e.g. tissue) by light reflectance signals is of great interest and has many applications in the medical world, life science, material analysis and biomedical optics. The reemitted light from an irradiated tissue is affected by the light's interaction with the tissue components and contains the information about the tissue structure and physiological state. In this research we present a novel noninvasive nanophotonics technique, i.e., iterative multi-plane optical property extraction (IMOPE) based on reflectance measurements. The reflectance based IMOPE was applied for tissue viability examination, detection of gold nanorods (GNRs) within the blood circulation as well as blood flow detection using the GNRs presence within the blood vessels. The basics of the IMOPE combine a simple experimental setup for recording light intensity images with an iterative Gerchberg-Saxton (G-S) algorithm for reconstructing the reflected light phase and computing its standard deviation (STD). Changes in tissue composition affect its optical properties which results in changes in the light phase that can be measured by its STD. This work presents reflectance based IMOPE tissue viability examination, producing a decrease in the computed STD for older tissues, as well as investigating their organic material absorption capability. Finally, differentiation of the femoral vein from adjacent tissues using GNRs and the detection of their presence within blood circulation and tissues are also presented with high sensitivity (better than computed tomography) to low quantities of GNRs (<3 mg).
A review of novel optical imaging strategies of the stroke pathology and stem cell therapy in stroke
Aswendt, Markus; Adamczak, Joanna; Tennstaedt, Annette
2014-01-01
Transplanted stem cells can induce and enhance functional recovery in experimental stroke. Invasive analysis has been extensively used to provide detailed cellular and molecular characterization of the stroke pathology and engrafted stem cells. But post mortem analysis is not appropriate to reveal the time scale of the dynamic interplay between the cell graft, the ischemic lesion and the endogenous repair mechanisms. This review describes non-invasive imaging techniques which have been developed to provide complementary in vivo information. Recent advances were made in analyzing simultaneously different aspects of the cell graft (e.g., number of cells, viability state, and cell fate), the ischemic lesion (e.g., blood–brain-barrier consistency, hypoxic, and necrotic areas) and the neuronal and vascular network. We focus on optical methods, which permit simple animal preparation, repetitive experimental conditions, relatively medium-cost instrumentation and are performed under mild anesthesia, thus nearly under physiological conditions. A selection of recent examples of optical intrinsic imaging, fluorescence imaging and bioluminescence imaging to characterize the stroke pathology and engrafted stem cells are discussed. Special attention is paid to novel optimal reporter genes/probes for genetic labeling and tracking of stem cells and appropriate transgenic animal models. Requirements, advantages and limitations of these imaging platforms are critically discussed and placed into the context of other non-invasive techniques, e.g., magnetic resonance imaging and positron emission tomography, which can be joined with optical imaging in multimodal approaches. PMID:25177269
Development of a simultaneous optical/PET imaging system for awake mice
NASA Astrophysics Data System (ADS)
Takuwa, Hiroyuki; Ikoma, Yoko; Yoshida, Eiji; Tashima, Hideaki; Wakizaka, Hidekatsu; Shinaji, Tetsuya; Yamaya, Taiga
2016-09-01
Simultaneous measurements of multiple physiological parameters are essential for the study of brain disease mechanisms and the development of suitable therapies to treat them. In this study, we developed a measurement system for simultaneous optical imaging and PET for awake mice. The key elements of this system are the OpenPET, optical imaging and fixation apparatus for an awake mouse. The OpenPET is our original open-type PET geometry, which can be used in combination with another device because of the easily accessible open space of the former. A small prototype of the axial shift single-ring OpenPET was used. The objective lens for optical imaging with a mounted charge-coupled device camera was placed inside the open space of the AS-SROP. Our original fixation apparatus to hold an awake mouse was also applied. As a first application of this system, simultaneous measurements of cerebral blood flow (CBF) by laser speckle imaging (LSI) and [11C]raclopride-PET were performed under control and 5% CO2 inhalation (hypercapnia) conditions. Our system successfully obtained the CBF and [11C]raclopride radioactivity concentration simultaneously. Accumulation of [11C]raclopride was observed in the striatum where the density of dopamine D2 receptors is high. LSI measurements could be stably performed for more than 60 minutes. Increased CBF induced by hypercapnia was observed while CBF under the control condition was stable. We concluded that our imaging system should be useful for investigating the mechanisms of brain diseases in awake animal models.
