Rate distortion optimal bit allocation methods for volumetric data using JPEG 2000.
Kosheleva, Olga M; Usevitch, Bryan E; Cabrera, Sergio D; Vidal, Edward
2006-08-01
Computer modeling programs that generate three-dimensional (3-D) data on fine grids are capable of generating very large amounts of information. These data sets, as well as 3-D sensor/measured data sets, are prime candidates for the application of data compression algorithms. A very flexible and powerful compression algorithm for imagery data is the newly released JPEG 2000 standard. JPEG 2000 also has the capability to compress volumetric data, as described in Part 2 of the standard, by treating the 3-D data as separate slices. As a decoder standard, JPEG 2000 does not describe any specific method to allocate bits among the separate slices. This paper proposes two new bit allocation algorithms for accomplishing this task. The first procedure is rate distortion optimal (for mean squared error), and is conceptually similar to postcompression rate distortion optimization used for coding codeblocks within JPEG 2000. The disadvantage of this approach is its high computational complexity. The second bit allocation algorithm, here called the mixed model (MM) approach, mathematically models each slice's rate distortion curve using two distinct regions to get more accurate modeling at low bit rates. These two bit allocation algorithms are applied to a 3-D Meteorological data set. Test results show that the MM approach gives distortion results that are nearly identical to the optimal approach, while significantly reducing computational complexity.
NASA Astrophysics Data System (ADS)
Chen, Zhenzhong; Han, Junwei; Ngan, King Ngi
2005-10-01
MPEG-4 treats a scene as a composition of several objects or so-called video object planes (VOPs) that are separately encoded and decoded. Such a flexible video coding framework makes it possible to code different video object with different distortion scale. It is necessary to analyze the priority of the video objects according to its semantic importance, intrinsic properties and psycho-visual characteristics such that the bit budget can be distributed properly to video objects to improve the perceptual quality of the compressed video. This paper aims to provide an automatic video object priority definition method based on object-level visual attention model and further propose an optimization framework for video object bit allocation. One significant contribution of this work is that the human visual system characteristics are incorporated into the video coding optimization process. Another advantage is that the priority of the video object can be obtained automatically instead of fixing weighting factors before encoding or relying on the user interactivity. To evaluate the performance of the proposed approach, we compare it with traditional verification model bit allocation and the optimal multiple video object bit allocation algorithms. Comparing with traditional bit allocation algorithms, the objective quality of the object with higher priority is significantly improved under this framework. These results demonstrate the usefulness of this unsupervised subjective quality lifting framework.
Using game theory for perceptual tuned rate control algorithm in video coding
NASA Astrophysics Data System (ADS)
Luo, Jiancong; Ahmad, Ishfaq
2005-03-01
This paper proposes a game theoretical rate control technique for video compression. Using a cooperative gaming approach, which has been utilized in several branches of natural and social sciences because of its enormous potential for solving constrained optimization problems, we propose a dual-level scheme to optimize the perceptual quality while guaranteeing "fairness" in bit allocation among macroblocks. At the frame level, the algorithm allocates target bits to frames based on their coding complexity. At the macroblock level, the algorithm distributes bits to macroblocks by defining a bargaining game. Macroblocks play cooperatively to compete for shares of resources (bits) to optimize their quantization scales while considering the Human Visual System"s perceptual property. Since the whole frame is an entity perceived by viewers, macroblocks compete cooperatively under a global objective of achieving the best quality with the given bit constraint. The major advantage of the proposed approach is that the cooperative game leads to an optimal and fair bit allocation strategy based on the Nash Bargaining Solution. Another advantage is that it allows multi-objective optimization with multiple decision makers (macroblocks). The simulation results testify the algorithm"s ability to achieve accurate bit rate with good perceptual quality, and to maintain a stable buffer level.
A novel frame-level constant-distortion bit allocation for smooth H.264/AVC video quality
NASA Astrophysics Data System (ADS)
Liu, Li; Zhuang, Xinhua
2009-01-01
It is known that quality fluctuation has a major negative effect on visual perception. In previous work, we introduced a constant-distortion bit allocation method [1] for H.263+ encoder. However, the method in [1] can not be adapted to the newest H.264/AVC encoder directly as the well-known chicken-egg dilemma resulted from the rate-distortion optimization (RDO) decision process. To solve this problem, we propose a new two stage constant-distortion bit allocation (CDBA) algorithm with enhanced rate control for H.264/AVC encoder. In stage-1, the algorithm performs RD optimization process with a constant quantization QP. Based on prediction residual signals from stage-1 and target distortion for smooth video quality purpose, the frame-level bit target is allocated by using a close-form approximations of ratedistortion relationship similar to [1], and a fast stage-2 encoding process is performed with enhanced basic unit rate control. Experimental results show that, compared with original rate control algorithm provided by H.264/AVC reference software JM12.1, the proposed constant-distortion frame-level bit allocation scheme reduces quality fluctuation and delivers much smoother PSNR on all testing sequences.
Lim, Meng-Hui; Teoh, Andrew Beng Jin; Toh, Kar-Ann
2013-06-01
Biometric discretization is a key component in biometric cryptographic key generation. It converts an extracted biometric feature vector into a binary string via typical steps such as segmentation of each feature element into a number of labeled intervals, mapping of each interval-captured feature element onto a binary space, and concatenation of the resulted binary output of all feature elements into a binary string. Currently, the detection rate optimized bit allocation (DROBA) scheme is one of the most effective biometric discretization schemes in terms of its capability to assign binary bits dynamically to user-specific features with respect to their discriminability. However, we learn that DROBA suffers from potential discriminative feature misdetection and underdiscretization in its bit allocation process. This paper highlights such drawbacks and improves upon DROBA based on a novel two-stage algorithm: 1) a dynamic search method to efficiently recapture such misdetected features and to optimize the bit allocation of underdiscretized features and 2) a genuine interval concealment technique to alleviate crucial information leakage resulted from the dynamic search. Improvements in classification accuracy on two popular face data sets vindicate the feasibility of our approach compared with DROBA.
Information efficiency in visual communication
NASA Astrophysics Data System (ADS)
Alter-Gartenberg, Rachel; Rahman, Zia-ur
1993-08-01
This paper evaluates the quantization process in the context of the end-to-end performance of the visual-communication channel. Results show that the trade-off between data transmission and visual quality revolves around the information in the acquired signal, not around its energy. Improved information efficiency is gained by frequency dependent quantization that maintains the information capacity of the channel and reduces the entropy of the encoded signal. Restorations with energy bit-allocation lose both in sharpness and clarity relative to restorations with information bit-allocation. Thus, quantization with information bit-allocation is preferred for high information efficiency and visual quality in optimized visual communication.
Information efficiency in visual communication
NASA Technical Reports Server (NTRS)
Alter-Gartenberg, Rachel; Rahman, Zia-Ur
1993-01-01
This paper evaluates the quantization process in the context of the end-to-end performance of the visual-communication channel. Results show that the trade-off between data transmission and visual quality revolves around the information in the acquired signal, not around its energy. Improved information efficiency is gained by frequency dependent quantization that maintains the information capacity of the channel and reduces the entropy of the encoded signal. Restorations with energy bit-allocation lose both in sharpness and clarity relative to restorations with information bit-allocation. Thus, quantization with information bit-allocation is preferred for high information efficiency and visual quality in optimized visual communication.
NASA Astrophysics Data System (ADS)
Jubran, Mohammad K.; Bansal, Manu; Kondi, Lisimachos P.
2006-01-01
In this paper, we consider the problem of optimal bit allocation for wireless video transmission over fading channels. We use a newly developed hybrid scalable/multiple-description codec that combines the functionality of both scalable and multiple-description codecs. It produces a base layer and multiple-description enhancement layers. Any of the enhancement layers can be decoded (in a non-hierarchical manner) with the base layer to improve the reconstructed video quality. Two different channel coding schemes (Rate-Compatible Punctured Convolutional (RCPC)/Cyclic Redundancy Check (CRC) coding and, product code Reed Solomon (RS)+RCPC/CRC coding) are used for unequal error protection of the layered bitstream. Optimal allocation of the bitrate between source and channel coding is performed for discrete sets of source coding rates and channel coding rates. Experimental results are presented for a wide range of channel conditions. Also, comparisons with classical scalable coding show the effectiveness of using hybrid scalable/multiple-description coding for wireless transmission.
Joint Machine Learning and Game Theory for Rate Control in High Efficiency Video Coding.
Gao, Wei; Kwong, Sam; Jia, Yuheng
2017-08-25
In this paper, a joint machine learning and game theory modeling (MLGT) framework is proposed for inter frame coding tree unit (CTU) level bit allocation and rate control (RC) optimization in High Efficiency Video Coding (HEVC). First, a support vector machine (SVM) based multi-classification scheme is proposed to improve the prediction accuracy of CTU-level Rate-Distortion (R-D) model. The legacy "chicken-and-egg" dilemma in video coding is proposed to be overcome by the learning-based R-D model. Second, a mixed R-D model based cooperative bargaining game theory is proposed for bit allocation optimization, where the convexity of the mixed R-D model based utility function is proved, and Nash bargaining solution (NBS) is achieved by the proposed iterative solution search method. The minimum utility is adjusted by the reference coding distortion and frame-level Quantization parameter (QP) change. Lastly, intra frame QP and inter frame adaptive bit ratios are adjusted to make inter frames have more bit resources to maintain smooth quality and bit consumption in the bargaining game optimization. Experimental results demonstrate that the proposed MLGT based RC method can achieve much better R-D performances, quality smoothness, bit rate accuracy, buffer control results and subjective visual quality than the other state-of-the-art one-pass RC methods, and the achieved R-D performances are very close to the performance limits from the FixedQP method.
Visual Perception Based Rate Control Algorithm for HEVC
NASA Astrophysics Data System (ADS)
Feng, Zeqi; Liu, PengYu; Jia, Kebin
2018-01-01
For HEVC, rate control is an indispensably important video coding technology to alleviate the contradiction between video quality and the limited encoding resources during video communication. However, the rate control benchmark algorithm of HEVC ignores subjective visual perception. For key focus regions, bit allocation of LCU is not ideal and subjective quality is unsatisfied. In this paper, a visual perception based rate control algorithm for HEVC is proposed. First bit allocation weight of LCU level is optimized based on the visual perception of luminance and motion to ameliorate video subjective quality. Then λ and QP are adjusted in combination with the bit allocation weight to improve rate distortion performance. Experimental results show that the proposed algorithm reduces average 0.5% BD-BR and maximum 1.09% BD-BR at no cost in bitrate accuracy compared with HEVC (HM15.0). The proposed algorithm devotes to improving video subjective quality under various video applications.
Optimal sampling and quantization of synthetic aperture radar signals
NASA Technical Reports Server (NTRS)
Wu, C.
1978-01-01
Some theoretical and experimental results on optimal sampling and quantization of synthetic aperture radar (SAR) signals are presented. It includes a description of a derived theoretical relationship between the pixel signal to noise ratio of processed SAR images and the number of quantization bits per sampled signal, assuming homogeneous extended targets. With this relationship known, a solution may be realized for the problem of optimal allocation of a fixed data bit-volume (for specified surface area and resolution criterion) between the number of samples and the number of bits per sample. The results indicate that to achieve the best possible image quality for a fixed bit rate and a given resolution criterion, one should quantize individual samples coarsely and thereby maximize the number of multiple looks. The theoretical results are then compared with simulation results obtained by processing aircraft SAR data.
Data compression using adaptive transform coding. Appendix 1: Item 1. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Rost, Martin Christopher
1988-01-01
Adaptive low-rate source coders are described in this dissertation. These coders adapt by adjusting the complexity of the coder to match the local coding difficulty of the image. This is accomplished by using a threshold driven maximum distortion criterion to select the specific coder used. The different coders are built using variable blocksized transform techniques, and the threshold criterion selects small transform blocks to code the more difficult regions and larger blocks to code the less complex regions. A theoretical framework is constructed from which the study of these coders can be explored. An algorithm for selecting the optimal bit allocation for the quantization of transform coefficients is developed. The bit allocation algorithm is more fully developed, and can be used to achieve more accurate bit assignments than the algorithms currently used in the literature. Some upper and lower bounds for the bit-allocation distortion-rate function are developed. An obtainable distortion-rate function is developed for a particular scalar quantizer mixing method that can be used to code transform coefficients at any rate.
A Simplified GCS-DCSK Modulation and Its Performance Optimization
NASA Astrophysics Data System (ADS)
Xu, Weikai; Wang, Lin; Chi, Chong-Yung
2016-12-01
In this paper, a simplified Generalized Code-Shifted Differential Chaos Shift Keying (GCS-DCSK) whose transmitter never needs any delay circuits, is proposed. However, its performance is deteriorated because the orthogonality between substreams cannot be guaranteed. In order to optimize its performance, the system model of the proposed GCS-DCSK with power allocations on substreams is presented. An approximate bit error rate (BER) expression of the proposed model, which is a function of substreams’ power, is derived using Gaussian Approximation. Based on the BER expression, an optimal power allocation strategy between information substreams and reference substream is obtained. Simulation results show that the BER performance of the proposed GCS-DCSK with the optimal power allocation can be significantly improved when the number of substreams M is large.
Rate and power efficient image compressed sensing and transmission
NASA Astrophysics Data System (ADS)
Olanigan, Saheed; Cao, Lei; Viswanathan, Ramanarayanan
2016-01-01
This paper presents a suboptimal quantization and transmission scheme for multiscale block-based compressed sensing images over wireless channels. The proposed method includes two stages: dealing with quantization distortion and transmission errors. First, given the total transmission bit rate, the optimal number of quantization bits is assigned to the sensed measurements in different wavelet sub-bands so that the total quantization distortion is minimized. Second, given the total transmission power, the energy is allocated to different quantization bit layers based on their different error sensitivities. The method of Lagrange multipliers with Karush-Kuhn-Tucker conditions is used to solve both optimization problems, for which the first problem can be solved with relaxation and the second problem can be solved completely. The effectiveness of the scheme is illustrated through simulation results, which have shown up to 10 dB improvement over the method without the rate and power optimization in medium and low signal-to-noise ratio cases.
Distortion outage minimization in Nakagami fading using limited feedback
NASA Astrophysics Data System (ADS)
Wang, Chih-Hong; Dey, Subhrakanti
2011-12-01
We focus on a decentralized estimation problem via a clustered wireless sensor network measuring a random Gaussian source where the clusterheads amplify and forward their received signals (from the intra-cluster sensors) over orthogonal independent stationary Nakagami fading channels to a remote fusion center that reconstructs an estimate of the original source. The objective of this paper is to design clusterhead transmit power allocation policies to minimize the distortion outage probability at the fusion center, subject to an expected sum transmit power constraint. In the case when full channel state information (CSI) is available at the clusterhead transmitters, the optimization problem can be shown to be convex and is solved exactly. When only rate-limited channel feedback is available, we design a number of computationally efficient sub-optimal power allocation algorithms to solve the associated non-convex optimization problem. We also derive an approximation for the diversity order of the distortion outage probability in the limit when the average transmission power goes to infinity. Numerical results illustrate that the sub-optimal power allocation algorithms perform very well and can close the outage probability gap between the constant power allocation (no CSI) and full CSI-based optimal power allocation with only 3-4 bits of channel feedback.
Error-Resilient Unequal Error Protection of Fine Granularity Scalable Video Bitstreams
NASA Astrophysics Data System (ADS)
Cai, Hua; Zeng, Bing; Shen, Guobin; Xiong, Zixiang; Li, Shipeng
2006-12-01
This paper deals with the optimal packet loss protection issue for streaming the fine granularity scalable (FGS) video bitstreams over IP networks. Unlike many other existing protection schemes, we develop an error-resilient unequal error protection (ER-UEP) method that adds redundant information optimally for loss protection and, at the same time, cancels completely the dependency among bitstream after loss recovery. In our ER-UEP method, the FGS enhancement-layer bitstream is first packetized into a group of independent and scalable data packets. Parity packets, which are also scalable, are then generated. Unequal protection is finally achieved by properly shaping the data packets and the parity packets. We present an algorithm that can optimally allocate the rate budget between data packets and parity packets, together with several simplified versions that have lower complexity. Compared with conventional UEP schemes that suffer from bit contamination (caused by the bit dependency within a bitstream), our method guarantees successful decoding of all received bits, thus leading to strong error-resilience (at any fixed channel bandwidth) and high robustness (under varying and/or unclean channel conditions).
System, apparatus and methods to implement high-speed network analyzers
Ezick, James; Lethin, Richard; Ros-Giralt, Jordi; Szilagyi, Peter; Wohlford, David E
2015-11-10
Systems, apparatus and methods for the implementation of high-speed network analyzers are provided. A set of high-level specifications is used to define the behavior of the network analyzer emitted by a compiler. An optimized inline workflow to process regular expressions is presented without sacrificing the semantic capabilities of the processing engine. An optimized packet dispatcher implements a subset of the functions implemented by the network analyzer, providing a fast and slow path workflow used to accelerate specific processing units. Such dispatcher facility can also be used as a cache of policies, wherein if a policy is found, then packet manipulations associated with the policy can be quickly performed. An optimized method of generating DFA specifications for network signatures is also presented. The method accepts several optimization criteria, such as min-max allocations or optimal allocations based on the probability of occurrence of each signature input bit.
Correlation estimation and performance optimization for distributed image compression
NASA Astrophysics Data System (ADS)
He, Zhihai; Cao, Lei; Cheng, Hui
2006-01-01
Correlation estimation plays a critical role in resource allocation and rate control for distributed data compression. A Wyner-Ziv encoder for distributed image compression is often considered as a lossy source encoder followed by a lossless Slepian-Wolf encoder. The source encoder consists of spatial transform, quantization, and bit plane extraction. In this work, we find that Gray code, which has been extensively used in digital modulation, is able to significantly improve the correlation between the source data and its side information. Theoretically, we analyze the behavior of Gray code within the context of distributed image compression. Using this theoretical model, we are able to efficiently allocate the bit budget and determine the code rate of the Slepian-Wolf encoder. Our experimental results demonstrate that the Gray code, coupled with accurate correlation estimation and rate control, significantly improves the picture quality, by up to 4 dB, over the existing methods for distributed image compression.
Branch target buffer design and optimization
NASA Technical Reports Server (NTRS)
Perleberg, Chris H.; Smith, Alan J.
1993-01-01
Consideration is given to two major issues in the design of branch target buffers (BTBs), with the goal of achieving maximum performance for a given number of bits allocated to the BTB design. The first issue is BTB management; the second is what information to keep in the BTB. A number of solutions to these problems are reviewed, and various optimizations in the design of BTBs are discussed. Design target miss ratios for BTBs are developed, making it possible to estimate the performance of BTBs for real workloads.
Joint-layer encoder optimization for HEVC scalable extensions
NASA Astrophysics Data System (ADS)
Tsai, Chia-Ming; He, Yuwen; Dong, Jie; Ye, Yan; Xiu, Xiaoyu; He, Yong
2014-09-01
Scalable video coding provides an efficient solution to support video playback on heterogeneous devices with various channel conditions in heterogeneous networks. SHVC is the latest scalable video coding standard based on the HEVC standard. To improve enhancement layer coding efficiency, inter-layer prediction including texture and motion information generated from the base layer is used for enhancement layer coding. However, the overall performance of the SHVC reference encoder is not fully optimized because rate-distortion optimization (RDO) processes in the base and enhancement layers are independently considered. It is difficult to directly extend the existing joint-layer optimization methods to SHVC due to the complicated coding tree block splitting decisions and in-loop filtering process (e.g., deblocking and sample adaptive offset (SAO) filtering) in HEVC. To solve those problems, a joint-layer optimization method is proposed by adjusting the quantization parameter (QP) to optimally allocate the bit resource between layers. Furthermore, to make more proper resource allocation, the proposed method also considers the viewing probability of base and enhancement layers according to packet loss rate. Based on the viewing probability, a novel joint-layer RD cost function is proposed for joint-layer RDO encoding. The QP values of those coding tree units (CTUs) belonging to lower layers referenced by higher layers are decreased accordingly, and the QP values of those remaining CTUs are increased to keep total bits unchanged. Finally the QP values with minimal joint-layer RD cost are selected to match the viewing probability. The proposed method was applied to the third temporal level (TL-3) pictures in the Random Access configuration. Simulation results demonstrate that the proposed joint-layer optimization method can improve coding performance by 1.3% for these TL-3 pictures compared to the SHVC reference encoder without joint-layer optimization.
Huang, Min; Liu, Zhaoqing; Qiao, Liyan
2014-10-10
While the NAND flash memory is widely used as the storage medium in modern sensor systems, the aggressive shrinking of process geometry and an increase in the number of bits stored in each memory cell will inevitably degrade the reliability of NAND flash memory. In particular, it's critical to enhance metadata reliability, which occupies only a small portion of the storage space, but maintains the critical information of the file system and the address translations of the storage system. Metadata damage will cause the system to crash or a large amount of data to be lost. This paper presents Asymmetric Programming, a highly reliable metadata allocation strategy for MLC NAND flash memory storage systems. Our technique exploits for the first time the property of the multi-page architecture of MLC NAND flash memory to improve the reliability of metadata. The basic idea is to keep metadata in most significant bit (MSB) pages which are more reliable than least significant bit (LSB) pages. Thus, we can achieve relatively low bit error rates for metadata. Based on this idea, we propose two strategies to optimize address mapping and garbage collection. We have implemented Asymmetric Programming on a real hardware platform. The experimental results show that Asymmetric Programming can achieve a reduction in the number of page errors of up to 99.05% with the baseline error correction scheme.
Resolution-Adaptive Hybrid MIMO Architectures for Millimeter Wave Communications
NASA Astrophysics Data System (ADS)
Choi, Jinseok; Evans, Brian L.; Gatherer, Alan
2017-12-01
In this paper, we propose a hybrid analog-digital beamforming architecture with resolution-adaptive ADCs for millimeter wave (mmWave) receivers with large antenna arrays. We adopt array response vectors for the analog combiners and derive ADC bit-allocation (BA) solutions in closed form. The BA solutions reveal that the optimal number of ADC bits is logarithmically proportional to the RF chain's signal-to-noise ratio raised to the 1/3 power. Using the solutions, two proposed BA algorithms minimize the mean square quantization error of received analog signals under a total ADC power constraint. Contributions of this paper include 1) ADC bit-allocation algorithms to improve communication performance of a hybrid MIMO receiver, 2) approximation of the capacity with the BA algorithm as a function of channels, and 3) a worst-case analysis of the ergodic rate of the proposed MIMO receiver that quantifies system tradeoffs and serves as the lower bound. Simulation results demonstrate that the BA algorithms outperform a fixed-ADC approach in both spectral and energy efficiency, and validate the capacity and ergodic rate formula. For a power constraint equivalent to that of fixed 4-bit ADCs, the revised BA algorithm makes the quantization error negligible while achieving 22% better energy efficiency. Having negligible quantization error allows existing state-of-the-art digital beamformers to be readily applied to the proposed system.
Huang, Min; Liu, Zhaoqing; Qiao, Liyan
2014-01-01
While the NAND flash memory is widely used as the storage medium in modern sensor systems, the aggressive shrinking of process geometry and an increase in the number of bits stored in each memory cell will inevitably degrade the reliability of NAND flash memory. In particular, it's critical to enhance metadata reliability, which occupies only a small portion of the storage space, but maintains the critical information of the file system and the address translations of the storage system. Metadata damage will cause the system to crash or a large amount of data to be lost. This paper presents Asymmetric Programming, a highly reliable metadata allocation strategy for MLC NAND flash memory storage systems. Our technique exploits for the first time the property of the multi-page architecture of MLC NAND flash memory to improve the reliability of metadata. The basic idea is to keep metadata in most significant bit (MSB) pages which are more reliable than least significant bit (LSB) pages. Thus, we can achieve relatively low bit error rates for metadata. Based on this idea, we propose two strategies to optimize address mapping and garbage collection. We have implemented Asymmetric Programming on a real hardware platform. The experimental results show that Asymmetric Programming can achieve a reduction in the number of page errors of up to 99.05% with the baseline error correction scheme. PMID:25310473
Real-time implementation of second generation of audio multilevel information coding
NASA Astrophysics Data System (ADS)
Ali, Murtaza; Tewfik, Ahmed H.; Viswanathan, V.
1994-03-01
This paper describes real-time implementation of a novel wavelet- based audio compression method. This method is based on the discrete wavelet (DWT) representation of signals. A bit allocation procedure is used to allocate bits to the transform coefficients in an adaptive fashion. The bit allocation procedure has been designed to take advantage of the masking effect in human hearing. The procedure minimizes the number of bits required to represent each frame of audio signals at a fixed distortion level. The real-time implementation provides almost transparent compression of monophonic CD quality audio signals (samples at 44.1 KHz and quantized using 16 bits/sample) at bit rates of 64-78 Kbits/sec. Our implementation uses two ASPI Elf boards, each of which is built around a TI TMS230C31 DSP chip. The time required for encoding of a mono CD signal is about 92 percent of real time and that for decoding about 61 percent.
Optimal block cosine transform image coding for noisy channels
NASA Technical Reports Server (NTRS)
Vaishampayan, V.; Farvardin, N.
1986-01-01
The two dimensional block transform coding scheme based on the discrete cosine transform was studied extensively for image coding applications. While this scheme has proven to be efficient in the absence of channel errors, its performance degrades rapidly over noisy channels. A method is presented for the joint source channel coding optimization of a scheme based on the 2-D block cosine transform when the output of the encoder is to be transmitted via a memoryless design of the quantizers used for encoding the transform coefficients. This algorithm produces a set of locally optimum quantizers and the corresponding binary code assignment for the assumed transform coefficient statistics. To determine the optimum bit assignment among the transform coefficients, an algorithm was used based on the steepest descent method, which under certain convexity conditions on the performance of the channel optimized quantizers, yields the optimal bit allocation. Comprehensive simulation results for the performance of this locally optimum system over noisy channels were obtained and appropriate comparisons against a reference system designed for no channel error were rendered.
Optimal power allocation and joint source-channel coding for wireless DS-CDMA visual sensor networks
NASA Astrophysics Data System (ADS)
Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.
2011-01-01
In this paper, we propose a scheme for the optimal allocation of power, source coding rate, and channel coding rate for each of the nodes of a wireless Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network. The optimization is quality-driven, i.e. the received quality of the video that is transmitted by the nodes is optimized. The scheme takes into account the fact that the sensor nodes may be imaging scenes with varying levels of motion. Nodes that image low-motion scenes will require a lower source coding rate, so they will be able to allocate a greater portion of the total available bit rate to channel coding. Stronger channel coding will mean that such nodes will be able to transmit at lower power. This will both increase battery life and reduce interference to other nodes. Two optimization criteria are considered. One that minimizes the average video distortion of the nodes and one that minimizes the maximum distortion among the nodes. The transmission powers are allowed to take continuous values, whereas the source and channel coding rates can assume only discrete values. Thus, the resulting optimization problem lies in the field of mixed-integer optimization tasks and is solved using Particle Swarm Optimization. Our experimental results show the importance of considering the characteristics of the video sequences when determining the transmission power, source coding rate and channel coding rate for the nodes of the visual sensor network.
S-EMG signal compression based on domain transformation and spectral shape dynamic bit allocation
2014-01-01
Background Surface electromyographic (S-EMG) signal processing has been emerging in the past few years due to its non-invasive assessment of muscle function and structure and because of the fast growing rate of digital technology which brings about new solutions and applications. Factors such as sampling rate, quantization word length, number of channels and experiment duration can lead to a potentially large volume of data. Efficient transmission and/or storage of S-EMG signals are actually a research issue. That is the aim of this work. Methods This paper presents an algorithm for the data compression of surface electromyographic (S-EMG) signals recorded during isometric contractions protocol and during dynamic experimental protocols such as the cycling activity. The proposed algorithm is based on discrete wavelet transform to proceed spectral decomposition and de-correlation, on a dynamic bit allocation procedure to code the wavelets transformed coefficients, and on an entropy coding to minimize the remaining redundancy and to pack all data. The bit allocation scheme is based on mathematical decreasing spectral shape models, which indicates a shorter digital word length to code high frequency wavelets transformed coefficients. Four bit allocation spectral shape methods were implemented and compared: decreasing exponential spectral shape, decreasing linear spectral shape, decreasing square-root spectral shape and rotated hyperbolic tangent spectral shape. Results The proposed method is demonstrated and evaluated for an isometric protocol and for a dynamic protocol using a real S-EMG signal data bank. Objective performance evaluations metrics are presented. In addition, comparisons with other encoders proposed in scientific literature are shown. Conclusions The decreasing bit allocation shape applied to the quantized wavelet coefficients combined with arithmetic coding results is an efficient procedure. The performance comparisons of the proposed S-EMG data compression algorithm with the established techniques found in scientific literature have shown promising results. PMID:24571620
Power allocation strategies to minimize energy consumption in wireless body area networks.
Kailas, Aravind
2011-01-01
The wide scale deployment of wireless body area networks (WBANs) hinges on designing energy efficient communication protocols to support the reliable communication as well as to prolong the network lifetime. Cooperative communications, a relatively new idea in wireless communications, offers the benefits of multi-antenna systems, thereby improving the link reliability and boosting energy efficiency. In this short paper, the advantages of resorting to cooperative communications for WBANs in terms of minimized energy consumption are investigated. Adopting an energy model that encompasses energy consumptions in the transmitter and receiver circuits, and transmitting energy per bit, it is seen that cooperative transmission can improve energy efficiency of the wireless network. In particular, the problem of optimal power allocation is studied with the constraint of targeted outage probability. Two strategies of power allocation are considered: power allocation with and without posture state information. Using analysis and simulation-based results, two key points are demonstrated: (i) allocating power to the on-body sensors making use of the posture information can reduce the total energy consumption of the WBAN; and (ii) when the channel condition is good, it is better to recruit less relays for cooperation to enhance energy efficiency.
NASA Astrophysics Data System (ADS)
Kotchasarn, Chirawat; Saengudomlert, Poompat
We investigate the problem of joint transmitter and receiver power allocation with the minimax mean square error (MSE) criterion for uplink transmissions in a multi-carrier code division multiple access (MC-CDMA) system. The objective of power allocation is to minimize the maximum MSE among all users each of which has limited transmit power. This problem is a nonlinear optimization problem. Using the Lagrange multiplier method, we derive the Karush-Kuhn-Tucker (KKT) conditions which are necessary for a power allocation to be optimal. Numerical results indicate that, compared to the minimum total MSE criterion, the minimax MSE criterion yields a higher total MSE but provides a fairer treatment across the users. The advantages of the minimax MSE criterion are more evident when we consider the bit error rate (BER) estimates. Numerical results show that the minimax MSE criterion yields a lower maximum BER and a lower average BER. We also observe that, with the minimax MSE criterion, some users do not transmit at full power. For comparison, with the minimum total MSE criterion, all users transmit at full power. In addition, we investigate robust joint transmitter and receiver power allocation where the channel state information (CSI) is not perfect. The CSI error is assumed to be unknown but bounded by a deterministic value. This problem is formulated as a semidefinite programming (SDP) problem with bilinear matrix inequality (BMI) constraints. Numerical results show that, with imperfect CSI, the minimax MSE criterion also outperforms the minimum total MSE criterion in terms of the maximum and average BERs.
A New Approach for Fingerprint Image Compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazieres, Bertrand
1997-12-01
The FBI has been collecting fingerprint cards since 1924 and now has over 200 million of them. Digitized with 8 bits of grayscale resolution at 500 dots per inch, it means 2000 terabytes of information. Also, without any compression, transmitting a 10 Mb card over a 9600 baud connection will need 3 hours. Hence we need a compression and a compression as close to lossless as possible: all fingerprint details must be kept. A lossless compression usually do not give a better compression ratio than 2:1, which is not sufficient. Compressing these images with the JPEG standard leads to artefactsmore » which appear even at low compression rates. Therefore the FBI has chosen in 1993 a scheme of compression based on a wavelet transform, followed by a scalar quantization and an entropy coding : the so-called WSQ. This scheme allows to achieve compression ratios of 20:1 without any perceptible loss of quality. The publication of the FBI specifies a decoder, which means that many parameters can be changed in the encoding process: the type of analysis/reconstruction filters, the way the bit allocation is made, the number of Huffman tables used for the entropy coding. The first encoder used 9/7 filters for the wavelet transform and did the bit allocation using a high-rate bit assumption. Since the transform is made into 64 subbands, quite a lot of bands receive only a few bits even at an archival quality compression rate of 0.75 bit/pixel. Thus, after a brief overview of the standard, we will discuss a new approach for the bit-allocation that seems to make more sense where theory is concerned. Then we will talk about some implementation aspects, particularly for the new entropy coder and the features that allow other applications than fingerprint image compression. Finally, we will compare the performances of the new encoder to those of the first encoder.« less
NASA Astrophysics Data System (ADS)
Andreotti, Riccardo; Del Fiorentino, Paolo; Giannetti, Filippo; Lottici, Vincenzo
2016-12-01
This work proposes a distributed resource allocation (RA) algorithm for packet bit-interleaved coded OFDM transmissions in the uplink of heterogeneous networks (HetNets), characterized by small cells deployed over a macrocell area and sharing the same band. Every user allocates its transmission resources, i.e., bits per active subcarrier, coding rate, and power per subcarrier, to minimize the power consumption while both guaranteeing a target quality of service (QoS) and accounting for the interference inflicted by other users transmitting over the same band. The QoS consists of the number of information bits delivered in error-free packets per unit of time, or goodput (GP), estimated at the transmitter by resorting to an efficient effective SNR mapping technique. First, the RA problem is solved in the point-to-point case, thus deriving an approximate yet accurate closed-form expression for the power allocation (PA). Then, the interference-limited HetNet case is examined, where the RA problem is described as a non-cooperative game, providing a solution in terms of generalized Nash equilibrium. Thanks to the closed-form of the PA, the solution analysis is based on the best response concept. Hence, sufficient conditions for existence and uniqueness of the solution are analytically derived, along with a distributed algorithm capable of reaching the game equilibrium.
1997-01-01
create a dependency tree containing an optimum set of n-1 first-order dependencies. To do this, first, we select an arbitrary bit Xroot to place at the...the root to an arbitrary bit Xroot -For all other bits Xi, set bestMatchingBitInTree[Xi] to Xroot . -While not all bits have been
Joint source-channel coding for motion-compensated DCT-based SNR scalable video.
Kondi, Lisimachos P; Ishtiaq, Faisal; Katsaggelos, Aggelos K
2002-01-01
In this paper, we develop an approach toward joint source-channel coding for motion-compensated DCT-based scalable video coding and transmission. A framework for the optimal selection of the source and channel coding rates over all scalable layers is presented such that the overall distortion is minimized. The algorithm utilizes universal rate distortion characteristics which are obtained experimentally and show the sensitivity of the source encoder and decoder to channel errors. The proposed algorithm allocates the available bit rate between scalable layers and, within each layer, between source and channel coding. We present the results of this rate allocation algorithm for video transmission over a wireless channel using the H.263 Version 2 signal-to-noise ratio (SNR) scalable codec for source coding and rate-compatible punctured convolutional (RCPC) codes for channel coding. We discuss the performance of the algorithm with respect to the channel conditions, coding methodologies, layer rates, and number of layers.
Effects of plastic bits on the condition and behaviour of captive-reared pheasants.
Butler, D A; Davis, C
2010-03-27
Between 2005 and 2007, data were collected from game farms across England and Wales to examine the effects of the use of bits on the physiological condition and behaviour of pheasants. On each site, two pheasant pens kept in the same conditions were randomly allocated to either use bits or not. The behaviour and physiological conditions of pheasants in each treatment pen were assessed on the day of bitting and weekly thereafter until release. Detailed records of feed usage, medications and mortality were also kept. Bits halved the number of acts of bird-on-bird pecking, but they doubled the incidence of headshaking and scratching. Bits caused nostril inflammation and bill deformities in some birds, particularly after seven weeks of age. In all weeks after bitting, feather condition was poorer in non-bitted pheasants than in those fitted with bits. Less than 3 per cent of bitted birds had damaged skin, but in the non-bitted pens this figure increased over time to 23 per cent four weeks later. Feed use and mortality did not differ between bitted and non-bitted birds.
Perceptual compression of magnitude-detected synthetic aperture radar imagery
NASA Technical Reports Server (NTRS)
Gorman, John D.; Werness, Susan A.
1994-01-01
A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp.
Subband Image Coding with Jointly Optimized Quantizers
NASA Technical Reports Server (NTRS)
Kossentini, Faouzi; Chung, Wilson C.; Smith Mark J. T.
1995-01-01
An iterative design algorithm for the joint design of complexity- and entropy-constrained subband quantizers and associated entropy coders is proposed. Unlike conventional subband design algorithms, the proposed algorithm does not require the use of various bit allocation algorithms. Multistage residual quantizers are employed here because they provide greater control of the complexity-performance tradeoffs, and also because they allow efficient and effective high-order statistical modeling. The resulting subband coder exploits statistical dependencies within subbands, across subbands, and across stages, mainly through complexity-constrained high-order entropy coding. Experimental results demonstrate that the complexity-rate-distortion performance of the new subband coder is exceptional.
Energy Efficiency Optimization in Relay-Assisted MIMO Systems With Perfect and Statistical CSI
NASA Astrophysics Data System (ADS)
Zappone, Alessio; Cao, Pan; Jorswieck, Eduard A.
2014-01-01
A framework for energy-efficient resource allocation in a single-user, amplify-and-forward relay-assisted MIMO system is devised in this paper. Previous results in this area have focused on rate maximization or sum power minimization problems, whereas fewer results are available when bits/Joule energy efficiency (EE) optimization is the goal. The performance metric to optimize is the ratio between the system's achievable rate and the total consumed power. The optimization is carried out with respect to the source and relay precoding matrices, subject to QoS and power constraints. Such a challenging non-convex problem is tackled by means of fractional programming and and alternating maximization algorithms, for various CSI assumptions at the source and relay. In particular the scenarios of perfect CSI and those of statistical CSI for either the source-relay or the relay-destination channel are addressed. Moreover, sufficient conditions for beamforming optimality are derived, which is useful in simplifying the system design. Numerical results are provided to corroborate the validity of the theoretical findings.
Region-of-interest determination and bit-rate conversion for H.264 video transcoding
NASA Astrophysics Data System (ADS)
Huang, Shu-Fen; Chen, Mei-Juan; Tai, Kuang-Han; Li, Mian-Shiuan
2013-12-01
This paper presents a video bit-rate transcoder for baseline profile in H.264/AVC standard to fit the available channel bandwidth for the client when transmitting video bit-streams via communication channels. To maintain visual quality for low bit-rate video efficiently, this study analyzes the decoded information in the transcoder and proposes a Bayesian theorem-based region-of-interest (ROI) determination algorithm. In addition, a curve fitting scheme is employed to find the models of video bit-rate conversion. The transcoded video will conform to the target bit-rate by re-quantization according to our proposed models. After integrating the ROI detection method and the bit-rate transcoding models, the ROI-based transcoder allocates more coding bits to ROI regions and reduces the complexity of the re-encoding procedure for non-ROI regions. Hence, it not only keeps the coding quality but improves the efficiency of the video transcoding for low target bit-rates and makes the real-time transcoding more practical. Experimental results show that the proposed framework gets significantly better visual quality.
NASA Technical Reports Server (NTRS)
Larman, B. T.
1981-01-01
The conduction of the Project Galileo Orbiter, with 18 microcomputers and the equivalent of 360K 8-bit bytes of memory contained within two major engineering subsystems and eight science instruments, requires that the key onboard computer system resources be managed in a very rigorous manner. Attention is given to the rationale behind the project policy, the development stage, the preliminary design stage, the design/implementation stage, and the optimization or 'scrubbing' stage. The implementation of the policy is discussed, taking into account the development of the Attitude and Articulation Control Subsystem (AACS) and the Command and Data Subsystem (CDS), the reporting of margin status, and the response to allocation oversubscription.
Wireless visual sensor network resource allocation using cross-layer optimization
NASA Astrophysics Data System (ADS)
Bentley, Elizabeth S.; Matyjas, John D.; Medley, Michael J.; Kondi, Lisimachos P.
2009-01-01
In this paper, we propose an approach to manage network resources for a Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network where nodes monitor scenes with varying levels of motion. It uses cross-layer optimization across the physical layer, the link layer and the application layer. Our technique simultaneously assigns a source coding rate, a channel coding rate, and a power level to all nodes in the network based on one of two criteria that maximize the quality of video of the entire network as a whole, subject to a constraint on the total chip rate. One criterion results in the minimal average end-to-end distortion amongst all nodes, while the other criterion minimizes the maximum distortion of the network. Our approach allows one to determine the capacity of the visual sensor network based on the number of nodes and the quality of video that must be transmitted. For bandwidth-limited applications, one can also determine the minimum bandwidth needed to accommodate a number of nodes with a specific target chip rate. Video captured by a sensor node camera is encoded and decoded using the H.264 video codec by a centralized control unit at the network layer. To reduce the computational complexity of the solution, Universal Rate-Distortion Characteristics (URDCs) are obtained experimentally to relate bit error probabilities to the distortion of corrupted video. Bit error rates are found first by using Viterbi's upper bounds on the bit error probability and second, by simulating nodes transmitting data spread by Total Square Correlation (TSC) codes over a Rayleigh-faded DS-CDMA channel and receiving that data using Auxiliary Vector (AV) filtering.