Staining diatoms with rhodamine dyes: control of emission colour in photonic biocomposites
Kucki, Melanie; Fuhrmann-Lieker, Thomas
2012-01-01
The incorporation of rhodamine dyes in the cell wall of diatoms Coscinodiscus granii and Coscinodiscus wailesii for the production of luminescent hybrid nanostructures is investigated. By systematic variation of the substitution pattern of the rhodamine core, we found that carbonic acids are considerably better suited than esters because of their physiological compatibility. The amino substitution pattern that controls the optical properties of the chromophore has no critical influence on dye uptake and incorporation, thus a variety of biocomposites with different emission maxima can be prepared. Applications in biomineralization studies as well as in materials science are envisioned. PMID:21865248
Assay for optical determination of biogenic amines using microtiterplates
NASA Astrophysics Data System (ADS)
Nedeljko, Polona; Turel, Matejka; Lobnik, Aleksandra
2013-05-01
Direct determination of catecholamine noradreanaline (NOR) is presented using o-phthaldialdehyde (OPA) as an indicator reagent. The fluorescent assay in which OPA forms with NOR a fluorescent complex (OPA-NOR) can be monitored at neutral, physiological conditions (pH 7) and performed in microtiterplates. The determination of NOR is optimal in the concentration range from 4.0×10-7 to 1.0×10-5 M and limit of detection is 4.0×10-7 M. The OPA-NOR complex maximum intensity is reached within 5 minutes. Dopamine and adrenaline could not be determined using the same approach.
Colour vision experimental studies in teaching of optometry
NASA Astrophysics Data System (ADS)
Ozolinsh, Maris; Ikaunieks, Gatis; Fomins, Sergejs
2005-10-01
Following aspects related to human colour vision are included in experimental lessons for optometry students of University of Latvia. Characteristics of coloured stimuli (emitting and reflective), determination their coordinates in different colour spaces. Objective characteristics of transmitting of colour stimuli through the optical system of eye together with various types of appliances (lenses, prisms, Fresnel prisms). Psychophysical determination of mono- and polychromatic stimuli perception taking into account physiology of eye, retinal colour photoreceptor topography and spectral sensitivity, spatial and temporal characteristics of retinal receptive fields. Ergonomics of visual perception, influence of illumination and glare effects, testing of colour vision deficiencies.
Pérez-Vives, Cari; Domínguez-Vicent, Alberto; Madrid-Costa, David; Ferrer-Blasco, Teresa; Montés-Micó, Robert
2013-03-01
To compare the optical and visual quality of a simulated Toric Implantable Collamer Lens (TICL) and a bioptics technique to treat high myopic astigmatism. An adaptive optics visual simulator was used to simulate the vision after TICL implantation and a bioptics procedure from the wavefront aberration pattern for moderate and high-myopic astigmatism. Visual acuity (VA) at different contrasts and contrast sensitivity (CS) at 10, 20 and 25 cycles degree(-1) were measured for 3 and 5-mm pupils. Modulation Transfer Function (MTF) and Point Spread Function (PSF) were calculated for a 5-mm pupil. At a 3-mm pupil we only found statistically significant differences in VA between the two simulated surgeries at low-contrast for moderate- and high-myopic astigmatism (p < 0.05). Statistically significant differences were found in CS at 3-mm pupil between both procedures at the highest spatial frequency for moderate-myopic astigmatism and at all frequencies for high-myopic astigmatism (p < 0.05). At a 5-mm pupil we found statistically significant differences in VA and CS between both simulated surgeries at all contrasts and frequencies evaluated for both groups (p < 0.05). In all cases VA and CS were better with the TICL than with the bioptics technique. MTFs for the bioptics technique were worse than those computed for the TICL. The TICL showed less spread out of the PSF than the bioptics procedure. Simulated TICL and bioptics procedures provided good optical and visual quality, although TICL implantation provided slightly better outcomes than the bioptics procedure, especially when the pupil diameter was increased. Ophthalmic & Physiological Optics © 2013 The College of Optometrists.
Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited
Pircher, Michael; Zawadzki, Robert J
2017-01-01
In vivo imaging of the human retina with a resolution that allows visualization of cellular structures has proven to be essential to broaden our knowledge about the physiology of this precious and very complex neural tissue that enables the first steps in vision. Many pathologic changes originate from functional and structural alterations on a cellular scale, long before any degradation in vision can be noted. Therefore, it is important to investigate these tissues with a sufficient level of detail in order to better understand associated disease development or the effects of therapeutic intervention. Optical retinal imaging modalities rely on the optical elements of the eye itself (mainly the cornea and lens) to produce retinal images and are therefore affected by the specific arrangement of these elements and possible imperfections in curvature. Thus, aberrations are introduced to the imaging light and image quality is degraded. To compensate for these aberrations, adaptive optics (AO), a technology initially developed in astronomy, has been utilized. However, the axial sectioning provided by retinal AO-based fundus cameras and scanning laser ophthalmoscope instruments is limited to tens of micrometers because of the rather small available numerical aperture of the eye. To overcome this limitation and thus achieve much higher axial sectioning in the order of 2-5µm, AO has been combined with optical coherence tomography (OCT) into AO-OCT. This enabled for the first time in vivo volumetric retinal imaging with high isotropic resolution. This article summarizes the technical aspects of AO-OCT and provides an overview on its various implementations and some of its clinical applications. In addition, latest developments in the field, such as computational AO-OCT and wavefront sensor less AO-OCT, are covered. PMID:28663890
Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited].
Pircher, Michael; Zawadzki, Robert J
2017-05-01
In vivo imaging of the human retina with a resolution that allows visualization of cellular structures has proven to be essential to broaden our knowledge about the physiology of this precious and very complex neural tissue that enables the first steps in vision. Many pathologic changes originate from functional and structural alterations on a cellular scale, long before any degradation in vision can be noted. Therefore, it is important to investigate these tissues with a sufficient level of detail in order to better understand associated disease development or the effects of therapeutic intervention. Optical retinal imaging modalities rely on the optical elements of the eye itself (mainly the cornea and lens) to produce retinal images and are therefore affected by the specific arrangement of these elements and possible imperfections in curvature. Thus, aberrations are introduced to the imaging light and image quality is degraded. To compensate for these aberrations, adaptive optics (AO), a technology initially developed in astronomy, has been utilized. However, the axial sectioning provided by retinal AO-based fundus cameras and scanning laser ophthalmoscope instruments is limited to tens of micrometers because of the rather small available numerical aperture of the eye. To overcome this limitation and thus achieve much higher axial sectioning in the order of 2-5µm, AO has been combined with optical coherence tomography (OCT) into AO-OCT. This enabled for the first time in vivo volumetric retinal imaging with high isotropic resolution. This article summarizes the technical aspects of AO-OCT and provides an overview on its various implementations and some of its clinical applications. In addition, latest developments in the field, such as computational AO-OCT and wavefront sensor less AO-OCT, are covered.
NASA Astrophysics Data System (ADS)
Enoch, Jay M.
2009-08-01
The early history of optics and vision science (older term: physiological optics) is indeed fascinating. The earliest known true lenses have been found in "eyes" of Egyptian statues which contain superb, complex, and well-polished eye-lens units. The oldest ones known are dated circa 2575 BCE = BC, Dynasty IV, Old Kingdom. These eye-lens units induce a fascinating and powerful visual illusion, but they are just too good to have been the first lenses, or even the first lenses of this design! So saying, no earlier dateable lenses have been found in Egypt or elsewhere. Recently, at the Boston Museum of Fine Arts, the writer noted a previously undetected lens in this series (a first in the Western Hemisphere). Oddly, dateable simpler magnifying lenses and burning glasses seem to have appeared later in time (?)! Manufactured mirrors are quite a bit older, dating from circa 6000 BCE in atal Hyk, located in south-central modern-day Turkey. Using these ancient mirrors, the image quality obtained is remarkable! Recently discovered ancient artificial eyes, located, in situ, in exhumed corpses, have been dated circa 3000 BCE (one discovered in Iran) 5000 BCE (one found in Spain). On the 3000 BCE artificial eye, there are drawn light rays (the writer believes these to be the oldest known depiction of light rays!) spreading out from (or passing into) the iris/ pupil border! Added interesting aspects associated with the early development of light-rays are considered. Thus, early optics can be readily traced back to the Neolithic era (the new stone age), and in some cases before that time period. We have deep roots indeed!