A joint source-channel distortion model for JPEG compressed images.
Sabir, Muhammad F; Sheikh, Hamid Rahim; Heath, Robert W; Bovik, Alan C
2006-06-01
The need for efficient joint source-channel coding (JSCC) is growing as new multimedia services are introduced in commercial wireless communication systems. An important component of practical JSCC schemes is a distortion model that can predict the quality of compressed digital multimedia such as images and videos. The usual approach in the JSCC literature for quantifying the distortion due to quantization and channel errors is to estimate it for each image using the statistics of the image for a given signal-to-noise ratio (SNR). This is not an efficient approach in the design of real-time systems because of the computational complexity. A more useful and practical approach would be to design JSCC techniques that minimize average distortion for a large set of images based on some distortion model rather than carrying out per-image optimizations. However, models for estimating average distortion due to quantization and channel bit errors in a combined fashion for a large set of images are not available for practical image or video coding standards employing entropy coding and differential coding. This paper presents a statistical model for estimating the distortion introduced in progressive JPEG compressed images due to quantization and channel bit errors in a joint manner. Statistical modeling of important compression techniques such as Huffman coding, differential pulse-coding modulation, and run-length coding are included in the model. Examples show that the distortion in terms of peak signal-to-noise ratio (PSNR) can be predicted within a 2-dB maximum error over a variety of compression ratios and bit-error rates. To illustrate the utility of the proposed model, we present an unequal power allocation scheme as a simple application of our model. Results show that it gives a PSNR gain of around 6.5 dB at low SNRs, as compared to equal power allocation.
New PDC bit optimizes drilling performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besson, A.; Gudulec, P. le; Delwiche, R.
1996-05-01
The lithology in northwest Argentina contains a major section where polycrystalline diamond compact (PDC) bits have not succeeded in the past. The section consists of dense shales and cemented sandstone stringers with limestone laminations. Conventional PDC bits experienced premature failures in the section. A new generation PDC bit tripled rate of penetration (ROP) and increased by five times the potential footage per bit. Recent improvements in PDC bit technology that enabled the improved performance include: the ability to control the PDC cutter quality; use of an advanced cutter lay out defined by 3D software; using cutter face design code formore » optimized cleaning and cooling; and, mastering vibration reduction features, including spiraled blades.« less
Wang, Wei; Wang, Chunqiu; Zhao, Min
2014-03-01
To ease the burdens on the hospitalization capacity, an emerging swallowable-capsule technology has evolved to serve as a remote gastrointestinal (GI) disease examination technique with the aid of the wireless body sensor network (WBSN). Secure multimedia transmission in such a swallowable-capsule-based WBSN faces critical challenges including energy efficiency and content quality guarantee. In this paper, we propose a joint resource allocation and stream authentication scheme to maintain the best possible video quality while ensuring security and energy efficiency in GI-WBSNs. The contribution of this research is twofold. First, we establish a unique signature-hash (S-H) diversity approach in the authentication domain to optimize video authentication robustness and the authentication bit rate overhead over a wireless channel. Based on the full exploration of S-H authentication diversity, we propose a new two-tier signature-hash (TTSH) stream authentication scheme to improve the video quality by reducing authentication dependence overhead while protecting its integrity. Second, we propose to combine this authentication scheme with a unique S-H oriented unequal resource allocation (URA) scheme to improve the energy-distortion-authentication performance of wireless video delivery in GI-WBSN. Our analysis and simulation results demonstrate that the proposed TTSH with URA scheme achieves considerable gain in both authenticated video quality and energy efficiency.
Minimum variance optimal rate allocation for multiplexed H.264/AVC bitstreams.
Tagliasacchi, Marco; Valenzise, Giuseppe; Tubaro, Stefano
2008-07-01
Consider the problem of transmitting multiple video streams to fulfill a constant bandwidth constraint. The available bit budget needs to be distributed across the sequences in order to meet some optimality criteria. For example, one might want to minimize the average distortion or, alternatively, minimize the distortion variance, in order to keep almost constant quality among the encoded sequences. By working in the rho-domain, we propose a low-delay rate allocation scheme that, at each time instant, provides a closed form solution for either the aforementioned problems. We show that minimizing the distortion variance instead of the average distortion leads, for each of the multiplexed sequences, to a coding penalty less than 0.5 dB, in terms of average PSNR. In addition, our analysis provides an explicit relationship between model parameters and this loss. In order to smooth the distortion also along time, we accommodate a shared encoder buffer to compensate for rate fluctuations. Although the proposed scheme is general, and it can be adopted for any video and image coding standard, we provide experimental evidence by transcoding bitstreams encoded using the state-of-the-art H.264/AVC standard. The results of our simulations reveal that is it possible to achieve distortion smoothing both in time and across the sequences, without sacrificing coding efficiency.
1990-01-01
the six fields will have two million cell locations. The table below shows the total allocation of 392 chips across fields and banks. To allow for...future growth, we allocate 16 wires for addressing both the rows and columns. eU 4 MBit locations bytes bits Chips (millions) (millions) (millions) per...sources apt to appear in most problems. If material parameters change during a run, then time must be allocated to read these constants into their
DCTune Perceptual Optimization of Compressed Dental X-Rays
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Null, Cynthia H. (Technical Monitor)
1996-01-01
In current dental practice, x-rays of completed dental work are often sent to the insurer for verification. It is faster and cheaper to transmit instead digital scans of the x-rays. Further economies result if the images are sent in compressed form. DCTune is a technology for optimizing DCT (digital communication technology) quantization matrices to yield maximum perceptual quality for a given bit-rate, or minimum bit-rate for a given perceptual quality. Perceptual optimization of DCT color quantization matrices. In addition, the technology provides a means of setting the perceptual quality of compressed imagery in a systematic way. The purpose of this research was, with respect to dental x-rays, 1) to verify the advantage of DCTune over standard JPEG (Joint Photographic Experts Group), 2) to verify the quality control feature of DCTune, and 3) to discover regularities in the optimized matrices of a set of images. We optimized matrices for a total of 20 images at two resolutions (150 and 300 dpi) and four bit-rates (0.25, 0.5, 0.75, 1.0 bits/pixel), and examined structural regularities in the resulting matrices. We also conducted psychophysical studies (1) to discover the DCTune quality level at which the images became 'visually lossless,' and (2) to rate the relative quality of DCTune and standard JPEG images at various bitrates. Results include: (1) At both resolutions, DCTune quality is a linear function of bit-rate. (2) DCTune quantization matrices for all images at all bitrates and resolutions are modeled well by an inverse Gaussian, with parameters of amplitude and width. (3) As bit-rate is varied, optimal values of both amplitude and width covary in an approximately linear fashion. (4) Both amplitude and width vary in systematic and orderly fashion with either bit-rate or DCTune quality; simple mathematical functions serve to describe these relationships. (5) In going from 150 to 300 dpi, amplitude parameters are substantially lower and widths larger at corresponding bit-rates or qualities. (6) Visually lossless compression occurs at a DCTune quality value of about 1. (7) At 0.25 bits/pixel, comparative ratings give DCTune a substantial advantage over standard JPEG. As visually lossless bit-rates are approached, this advantage of necessity diminishes. We have concluded that DCTune optimized quantization matrices provide better visual quality than standard JPEG. Meaningful quality levels may be specified by means of the DCTune metric. Optimized matrices are very similar across the class of dental x-rays, suggesting the possibility of a 'class-optimal' matrix. DCTune technology appears to provide some value in the context of compressed dental x-rays.
Detecting Hardware-assisted Hypervisor Rootkits within Nested Virtualized Environments
2012-06-14
least the minimum required for the guest OS and click “Next”. For 64-bit Windows 7 the minimum required is 2048 MB (Figure 66). Figure 66. Memory...prompted for Memory, allocate at least the minimum required for the guest OS, for 64-bit Windows 7 the minimum required is 2048 MB (Figure 79...130 21. Within the virtual disk creation wizard, select VDI for the file type (Figure 81). Figure 81. Select File Type 22. Select Dynamically
Hash Bit Selection for Nearest Neighbor Search.
Xianglong Liu; Junfeng He; Shih-Fu Chang
2017-11-01
To overcome the barrier of storage and computation when dealing with gigantic-scale data sets, compact hashing has been studied extensively to approximate the nearest neighbor search. Despite the recent advances, critical design issues remain open in how to select the right features, hashing algorithms, and/or parameter settings. In this paper, we address these by posing an optimal hash bit selection problem, in which an optimal subset of hash bits are selected from a pool of candidate bits generated by different features, algorithms, or parameters. Inspired by the optimization criteria used in existing hashing algorithms, we adopt the bit reliability and their complementarity as the selection criteria that can be carefully tailored for hashing performance in different tasks. Then, the bit selection solution is discovered by finding the best tradeoff between search accuracy and time using a modified dynamic programming method. To further reduce the computational complexity, we employ the pairwise relationship among hash bits to approximate the high-order independence property, and formulate it as an efficient quadratic programming method that is theoretically equivalent to the normalized dominant set problem in a vertex- and edge-weighted graph. Extensive large-scale experiments have been conducted under several important application scenarios of hash techniques, where our bit selection framework can achieve superior performance over both the naive selection methods and the state-of-the-art hashing algorithms, with significant accuracy gains ranging from 10% to 50%, relatively.
Toward a perceptual video-quality metric
NASA Astrophysics Data System (ADS)
Watson, Andrew B.
1998-07-01
The advent of widespread distribution of digital video creates a need for automated methods for evaluating the visual quality of digital video. This is particularly so since most digital video is compressed using lossy methods, which involve the controlled introduction of potentially visible artifacts. Compounding the problem is the bursty nature of digital video, which requires adaptive bit allocation based on visual quality metrics, and the economic need to reduce bit-rate to the lowest level that yields acceptable quality. In previous work, we have developed visual quality metrics for evaluating, controlling,a nd optimizing the quality of compressed still images. These metrics incorporate simplified models of human visual sensitivity to spatial and chromatic visual signals. Here I describe a new video quality metric that is an extension of these still image metrics into the time domain. Like the still image metrics, it is based on the Discrete Cosine Transform. An effort has been made to minimize the amount of memory and computation required by the metric, in order that might be applied in the widest range of applications. To calibrate the basic sensitivity of this metric to spatial and temporal signals we have made measurements of visual thresholds for temporally varying samples of DCT quantization noise.
Toward Large-Graph Comparison Measures to Understand Internet Topology Dynamics
2013-09-01
continuously from randomly selected vantage points in these monitors to destination IP addresses . From each IPv4 /24 prefix on the Internet, a destination is...expected to be more similar. This was verified when the esd and vsd measures applied to this dataset gave a low reading 5 An IPv4 address is a 32-bit...integer value. /24 is the prefix of the IPv4 network starting at a given address , having 24 bits allocated for the network prefix. 6 This utility
Methodology and method and apparatus for signaling with capacity optimized constellations
NASA Technical Reports Server (NTRS)
Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)
2011-01-01
Communication systems having transmitter, includes a coder configured to receive user bits and output encoded bits at an expanded output encoded bit rate, a mapper configured to map encoded bits to symbols in a symbol constellation, a modulator configured to generate a signal for transmission via the communication channel using symbols generated by the mapper. In addition, the receiver includes a demodulator configured to demodulate the received signal via the communication channel, a demapper configured to estimate likelihoods from the demodulated signal, a decoder that is configured to estimate decoded bits from the likelihoods generated by the demapper. Furthermore, the symbol constellation is a capacity optimized geometrically spaced symbol constellation that provides a given capacity at a reduced signal-to-noise ratio compared to a signal constellation that maximizes d.sub.min.
New PDC bit design reduces vibrational problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mensa-Wilmot, G.; Alexander, W.L.
1995-05-22
A new polycrystalline diamond compact (PDC) bit design combines cutter layout, load balancing, unsymmetrical blades and gauge pads, and spiraled blades to reduce problematic vibrations without limiting drilling efficiency. Stabilization improves drilling efficiency and also improves dull characteristics for PDC bits. Some PDC bit designs mitigate one vibrational mode (such as bit whirl) through drilling parameter manipulation yet cause or excite another vibrational mode (such as slip-stick). An alternative vibration-reducing concept which places no limitations on the operational environment of a PDC bit has been developed to ensure optimization of the bit`s available mechanical energy. The paper discusses bit stabilization,more » vibration reduction, vibration prevention, cutter arrangement, load balancing, blade layout, spiraled blades, and bit design.« less
Fuel management optimization using genetic algorithms and expert knowledge
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1996-09-01
The CIGARO fuel management optimization code based on genetic algorithms is described and tested. The test problem optimized the core lifetime for a pressurized water reactor with a penalty function constraint on the peak normalized power. A bit-string genotype encoded the loading patterns, and genotype bias was reduced with additional bits. Expert knowledge about fuel management was incorporated into the genetic algorithm. Regional crossover exchanged physically adjacent fuel assemblies and improved the optimization slightly. Biasing the initial population toward a known priority table significantly improved the optimization.
Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks
Li, Shanshan; Zhou, Xiaotian; Wang, Cheng-Xiang; Yuan, Dongfeng; Zhang, Wensheng
2017-01-01
In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement. PMID:28677636
Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks.
Li, Shanshan; Zhou, Xiaotian; Wang, Cheng-Xiang; Yuan, Dongfeng; Zhang, Wensheng
2017-07-04
In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement.
Numerical simulation study on the optimization design of the crown shape of PDC drill bit.
Ju, Pei; Wang, Zhenquan; Zhai, Yinghu; Su, Dongyu; Zhang, Yunchi; Cao, Zhaohui
The design of bit crown is an important part of polycrystalline diamond compact (PDC) bit design, although predecessors have done a lot of researches on the design principles of PDC bit crown, the study of the law about rock-breaking energy consumption according to different bit crown shape is not very systematic, and the mathematical model of design is over-simplified. In order to analyze the relation between rock-breaking energy consumption and bit crown shape quantificationally, the paper puts forward an idea to take "per revolution-specific rock-breaking work" as objective function, and analyzes the relationship between rock properties, inner cone angle, outer cone arc radius, and per revolution-specific rock-breaking work by means of explicit dynamic finite element method. Results show that the change law between per revolution-specific rock-breaking work and the radius of gyration is similar for rocks with different properties, it is beneficial to decrease rock-breaking energy consumption by decreasing inner cone angle or outer cone arc radius. Of course, we should also consider hydraulic structure and processing technology in the optimization design of PDC bit crown.
Improving soft FEC performance for higher-order modulations via optimized bit channel mappings.
Häger, Christian; Amat, Alexandre Graell I; Brännström, Fredrik; Alvarado, Alex; Agrell, Erik
2014-06-16
Soft forward error correction with higher-order modulations is often implemented in practice via the pragmatic bit-interleaved coded modulation paradigm, where a single binary code is mapped to a nonbinary modulation. In this paper, we study the optimization of the mapping of the coded bits to the modulation bits for a polarization-multiplexed fiber-optical system without optical inline dispersion compensation. Our focus is on protograph-based low-density parity-check (LDPC) codes which allow for an efficient hardware implementation, suitable for high-speed optical communications. The optimization is applied to the AR4JA protograph family, and further extended to protograph-based spatially coupled LDPC codes assuming a windowed decoder. Full field simulations via the split-step Fourier method are used to verify the analysis. The results show performance gains of up to 0.25 dB, which translate into a possible extension of the transmission reach by roughly up to 8%, without significantly increasing the system complexity.
Memory-efficient decoding of LDPC codes
NASA Technical Reports Server (NTRS)
Kwok-San Lee, Jason; Thorpe, Jeremy; Hawkins, Jon
2005-01-01
We present a low-complexity quantization scheme for the implementation of regular (3,6) LDPC codes. The quantization parameters are optimized to maximize the mutual information between the source and the quantized messages. Using this non-uniform quantized belief propagation algorithm, we have simulated that an optimized 3-bit quantizer operates with 0.2dB implementation loss relative to a floating point decoder, and an optimized 4-bit quantizer operates less than 0.1dB quantization loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Black; Arnis Judzis
2005-09-30
This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2004 through September 2005. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for amore » next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all Phase 1 testing and is planning Phase 2 development.« less
Adaptive quantization-parameter clip scheme for smooth quality in H.264/AVC.
Hu, Sudeng; Wang, Hanli; Kwong, Sam
2012-04-01
In this paper, we investigate the issues over the smooth quality and the smooth bit rate during rate control (RC) in H.264/AVC. An adaptive quantization-parameter (Q(p)) clip scheme is proposed to optimize the quality smoothness while keeping the bit-rate fluctuation at an acceptable level. First, the frame complexity variation is studied by defining a complexity ratio between two nearby frames. Second, the range of the generated bits is analyzed to prevent the encoder buffer from overflow and underflow. Third, based on the safe range of the generated bits, an optimal Q(p) clip range is developed to reduce the quality fluctuation. Experimental results demonstrate that the proposed Q(p) clip scheme can achieve excellent performance in quality smoothness and buffer regulation.
Analysis and Research on the Optimal Allocation of Regional Water Resources
NASA Astrophysics Data System (ADS)
rui-chao, Xi; yu-jie, Gu
2018-06-01
Starting from the basic concept of optimal allocation of water resources, taking the allocation of water resources in Tianjin as an example, the present situation of water resources in Tianjin is analyzed, and the multi-objective optimal allocation model of water resources is used to optimize the allocation of water resources. We use LINGO to solve the model, get the optimal allocation plan that meets the economic and social benefits, and put forward relevant policies and regulations, so as to provide theoretical which is basis for alleviating and solving the problem of water shortage.
Deterministic switching of a magnetoelastic single-domain nano-ellipse using bending
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Cheng-Yen; Sepulveda, Abdon; Keller, Scott
2016-03-21
In this paper, a fully coupled analytical model between elastodynamics with micromagnetics is used to study the switching energies using voltage induced mechanical bending of a magnetoelastic bit. The bit consists of a single domain magnetoelastic nano-ellipse deposited on a thin film piezoelectric thin film (500 nm) attached to a thick substrate (0.5 mm) with patterned electrodes underneath the nano-dot. A voltage applied to the electrodes produces out of plane deformation with bending moments induced in the magnetoelastic bit modifying the magnetic anisotropy. To minimize the energy, two design stages are used. In the first stage, the geometry and bias field (H{submore » b}) of the bit are optimized to minimize the strain energy required to rotate between two stable states. In the second stage, the bit's geometry is fixed, and the electrode position and control mechanism is optimized. The electrical energy input is about 200 (aJ) which is approximately two orders of magnitude lower than spin transfer torque approaches.« less
Design of replica bit line control circuit to optimize power for SRAM
NASA Astrophysics Data System (ADS)
Pengjun, Wang; Keji, Zhou; Huihong, Zhang; Daohui, Gong
2016-12-01
A design of a replica bit line control circuit to optimize power for SRAM is proposed. The proposed design overcomes the limitations of the traditional replica bit line control circuit, which cannot shut off the word line in time. In the novel design, the delay of word line enable and disable paths are balanced. Thus, the word line can be opened and shut off in time. Moreover, the chip select signal is decomposed, which prevents feedback oscillations caused by the replica bit line and the replica word line. As a result, the switch power caused by unnecessary discharging of the bit line is reduced. A 2-kb SRAM is fully custom designed in an SMIC 65-nm CMOS process. The traditional replica bit line control circuit and the new replica bit line control circuit are used in the designed SRAM, and their performances are compared with each other. The experimental results show that at a supply voltage of 1.2 V, the switch power consumption of the memory array can be reduced by 53.7%. Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LQ14F040001), the National Natural Science Foundation of China (Nos. 61274132, 61234002, 61474068), and the K. C. Wong Magna Fund in Ningbo University.
NASA Astrophysics Data System (ADS)
Canright, David; Osvik, Dag Arne
We explore ways to reduce the number of bit operations required to implement AES. One way involves optimizing the composite field approach for entire rounds of AES. Another way is integrating the Galois multiplications of MixColumns with the linear transformations of the S-box. Combined with careful optimizations, these reduce the number of bit operations to encrypt one block by 9.0%, compared to earlier work that used the composite field only in the S-box. For decryption, the improvement is 13.5%. This work may be useful both as a starting point for a bit-sliced software implementation, where reducing operations increases speed, and also for hardware with limited resources.
Image compression software for the SOHO LASCO and EIT experiments
NASA Technical Reports Server (NTRS)
Grunes, Mitchell R.; Howard, Russell A.; Hoppel, Karl; Mango, Stephen A.; Wang, Dennis
1994-01-01
This paper describes the lossless and lossy image compression algorithms to be used on board the Solar Heliospheric Observatory (SOHO) in conjunction with the Large Angle Spectrometric Coronograph and Extreme Ultraviolet Imaging Telescope experiments. It also shows preliminary results obtained using similar prior imagery and discusses the lossy compression artifacts which will result. This paper is in part intended for the use of SOHO investigators who need to understand the results of SOHO compression in order to better allocate the transmission bits which they have been allocated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnis Judzis
2006-03-01
Operators continue to look for ways to improve hard rock drilling performance through emerging technologies. A consortium of Department of Energy, operator and industry participants put together an effort to test and optimize mud driven fluid hammers as one emerging technology that has shown promise to increase penetration rates in hard rock. The thrust of this program has been to test and record the performance of fluid hammers in full scale test conditions including, hard formations at simulated depth, high density/high solids drilling muds, and realistic fluid power levels. This paper details the testing and results of testing two 7more » 3/4 inch diameter mud hammers with 8 1/2 inch hammer bits. A Novatek MHN5 and an SDS Digger FH185 mud hammer were tested with several bit types, with performance being compared to a conventional (IADC Code 537) tricone bit. These tools functionally operated in all of the simulated downhole environments. The performance was in the range of the baseline ticone or better at lower borehole pressures, but at higher borehole pressures the performance was in the lower range or below that of the baseline tricone bit. A new drilling mode was observed, while operating the MHN5 mud hammer. This mode was noticed as the weight on bit (WOB) was in transition from low to high applied load. During this new ''transition drilling mode'', performance was substantially improved and in some cases outperformed the tricone bit. Improvements were noted for the SDS tool while drilling with a more aggressive bit design. Future work includes the optimization of these or the next generation tools for operating in higher density and higher borehole pressure conditions and improving bit design and technology based on the knowledge gained from this test program.« less
Bandwidth reduction for video-on-demand broadcasting using secondary content insertion
NASA Astrophysics Data System (ADS)
Golynski, Alexander; Lopez-Ortiz, Alejandro; Poirier, Guillaume; Quimper, Claude-Guy
2005-01-01
An optimal broadcasting scheme under the presence of secondary content (i.e. advertisements) is proposed. The proposed scheme works both for movies encoded in a Constant Bit Rate (CBR) or a Variable Bit Rate (VBR) format. It is shown experimentally that secondary content in movies can make Video-on-Demand (VoD) broadcasting systems more efficient. An efficient algorithm is given to compute the optimal broadcasting schedule with secondary content, which in particular significantly improves over the best previously known algorithm for computing the optimal broadcasting schedule without secondary content.
A compact presentation of DSN array telemetry performance
NASA Technical Reports Server (NTRS)
Greenhall, C. A.
1982-01-01
The telemetry performance of an arrayed receiver system, including radio losses, is often given by a family of curves giving bit error rate vs bit SNR, with tracking loop SNR at one receiver held constant along each curve. This study shows how to process this information into a more compact, useful format in which the minimal total signal power and optimal carrier suppression, for a given fixed bit error rate, are plotted vs data rate. Examples for baseband-only combining are given. When appropriate dimensionless variables are used for plotting, receiver arrays with different numbers of antennas and different threshold tracking loop bandwidths look much alike, and a universal curve for optimal carrier suppression emerges.
Methods to ensure optimal off-bottom and drill bit distance under pellet impact drilling
NASA Astrophysics Data System (ADS)
Kovalyov, A. V.; Isaev, Ye D.; Vagapov, A. R.; Urnish, V. V.; Ulyanova, O. S.
2016-09-01
The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rock for various purposes. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The paper presents the survey of methods ensuring an optimal off-bottom and a drill bit distance. The analysis of methods shows that the issue is topical and requires further research.
NASA Astrophysics Data System (ADS)
Zinke, Stephan
2017-02-01
Memory sensitive applications for remote sensing data require memory-optimized data types in remote sensing products. Hierarchical Data Format version 5 (HDF5) offers user defined floating point numbers and integers and the n-bit filter to create data types optimized for memory consumption. The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) applies a compaction scheme to the disseminated products of the Day and Night Band (DNB) data of Suomi National Polar-orbiting Partnership (S-NPP) satellite's instrument Visible Infrared Imager Radiometer Suite (VIIRS) through the EUMETSAT Advanced Retransmission Service, converting the original 32 bits floating point numbers to user defined floating point numbers in combination with the n-bit filter for the radiance dataset of the product. The radiance dataset requires a floating point representation due to the high dynamic range of the DNB. A compression factor of 1.96 is reached by using an automatically determined exponent size and an 8 bits trailing significand and thus reducing the bandwidth requirements for dissemination. It is shown how the parameters needed for user defined floating point numbers are derived or determined automatically based on the data present in a product.
Bit selection using field drilling data and mathematical investigation
NASA Astrophysics Data System (ADS)
Momeni, M. S.; Ridha, S.; Hosseini, S. J.; Meyghani, B.; Emamian, S. S.
2018-03-01
A drilling process will not be complete without the usage of a drill bit. Therefore, bit selection is considered to be an important task in drilling optimization process. To select a bit is considered as an important issue in planning and designing a well. This is simply because the cost of drilling bit in total cost is quite high. Thus, to perform this task, aback propagation ANN Model is developed. This is done by training the model using several wells and it is done by the usage of drilling bit records from offset wells. In this project, two models are developed by the usage of the ANN. One is to find predicted IADC bit code and one is to find Predicted ROP. Stage 1 was to find the IADC bit code by using all the given filed data. The output is the Targeted IADC bit code. Stage 2 was to find the Predicted ROP values using the gained IADC bit code in Stage 1. Next is Stage 3 where the Predicted ROP value is used back again in the data set to gain Predicted IADC bit code value. The output is the Predicted IADC bit code. Thus, at the end, there are two models that give the Predicted ROP values and Predicted IADC bit code values.
NASA Astrophysics Data System (ADS)
Huang, Zhiqiang; Xie, Dou; Xie, Bing; Zhang, Wenlin; Zhang, Fuxiao; He, Lei
2018-03-01
The undesired stick-slip vibration is the main source of PDC bit failure, such as tooth fracture and tooth loss. So, the study of PDC bit failure base on stick-slip vibration analysis is crucial to prolonging the service life of PDC bit and improving ROP (rate of penetration). For this purpose, a piecewise-smooth torsional model with 4-DOF (degree of freedom) of drilling string system plus PDC bit is proposed to simulate non-impact drilling. In this model, both the friction and cutting behaviors of PDC bit are innovatively introduced. The results reveal that PDC bit is easier to fail than other drilling tools due to the severer stick-slip vibration. Moreover, reducing WOB (weight on bit) and improving driving torque can effectively mitigate the stick-slip vibration of PDC bit. Therefore, PDC bit failure can be alleviated by optimizing drilling parameters. In addition, a new 4-DOF torsional model is established to simulate torsional impact drilling and the effect of torsional impact on PDC bit's stick-slip vibration is analyzed by use of an engineering example. It can be concluded that torsional impact can mitigate stick-slip vibration, prolonging the service life of PDC bit and improving drilling efficiency, which is consistent with the field experiment results.
Optimal resource allocation for defense of targets based on differing measures of attractiveness.
Bier, Vicki M; Haphuriwat, Naraphorn; Menoyo, Jaime; Zimmerman, Rae; Culpen, Alison M
2008-06-01
This article describes the results of applying a rigorous computational model to the problem of the optimal defensive resource allocation among potential terrorist targets. In particular, our study explores how the optimal budget allocation depends on the cost effectiveness of security investments, the defender's valuations of the various targets, and the extent of the defender's uncertainty about the attacker's target valuations. We use expected property damage, expected fatalities, and two metrics of critical infrastructure (airports and bridges) as our measures of target attractiveness. Our results show that the cost effectiveness of security investment has a large impact on the optimal budget allocation. Also, different measures of target attractiveness yield different optimal budget allocations, emphasizing the importance of developing more realistic terrorist objective functions for use in budget allocation decisions for homeland security.
Design of a 0.13-μm CMOS cascade expandable ΣΔ modulator for multi-standard RF telecom systems
NASA Astrophysics Data System (ADS)
Morgado, Alonso; del Río, Rocío; de la Rosa, José M.
2007-05-01
This paper reports a 130-nm CMOS programmable cascade ΣΔ modulator for multi-standard wireless terminals, capable of operating on three standards: GSM, Bluetooth and UMTS. The modulator is reconfigured at both architecture- and circuit- level in order to adapt its performance to the different standards specifications with optimized power consumption. The design of the building blocks is based upon a top-down CAD methodology that combines simulation and statistical optimization at different levels of the system hierarchy. Transistor-level simulations show correct operation for all standards, featuring 13-bit, 11.3-bit and 9-bit effective resolution within 200-kHz, 1-MHz and 4-MHz bandwidth, respectively.
Optimal Time-Resource Allocation for Energy-Efficient Physical Activity Detection
Thatte, Gautam; Li, Ming; Lee, Sangwon; Emken, B. Adar; Annavaram, Murali; Narayanan, Shrikanth; Spruijt-Metz, Donna; Mitra, Urbashi
2011-01-01
The optimal allocation of samples for physical activity detection in a wireless body area network for health-monitoring is considered. The number of biometric samples collected at the mobile device fusion center, from both device-internal and external Bluetooth heterogeneous sensors, is optimized to minimize the transmission power for a fixed number of samples, and to meet a performance requirement defined using the probability of misclassification between multiple hypotheses. A filter-based feature selection method determines an optimal feature set for classification, and a correlated Gaussian model is considered. Using experimental data from overweight adolescent subjects, it is found that allocating a greater proportion of samples to sensors which better discriminate between certain activity levels can result in either a lower probability of error or energy-savings ranging from 18% to 22%, in comparison to equal allocation of samples. The current activity of the subjects and the performance requirements do not significantly affect the optimal allocation, but employing personalized models results in improved energy-efficiency. As the number of samples is an integer, an exhaustive search to determine the optimal allocation is typical, but computationally expensive. To this end, an alternate, continuous-valued vector optimization is derived which yields approximately optimal allocations and can be implemented on the mobile fusion center due to its significantly lower complexity. PMID:21796237
Fitness Probability Distribution of Bit-Flip Mutation.
Chicano, Francisco; Sutton, Andrew M; Whitley, L Darrell; Alba, Enrique
2015-01-01
Bit-flip mutation is a common mutation operator for evolutionary algorithms applied to optimize functions over binary strings. In this paper, we develop results from the theory of landscapes and Krawtchouk polynomials to exactly compute the probability distribution of fitness values of a binary string undergoing uniform bit-flip mutation. We prove that this probability distribution can be expressed as a polynomial in p, the probability of flipping each bit. We analyze these polynomials and provide closed-form expressions for an easy linear problem (Onemax), and an NP-hard problem, MAX-SAT. We also discuss a connection of the results with runtime analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aswad, Z.A.R.; Al-Hadad, S.M.S.
1983-03-01
The powerful Rosenbrock search technique, which optimizes both the search directions using the Gram-Schmidt procedure and the step size using the Fibonacci line search method, has been used to optimize the drilling program of an oil well drilled in Bai-Hassan oil field in Kirkuk, Iran, using the twodimensional drilling model of Galle and Woods. This model shows the effect of the two major controllable variables, weight on bit and rotary speed, on the drilling rate, while considering other controllable variables such as the mud properties, hydrostatic pressure, hydraulic design, and bit selection. The effect of tooth dullness on the drillingmore » rate is also considered. Increasing the weight on the drill bit with a small increase or decrease in ratary speed resulted in a significant decrease in the drilling cost for most bit runs. It was found that a 48% reduction in this cost and a 97-hour savings in the total drilling time was possible under certain conditions.« less
Electronic Photography at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Holm, Jack; Judge, Nancianne
1995-01-01
An electronic photography facility has been established in the Imaging & Photographic Technology Section, Visual Imaging Branch, at the NASA Langley Research Center (LaRC). The purpose of this facility is to provide the LaRC community with access to digital imaging technology. In particular, capabilities have been established for image scanning, direct image capture, optimized image processing for storage, image enhancement, and optimized device dependent image processing for output. Unique approaches include: evaluation and extraction of the entire film information content through scanning; standardization of image file tone reproduction characteristics for optimal bit utilization and viewing; education of digital imaging personnel on the effects of sampling and quantization to minimize image processing related information loss; investigation of the use of small kernel optimal filters for image restoration; characterization of a large array of output devices and development of image processing protocols for standardized output. Currently, the laboratory has a large collection of digital image files which contain essentially all the information present on the original films. These files are stored at 8-bits per color, but the initial image processing was done at higher bit depths and/or resolutions so that the full 8-bits are used in the stored files. The tone reproduction of these files has also been optimized so the available levels are distributed according to visual perceptibility. Look up tables are available which modify these files for standardized output on various devices, although color reproduction has been allowed to float to some extent to allow for full utilization of output device gamut.
New scene change control scheme based on pseudoskipped picture
NASA Astrophysics Data System (ADS)
Lee, Youngsun; Lee, Jinwhan; Chang, Hyunsik; Nam, Jae Y.
1997-01-01
A new scene change control scheme which improves the video coding performance for sequences that have many scene changed pictures is proposed in this paper. The scene changed pictures except intra-coded picture usually need more bits than normal pictures in order to maintain constant picture quality. The major idea of this paper is how to obtain extra bits which are needed to encode scene changed pictures. We encode a B picture which is located before a scene changed picture like a skipped picture. We call such a B picture as a pseudo-skipped picture. By generating the pseudo-skipped picture like a skipped picture. We call such a B picture as a pseudo-skipped picture. By generating the pseudo-skipped picture, we can save some bits and they are added to the originally allocated target bits to encode the scene changed picture. The simulation results show that the proposed algorithm improves encoding performance about 0.5 to approximately 2.0 dB of PSNR compared to MPEG-2 TM5 rate controls scheme. In addition, the suggested algorithm is compatible with MPEG-2 video syntax and the picture repetition is not recognizable.
NASA Astrophysics Data System (ADS)
Stefan Devlin, Benjamin; Nakura, Toru; Ikeda, Makoto; Asada, Kunihiro
We detail a self synchronous field programmable gate array (SSFPGA) with dual-pipeline (DP) architecture to conceal pre-charge time for dynamic logic, and its throughput optimization by using pipeline alignment implemented on benchmark circuits. A self synchronous LUT (SSLUT) consists of a three input tree-type structure with 8bits of SRAM for programming. A self synchronous switch box (SSSB) consists of both pass transistors and buffers to route signals, with 12bits of SRAM. One common block with one SSLUT and one SSSB occupies 2.2Mλ2 area with 35bits of SRAM, and the prototype SSFPGA with 34 × 30 (1020) blocks is designed and fabricated using 65nm CMOS. Measured results show at 1.2V 430MHz and 647MHz operation for a 3bit ripple carry adder, without and with throughput optimization, respectively. We find that using the proposed pipeline alignment techniques we can perform at maximum throughput of 647MHz in various benchmarks on the SSFPGA. We demonstrate up to 56.1 times throughput improvement with our pipeline alignment techniques. The pipeline alignment is carried out within the number of logic elements in the array and pipeline buffers in the switching matrix.
Resource Allocation and Seed Size Selection in Perennial Plants under Pollen Limitation.
Huang, Qiaoqiao; Burd, Martin; Fan, Zhiwei
2017-09-01
Pollen limitation may affect resource allocation patterns in plants, but its role in the selection of seed size is not known. Using an evolutionarily stable strategy model of resource allocation in perennial iteroparous plants, we show that under density-independent population growth, pollen limitation (i.e., a reduction in ovule fertilization rate) should increase the optimal seed size. At any level of pollen limitation (including none), the optimal seed size maximizes the ratio of juvenile survival rate to the resource investment needed to produce one seed (including both ovule production and seed provisioning); that is, the optimum maximizes the fitness effect per unit cost. Seed investment may affect allocation to postbreeding adult survival. In our model, pollen limitation increases individual seed size but decreases overall reproductive allocation, so that pollen limitation should also increase the optimal allocation to postbreeding adult survival. Under density-dependent population growth, the optimal seed size is inversely proportional to ovule fertilization rate. However, pollen limitation does not affect the optimal allocation to postbreeding adult survival and ovule production. These results highlight the importance of allocation trade-offs in the effect pollen limitation has on the ecology and evolution of seed size and postbreeding adult survival in perennial plants.
Markov Processes in Image Processing
NASA Astrophysics Data System (ADS)
Petrov, E. P.; Kharina, N. L.
2018-05-01
Digital images are used as an information carrier in different sciences and technologies. The aspiration to increase the number of bits in the image pixels for the purpose of obtaining more information is observed. In the paper, some methods of compression and contour detection on the basis of two-dimensional Markov chain are offered. Increasing the number of bits on the image pixels will allow one to allocate fine object details more precisely, but it significantly complicates image processing. The methods of image processing do not concede by the efficiency to well-known analogues, but surpass them in processing speed. An image is separated into binary images, and processing is carried out in parallel with each without an increase in speed, when increasing the number of bits on the image pixels. One more advantage of methods is the low consumption of energy resources. Only logical procedures are used and there are no computing operations. The methods can be useful in processing images of any class and assignment in processing systems with a limited time and energy resources.
Control mechanism of double-rotator-structure ternary optical computer
NASA Astrophysics Data System (ADS)
Kai, SONG; Liping, YAN
2017-03-01
Double-rotator-structure ternary optical processor (DRSTOP) has two characteristics, namely, giant data-bits parallel computing and reconfigurable processor, which can handle thousands of data bits in parallel, and can run much faster than computers and other optical computer systems so far. In order to put DRSTOP into practical application, this paper established a series of methods, namely, task classification method, data-bits allocation method, control information generation method, control information formatting and sending method, and decoded results obtaining method and so on. These methods form the control mechanism of DRSTOP. This control mechanism makes DRSTOP become an automated computing platform. Compared with the traditional calculation tools, DRSTOP computing platform can ease the contradiction between high energy consumption and big data computing due to greatly reducing the cost of communications and I/O. Finally, the paper designed a set of experiments for DRSTOP control mechanism to verify its feasibility and correctness. Experimental results showed that the control mechanism is correct, feasible and efficient.
Locking classical correlations in quantum States.
DiVincenzo, David P; Horodecki, Michał; Leung, Debbie W; Smolin, John A; Terhal, Barbara M
2004-02-13
We show that there exist bipartite quantum states which contain a large locked classical correlation that is unlocked by a disproportionately small amount of classical communication. In particular, there are (2n+1)-qubit states for which a one-bit message doubles the optimal classical mutual information between measurement results on the subsystems, from n/2 bits to n bits. This phenomenon is impossible classically. However, states exhibiting this behavior need not be entangled. We study the range of states exhibiting this phenomenon and bound its magnitude.
Towards a Visual Quality Metric for Digital Video
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
1998-01-01
The advent of widespread distribution of digital video creates a need for automated methods for evaluating visual quality of digital video. This is particularly so since most digital video is compressed using lossy methods, which involve the controlled introduction of potentially visible artifacts. Compounding the problem is the bursty nature of digital video, which requires adaptive bit allocation based on visual quality metrics. In previous work, we have developed visual quality metrics for evaluating, controlling, and optimizing the quality of compressed still images. These metrics incorporate simplified models of human visual sensitivity to spatial and chromatic visual signals. The challenge of video quality metrics is to extend these simplified models to temporal signals as well. In this presentation I will discuss a number of the issues that must be resolved in the design of effective video quality metrics. Among these are spatial, temporal, and chromatic sensitivity and their interactions, visual masking, and implementation complexity. I will also touch on the question of how to evaluate the performance of these metrics.
Automated Assessment of Visual Quality of Digital Video
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Ellis, Stephen R. (Technical Monitor)
1997-01-01
The advent of widespread distribution of digital video creates a need for automated methods for evaluating visual quality of digital video. This is particularly so since most digital video is compressed using lossy methods, which involve the controlled introduction of potentially visible artifacts. Compounding the problem is the bursty nature of digital video, which requires adaptive bit allocation based on visual quality metrics. In previous work, we have developed visual quality metrics for evaluating, controlling, and optimizing the quality of compressed still images[1-4]. These metrics incorporate simplified models of human visual sensitivity to spatial and chromatic visual signals. The challenge of video quality metrics is to extend these simplified models to temporal signals as well. In this presentation I will discuss a number of the issues that must be resolved in the design of effective video quality metrics. Among these are spatial, temporal, and chromatic sensitivity and their interactions, visual masking, and implementation complexity. I will also touch on the question of how to evaluate the performance of these metrics.
Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao
2015-01-01
In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization. PMID:26343660
Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao
2015-08-27
In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.
Rate-distortion optimized tree-structured compression algorithms for piecewise polynomial images.
Shukla, Rahul; Dragotti, Pier Luigi; Do, Minh N; Vetterli, Martin
2005-03-01
This paper presents novel coding algorithms based on tree-structured segmentation, which achieve the correct asymptotic rate-distortion (R-D) behavior for a simple class of signals, known as piecewise polynomials, by using an R-D based prune and join scheme. For the one-dimensional case, our scheme is based on binary-tree segmentation of the signal. This scheme approximates the signal segments using polynomial models and utilizes an R-D optimal bit allocation strategy among the different signal segments. The scheme further encodes similar neighbors jointly to achieve the correct exponentially decaying R-D behavior (D(R) - c(o)2(-c1R)), thus improving over classic wavelet schemes. We also prove that the computational complexity of the scheme is of O(N log N). We then show the extension of this scheme to the two-dimensional case using a quadtree. This quadtree-coding scheme also achieves an exponentially decaying R-D behavior, for the polygonal image model composed of a white polygon-shaped object against a uniform black background, with low computational cost of O(N log N). Again, the key is an R-D optimized prune and join strategy. Finally, we conclude with numerical results, which show that the proposed quadtree-coding scheme outperforms JPEG2000 by about 1 dB for real images, like cameraman, at low rates of around 0.15 bpp.
An Optimization Framework for Dynamic, Distributed Real-Time Systems
NASA Technical Reports Server (NTRS)
Eckert, Klaus; Juedes, David; Welch, Lonnie; Chelberg, David; Bruggerman, Carl; Drews, Frank; Fleeman, David; Parrott, David; Pfarr, Barbara
2003-01-01
Abstract. This paper presents a model that is useful for developing resource allocation algorithms for distributed real-time systems .that operate in dynamic environments. Interesting aspects of the model include dynamic environments, utility and service levels, which provide a means for graceful degradation in resource-constrained situations and support optimization of the allocation of resources. The paper also provides an allocation algorithm that illustrates how to use the model for producing feasible, optimal resource allocations.
Topology-changing shape optimization with the genetic algorithm
NASA Astrophysics Data System (ADS)
Lamberson, Steven E., Jr.
The goal is to take a traditional shape optimization problem statement and modify it slightly to allow for prescribed changes in topology. This modification enables greater flexibility in the choice of parameters for the topology optimization problem, while improving the direct physical relevance of the results. This modification involves changing the optimization problem statement from a nonlinear programming problem into a form of mixed-discrete nonlinear programing problem. The present work demonstrates one possible way of using the Genetic Algorithm (GA) to solve such a problem, including the use of "masking bits" and a new modification to the bit-string affinity (BSA) termination criterion specifically designed for problems with "masking bits." A simple ten-bar truss problem proves the utility of the modified BSA for this type of problem. A more complicated two dimensional bracket problem is solved using both the proposed approach and a more traditional topology optimization approach (Solid Isotropic Microstructure with Penalization or SIMP) to enable comparison. The proposed approach is able to solve problems with both local and global constraints, which is something traditional methods cannot do. The proposed approach has a significantly higher computational burden --- on the order of 100 times larger than SIMP, although the proposed approach is able to offset this with parallel computing.
Micropulsed Plasma Thrusters for Attitude Control of a Low-Earth-Orbiting CubeSat
NASA Technical Reports Server (NTRS)
Gatsonis, Nikolaos A.; Lu, Ye; Blandino, John; Demetriou, Michael A.; Paschalidis, Nicholas
2016-01-01
This study presents a 3-Unit CubeSat design with commercial-off-the-shelf hardware, Teflon-fueled micropulsed plasma thrusters, and an attitude determination and control approach. The micropulsed plasma thruster is sized by the impulse bit and pulse frequency required for continuous compensation of expected maximum disturbance torques at altitudes between 400 and 1000 km, as well as to perform stabilization of up to 20 deg /s and slew maneuvers of up to 180 deg. The study involves realistic power constraints anticipated on the 3-Unit CubeSat. Attitude estimation is implemented using the q method for static attitude determination of the quaternion using pairs of the spacecraft-sun and magnetic-field vectors. The quaternion estimate and the gyroscope measurements are used with an extended Kalman filter to obtain the attitude estimates. Proportional-derivative control algorithms use the static attitude estimates in order to calculate the torque required to compensate for the disturbance torques and to achieve specified stabilization and slewing maneuvers or combinations. The controller includes a thruster-allocation method, which determines the optimal utilization of the available thrusters and introduces redundancy in case of failure. Simulation results are presented for a 3-Unit CubeSat under detumbling, pointing, and pointing and spinning scenarios, as well as comparisons between the thruster-allocation and the paired-firing methods under thruster failure.
Self-optimization and auto-stabilization of receiver in DPSK transmission system.
Jang, Y S
2008-03-17
We propose a self-optimization and auto-stabilization method for a 1-bit DMZI in DPSK transmission. Using the characteristics of eye patterns, the optical frequency transmittance of a 1-bit DMZI is thermally controlled to maximize the power difference between the constructive and destructive output ports. Unlike other techniques, this control method can be realized without additional components, making it simple and cost effective. Experimental results show that error-free performance is maintained when the carrier optical frequency variation is approximately 10% of the data rate.
NASA Astrophysics Data System (ADS)
Yu, Sen; Lu, Hongwei
2018-04-01
Under the effects of global change, water crisis ranks as the top global risk in the future decade, and water conflict in transboundary river basins as well as the geostrategic competition led by it is most concerned. This study presents an innovative integrated PPMGWO model of water resources optimization allocation in a transboundary river basin, which is integrated through the projection pursuit model (PPM) and Grey wolf optimization (GWO) method. This study uses the Songhua River basin and 25 control units as examples, adopting the PPMGWO model proposed in this study to allocate the water quantity. Using water consumption in all control units in the Songhua River basin in 2015 as reference to compare with optimization allocation results of firefly algorithm (FA) and Particle Swarm Optimization (PSO) algorithms as well as the PPMGWO model, results indicate that the average difference between corresponding allocation results and reference values are 0.195 bil m3, 0.151 bil m3, and 0.085 bil m3, respectively. Obviously, the average difference of the PPMGWO model is the lowest and its optimization allocation result is closer to reality, which further confirms the reasonability, feasibility, and accuracy of the PPMGWO model. And then the PPMGWO model is adopted to simulate allocation of available water quantity in Songhua River basin in 2018, 2020, and 2030. The simulation results show water quantity which could be allocated in all controls demonstrates an overall increasing trend with reasonable and equal exploitation and utilization of water resources in the Songhua River basin in future. In addition, this study has a certain reference value and application meaning to comprehensive management and water resources allocation in other transboundary river basins.
A Framework for Optimal Control Allocation with Structural Load Constraints
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Taylor, Brian R.; Jutte, Christine V.; Burken, John J.; Trinh, Khanh V.; Bodson, Marc
2010-01-01
Conventional aircraft generally employ mixing algorithms or lookup tables to determine control surface deflections needed to achieve moments commanded by the flight control system. Control allocation is the problem of converting desired moments into control effector commands. Next generation aircraft may have many multipurpose, redundant control surfaces, adding considerable complexity to the control allocation problem. These issues can be addressed with optimal control allocation. Most optimal control allocation algorithms have control surface position and rate constraints. However, these constraints are insufficient to ensure that the aircraft's structural load limits will not be exceeded by commanded surface deflections. In this paper, a framework is proposed to enable a flight control system with optimal control allocation to incorporate real-time structural load feedback and structural load constraints. A proof of concept simulation that demonstrates the framework in a simulation of a generic transport aircraft is presented.
Areal density optimizations for heat-assisted magnetic recording of high-density media
NASA Astrophysics Data System (ADS)
Vogler, Christoph; Abert, Claas; Bruckner, Florian; Suess, Dieter; Praetorius, Dirk
2016-06-01
Heat-assisted magnetic recording (HAMR) is hoped to be the future recording technique for high-density storage devices. Nevertheless, there exist several realization strategies. With a coarse-grained Landau-Lifshitz-Bloch model, we investigate in detail the benefits and disadvantages of a continuous and pulsed laser spot recording of shingled and conventional bit-patterned media. Additionally, we compare single-phase grains and bits having a bilayer structure with graded Curie temperature, consisting of a hard magnetic layer with high TC and a soft magnetic one with low TC, respectively. To describe the whole write process as realistically as possible, a distribution of the grain sizes and Curie temperatures, a displacement jitter of the head, and the bit positions are considered. For all these cases, we calculate bit error rates of various grain patterns, temperatures, and write head positions to optimize the achievable areal storage density. Within our analysis, shingled HAMR with a continuous laser pulse moving over the medium reaches the best results and thus has the highest potential to become the next-generation storage device.
Incentives for Optimal Multi-level Allocation of HIV Prevention Resources
Malvankar, Monali M.; Zaric, Gregory S.
2013-01-01
HIV/AIDS prevention funds are often allocated at multiple levels of decision-making. Optimal allocation of HIV prevention funds maximizes the number of HIV infections averted. However, decision makers often allocate using simple heuristics such as proportional allocation. We evaluate the impact of using incentives to encourage optimal allocation in a two-level decision-making process. We model an incentive based decision-making process consisting of an upper-level decision maker allocating funds to a single lower-level decision maker who then distributes funds to local programs. We assume that the lower-level utility function is linear in the amount of the budget received from the upper-level, the fraction of funds reserved for proportional allocation, and the number of infections averted. We assume that the upper level objective is to maximize the number of infections averted. We illustrate with an example using data from California, U.S. PMID:23766551
Cascaded VLSI Chips Help Neural Network To Learn
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Daud, Taher; Thakoor, Anilkumar P.
1993-01-01
Cascading provides 12-bit resolution needed for learning. Using conventional silicon chip fabrication technology of VLSI, fully connected architecture consisting of 32 wide-range, variable gain, sigmoidal neurons along one diagonal and 7-bit resolution, electrically programmable, synaptic 32 x 31 weight matrix implemented on neuron-synapse chip. To increase weight nominally from 7 to 13 bits, synapses on chip individually cascaded with respective synapses on another 32 x 32 matrix chip with 7-bit resolution synapses only (without neurons). Cascade correlation algorithm varies number of layers effectively connected into network; adds hidden layers one at a time during learning process in such way as to optimize overall number of neurons and complexity and configuration of network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Black; Arnis Judzis
2003-10-01
This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2002 through September 2002. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for amore » next level of deep drilling performance; Phase 2--Develop advanced smart bit--fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. Accomplishments to date include the following: 4Q 2002--Project started; Industry Team was assembled; Kick-off meeting was held at DOE Morgantown; 1Q 2003--Engineering meeting was held at Hughes Christensen, The Woodlands Texas to prepare preliminary plans for development and testing and review equipment needs; Operators started sending information regarding their needs for deep drilling challenges and priorities for large-scale testing experimental matrix; Aramco joined the Industry Team as DEA 148 objectives paralleled the DOE project; 2Q 2003--Engineering and planning for high pressure drilling at TerraTek commenced; 3Q 2003--Continuation of engineering and design work for high pressure drilling at TerraTek; Baker Hughes INTEQ drilling Fluids and Hughes Christensen commence planning for Phase 1 testing--recommendations for bits and fluids.« less
Stochastic Optimization For Water Resources Allocation
NASA Astrophysics Data System (ADS)
Yamout, G.; Hatfield, K.
2003-12-01
For more than 40 years, water resources allocation problems have been addressed using deterministic mathematical optimization. When data uncertainties exist, these methods could lead to solutions that are sub-optimal or even infeasible. While optimization models have been proposed for water resources decision-making under uncertainty, no attempts have been made to address the uncertainties in water allocation problems in an integrated approach. This paper presents an Integrated Dynamic, Multi-stage, Feedback-controlled, Linear, Stochastic, and Distributed parameter optimization approach to solve a problem of water resources allocation. It attempts to capture (1) the conflict caused by competing objectives, (2) environmental degradation produced by resource consumption, and finally (3) the uncertainty and risk generated by the inherently random nature of state and decision parameters involved in such a problem. A theoretical system is defined throughout its different elements. These elements consisting mainly of water resource components and end-users are described in terms of quantity, quality, and present and future associated risks and uncertainties. Models are identified, modified, and interfaced together to constitute an integrated water allocation optimization framework. This effort is a novel approach to confront the water allocation optimization problem while accounting for uncertainties associated with all its elements; thus resulting in a solution that correctly reflects the physical problem in hand.
Optimal resource allocation strategy for two-layer complex networks
NASA Astrophysics Data System (ADS)
Ma, Jinlong; Wang, Lixin; Li, Sufeng; Duan, Congwen; Liu, Yu
2018-02-01
We study the traffic dynamics on two-layer complex networks, and focus on its delivery capacity allocation strategy to enhance traffic capacity measured by the critical value Rc. With the limited packet-delivering capacity, we propose a delivery capacity allocation strategy which can balance the capacities of non-hub nodes and hub nodes to optimize the data flow. With the optimal value of parameter αc, the maximal network capacity is reached because most of the nodes have shared the appropriate delivery capacity by the proposed delivery capacity allocation strategy. Our work will be beneficial to network service providers to design optimal networked traffic dynamics.
Constellation labeling optimization for bit-interleaved coded APSK
NASA Astrophysics Data System (ADS)
Xiang, Xingyu; Mo, Zijian; Wang, Zhonghai; Pham, Khanh; Blasch, Erik; Chen, Genshe
2016-05-01
This paper investigates the constellation and mapping optimization for amplitude phase shift keying (APSK) modulation, which is deployed in Digital Video Broadcasting Satellite - Second Generation (DVB-S2) and Digital Video Broadcasting - Satellite services to Handhelds (DVB-SH) broadcasting standards due to its merits of power and spectral efficiency together with the robustness against nonlinear distortion. The mapping optimization is performed for 32-APSK according to combined cost functions related to Euclidean distance and mutual information. A Binary switching algorithm and its modified version are used to minimize the cost function and the estimated error between the original and received data. The optimized constellation mapping is tested by combining DVB-S2 standard Low-Density Parity-Check (LDPC) codes in both Bit-Interleaved Coded Modulation (BICM) and BICM with iterative decoding (BICM-ID) systems. The simulated results validate the proposed constellation labeling optimization scheme which yields better performance against conventional 32-APSK constellation defined in DVB-S2 standard.
Design of a robust baseband LPC coder for speech transmission over 9.6 kbit/s noisy channels
NASA Astrophysics Data System (ADS)
Viswanathan, V. R.; Russell, W. H.; Higgins, A. L.
1982-04-01
This paper describes the design of a baseband Linear Predictive Coder (LPC) which transmits speech over 9.6 kbit/sec synchronous channels with random bit errors of up to 1%. Presented are the results of our investigation of a number of aspects of the baseband LPC coder with the goal of maximizing the quality of the transmitted speech. Important among these aspects are: bandwidth of the baseband, coding of the baseband residual, high-frequency regeneration, and error protection of important transmission parameters. The paper discusses these and other issues, presents the results of speech-quality tests conducted during the various stages of optimization, and describes the details of the optimized speech coder. This optimized speech coding algorithm has been implemented as a real-time full-duplex system on an array processor. Informal listening tests of the real-time coder have shown that the coder produces good speech quality in the absence of channel bit errors and introduces only a slight degradation in quality for channel bit error rates of up to 1%.
Twelve fundamental life histories evolving through allocation-dependent fecundity and survival.
Johansson, Jacob; Brännström, Åke; Metz, Johan A J; Dieckmann, Ulf
2018-03-01
An organism's life history is closely interlinked with its allocation of energy between growth and reproduction at different life stages. Theoretical models have established that diminishing returns from reproductive investment promote strategies with simultaneous investment into growth and reproduction (indeterminate growth) over strategies with distinct phases of growth and reproduction (determinate growth). We extend this traditional, binary classification by showing that allocation-dependent fecundity and mortality rates allow for a large diversity of optimal allocation schedules. By analyzing a model of organisms that allocate energy between growth and reproduction, we find twelve types of optimal allocation schedules, differing qualitatively in how reproductive allocation increases with body mass. These twelve optimal allocation schedules include types with different combinations of continuous and discontinuous increase in reproduction allocation, in which phases of continuous increase can be decelerating or accelerating. We furthermore investigate how this variation influences growth curves and the expected maximum life span and body size. Our study thus reveals new links between eco-physiological constraints and life-history evolution and underscores how allocation-dependent fitness components may underlie biological diversity.
Next generation PET data acquisition architectures
NASA Astrophysics Data System (ADS)
Jones, W. F.; Reed, J. H.; Everman, J. L.; Young, J. W.; Seese, R. D.
1997-06-01
New architectures for higher performance data acquisition in PET are proposed. Improvements are demanded primarily by three areas of advancing PET state of the art. First, larger detector arrays such as the Hammersmith ECAT/sup (R/) EXACT HR/sup ++/ exceed the addressing capacity of 32 bit coincidence event words. Second, better scintillators (LSO) make depth-of interaction (DOI) and time-of-flight (TOF) operation more practical. Third, fully optimized single photon attenuation correction requires higher rates of data collection. New technologies which enable the proposed third generation Real Time Sorter (RTS III) include: (1) 80 Mbyte/sec Fibre Channel RAID disk systems, (2) PowerPC on both VMEbus and PCI Local bus, and (3) quadruple interleaved DRAM controller designs. Data acquisition flexibility is enhanced through a wider 64 bit coincidence event word. PET methodology support includes DOI (6 bits), TOF (6 bits), multiple energy windows (6 bits), 512/spl times/512 sinogram indexes (18 bits), and 256 crystal rings (16 bits). Throughput of 10 M events/sec is expected for list-mode data collection as well as both on-line and replay histogramming. Fully efficient list-mode storage for each PET application is provided by real-time bit packing of only the active event word bits. Real-time circuits provide DOI rebinning.
Optimal investment in a portfolio of HIV prevention programs.
Zaric, G S; Brandeau, M L
2001-01-01
In this article, the authors determine the optimal allocation of HIV prevention funds and investigate the impact of different allocation methods on health outcomes. The authors present a resource allocation model that can be used to determine the allocation of HIV prevention funds that maximizes quality-adjusted life years (or life years) gained or HIV infections averted in a population over a specified time horizon. They apply the model to determine the allocation of a limited budget among 3 types of HIV prevention programs in a population of injection drug users and nonusers: needle exchange programs, methadone maintenance treatment, and condom availability programs. For each prevention program, the authors estimate a production function that relates the amount invested to the associated change in risky behavior. The authors determine the optimal allocation of funds for both objective functions for a high-prevalence population and a low-prevalence population. They also consider the allocation of funds under several common rules of thumb that are used to allocate HIV prevention resources. It is shown that simpler allocation methods (e.g., allocation based on HIV incidence or notions of equity among population groups) may lead to alloctions that do not yield the maximum health benefit. The optimal allocation of HIV prevention funds in a population depends on HIV prevalence and incidence, the objective function, the production functions for the prevention programs, and other factors. Consideration of cost, equity, and social and political norms may be important when allocating HIV prevention funds. The model presented in this article can help decision makers determine the health consequences of different allocations of funds.
ERIC Educational Resources Information Center
Liu, Xiaofeng
2003-01-01
This article considers optimal sample allocation between the treatment and control condition in multilevel designs when the costs per sampling unit vary due to treatment assignment. Optimal unequal allocation may reduce the cost from that of a balanced design without sacrificing any power. The optimum sample allocation ratio depends only on the…
Digital Signal Processing For Low Bit Rate TV Image Codecs
NASA Astrophysics Data System (ADS)
Rao, K. R.
1987-06-01
In view of the 56 KBPS digital switched network services and the ISDN, low bit rate codecs for providing real time full motion color video are under various stages of development. Some companies have already brought the codecs into the market. They are being used by industry and some Federal Agencies for video teleconferencing. In general, these codecs have various features such as multiplexing audio and data, high resolution graphics, encryption, error detection and correction, self diagnostics, freezeframe, split video, text overlay etc. To transmit the original color video on a 56 KBPS network requires bit rate reduction of the order of 1400:1. Such a large scale bandwidth compression can be realized only by implementing a number of sophisticated,digital signal processing techniques. This paper provides an overview of such techniques and outlines the newer concepts that are being investigated. Before resorting to the data compression techniques, various preprocessing operations such as noise filtering, composite-component transformation and horizontal and vertical blanking interval removal are to be implemented. Invariably spatio-temporal subsampling is achieved by appropriate filtering. Transform and/or prediction coupled with motion estimation and strengthened by adaptive features are some of the tools in the arsenal of the data reduction methods. Other essential blocks in the system are quantizer, bit allocation, buffer, multiplexer, channel coding etc.
Rate Adaptive Based Resource Allocation with Proportional Fairness Constraints in OFDMA Systems
Yin, Zhendong; Zhuang, Shufeng; Wu, Zhilu; Ma, Bo
2015-01-01
Orthogonal frequency division multiple access (OFDMA), which is widely used in the wireless sensor networks, allows different users to obtain different subcarriers according to their subchannel gains. Therefore, how to assign subcarriers and power to different users to achieve a high system sum rate is an important research area in OFDMA systems. In this paper, the focus of study is on the rate adaptive (RA) based resource allocation with proportional fairness constraints. Since the resource allocation is a NP-hard and non-convex optimization problem, a new efficient resource allocation algorithm ACO-SPA is proposed, which combines ant colony optimization (ACO) and suboptimal power allocation (SPA). To reduce the computational complexity, the optimization problem of resource allocation in OFDMA systems is separated into two steps. For the first one, the ant colony optimization algorithm is performed to solve the subcarrier allocation. Then, the suboptimal power allocation algorithm is developed with strict proportional fairness, and the algorithm is based on the principle that the sums of power and the reciprocal of channel-to-noise ratio for each user in different subchannels are equal. To support it, plenty of simulation results are presented. In contrast with root-finding and linear methods, the proposed method provides better performance in solving the proportional resource allocation problem in OFDMA systems. PMID:26426016
Efficient and robust quantum random number generation by photon number detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Applegate, M. J.; Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE; Thomas, O.
2015-08-17
We present an efficient and robust quantum random number generator based upon high-rate room temperature photon number detection. We employ an electric field-modulated silicon avalanche photodiode, a type of device particularly suited to high-rate photon number detection with excellent photon number resolution to detect, without an applied dead-time, up to 4 photons from the optical pulses emitted by a laser. By both measuring and modeling the response of the detector to the incident photons, we are able to determine the illumination conditions that achieve an optimal bit rate that we show is robust against variation in the photon flux. Wemore » extract random bits from the detected photon numbers with an efficiency of 99% corresponding to 1.97 bits per detected photon number yielding a bit rate of 143 Mbit/s, and verify that the extracted bits pass stringent statistical tests for randomness. Our scheme is highly scalable and has the potential of multi-Gbit/s bit rates.« less
FBCOT: a fast block coding option for JPEG 2000
NASA Astrophysics Data System (ADS)
Taubman, David; Naman, Aous; Mathew, Reji
2017-09-01
Based on the EBCOT algorithm, JPEG 2000 finds application in many fields, including high performance scientific, geospatial and video coding applications. Beyond digital cinema, JPEG 2000 is also attractive for low-latency video communications. The main obstacle for some of these applications is the relatively high computational complexity of the block coder, especially at high bit-rates. This paper proposes a drop-in replacement for the JPEG 2000 block coding algorithm, achieving much higher encoding and decoding throughputs, with only modest loss in coding efficiency (typically < 0.5dB). The algorithm provides only limited quality/SNR scalability, but offers truly reversible transcoding to/from any standard JPEG 2000 block bit-stream. The proposed FAST block coder can be used with EBCOT's post-compression RD-optimization methodology, allowing a target compressed bit-rate to be achieved even at low latencies, leading to the name FBCOT (Fast Block Coding with Optimized Truncation).
NASA Astrophysics Data System (ADS)
Dai, C.; Qin, X. S.; Chen, Y.; Guo, H. C.
2018-06-01
A Gini-coefficient based stochastic optimization (GBSO) model was developed by integrating the hydrological model, water balance model, Gini coefficient and chance-constrained programming (CCP) into a general multi-objective optimization modeling framework for supporting water resources allocation at a watershed scale. The framework was advantageous in reflecting the conflicting equity and benefit objectives for water allocation, maintaining the water balance of watershed, and dealing with system uncertainties. GBSO was solved by the non-dominated sorting Genetic Algorithms-II (NSGA-II), after the parameter uncertainties of the hydrological model have been quantified into the probability distribution of runoff as the inputs of CCP model, and the chance constraints were converted to the corresponding deterministic versions. The proposed model was applied to identify the Pareto optimal water allocation schemes in the Lake Dianchi watershed, China. The optimal Pareto-front results reflected the tradeoff between system benefit (αSB) and Gini coefficient (αG) under different significance levels (i.e. q) and different drought scenarios, which reveals the conflicting nature of equity and efficiency in water allocation problems. A lower q generally implies a lower risk of violating the system constraints and a worse drought intensity scenario corresponds to less available water resources, both of which would lead to a decreased system benefit and a less equitable water allocation scheme. Thus, the proposed modeling framework could help obtain the Pareto optimal schemes under complexity and ensure that the proposed water allocation solutions are effective for coping with drought conditions, with a proper tradeoff between system benefit and water allocation equity.
VHF command system study. [spectral analysis of GSFC VHF-PSK and VHF-FSK Command Systems
NASA Technical Reports Server (NTRS)
Gee, T. H.; Geist, J. M.
1973-01-01
Solutions are provided to specific problems arising in the GSFC VHF-PSK and VHF-FSK Command Systems in support of establishment and maintenance of Data Systems Standards. Signal structures which incorporate transmission on the uplink of a clock along with the PSK or FSK data are considered. Strategies are developed for allocating power between the clock and data, and spectral analyses are performed. Bit error probability and other probabilities pertinent to correct transmission of command messages are calculated. Biphase PCM/PM and PCM/FM are considered as candidate modulation techniques on the telemetry downlink, with application to command verification. Comparative performance of PCM/PM and PSK systems is given special attention, including implementation considerations. Gain in bit error performance due to coding is also considered.
Optimality versus stability in water resource allocation.
Read, Laura; Madani, Kaveh; Inanloo, Bahareh
2014-01-15
Water allocation is a growing concern in a developing world where limited resources like fresh water are in greater demand by more parties. Negotiations over allocations often involve multiple groups with disparate social, economic, and political status and needs, who are seeking a management solution for a wide range of demands. Optimization techniques for identifying the Pareto-optimal (social planner solution) to multi-criteria multi-participant problems are commonly implemented, although often reaching agreement for this solution is difficult. In negotiations with multiple-decision makers, parties who base decisions on individual rationality may find the social planner solution to be unfair, thus creating a need to evaluate the willingness to cooperate and practicality of a cooperative allocation solution, i.e., the solution's stability. This paper suggests seeking solutions for multi-participant resource allocation problems through an economics-based power index allocation method. This method can inform on allocation schemes that quantify a party's willingness to participate in a negotiation rather than opt for no agreement. Through comparison of the suggested method with a range of distance-based multi-criteria decision making rules, namely, least squares, MAXIMIN, MINIMAX, and compromise programming, this paper shows that optimality and stability can produce different allocation solutions. The mismatch between the socially-optimal alternative and the most stable alternative can potentially result in parties leaving the negotiation as they may be too dissatisfied with their resource share. This finding has important policy implications as it justifies why stakeholders may not accept the socially optimal solution in practice, and underlies the necessity of considering stability where it may be more appropriate to give up an unstable Pareto-optimal solution for an inferior stable one. Authors suggest assessing the stability of an allocation solution as an additional component to an analysis that seeks to distribute water in a negotiated process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Applicability and Limitations of Reliability Allocation Methods
NASA Technical Reports Server (NTRS)
Cruz, Jose A.
2016-01-01
Reliability allocation process may be described as the process of assigning reliability requirements to individual components within a system to attain the specified system reliability. For large systems, the allocation process is often performed at different stages of system design. The allocation process often begins at the conceptual stage. As the system design develops, more information about components and the operating environment becomes available, different allocation methods can be considered. Reliability allocation methods are usually divided into two categories: weighting factors and optimal reliability allocation. When properly applied, these methods can produce reasonable approximations. Reliability allocation techniques have limitations and implied assumptions that need to be understood by system engineers. Applying reliability allocation techniques without understanding their limitations and assumptions can produce unrealistic results. This report addresses weighting factors, optimal reliability allocation techniques, and identifies the applicability and limitations of each reliability allocation technique.
Optimal allocation of HIV prevention funds for state health departments.
Yaylali, Emine; Farnham, Paul G; Cohen, Stacy; Purcell, David W; Hauck, Heather; Sansom, Stephanie L
2018-01-01
To estimate the optimal allocation of Centers for Disease Control and Prevention (CDC) HIV prevention funds for health departments in 52 jurisdictions, incorporating Health Resources and Services Administration (HRSA) Ryan White HIV/AIDS Program funds, to improve outcomes along the HIV care continuum and prevent infections. Using surveillance data from 2010 to 2012 and budgetary data from 2012, we divided the 52 health departments into 5 groups varying by number of persons living with diagnosed HIV (PLWDH), median annual CDC HIV prevention budget, and median annual HRSA expenditures supporting linkage to care, retention in care, and adherence to antiretroviral therapy. Using an optimization and a Bernoulli process model, we solved for the optimal CDC prevention budget allocation for each health department group. The optimal allocation distributed the funds across prevention interventions and populations at risk for HIV to prevent the greatest number of new HIV cases annually. Both the HIV prevention interventions funded by the optimal allocation of CDC HIV prevention funds and the proportions of the budget allocated were similar across health department groups, particularly those representing the large majority of PLWDH. Consistently funded interventions included testing, partner services and linkage to care and interventions for men who have sex with men (MSM). Sensitivity analyses showed that the optimal allocation shifted when there were differences in transmission category proportions and progress along the HIV care continuum. The robustness of the results suggests that most health departments can use these analyses to guide the investment of CDC HIV prevention funds into strategies to prevent the most new cases of HIV.
Optimal allocation of HIV prevention funds for state health departments
Farnham, Paul G.; Cohen, Stacy; Purcell, David W.; Hauck, Heather; Sansom, Stephanie L.
2018-01-01
Objective To estimate the optimal allocation of Centers for Disease Control and Prevention (CDC) HIV prevention funds for health departments in 52 jurisdictions, incorporating Health Resources and Services Administration (HRSA) Ryan White HIV/AIDS Program funds, to improve outcomes along the HIV care continuum and prevent infections. Methods Using surveillance data from 2010 to 2012 and budgetary data from 2012, we divided the 52 health departments into 5 groups varying by number of persons living with diagnosed HIV (PLWDH), median annual CDC HIV prevention budget, and median annual HRSA expenditures supporting linkage to care, retention in care, and adherence to antiretroviral therapy. Using an optimization and a Bernoulli process model, we solved for the optimal CDC prevention budget allocation for each health department group. The optimal allocation distributed the funds across prevention interventions and populations at risk for HIV to prevent the greatest number of new HIV cases annually. Results Both the HIV prevention interventions funded by the optimal allocation of CDC HIV prevention funds and the proportions of the budget allocated were similar across health department groups, particularly those representing the large majority of PLWDH. Consistently funded interventions included testing, partner services and linkage to care and interventions for men who have sex with men (MSM). Sensitivity analyses showed that the optimal allocation shifted when there were differences in transmission category proportions and progress along the HIV care continuum. Conclusion The robustness of the results suggests that most health departments can use these analyses to guide the investment of CDC HIV prevention funds into strategies to prevent the most new cases of HIV. PMID:29768489
Antenna Allocation in MIMO Radar with Widely Separated Antennas for Multi-Target Detection
Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong
2014-01-01
In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes. PMID:25350505
Antenna allocation in MIMO radar with widely separated antennas for multi-target detection.
Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong
2014-10-27
In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes.
Perceptually tuned low-bit-rate video codec for ATM networks
NASA Astrophysics Data System (ADS)
Chou, Chun-Hsien
1996-02-01
In order to maintain high visual quality in transmitting low bit-rate video signals over asynchronous transfer mode (ATM) networks, a layered coding scheme that incorporates the human visual system (HVS), motion compensation (MC), and conditional replenishment (CR) is presented in this paper. An empirical perceptual model is proposed to estimate the spatio- temporal just-noticeable distortion (STJND) profile for each frame, by which perceptually important (PI) prediction-error signals can be located. Because of the limited channel capacity of the base layer, only coded data of motion vectors, the PI signals within a small strip of the prediction-error image and, if there are remaining bits, the PI signals outside the strip are transmitted by the cells of the base-layer channel. The rest of the coded data are transmitted by the second-layer cells which may be lost due to channel error or network congestion. Simulation results show that visual quality of the reconstructed CIF sequence is acceptable when the capacity of the base-layer channel is allocated with 2 multiplied by 64 kbps and the cells of the second layer are all lost.
Multimedia transmission in MC-CDMA using adaptive subcarrier power allocation and CFO compensation
NASA Astrophysics Data System (ADS)
Chitra, S.; Kumaratharan, N.
2018-02-01
Multicarrier code division multiple access (MC-CDMA) system is one of the most effective techniques in fourth-generation (4G) wireless technology, due to its high data rate, high spectral efficiency and resistance to multipath fading. However, MC-CDMA systems are greatly deteriorated by carrier frequency offset (CFO) which is due to Doppler shift and oscillator instabilities. It leads to loss of orthogonality among the subcarriers and causes intercarrier interference (ICI). Water filling algorithm (WFA) is an efficient resource allocation algorithm to solve the power utilisation problems among the subcarriers in time-dispersive channels. The conventional WFA fails to consider the effect of CFO. To perform subcarrier power allocation with reduced CFO and to improve the capacity of MC-CDMA system, residual CFO compensated adaptive subcarrier power allocation algorithm is proposed in this paper. The proposed technique allocates power only to subcarriers with high channel to noise power ratio. The performance of the proposed method is evaluated using random binary data and image as source inputs. Simulation results depict that the bit error rate performance and ICI reduction capability of the proposed modified WFA offered superior performance in both power allocation and image compression for high-quality multimedia transmission in the presence of CFO and imperfect channel state information conditions.
Optimal manpower allocation in aircraft line maintenance (Case in GMF AeroAsia)
NASA Astrophysics Data System (ADS)
Puteri, V. E.; Yuniaristanto, Hisjam, M.
2017-11-01
This paper presents a mathematical modeling to find the optimal manpower allocation in an aircraft line maintenance. This research focuses on assigning the number and type of manpower that allocated to each service. This study considers the licenced worker or Aircraft Maintenance Engineer Licence (AMEL) and non licenced worker or Aircraft Maintenance Technician (AMT). In this paper, we also consider the relationship of each station in terms of the possibility to transfer the manpower among them. The optimization model considers the number of manpowers needed for each service and the requirement of AMEL worker. This paper aims to determine the optimal manpower allocation using the mathematical modeling. The objective function of the model is to find the minimum employee expenses. The model was solved using the ILOG CPLEX software. The results show that the manpower allocation can meet the manpower need and the all load can be served.
Optimal allocation model of construction land based on two-level system optimization theory
NASA Astrophysics Data System (ADS)
Liu, Min; Liu, Yanfang; Xia, Yuping; Lei, Qihong
2007-06-01
The allocation of construction land is an important task in land-use planning. Whether implementation of planning decisions is a success or not, usually depends on a reasonable and scientific distribution method. Considering the constitution of land-use planning system and planning process in China, multiple levels and multiple objective decision problems is its essence. Also, planning quantity decomposition is a two-level system optimization problem and an optimal resource allocation decision problem between a decision-maker in the topper and a number of parallel decision-makers in the lower. According the characteristics of the decision-making process of two-level decision-making system, this paper develops an optimal allocation model of construction land based on two-level linear planning. In order to verify the rationality and the validity of our model, Baoan district of Shenzhen City has been taken as a test case. Under the assistance of the allocation model, construction land is allocated to ten townships of Baoan district. The result obtained from our model is compared to that of traditional method, and results show that our model is reasonable and usable. In the end, the paper points out the shortcomings of the model and further research directions.
Shaping electromagnetic waves using software-automatically-designed metasurfaces.
Zhang, Qian; Wan, Xiang; Liu, Shuo; Yuan Yin, Jia; Zhang, Lei; Jun Cui, Tie
2017-06-15
We present a fully digital procedure of designing reflective coding metasurfaces to shape reflected electromagnetic waves. The design procedure is completely automatic, controlled by a personal computer. In details, the macro coding units of metasurface are automatically divided into several types (e.g. two types for 1-bit coding, four types for 2-bit coding, etc.), and each type of the macro coding units is formed by discretely random arrangement of micro coding units. By combining an optimization algorithm and commercial electromagnetic software, the digital patterns of the macro coding units are optimized to possess constant phase difference for the reflected waves. The apertures of the designed reflective metasurfaces are formed by arranging the macro coding units with certain coding sequence. To experimentally verify the performance, a coding metasurface is fabricated by automatically designing two digital 1-bit unit cells, which are arranged in array to constitute a periodic coding metasurface to generate the required four-beam radiations with specific directions. Two complicated functional metasurfaces with circularly- and elliptically-shaped radiation beams are realized by automatically designing 4-bit macro coding units, showing excellent performance of the automatic designs by software. The proposed method provides a smart tool to realize various functional devices and systems automatically.
NASA Astrophysics Data System (ADS)
Liu, Chong-xin; Liu, Bo; Zhang, Li-jia; Xin, Xiang-jun; Tian, Qing-hua; Tian, Feng; Wang, Yong-jun; Rao, Lan; Mao, Yaya; Li, Deng-ao
2018-01-01
During the last decade, the orthogonal frequency division multiplexing radio-over-fiber (OFDM-ROF) system with adaptive modulation technology is of great interest due to its capability of raising the spectral efficiency dramatically, reducing the effects of fiber link or wireless channel, and improving the communication quality. In this study, according to theoretical analysis of nonlinear distortion and frequency selective fading on the transmitted signal, a low-complexity adaptive modulation algorithm is proposed in combination with sub-carrier grouping technology. This algorithm achieves the optimal performance of the system by calculating the average combined signal-to-noise ratio of each group and dynamically adjusting the origination modulation format according to the preset threshold and user's requirements. At the same time, this algorithm takes the sub-carrier group as the smallest unit in the initial bit allocation and the subsequent bit adjustment. So, the algorithm complexity is only 1 /M (M is the number of sub-carriers in each group) of Fischer algorithm, which is much smaller than many classic adaptive modulation algorithms, such as Hughes-Hartogs algorithm, Chow algorithm, and is in line with the development direction of green and high speed communication. Simulation results show that the performance of OFDM-ROF system with the improved algorithm is much better than those without adaptive modulation, and the BER of the former achieves 10e1 to 10e2 times lower than the latter when SNR values gets larger. We can obtain that this low complexity adaptive modulation algorithm is extremely useful for the OFDM-ROF system.
Design and testing of coring bits on drilling lunar rock simulant
NASA Astrophysics Data System (ADS)
Li, Peng; Jiang, Shengyuan; Tang, Dewei; Xu, Bo; Ma, Chao; Zhang, Hui; Qin, Hongwei; Deng, Zongquan
2017-02-01
Coring bits are widely utilized in the sampling of celestial bodies, and their drilling behaviors directly affect the sampling results and drilling security. This paper introduces a lunar regolith coring bit (LRCB), which is a key component of sampling tools for lunar rock breaking during the lunar soil sampling process. We establish the interaction model between the drill bit and rock at a small cutting depth, and the two main influential parameters (forward and outward rake angles) of LRCB on drilling loads are determined. We perform the parameter screening task of LRCB with the aim to minimize the weight on bit (WOB). We verify the drilling load performances of LRCB after optimization, and the higher penetrations per revolution (PPR) are, the larger drilling loads we gained. Besides, we perform lunar soil drilling simulations to estimate the efficiency on chip conveying and sample coring of LRCB. The results of the simulation and test are basically consistent on coring efficiency, and the chip removal efficiency of LRCB is slightly lower than HIT-H bit from simulation. This work proposes a method for the design of coring bits in subsequent extraterrestrial explorations.
Attending Globally or Locally: Incidental Learning of Optimal Visual Attention Allocation
ERIC Educational Resources Information Center
Beck, Melissa R.; Goldstein, Rebecca R.; van Lamsweerde, Amanda E.; Ericson, Justin M.
2018-01-01
Attention allocation determines the information that is encoded into memory. Can participants learn to optimally allocate attention based on what types of information are most likely to change? The current study examined whether participants could incidentally learn that changes to either high spatial frequency (HSF) or low spatial frequency (LSF)…
NASA Astrophysics Data System (ADS)
Liu, Yan; Fan, Xi; Chen, Houpeng; Wang, Yueqing; Liu, Bo; Song, Zhitang; Feng, Songlin
2017-08-01
In this brief, multilevel data storage for phase-change memory (PCM) has attracted more attention in the memory market to implement high capacity memory system and reduce cost-per-bit. In this work, we present a universal programing method of SET stair-case current pulse in PCM cells, which can exploit the optimum programing scheme to achieve 2-bit/ 4state resistance-level with equal logarithm interval. SET stair-case waveform can be optimized by TCAD real time simulation to realize multilevel data storage efficiently in an arbitrary phase change material. Experimental results from 1 k-bit PCM test-chip have validated the proposed multilevel programing scheme. This multilevel programming scheme has improved the information storage density, robustness of resistance-level, energy efficient and avoiding process complexity.