Artes, Paul H; Crabb, David P
2010-01-01
To investigate why the specificity of the Moorfields Regression Analysis (MRA) of the Heidelberg Retina Tomograph (HRT) varies with disc size, and to derive accurate normative limits for neuroretinal rim area to address this problem. Two datasets from healthy subjects (Manchester, UK, n = 88; Halifax, Nova Scotia, Canada, n = 75) were used to investigate the physiological relationship between the optic disc and neuroretinal rim area. Normative limits for rim area were derived by quantile regression (QR) and compared with those of the MRA (derived by linear regression). Logistic regression analyses were performed to quantify the association between disc size and positive classifications with the MRA, as well as with the QR-derived normative limits. In both datasets, the specificity of the MRA depended on optic disc size. The odds of observing a borderline or outside-normal-limits classification increased by approximately 10% for each 0.1 mm(2) increase in disc area (P < 0.1). The lower specificity of the MRA with large optic discs could be explained by the failure of linear regression to model the extremes of the rim area distribution (observations far from the mean). In comparison, the normative limits predicted by QR were larger for smaller discs (less specific, more sensitive), and smaller for larger discs, such that false-positive rates became independent of optic disc size. Normative limits derived by quantile regression appear to remove the size-dependence of specificity with the MRA. Because quantile regression does not rely on the restrictive assumptions of standard linear regression, it may be a more appropriate method for establishing normative limits in other clinical applications where the underlying distributions are nonnormal or have nonconstant variance.
Yücel, Meryem A; Selb, Juliette; Boas, David A; Cash, Sydney S; Cooper, Robert J
2014-01-15
As the applications of near-infrared spectroscopy (NIRS) continue to broaden and long-term clinical monitoring becomes more common, minimizing signal artifacts due to patient movement becomes more pressing. This is particularly true in applications where clinically and physiologically interesting events are intrinsically linked to patient movement, as is the case in the study of epileptic seizures. In this study, we apply an approach common in the application of EEG electrodes to the application of specialized NIRS optical fibers. The method provides improved optode-scalp coupling through the use of miniaturized optical fiber tips fixed to the scalp using collodion, a clinical adhesive. We investigate and quantify the performance of this new method in minimizing motion artifacts in healthy subjects, and apply the technique to allow continuous NIRS monitoring throughout epileptic seizures in two epileptic in-patients. Using collodion-fixed fibers reduces the percent signal change of motion artifacts by 90% and increases the SNR by 6 and 3 fold at 690 and 830 nm wavelengths respectively when compared to a standard Velcro-based array of optical fibers. The SNR has also increased by 2 fold during rest conditions without motion with the new probe design because of better light coupling between the fiber and scalp. The change in both HbO and HbR during motion artifacts is found to be statistically lower for the collodion-fixed fiber probe. The collodion-fixed optical fiber approach has also allowed us to obtain good quality NIRS recording of three epileptic seizures in two patients despite excessive motion in each case. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Ran; Shang, Yu; Wang, Siqi; Evans, Joyce M.; Rayapati, Abner; Randall, David C.; Yu, Guoqiang
2014-01-01
Significant drops in arterial blood pressure and cerebral hemodynamics have been previously observed during vasovagal syncope (VVS). Continuous and simultaneous monitoring of these physiological variables during VVS is rare, but critical for determining which variable is the most sensitive parameter to predict VVS. The present study used a novel custom-designed diffuse correlation spectroscopy flow-oximeter and a finger plethysmograph to simultaneously monitor relative changes of cerebral blood flow (rCBF), cerebral oxygenation (i.e., oxygenated/deoxygenated/total hemoglobin concentration: r[HbO2]/r[Hb]/rTHC), and mean arterial pressure (rMAP) during 70 deg head-up tilt (HUT) in 14 healthy adults. Six subjects developed presyncope during HUT. Two-stage physiological responses during HUT were observed in the presyncopal group: slow and small changes in measured variables (i.e., Stage I), followed by rapid and dramatic decreases in rMAP, rCBF, r[HbO2], and rTHC (i.e., Stage II). Compared to other physiological variables, rCBF reached its breakpoint between the two stages earliest and had the largest decrease (76±8%) during presyncope. Our results suggest that rCBF has the best sensitivity for the assessment of VVS. Most importantly, a threshold of ˜50% rCBF decline completely separated the subjects from those without presyncope, suggesting its potential for predicting VVS.
Smart Garment Fabrics to Enable Non-Contact Opto-Physiological Monitoring.