Security bound of cheat sensitive quantum bit commitment.
He, Guang Ping
2015-03-23
Cheat sensitive quantum bit commitment (CSQBC) loosens the security requirement of quantum bit commitment (QBC), so that the existing impossibility proofs of unconditionally secure QBC can be evaded. But here we analyze the common features in all existing CSQBC protocols, and show that in any CSQBC having these features, the receiver can always learn a non-trivial amount of information on the sender's committed bit before it is unveiled, while his cheating can pass the security check with a probability not less than 50%. The sender's cheating is also studied. The optimal CSQBC protocols that can minimize the sum of the cheating probabilities of both parties are found to be trivial, as they are practically useless. We also discuss the possibility of building a fair protocol in which both parties can cheat with equal probabilities.
A Goal Programming Optimization Model for The Allocation of Liquid Steel Production
NASA Astrophysics Data System (ADS)
Hapsari, S. N.; Rosyidi, C. N.
2018-03-01
This research was conducted in one of the largest steel companies in Indonesia which has several production units and produces a wide range of steel products. One of the important products in the company is billet steel. The company has four Electric Arc Furnace (EAF) which produces liquid steel which must be procesed further to be billet steel. The billet steel plant needs to make their production process more efficient to increase the productvity. The management has four goals to be achieved and hence the optimal allocation of the liquid steel production is needed to achieve those goals. In this paper, a goal programming optimization model is developed to determine optimal allocation of liquid steel production in each EAF, to satisfy demand in 3 periods and the company goals, namely maximizing the volume of production, minimizing the cost of raw materials, minimizing maintenance costs, maximizing sales revenues, and maximizing production capacity. From the results of optimization, only maximizing production capacity goal can not achieve the target. However, the model developed in this papare can optimally allocate liquid steel so the allocation of production does not exceed the maximum capacity of the machine work hours and maximum production capacity.
NASA Astrophysics Data System (ADS)
Maity, H.; Biswas, A.; Bhattacharjee, A. K.; Pal, A.
In this paper, we have proposed the design of quantum cost (QC) optimized 4-bit reversible universal shift register (RUSR) using reduced number of reversible logic gates. The proposed design is very useful in quantum computing due to its low QC, less no. of reversible logic gate and less delay. The QC, no. of gates, garbage outputs (GOs) are respectively 64, 8 and 16 for proposed work. The improvement of proposed work is also presented. The QC is 5.88% to 70.9% improved, no. of gate is 60% to 83.33% improved with compared to latest reported result.
Optimal Sensor Allocation for Fault Detection and Isolation
NASA Technical Reports Server (NTRS)
Azam, Mohammad; Pattipati, Krishna; Patterson-Hine, Ann
2004-01-01
Automatic fault diagnostic schemes rely on various types of sensors (e.g., temperature, pressure, vibration, etc) to measure the system parameters. Efficacy of a diagnostic scheme is largely dependent on the amount and quality of information available from these sensors. The reliability of sensors, as well as the weight, volume, power, and cost constraints, often makes it impractical to monitor a large number of system parameters. An optimized sensor allocation that maximizes the fault diagnosibility, subject to specified weight, volume, power, and cost constraints is required. Use of optimal sensor allocation strategies during the design phase can ensure better diagnostics at a reduced cost for a system incorporating a high degree of built-in testing. In this paper, we propose an approach that employs multiple fault diagnosis (MFD) and optimization techniques for optimal sensor placement for fault detection and isolation (FDI) in complex systems. Keywords: sensor allocation, multiple fault diagnosis, Lagrangian relaxation, approximate belief revision, multidimensional knapsack problem.
NASA Astrophysics Data System (ADS)
Eyono Obono, S. D.; Basak, Sujit Kumar
2011-12-01
The general formulation of the assignment problem consists in the optimal allocation of a given set of tasks to a workforce. This problem is covered by existing literature for different domains such as distributed databases, distributed systems, transportation, packets radio networks, IT outsourcing, and teaching allocation. This paper presents a new version of the assignment problem for the allocation of academic tasks to staff members in departments with long leave opportunities. It presents the description of a workload allocation scheme and its algorithm, for the allocation of an equitable number of tasks in academic departments where long leaves are necessary.
Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamrick, Todd
2011-01-01
Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to computemore » the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.« less
A Parametric Study for the Design of an Optimized Ultrasonic Percussive Planetary Drill Tool.
Li, Xuan; Harkness, Patrick; Worrall, Kevin; Timoney, Ryan; Lucas, Margaret
2017-03-01
Traditional rotary drilling for planetary rock sampling, in situ analysis, and sample return are challenging because the axial force and holding torque requirements are not necessarily compatible with lightweight spacecraft architectures in low-gravity environments. This paper seeks to optimize an ultrasonic percussive drill tool to achieve rock penetration with lower reacted force requirements, with a strategic view toward building an ultrasonic planetary core drill (UPCD) device. The UPCD is a descendant of the ultrasonic/sonic driller/corer technique. In these concepts, a transducer and horn (typically resonant at around 20 kHz) are used to excite a toroidal free mass that oscillates chaotically between the horn tip and drill base at lower frequencies (generally between 10 Hz and 1 kHz). This creates a series of stress pulses that is transferred through the drill bit to the rock surface, and while the stress at the drill-bit tip/rock interface exceeds the compressive strength of the rock, it causes fractures that result in fragmentation of the rock. This facilitates augering and downward progress. In order to ensure that the drill-bit tip delivers the greatest effective impulse (the time integral of the drill-bit tip/rock pressure curve exceeding the strength of the rock), parameters such as the spring rates and the mass of the free mass, the drill bit and transducer have been varied and compared in both computer simulation and practical experiment. The most interesting findings and those of particular relevance to deep drilling indicate that increasing the mass of the drill bit has a limited (or even positive) influence on the rate of effective impulse delivered.
NASA Astrophysics Data System (ADS)
Ferrandiz, Ana; Scallan, Gavin
1995-10-01
The available bit rate (ABR) service allows connections to exceed their negotiated data rates during the life of the connections when excess capacity is available in the network. These connections are subject to flow control from the network in the event of network congestion. The ability to dynamically adjust the data rate of the connection can provide improved utilization of the network and be a valuable service to end users. ABR type service is therefore appropriate for the transmission of bursty LAN traffic over a wide area network in a manner that is more efficient and cost effective than allocating bandwdith at the peak cell rate. This paper describes the ABR service and discusses if it is realistic to operate a LAN like service over a wide area using ABR.
Experimental demonstration of spectrum-sliced elastic optical path network (SLICE).
Kozicki, Bartłomiej; Takara, Hidehiko; Tsukishima, Yukio; Yoshimatsu, Toshihide; Yonenaga, Kazushige; Jinno, Masahiko
2010-10-11
We describe experimental demonstration of spectrum-sliced elastic optical path network (SLICE) architecture. We employ optical orthogonal frequency-division multiplexing (OFDM) modulation format and bandwidth-variable optical cross-connects (OXC) to generate, transmit and receive optical paths with bandwidths of up to 1 Tb/s. We experimentally demonstrate elastic optical path setup and spectrally-efficient transmission of multiple channels with bit rates ranging from 40 to 140 Gb/s between six nodes of a mesh network. We show dynamic bandwidth scalability for optical paths with bit rates of 40 to 440 Gb/s. Moreover, we demonstrate multihop transmission of a 1 Tb/s optical path over 400 km of standard single-mode fiber (SMF). Finally, we investigate the filtering properties and the required guard band width for spectrally-efficient allocation of optical paths in SLICE.
Xu, Qun; Wang, Xianchao; Xu, Chao
2017-06-01
Multiplication with traditional electronic computers is faced with a low calculating accuracy and a long computation time delay. To overcome these problems, the modified signed digit (MSD) multiplication routine is established based on the MSD system and the carry-free adder. Also, its parallel algorithm and optimization techniques are studied in detail. With the help of a ternary optical computer's characteristics, the structured data processor is designed especially for the multiplication routine. Several ternary optical operators are constructed to perform M transformations and summations in parallel, which has accelerated the iterative process of multiplication. In particular, the routine allocates data bits of the ternary optical processor based on digits of multiplication input, so the accuracy of the calculation results can always satisfy the users. Finally, the routine is verified by simulation experiments, and the results are in full compliance with the expectations. Compared with an electronic computer, the MSD multiplication routine is not only good at dealing with large-value data and high-precision arithmetic, but also maintains lower power consumption and fewer calculating delays.
Solving the optimal attention allocation problem in manual control
NASA Technical Reports Server (NTRS)
Kleinman, D. L.
1976-01-01
Within the context of the optimal control model of human response, analytic expressions for the gradients of closed-loop performance metrics with respect to human operator attention allocation are derived. These derivatives serve as the basis for a gradient algorithm that determines the optimal attention that a human should allocate among several display indicators in a steady-state manual control task. Application of the human modeling techniques are made to study the hover control task for a CH-46 VTOL flight tested by NASA.
Best Hiding Capacity Scheme for Variable Length Messages Using Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Bajaj, Ruchika; Bedi, Punam; Pal, S. K.
Steganography is an art of hiding information in such a way that prevents the detection of hidden messages. Besides security of data, the quantity of data that can be hidden in a single cover medium, is also very important. We present a secure data hiding scheme with high embedding capacity for messages of variable length based on Particle Swarm Optimization. This technique gives the best pixel positions in the cover image, which can be used to hide the secret data. In the proposed scheme, k bits of the secret message are substituted into k least significant bits of the image pixel, where k varies from 1 to 4 depending on the message length. The proposed scheme is tested and results compared with simple LSB substitution, uniform 4-bit LSB hiding (with PSO) for the test images Nature, Baboon, Lena and Kitty. The experimental study confirms that the proposed method achieves high data hiding capacity and maintains imperceptibility and minimizes the distortion between the cover image and the obtained stego image.
Restoration of Wavelet-Compressed Images and Motion Imagery
2004-01-01
SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION...images is that they are global translates of each other, where 29 the global motion parameters are known. In a very simple sense , these five images form...Image Proc., vol. 1, Oct. 2001, pp. 185–188. [2] J. W. Woods and T. Naveen, “A filter based bit allocation scheme for subband compresion of HDTV,” IEEE
Stochastic Averaging for Constrained Optimization With Application to Online Resource Allocation
NASA Astrophysics Data System (ADS)
Chen, Tianyi; Mokhtari, Aryan; Wang, Xin; Ribeiro, Alejandro; Giannakis, Georgios B.
2017-06-01
Existing approaches to resource allocation for nowadays stochastic networks are challenged to meet fast convergence and tolerable delay requirements. The present paper leverages online learning advances to facilitate stochastic resource allocation tasks. By recognizing the central role of Lagrange multipliers, the underlying constrained optimization problem is formulated as a machine learning task involving both training and operational modes, with the goal of learning the sought multipliers in a fast and efficient manner. To this end, an order-optimal offline learning approach is developed first for batch training, and it is then generalized to the online setting with a procedure termed learn-and-adapt. The novel resource allocation protocol permeates benefits of stochastic approximation and statistical learning to obtain low-complexity online updates with learning errors close to the statistical accuracy limits, while still preserving adaptation performance, which in the stochastic network optimization context guarantees queue stability. Analysis and simulated tests demonstrate that the proposed data-driven approach improves the delay and convergence performance of existing resource allocation schemes.
NASA Astrophysics Data System (ADS)
Perez, Santiago; Karakus, Murat; Pellet, Frederic
2017-05-01
The great success and widespread use of impregnated diamond (ID) bits are due to their self-sharpening mechanism, which consists of a constant renewal of diamonds acting at the cutting face as the bit wears out. It is therefore important to keep this mechanism acting throughout the lifespan of the bit. Nonetheless, such a mechanism can be altered by the blunting of the bit that ultimately leads to a less than optimal drilling performance. For this reason, this paper aims at investigating the applicability of artificial intelligence-based techniques in order to monitor tool condition of ID bits, i.e. sharp or blunt, under laboratory conditions. Accordingly, topologically invariant tests are carried out with sharp and blunt bits conditions while recording acoustic emissions (AE) and measuring-while-drilling variables. The combined output of acoustic emission root-mean-square value (AErms), depth of cut ( d), torque (tob) and weight-on-bit (wob) is then utilized to create two approaches in order to predict the wear state condition of the bits. One approach is based on the combination of the aforementioned variables and another on the specific energy of drilling. The two different approaches are assessed for classification performance with various pattern recognition algorithms, such as simple trees, support vector machines, k-nearest neighbour, boosted trees and artificial neural networks. In general, Acceptable pattern recognition rates were obtained, although the subset composed by AErms and tob excels due to the high classification performances rates and fewer input variables.
Pan, Huapu; Assefa, Solomon; Green, William M J; Kuchta, Daniel M; Schow, Clint L; Rylyakov, Alexander V; Lee, Benjamin G; Baks, Christian W; Shank, Steven M; Vlasov, Yurii A
2012-07-30
The performance of a receiver based on a CMOS amplifier circuit designed with 90nm ground rules wire-bonded to a waveguide germanium photodetector is characterized at data rates up to 40Gbps. Both chips were fabricated through the IBM Silicon CMOS Integrated Nanophotonics process on specialty photonics-enabled SOI wafers. At the data rate of 28Gbps which is relevant to the new generation of optical interconnects, a sensitivity of -7.3dBm average optical power is demonstrated with 3.4pJ/bit power-efficiency and 0.6UI horizontal eye opening at a bit-error-rate of 10(-12). The receiver operates error-free (bit-error-rate < 10(-12)) up to 40Gbps with optimized power supply settings demonstrating an energy efficiency of 1.4pJ/bit and 4pJ/bit at data rates of 32Gbps and 40Gbps, respectively, with an average optical power of -0.8dBm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Black; Arnis Judzis
2004-10-01
The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit-fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all major preparations for themore » high pressure drilling campaign. Baker Hughes encountered difficulties in providing additional pumping capacity before TerraTek's scheduled relocation to another facility, thus the program was delayed further to accommodate the full testing program.« less
QCDOC: A 10-teraflops scale computer for lattice QCD
NASA Astrophysics Data System (ADS)
Chen, D.; Christ, N. H.; Cristian, C.; Dong, Z.; Gara, A.; Garg, K.; Joo, B.; Kim, C.; Levkova, L.; Liao, X.; Mawhinney, R. D.; Ohta, S.; Wettig, T.
2001-03-01
The architecture of a new class of computers, optimized for lattice QCD calculations, is described. An individual node is based on a single integrated circuit containing a PowerPC 32-bit integer processor with a 1 Gflops 64-bit IEEE floating point unit, 4 Mbyte of memory, 8 Gbit/sec nearest-neighbor communications and additional control and diagnostic circuitry. The machine's name, QCDOC, derives from "QCD On a Chip".
Optimizing the Remotely Piloted Aircraft Pilot Career Field
2011-10-01
Katana light aircraft trainers, receiving 30 to 38 hours of introductory, night, cross country and solo ...Power Journal 33, no. 2 (Summer 2009): 5-10. 51. Steve Lohr. "Software Progress Beats Moore’s Law." bits.blogs.nytimes.com. March 07, 2011. http...bits.blogs.nytimes.com/2011/03/07/software-progress- beats -moores-law/ 52. US Department of Defense. "United States Air Force Unmanned Aircraft
Zhang, Senlin; Chen, Huayan; Liu, Meiqin; Zhang, Qunfei
2017-11-07
Target tracking is one of the broad applications of underwater wireless sensor networks (UWSNs). However, as a result of the temporal and spatial variability of acoustic channels, underwater acoustic communications suffer from an extremely limited bandwidth. In order to reduce network congestion, it is important to shorten the length of the data transmitted from local sensors to the fusion center by quantization. Although quantization can reduce bandwidth cost, it also brings about bad tracking performance as a result of information loss after quantization. To solve this problem, this paper proposes an optimal quantization-based target tracking scheme. It improves the tracking performance of low-bit quantized measurements by minimizing the additional covariance caused by quantization. The simulation demonstrates that our scheme performs much better than the conventional uniform quantization-based target tracking scheme and the increment of the data length affects our scheme only a little. Its tracking performance improves by only 4.4% from 2- to 3-bit, which means our scheme weakly depends on the number of data bits. Moreover, our scheme also weakly depends on the number of participate sensors, and it can work well in sparse sensor networks. In a 6 × 6 × 6 sensor network, compared with 4 × 4 × 4 sensor networks, the number of participant sensors increases by 334.92%, while the tracking accuracy using 1-bit quantized measurements improves by only 50.77%. Overall, our optimal quantization-based target tracking scheme can achieve the pursuit of data-efficiency, which fits the requirements of low-bandwidth UWSNs.
Heat-assisted magnetic recording of bit-patterned media beyond 10 Tb/in2
NASA Astrophysics Data System (ADS)
Vogler, Christoph; Abert, Claas; Bruckner, Florian; Suess, Dieter; Praetorius, Dirk
2016-03-01
The limits of areal storage density that is achievable with heat-assisted magnetic recording are unknown. We addressed this central question and investigated the areal density of bit-patterned media. We analyzed the detailed switching behavior of a recording bit under various external conditions, allowing us to compute the bit error rate of a write process (shingled and conventional) for various grain spacings, write head positions, and write temperatures. Hence, we were able to optimize the areal density yielding values beyond 10 Tb/in2. Our model is based on the Landau-Lifshitz-Bloch equation and uses hard magnetic recording grains with a 5-nm diameter and 10-nm height. It assumes a realistic distribution of the Curie temperature of the underlying material, grain size, as well as grain and head position.
Optimizing Utilization of Detectors
2016-03-01
provide a quantifiable process to determine how much time should be allocated to each task sharing the same asset . This optimized expected time... allocation is calculated by numerical analysis and Monte Carlo simulation. Numerical analysis determines the expectation by involving an integral and...determines the optimum time allocation of the asset by repeatedly running experiments to approximate the expectation of the random variables. This
Investigation of Optimal Control Allocation for Gust Load Alleviation in Flight Control
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Taylor, Brian R.; Bodson, Marc
2012-01-01
Advances in sensors and avionics computation power suggest real-time structural load measurements could be used in flight control systems for improved safety and performance. A conventional transport flight control system determines the moments necessary to meet the pilot's command, while rejecting disturbances and maintaining stability of the aircraft. Control allocation is the problem of converting these desired moments into control effector commands. In this paper, a framework is proposed to incorporate real-time structural load feedback and structural load constraints in the control allocator. Constrained optimal control allocation can be used to achieve desired moments without exceeding specified limits on monitored load points. Minimization of structural loads by the control allocator is used to alleviate gust loads. The framework to incorporate structural loads in the flight control system and an optimal control allocation algorithm will be described and then demonstrated on a nonlinear simulation of a generic transport aircraft with flight dynamics and static structural loads.
Planning Framework for Mesolevel Optimization of Urban Runoff Control Schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qianqian; Blohm, Andrew; Liu, Bo
A planning framework is developed to optimize runoff control schemes at scales relevant for regional planning at an early stage. The framework employs less sophisticated modeling approaches to allow a practical application in developing regions with limited data sources and computing capability. The methodology contains three interrelated modules: (1)the geographic information system (GIS)-based hydrological module, which aims at assessing local hydrological constraints and potential for runoff control according to regional land-use descriptions; (2)the grading module, which is built upon the method of fuzzy comprehensive evaluation. It is used to establish a priority ranking system to assist the allocation of runoffmore » control targets at the subdivision level; and (3)the genetic algorithm-based optimization module, which is included to derive Pareto-based optimal solutions for mesolevel allocation with multiple competing objectives. The optimization approach describes the trade-off between different allocation plans and simultaneously ensures that all allocation schemes satisfy the minimum requirement on runoff control. Our results highlight the importance of considering the mesolevel allocation strategy in addition to measures at macrolevels and microlevels in urban runoff management. (C) 2016 American Society of Civil Engineers.« less
NASA Astrophysics Data System (ADS)
Grafton, R. Quentin; Chu, Hoang Long; Stewardson, Michael; Kompas, Tom
2011-12-01
A key challenge in managing semiarid basins, such as in the Murray-Darling in Australia, is to balance the trade-offs between the net benefits of allocating water for irrigated agriculture, and other uses, versus the costs of reduced surface flows for the environment. Typically, water planners do not have the tools to optimally and dynamically allocate water among competing uses. We address this problem by developing a general stochastic, dynamic programming model with four state variables (the drought status, the current weather, weather correlation, and current storage) and two controls (environmental release and irrigation allocation) to optimally allocate water between extractions and in situ uses. The model is calibrated to Australia's Murray River that generates: (1) a robust qualitative result that "pulse" or artificial flood events are an optimal way to deliver environmental flows over and above conveyance of base flows; (2) from 2001 to 2009 a water reallocation that would have given less to irrigated agriculture and more to environmental flows would have generated between half a billion and over 3 billion U.S. dollars in overall economic benefits; and (3) water markets increase optimal environmental releases by reducing the losses associated with reduced water diversions.
Low-Level Space Optimization of an AES Implementation for a Bit-Serial Fully Pipelined Architecture
NASA Astrophysics Data System (ADS)
Weber, Raphael; Rettberg, Achim
A previously developed AES (Advanced Encryption Standard) implementation is optimized and described in this paper. The special architecture for which this implementation is targeted comprises synchronous and systematic bit-serial processing without a central controlling instance. In order to shrink the design in terms of logic utilization we deeply analyzed the architecture and the AES implementation to identify the most costly logic elements. We propose to merge certain parts of the logic to achieve better area efficiency. The approach was integrated into an existing synthesis tool which we used to produce synthesizable VHDL code. For testing purposes, we simulated the generated VHDL code and ran tests on an FPGA board.
Optimal Resource Allocation in Library Systems
ERIC Educational Resources Information Center
Rouse, William B.
1975-01-01
Queueing theory is used to model processes as either waiting or balking processes. The optimal allocation of resources to these processes is defined as that which maximizes the expected value of the decision-maker's utility function. (Author)
Optimizing 4DCBCT projection allocation to respiratory bins.
O'Brien, Ricky T; Kipritidis, John; Shieh, Chun-Chien; Keall, Paul J
2014-10-07
4D cone beam computed tomography (4DCBCT) is an emerging image guidance strategy used in radiotherapy where projections acquired during a scan are sorted into respiratory bins based on the respiratory phase or displacement. 4DCBCT reduces the motion blur caused by respiratory motion but increases streaking artefacts due to projection under-sampling as a result of the irregular nature of patient breathing and the binning algorithms used. For displacement binning the streak artefacts are so severe that displacement binning is rarely used clinically. The purpose of this study is to investigate if sharing projections between respiratory bins and adjusting the location of respiratory bins in an optimal manner can reduce or eliminate streak artefacts in 4DCBCT images. We introduce a mathematical optimization framework and a heuristic solution method, which we will call the optimized projection allocation algorithm, to determine where to position the respiratory bins and which projections to source from neighbouring respiratory bins. Five 4DCBCT datasets from three patients were used to reconstruct 4DCBCT images. Projections were sorted into respiratory bins using equispaced, equal density and optimized projection allocation. The standard deviation of the angular separation between projections was used to assess streaking and the consistency of the segmented volume of a fiducial gold marker was used to assess motion blur. The standard deviation of the angular separation between projections using displacement binning and optimized projection allocation was 30%-50% smaller than conventional phase based binning and 59%-76% smaller than conventional displacement binning indicating more uniformly spaced projections and fewer streaking artefacts. The standard deviation in the marker volume was 20%-90% smaller when using optimized projection allocation than using conventional phase based binning suggesting more uniform marker segmentation and less motion blur. Images reconstructed using displacement binning and the optimized projection allocation algorithm were clearer, contained visibly fewer streak artefacts and produced more consistent marker segmentation than those reconstructed with either equispaced or equal-density binning. The optimized projection allocation algorithm significantly improves image quality in 4DCBCT images and provides, for the first time, a method to consistently generate high quality displacement binned 4DCBCT images in clinical applications.
Optimal Computing Budget Allocation for Particle Swarm Optimization in Stochastic Optimization.
Zhang, Si; Xu, Jie; Lee, Loo Hay; Chew, Ek Peng; Wong, Wai Peng; Chen, Chun-Hung
2017-04-01
Particle Swarm Optimization (PSO) is a popular metaheuristic for deterministic optimization. Originated in the interpretations of the movement of individuals in a bird flock or fish school, PSO introduces the concept of personal best and global best to simulate the pattern of searching for food by flocking and successfully translate the natural phenomena to the optimization of complex functions. Many real-life applications of PSO cope with stochastic problems. To solve a stochastic problem using PSO, a straightforward approach is to equally allocate computational effort among all particles and obtain the same number of samples of fitness values. This is not an efficient use of computational budget and leaves considerable room for improvement. This paper proposes a seamless integration of the concept of optimal computing budget allocation (OCBA) into PSO to improve the computational efficiency of PSO for stochastic optimization problems. We derive an asymptotically optimal allocation rule to intelligently determine the number of samples for all particles such that the PSO algorithm can efficiently select the personal best and global best when there is stochastic estimation noise in fitness values. We also propose an easy-to-implement sequential procedure. Numerical tests show that our new approach can obtain much better results using the same amount of computational effort.
Optimal Computing Budget Allocation for Particle Swarm Optimization in Stochastic Optimization
Zhang, Si; Xu, Jie; Lee, Loo Hay; Chew, Ek Peng; Chen, Chun-Hung
2017-01-01
Particle Swarm Optimization (PSO) is a popular metaheuristic for deterministic optimization. Originated in the interpretations of the movement of individuals in a bird flock or fish school, PSO introduces the concept of personal best and global best to simulate the pattern of searching for food by flocking and successfully translate the natural phenomena to the optimization of complex functions. Many real-life applications of PSO cope with stochastic problems. To solve a stochastic problem using PSO, a straightforward approach is to equally allocate computational effort among all particles and obtain the same number of samples of fitness values. This is not an efficient use of computational budget and leaves considerable room for improvement. This paper proposes a seamless integration of the concept of optimal computing budget allocation (OCBA) into PSO to improve the computational efficiency of PSO for stochastic optimization problems. We derive an asymptotically optimal allocation rule to intelligently determine the number of samples for all particles such that the PSO algorithm can efficiently select the personal best and global best when there is stochastic estimation noise in fitness values. We also propose an easy-to-implement sequential procedure. Numerical tests show that our new approach can obtain much better results using the same amount of computational effort. PMID:29170617
Adaptive limited feedback for interference alignment in MIMO interference channels.
Zhang, Yang; Zhao, Chenglin; Meng, Juan; Li, Shibao; Li, Li
2016-01-01
It is very important that the radar sensor network has autonomous capabilities such as self-managing, etc. Quite often, MIMO interference channels are applied to radar sensor networks, and for self-managing purpose, interference management in MIMO interference channels is critical. Interference alignment (IA) has the potential to dramatically improve system throughput by effectively mitigating interference in multi-user networks at high signal-to-noise (SNR). However, the implementation of IA predominantly relays on perfect and global channel state information (CSI) at all transceivers. A large amount of CSI has to be fed back to all transmitters, resulting in a proliferation of feedback bits. Thus, IA with limited feedback has been introduced to reduce the sum feedback overhead. In this paper, by exploiting the advantage of heterogeneous path loss, we first investigate the throughput of IA with limited feedback in interference channels while each user transmits multi-streams simultaneously, then we get the upper bound of sum rate in terms of the transmit power and feedback bits. Moreover, we propose a dynamic feedback scheme via bit allocation to reduce the throughput loss due to limited feedback. Simulation results demonstrate that the dynamic feedback scheme achieves better performance in terms of sum rate.
USDA-ARS?s Scientific Manuscript database
An improved ant colony optimization (ACO) formulation for the allocation of crops and water to different irrigation areas is developed. The formulation enables dynamic adjustment of decision variable options and makes use of visibility factors (VFs, the domain knowledge that can be used to identify ...
NASA Astrophysics Data System (ADS)
Allam, M.; Eltahir, E. A. B.
2017-12-01
Rapid population growth, hunger problems, increasing energy demands, persistent conflicts between the Nile basin riparian countries and the potential impacts of climate change highlight the urgent need for the conscious stewardship of the upper Blue Nile (UBN) basin resources. This study develops a framework for the optimal allocation of land and water resources to agriculture and hydropower production in the UBN basin. The framework consists of three optimization models that aim to: (a) provide accurate estimates of the basin water budget, (b) allocate land and water resources optimally to agriculture, and (c) allocate water to agriculture and hydropower production, and investigate trade-offs between them. First, a data assimilation procedure for data-scarce basins is proposed to deal with data limitations and produce estimates of the hydrologic components that are consistent with the principles of mass and energy conservation. Second, the most representative topography and soil properties datasets are objectively identified and used to delineate the agricultural potential in the basin. The agricultural potential is incorporated into a land-water allocation model that maximizes the net economic benefits from rain-fed agriculture while allowing for enhancing the soils from one suitability class to another to increase agricultural productivity in return for an investment in soil inputs. The optimal agricultural expansion is expected to reduce the basin flow by 7.6 cubic kilometres, impacting downstream countries. The optimization framework is expanded to include hydropower production. This study finds that allocating water to grow rain-fed teff in the basin is more profitable than allocating water for hydropower production. Optimal operation rules for the Grand Ethiopian Renaissance dam (GERD) are identified to maximize annual hydropower generation while achieving a relatively uniform monthly production rate. Trade-offs between agricultural expansion and hydropower generation are analysed in an attempt to define cooperation scenarios that would achieve win-win outcomes for all riparian countries.
Cross-Layer Resource Allocation for Wireless Visual Sensor Networks and Mobile Ad Hoc Networks
2014-10-01
MMD), minimizes the maximum dis- tortion among all nodes of the network, promoting a rather unbiased treatment of the nodes. We employed the Particle...achieve the ideal tradeoff between the transmitted video quality and energy consumption. Each sensor node has a bit rate that can be used for both...Distortion (MMD), minimizes the maximum distortion among all nodes of the network, promoting a rather unbiased treatment of the nodes. For both criteria
Distributed multiport memory architecture
NASA Technical Reports Server (NTRS)
Kohl, W. H. (Inventor)
1983-01-01
A multiport memory architecture is diclosed for each of a plurality of task centers connected to a command and data bus. Each task center, includes a memory and a plurality of devices which request direct memory access as needed. The memory includes an internal data bus and an internal address bus to which the devices are connected, and direct timing and control logic comprised of a 10-state ring counter for allocating memory devices by enabling AND gates connected to the request signal lines of the devices. The outputs of AND gates connected to the same device are combined by OR gates to form an acknowledgement signal that enables the devices to address the memory during the next clock period. The length of the ring counter may be effectively lengthened to any multiple of ten to allow for more direct memory access intervals in one repetitive sequence. One device is a network bus adapter which serially shifts onto the command and data bus, a data word (8 bits plus control and parity bits) during the next ten direct memory access intervals after it has been granted access. The NBA is therefore allocated only one access in every ten intervals, which is a predetermined interval for all centers. The ring counters of all centers are periodically synchronized by DMA SYNC signal to assure that all NBAs be able to function in synchronism for data transfer from one center to another.
NASA Astrophysics Data System (ADS)
Vijaya Ramnath, B.; Sharavanan, S.; Jeykrishnan, J.
2017-03-01
Nowadays quality plays a vital role in all the products. Hence, the development in manufacturing process focuses on the fabrication of composite with high dimensional accuracy and also incurring low manufacturing cost. In this work, an investigation on machining parameters has been performed on jute-flax hybrid composite. Here, the two important responses characteristics like surface roughness and material removal rate are optimized by employing 3 machining input parameters. The input variables considered are drill bit diameter, spindle speed and feed rate. Machining is done on CNC vertical drilling machine at different levels of drilling parameters. Taguchi’s L16 orthogonal array is used for optimizing individual tool parameters. Analysis Of Variance is used to find the significance of individual parameters. The simultaneous optimization of the process parameters is done by grey relational analysis. The results of this investigation shows that, spindle speed and drill bit diameter have most effect on material removal rate and surface roughness followed by feed rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamoureux, Louis-Philippe; Navez, Patrick; Cerf, Nicolas J.
It is shown that any quantum operation that perfectly clones the entanglement of all maximally entangled qubit pairs cannot preserve separability. This 'entanglement no-cloning' principle naturally suggests that some approximate cloning of entanglement is nevertheless allowed by quantum mechanics. We investigate a separability-preserving optimal cloning machine that duplicates all maximally entangled states of two qubits, resulting in 0.285 bits of entanglement per clone, while a local cloning machine only yields 0.060 bits of entanglement per clone.
Cross-layer Joint Relay Selection and Power Allocation Scheme for Cooperative Relaying System
NASA Astrophysics Data System (ADS)
Zhi, Hui; He, Mengmeng; Wang, Feiyue; Huang, Ziju
2018-03-01
A novel cross-layer joint relay selection and power allocation (CL-JRSPA) scheme over physical layer and data-link layer is proposed for cooperative relaying system in this paper. Our goal is finding the optimal relay selection and power allocation scheme to maximize system achievable rate when satisfying total transmit power constraint in physical layer and statistical delay quality-of-service (QoS) demand in data-link layer. Using the concept of effective capacity (EC), our goal can be formulated into an optimal joint relay selection and power allocation (JRSPA) problem to maximize the EC when satisfying total transmit power limitation. We first solving optimal power allocation (PA) problem with Lagrange multiplier approach, and then solving optimal relay selection (RS) problem. Simulation results demonstrate that CL-JRSPA scheme gets larger EC than other schemes when satisfying delay QoS demand. In addition, the proposed CL-JRSPA scheme achieves the maximal EC when relay located approximately halfway between source and destination, and EC becomes smaller when the QoS exponent becomes larger.
Robust allocation of a defensive budget considering an attacker's private information.
Nikoofal, Mohammad E; Zhuang, Jun
2012-05-01
Attackers' private information is one of the main issues in defensive resource allocation games in homeland security. The outcome of a defense resource allocation decision critically depends on the accuracy of estimations about the attacker's attributes. However, terrorists' goals may be unknown to the defender, necessitating robust decisions by the defender. This article develops a robust-optimization game-theoretical model for identifying optimal defense resource allocation strategies for a rational defender facing a strategic attacker while the attacker's valuation of targets, being the most critical attribute of the attacker, is unknown but belongs to bounded distribution-free intervals. To our best knowledge, no previous research has applied robust optimization in homeland security resource allocation when uncertainty is defined in bounded distribution-free intervals. The key features of our model include (1) modeling uncertainty in attackers' attributes, where uncertainty is characterized by bounded intervals; (2) finding the robust-optimization equilibrium for the defender using concepts dealing with budget of uncertainty and price of robustness; and (3) applying the proposed model to real data. © 2011 Society for Risk Analysis.
A Degree Distribution Optimization Algorithm for Image Transmission
NASA Astrophysics Data System (ADS)
Jiang, Wei; Yang, Junjie
2016-09-01
Luby Transform (LT) code is the first practical implementation of digital fountain code. The coding behavior of LT code is mainly decided by the degree distribution which determines the relationship between source data and codewords. Two degree distributions are suggested by Luby. They work well in typical situations but not optimally in case of finite encoding symbols. In this work, the degree distribution optimization algorithm is proposed to explore the potential of LT code. Firstly selection scheme of sparse degrees for LT codes is introduced. Then probability distribution is optimized according to the selected degrees. In image transmission, bit stream is sensitive to the channel noise and even a single bit error may cause the loss of synchronization between the encoder and the decoder. Therefore the proposed algorithm is designed for image transmission situation. Moreover, optimal class partition is studied for image transmission with unequal error protection. The experimental results are quite promising. Compared with LT code with robust soliton distribution, the proposed algorithm improves the final quality of recovered images obviously with the same overhead.
NASA Astrophysics Data System (ADS)
Maslov, A. L.; Markova, I. Yu; Zakharova, E. S.; Polushin, N. I.; Laptev, A. I.
2017-05-01
It is known that modern drilling bit body undergoes significant abrasive wear in the contact area with the solid and the retracted cuttings. For protection of the body rationally use wear-resistant coating, which is welded directly to the body of bit. Before mass use of the developed coverings they need to be investigated by various methods that it was possible to characterize coatings and on the basis of the obtained data to perform optimization of both composition of coatings and technology. Such methods include microstructural studies tribological tests, crack resistance and others. This work is devoted to the tribological tests of imported brand of coatings WokaDur NiA and and domestic brand of coating HR-6750 (both brands manufactured by Ltd “Oerlikon Metco Rus”), used to protect the bit body from abrasive wear.
Adaptive bit plane quadtree-based block truncation coding for image compression
NASA Astrophysics Data System (ADS)
Li, Shenda; Wang, Jin; Zhu, Qing
2018-04-01
Block truncation coding (BTC) is a fast image compression technique applied in spatial domain. Traditional BTC and its variants mainly focus on reducing computational complexity for low bit rate compression, at the cost of lower quality of decoded images, especially for images with rich texture. To solve this problem, in this paper, a quadtree-based block truncation coding algorithm combined with adaptive bit plane transmission is proposed. First, the direction of edge in each block is detected using Sobel operator. For the block with minimal size, adaptive bit plane is utilized to optimize the BTC, which depends on its MSE loss encoded by absolute moment block truncation coding (AMBTC). Extensive experimental results show that our method gains 0.85 dB PSNR on average compare to some other state-of-the-art BTC variants. So it is desirable for real time image compression applications.
A decomposition approach to the design of a multiferroic memory bit
NASA Astrophysics Data System (ADS)
Acevedo, Ruben; Liang, Cheng-Yen; Carman, Gregory P.; Sepulveda, Abdon E.
2017-06-01
The objective of this paper is to present a methodology for the design of a memory bit to minimize the energy required to write data at the bit level. By straining a ferromagnetic nickel nano-dot by means of a piezoelectric substrate, its magnetization vector rotates between two stable states defined as a 1 and 0 for digital memory. The memory bit geometry, actuation mechanism and voltage control law were used as design variables. The approach used was to decompose the overall design process into simpler sub-problems whose structure can be exploited for a more efficient solution. This method minimizes the number of fully dynamic coupled finite element analyses required to converge to a near optimal design, thus decreasing the computational time for the design process. An in-plane sample design problem is presented to illustrate the advantages and flexibility of the procedure.
DCTune Perceptual Optimization of Compressed Dental X-Rays
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Null, Cynthia H. (Technical Monitor)
1997-01-01
In current dental practice, x-rays of completed dental work are often sent to the insurer for verification. It is faster and cheaper to transmit instead digital scans of the x-rays. Further economies result if the images are sent in compressed form. DCtune is a technology for optimizing DCT quantization matrices to yield maximum perceptual quality for a given bit-rate, or minimum bit-rate for a given perceptual quality. In addition, the technology provides a means of setting the perceptual quality of compressed imagery in a systematic way. The purpose of this research was, with respect to dental x-rays: (1) to verify the advantage of DCTune over standard JPEG; (2) to verify the quality control feature of DCTune; and (3) to discover regularities in the optimized matrices of a set of images. Additional information is contained in the original extended abstract.
Experimental research of UWB over fiber system employing 128-QAM and ISFA-optimized scheme
NASA Astrophysics Data System (ADS)
He, Jing; Xiang, Changqing; Long, Fengting; Chen, Zuo
2018-05-01
In this paper, an optimized intra-symbol frequency-domain averaging (ISFA) scheme is proposed and experimentally demonstrated in intensity-modulation and direct-detection (IMDD) multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system. According to the channel responses of three MB-OFDM UWB sub-bands, the optimal ISFA window size for each sub-band is investigated. After 60-km standard single mode fiber (SSMF) transmission, the experimental results show that, at the bit error rate (BER) of 3.8 × 10-3, the receiver sensitivity of 128-quadrature amplitude modulation (QAM) can be improved by 1.9 dB using the proposed enhanced ISFA combined with training sequence (TS)-based channel estimation scheme, compared with the conventional TS-based channel estimation. Moreover, the spectral efficiency (SE) is up to 5.39 bit/s/Hz.
Conditional Optimal Design in Three- and Four-Level Experiments
ERIC Educational Resources Information Center
Hedges, Larry V.; Borenstein, Michael
2014-01-01
The precision of estimates of treatment effects in multilevel experiments depends on the sample sizes chosen at each level. It is often desirable to choose sample sizes at each level to obtain the smallest variance for a fixed total cost, that is, to obtain optimal sample allocation. This article extends previous results on optimal allocation to…
Improved Speech Coding Based on Open-Loop Parameter Estimation
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Chen, Ya-Chin; Longman, Richard W.
2000-01-01
A nonlinear optimization algorithm for linear predictive speech coding was developed early that not only optimizes the linear model coefficients for the open loop predictor, but does the optimization including the effects of quantization of the transmitted residual. It also simultaneously optimizes the quantization levels used for each speech segment. In this paper, we present an improved method for initialization of this nonlinear algorithm, and demonstrate substantial improvements in performance. In addition, the new procedure produces monotonically improving speech quality with increasing numbers of bits used in the transmitted error residual. Examples of speech encoding and decoding are given for 8 speech segments and signal to noise levels as high as 47 dB are produced. As in typical linear predictive coding, the optimization is done on the open loop speech analysis model. Here we demonstrate that minimizing the error of the closed loop speech reconstruction, instead of the simpler open loop optimization, is likely to produce negligible improvement in speech quality. The examples suggest that the algorithm here is close to giving the best performance obtainable from a linear model, for the chosen order with the chosen number of bits for the codebook.