Iakovlev, Dmitry; Hu, Sijung; Hassan, Harnani; Dwyer, Vincent; Ashayer-Soltani, Roya; Hunt, Chris; Shen, Jinsong
2018-03-29
Imaging photoplethysmography (iPPG) is an emerging technology used to assess microcirculation and cardiovascular signs by collecting backscattered light from illuminated tissue using optical imaging sensors. The aim of this study was to study how effective smart garment fabrics could be capturing physiological signs in a non-contact mode. The present work demonstrates a feasible approach of, instead of using conventional high-power illumination sources, integrating a grid of surface-mounted light emitting diodes (LEDs) into cotton fabric to spotlight the region of interest (ROI). The green and the red LEDs (525 and 660 nm) placed on a small cotton substrate were used to locally illuminate palm skin in a dual-wavelength iPPG setup, where the backscattered light is transmitted to a remote image sensor through the garment fabric. The results show that the illuminations from both wavelength LEDs can be used to extract heart rate (HR) reaching an accuracy of 90% compared to a contact PPG probe. Stretching the fabric over the skin surface alters the morphology of iPPG signals, demonstrating a significantly higher pulsatile amplitude in both channels of green and red illuminations. The skin compression by the fabric could be potentially utilised to enhance the penetration of illumination into cutaneous microvascular beds. The outcome could lead a new avenue of non-contact opto-physiological monitoring and assessment with functional garment fabrics.
Subcortical orientation biases explain orientation selectivity of visual cortical cells.
Vidyasagar, Trichur R; Jayakumar, Jaikishan; Lloyd, Errol; Levichkina, Ekaterina V
2015-04-01
The primary visual cortex of carnivores and primates shows an orderly progression of domains of neurons that are selective to a particular orientation of visual stimuli such as bars and gratings. We recorded from single-thalamic afferent fibers that terminate in these domains to address the issue whether the orientation sensitivity of these fibers could form the basis of the remarkable orientation selectivity exhibited by most cortical cells. We first performed optical imaging of intrinsic signals to obtain a map of orientation domains on the dorsal aspect of the anaesthetized cat's area 17. After confirming using electrophysiological recordings the orientation preferences of single neurons within one or two domains in each animal, we pharmacologically silenced the cortex to leave only the afferent terminals active. The inactivation of cortical neurons was achieved by the superfusion of either kainic acid or muscimol. Responses of single geniculate afferents were then recorded by the use of high impedance electrodes. We found that the orientation preferences of the afferents matched closely with those of the cells in the orientation domains that they terminated in (Pearson's r = 0.633, n = 22, P = 0.002). This suggests a possible subcortical origin for cortical orientation selectivity. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Rundo, Francesco; Ortis, Alessandro
2018-01-01
Physiological signals are widely used to perform medical assessment for monitoring an extensive range of pathologies, usually related to cardio-vascular diseases. Among these, both PhotoPlethysmoGraphy (PPG) and Electrocardiography (ECG) signals are those more employed. PPG signals are an emerging non-invasive measurement technique used to study blood volume pulsations through the detection and analysis of the back-scattered optical radiation coming from the skin. ECG is the process of recording the electrical activity of the heart over a period of time using electrodes placed on the skin. In the present paper we propose a physiological ECG/PPG “combo” pipeline using an innovative bio-inspired nonlinear system based on a reaction-diffusion mathematical model, implemented by means of the Cellular Neural Network (CNN) methodology, to filter PPG signal by assigning a recognition score to the waveforms in the time series. The resulting “clean” PPG signal exempts from distortion and artifacts is used to validate for diagnostic purpose an EGC signal simultaneously detected for a same patient. The multisite combo PPG-ECG system proposed in this work overpasses the limitations of the state of the art in this field providing a reliable system for assessing the above-mentioned physiological parameters and their monitoring over time for robust medical assessment. The proposed system has been validated and the results confirmed the robustness of the proposed approach. PMID:29385774
Rundo, Francesco; Conoci, Sabrina; Ortis, Alessandro; Battiato, Sebastiano
2018-01-30
Physiological signals are widely used to perform medical assessment for monitoring an extensive range of pathologies, usually related to cardio-vascular diseases. Among these, both PhotoPlethysmoGraphy (PPG) and Electrocardiography (ECG) signals are those more employed. PPG signals are an emerging non-invasive measurement technique used to study blood volume pulsations through the detection and analysis of the back-scattered optical radiation coming from the skin. ECG is the process of recording the electrical activity of the heart over a period of time using electrodes placed on the skin. In the present paper we propose a physiological ECG/PPG "combo" pipeline using an innovative bio-inspired nonlinear system based on a reaction-diffusion mathematical model, implemented by means of the Cellular Neural Network (CNN) methodology, to filter PPG signal by assigning a recognition score to the waveforms in the time series. The resulting "clean" PPG signal exempts from distortion and artifacts is used to validate for diagnostic purpose an EGC signal simultaneously detected for a same patient. The multisite combo PPG-ECG system proposed in this work overpasses the limitations of the state of the art in this field providing a reliable system for assessing the above-mentioned physiological parameters and their monitoring over time for robust medical assessment. The proposed system has been validated and the results confirmed the robustness of the proposed approach.
Optical detection of three modes of endocytosis at hippocampal synapses
Chanaday, Natali L
2018-01-01
Coupling of synaptic vesicle fusion and retrieval constitutes a core mechanism ensuring maintenance of presynaptic function. Recent studies using fast-freeze electron microscopy and capacitance measurements reported an ultrafast mode of endocytosis operating at physiological temperatures. Here, using rat hippocampal neurons, we optically monitored single synaptic vesicle endocytosis with high time resolution using the vesicular glutamate transporter, synaptophysin and the V0a1 subunit of the vacuolar ATPase as probes. In this setting, we could distinguish three components of retrieval operating at ultrafast (~150–250 ms, ~20% of events), fast (~5–12 s, ~40% of events) and ultraslow speeds (>20 s, ~40% of events). While increasing Ca2+ slowed the fast events, increasing temperature accelerated their time course. In contrast, the kinetics of ultrafast events were only mildly affected by these manipulations. These results suggest that synaptic vesicle proteins can be retrieved with ultrafast kinetics, although a majority of evoked fusion events are coupled to slower retrieval mechanisms. PMID:29683423
Optical clearing of the pancreas for visualization of mature β-cells and vessels in mice.
Nishimura, Wataru; Sakaue-Sawano, Asako; Takahashi, Satoru; Miyawaki, Atsushi; Yasuda, Kazuki; Noda, Yasuko
2018-05-04
Glucose metabolism is regulated by insulin, which is produced from β-cells in the pancreas. Because insulin is secreted into vessels in response to blood glucose, vascular structures of the pancreas, especially the relationship between vessels and β-cells, are important for physiological and pathological glucose metabolism. Here, we developed a system to visualize vessels surrounding mature β-cells expressing transcription factor MafA in a three-dimensional manner. Optical clearing of the pancreas prevented light scattering of fluorescence driven by the bacterial artificial chromosome (BAC)-mafA promoter in β-cells. Reconstruction of confocal images demonstrated mature β-cells and the glomerular-like structures of β-cell vasculatures labeled with DyLight 488-conjugated lectin in normal mice as well as in low-dose streptozotocin-injected diabetes model mice with reduced β-cell mass. This technological innovation of organ imaging can be used to investigate morphological changes in vascular structures during transplantation, regeneration and diabetes development.
Monitoring dynamic interactions of tumor cells with tissue and immune cells in a lab-on-a-chip.
Charwat, Verena; Rothbauer, Mario; Tedde, Sandro F; Hayden, Oliver; Bosch, Jacobus J; Muellner, Paul; Hainberger, Rainer; Ertl, Peter
2013-12-03
A complementary cell analysis method has been developed to assess the dynamic interactions of tumor cells with resident tissue and immune cells using optical light scattering and impedance sensing to shed light on tumor cell behavior. The combination of electroanalytical and optical biosensing technologies integrated in a lab-on-a-chip allows for continuous, label-free, and noninvasive probing of dynamic cell-to-cell interactions between adherent and nonadherent cocultures, thus providing real-time insights into tumor cell responses under physiologically relevant conditions. While the study of adherent cocultures is important for the understanding and suppression of metastatic invasion, the analysis of tumor cell interactions with nonadherent immune cells plays a vital role in cancer immunotherapy research. For the first time, the direct cell-to-cell interactions of tumor cells with bead-activated primary T cells were continuously assessed using an effector cell to target a cell ratio of 10:1.
NASA Astrophysics Data System (ADS)
Peña, Adrian F.; Devine, Jack; Doronin, Alexander; Meglinski, Igor
2014-03-01
We report the use of conventional Optical Coherence Tomography (OCT) for visualization of propagation of low frequency electric field in soft biological tissues ex vivo. To increase the overall quality of the experimental images an adaptive Wiener filtering technique has been employed. Fourier domain correlation has been subsequently applied to enhance spatial resolution of images of biological tissues influenced by low frequency electric field. Image processing has been performed on Graphics Processing Units (GPUs) utilizing Compute Unified Device Architecture (CUDA) framework in the frequencydomain. The results show that variation in voltage and frequency of the applied electric field relates exponentially to the magnitude of its influence on biological tissue. The magnitude of influence is about twice more for fresh tissue samples in comparison to non-fresh ones. The obtained results suggest that OCT can be used for observation and quantitative evaluation of the electro-kinetic changes in biological tissues under different physiological conditions, functional electrical stimulation, and potentially can be used non-invasively for food quality control.