A Ku band 5 bit MEMS phase shifter for active electronically steerable phased array applications
NASA Astrophysics Data System (ADS)
Sharma, Anesh K.; Gautam, Ashu K.; Farinelli, Paola; Dutta, Asudeb; Singh, S. G.
2015-03-01
The design, fabrication and measurement of a 5 bit Ku band MEMS phase shifter in different configurations, i.e. a coplanar waveguide and microstrip, are presented in this work. The development architecture is based on the hybrid approach of switched and loaded line topologies. All the switches are monolithically manufactured on a 200 µm high resistivity silicon substrate using 4 inch diameter wafers. The first three bits (180°, 90° and 45°) are realized using switched microstrip lines and series ohmic MEMS switches whereas the fourth and fifth bits (22.5° and 11.25°) consist of microstrip line sections loaded by shunt ohmic MEMS devices. Individual bits are fabricated and evaluated for performance and the monolithic device is a 5 bit Ku band (16-18 GHz) phase shifter with very low average insertion loss of the order of 3.3 dB and a return loss better than 15 dB over the 32 states with a chip area of 44 mm2. A total phase shift of 348.75° with phase accuracy within 3° is achieved over all of the states. The performance of individual bits has been optimized in order to achieve an integrated performance so that they can be implemented into active electronically steerable antennas for phased array applications.
Optimal Control of Micro Grid Operation Mode Seamless Switching Based on Radau Allocation Method
NASA Astrophysics Data System (ADS)
Chen, Xiaomin; Wang, Gang
2017-05-01
The seamless switching process of micro grid operation mode directly affects the safety and stability of its operation. According to the switching process from island mode to grid-connected mode of micro grid, we establish a dynamic optimization model based on two grid-connected inverters. We use Radau allocation method to discretize the model, and use Newton iteration method to obtain the optimal solution. Finally, we implement the optimization mode in MATLAB and get the optimal control trajectory of the inverters.
Differential Characteristics Based Iterative Multiuser Detection for Wireless Sensor Networks
Chen, Xiaoguang; Jiang, Xu; Wu, Zhilu; Zhuang, Shufeng
2017-01-01
High throughput, low latency and reliable communication has always been a hot topic for wireless sensor networks (WSNs) in various applications. Multiuser detection is widely used to suppress the bad effect of multiple access interference in WSNs. In this paper, a novel multiuser detection method based on differential characteristics is proposed to suppress multiple access interference. The proposed iterative receive method consists of three stages. Firstly, a differential characteristics function is presented based on the optimal multiuser detection decision function; then on the basis of differential characteristics, a preliminary threshold detection is utilized to find the potential wrongly received bits; after that an error bit corrector is employed to correct the wrong bits. In order to further lower the bit error ratio (BER), the differential characteristics calculation, threshold detection and error bit correction process described above are iteratively executed. Simulation results show that after only a few iterations the proposed multiuser detection method can achieve satisfactory BER performance. Besides, BER and near far resistance performance are much better than traditional suboptimal multiuser detection methods. Furthermore, the proposed iterative multiuser detection method also has a large system capacity. PMID:28212328
Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian
2016-10-24
Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence.
Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian
2016-01-01
Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence. PMID:27775064
Achieving the Holevo bound via a bisection decoding protocol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosati, Matteo; Giovannetti, Vittorio
2016-06-15
We present a new decoding protocol to realize transmission of classical information through a quantum channel at asymptotically maximum capacity, achieving the Holevo bound and thus the optimal communication rate. At variance with previous proposals, our scheme recovers the message bit by bit, making use of a series of “yes-no” measurements, organized in bisection fashion, thus determining which codeword was sent in log{sub 2} N steps, N being the number of codewords.
Quantization of Gaussian samples at very low SNR regime in continuous variable QKD applications
NASA Astrophysics Data System (ADS)
Daneshgaran, Fred; Mondin, Marina
2016-09-01
The main problem for information reconciliation in continuous variable Quantum Key Distribution (QKD) at low Signal to Noise Ratio (SNR) is quantization and assignment of labels to the samples of the Gaussian Random Variables (RVs) observed at Alice and Bob. Trouble is that most of the samples, assuming that the Gaussian variable is zero mean which is de-facto the case, tend to have small magnitudes and are easily disturbed by noise. Transmission over longer and longer distances increases the losses corresponding to a lower effective SNR exasperating the problem. This paper looks at the quantization problem of the Gaussian samples at very low SNR regime from an information theoretic point of view. We look at the problem of two bit per sample quantization of the Gaussian RVs at Alice and Bob and derive expressions for the mutual information between the bit strings as a result of this quantization. The quantization threshold for the Most Significant Bit (MSB) should be chosen based on the maximization of the mutual information between the quantized bit strings. Furthermore, while the LSB string at Alice and Bob are balanced in a sense that their entropy is close to maximum, this is not the case for the second most significant bit even under optimal threshold. We show that with two bit quantization at SNR of -3 dB we achieve 75.8% of maximal achievable mutual information between Alice and Bob, hence, as the number of quantization bits increases beyond 2-bits, the number of additional useful bits that can be extracted for secret key generation decreases rapidly. Furthermore, the error rates between the bit strings at Alice and Bob at the same significant bit level are rather high demanding very powerful error correcting codes. While our calculations and simulation shows that the mutual information between the LSB at Alice and Bob is 0.1044 bits, that at the MSB level is only 0.035 bits. Hence, it is only by looking at the bits jointly that we are able to achieve a mutual information of 0.2217 bits which is 75.8% of maximum achievable. The implication is that only by coding both MSB and LSB jointly can we hope to get close to this 75.8% limit. Hence, non-binary codes are essential to achieve acceptable performance.
NASA Astrophysics Data System (ADS)
Ji, Zhengping; Ovsiannikov, Ilia; Wang, Yibing; Shi, Lilong; Zhang, Qiang
2015-05-01
In this paper, we develop a server-client quantization scheme to reduce bit resolution of deep learning architecture, i.e., Convolutional Neural Networks, for image recognition tasks. Low bit resolution is an important factor in bringing the deep learning neural network into hardware implementation, which directly determines the cost and power consumption. We aim to reduce the bit resolution of the network without sacrificing its performance. To this end, we design a new quantization algorithm called supervised iterative quantization to reduce the bit resolution of learned network weights. In the training stage, the supervised iterative quantization is conducted via two steps on server - apply k-means based adaptive quantization on learned network weights and retrain the network based on quantized weights. These two steps are alternated until the convergence criterion is met. In this testing stage, the network configuration and low-bit weights are loaded to the client hardware device to recognize coming input in real time, where optimized but expensive quantization becomes infeasible. Considering this, we adopt a uniform quantization for the inputs and internal network responses (called feature maps) to maintain low on-chip expenses. The Convolutional Neural Network with reduced weight and input/response precision is demonstrated in recognizing two types of images: one is hand-written digit images and the other is real-life images in office scenarios. Both results show that the new network is able to achieve the performance of the neural network with full bit resolution, even though in the new network the bit resolution of both weight and input are significantly reduced, e.g., from 64 bits to 4-5 bits.
Design of a reversible single precision floating point subtractor.
Anantha Lakshmi, Av; Sudha, Gf
2014-01-04
In recent years, Reversible logic has emerged as a major area of research due to its ability to reduce the power dissipation which is the main requirement in the low power digital circuit design. It has wide applications like low power CMOS design, Nano-technology, Digital signal processing, Communication, DNA computing and Optical computing. Floating-point operations are needed very frequently in nearly all computing disciplines, and studies have shown floating-point addition/subtraction to be the most used floating-point operation. However, few designs exist on efficient reversible BCD subtractors but no work on reversible floating point subtractor. In this paper, it is proposed to present an efficient reversible single precision floating-point subtractor. The proposed design requires reversible designs of an 8-bit and a 24-bit comparator unit, an 8-bit and a 24-bit subtractor, and a normalization unit. For normalization, a 24-bit Reversible Leading Zero Detector and a 24-bit reversible shift register is implemented to shift the mantissas. To realize a reversible 1-bit comparator, in this paper, two new 3x3 reversible gates are proposed The proposed reversible 1-bit comparator is better and optimized in terms of the number of reversible gates used, the number of transistor count and the number of garbage outputs. The proposed work is analysed in terms of number of reversible gates, garbage outputs, constant inputs and quantum costs. Using these modules, an efficient design of a reversible single precision floating point subtractor is proposed. Proposed circuits have been simulated using Modelsim and synthesized using Xilinx Virtex5vlx30tff665-3. The total on-chip power consumed by the proposed 32-bit reversible floating point subtractor is 0.410 W.
Faithful Transfer Arbitrary Pure States with Mixed Resources
NASA Astrophysics Data System (ADS)
Luo, Ming-Xing; Li, Lin; Ma, Song-Ya; Chen, Xiu-Bo; Yang, Yi-Xian
2013-09-01
In this paper, we show that some special mixed quantum resource experience the same property of pure entanglement such as Bell state for quantum teleportation. It is shown that one mixed state and three bits of classical communication cost can be used to teleport one unknown qubit compared with two bits via pure resources. The schemes are easily implement with model physical techniques. Moreover, these resources are also optimal and typical for faithfully remotely prepare an arbitrary qubit, two-qubit and three-qubit states with mixed quantum resources. Our schemes are completed as same as those with pure quantum entanglement resources except only 1 bit additional classical communication cost required. The success probability is independent of the form of the mixed resources.
Implications of scaling on static RAM bit cell stability and reliability
NASA Astrophysics Data System (ADS)
Coones, Mary Ann; Herr, Norm; Bormann, Al; Erington, Kent; Soorholtz, Vince; Sweeney, John; Phillips, Michael
1993-01-01
In order to lower manufacturing costs and increase performance, static random access memory (SRAM) bit cells are scaled progressively toward submicron geometries. The reliability of an SRAM is highly dependent on the bit cell stability. Smaller memory cells with less capacitance and restoring current make the array more susceptible to failures from defectivity, alpha hits, and other instabilities and leakage mechanisms. Improving long term reliability while migrating to higher density devices makes the task of building in and improving reliability increasingly difficult. Reliability requirements for high density SRAMs are very demanding with failure rates of less than 100 failures per billion device hours (100 FITs) being a common criteria. Design techniques for increasing bit cell stability and manufacturability must be implemented in order to build in this level of reliability. Several types of analyses are performed to benchmark the performance of the SRAM device. Examples of these analysis techniques which are presented here include DC parametric measurements of test structures, functional bit mapping of the circuit used to characterize the entire distribution of bits, electrical microprobing of weak and/or failing bits, and system and accelerated soft error rate measurements. These tests allow process and design improvements to be evaluated prior to implementation on the final product. These results are used to provide comprehensive bit cell characterization which can then be compared to device models and adjusted accordingly to provide optimized cell stability versus cell size for a particular technology. The result is designed in reliability which can be accomplished during the early stages of product development.
NASA Astrophysics Data System (ADS)
Kota, Sriharsha; Patel, Jigesh; Ghillino, Enrico; Richards, Dwight
2011-01-01
In this paper, we demonstrate a computer model for simulating a dual-rate burst mode receiver that can readily distinguish bit rates of 1.25Gbit/s and 10.3Gbit/s and demodulate the data bursts with large power variations of above 5dB. To our knowledge, this is the first such model to demodulate data bursts of different bit rates without using any external control signal such as a reset signal or a bit rate select signal. The model is based on a burst-mode bit rate discrimination circuit (B-BDC) and makes use of a unique preamble sequence attached to each burst to separate out the data bursts with different bit rates. Here, the model is implemented using a combination of the optical system simulation suite OptSimTM, and the electrical simulation engine SPICE. The reaction time of the burst mode receiver model is about 7ns, which corresponds to less than 8 preamble bits for the bit rate of 1.25Gbps. We believe, having an accurate and robust simulation model for high speed burst mode transmission in GE-PON systems, is indispensable and tremendously speeds up the ongoing research in the area, saving a lot of time and effort involved in carrying out the laboratory experiments, while providing flexibility in the optimization of various system parameters for better performance of the receiver as a whole. Furthermore, we also study the effects of burst specifications like the length of preamble sequence, and other receiver design parameters on the reaction time of the receiver.
Feng, Yen-Yi; Wu, I-Chin; Chen, Tzu-Li
2017-03-01
The number of emergency cases or emergency room visits rapidly increases annually, thus leading to an imbalance in supply and demand and to the long-term overcrowding of hospital emergency departments (EDs). However, current solutions to increase medical resources and improve the handling of patient needs are either impractical or infeasible in the Taiwanese environment. Therefore, EDs must optimize resource allocation given limited medical resources to minimize the average length of stay of patients and medical resource waste costs. This study constructs a multi-objective mathematical model for medical resource allocation in EDs in accordance with emergency flow or procedure. The proposed mathematical model is complex and difficult to solve because its performance value is stochastic; furthermore, the model considers both objectives simultaneously. Thus, this study develops a multi-objective simulation optimization algorithm by integrating a non-dominated sorting genetic algorithm II (NSGA II) with multi-objective computing budget allocation (MOCBA) to address the challenges of multi-objective medical resource allocation. NSGA II is used to investigate plausible solutions for medical resource allocation, and MOCBA identifies effective sets of feasible Pareto (non-dominated) medical resource allocation solutions in addition to effectively allocating simulation or computation budgets. The discrete event simulation model of ED flow is inspired by a Taiwan hospital case and is constructed to estimate the expected performance values of each medical allocation solution as obtained through NSGA II. Finally, computational experiments are performed to verify the effectiveness and performance of the integrated NSGA II and MOCBA method, as well as to derive non-dominated medical resource allocation solutions from the algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasner, Evan; Bearden, Sean; Žutić, Igor, E-mail: zigor@buffalo.edu
Digital operation of lasers with injected spin-polarized carriers provides an improved operation over their conventional counterparts with spin-unpolarized carriers. Such spin-lasers can attain much higher bit rates, crucial for optical communication systems. The overall quality of a digital signal in these two types of lasers is compared using eye diagrams and quantified by improved Q-factors and bit-error-rates in spin-lasers. Surprisingly, an optimal performance of spin-lasers requires finite, not infinite, spin-relaxation times, giving a guidance for the design of future spin-lasers.
Acetylcholine molecular arrays enable quantum information processing
NASA Astrophysics Data System (ADS)
Tamulis, Arvydas; Majauskaite, Kristina; Talaikis, Martynas; Zborowski, Krzysztof; Kairys, Visvaldas
2017-09-01
We have found self-assembly of four neurotransmitter acetylcholine (ACh) molecular complexes in a water molecules environment by using geometry optimization with DFT B97d method. These complexes organizes to regular arrays of ACh molecules possessing electronic spins, i.e. quantum information bits. These spin arrays could potentially be controlled by the application of a non-uniform external magnetic field. The proper sequence of resonant electromagnetic pulses would then drive all the spin groups into the 3-spin entangled state and proceed large scale quantum information bits.
2005-10-01
late the difficulty of some basic 1-bit and n-bit quantum and classical operations in an simple unconstrained scenario. KEY WORDS: Time evolution... quantum circuit and design are presented for an optimized entangling probe attacking the BB84 Protocol of quantum key distribution (QKD) and yielding...unambiguous, at least some of the time. It follows that the BB84 (Bennett-Brassard 1984) proto- col of quantum key distribution has a vulnerability similar to
Optimal co-allocation of carbon and nitrogen in a forest stand at steady state
Annikki Makela; Harry T. Valentine; Helja-Sisko Helmisaari
2008-01-01
Nitrogen (N) is essential for plant production, but N uptake imposes carbon (C) costs through maintenance respiration and fine-root construction, suggesting that an optimal C:N balance can be found. Previous studies have elaborated this optimum under exponential growth; work on closed canopies has focused on foliage only. Here, the optimal co-allocation of C and N to...
Initial Effects of Heavy Vehicle Trafficking on Vegetated Soils
2012-08-01
ER D C/ CR R EL T R -1 2 -6 Optimal Allocation of Land for Training and Non-training Uses ( OPAL ) Initial Effects of Heavy Vehicle...the outdoor loam test section. Optimal Allocation of Land for Training and Non-training Uses ( OPAL ) ERDC/CRREL TR-12-6 August 2012 Initial...mal Allocation of Land for Training and Non-Training Uses ( OPAL ) Pro- gram. The work was conducted by Nicole Buck and Sally Shoop of the Force
Aghamohammadi, Hossein; Saadi Mesgari, Mohammad; Molaei, Damoon; Aghamohammadi, Hasan
2013-01-01
Location-allocation is a combinatorial optimization problem, and is defined as Non deterministic Polynomial Hard (NP) hard optimization. Therefore, solution of such a problem should be shifted from exact to heuristic or Meta heuristic due to the complexity of the problem. Locating medical centers and allocating injuries of an earthquake to them has high importance in earthquake disaster management so that developing a proper method will reduce the time of relief operation and will consequently decrease the number of fatalities. This paper presents the development of a heuristic method based on two nested genetic algorithms to optimize this location allocation problem by using the abilities of Geographic Information System (GIS). In the proposed method, outer genetic algorithm is applied to the location part of the problem and inner genetic algorithm is used to optimize the resource allocation. The final outcome of implemented method includes the spatial location of new required medical centers. The method also calculates that how many of the injuries at each demanding point should be taken to any of the existing and new medical centers as well. The results of proposed method showed high performance of designed structure to solve a capacitated location-allocation problem that may arise in a disaster situation when injured people has to be taken to medical centers in a reasonable time.
Optimizing Irrigation Water Allocation under Multiple Sources of Uncertainty in an Arid River Basin
NASA Astrophysics Data System (ADS)
Wei, Y.; Tang, D.; Gao, H.; Ding, Y.
2015-12-01
Population growth and climate change add additional pressures affecting water resources management strategies for meeting demands from different economic sectors. It is especially challenging in arid regions where fresh water is limited. For instance, in the Tailanhe River Basin (Xinjiang, China), a compromise must be made between water suppliers and users during drought years. This study presents a multi-objective irrigation water allocation model to cope with water scarcity in arid river basins. To deal with the uncertainties from multiple sources in the water allocation system (e.g., variations of available water amount, crop yield, crop prices, and water price), the model employs a interval linear programming approach. The multi-objective optimization model developed from this study is characterized by integrating eco-system service theory into water-saving measures. For evaluation purposes, the model is used to construct an optimal allocation system for irrigation areas fed by the Tailan River (Xinjiang Province, China). The objective functions to be optimized are formulated based on these irrigation areas' economic, social, and ecological benefits. The optimal irrigation water allocation plans are made under different hydroclimate conditions (wet year, normal year, and dry year), with multiple sources of uncertainty represented. The modeling tool and results are valuable for advising decision making by the local water authority—and the agricultural community—especially on measures for coping with water scarcity (by incorporating uncertain factors associated with crop production planning).
An intelligent allocation algorithm for parallel processing
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Homaifar, Abdollah; Ananthram, Kishan G.
1988-01-01
The problem of allocating nodes of a program graph to processors in a parallel processing architecture is considered. The algorithm is based on critical path analysis, some allocation heuristics, and the execution granularity of nodes in a program graph. These factors, and the structure of interprocessor communication network, influence the allocation. To achieve realistic estimations of the executive durations of allocations, the algorithm considers the fact that nodes in a program graph have to communicate through varying numbers of tokens. Coarse and fine granularities have been implemented, with interprocessor token-communication duration, varying from zero up to values comparable to the execution durations of individual nodes. The effect on allocation of communication network structures is demonstrated by performing allocations for crossbar (non-blocking) and star (blocking) networks. The algorithm assumes the availability of as many processors as it needs for the optimal allocation of any program graph. Hence, the focus of allocation has been on varying token-communication durations rather than varying the number of processors. The algorithm always utilizes as many processors as necessary for the optimal allocation of any program graph, depending upon granularity and characteristics of the interprocessor communication network.
Optimal allocation of industrial PV-storage micro-grid considering important load
NASA Astrophysics Data System (ADS)
He, Shaohua; Ju, Rong; Yang, Yang; Xu, Shuai; Liang, Lei
2018-03-01
At present, the industrial PV-storage micro-grid has been widely used. This paper presents an optimal allocation model of PV-storage micro-grid capacity considering the important load of industrial users. A multi-objective optimization model is established to promote the local extinction of PV power generation and the maximum investment income of the enterprise as the objective function. Particle swarm optimization (PSO) is used to solve the case of a city in Jiangsu Province, the results are analyzed economically.
Progressive low-bitrate digital color/monochrome image coding by neuro-fuzzy clustering
NASA Astrophysics Data System (ADS)
Mitra, Sunanda; Meadows, Steven
1997-10-01
Color image coding at low bit rates is an area of research that is just being addressed in recent literature since the problems of storage and transmission of color images are becoming more prominent in many applications. Current trends in image coding exploit the advantage of subband/wavelet decompositions in reducing the complexity in optimal scalar/vector quantizer (SQ/VQ) design. Compression ratios (CRs) of the order of 10:1 to 20:1 with high visual quality have been achieved by using vector quantization of subband decomposed color images in perceptually weighted color spaces. We report the performance of a recently developed adaptive vector quantizer, namely, AFLC-VQ for effective reduction in bit rates while maintaining high visual quality of reconstructed color as well as monochrome images. For 24 bit color images, excellent visual quality is maintained upto a bit rate reduction to approximately 0.48 bpp (for each color plane or monochrome 0.16 bpp, CR 50:1) by using the RGB color space. Further tuning of the AFLC-VQ, and addition of an entropy coder module after the VQ stage results in extremely low bit rates (CR 80:1) for good quality, reconstructed images. Our recent study also reveals that for similar visual quality, RGB color space requires less bits/pixel than either the YIQ, or HIS color space for storing the same information when entropy coding is applied. AFLC-VQ outperforms other standard VQ and adaptive SQ techniques in retaining visual fidelity at similar bit rate reduction.
JPEG 2000 Encoding with Perceptual Distortion Control
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Liu, Zhen; Karam, Lina J.
2008-01-01
An alternative approach has been devised for encoding image data in compliance with JPEG 2000, the most recent still-image data-compression standard of the Joint Photographic Experts Group. Heretofore, JPEG 2000 encoding has been implemented by several related schemes classified as rate-based distortion-minimization encoding. In each of these schemes, the end user specifies a desired bit rate and the encoding algorithm strives to attain that rate while minimizing a mean squared error (MSE). While rate-based distortion minimization is appropriate for transmitting data over a limited-bandwidth channel, it is not the best approach for applications in which the perceptual quality of reconstructed images is a major consideration. A better approach for such applications is the present alternative one, denoted perceptual distortion control, in which the encoding algorithm strives to compress data to the lowest bit rate that yields at least a specified level of perceptual image quality. Some additional background information on JPEG 2000 is prerequisite to a meaningful summary of JPEG encoding with perceptual distortion control. The JPEG 2000 encoding process includes two subprocesses known as tier-1 and tier-2 coding. In order to minimize the MSE for the desired bit rate, a rate-distortion- optimization subprocess is introduced between the tier-1 and tier-2 subprocesses. In tier-1 coding, each coding block is independently bit-plane coded from the most-significant-bit (MSB) plane to the least-significant-bit (LSB) plane, using three coding passes (except for the MSB plane, which is coded using only one "clean up" coding pass). For M bit planes, this subprocess involves a total number of (3M - 2) coding passes. An embedded bit stream is then generated for each coding block. Information on the reduction in distortion and the increase in the bit rate associated with each coding pass is collected. This information is then used in a rate-control procedure to determine the contribution of each coding block to the output compressed bit stream.
Fast packet switching algorithms for dynamic resource control over ATM networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsang, R.P.; Keattihananant, P.; Chang, T.
1996-12-01
Real-time continuous media traffic, such as digital video and audio, is expected to comprise a large percentage of the network load on future high speed packet switch networks such as ATM. A major feature which distinguishes high speed networks from traditional slower speed networks is the large amount of data the network must process very quickly. For efficient network usage, traffic control mechanisms are essential. Currently, most mechanisms for traffic control (such as flow control) have centered on the support of Available Bit Rate (ABR), i.e., non real-time, traffic. With regard to ATM, for ABR traffic, two major types ofmore » schemes which have been proposed are rate- control and credit-control schemes. Neither of these schemes are directly applicable to Real-time Variable Bit Rate (VBR) traffic such as continuous media traffic. Traffic control for continuous media traffic is an inherently difficult problem due to the time- sensitive nature of the traffic and its unpredictable burstiness. In this study, we present a scheme which controls traffic by dynamically allocating/de- allocating resources among competing VCs based upon their real-time requirements. This scheme incorporates a form of rate- control, real-time burst-level scheduling and link-link flow control. We show analytically potential performance improvements of our rate- control scheme and present a scheme for buffer dimensioning. We also present simulation results of our schemes and discuss the tradeoffs inherent in maintaining high network utilization and statistically guaranteeing many users` Quality of Service.« less
Power Allocation and Outage Probability Analysis for SDN-based Radio Access Networks
NASA Astrophysics Data System (ADS)
Zhao, Yongxu; Chen, Yueyun; Mai, Zhiyuan
2018-01-01
In this paper, performance of Access network Architecture based SDN (Software Defined Network) is analyzed with respect to the power allocation issue. A power allocation scheme PSO-PA (Particle Swarm Optimization-power allocation) algorithm is proposed, the proposed scheme is subjected to constant total power with the objective of minimizing system outage probability. The entire access network resource configuration is controlled by the SDN controller, then it sends the optimized power distribution factor to the base station source node (SN) and the relay node (RN). Simulation results show that the proposed scheme reduces the system outage probability at a low complexity.
Multi-Robot Coalitions Formation with Deadlines: Complexity Analysis and Solutions
2017-01-01
Multi-robot task allocation is one of the main problems to address in order to design a multi-robot system, very especially when robots form coalitions that must carry out tasks before a deadline. A lot of factors affect the performance of these systems and among them, this paper is focused on the physical interference effect, produced when two or more robots want to access the same point simultaneously. To our best knowledge, this paper presents the first formal description of multi-robot task allocation that includes a model of interference. Thanks to this description, the complexity of the allocation problem is analyzed. Moreover, the main contribution of this paper is to provide the conditions under which the optimal solution of the aforementioned allocation problem can be obtained solving an integer linear problem. The optimal results are compared to previous allocation algorithms already proposed by the first two authors of this paper and with a new method proposed in this paper. The results obtained show how the new task allocation algorithms reach up more than an 80% of the median of the optimal solution, outperforming previous auction algorithms with a huge reduction of the execution time. PMID:28118384
Multi-Robot Coalitions Formation with Deadlines: Complexity Analysis and Solutions.
Guerrero, Jose; Oliver, Gabriel; Valero, Oscar
2017-01-01
Multi-robot task allocation is one of the main problems to address in order to design a multi-robot system, very especially when robots form coalitions that must carry out tasks before a deadline. A lot of factors affect the performance of these systems and among them, this paper is focused on the physical interference effect, produced when two or more robots want to access the same point simultaneously. To our best knowledge, this paper presents the first formal description of multi-robot task allocation that includes a model of interference. Thanks to this description, the complexity of the allocation problem is analyzed. Moreover, the main contribution of this paper is to provide the conditions under which the optimal solution of the aforementioned allocation problem can be obtained solving an integer linear problem. The optimal results are compared to previous allocation algorithms already proposed by the first two authors of this paper and with a new method proposed in this paper. The results obtained show how the new task allocation algorithms reach up more than an 80% of the median of the optimal solution, outperforming previous auction algorithms with a huge reduction of the execution time.
Playing Games with Optimal Competitive Scheduling
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Crawford, James; Khatib, Lina; Brafman, Ronen
2005-01-01
This paper is concerned with the problem of allocating a unit capacity resource to multiple users within a pre-defined time period. The resource is indivisible, so that at most one user can use it at each time instance. However, different users may use it at different times. The users have independent, selfish preferences for when and for how long they are allocated this resource. Thus, they value different resource access durations differently, and they value different time slots differently. We seek an optimal allocation schedule for this resource.
Fabrication of Fe-Based Diamond Composites by Pressureless Infiltration
Li, Meng; Sun, Youhong; Meng, Qingnan; Wu, Haidong; Gao, Ke; Liu, Baochang
2016-01-01
A metal-based matrix is usually used for the fabrication of diamond bits in order to achieve favorable properties and easy processing. In the effort to reduce the cost and to attain the desired bit properties, researchers have brought more attention to diamond composites. In this paper, Fe-based impregnated diamond composites for drill bits were fabricated by using a pressureless infiltration sintering method at 970 °C for 5 min. In addition, boron was introduced into Fe-based diamond composites. The influence of boron on the density, hardness, bending strength, grinding ratio, and microstructure was investigated. An Fe-based diamond composite with 1 wt % B has an optimal overall performance, the grinding ratio especially improving by 80%. After comparing with tungsten carbide (WC)-based diamond composites with and without 1 wt % B, results showed that the Fe-based diamond composite with 1 wt % B exhibits higher bending strength and wear resistance, being satisfactory to bit needs. PMID:28774124
NASA Astrophysics Data System (ADS)
Divakar, L.; Babel, M. S.; Perret, S. R.; Gupta, A. Das
2011-04-01
SummaryThe study develops a model for optimal bulk allocations of limited available water based on an economic criterion to competing use sectors such as agriculture, domestic, industry and hydropower. The model comprises a reservoir operation module (ROM) and a water allocation module (WAM). ROM determines the amount of water available for allocation, which is used as an input to WAM with an objective function to maximize the net economic benefits of bulk allocations to different use sectors. The total net benefit functions for agriculture and hydropower sectors and the marginal net benefit from domestic and industrial sectors are established and are categorically taken as fixed in the present study. The developed model is applied to the Chao Phraya basin in Thailand. The case study results indicate that the WAM can improve net economic returns compared to the current water allocation practices.
Optimized maritime emergency resource allocation under dynamic demand.
Zhang, Wenfen; Yan, Xinping; Yang, Jiaqi
2017-01-01
Emergency resource is important for people evacuation and property rescue when accident occurs. The relief efforts could be promoted by a reasonable emergency resource allocation schedule in advance. As the marine environment is complicated and changeful, the place, type, severity of maritime accident is uncertain and stochastic, bringing about dynamic demand of emergency resource. Considering dynamic demand, how to make a reasonable emergency resource allocation schedule is challenging. The key problem is to determine the optimal stock of emergency resource for supplier centers to improve relief efforts. This paper studies the dynamic demand, and which is defined as a set. Then a maritime emergency resource allocation model with uncertain data is presented. Afterwards, a robust approach is developed and used to make sure that the resource allocation schedule performs well with dynamic demand. Finally, a case study shows that the proposed methodology is feasible in maritime emergency resource allocation. The findings could help emergency manager to schedule the emergency resource allocation more flexibly in terms of dynamic demand.
Optimized maritime emergency resource allocation under dynamic demand
Yan, Xinping; Yang, Jiaqi
2017-01-01
Emergency resource is important for people evacuation and property rescue when accident occurs. The relief efforts could be promoted by a reasonable emergency resource allocation schedule in advance. As the marine environment is complicated and changeful, the place, type, severity of maritime accident is uncertain and stochastic, bringing about dynamic demand of emergency resource. Considering dynamic demand, how to make a reasonable emergency resource allocation schedule is challenging. The key problem is to determine the optimal stock of emergency resource for supplier centers to improve relief efforts. This paper studies the dynamic demand, and which is defined as a set. Then a maritime emergency resource allocation model with uncertain data is presented. Afterwards, a robust approach is developed and used to make sure that the resource allocation schedule performs well with dynamic demand. Finally, a case study shows that the proposed methodology is feasible in maritime emergency resource allocation. The findings could help emergency manager to schedule the emergency resource allocation more flexibly in terms of dynamic demand. PMID:29240792
Advances in liver transplantation allocation systems.
Schilsky, Michael L; Moini, Maryam
2016-03-14
With the growing number of patients in need of liver transplantation, there is a need for adopting new and modifying existing allocation policies that prioritize patients for liver transplantation. Policy should ensure fair allocation that is reproducible and strongly predictive of best pre and post transplant outcomes while taking into account the natural history of the potential recipients liver disease and its complications. There is wide acceptance for allocation policies based on urgency in which the sickest patients on the waiting list with the highest risk of mortality receive priority. Model for end-stage liver disease and Child-Turcotte-Pugh scoring system, the two most universally applicable systems are used in urgency-based prioritization. However, other factors must be considered to achieve optimal allocation. Factors affecting pre-transplant patient survival and the quality of the donor organ also affect outcome. The optimal system should have allocation prioritization that accounts for both urgency and transplant outcome. We reviewed past and current liver allocation systems with the aim of generating further discussion about improvement of current policies.
Joint optimization of regional water-power systems
NASA Astrophysics Data System (ADS)
Pereira-Cardenal, Silvio J.; Mo, Birger; Gjelsvik, Anders; Riegels, Niels D.; Arnbjerg-Nielsen, Karsten; Bauer-Gottwein, Peter
2016-06-01
Energy and water resources systems are tightly coupled; energy is needed to deliver water and water is needed to extract or produce energy. Growing pressure on these resources has raised concerns about their long-term management and highlights the need to develop integrated solutions. A method for joint optimization of water and electric power systems was developed in order to identify methodologies to assess the broader interactions between water and energy systems. The proposed method is to include water users and power producers into an economic optimization problem that minimizes the cost of power production and maximizes the benefits of water allocation, subject to constraints from the power and hydrological systems. The method was tested on the Iberian Peninsula using simplified models of the seven major river basins and the power market. The optimization problem was successfully solved using stochastic dual dynamic programming. The results showed that current water allocation to hydropower producers in basins with high irrigation productivity, and to irrigation users in basins with high hydropower productivity was sub-optimal. Optimal allocation was achieved by managing reservoirs in very distinct ways, according to the local inflow, storage capacity, hydropower productivity, and irrigation demand and productivity. This highlights the importance of appropriately representing the water users' spatial distribution and marginal benefits and costs when allocating water resources optimally. The method can handle further spatial disaggregation and can be extended to include other aspects of the water-energy nexus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canavan, G.H.
Optimizations of missile allocation based on linearized exchange equations produce accurate allocations, but the limits of validity of the linearization are not known. These limits are explored in the context of the upload of weapons by one side to initially small, equal forces of vulnerable and survivable weapons. The analysis compares analytic and numerical optimizations and stability induces based on aggregated interactions of the two missile forces, the first and second strikes they could deliver, and they resulting costs. This note discusses the costs and stability indices induced by unilateral uploading of weapons to an initially symmetrical low force configuration.more » These limits are quantified for forces with a few hundred missiles by comparing analytic and numerical optimizations of first strike costs. For forces of 100 vulnerable and 100 survivable missiles on each side, the analytic optimization agrees closely with the numerical solution. For 200 vulnerable and 200 survivable missiles on each side, the analytic optimization agrees with the induces to within about 10%, but disagrees with the allocation of the side with more weapons by about 50%. The disagreement comes from the interaction of the possession of more weapons with the shift of allocation from missiles to value that they induce.« less
Ramsey waits: allocating public health service resources when there is rationing by waiting.
Gravelle, Hugh; Siciliani, Luigi
2008-09-01
The optimal allocation of a public health care budget across treatments must take account of the way in which care is rationed within treatments since this will affect their marginal value. We investigate the optimal allocation rules for public health care systems where user charges are fixed and care is rationed by waiting. The optimal waiting time is higher for treatments with demands more elastic to waiting time, higher costs, lower charges, smaller marginal welfare loss from waiting by treated patients, and smaller marginal welfare losses from under-consumption of care. The results hold for a wide range of welfarist and non-welfarist objective functions and for systems in which there is also a private health care sector. They imply that allocation rules based purely on cost effectiveness ratios are suboptimal because they assume that there is no rationing within treatments.
NASA Astrophysics Data System (ADS)
Menshikh, V.; Samorokovskiy, A.; Avsentev, O.
2018-03-01
The mathematical model of optimizing the allocation of resources to reduce the time for management decisions and algorithms to solve the general problem of resource allocation. The optimization problem of choice of resources in organizational systems in order to reduce the total execution time of a job is solved. This problem is a complex three-level combinatorial problem, for the solving of which it is necessary to implement the solution to several specific problems: to estimate the duration of performing each action, depending on the number of performers within the group that performs this action; to estimate the total execution time of all actions depending on the quantitative composition of groups of performers; to find such a distribution of the existing resource of performers in groups to minimize the total execution time of all actions. In addition, algorithms to solve the general problem of resource allocation are proposed.
Sharing the Wealth: Factors Influencing Resource Allocation in the Sharing Game
ERIC Educational Resources Information Center
Fantino, Edmund; Kennelly, Arthur
2009-01-01
Students chose between two allocation options, one that gave the allocator more and another participant still more (the "optimal" choice) and one which gave the allocator less and the other participant still less (the "competitive" choice). In a within-subjects design, students' behavior patterns were significantly correlated across the two rounds…
NASA Astrophysics Data System (ADS)
Zhang, Yu; Jin, Lei; Jiang, Dandan; Zou, Xingqi; Zhao, Zhiguo; Gao, Jing; Zeng, Ming; Zhou, Wenbin; Tang, Zhaoyun; Huo, Zongliang
2018-03-01
In order to optimize program disturbance characteristics effectively, a characterization approach that measures top select transistor (TSG) leakage from bit-line is proposed to quantify TSG leakage under program inhibit condition in 3D NAND flash memory. Based on this approach, the effect of Vth modulation of two-cell TSG on leakage is evaluated. By checking the dependence of leakage and corresponding program disturbance on upper and lower TSG Vth, this approach is validated. The optimal Vth pattern with high upper TSG Vth and low lower TSG Vth has been suggested for low leakage current and high boosted channel potential. It is found that upper TSG plays dominant role in preventing drain induced barrier lowering (DIBL) leakage from boosted channel to bit-line, while lower TSG assists to further suppress TSG leakage by providing smooth potential drop from dummy WL to edge of TSG, consequently suppressing trap assisted band-to-band tunneling current (BTBT) between dummy WL and TSG.
NASA Astrophysics Data System (ADS)
Lu, Yuan-Yuan; Wang, Ji-Bo; Ji, Ping; He, Hongyu
2017-09-01
In this article, single-machine group scheduling with learning effects and convex resource allocation is studied. The goal is to find the optimal job schedule, the optimal group schedule, and resource allocations of jobs and groups. For the problem of minimizing the makespan subject to limited resource availability, it is proved that the problem can be solved in polynomial time under the condition that the setup times of groups are independent. For the general setup times of groups, a heuristic algorithm and a branch-and-bound algorithm are proposed, respectively. Computational experiments show that the performance of the heuristic algorithm is fairly accurate in obtaining near-optimal solutions.
Optimal allocation of resources for suppressing epidemic spreading on networks
NASA Astrophysics Data System (ADS)
Chen, Hanshuang; Li, Guofeng; Zhang, Haifeng; Hou, Zhonghuai
2017-07-01
Efficient allocation of limited medical resources is crucial for controlling epidemic spreading on networks. Based on the susceptible-infected-susceptible model, we solve the optimization problem of how best to allocate the limited resources so as to minimize prevalence, providing that the curing rate of each node is positively correlated to its medical resource. By quenched mean-field theory and heterogeneous mean-field (HMF) theory, we prove that an epidemic outbreak will be suppressed to the greatest extent if the curing rate of each node is directly proportional to its degree, under which the effective infection rate λ has a maximal threshold λcopt=1 /
Security of two-state and four-state practical quantum bit-commitment protocols
NASA Astrophysics Data System (ADS)
Loura, Ricardo; Arsenović, Dušan; Paunković, Nikola; Popović, Duška B.; Prvanović, Slobodan
2016-12-01
We study cheating strategies against a practical four-state quantum bit-commitment protocol [A. Danan and L. Vaidman, Quant. Info. Proc. 11, 769 (2012)], 10.1007/s11128-011-0284-4 and its two-state variant [R. Loura et al., Phys. Rev. A 89, 052336 (2014)], 10.1103/PhysRevA.89.052336 when the underlying quantum channels are noisy and the cheating party is constrained to using single-qubit measurements only. We show that simply inferring the transmitted photons' states by using the Breidbart basis, optimal for ambiguous (minimum-error) state discrimination, does not directly produce an optimal cheating strategy for this bit-commitment protocol. We introduce a strategy, based on certain postmeasurement processes and show it to have better chances at cheating than the direct approach. We also study to what extent sending forged geographical coordinates helps a dishonest party in breaking the binding security requirement. Finally, we investigate the impact of imperfect single-photon sources in the protocols. Our study shows that, in terms of the resources used, the four-state protocol is advantageous over the two-state version. The analysis performed can be straightforwardly generalized to any finite-qubit measurement, with the same qualitative results.
Optimized bit extraction using distortion modeling in the scalable extension of H.264/AVC.
Maani, Ehsan; Katsaggelos, Aggelos K
2009-09-01
The newly adopted scalable extension of H.264/AVC video coding standard (SVC) demonstrates significant improvements in coding efficiency in addition to an increased degree of supported scalability relative to the scalable profiles of prior video coding standards. Due to the complicated hierarchical prediction structure of the SVC and the concept of key pictures, content-aware rate adaptation of SVC bit streams to intermediate bit rates is a nontrivial task. The concept of quality layers has been introduced in the design of the SVC to allow for fast content-aware prioritized rate adaptation. However, existing quality layer assignment methods are suboptimal and do not consider all network abstraction layer (NAL) units from different layers for the optimization. In this paper, we first propose a technique to accurately and efficiently estimate the quality degradation resulting from discarding an arbitrary number of NAL units from multiple layers of a bitstream by properly taking drift into account. Then, we utilize this distortion estimation technique to assign quality layers to NAL units for a more efficient extraction. Experimental results show that a significant gain can be achieved by the proposed scheme.
NASA Astrophysics Data System (ADS)
Gerber, Florian; Mösinger, Kaspar; Furrer, Reinhard
2017-07-01
Software packages for spatial data often implement a hybrid approach of interpreted and compiled programming languages. The compiled parts are usually written in C, C++, or Fortran, and are efficient in terms of computational speed and memory usage. Conversely, the interpreted part serves as a convenient user-interface and calls the compiled code for computationally demanding operations. The price paid for the user friendliness of the interpreted component is-besides performance-the limited access to low level and optimized code. An example of such a restriction is the 64-bit vector support of the widely used statistical language R. On the R side, users do not need to change existing code and may not even notice the extension. On the other hand, interfacing 64-bit compiled code efficiently is challenging. Since many R packages for spatial data could benefit from 64-bit vectors, we investigate strategies to efficiently pass 64-bit vectors to compiled languages. More precisely, we show how to simply extend existing R packages using the foreign function interface to seamlessly support 64-bit vectors. This extension is shown with the sparse matrix algebra R package spam. The new capabilities are illustrated with an example of GIMMS NDVI3g data featuring a parametric modeling approach for a non-stationary covariance matrix.
Longin, C Friedrich H; Utz, H Friedrich; Reif, Jochen C; Schipprack, Wolfgang; Melchinger, Albrecht E
2006-03-01
Optimum allocation of resources is of fundamental importance for the efficiency of breeding programs. The objectives of our study were to (1) determine the optimum allocation for the number of lines and test locations in hybrid maize breeding with doubled haploids (DHs) regarding two optimization criteria, the selection gain deltaG(k) and the probability P(k) of identifying superior genotypes, (2) compare both optimization criteria including their standard deviations (SDs), and (3) investigate the influence of production costs of DHs on the optimum allocation. For different budgets, number of finally selected lines, ratios of variance components, and production costs of DHs, the optimum allocation of test resources under one- and two-stage selection for testcross performance with a given tester was determined by using Monte Carlo simulations. In one-stage selection, lines are tested in field trials in a single year. In two-stage selection, optimum allocation of resources involves evaluation of (1) a large number of lines in a small number of test locations in the first year and (2) a small number of the selected superior lines in a large number of test locations in the second year, thereby maximizing both optimization criteria. Furthermore, to have a realistic chance of identifying a superior genotype, the probability P(k) of identifying superior genotypes should be greater than 75%. For budgets between 200 and 5,000 field plot equivalents, P(k) > 75% was reached only for genotypes belonging to the best 5% of the population. As the optimum allocation for P(k)(5%) was similar to that for deltaG(k), the choice of the optimization criterion was not crucial. The production costs of DHs had only a minor effect on the optimum number of locations and on values of the optimization criteria.
Optimal allocation in annual plants and its implications for drought response
NASA Astrophysics Data System (ADS)
Caldararu, Silvia; Smith, Matthew; Purves, Drew
2015-04-01
The concept of plant optimality refers to the plastic behaviour of plants that results in lifetime and offspring fitness. Optimality concepts have been used in vegetation models for a variety of processes, including stomatal conductance, leaf phenology and biomass allocation. Including optimality in vegetation models has the advantages of creating process based models with a relatively low complexity in terms of parameter numbers but which are capable of reproducing complex plant behaviour. We present a general model of plant growth for annual plants based on the hypothesis that plants allocate biomass to aboveground and belowground vegetative organs in order to maintain an optimal C:N ratio. The model also represents reproductive growth through a second optimality criteria, which states that plants flower when they reach peak nitrogen uptake. We apply this model to wheat and maize crops at 15 locations corresponding to FLUXNET cropland sites. The model parameters are data constrained using a Bayesian fitting algorithm to eddy covariance data, satellite derived vegetation indices, specifically the MODIS fAPAR product and field level crop yield data. We use the model to simulate the plant drought response under the assumption of plant optimality and show that the plants maintain unstressed total biomass levels under drought for a reduction in precipitation of up to 40%. Beyond that level plant response stops being plastic and growth decreases sharply. This behaviour results simply from the optimal allocation criteria as the model includes no explicit drought sensitivity component. Models that use plant optimality concepts are a useful tool for simulation plant response to stress without the addition of artificial thresholds and parameters.
Chauvenet, Aliénor L M; Baxter, Peter W J; McDonald-Madden, Eve; Possingham, Hugh P
2010-04-01
Money is often a limiting factor in conservation, and attempting to conserve endangered species can be costly. Consequently, a framework for optimizing fiscally constrained conservation decisions for a single species is needed. In this paper we find the optimal budget allocation among isolated subpopulations of a threatened species to minimize local extinction probability. We solve the problem using stochastic dynamic programming, derive a useful and simple alternative guideline for allocating funds, and test its performance using forward simulation. The model considers subpopulations that persist in habitat patches of differing quality, which in our model is reflected in different relationships between money invested and extinction risk. We discover that, in most cases, subpopulations that are less efficient to manage should receive more money than those that are more efficient to manage, due to higher investment needed to reduce extinction risk. Our simple investment guideline performs almost as well as the exact optimal strategy. We illustrate our approach with a case study of the management of the Sumatran tiger, Panthera tigris sumatrae, in Kerinci Seblat National Park (KSNP), Indonesia. We find that different budgets should be allocated to the separate tiger subpopulations in KSNP. The subpopulation that is not at risk of extinction does not require any management investment. Based on the combination of risks of extinction and habitat quality, the optimal allocation for these particular tiger subpopulations is an unusual case: subpopulations that occur in higher-quality habitat (more efficient to manage) should receive more funds than the remaining subpopulation that is in lower-quality habitat. Because the yearly budget allocated to the KSNP for tiger conservation is small, to guarantee the persistence of all the subpopulations that are currently under threat we need to prioritize those that are easier to save. When allocating resources among subpopulations of a threatened species, the combined effects of differences in habitat quality, cost of action, and current subpopulation probability of extinction need to be integrated. We provide a useful guideline for allocating resources among isolated subpopulations of any threatened species.
Liu, Yaolin; Peng, Jinjin; Jiao, Limin; Liu, Yanfang
2016-01-01
Optimizing land-use allocation is important to regional sustainable development, as it promotes the social equality of public services, increases the economic benefits of land-use activities, and reduces the ecological risk of land-use planning. Most land-use optimization models allocate land-use using cell-level operations that fragment land-use patches. These models do not cooperate well with land-use planning knowledge, leading to irrational land-use patterns. This study focuses on building a heuristic land-use allocation model (PSOLA) using particle swarm optimization. The model allocates land-use with patch-level operations to avoid fragmentation. The patch-level operations include a patch-edge operator, a patch-size operator, and a patch-compactness operator that constrain the size and shape of land-use patches. The model is also integrated with knowledge-informed rules to provide auxiliary knowledge of land-use planning during optimization. The knowledge-informed rules consist of suitability, accessibility, land use policy, and stakeholders' preference. To validate the PSOLA model, a case study was performed in Gaoqiao Town in Zhejiang Province, China. The results demonstrate that the PSOLA model outperforms a basic PSO (Particle Swarm Optimization) in the terms of the social, economic, ecological, and overall benefits by 3.60%, 7.10%, 1.53% and 4.06%, respectively, which confirms the effectiveness of our improvements. Furthermore, the model has an open architecture, enabling its extension as a generic tool to support decision making in land-use planning.
Liu, Yaolin; Peng, Jinjin; Jiao, Limin; Liu, Yanfang
2016-01-01
Optimizing land-use allocation is important to regional sustainable development, as it promotes the social equality of public services, increases the economic benefits of land-use activities, and reduces the ecological risk of land-use planning. Most land-use optimization models allocate land-use using cell-level operations that fragment land-use patches. These models do not cooperate well with land-use planning knowledge, leading to irrational land-use patterns. This study focuses on building a heuristic land-use allocation model (PSOLA) using particle swarm optimization. The model allocates land-use with patch-level operations to avoid fragmentation. The patch-level operations include a patch-edge operator, a patch-size operator, and a patch-compactness operator that constrain the size and shape of land-use patches. The model is also integrated with knowledge-informed rules to provide auxiliary knowledge of land-use planning during optimization. The knowledge-informed rules consist of suitability, accessibility, land use policy, and stakeholders’ preference. To validate the PSOLA model, a case study was performed in Gaoqiao Town in Zhejiang Province, China. The results demonstrate that the PSOLA model outperforms a basic PSO (Particle Swarm Optimization) in the terms of the social, economic, ecological, and overall benefits by 3.60%, 7.10%, 1.53% and 4.06%, respectively, which confirms the effectiveness of our improvements. Furthermore, the model has an open architecture, enabling its extension as a generic tool to support decision making in land-use planning. PMID:27322619
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macevicz, S.C.
1979-05-09
This thesis attempts to explain the evolution of certain features of social insect colony population structure by the use of optimization models. Two areas are examined in detail. First, the optimal reproductive strategies of annual eusocial insects are considered. A model is constructed for the growth of workers and reproductives as a function of the resources allocated to each. Next the allocation schedule is computed which yields the maximum number of reproductives by season's end. The results indicate that if there is constant return to scale for allocated resources the optimal strategy is to invest in colony growth until approximatelymore » one generation before season's end, whereupon worker production ceases and reproductive effort is switched entirely to producing queens and males. Furthermore, the results indicate that if there is decreasing return to scale for allocated resources then simultaneous production of workers and reproductives is possible. The model is used to explain the colony demography of two species of wasp, Polistes fuscatus and Vespa orientalis. Colonies of these insects undergo a sudden switch from the production of workers to the production of reproductives. The second area examined concerns optimal forager size distributions for monomorphic ant colonies. A model is constructed that describes the colony's energetic profit as a function which depends on the size distribution of food resources as well as forager efficiency, metabolic costs, and manufacturing costs.« less
An Efficient, Lossless Database for Storing and Transmitting Medical Images
NASA Technical Reports Server (NTRS)
Fenstermacher, Marc J.
1998-01-01
This research aimed in creating new compression methods based on the central idea of Set Redundancy Compression (SRC). Set Redundancy refers to the common information that exists in a set of similar images. SRC compression methods take advantage of this common information and can achieve improved compression of similar images by reducing their Set Redundancy. The current research resulted in the development of three new lossless SRC compression methods: MARS (Median-Aided Region Sorting), MAZE (Max-Aided Zero Elimination) and MaxGBA (Max-Guided Bit Allocation).
Channel Allocation in Wireless Integrated Services Networks for Low-Bit-Rate Applications.
1998-06-01
server remains idle until the beginning of the next slot, even if cells arrive in the meanwhile.7 The server is assumed to be non - preemptive , i.e., it...If the ToE of the cell is smaller than 1/C^(the service time): i) Discard the cell. 2. Sort the remaining cells in the queue in a non -decreasing...126 Next, the cell-loss-probability ratios (CLPR) of non -empty sources (i.e., having at least one cell in the queue ) defined as ratios between the
Underwater wireless optical MIMO system with spatial modulation and adaptive power allocation
NASA Astrophysics Data System (ADS)
Huang, Aiping; Tao, Linwei; Niu, Yilong
2018-04-01
In this paper, we investigate the performance of underwater wireless optical multiple-input multiple-output communication system combining spatial modulation (SM-UOMIMO) with flag dual amplitude pulse position modulation (FDAPPM). Channel impulse response for coastal and harbor ocean water links are obtained by Monte Carlo (MC) simulation. Moreover, we obtain the closed-form and upper bound average bit error rate (BER) expressions for receiver diversity including optical combining, equal gain combining and selected combining. And a novel adaptive power allocation algorithm (PAA) is proposed to minimize the average BER of SM-UOMIMO system. Our numeric results indicate an excellent match between the analytical results and numerical simulations, which confirms the accuracy of our derived expressions. Furthermore, the results show that adaptive PAA outperforms conventional fixed factor PAA and equal PAA obviously. Multiple-input single-output system with adaptive PAA obtains even better BER performance than MIMO one, at the same time reducing receiver complexity effectively.
NASA Astrophysics Data System (ADS)
Damgård, Ivan; Keller, Marcel
We propose several variants of a secure multiparty computation protocol for AES encryption. The best variant requires 2200 + {{400}over{255}} expected elementary operations in expected 70 + {{20}over{255}} rounds to encrypt one 128-bit block with a 128-bit key. We implemented the variants using VIFF, a software framework for implementing secure multiparty computation (MPC). Tests with three players (passive security against at most one corrupted player) in a local network showed that one block can be encrypted in 2 seconds. We also argue that this result could be improved by an optimized implementation.
The Quanta Image Sensor: Every Photon Counts
Fossum, Eric R.; Ma, Jiaju; Masoodian, Saleh; Anzagira, Leo; Zizza, Rachel
2016-01-01
The Quanta Image Sensor (QIS) was conceived when contemplating shrinking pixel sizes and storage capacities, and the steady increase in digital processing power. In the single-bit QIS, the output of each field is a binary bit plane, where each bit represents the presence or absence of at least one photoelectron in a photodetector. A series of bit planes is generated through high-speed readout, and a kernel or “cubicle” of bits (x, y, t) is used to create a single output image pixel. The size of the cubicle can be adjusted post-acquisition to optimize image quality. The specialized sub-diffraction-limit photodetectors in the QIS are referred to as “jots” and a QIS may have a gigajot or more, read out at 1000 fps, for a data rate exceeding 1 Tb/s. Basically, we are trying to count photons as they arrive at the sensor. This paper reviews the QIS concept and its imaging characteristics. Recent progress towards realizing the QIS for commercial and scientific purposes is discussed. This includes implementation of a pump-gate jot device in a 65 nm CIS BSI process yielding read noise as low as 0.22 e− r.m.s. and conversion gain as high as 420 µV/e−, power efficient readout electronics, currently as low as 0.4 pJ/b in the same process, creating high dynamic range images from jot data, and understanding the imaging characteristics of single-bit and multi-bit QIS devices. The QIS represents a possible major paradigm shift in image capture. PMID:27517926
Learning to assign binary weights to binary descriptor
NASA Astrophysics Data System (ADS)
Huang, Zhoudi; Wei, Zhenzhong; Zhang, Guangjun
2016-10-01
Constructing robust binary local feature descriptors are receiving increasing interest due to their binary nature, which can enable fast processing while requiring significantly less memory than their floating-point competitors. To bridge the performance gap between the binary and floating-point descriptors without increasing the computational cost of computing and matching, optimal binary weights are learning to assign to binary descriptor for considering each bit might contribute differently to the distinctiveness and robustness. Technically, a large-scale regularized optimization method is applied to learn float weights for each bit of the binary descriptor. Furthermore, binary approximation for the float weights is performed by utilizing an efficient alternatively greedy strategy, which can significantly improve the discriminative power while preserve fast matching advantage. Extensive experimental results on two challenging datasets (Brown dataset and Oxford dataset) demonstrate the effectiveness and efficiency of the proposed method.
Flexible operation strategy for environment control system in abnormal supply power condition
NASA Astrophysics Data System (ADS)
Liping, Pang; Guoxiang, Li; Hongquan, Qu; Yufeng, Fang
2017-04-01
This paper establishes an optimization method that can be applied to the flexible operation of the environment control system in an abnormal supply power condition. A proposed conception of lifespan is used to evaluate the depletion time of the non-regenerative substance. The optimization objective function is to maximize the lifespans. The optimization variables are the allocated powers of subsystems. The improved Non-dominated Sorting Genetic Algorithm is adopted to obtain the pareto optimization frontier with the constraints of the cabin environmental parameters and the adjustable operating parameters of the subsystems. Based on the same importance of objective functions, the preferred power allocation of subsystems can be optimized. Then the corresponding running parameters of subsystems can be determined to ensure the maximum lifespans. A long-duration space station with three astronauts is used to show the implementation of the proposed optimization method. Three different CO2 partial pressure levels are taken into consideration in this study. The optimization results show that the proposed optimization method can obtain the preferred power allocation for the subsystems when the supply power is at a less-than-nominal value. The method can be applied to the autonomous control for the emergency response of the environment control system.
Determining Optimal Allocation of Naval Obstetric Resources with Linear Programming
2013-12-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT DETERMINING OPTIMAL ALLOCATION OF NAVAL OBSTETRIC RESOURCES...Davis Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved...OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
Analog Processor To Solve Optimization Problems
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.
1993-01-01
Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.
Xu, Lingwei; Zhang, Hao; Gulliver, T. Aaron
2016-01-01
The outage probability (OP) performance of multiple-relay incremental-selective decode-and-forward (ISDF) relaying mobile-to-mobile (M2M) sensor networks with transmit antenna selection (TAS) over N-Nakagami fading channels is investigated. Exact closed-form OP expressions for both optimal and suboptimal TAS schemes are derived. The power allocation problem is formulated to determine the optimal division of transmit power between the broadcast and relay phases. The OP performance under different conditions is evaluated via numerical simulation to verify the analysis. These results show that the optimal TAS scheme has better OP performance than the suboptimal scheme. Further, the power allocation parameter has a significant influence on the OP performance. PMID:26907282
Optimality Based Dynamic Plant Allocation Model: Predicting Acclimation Response to Climate Change
NASA Astrophysics Data System (ADS)
Srinivasan, V.; Drewry, D.; Kumar, P.; Sivapalan, M.
2009-12-01
Allocation of assimilated carbon to different plant parts determines the future plant status and is important to predict long term (months to years) vegetated land surface fluxes. Plants have the ability to modify their allometry and exhibit plasticity by varying the relative proportions of the structural biomass contained in each of its tissue. The ability of plants to be plastic provides them with the potential to acclimate to changing environmental conditions in order to enhance their probability of survival. Allometry based allocation models and other empirical allocation models do not account for plant plasticity cause by acclimation due to environmental changes. In the absence of a detailed understanding of the various biophysical processes involved in plant growth and development an optimality approach is adopted here to predict carbon allocation in plants. Existing optimality based models of plant growth are either static or involve considerable empiricism. In this work, we adopt an optimality based approach (coupled with limitations on plant plasticity) to predict the dynamic allocation of assimilated carbon to different plant parts. We explore the applicability of this approach using several optimization variables such as net primary productivity, net transpiration, realized growth rate, total end of growing season reproductive biomass etc. We use this approach to predict the dynamic nature of plant acclimation in its allocation of carbon to different plant parts under current and future climate scenarios. This approach is designed as a growth sub-model in the multi-layer canopy plant model (MLCPM) and is used to obtain land surface fluxes and plant properties over the growing season. The framework of this model is such that it retains the generality and can be applied to different types of ecosystems. We test this approach using the data from free air carbon dioxide enrichment (FACE) experiments using soybean crop at the Soy-FACE research site. Our results show that there are significant changes in the allocation patterns of vegetation when subjected to elevated CO2 indicating that our model is able to account for plant plasticity arising from acclimation. Soybeans when grown under elevated CO2, increased their allocation to structural components such as leaves and decreased their allocation to reproductive biomass. This demonstrates that plant acclimation causes lower than expected crop yields when grown under elevated CO2. Our findings can have serious implications in estimating future crop yields under climate change scenarios where it is widely expected that rising CO2 will fully offset losses due to climate change.
Risk-Based Sampling: I Don't Want to Weight in Vain.
Powell, Mark R
2015-12-01
Recently, there has been considerable interest in developing risk-based sampling for food safety and animal and plant health for efficient allocation of inspection and surveillance resources. The problem of risk-based sampling allocation presents a challenge similar to financial portfolio analysis. Markowitz (1952) laid the foundation for modern portfolio theory based on mean-variance optimization. However, a persistent challenge in implementing portfolio optimization is the problem of estimation error, leading to false "optimal" portfolios and unstable asset weights. In some cases, portfolio diversification based on simple heuristics (e.g., equal allocation) has better out-of-sample performance than complex portfolio optimization methods due to estimation uncertainty. Even for portfolios with a modest number of assets, the estimation window required for true optimization may imply an implausibly long stationary period. The implications for risk-based sampling are illustrated by a simple simulation model of lot inspection for a small, heterogeneous group of producers. © 2015 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Zhang, Chenglong; Guo, Ping
2017-10-01
The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.
Optimizing prescribed fire allocation for managing fire risk in central Catalonia.
Alcasena, Fermín J; Ager, Alan A; Salis, Michele; Day, Michelle A; Vega-Garcia, Cristina
2018-04-15
We used spatial optimization to allocate and prioritize prescribed fire treatments in the fire-prone Bages County, central Catalonia (northeastern Spain). The goal of this study was to identify suitable strategic locations on forest lands for fuel treatments in order to: 1) disrupt major fire movements, 2) reduce ember emissions, and 3) reduce the likelihood of large fires burning into residential communities. We first modeled fire spread, hazard and exposure metrics under historical extreme fire weather conditions, including node influence grid for surface fire pathways, crown fraction burned and fire transmission to residential structures. Then, we performed an optimization analysis on individual planning areas to identify production possibility frontiers for addressing fire exposure and explore alternative prescribed fire treatment configurations. The results revealed strong trade-offs among different fire exposure metrics, showed treatment mosaics that optimize the allocation of prescribed fire, and identified specific opportunities to achieve multiple objectives. Our methods can contribute to improving the efficiency of prescribed fire treatment investments and wildfire management programs aimed at creating fire resilient ecosystems, facilitating safe and efficient fire suppression, and safeguarding rural communities from catastrophic wildfires. The analysis framework can be used to optimally allocate prescribed fire in other fire-prone areas within the Mediterranean region and elsewhere. Copyright © 2017 Elsevier B.V. All rights reserved.
Dimensions of design space: a decision-theoretic approach to optimal research design.
Conti, Stefano; Claxton, Karl
2009-01-01
Bayesian decision theory can be used not only to establish the optimal sample size and its allocation in a single clinical study but also to identify an optimal portfolio of research combining different types of study design. Within a single study, the highest societal payoff to proposed research is achieved when its sample sizes and allocation between available treatment options are chosen to maximize the expected net benefit of sampling (ENBS). Where a number of different types of study informing different parameters in the decision problem could be conducted, the simultaneous estimation of ENBS across all dimensions of the design space is required to identify the optimal sample sizes and allocations within such a research portfolio. This is illustrated through a simple example of a decision model of zanamivir for the treatment of influenza. The possible study designs include: 1) a single trial of all the parameters, 2) a clinical trial providing evidence only on clinical endpoints, 3) an epidemiological study of natural history of disease, and 4) a survey of quality of life. The possible combinations, samples sizes, and allocation between trial arms are evaluated over a range of cost-effectiveness thresholds. The computational challenges are addressed by implementing optimization algorithms to search the ENBS surface more efficiently over such large dimensions.
Task allocation among multiple intelligent robots
NASA Technical Reports Server (NTRS)
Gasser, L.; Bekey, G.
1987-01-01
Researchers describe the design of a decentralized mechanism for allocating assembly tasks in a multiple robot assembly workstation. Currently, the approach focuses on distributed allocation to explore its feasibility and its potential for adaptability to changing circumstances, rather than for optimizing throughput. Individual greedy robots make their own local allocation decisions using both dynamic allocation policies which propagate through a network of allocation goals, and local static and dynamic constraints describing which robots are elibible for which assembly tasks. Global coherence is achieved by proper weighting of allocation pressures propagating through the assembly plan. Deadlock avoidance and synchronization is achieved using periodic reassessments of local allocation decisions, ageing of allocation goals, and short-term allocation locks on goals.
Efficient Simulation Budget Allocation for Selecting an Optimal Subset
NASA Technical Reports Server (NTRS)
Chen, Chun-Hung; He, Donghai; Fu, Michael; Lee, Loo Hay
2008-01-01
We consider a class of the subset selection problem in ranking and selection. The objective is to identify the top m out of k designs based on simulated output. Traditional procedures are conservative and inefficient. Using the optimal computing budget allocation framework, we formulate the problem as that of maximizing the probability of correc tly selecting all of the top-m designs subject to a constraint on the total number of samples available. For an approximation of this corre ct selection probability, we derive an asymptotically optimal allocat ion and propose an easy-to-implement heuristic sequential allocation procedure. Numerical experiments indicate that the resulting allocatio ns are superior to other methods in the literature that we tested, and the relative efficiency increases for larger problems. In addition, preliminary numerical results indicate that the proposed new procedur e has the potential to enhance computational efficiency for simulation optimization.
NASA Astrophysics Data System (ADS)
Khannan, M. S. A.; Nafisah, L.; Palupi, D. L.
2018-03-01
Sari Warna Co. Ltd, a company engaged in the textile industry, is experiencing problems in the allocation and placement of goods in the warehouse. During this time the company has not implemented the product flow type allocation and product placement to the respective products resulting in a high total material handling cost. Therefore, this study aimed to determine the allocation and placement of goods in the warehouse corresponding to product flow type with minimal total material handling cost. This research is a quantitative research based on the theory of storage and warehouse that uses a mathematical model of optimization problem solving using mathematical optimization model approach belongs to Heragu (2005), aided by software LINGO 11.0 in the calculation of the optimization model. Results obtained from this study is the proportion of the distribution for each functional area is the area of cross-docking at 0.0734, the reserve area at 0.1894, and the forward area at 0.7372. The allocation of product flow type 1 is 5 products, the product flow type 2 is 9 products, the product flow type 3 is 2 products, and the product flow type 4 is 6 products. The optimal total material handling cost by using this mathematical model equal to Rp43.079.510 while it is equal to Rp 49.869.728 by using the company’s existing method. It saves Rp6.790.218 for the total material handling cost. Thus, all of the products can be allocated in accordance with the product flow type with minimal total material handling cost.
Gatti, Davide; Galzerano, Gianluca; Laporta, Paolo; Longhi, Stefano; Janner, Davide; Guglierame, Andrea; Belmonte, Michele
2008-07-01
Optimal demodulation of differential phase-shift keying signals at 10 Gbit/s is experimentally demonstrated using a specially designed structured fiber Bragg grating composed by Fabry-Perot coupled cavities. Bit-error-rate measurements show that, as compared with a conventional Gaussian-shaped filter, our demodulator gives approximately 2.8 dB performance improvement.
An adaptive P300-based online brain-computer interface.
Lenhardt, Alexander; Kaper, Matthias; Ritter, Helge J
2008-04-01
The P300 component of an event related potential is widely used in conjunction with brain-computer interfaces (BCIs) to translate the subjects intent by mere thoughts into commands to control artificial devices. A well known application is the spelling of words while selection of the letters is carried out by focusing attention to the target letter. In this paper, we present a P300-based online BCI which reaches very competitive performance in terms of information transfer rates. In addition, we propose an online method that optimizes information transfer rates and/or accuracies. This is achieved by an algorithm which dynamically limits the number of subtrial presentations, according to the subject's current online performance in real-time. We present results of two studies based on 19 different healthy subjects in total who participated in our experiments (seven subjects in the first and 12 subjects in the second one). In the first, study peak information transfer rates up to 92 bits/min with an accuracy of 100% were achieved by one subject with a mean of 32 bits/min at about 80% accuracy. The second experiment employed a dynamic classifier which enables the user to optimize bitrates and/or accuracies by limiting the number of subtrial presentations according to the current online performance of the subject. At the fastest setting, mean information transfer rates could be improved to 50.61 bits/min (i.e., 13.13 symbols/min). The most accurate results with 87.5% accuracy showed a transfer rate of 29.35 bits/min.
HIV epidemic control-a model for optimal allocation of prevention and treatment resources.
Alistar, Sabina S; Long, Elisa F; Brandeau, Margaret L; Beck, Eduard J
2014-06-01
With 33 million people living with human immunodeficiency virus (HIV) worldwide and 2.7 million new infections occurring annually, additional HIV prevention and treatment efforts are urgently needed. However, available resources for HIV control are limited and must be used efficiently to minimize the future spread of the epidemic. We develop a model to determine the appropriate resource allocation between expanded HIV prevention and treatment services. We create an epidemic model that incorporates multiple key populations with different transmission modes, as well as production functions that relate investment in prevention and treatment programs to changes in transmission and treatment rates. The goal is to allocate resources to minimize R 0, the reproductive rate of infection. We first develop a single-population model and determine the optimal resource allocation between HIV prevention and treatment. We extend the analysis to multiple independent populations, with resource allocation among interventions and populations. We then include the effects of HIV transmission between key populations. We apply our model to examine HIV epidemic control in two different settings, Uganda and Russia. As part of these applications, we develop a novel approach for estimating empirical HIV program production functions. Our study provides insights into the important question of resource allocation for a country's optimal response to its HIV epidemic and provides a practical approach for decision makers. Better decisions about allocating limited HIV resources can improve response to the epidemic and increase access to HIV prevention and treatment services for millions of people worldwide.
NASA Astrophysics Data System (ADS)
Chaidee, S.; Pakawanwong, P.; Suppakitpaisarn, V.; Teerasawat, P.
2017-09-01
In this work, we devise an efficient method for the land-use optimization problem based on Laguerre Voronoi diagram. Previous Voronoi diagram-based methods are more efficient and more suitable for interactive design than discrete optimization-based method, but, in many cases, their outputs do not satisfy area constraints. To cope with the problem, we propose a force-directed graph drawing algorithm, which automatically allocates generating points of Voronoi diagram to appropriate positions. Then, we construct a Laguerre Voronoi diagram based on these generating points, use linear programs to adjust each cell, and reconstruct the diagram based on the adjustment. We adopt the proposed method to the practical case study of Chiang Mai University's allocated land for a mixed-use complex. For this case study, compared to other Voronoi diagram-based method, we decrease the land allocation error by 62.557 %. Although our computation time is larger than the previous Voronoi-diagram-based method, it is still suitable for interactive design.
Optimizing latency in Xilinx FPGA implementations of the GBT
NASA Astrophysics Data System (ADS)
Muschter, S.; Baron, S.; Bohm, C.; Cachemiche, J.-P.; Soos, C.
2010-12-01
The GigaBit Transceiver (GBT) [1] system has been developed to replace the Timing, Trigger and Control (TTC) system [2], currently used by LHC, as well as to provide data transmission between on-detector and off-detector components in future sLHC detectors. A VHDL version of the GBT-SERDES, designed for FPGAs, was released in March 2010 as a GBT-FPGA Starter Kit for future GBT users and for off-detector GBT implementation [3]. This code was optimized for resource utilization [4], as the GBT protocol is very demanding. It was not, however, optimized for latency — which will be a critical parameter when used in the trigger path. The GBT-FPGA Starter Kit firmware was first analyzed in terms of latency by looking at the separate components of the VHDL version. Once the parts which contribute most to the latency were identified and modified, two possible optimizations were chosen, resulting in a latency reduced by a factor of three. The modifications were also analyzed in terms of logic utilization. The latency optimization results were compared with measurement results from a Virtex 6 ML605 development board [5] equipped with a XC6VLX240T with speedgrade-1 and the package FF1156. Bit error rate tests were also performed to ensure an error free operation. The two final optimizations were analyzed for utilization and compared with the original code, distributed in the Starter Kit.
Bayer image parallel decoding based on GPU
NASA Astrophysics Data System (ADS)
Hu, Rihui; Xu, Zhiyong; Wei, Yuxing; Sun, Shaohua
2012-11-01
In the photoelectrical tracking system, Bayer image is decompressed in traditional method, which is CPU-based. However, it is too slow when the images become large, for example, 2K×2K×16bit. In order to accelerate the Bayer image decoding, this paper introduces a parallel speedup method for NVIDA's Graphics Processor Unit (GPU) which supports CUDA architecture. The decoding procedure can be divided into three parts: the first is serial part, the second is task-parallelism part, and the last is data-parallelism part including inverse quantization, inverse discrete wavelet transform (IDWT) as well as image post-processing part. For reducing the execution time, the task-parallelism part is optimized by OpenMP techniques. The data-parallelism part could advance its efficiency through executing on the GPU as CUDA parallel program. The optimization techniques include instruction optimization, shared memory access optimization, the access memory coalesced optimization and texture memory optimization. In particular, it can significantly speed up the IDWT by rewriting the 2D (Tow-dimensional) serial IDWT into 1D parallel IDWT. Through experimenting with 1K×1K×16bit Bayer image, data-parallelism part is 10 more times faster than CPU-based implementation. Finally, a CPU+GPU heterogeneous decompression system was designed. The experimental result shows that it could achieve 3 to 5 times speed increase compared to the CPU serial method.
Designing ecological flows to gravely braided rivers in alpine environments
NASA Astrophysics Data System (ADS)
Egozi, R.; Ashmore, P.
2009-04-01
Designing ecological flows in gravelly braided streams requires estimating the channel forming discharge in order to maintain the braided reach physical (allocation of flow and bed load) and ecological (maintaining the habitat diversity) functions. At present, compared to single meander streams, there are fewer guiding principles for river practitioners that can be used to manage braided streams. Insight into braiding morphodynamics using braiding intensity indices allows estimation of channel forming discharge. We assess variation in braiding intensity by mapping the total number of channels (BIT) and the number of active (transporting bed load) channels (BIA) at different stages of typical diurnal melt-water hydrographs in a pro-glacial braided river, Sunwapta River, Canada. Results show that both BIA and BIT vary with flow stage but over a limited range of values. Furthermore, maximum BIT occurs below peak discharge. At this stage there is a balance between channel merging from inundation and occupation of new channels as the stage rises. This stage is the channel forming discharge because above this stage the existing braided pattern cannot discharge the volume of water without causing morphological changes (e.g., destruction of bifurcations, channel avulsion). Estimation of the channel forming discharge requires a set of braiding intensity measurements over a range of flow stages. The design of ecological flows must take into consideration flow regime characteristics rather than just the channel forming discharge magnitude.
Kassa, Semu Mitiku
2018-02-01
Funds from various global organizations, such as, The Global Fund, The World Bank, etc. are not directly distributed to the targeted risk groups. Especially in the so-called third-world-countries, the major part of the fund in HIV prevention programs comes from these global funding organizations. The allocations of these funds usually pass through several levels of decision making bodies that have their own specific parameters to control and specific objectives to achieve. However, these decisions are made mostly in a heuristic manner and this may lead to a non-optimal allocation of the scarce resources. In this paper, a hierarchical mathematical optimization model is proposed to solve such a problem. Combining existing epidemiological models with the kind of interventions being on practice, a 3-level hierarchical decision making model in optimally allocating such resources has been developed and analyzed. When the impact of antiretroviral therapy (ART) is included in the model, it has been shown that the objective function of the lower level decision making structure is a non-convex minimization problem in the allocation variables even if all the production functions for the intervention programs are assumed to be linear.
Drilling systems for extraterrestrial subsurface exploration.
Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C
2008-06-01
Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications.
The use of an integrated variable fuzzy sets in water resources management
NASA Astrophysics Data System (ADS)
Qiu, Qingtai; Liu, Jia; Li, Chuanzhe; Yu, Xinzhe; Wang, Yang
2018-06-01
Based on the evaluation of the present situation of water resources and the development of water conservancy projects and social economy, optimal allocation of regional water resources presents an increasing need in the water resources management. Meanwhile it is also the most effective way to promote the harmonic relationship between human and water. In view of the own limitations of the traditional evaluations of which always choose a single index model using in optimal allocation of regional water resources, on the basis of the theory of variable fuzzy sets (VFS) and system dynamics (SD), an integrated variable fuzzy sets model (IVFS) is proposed to address dynamically complex problems in regional water resources management in this paper. The model is applied to evaluate the level of the optimal allocation of regional water resources of Zoucheng in China. Results show that the level of allocation schemes of water resources ranging from 2.5 to 3.5, generally showing a trend of lower level. To achieve optimal regional management of water resources, this model conveys a certain degree of accessing water resources management, which prominently improve the authentic assessment of water resources management by using the eigenvector of level H.
Performance analysis of optimal power allocation in wireless cooperative communication systems
NASA Astrophysics Data System (ADS)
Babikir Adam, Edriss E.; Samb, Doudou; Yu, Li
2013-03-01
Cooperative communication has been recently proposed in wireless communication systems for exploring the inherent spatial diversity in relay channels.The Amplify-and-Forward (AF) cooperation protocols with multiple relays have not been sufficiently investigated even if it has a low complexity in term of implementation. We consider in this work a cooperative diversity system in which a source transmits some information to a destination with the help of multiple relay nodes with AF protocols and investigate the optimality of allocating powers both at the source and the relays system by optimizing the symbol error rate (SER) performance in an efficient way. Firstly we derive a closedform SER formulation for MPSK signal using the concept of moment generating function and some statistical approximations in high signal to noise ratio (SNR) for the system under studied. We then find a tight corresponding lower bound which converges to the same limit as the theoretical upper bound and develop an optimal power allocation (OPA) technique with mean channel gains to minimize the SER. Simulation results show that our scheme outperforms the equal power allocation (EPA) scheme and is tight to the theoretical approximation based on the SER upper bound in high SNR for different number of relays.
Nash Social Welfare in Multiagent Resource Allocation
NASA Astrophysics Data System (ADS)
Ramezani, Sara; Endriss, Ulle
We study different aspects of the multiagent resource allocation problem when the objective is to find an allocation that maximizes Nash social welfare, the product of the utilities of the individual agents. The Nash solution is an important welfare criterion that combines efficiency and fairness considerations. We show that the problem of finding an optimal outcome is NP-hard for a number of different languages for representing agent preferences; we establish new results regarding convergence to Nash-optimal outcomes in a distributed negotiation framework; and we design and test algorithms similar to those applied in combinatorial auctions for computing such an outcome directly.
On the Allocation of Resources for Secondary Schools
ERIC Educational Resources Information Center
Haelermans, Carla; De Witte, Kristof; Blank, Jos L. T.
2012-01-01
This paper studies the optimal allocation of resources--in terms of school management, teachers, supporting employees and materials--in secondary schools. We use a flexible budget constrained output distance function model to estimate both technical and allocative efficiency scores for 448 Dutch secondary schools between 2002 and 2007. The results…
Benedikt, Clemens; Kelly, Sherrie L; Wilson, David; Wilson, David P
2016-12-01
Estimated global new HIV infections among people who inject drugs (PWID) remained stable over the 2010-2015 period and the target of a 50% reduction over this period was missed. To achieve the 2020 UNAIDS target of reducing adult HIV infections by 75% compared to 2010, accelerated action in scaling up HIV programs for PWID is required. In a context of diminishing external support to HIV programs in countries where most HIV-affected PWID live, it is essential that available resources are allocated and used as efficiently as possible. Allocative and implementation efficiency analysis methods were applied. Optima, a dynamic, population-based HIV model with an integrated program and economic analysis framework was applied in eight countries in Eastern Europe and Central Asia (EECA). Mathematical analyses established optimized allocations of resources. An implementation efficiency analysis focused on examining technical efficiency, unit costs, and heterogeneity of service delivery models and practices. Findings from the latest reported data revealed that countries allocated between 4% (Bulgaria) and 40% (Georgia) of total HIV resources to programs targeting PWID - with a median of 13% for the eight countries. When distributing the same amount of HIV funding optimally, between 9% and 25% of available HIV resources would be allocated to PWID programs with a median allocation of 16% and, in addition, antiretroviral therapy would be scaled up including for PWID. As a result of optimized allocations, new HIV infections are projected to decline by 3-28% and AIDS-related deaths by 7-53% in the eight countries. Implementation efficiencies identified involve potential reductions in drug procurement costs, service delivery models, and practices and scale of service delivery influencing cost and outcome. A high level of implementation efficiency was associated with high volumes of PWID clients accessing a drug harm reduction facility. A combination of optimized allocation of resources, improved implementation efficiency and increased investment of non-HIV resources is required to enhance coverage and improve outcomes of programs for PWID. Increasing efficiency of HIV programs for PWID is a key step towards avoiding implicit rationing and ensuring transparent allocation of resources where and how they would have the largest impact on the health of PWID, and thereby ensuring that funding spent on PWID becomes a global best buy in public health. Copyright © 2016. Published by Elsevier B.V.
Multifunction audio digitizer for communications systems
NASA Technical Reports Server (NTRS)
Monford, L. G., Jr.
1971-01-01
Digitizer accomplishes both N bit pulse code modulation /PCM/ and delta modulation, and provides modulation indicating variable signal gain and variable sidetone. Other features include - low package count, variable clock rate to optimize bandwidth, and easily expanded PCM output.
Maximum-likelihood soft-decision decoding of block codes using the A* algorithm
NASA Technical Reports Server (NTRS)
Ekroot, L.; Dolinar, S.