Catalytic Asymmetric Synthesis of Butenolides and Butyrolactones
2017-01-01
γ-Butenolides, γ-butyrolactones, and derivatives, especially in enantiomerically pure form, constitute the structural core of numerous natural products which display an impressive range of biological activities which are important for the development of novel physiological and therapeutic agents. Furthermore, optically active γ-butenolides and γ-butyrolactones serve also as a prominent class of chiral building blocks for the synthesis of diverse biological active compounds and complex molecules. Taking into account the varying biological activity profiles and wide-ranging structural diversity of the optically active γ-butenolide or γ-butyrolactone structure, the development of asymmetric synthetic strategies for assembling such challenging scaffolds has attracted major attention from synthetic chemists in the past decade. This review offers an overview of the different enantioselective synthesis of γ-butenolides and γ-butyrolactones which employ catalytic amounts of metal complexes or organocatalysts, with emphasis focused on the mechanistic issues that account for the observed stereocontrol of the representative reactions, as well as practical applications and synthetic potentials. PMID:28640622
Fluorescence Correlation Spectroscopy at Micromolar Concentrations without Optical Nanoconfinement
Laurence, Ted A.; Ly, Sonny; Bourguet, Feliza; ...
2014-08-14
Fluorescence correlation spectroscopy (FCS) is an important technique for studying biochemical interactions dynamically that may be used in vitro and in cell-based studies. It is generally claimed that FCS may only be used at nM concentrations. We show that this general consensus is incorrect and that the limitation to nM concentrations is not fundamental but due to detector limits as well as laser fluctuations. With a high count rate detector system and applying laser fluctuation corrections, we demonstrate FCS measurements up to 38 μM with the same signal-to-noise as at lower concentrations. Optical nanoconfinement approaches previously used to increase themore » concentration range of FCS are not necessary, and further increases above 38 μM may be expected using detectors and detector arrays with higher saturation rates and better laser fluctuation corrections. This approach greatly widens the possibilities of dynamic measurements of biochemical interactions using FCS at physiological concentrations.« less
What must be the accuracy and target of optical sensor systems for patient monitoring?
NASA Astrophysics Data System (ADS)
Frank, Klaus H.; Kessler, Manfred D.
2002-06-01
Although the treatment in the intensive care unit has improved in recent years enabling greater surgical engagements and improving patients survival rate, no adequate monitoring is available in imminent severe pathological cases. Otherwise such kind of monitoring is necessary for early or prophylactic treatment in order to avoid or reduce the severity of the disease and protect the patient from sepsis or multiple organ failure. In these cases the common monitoring is limited, because clinical physiological and laboratory parameters indicate either the situation of macro-circulation or late disturbances of microcirculation, which arise previously on sub-cellular level. Optical sensor systems enable to reveal early variations in local capillary flow. The correlation between clinical parameters and changes in condition of oxygenation as a function of capillary flow disturbances is meaningful for the further treatment. The target should be to develop a predictive parameter, which is useful for detection and follow-up of changes in circulation.
Intravital microscopy: a novel tool to study cell biology in living animals.
Weigert, Roberto; Sramkova, Monika; Parente, Laura; Amornphimoltham, Panomwat; Masedunskas, Andrius
2010-05-01
Intravital microscopy encompasses various optical microscopy techniques aimed at visualizing biological processes in live animals. In the last decade, the development of non-linear optical microscopy resulted in an enormous increase of in vivo studies, which have addressed key biological questions in fields such as neurobiology, immunology and tumor biology. Recently, few studies have shown that subcellular processes can be imaged dynamically in the live animal at a resolution comparable to that achieved in cell cultures, providing new opportunities to study cell biology under physiological conditions. The overall aim of this review is to give the reader a general idea of the potential applications of intravital microscopy with a particular emphasis on subcellular imaging. An overview of some of the most exciting studies in this field will be presented using resolution as a main organizing criterion. Indeed, first we will focus on those studies in which organs were imaged at the tissue level, then on those focusing on single cells imaging, and finally on those imaging subcellular organelles and structures.