1994-01-01
The A* algorithm finds the path in a finite depth binary tree that optimizes a function. Here, it is applied to maximum-likelihood soft-decision decoding of block codes where the function optimized over the codewords is the likelihood function of the received sequence given each codeword. The algorithm considers codewords one bit at a time, making use of the most reliable received symbols first and pursuing only the partially expanded codewords that might be maximally likely. A version of the A* algorithm for maximum-likelihood decoding of block codes has been implemented for block codes up to 64 bits in length. The efficiency of this algorithm makes simulations of codes up to length 64 feasible. This article details the implementation currently in use, compares the decoding complexity with that of exhaustive search and Viterbi decoding algorithms, and presents performance curves obtained with this implementation of the A* algorithm for several codes.
NASA Astrophysics Data System (ADS)
Chang, Ching-Chun; Liu, Yanjun; Nguyen, Son T.
2015-03-01
Data hiding is a technique that embeds information into digital cover data. This technique has been concentrated on the spatial uncompressed domain, and it is considered more challenging to perform in the compressed domain, i.e., vector quantization, JPEG, and block truncation coding (BTC). In this paper, we propose a new data hiding scheme for BTC-compressed images. In the proposed scheme, a dynamic programming strategy was used to search for the optimal solution of the bijective mapping function for LSB substitution. Then, according to the optimal solution, each mean value embeds three secret bits to obtain high hiding capacity with low distortion. The experimental results indicated that the proposed scheme obtained both higher hiding capacity and hiding efficiency than the other four existing schemes, while ensuring good visual quality of the stego-image. In addition, the proposed scheme achieved a low bit rate as original BTC algorithm.
Link performance optimization for digital satellite broadcasting systems
NASA Astrophysics Data System (ADS)
de Gaudenzi, R.; Elia, C.; Viola, R.
The authors introduce the concept of digital direct satellite broadcasting (D-DBS), which allows unprecedented flexibility by providing a large number of audiovisual services. The concept assumes an information rate of 40 Mb/s, which is compatible with practically all present-day transponders. After discussion of the general system concept, the results of transmission system optimization are presented. Channel and interference effects are taken into account. Numerical results show that the scheme with the best performance is trellis-coded 8-PSK (phase shift keying) modulation concatenated with Reed-Solomon block code. For a net data rate of 40 Mb/s a bit error rate of 10-10 can be achieved with an equivalent bit energy to noise density of 9.5 dB, including channel, interference, and demodulator impairments. A link budget analysis shows how a medium-power direct-to-home TV satellite can provide multimedia services to users equipped with small (60-cm) dish antennas.
Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming
2016-01-01
Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants. PMID:27200071
Nanoscale molecular communication networks: a game-theoretic perspective
NASA Astrophysics Data System (ADS)
Jiang, Chunxiao; Chen, Yan; Ray Liu, K. J.
2015-12-01
Currently, communication between nanomachines is an important topic for the development of novel devices. To implement a nanocommunication system, diffusion-based molecular communication is considered as a promising bio-inspired approach. Various technical issues about molecular communications, including channel capacity, noise and interference, and modulation and coding, have been studied in the literature, while the resource allocation problem among multiple nanomachines has not been well investigated, which is a very important issue since all the nanomachines share the same propagation medium. Considering the limited computation capability of nanomachines and the expensive information exchange cost among them, in this paper, we propose a game-theoretic framework for distributed resource allocation in nanoscale molecular communication systems. We first analyze the inter-symbol and inter-user interference, as well as bit error rate performance, in the molecular communication system. Based on the interference analysis, we formulate the resource allocation problem as a non-cooperative molecule emission control game, where the Nash equilibrium is found and proved to be unique. In order to improve the system efficiency while guaranteeing fairness, we further model the resource allocation problem using a cooperative game based on the Nash bargaining solution, which is proved to be proportionally fair. Simulation results show that the Nash bargaining solution can effectively ensure fairness among multiple nanomachines while achieving comparable social welfare performance with the centralized scheme.
Quantum Adiabatic Algorithms and Large Spin Tunnelling
NASA Technical Reports Server (NTRS)
Boulatov, A.; Smelyanskiy, V. N.
2003-01-01
We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.
She, Ji; Wang, Fei; Zhou, Jianjiang
2016-01-01
Radar networks are proven to have numerous advantages over traditional monostatic and bistatic radar. With recent developments, radar networks have become an attractive platform due to their low probability of intercept (LPI) performance for target tracking. In this paper, a joint sensor selection and power allocation algorithm for multiple-target tracking in a radar network based on LPI is proposed. It is found that this algorithm can minimize the total transmitted power of a radar network on the basis of a predetermined mutual information (MI) threshold between the target impulse response and the reflected signal. The MI is required by the radar network system to estimate target parameters, and it can be calculated predictively with the estimation of target state. The optimization problem of sensor selection and power allocation, which contains two variables, is non-convex and it can be solved by separating power allocation problem from sensor selection problem. To be specific, the optimization problem of power allocation can be solved by using the bisection method for each sensor selection scheme. Also, the optimization problem of sensor selection can be solved by a lower complexity algorithm based on the allocated powers. According to the simulation results, it can be found that the proposed algorithm can effectively reduce the total transmitted power of a radar network, which can be conducive to improving LPI performance. PMID:28009819
NASA Technical Reports Server (NTRS)
Gern, Frank; Vicroy, Dan D.; Mulani, Sameer B.; Chhabra, Rupanshi; Kapania, Rakesh K.; Schetz, Joseph A.; Brown, Derrell; Princen, Norman H.
2014-01-01
Traditional methods of control allocation optimization have shown difficulties in exploiting the full potential of controlling large arrays of control devices on innovative air vehicles. Artificial neutral networks are inspired by biological nervous systems and neurocomputing has successfully been applied to a variety of complex optimization problems. This project investigates the potential of applying neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) aircraft concepts to minimize control power, hinge moments, and actuator forces, while keeping system weights within acceptable limits. The main objective of this project is to develop a proof-of-concept process suitable to demonstrate the potential of using neurocomputing for optimizing actuation power for aircraft featuring multiple independently actuated control surfaces. A Nastran aeroservoelastic finite element model is used to generate a learning database of hinge moment and actuation power characteristics for an array of flight conditions and control surface deflections. An artificial neural network incorporating a genetic algorithm then uses this training data to perform control allocation optimization for the investigated aircraft configuration. The phase I project showed that optimization results for the sum of required hinge moments are improved by more than 12% over the best Nastran solution by using the neural network optimization process.
Device Centric Throughput and QoS Optimization for IoTsin a Smart Building Using CRN-Techniques
Aslam, Saleem; Hasan, Najam Ul; Shahid, Adnan; Jang, Ju Wook; Lee, Kyung-Geun
2016-01-01
The Internet of Things (IoT) has gained an incredible importance in the communication and networking industry due to its innovative solutions and advantages in diverse domains. The IoT’ network is a network of smart physical objects: devices, vehicles, buildings, etc. The IoT has a number of applications ranging from smart home, smart surveillance to smart healthcare systems. Since IoT consists of various heterogeneous devices that exhibit different traffic patterns and expect different quality of service (QoS) in terms of data rate, bit error rate and the stability index of the channel, therefore, in this paper, we formulated an optimization problem to assign channels to heterogeneous IoT devices within a smart building for the provisioning of their desired QoS. To solve this problem, a novel particle swarm optimization-based algorithm is proposed. Then, exhaustive simulations are carried out to evaluate the performance of the proposed algorithm. Simulation results demonstrate the supremacy of our proposed algorithm over the existing ones in terms of throughput, bit error rate and the stability index of the channel. PMID:27782057
NASA Astrophysics Data System (ADS)
Nguyen, Danh-Tuyen; Hoang, Tien-Dat; Lee, An-Chen
2017-10-01
A micro drill structure was optimized to give minimum lateral displacement at its drill tip, which plays an extremely important role on the quality of drilled holes. A drilling system includes a spindle, chuck and micro drill bit, which are modeled as rotating Timoshenko beam elements considering axial drilling force, torque, gyroscopic moments, eccentricity and bearing reaction force. Based on our previous work, the lateral vibration at the drill tip is evaluated. It is treated as an objective function in the optimization problem. Design variables are diameter and lengths of cylindrical and conical parts of the micro drill, along with nonlinear constraints on its mass and mass center location. Results showed that the lateral vibration was reduced by 15.83 % at a cutting speed of 70000 rpm as compared to that for a commercial UNION drill. Among the design variables, we found that the length of the conical part connecting to the drill shank plays the most important factor on the lateral vibration during cutting process.
Design and simulation of a 800 Mbit/s data link for magnetic resonance imaging wearables.
Vogt, Christian; Buthe, Lars; Petti, Luisa; Cantarella, Giuseppe; Munzenrieder, Niko; Daus, Alwin; Troster, Gerhard
2015-08-01
This paper presents the optimization of electronic circuitry for operation in the harsh electro magnetic (EM) environment during a magnetic resonance imaging (MRI) scan. As demonstrator, a device small enough to be worn during the scan is optimized. Based on finite element method (FEM) simulations, the induced current densities due to magnetic field changes of 200 T s(-1) were reduced from 1 × 10(10) A m(-2) by one order of magnitude, predicting error-free operation of the 1.8V logic employed. The simulations were validated using a bit error rate test, which showed no bit errors during a MRI scan sequence. Therefore, neither the logic, nor the utilized 800 Mbit s(-1) low voltage differential swing (LVDS) data link of the optimized wearable device were significantly influenced by the EM interference. Next, the influence of ferro-magnetic components on the static magnetic field and consequently the image quality was simulated showing a MRI image loss with approximately 2 cm radius around a commercial integrated circuit of 1×1 cm(2). This was successively validated by a conventional MRI scan.
The Deterministic Information Bottleneck
NASA Astrophysics Data System (ADS)
Strouse, D. J.; Schwab, David
2015-03-01
A fundamental and ubiquitous task that all organisms face is prediction of the future based on past sensory experience. Since an individual's memory resources are limited and costly, however, there is a tradeoff between memory cost and predictive payoff. The information bottleneck (IB) method (Tishby, Pereira, & Bialek 2000) formulates this tradeoff as a mathematical optimization problem using an information theoretic cost function. IB encourages storing as few bits of past sensory input as possible while selectively preserving the bits that are most predictive of the future. Here we introduce an alternative formulation of the IB method, which we call the deterministic information bottleneck (DIB). First, we argue for an alternative cost function, which better represents the biologically-motivated goal of minimizing required memory resources. Then, we show that this seemingly minor change has the dramatic effect of converting the optimal memory encoder from stochastic to deterministic. Next, we propose an iterative algorithm for solving the DIB problem. Additionally, we compare the IB and DIB methods on a variety of synthetic datasets, and examine the performance of retinal ganglion cell populations relative to the optimal encoding strategy for each problem.
NASA Astrophysics Data System (ADS)
Li, Mo; Fu, Qiang; Singh, Vijay P.; Ma, Mingwei; Liu, Xiao
2017-12-01
Water scarcity causes conflicts among natural resources, society and economy and reinforces the need for optimal allocation of irrigation water resources in a sustainable way. Uncertainties caused by natural conditions and human activities make optimal allocation more complex. An intuitionistic fuzzy multi-objective non-linear programming (IFMONLP) model for irrigation water allocation under the combination of dry and wet conditions is developed to help decision makers mitigate water scarcity. The model is capable of quantitatively solving multiple problems including crop yield increase, blue water saving, and water supply cost reduction to obtain a balanced water allocation scheme using a multi-objective non-linear programming technique. Moreover, it can deal with uncertainty as well as hesitation based on the introduction of intuitionistic fuzzy numbers. Consideration of the combination of dry and wet conditions for water availability and precipitation makes it possible to gain insights into the various irrigation water allocations, and joint probabilities based on copula functions provide decision makers an average standard for irrigation. A case study on optimally allocating both surface water and groundwater to different growth periods of rice in different subareas in Heping irrigation area, Qing'an County, northeast China shows the potential and applicability of the developed model. Results show that the crop yield increase target especially in tillering and elongation stages is a prevailing concern when more water is available, and trading schemes can mitigate water supply cost and save water with an increased grain output. Results also reveal that the water allocation schemes are sensitive to the variation of water availability and precipitation with uncertain characteristics. The IFMONLP model is applicable for most irrigation areas with limited water supplies to determine irrigation water strategies under a fuzzy environment.
Optimal plant nitrogen use improves model representation of vegetation response to elevated CO2
NASA Astrophysics Data System (ADS)
Caldararu, Silvia; Kern, Melanie; Engel, Jan; Zaehle, Sönke
2017-04-01
Existing global vegetation models often cannot accurately represent observed ecosystem behaviour under transient conditions such as elevated atmospheric CO2, a problem that can be attributed to an inflexibility in model representation of plant responses. Plant optimality concepts have been proposed as a solution to this problem as they offer a way to represent plastic plant responses in complex models. Here we present a novel, next generation vegetation model which includes optimal nitrogen allocation to and within the canopy as well as optimal biomass allocation between above- and belowground components in response to nutrient and water availability. The underlying hypothesis is that plants adjust their use of nitrogen in response to environmental conditions and nutrient availability in order to maximise biomass growth. We show that for two FACE (Free Air CO2 enrichment) experiments, the Duke forest and Oak Ridge forest sites, the model can better predict vegetation responses over the duration of the experiment when optimal processes are included. Specifically, under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration as well as increased biomass allocation to fine roots, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry predict a quick onset of N limitation.Existing global vegetation models often cannot accurately represent observed ecosystem behaviour under transient conditions such as elevated atmospheric CO2, a problem that can be attributed to an inflexibility in model representation of plant responses. Plant optimality concepts have been proposed as a solution to this problem as they offer a way to represent plastic plant responses in complex models. Here we present a novel, next generation vegetation model which includes optimal nitrogen allocation to and within the canopy as well as optimal biomass allocation between above- and belowground components in response to nutrient and water availability. The underlying hypothesis is that plants adjust their use of nitrogen in response to environmental conditions and nutrient availability in order to maximise biomass growth. We show that for two FACE (Free Air CO2 enrichment) experiments, the Duke forest and Oak Ridge forest sites, the model can better predict vegetation responses over the duration of the experiment when optimal processes are included. Specifically, under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration as well as increased biomass allocation to fine roots, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry predict a quick onset of N limitation.
Real-Time Optimization of Distribution Grids for Increased Flexibility and
ensure a stable system operation. Now let's go a little bit to the math, because there are some technical math. This one looks very complicated, but it's actually very simple, because, for example, you take stability and optimality. However, I'm not going to delve into the math. I'm going to move to some test
Blind One-Bit Compressive Sampling
2013-01-17
14] Q. Li, C. A. Micchelli, L. Shen, and Y. Xu, A proximity algorithm accelerated by Gauss - Seidel iterations for L1/TV denoising models, Inverse...methods for nonconvex optimization on the unit sphere and has a provable convergence guarantees. Binary iterative hard thresholding (BIHT) algorithms were... Convergence analysis of the algorithm is presented. Our approach is to obtain a sequence of optimization problems by successively approximating the ℓ0
2014-01-01
Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP), which aims to minimize total service time, and proposes an iterated greedy (IG) algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set. PMID:25295295
Optimal Resource Allocation under Fair QoS in Multi-tier Server Systems
NASA Astrophysics Data System (ADS)
Akai, Hirokazu; Ushio, Toshimitsu; Hayashi, Naoki
Recent development of network technology realizes multi-tier server systems, where several tiers perform functionally different processing requested by clients. It is an important issue to allocate resources of the systems to clients dynamically based on their current requests. On the other hand, Q-RAM has been proposed for resource allocation in real-time systems. In the server systems, it is important that execution results of all applications requested by clients are the same QoS(quality of service) level. In this paper, we extend Q-RAM to multi-tier server systems and propose a method for optimal resource allocation with fairness of the QoS levels of clients’ requests. We also consider an assignment problem of physical machines to be sleep in each tier sothat the energy consumption is minimized.
Rethinking Traffic Management: Design of Optimizable Networks
2008-06-01
Though this paper used optimization theory to design and analyze DaVinci , op- timization theory is one of many possible tools to enable a grounded...dynamically allocate bandwidth shares. The distributed protocols can be implemented using DaVinci : Dynamically Adaptive VIrtual Networks for a Customized...Internet. In DaVinci , each virtual network runs traffic-management protocols optimized for a traffic class, and link bandwidth is dynamically allocated
Multi-Objective Optimization for Trustworthy Tactical Networks: A Survey and Insights
2013-06-01
existing data sources, gathering and maintaining the data needed , and completing and reviewing the collection of information. Send comments regarding...problems: using repeated cooperative games [12], hedonic games [25], and nontransferable utility cooperative games [27]. It should be noted that trust...examined an optimal task allocation problem in a distributed computing system where program modules need to be allocated to different processors to
Genetics algorithm optimization of DWT-DCT based image Watermarking
NASA Astrophysics Data System (ADS)
Budiman, Gelar; Novamizanti, Ledya; Iwut, Iwan
2017-01-01
Data hiding in an image content is mandatory for setting the ownership of the image. Two dimensions discrete wavelet transform (DWT) and discrete cosine transform (DCT) are proposed as transform method in this paper. First, the host image in RGB color space is converted to selected color space. We also can select the layer where the watermark is embedded. Next, 2D-DWT transforms the selected layer obtaining 4 subband. We select only one subband. And then block-based 2D-DCT transforms the selected subband. Binary-based watermark is embedded on the AC coefficients of each block after zigzag movement and range based pixel selection. Delta parameter replacing pixels in each range represents embedded bit. +Delta represents bit “1” and -delta represents bit “0”. Several parameters to be optimized by Genetics Algorithm (GA) are selected color space, layer, selected subband of DWT decomposition, block size, embedding range, and delta. The result of simulation performs that GA is able to determine the exact parameters obtaining optimum imperceptibility and robustness, in any watermarked image condition, either it is not attacked or attacked. DWT process in DCT based image watermarking optimized by GA has improved the performance of image watermarking. By five attacks: JPEG 50%, resize 50%, histogram equalization, salt-pepper and additive noise with variance 0.01, robustness in the proposed method has reached perfect watermark quality with BER=0. And the watermarked image quality by PSNR parameter is also increased about 5 dB than the watermarked image quality from previous method.
Land use allocation model considering climate change impact
NASA Astrophysics Data System (ADS)
Lee, D. K.; Yoon, E. J.; Song, Y. I.
2017-12-01
In Korea, climate change adaptation plans are being developed for each administrative district based on impact assessments constructed in various fields. This climate change impact assessments are superimposed on the actual space, which causes problems in land use allocation because the spatial distribution of individual impacts may be different each other. This implies that trade-offs between climate change impacts can occur depending on the composition of land use. Moreover, the actual space is complexly intertwined with various factors such as required area, legal regulations, and socioeconomic values, so land use allocation in consideration of climate change can be very difficult problem to solve (Liu et al. 2012; Porta et al. 2013).Optimization techniques can generate a sufficiently good alternatives for land use allocation at the strategic level if only the fitness function of relationship between impact and land use composition are derived. It has also been noted that land use optimization model is more effective than the scenario-based prediction model in achieving the objectives for problem solving (Zhang et al. 2014). Therefore in this study, we developed a quantitative tool, MOGA (Multi Objective Genetic Algorithm), which can generate a comprehensive land use allocations considering various climate change impacts, and apply it to the Gangwon-do in Korea. Genetic Algorithms (GAs) are the most popular optimization technique to address multi-objective in land use allocation. Also, it allows for immediate feedback to stake holders because it can run a number of experiments with different parameter values. And it is expected that land use decision makers and planners can formulate a detailed spatial plan or perform additional analysis based on the result of optimization model. Acknowledgments: This work was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program (Project number: 2014001310006)"
Design of high-speed burst mode clock and data recovery IC for passive optical network
NASA Astrophysics Data System (ADS)
Yan, Minhui; Hong, Xiaobin; Huang, Wei-Ping; Hong, Jin
2005-09-01
Design of a high bit rate burst mode clock and data recovery (BMCDR) circuit for gigabit passive optical networks (GPON) is described. A top-down design flow is established and some of the key issues related to the behavioural level modeling are addressed in consideration for the complexity of the BMCDR integrated circuit (IC). Precise implementation of Simulink behavioural model accounting for the saturation of frequency control voltage is therefore developed for the BMCDR, and the parameters of the circuit blocks can be readily adjusted and optimized based on the behavioural model. The newly designed BMCDR utilizes the 0.18um standard CMOS technology and is shown to be capable of operating at bit rate of 2.5Gbps, as well as the recovery time of one bit period in our simulation. The developed behaviour model is verified by comparing with the detailed circuit simulation.
Adaptive distributed source coding.
Varodayan, David; Lin, Yao-Chung; Girod, Bernd
2012-05-01
We consider distributed source coding in the presence of hidden variables that parameterize the statistical dependence among sources. We derive the Slepian-Wolf bound and devise coding algorithms for a block-candidate model of this problem. The encoder sends, in addition to syndrome bits, a portion of the source to the decoder uncoded as doping bits. The decoder uses the sum-product algorithm to simultaneously recover the source symbols and the hidden statistical dependence variables. We also develop novel techniques based on density evolution (DE) to analyze the coding algorithms. We experimentally confirm that our DE analysis closely approximates practical performance. This result allows us to efficiently optimize parameters of the algorithms. In particular, we show that the system performs close to the Slepian-Wolf bound when an appropriate doping rate is selected. We then apply our coding and analysis techniques to a reduced-reference video quality monitoring system and show a bit rate saving of about 75% compared with fixed-length coding.
NASA Astrophysics Data System (ADS)
Naqvi, Syed Rameez; Akram, Tallha; Iqbal, Saba; Haider, Sajjad Ali; Kamran, Muhammad; Muhammad, Nazeer
2018-02-01
Considering the lack of optimization support for Quantum-dot Cellular Automata, we propose a dynamically reconfigurable logic cell capable of implementing various logic operations by means of artificial neural networks. The cell can be reconfigured to any 2-input combinational logic gate by altering the strength of connections, called weights and biases. We demonstrate how these cells may appositely be organized to perform multi-bit arithmetic and logic operations. The proposed work is important in that it gives a standard implementation of an 8-bit arithmetic and logic unit for quantum-dot cellular automata with minimal area and latency overhead. We also compare the proposed design with a few existing arithmetic and logic units, and show that it is more area efficient than any equivalent available in literature. Furthermore, the design is adaptable to 16, 32, and 64 bit architectures.
Packet-Based Protocol Efficiency for Aeronautical and Satellite Communications
NASA Technical Reports Server (NTRS)
Carek, David A.
2005-01-01
This paper examines the relation between bit error ratios and the effective link efficiency when transporting data with a packet-based protocol. Relations are developed to quantify the impact of a protocol s packet size and header size relative to the bit error ratio of the underlying link. These relations are examined in the context of radio transmissions that exhibit variable error conditions, such as those used in satellite, aeronautical, and other wireless networks. A comparison of two packet sizing methodologies is presented. From these relations, the true ability of a link to deliver user data, or information, is determined. Relations are developed to calculate the optimal protocol packet size forgiven link error characteristics. These relations could be useful in future research for developing an adaptive protocol layer. They can also be used for sizing protocols in the design of static links, where bit error ratios have small variability.
Optimized FPGA Implementation of Multi-Rate FIR Filters Through Thread Decomposition
NASA Technical Reports Server (NTRS)
Zheng, Jason Xin; Nguyen, Kayla; He, Yutao
2010-01-01
Multirate (decimation/interpolation) filters are among the essential signal processing components in spaceborne instruments where Finite Impulse Response (FIR) filters are often used to minimize nonlinear group delay and finite-precision effects. Cascaded (multi-stage) designs of Multi-Rate FIR (MRFIR) filters are further used for large rate change ratio, in order to lower the required throughput while simultaneously achieving comparable or better performance than single-stage designs. Traditional representation and implementation of MRFIR employ polyphase decomposition of the original filter structure, whose main purpose is to compute only the needed output at the lowest possible sampling rate. In this paper, an alternative representation and implementation technique, called TD-MRFIR (Thread Decomposition MRFIR), is presented. The basic idea is to decompose MRFIR into output computational threads, in contrast to a structural decomposition of the original filter as done in the polyphase decomposition. Each thread represents an instance of the finite convolution required to produce a single output of the MRFIR. The filter is thus viewed as a finite collection of concurrent threads. The technical details of TD-MRFIR will be explained, first showing its applicability to the implementation of downsampling, upsampling, and resampling FIR filters, and then describing a general strategy to optimally allocate the number of filter taps. A particular FPGA design of multi-stage TD-MRFIR for the L-band radar of NASA's SMAP (Soil Moisture Active Passive) instrument is demonstrated; and its implementation results in several targeted FPGA devices are summarized in terms of the functional (bit width, fixed-point error) and performance (time closure, resource usage, and power estimation) parameters.
Reist-Marti, Sabine B; Abdulai, Awudu; Simianer, Henner
2006-01-01
Although funds for livestock conservation are limited there is little known about the optimal allocation of conservation funds. A new algorithm was used to allocate Mio US$ 1, 2, 3, 5 or unlimited funds, discounted over 50 years, on 23 African cattle breeds conserved with four different possible conservation programs. Additionally, Mio US$ 1 was preferably allocated to breeds with special traits. The conceptional in situ conservation programs strongly involve breeders and give them part of the responsibility for the conservation of the breed. Therefore, the pure in situ conservation was more efficient than cryoconservation or combined in situ and cryoconservation. The average annual discounted conservation cost for a breed can be as low as US$ 1000 to US$ 4400 depending on the design of the conservation program and the economic situation of the country of conservation. The choice of the breeds and the optimal conservation program and the amount of money allocated to each breed depend on many factors such as the amount of funds available, the conservation potential of each breed, the effects of the conservation program as well as its cost. With Mio US$ 1, 64% of the present diversity could be maintained over 50 years, which is 13% more than would be maintained if no conservation measures were implemented. Special traits could be conserved with a rather small amount of the total funds. Diversity can not be conserved completely, not even with unlimited funds. A maximum of 92% of the present diversity could be conserved with Mio US$ 10, leaving 8% of the diversity to unpredictable happenings. The suggested algorithm proved to be useful for optimal allocation of conservation funds. It allocated the funds optimally among breeds by identifying the most suited conservation program for each breed, also accounting for differences in currency exchange rates between the different countries. PMID:16451794
Distributed Channel Allocation and Time Slot Optimization for Green Internet of Things.
Ding, Kaiqi; Zhao, Haitao; Hu, Xiping; Wei, Jibo
2017-10-28
In sustainable smart cities, power saving is a severe challenge in the energy-constrained Internet of Things (IoT). Efficient utilization of limited multiple non-overlap channels and time resources is a promising solution to reduce the network interference and save energy consumption. In this paper, we propose a joint channel allocation and time slot optimization solution for IoT. First, we propose a channel ranking algorithm which enables each node to rank its available channels based on the channel properties. Then, we propose a distributed channel allocation algorithm so that each node can choose a proper channel based on the channel ranking and its own residual energy. Finally, the sleeping duration and spectrum sensing duration are jointly optimized to maximize the normalized throughput and satisfy energy consumption constraints simultaneously. Different from the former approaches, our proposed solution requires no central coordination or any global information that each node can operate based on its own local information in a total distributed manner. Also, theoretical analysis and extensive simulations have validated that when applying our solution in the network of IoT: (i) each node can be allocated to a proper channel based on the residual energy to balance the lifetime; (ii) the network can rapidly converge to a collision-free transmission through each node's learning ability in the process of the distributed channel allocation; and (iii) the network throughput is further improved via the dynamic time slot optimization.
Artificial intelligent techniques for optimizing water allocation in a reservoir watershed
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Chang, Li-Chiu; Wang, Yu-Chung
2014-05-01
This study proposes a systematical water allocation scheme that integrates system analysis with artificial intelligence techniques for reservoir operation in consideration of the great uncertainty upon hydrometeorology for mitigating droughts impacts on public and irrigation sectors. The AI techniques mainly include a genetic algorithm and adaptive-network based fuzzy inference system (ANFIS). We first derive evaluation diagrams through systematic interactive evaluations on long-term hydrological data to provide a clear simulation perspective of all possible drought conditions tagged with their corresponding water shortages; then search the optimal reservoir operating histogram using genetic algorithm (GA) based on given demands and hydrological conditions that can be recognized as the optimal base of input-output training patterns for modelling; and finally build a suitable water allocation scheme through constructing an adaptive neuro-fuzzy inference system (ANFIS) model with a learning of the mechanism between designed inputs (water discount rates and hydrological conditions) and outputs (two scenarios: simulated and optimized water deficiency levels). The effectiveness of the proposed approach is tested on the operation of the Shihmen Reservoir in northern Taiwan for the first paddy crop in the study area to assess the water allocation mechanism during drought periods. We demonstrate that the proposed water allocation scheme significantly and substantially avails water managers of reliably determining a suitable discount rate on water supply for both irrigation and public sectors, and thus can reduce the drought risk and the compensation amount induced by making restrictions on agricultural use water.
A market-based optimization approach to sensor and resource management
NASA Astrophysics Data System (ADS)
Schrage, Dan; Farnham, Christopher; Gonsalves, Paul G.
2006-05-01
Dynamic resource allocation for sensor management is a problem that demands solutions beyond traditional approaches to optimization. Market-based optimization applies solutions from economic theory, particularly game theory, to the resource allocation problem by creating an artificial market for sensor information and computational resources. Intelligent agents are the buyers and sellers in this market, and they represent all the elements of the sensor network, from sensors to sensor platforms to computational resources. These agents interact based on a negotiation mechanism that determines their bidding strategies. This negotiation mechanism and the agents' bidding strategies are based on game theory, and they are designed so that the aggregate result of the multi-agent negotiation process is a market in competitive equilibrium, which guarantees an optimal allocation of resources throughout the sensor network. This paper makes two contributions to the field of market-based optimization: First, we develop a market protocol to handle heterogeneous goods in a dynamic setting. Second, we develop arbitrage agents to improve the efficiency in the market in light of its dynamic nature.
Sensor Authentication: Embedded Processor Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svoboda, John
2012-09-25
Described is the c code running on the embedded Microchip 32bit PIC32MX575F256H located on the INL developed noise analysis circuit board. The code performs the following functions: Controls the noise analysis circuit board preamplifier voltage gains of 1, 10, 100, 000 Initializes the analog to digital conversion hardware, input channel selection, Fast Fourier Transform (FFT) function, USB communications interface, and internal memory allocations Initiates high resolution 4096 point 200 kHz data acquisition Computes complex 2048 point FFT and FFT magnitude. Services Host command set Transfers raw data to Host Transfers FFT result to host Communication error checking
Optimizing Medical Kits for Spaceflight
NASA Technical Reports Server (NTRS)
Keenan, A. B,; Foy, Millennia; Myers, G.
2014-01-01
The Integrated Medical Model (IMM) is a probabilistic model that estimates medical event occurrences and mission outcomes for different mission profiles. IMM simulation outcomes describing the impact of medical events on the mission may be used to optimize the allocation of resources in medical kits. Efficient allocation of medical resources, subject to certain mass and volume constraints, is crucial to ensuring the best outcomes of in-flight medical events. We implement a new approach to this medical kit optimization problem. METHODS We frame medical kit optimization as a modified knapsack problem and implement an algorithm utilizing a dynamic programming technique. Using this algorithm, optimized medical kits were generated for 3 different mission scenarios with the goal of minimizing the probability of evacuation and maximizing the Crew Health Index (CHI) for each mission subject to mass and volume constraints. Simulation outcomes using these kits were also compared to outcomes using kits optimized..RESULTS The optimized medical kits generated by the algorithm described here resulted in predicted mission outcomes more closely approached the unlimited-resource scenario for Crew Health Index (CHI) than the implementation in under all optimization priorities. Furthermore, the approach described here improves upon in reducing evacuation when the optimization priority is minimizing the probability of evacuation. CONCLUSIONS This algorithm provides an efficient, effective means to objectively allocate medical resources for spaceflight missions using the Integrated Medical Model.
NASA Astrophysics Data System (ADS)
Caldararu, S.; Kern, M.; Engel, J.; Zaehle, S.
2016-12-01
Despite recent advances in global vegetation models, we still lack the capacity to predict observed vegetation responses to experimental environmental changes such as elevated CO2, increased temperature or nutrient additions. In particular for elevated CO2 (FACE) experiments, studies have shown that this is related in part to the models' inability to represent plastic changes in nutrient use and biomass allocation. We present a newly developed vegetation model which aims to overcome these problems by including optimality processes to describe nitrogen (N) and carbon allocation within the plant. We represent nitrogen allocation to the canopy and within the canopy between photosynthetic components as an optimal processes which aims to maximize net primary production (NPP) of the plant. We also represent biomass investment into aboveground and belowground components (root nitrogen uptake , biological N fixation) as an optimal process that maximizes plant growth by considering plant carbon and nutrient demands as well as acquisition costs. The model can now represent plastic changes in canopy N content and chlorophyll and Rubisco concentrations as well as in belowground allocation both on seasonal and inter-annual time scales. Specifically, we show that under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry would predicts a quick onset of N limitation. In general, our model aims to include physiologically-based plant processes and avoid arbitrarily imposed parameters and thresholds in order to improve our predictive capability of vegetation responses under changing environmental conditions.
Reducing temperature elevation of robotic bone drilling.
Feldmann, Arne; Wandel, Jasmin; Zysset, Philippe
2016-12-01
This research work aims at reducing temperature elevation of bone drilling. An extensive experimental study was conducted which focused on the investigation of three main measures to reduce the temperature elevation as used in industry: irrigation, interval drilling and drill bit designs. Different external irrigation rates (0 ml/min, 15 ml/min, 30 ml/min), continuously drilled interval lengths (2 mm, 1 mm, 0.5 mm) as well as two drill bit designs were tested. A custom single flute drill bit was designed with a higher rake angle and smaller chisel edge to generate less heat compared to a standard surgical drill bit. A new experimental setup was developed to measure drilling forces and torques as well as the 2D temperature field at any depth using a high resolution thermal camera. The results show that external irrigation is a main factor to reduce temperature elevation due not primarily to its effect on cooling but rather due to the prevention of drill bit clogging. During drilling, the build up of bone material in the drill bit flutes result in excessive temperatures due to an increase in thrust forces and torques. Drilling in intervals allows the removal of bone chips and cleaning of flutes when the drill bit is extracted as well as cooling of the bone in-between intervals which limits the accumulation of heat. However, reducing the length of the drilled interval was found only to be beneficial for temperature reduction using the newly designed drill bit due to the improved cutting geometry. To evaluate possible tissue damage caused by the generated heat increase, cumulative equivalent minutes (CEM43) were calculated and it was found that the combination of small interval length (0.5 mm), high irrigation rate (30 ml/min) and the newly designed drill bit was the only parameter combination which allowed drilling below the time-thermal threshold for tissue damage. In conclusion, an optimized drilling method has been found which might also enable drilling in more delicate procedures such as that performed during minimally invasive robotic cochlear implantation. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mansor, S. B.; Pormanafi, S.; Mahmud, A. R. B.; Pirasteh, S.
2012-08-01
In this study, a geospatial model for land use allocation was developed from the view of simulating the biological autonomous adaptability to environment and the infrastructural preference. The model was developed based on multi-agent genetic algorithm. The model was customized to accommodate the constraint set for the study area, namely the resource saving and environmental-friendly. The model was then applied to solve the practical multi-objective spatial optimization allocation problems of land use in the core region of Menderjan Basin in Iran. The first task was to study the dominant crops and economic suitability evaluation of land. Second task was to determine the fitness function for the genetic algorithms. The third objective was to optimize the land use map using economical benefits. The results has indicated that the proposed model has much better performance for solving complex multi-objective spatial optimization allocation problems and it is a promising method for generating land use alternatives for further consideration in spatial decision-making.
NASA Astrophysics Data System (ADS)
Xu, Ding; Li, Qun
2017-01-01
This paper addresses the power allocation problem for cognitive radio (CR) based on hybrid-automatic-repeat-request (HARQ) with chase combining (CC) in Nakagamimslow fading channels. We assume that, instead of the perfect instantaneous channel state information (CSI), only the statistical CSI is available at the secondary user (SU) transmitter. The aim is to minimize the SU outage probability under the primary user (PU) interference outage constraint. Using the Lagrange multiplier method, an iterative and recursive algorithm is derived to obtain the optimal power allocation for each transmission round. Extensive numerical results are presented to illustrate the performance of the proposed algorithm.
Liver Sharing and Organ Procurement Organization Performance under Redistricted Allocation
Gentry, Sommer E.; Chow, Eric KH.; Massie, Allan; Luo, Xun; Shteyn, Eugene; Pyke, Joshua; Zaun, David; Snyder, Jon J.; Israni, Ajay K.; Kasiske, Bert; Segev, Dorry L.
2015-01-01
Concerns have been raised that optimized redistricting of liver allocation areas might have the unintended result of shifting livers from better-performing to poorer-performing OPOs. We used the Liver Simulated Allocation Model to simulate a 5-year period of liver sharing within either 4 or 8 optimized districts. We investigated whether each OPO’s net liver import under redistricting would be correlated with two OPO performance metrics (observed to expected liver yield and liver donor conversion ratio), along with two other potential correlates (eligible deaths and incident listings above MELD 15). We found no evidence that livers would flow from better-performing OPOs to poorer-performing OPOs in either redistricting scenario. Instead, under these optimized redistricting plans, our simulations suggest that livers would flow from OPOs with more-than-expected eligible deaths toward those with fewer-than-expected eligible deaths, and that livers would flow from OPOs with fewer-than-expected incident listings to those with more-than-expected incident listings, the latter a pattern already established in the current allocation system. Redistricting liver distribution to reduce geographic inequity is expected to align liver allocation across the country with the distribution of supply and demand, rather than transferring livers from better-performing OPOs to poorer-performing OPOs. PMID:25990089
Mazziotta, Adriano; Pouzols, Federico Montesino; Mönkkönen, Mikko; Kotiaho, Janne S; Strandman, Harri; Moilanen, Atte
2016-09-15
Resource allocation to multiple alternative conservation actions is a complex task. A common trade-off occurs between protection of smaller, expensive, high-quality areas versus larger, cheaper, partially degraded areas. We investigate optimal allocation into three actions in boreal forest: current standard forest management rules, setting aside of mature stands, or setting aside of clear-cuts. We first estimated how habitat availability for focal indicator species and economic returns from timber harvesting develop through time as a function of forest type and action chosen. We then developed an optimal resource allocation by accounting for budget size and habitat availability of indicator species in different forest types. We also accounted for the perspective adopted towards sustainability, modeled via temporal preference and economic and ecological time discounting. Controversially, we found that in boreal forest set-aside followed by protection of clear-cuts can become a winning cost-effective strategy when accounting for habitat requirements of multiple species, long planning horizon, and limited budget. It is particularly effective when adopting a long-term sustainability perspective, and accounting for present revenues from timber harvesting. The present analysis assesses the cost-effective conditions to allocate resources into an inexpensive conservation strategy that nevertheless has potential to produce high ecological values in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Huang, Hsin-Chan; Singh, Bismark; Morton, David P; Johnson, Gregory P; Clements, Bruce; Meyers, Lauren Ancel
2017-01-01
Vaccines are arguably the most important means of pandemic influenza mitigation. However, as during the 2009 H1N1 pandemic, mass immunization with an effective vaccine may not begin until a pandemic is well underway. In the U.S., state-level public health agencies are responsible for quickly and fairly allocating vaccines as they become available to populations prioritized to receive vaccines. Allocation decisions can be ethically and logistically complex, given several vaccine types in limited and uncertain supply and given competing priority groups with distinct risk profiles and vaccine acceptabilities. We introduce a model for optimizing statewide allocation of multiple vaccine types to multiple priority groups, maximizing equal access. We assume a large fraction of available vaccines are distributed to healthcare providers based on their requests, and then optimize county-level allocation of the remaining doses to achieve equity. We have applied the model to the state of Texas, and incorporated it in a Web-based decision-support tool for the Texas Department of State Health Services (DSHS). Based on vaccine quantities delivered to registered healthcare providers in response to their requests during the 2009 H1N1 pandemic, we find that a relatively small cache of discretionary doses (DSHS reserved 6.8% in 2009) suffices to achieve equity across all counties in Texas.
Optimal allocation of leaf epidermal area for gas exchange.
de Boer, Hugo J; Price, Charles A; Wagner-Cremer, Friederike; Dekker, Stefan C; Franks, Peter J; Veneklaas, Erik J
2016-06-01
A long-standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of diffusion and geometry based on the hypothesis that selection for higher anatomical maximum stomatal conductance (gsmax ) involves a trade-off to minimize the fraction of the epidermis that is allocated to stomata. Predicted allometric relationships between stomatal traits were tested with a comprehensive compilation of published and unpublished data on 1057 species from all major clades. In support of our theoretical framework, stomatal traits of this phylogenetically diverse sample reflect spatially optimal allometry that minimizes investment in the allocation of epidermal area when plants evolve towards higher gsmax . Our results specifically highlight that the stomatal morphology of angiosperms evolved along spatially optimal allometric relationships. We propose that the resulting wide range of viable stomatal trait combinations equips angiosperms with developmental and evolutionary flexibility in leaf gas exchange unrivalled by gymnosperms and pteridophytes. © 2016 The Authors New Phytologist © 2016 New Phytologist Trust.