Wide-field imaging through scattering media by scattered light fluorescence microscopy
NASA Astrophysics Data System (ADS)
Zhou, Yulan; Li, Xun
2017-08-01
To obtain images through scattering media, scattered light fluorescence (SLF) microscopy that utilizes the optical memory effect has been developed. However, the small field of view (FOV) of SLF microscopy limits its application. In this paper, we have introduced a re-modulation method to achieve wide-field imaging through scattering media by SLF microscopy. In the re-modulation method, to raster scan the focus across the object plane, the incident wavefront is re-modulated via a spatial light modulator (SLM) in the updated phase compensation calculated using the optimized iterative algorithm. Compared with the conventional optical memory effect method, the re-modulation method can greatly increase the FOV of a SLF microscope. With the phase compensation theoretically calculated, the process of updating the phase compensation of a high speed SLM is fast. The re-modulation method does not increase the imaging time. The re-modulation method is, therefore, expected to make SLF microscopy have much wider applications in biology, medicine and physiology.
NASA Astrophysics Data System (ADS)
Fazio, Barbara; D'Andrea, Cristiano; Foti, Antonino; Messina, Elena; Irrera, Alessia; Donato, Maria Grazia; Villari, Valentina; Micali, Norberto; Maragò, Onofrio M.; Gucciardi, Pietro G.
2016-06-01
Strategies for in-liquid molecular detection via Surface Enhanced Raman Scattering (SERS) are currently based on chemically-driven aggregation or optical trapping of metal nanoparticles in presence of the target molecules. Such strategies allow the formation of SERS-active clusters that efficiently embed the molecule at the “hot spots” of the nanoparticles and enhance its Raman scattering by orders of magnitude. Here we report on a novel scheme that exploits the radiation pressure to locally push gold nanorods and induce their aggregation in buffered solutions of biomolecules, achieving biomolecular SERS detection at almost neutral pH. The sensor is applied to detect non-resonant amino acids and proteins, namely Phenylalanine (Phe), Bovine Serum Albumin (BSA) and Lysozyme (Lys), reaching detection limits in the μg/mL range. Being a chemical free and contactless technique, our methodology is easy to implement, fast to operate, needs small sample volumes and has potential for integration in microfluidic circuits for biomarkers detection.
Dharmadhikari, J. A.; Dharmadhikari, A. K.; Kasuba, K. C.; Bharambe, H.; D’Souza, J. S.; Rathod, K. D.; Mathur, D.
2016-01-01
We report on damage to DNA in an aqueous medium induced by ultrashort pulses of intense laser light of 800 nm wavelength. Focusing of such pulses, using lenses of various focal lengths, induces plasma formation within the aqueous medium. Such plasma can have a spatial extent that is far in excess of the Rayleigh range. In the case of water, the resulting ionization and dissociation gives rise to in situ generation of low-energy electrons and OH-radicals. Interactions of these with plasmid DNA produce nicks in the DNA backbone: single strand breaks (SSBs) are induced as are, at higher laser intensities, double strand breaks (DSBs). Under physiological conditions, the latter are not readily amenable to repair. Systematic quantification of SSBs and DSBs at different values of incident laser energy and under different external focusing conditions reveals that damage occurs in two distinct regimes. Numerical aperture is the experimental handle that delineates the two regimes, permitting simple optical control over the extent of DNA damage. PMID:27279565
Design and Simulation of Optically Actuated Bistable MEMS
NASA Astrophysics Data System (ADS)
Lucas, Thomas; Moiseeva, Evgeniya; Harnett, Cindy
2012-02-01
In this project, bistable three-dimensional MEMS actuators are designed to be optically switched between stable states for biological research applications. The structure is a strained rectangular frame created with stress-mismatched metal-oxide bilayers. The devices curl into an arc in one of two directions tangent to the substrate, and can switch orientation when regions are selectively heated. The heating is powered by infrared laser, and localized with patterned infrared-resonant gold nanoparticles on critical regions. The enhanced energy absorption on selected areas provides switching control and heightened response to narrow-band infrared light. Coventorware has been used for finite element analysis of the system. The numerical simulations indicate that it has two local minimum states with extremely rapid transition time (<<0.1 s) when the structure is thermally deformed. Actuation at laser power and thermal limits compatible with physiological applications will enable microfluidic pumping elements and fundamental studies of tissue response to three-dimensional mechanical stimuli, artificial-muscle based pumps and other biomedical devices triggered by tissue-permeant infrared light.