OPAL Netlogo Land Condition Model
2014-08-15
ER D C/ CE RL T R- 14 -1 2 Optimal Allocation of Land for Training and Non-training Uses ( OPAL ) OPAL Netlogo Land Condition Model...Fulton, Natalie Myers, Scott Tweddale, Dick Gebhart, Ryan Busby, Anne Dain-Owens, and Heidi Howard August 2014 OPAL team measuring above and...online library at http://acwc.sdp.sirsi.net/client/default. Optimal Allocation of Land for Training and Non-training Uses ( OPAL ) ERDC/CERL TR-14-12
Cellular trade-offs and optimal resource allocation during cyanobacterial diurnal growth
Knoop, Henning; Bockmayr, Alexander; Steuer, Ralf
2017-01-01
Cyanobacteria are an integral part of Earth’s biogeochemical cycles and a promising resource for the synthesis of renewable bioproducts from atmospheric CO2. Growth and metabolism of cyanobacteria are inherently tied to the diurnal rhythm of light availability. As yet, however, insight into the stoichiometric and energetic constraints of cyanobacterial diurnal growth is limited. Here, we develop a computational framework to investigate the optimal allocation of cellular resources during diurnal phototrophic growth using a genome-scale metabolic reconstruction of the cyanobacterium Synechococcus elongatus PCC 7942. We formulate phototrophic growth as an autocatalytic process and solve the resulting time-dependent resource allocation problem using constraint-based analysis. Based on a narrow and well-defined set of parameters, our approach results in an ab initio prediction of growth properties over a full diurnal cycle. The computational model allows us to study the optimality of metabolite partitioning during diurnal growth. The cyclic pattern of glycogen accumulation, an emergent property of the model, has timing characteristics that are in qualitative agreement with experimental findings. The approach presented here provides insight into the time-dependent resource allocation problem of phototrophic diurnal growth and may serve as a general framework to assess the optimality of metabolic strategies that evolved in phototrophic organisms under diurnal conditions. PMID:28720699
Image splitting and remapping method for radiological image compression
NASA Astrophysics Data System (ADS)
Lo, Shih-Chung B.; Shen, Ellen L.; Mun, Seong K.
1990-07-01
A new decomposition method using image splitting and gray-level remapping has been proposed for image compression, particularly for images with high contrast resolution. The effects of this method are especially evident in our radiological image compression study. In our experiments, we tested the impact of this decomposition method on image compression by employing it with two coding techniques on a set of clinically used CT images and several laser film digitized chest radiographs. One of the compression techniques used was full-frame bit-allocation in the discrete cosine transform domain, which has been proven to be an effective technique for radiological image compression. The other compression technique used was vector quantization with pruned tree-structured encoding, which through recent research has also been found to produce a low mean-square-error and a high compression ratio. The parameters we used in this study were mean-square-error and the bit rate required for the compressed file. In addition to these parameters, the difference between the original and reconstructed images will be presented so that the specific artifacts generated by both techniques can be discerned by visual perception.
NASA Astrophysics Data System (ADS)
Habibi Davijani, M.; Banihabib, M. E.; Nadjafzadeh Anvar, A.; Hashemi, S. R.
2016-02-01
In many discussions, work force is mentioned as the most important factor of production. Principally, work force is a factor which can compensate for the physical and material limitations and shortcomings of other factors to a large extent which can help increase the production level. On the other hand, employment is considered as an effective factor in social issues. The goal of the present research is the allocation of water resources so as to maximize the number of jobs created in the industry and agriculture sectors. An objective that has attracted the attention of policy makers involved in water supply and distribution is the maximization of the interests of beneficiaries and consumers in case of certain policies adopted. The present model applies the particle swarm optimization (PSO) algorithm in order to determine the optimum amount of water allocated to each water-demanding sector, area under cultivation, agricultural production, employment in the agriculture sector, industrial production and employment in the industry sector. Based on the results obtained from this research, by optimally allocating water resources in the central desert region of Iran, 1096 jobs can be created in the industry and agriculture sectors, which constitutes an improvement of about 13% relative to the previous situation (non-optimal water utilization). It is also worth mentioning that by optimizing the employment factor as a social parameter, the other areas such as the economic sector are influenced as well. For example, in this investigation, the resulting economic benefits (incomes) have improved from 73 billion Rials at baseline employment figures to 112 billion Rials in the case of optimized employment condition. Therefore, it is necessary to change the inter-sector and intra-sector water allocation models in this region, because this change not only leads to more jobs in this area, but also causes an improvement in the region's economic conditions.
NASA Technical Reports Server (NTRS)
Craun, Robert W.; Acosta, Diana M.; Beard, Steven D.; Leonard, Michael W.; Hardy, Gordon H.; Weinstein, Michael; Yildiz, Yildiray
2013-01-01
This paper describes the maturation of a control allocation technique designed to assist pilots in the recovery from pilot induced oscillations (PIOs). The Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) is designed to enable next generation high efficiency aircraft designs. Energy efficient next generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. One of the common issues flying with actuator rate limits is PIOs caused by the phase lag between the pilot inputs and control surface response. CAPIO utilizes real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a non-linear aircraft simulation in the NASA Ames Vertical Motion Simulator. Results indicate that CAPIO helps reduce oscillatory behavior, including the severity and duration of PIOs, introduced by control surface rate limiting.
Data Capture Technique for High Speed Signaling
Barrett, Wayne Melvin; Chen, Dong; Coteus, Paul William; Gara, Alan Gene; Jackson, Rory; Kopcsay, Gerard Vincent; Nathanson, Ben Jesse; Vranas, Paylos Michael; Takken, Todd E.
2008-08-26
A data capture technique for high speed signaling to allow for optimal sampling of an asynchronous data stream. This technique allows for extremely high data rates and does not require that a clock be sent with the data as is done in source synchronous systems. The present invention also provides a hardware mechanism for automatically adjusting transmission delays for optimal two-bit simultaneous bi-directional (SiBiDi) signaling.
Optimal water resource allocation modelling in the Lowveld of Zimbabwe
NASA Astrophysics Data System (ADS)
Mhiribidi, Delight; Nobert, Joel; Gumindoga, Webster; Rwasoka, Donald T.
2018-05-01
The management and allocation of water from multi-reservoir systems is complex and thus requires dynamic modelling systems to achieve optimality. A multi-reservoir system in the Southern Lowveld of Zimbabwe is used for irrigation of sugarcane estates that produce sugar for both local and export consumption. The system is burdened with water allocation problems, made worse by decommissioning of dams. Thus the aim of this research was to develop an operating policy model for the Lowveld multi-reservoir system.The Mann Kendall Trend and Wilcoxon Signed-Rank tests were used to assess the variability of historic monthly rainfall and dam inflows for the period 1899-2015. The WEAP model was set up to evaluate the water allocation system of the catchment and come-up with a reference scenario for the 2015/2016 hydrologic year. Stochastic Dynamic Programming approach was used for optimisation of the multi-reservoirs releases.Results showed no significant trend in the rainfall but a significantly decreasing trend in inflows (p < 0.05). The water allocation model (WEAP) showed significant deficits ( ˜ 40 %) in irrigation water allocation in the reference scenario. The optimal rule curves for all the twelve months for each reservoir were obtained and considered to be a proper guideline for solving multi- reservoir management problems within the catchment. The rule curves are effective tools in guiding decision makers in the release of water without emptying the reservoirs but at the same time satisfying the demands based on the inflow, initial storage and end of month storage.
Universality of optimal measurements
NASA Astrophysics Data System (ADS)
Tarrach, Rolf; Vidal, Guifré
1999-11-01
We present optimal and minimal measurements on identical copies of an unknown state of a quantum bit when the quality of measuring strategies is quantified with the gain of information (Kullback-or mutual information-of probability distributions). We also show that the maximal gain of information occurs, among isotropic priors, when the state is known to be pure. Universality of optimal measurements follows from our results: using the fidelity or the gain of information, two different figures of merits, leads to exactly the same conclusions for isotropic distributions. We finally investigate the optimal capacity of N copies of an unknown state as a quantum channel of information.
Life-history strategies of North American elk: trade-offs associated with reproduction and survival
Sabrina Morano; Kelley M. Stewart; James S. Sedinger; Christopher A. Nicolai; Marty Vavra
2013-01-01
The principle of energy allocation states that individuals should attempt to maximize fitness by allocating resources optimally among growth, maintenance, and reproduction. Such allocation may result in trade-offs between survival and reproduction, or between current and future reproduction. We used a marked population of North American elk (Cervus elaphus...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canavan, G.H.
Optimal offensive missile allocations for moderate offensive and defensive forces are derived and used to study their sensitivity to force structure parameters levels. It is shown that the first strike cost is a product of the number of missiles and a function of the optimum allocation. Thus, the conditions under which the number of missiles should increase or decrease in time is also determined by this allocation.
Sastry, Madhavi; Lowrie, Jeffrey F; Dixon, Steven L; Sherman, Woody
2010-05-24
A systematic virtual screening study on 11 pharmaceutically relevant targets has been conducted to investigate the interrelation between 8 two-dimensional (2D) fingerprinting methods, 13 atom-typing schemes, 13 bit scaling rules, and 12 similarity metrics using the new cheminformatics package Canvas. In total, 157 872 virtual screens were performed to assess the ability of each combination of parameters to identify actives in a database screen. In general, fingerprint methods, such as MOLPRINT2D, Radial, and Dendritic that encode information about local environment beyond simple linear paths outperformed other fingerprint methods. Atom-typing schemes with more specific information, such as Daylight, Mol2, and Carhart were generally superior to more generic atom-typing schemes. Enrichment factors across all targets were improved considerably with the best settings, although no single set of parameters performed optimally on all targets. The size of the addressable bit space for the fingerprints was also explored, and it was found to have a substantial impact on enrichments. Small bit spaces, such as 1024, resulted in many collisions and in a significant degradation in enrichments compared to larger bit spaces that avoid collisions.
A game-theoretical pricing mechanism for multiuser rate allocation for video over WiMAX
NASA Astrophysics Data System (ADS)
Chen, Chao-An; Lo, Chi-Wen; Lin, Chia-Wen; Chen, Yung-Chang
2010-07-01
In multiuser rate allocation in a wireless network, strategic users can bias the rate allocation by misrepresenting their bandwidth demands to a base station, leading to an unfair allocation. Game-theoretical approaches have been proposed to address the unfair allocation problems caused by the strategic users. However, existing approaches rely on a timeconsuming iterative negotiation process. Besides, they cannot completely prevent unfair allocations caused by inconsistent strategic behaviors. To address these problems, we propose a Search Based Pricing Mechanism to reduce the communication time and to capture a user's strategic behavior. Our simulation results show that the proposed method significantly reduce the communication time as well as converges stably to an optimal allocation.
Multiple sensitive estimation and optimal sample size allocation in the item sum technique.
Perri, Pier Francesco; Rueda García, María Del Mar; Cobo Rodríguez, Beatriz
2018-01-01
For surveys of sensitive issues in life sciences, statistical procedures can be used to reduce nonresponse and social desirability response bias. Both of these phenomena provoke nonsampling errors that are difficult to deal with and can seriously flaw the validity of the analyses. The item sum technique (IST) is a very recent indirect questioning method derived from the item count technique that seeks to procure more reliable responses on quantitative items than direct questioning while preserving respondents' anonymity. This article addresses two important questions concerning the IST: (i) its implementation when two or more sensitive variables are investigated and efficient estimates of their unknown population means are required; (ii) the determination of the optimal sample size to achieve minimum variance estimates. These aspects are of great relevance for survey practitioners engaged in sensitive research and, to the best of our knowledge, were not studied so far. In this article, theoretical results for multiple estimation and optimal allocation are obtained under a generic sampling design and then particularized to simple random sampling and stratified sampling designs. Theoretical considerations are integrated with a number of simulation studies based on data from two real surveys and conducted to ascertain the efficiency gain derived from optimal allocation in different situations. One of the surveys concerns cannabis consumption among university students. Our findings highlight some methodological advances that can be obtained in life sciences IST surveys when optimal allocation is achieved. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Compression of digital images over local area networks. Appendix 1: Item 3. M.S. Thesis
NASA Technical Reports Server (NTRS)
Gorjala, Bhargavi
1991-01-01
Differential Pulse Code Modulation (DPCM) has been used with speech for many years. It has not been as successful for images because of poor edge performance. The only corruption in DPC is quantizer error but this corruption becomes quite large in the region of an edge because of the abrupt changes in the statistics of the signal. We introduce two improved DPCM schemes; Edge correcting DPCM and Edge Preservation Differential Coding. These two coding schemes will detect the edges and take action to correct them. In an Edge Correcting scheme, the quantizer error for an edge is encoded using a recursive quantizer with entropy coding and sent to the receiver as side information. In an Edge Preserving scheme, when the quantizer input falls in the overload region, the quantizer error is encoded and sent to the receiver repeatedly until the quantizer input falls in the inner levels. Therefore these coding schemes increase the bit rate in the region of an edge and require variable rate channels. We implement these two variable rate coding schemes on a token wing network. Timed token protocol supports two classes of messages; asynchronous and synchronous. The synchronous class provides a pre-allocated bandwidth and guaranteed response time. The remaining bandwidth is dynamically allocated to the asynchronous class. The Edge Correcting DPCM is simulated by considering the edge information under the asynchronous class. For the simulation of the Edge Preserving scheme, the amount of information sent each time is fixed, but the length of the packet or the bit rate for that packet is chosen depending on the availability capacity. The performance of the network, and the performance of the image coding algorithms, is studied.
The use of interleaving for reducing radio loss in convolutionally coded systems
NASA Technical Reports Server (NTRS)
Divsalar, D.; Simon, M. K.; Yuen, J. H.
1989-01-01
The use of interleaving after convolutional coding and deinterleaving before Viterbi decoding is proposed. This effectively reduces radio loss at low-loop Signal to Noise Ratios (SNRs) by several decibels and at high-loop SNRs by a few tenths of a decibel. Performance of the coded system can further be enhanced if the modulation index is optimized for this system. This will correspond to a reduction of bit SNR at a certain bit error rate for the overall system. The introduction of interleaving/deinterleaving into communication systems designed for future deep space missions does not substantially complicate their hardware design or increase their system cost.
On estimation of secret message length in LSB steganography in spatial domain
NASA Astrophysics Data System (ADS)
Fridrich, Jessica; Goljan, Miroslav
2004-06-01
In this paper, we present a new method for estimating the secret message length of bit-streams embedded using the Least Significant Bit embedding (LSB) at random pixel positions. We introduce the concept of a weighted stego image and then formulate the problem of determining the unknown message length as a simple optimization problem. The methodology is further refined to obtain more stable and accurate results for a wide spectrum of natural images. One of the advantages of the new method is its modular structure and a clean mathematical derivation that enables elegant estimator accuracy analysis using statistical image models.
SYSTEMS ANALYSIS, * WATER SUPPLIES, MATHEMATICAL MODELS, OPTIMIZATION, ECONOMICS, LINEAR PROGRAMMING, HYDROLOGY, REGIONS, ALLOCATIONS, RESTRAINT, RIVERS, EVAPORATION, LAKES, UTAH, SALVAGE, MINES(EXCAVATIONS).
Granmo, Ole-Christoffer; Oommen, B John; Myrer, Svein Arild; Olsen, Morten Goodwin
2007-02-01
This paper considers the nonlinear fractional knapsack problem and demonstrates how its solution can be effectively applied to two resource allocation problems dealing with the World Wide Web. The novel solution involves a "team" of deterministic learning automata (LA). The first real-life problem relates to resource allocation in web monitoring so as to "optimize" information discovery when the polling capacity is constrained. The disadvantages of the currently reported solutions are explained in this paper. The second problem concerns allocating limited sampling resources in a "real-time" manner with the purpose of estimating multiple binomial proportions. This is the scenario encountered when the user has to evaluate multiple web sites by accessing a limited number of web pages, and the proportions of interest are the fraction of each web site that is successfully validated by an HTML validator. Using the general LA paradigm to tackle both of the real-life problems, the proposed scheme improves a current solution in an online manner through a series of informed guesses that move toward the optimal solution. At the heart of the scheme, a team of deterministic LA performs a controlled random walk on a discretized solution space. Comprehensive experimental results demonstrate that the discretization resolution determines the precision of the scheme, and that for a given precision, the current solution (to both problems) is consistently improved until a nearly optimal solution is found--even for switching environments. Thus, the scheme, while being novel to the entire field of LA, also efficiently handles a class of resource allocation problems previously not addressed in the literature.
Using Simple Environmental Variables to Estimate Biomass Disturbance
2014-08-01
ER D C/ CE RL T R- 14 -1 3 Optimal Allocation of Land for Training and Non-Training Uses ( OPAL ) Using Simple Environmental Variables to...Uses ( OPAL ) ERDC/CERL TR-14-13 August 2014 Using Simple Environmental Variables to Estimate Biomass Disturbance Natalie Myers, Daniel Koch...Development of the Optimal Allocation of Land for Training and Non-Training Uses ( OPAL ) Program was undertak- en to meet this need. This phase of work
2014-08-01
ER D C/ CE RL S R- 14 -7 Optimal Allocation of Land for Training and Non-training Uses OPAL Land Condition Model Co ns tr uc tio n En...Optimal Allocation of Land for Training and Non-training Uses ERDC/CERL SR-14-7 August 2014 OPAL Land Condition Model Daniel Koch, Scott Tweddale...programmer information supporting the Op- timal Programming of Army Lands ( OPAL ) model, which was designed for use by trainers, Integrated Training
Optimal read/write memory system components
NASA Technical Reports Server (NTRS)
Kozma, A.; Vander Lugt, A.; Klinger, D.
1972-01-01
Two holographic data storage and display systems, voltage gradient ionization system, and linear strain manipulation system are discussed in terms of creating fast, high bit density, storage device. Components described include: novel mounting fixture for photoplastic arrays; corona discharge device; and block data composer.
NASA Astrophysics Data System (ADS)
Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli
2017-11-01
Virtualization technology can greatly improve the efficiency of the networks by allowing the virtual optical networks to share the resources of the physical networks. However, it will face some challenges, such as finding the efficient strategies for virtual nodes mapping, virtual links mapping and spectrum assignment. It is even more complex and challenging when the physical elastic optical networks using multi-core fibers. To tackle these challenges, we establish a constrained optimization model to determine the optimal schemes of optical network mapping, core allocation and spectrum assignment. To solve the model efficiently, tailor-made encoding scheme, crossover and mutation operators are designed. Based on these, an efficient genetic algorithm is proposed to obtain the optimal schemes of the virtual nodes mapping, virtual links mapping, core allocation. The simulation experiments are conducted on three widely used networks, and the experimental results show the effectiveness of the proposed model and algorithm.
Li, Chaojie; Yu, Xinghuo; Huang, Tingwen; He, Xing; Chaojie Li; Xinghuo Yu; Tingwen Huang; Xing He; Li, Chaojie; Huang, Tingwen; He, Xing; Yu, Xinghuo
2018-06-01
The resource allocation problem is studied and reformulated by a distributed interior point method via a -logarithmic barrier. By the facilitation of the graph Laplacian, a fully distributed continuous-time multiagent system is developed for solving the problem. Specifically, to avoid high singularity of the -logarithmic barrier at boundary, an adaptive parameter switching strategy is introduced into this dynamical multiagent system. The convergence rate of the distributed algorithm is obtained. Moreover, a novel distributed primal-dual dynamical multiagent system is designed in a smart grid scenario to seek the saddle point of dynamical economic dispatch, which coincides with the optimal solution. The dual decomposition technique is applied to transform the optimization problem into easily solvable resource allocation subproblems with local inequality constraints. The good performance of the new dynamical systems is, respectively, verified by a numerical example and the IEEE six-bus test system-based simulations.
Converse, Sarah J.; Shelley, Kevin J.; Morey, Steve; Chan, Jeffrey; LaTier, Andrea; Scafidi, Carolyn; Crouse, Deborah T.; Runge, Michael C.
2011-01-01
The resources available to support conservation work, whether time or money, are limited. Decision makers need methods to help them identify the optimal allocation of limited resources to meet conservation goals, and decision analysis is uniquely suited to assist with the development of such methods. In recent years, a number of case studies have been described that examine optimal conservation decisions under fiscal constraints; here we develop methods to look at other types of constraints, including limited staff and regulatory deadlines. In the US, Section Seven consultation, an important component of protection under the federal Endangered Species Act, requires that federal agencies overseeing projects consult with federal biologists to avoid jeopardizing species. A benefit of consultation is negotiation of project modifications that lessen impacts on species, so staff time allocated to consultation supports conservation. However, some offices have experienced declining staff, potentially reducing the efficacy of consultation. This is true of the US Fish and Wildlife Service's Washington Fish and Wildlife Office (WFWO) and its consultation work on federally-threatened bull trout (Salvelinus confluentus). To improve effectiveness, WFWO managers needed a tool to help allocate this work to maximize conservation benefits. We used a decision-analytic approach to score projects based on the value of staff time investment, and then identified an optimal decision rule for how scored projects would be allocated across bins, where projects in different bins received different time investments. We found that, given current staff, the optimal decision rule placed 80% of informal consultations (those where expected effects are beneficial, insignificant, or discountable) in a short bin where they would be completed without negotiating changes. The remaining 20% would be placed in a long bin, warranting an investment of seven days, including time for negotiation. For formal consultations (those where expected effects are significant), 82% of projects would be placed in a long bin, with an average time investment of 15. days. The WFWO is using this decision-support tool to help allocate staff time. Because workload allocation decisions are iterative, we describe a monitoring plan designed to increase the tool's efficacy over time. This work has general application beyond Section Seven consultation, in that it provides a framework for efficient investment of staff time in conservation when such time is limited and when regulatory deadlines prevent an unconstrained approach. ?? 2010.
Optimal resource allocation for novelty detection in a human auditory memory.
Sinkkonen, J; Kaski, S; Huotilainen, M; Ilmoniemi, R J; Näätänen, R; Kaila, K
1996-11-04
A theory of resource allocation for neuronal low-level filtering is presented, based on an analysis of optimal resource allocation in simple environments. A quantitative prediction of the theory was verified in measurements of the magnetic mismatch response (MMR), an auditory event-related magnetic response of the human brain. The amplitude of the MMR was found to be directly proportional to the information conveyed by the stimulus. To the extent that the amplitude of the MMR can be used to measure resource usage by the auditory cortex, this finding supports our theory that, at least for early auditory processing, energy resources are used in proportion to the information content of incoming stimulus flow.
Performance Evaluation Model for Application Layer Firewalls.
Xuan, Shichang; Yang, Wu; Dong, Hui; Zhang, Jiangchuan
2016-01-01
Application layer firewalls protect the trusted area network against information security risks. However, firewall performance may affect user experience. Therefore, performance analysis plays a significant role in the evaluation of application layer firewalls. This paper presents an analytic model of the application layer firewall, based on a system analysis to evaluate the capability of the firewall. In order to enable users to improve the performance of the application layer firewall with limited resources, resource allocation was evaluated to obtain the optimal resource allocation scheme in terms of throughput, delay, and packet loss rate. The proposed model employs the Erlangian queuing model to analyze the performance parameters of the system with regard to the three layers (network, transport, and application layers). Then, the analysis results of all the layers are combined to obtain the overall system performance indicators. A discrete event simulation method was used to evaluate the proposed model. Finally, limited service desk resources were allocated to obtain the values of the performance indicators under different resource allocation scenarios in order to determine the optimal allocation scheme. Under limited resource allocation, this scheme enables users to maximize the performance of the application layer firewall.
Supply chain carbon footprinting and responsibility allocation under emission regulations.
Chen, Jin-Xiao; Chen, Jian
2017-03-01
Reduction of greenhouse gas emissions has become an enormous challenge for any single enterprise and its supply chain because of the increasing concern on global warming. This paper investigates carbon footprinting and responsibility allocation for supply chains involved in joint production. Our study is conducted from the perspective of a social planner who aims to achieve social value optimization. The carbon footprinting model is based on operational activities rather than on firms because joint production blurs the organizational boundaries of footprints. A general model is proposed for responsibility allocation among firms who seek to maximize individual profits. This study looks into ways for the decentralized supply chain to achieve centralized optimality of social value under two emission regulations. Given a balanced allocation for the entire supply chain, we examine the necessity of over-allocation to certain firms under specific situations and find opportunities for the firms to avoid over-allocation. The comparison of the two regulations reveals that setting an emission standard per unit of product will motivate firms to follow the standard and improve their emission efficiencies. Hence, a more efficient and promising policy is needed in contrast to existing regulations on total production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optimal allocation of the limited oral cholera vaccine supply between endemic and epidemic settings.
Moore, Sean M; Lessler, Justin
2015-10-06
The World Health Organization (WHO) recently established a global stockpile of oral cholera vaccine (OCV) to be preferentially used in epidemic response (reactive campaigns) with any vaccine remaining after 1 year allocated to endemic settings. Hence, the number of cholera cases or deaths prevented in an endemic setting represents the minimum utility of these doses, and the optimal risk-averse response to any reactive vaccination request (i.e. the minimax strategy) is one that allocates the remaining doses between the requested epidemic response and endemic use in order to ensure that at least this minimum utility is achieved. Using mathematical models, we find that the best minimax strategy is to allocate the majority of doses to reactive campaigns, unless the request came late in the targeted epidemic. As vaccine supplies dwindle, the case for reactive use of the remaining doses grows stronger. Our analysis provides a lower bound for the amount of OCV to keep in reserve when responding to any request. These results provide a strategic context for the fulfilment of requests to the stockpile, and define allocation strategies that minimize the number of OCV doses that are allocated to suboptimal situations. © 2015 The Authors.
Motion-related resource allocation in dynamic wireless visual sensor network environments.
Katsenou, Angeliki V; Kondi, Lisimachos P; Parsopoulos, Konstantinos E
2014-01-01
This paper investigates quality-driven cross-layer optimization for resource allocation in direct sequence code division multiple access wireless visual sensor networks. We consider a single-hop network topology, where each sensor transmits directly to a centralized control unit (CCU) that manages the available network resources. Our aim is to enable the CCU to jointly allocate the transmission power and source-channel coding rates for each node, under four different quality-driven criteria that take into consideration the varying motion characteristics of each recorded video. For this purpose, we studied two approaches with a different tradeoff of quality and complexity. The first one allocates the resources individually for each sensor, whereas the second clusters them according to the recorded level of motion. In order to address the dynamic nature of the recorded scenery and re-allocate the resources whenever it is dictated by the changes in the amount of motion in the scenery, we propose a mechanism based on the particle swarm optimization algorithm, combined with two restarting schemes that either exploit the previously determined resource allocation or conduct a rough estimation of it. Experimental simulations demonstrate the efficiency of the proposed approaches.
Schaafsma, Murk; van der Deijl, Wilfred; Smits, Jacqueline M; Rahmel, Axel O; de Vries Robbé, Pieter F; Hoitsma, Andries J
2011-05-01
Organ allocation systems have become complex and difficult to comprehend. We introduced decision tables to specify the rules of allocation systems for different organs. A rule engine with decision tables as input was tested for the Kidney Allocation System (ETKAS). We compared this rule engine with the currently used ETKAS by running 11,000 historical match runs and by running the rule engine in parallel with the ETKAS on our allocation system. Decision tables were easy to implement and successful in verifying correctness, completeness, and consistency. The outcomes of the 11,000 historical matches in the rule engine and the ETKAS were exactly the same. Running the rule engine simultaneously in parallel and in real time with the ETKAS also produced no differences. Specifying organ allocation rules in decision tables is already a great step forward in enhancing the clarity of the systems. Yet, using these tables as rule engine input for matches optimizes the flexibility, simplicity and clarity of the whole process, from specification to the performed matches, and in addition this new method allows well controlled simulations. © 2011 The Authors. Transplant International © 2011 European Society for Organ Transplantation.
NASA Astrophysics Data System (ADS)
Salido, Miguel A.; Rodriguez-Molins, Mario; Barber, Federico
The Container Stacking Problem and the Berth Allocation Problem are two important problems in maritime container terminal's management which are clearly related. Terminal operators normally demand all containers to be loaded into an incoming vessel should be ready and easily accessible in the terminal before vessel's arrival. Similarly, customers (i.e., vessel owners) expect prompt berthing of their vessels upon arrival. In this paper, we present an artificial intelligence based-integrated system to relate these problems. Firstly, we develop a metaheuristic algorithm for berth allocation which generates an optimized order of vessel to be served according to existing berth constraints. Secondly, we develop a domain-oriented heuristic planner for calculating the number of reshuffles needed to allocate containers in the appropriate place for a given berth ordering of vessels. By combining these optimized solutions, terminal operators can be assisted to decide the most appropriated solution in each particular case.
Asynchronous Incremental Stochastic Dual Descent Algorithm for Network Resource Allocation
NASA Astrophysics Data System (ADS)
Bedi, Amrit Singh; Rajawat, Ketan
2018-05-01
Stochastic network optimization problems entail finding resource allocation policies that are optimum on an average but must be designed in an online fashion. Such problems are ubiquitous in communication networks, where resources such as energy and bandwidth are divided among nodes to satisfy certain long-term objectives. This paper proposes an asynchronous incremental dual decent resource allocation algorithm that utilizes delayed stochastic {gradients} for carrying out its updates. The proposed algorithm is well-suited to heterogeneous networks as it allows the computationally-challenged or energy-starved nodes to, at times, postpone the updates. The asymptotic analysis of the proposed algorithm is carried out, establishing dual convergence under both, constant and diminishing step sizes. It is also shown that with constant step size, the proposed resource allocation policy is asymptotically near-optimal. An application involving multi-cell coordinated beamforming is detailed, demonstrating the usefulness of the proposed algorithm.
Decision-theoretic methodology for reliability and risk allocation in nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, N.Z.; Papazoglou, I.A.; Bari, R.A.
1985-01-01
This paper describes a methodology for allocating reliability and risk to various reactor systems, subsystems, components, operations, and structures in a consistent manner, based on a set of global safety criteria which are not rigid. The problem is formulated as a multiattribute decision analysis paradigm; the multiobjective optimization, which is performed on a PRA model and reliability cost functions, serves as the guiding principle for reliability and risk allocation. The concept of noninferiority is used in the multiobjective optimization problem. Finding the noninferior solution set is the main theme of the current approach. The assessment of the decision maker's preferencesmore » could then be performed more easily on the noninferior solution set. Some results of the methodology applications to a nontrivial risk model are provided and several outstanding issues such as generic allocation and preference assessment are discussed.« less
Research on Multirobot Pursuit Task Allocation Algorithm Based on Emotional Cooperation Factor
Fang, Baofu; Chen, Lu; Wang, Hao; Dai, Shuanglu; Zhong, Qiubo
2014-01-01
Multirobot task allocation is a hot issue in the field of robot research. A new emotional model is used with the self-interested robot, which gives a new way to measure self-interested robots' individual cooperative willingness in the problem of multirobot task allocation. Emotional cooperation factor is introduced into self-interested robot; it is updated based on emotional attenuation and external stimuli. Then a multirobot pursuit task allocation algorithm is proposed, which is based on emotional cooperation factor. Combined with the two-step auction algorithm recruiting team leaders and team collaborators, set up pursuit teams, and finally use certain strategies to complete the pursuit task. In order to verify the effectiveness of this algorithm, some comparing experiments have been done with the instantaneous greedy optimal auction algorithm; the results of experiments show that the total pursuit time and total team revenue can be optimized by using this algorithm. PMID:25152925
Research on multirobot pursuit task allocation algorithm based on emotional cooperation factor.
Fang, Baofu; Chen, Lu; Wang, Hao; Dai, Shuanglu; Zhong, Qiubo
2014-01-01
Multirobot task allocation is a hot issue in the field of robot research. A new emotional model is used with the self-interested robot, which gives a new way to measure self-interested robots' individual cooperative willingness in the problem of multirobot task allocation. Emotional cooperation factor is introduced into self-interested robot; it is updated based on emotional attenuation and external stimuli. Then a multirobot pursuit task allocation algorithm is proposed, which is based on emotional cooperation factor. Combined with the two-step auction algorithm recruiting team leaders and team collaborators, set up pursuit teams, and finally use certain strategies to complete the pursuit task. In order to verify the effectiveness of this algorithm, some comparing experiments have been done with the instantaneous greedy optimal auction algorithm; the results of experiments show that the total pursuit time and total team revenue can be optimized by using this algorithm.
Nakrani, Sunil; Tovey, Craig
2007-12-01
An Internet hosting center hosts services on its server ensemble. The center must allocate servers dynamically amongst services to maximize revenue earned from hosting fees. The finite server ensemble, unpredictable request arrival behavior and server reallocation cost make server allocation optimization difficult. Server allocation closely resembles honeybee forager allocation amongst flower patches to optimize nectar influx. The resemblance inspires a honeybee biomimetic algorithm. This paper describes details of the honeybee self-organizing model in terms of information flow and feedback, analyzes the homology between the two problems and derives the resulting biomimetic algorithm for hosting centers. The algorithm is assessed for effectiveness and adaptiveness by comparative testing against benchmark and conventional algorithms. Computational results indicate that the new algorithm is highly adaptive to widely varying external environments and quite competitive against benchmark assessment algorithms. Other swarm intelligence applications are briefly surveyed, and some general speculations are offered regarding their various degrees of success.
Optimization of an optically implemented on-board FDMA demultiplexer
NASA Technical Reports Server (NTRS)
Fargnoli, J.; Riddle, L.
1991-01-01
Performance of a 30 GHz frequency division multiple access (FDMA) uplink to a processing satellite is modelled for the case where the onboard demultiplexer is implemented optically. Included in the performance model are the effects of adjacent channel interference, intersymbol interference, and spurious signals associated with the optical implementation. Demultiplexer parameters are optimized to provide the minimum bit error probability at a given bandwidth efficiency when filtered QPSK modulation is employed.
Computer Series, 86. Bits and Pieces, 35.
ERIC Educational Resources Information Center
Moore, John W., Ed.
1987-01-01
Describes eight applications of the use of computers in teaching chemistry. Includes discussions of audio frequency measurements of heat capacity ratios, quantum mechanics, ab initio calculations, problem solving using spreadsheets, simplex optimization, faradaic impedance diagrams, and the recording and tabulation of student laboratory data. (TW)
A 14-bit 40-MHz analog front end for CCD application
NASA Astrophysics Data System (ADS)
Jingyu, Wang; Zhangming, Zhu; Shubin, Liu
2016-06-01
A 14-bit, 40-MHz analog front end (AFE) for CCD scanners is analyzed and designed. The proposed system incorporates a digitally controlled wideband variable gain amplifier (VGA) with nearly 42 dB gain range, a correlated double sampler (CDS) with programmable gain functionality, a 14-bit analog-to-digital converter and a programmable timing core. To achieve the maximum dynamic range, the VGA proposed here can linearly amplify the input signal in a gain range from -1.08 to 41.06 dB in 6.02 dB step with a constant bandwidth. A novel CDS takes image information out of noise, and further amplifies the signal accurately in a gain range from 0 to 18 dB in 0.035 dB step. A 14-bit ADC is adopted to quantify the analog signal with optimization in power and linearity. An internal timing core can provide flexible timing for CCD arrays, CDS and ADC. The proposed AFE was fabricated in SMIC 0.18 μm CMOS process. The whole circuit occupied an active area of 2.8 × 4.8 mm2 and consumed 360 mW. When the frequency of input signal is 6.069 MHz, and the sampling frequency is 40 MHz, the signal to noise and distortion (SNDR) is 70.3 dB, the effective number of bits is 11.39 bit. Project supported by the National Natural Science Foundation of China (Nos. 61234002, 61322405, 61306044, 61376033), the National High-Tech Program of China (No. 2013AA014103), and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory (No. ZHD201302).
Compression performance of HEVC and its format range and screen content coding extensions
NASA Astrophysics Data System (ADS)
Li, Bin; Xu, Jizheng; Sullivan, Gary J.
2015-09-01
This paper presents a comparison-based test of the objective compression performance of the High Efficiency Video Coding (HEVC) standard, its format range extensions (RExt), and its draft screen content coding extensions (SCC). The current dominant standard, H.264/MPEG-4 AVC, is used as an anchor reference in the comparison. The conditions used for the comparison tests were designed to reflect relevant application scenarios and to enable a fair comparison to the maximum extent feasible - i.e., using comparable quantization settings, reference frame buffering, intra refresh periods, rate-distortion optimization decision processing, etc. It is noted that such PSNR-based objective comparisons generally provide more conservative estimates of HEVC benefit than are found in subjective studies. The experimental results show that, when compared with H.264/MPEG-4 AVC, HEVC version 1 provides a bit rate savings for equal PSNR of about 23% for all-intra coding, 34% for random access coding, and 38% for low-delay coding. This is consistent with prior studies and the general characterization that HEVC can provide about a bit rate savings of about 50% for equal subjective quality for most applications. The HEVC format range extensions provide a similar bit rate savings of about 13-25% for all-intra coding, 28-33% for random access coding, and 32-38% for low-delay coding at different bit rate ranges. For lossy coding of screen content, the HEVC screen content coding extensions achieve a bit rate savings of about 66%, 63%, and 61% for all-intra coding, random access coding, and low-delay coding, respectively. For lossless coding, the corresponding bit rate savings are about 40%, 33%, and 32%, respectively.
Improved classical and quantum random access codes
NASA Astrophysics Data System (ADS)
Liabøtrø, O.
2017-05-01
A (quantum) random access code ((Q)RAC) is a scheme that encodes n bits into m (qu)bits such that any of the n bits can be recovered with a worst case probability p >1/2 . We generalize (Q)RACs to a scheme encoding n d -levels into m (quantum) d -levels such that any d -level can be recovered with the probability for every wrong outcome value being less than 1/d . We construct explicit solutions for all n ≤d/2m-1 d -1 . For d =2 , the constructions coincide with those previously known. We show that the (Q)RACs are d -parity oblivious, generalizing ordinary parity obliviousness. We further investigate optimization of the success probabilities. For d =2 , we use the measure operators of the previously best-known solutions, but improve the encoding states to give a higher success probability. We conjecture that for maximal (n =4m-1 ,m ,p ) QRACs, p =1/2 {1 +[(√{3}+1)m-1 ] -1} is possible, and show that it is an upper bound for the measure operators that we use. We then compare (n ,m ,pq) QRACs with classical (n ,2 m ,pc) RACs. We can always find pq≥pc , but the classical code gives information about every input bit simultaneously, while the QRAC only gives information about a subset. For several different (n ,2 ,p ) QRACs, we see the same trade-off, as the best p values are obtained when the number of bits that can be obtained simultaneously is as small as possible. The trade-off is connected to parity obliviousness, since high certainty information about several bits can be used to calculate probabilities for parities of subsets.
NASA Astrophysics Data System (ADS)
Hsueh, Yu-Li; Rogge, Matthew S.; Shaw, Wei-Tao; Kim, Jaedon; Yamamoto, Shu; Kazovsky, Leonid G.
2005-09-01
A simple and cost-effective upgrade of existing passive optical networks (PONs) is proposed, which realizes service overlay by novel spectral-shaping line codes. A hierarchical coding procedure allows processing simplicity and achieves desired long-term spectral properties. Different code rates are supported, and the spectral shape can be properly tailored to adapt to different systems. The computation can be simplified by quantization of trigonometric functions. DC balance is achieved by passing the dc residual between processing windows. The proposed line codes tend to introduce bit transitions to avoid long consecutive identical bits and facilitate receiver clock recovery. Experiments demonstrate and compare several different optimized line codes. For a specific tolerable interference level, the optimal line code can easily be determined, which maximizes the data throughput. The service overlay using the line-coding technique leaves existing services and field-deployed fibers untouched but fully functional, providing a very flexible and economic way to upgrade existing PONs.
NASA Astrophysics Data System (ADS)
Bao, Xiurong; Zhao, Qingchun; Yin, Hongxi; Qin, Jie
2018-05-01
In this paper, an all-optical parallel reservoir computing (RC) system with two channels for the optical packet header recognition is proposed and simulated, which is based on a semiconductor ring laser (SRL) with the characteristic of bidirectional light paths. The parallel optical loops are built through the cross-feedback of the bidirectional light paths where every optical loop can independently recognize each injected optical packet header. Two input signals are mapped and recognized simultaneously by training all-optical parallel reservoir, which is attributed to the nonlinear states in the laser. The recognition of optical packet headers for two channels from 4 bits to 32 bits is implemented through the simulation optimizing system parameters and therefore, the optimal recognition error ratio is 0. Since this structure can combine with the wavelength division multiplexing (WDM) optical packet switching network, the wavelength of each channel of optical packet headers for recognition can be different, and a better recognition result can be obtained.
Precoded spatial multiplexing MIMO system with spatial component interleaver.
Gao, Xiang; Wu, Zhanji
In this paper, the performance of precoded bit-interleaved coded modulation (BICM) spatial multiplexing multiple-input multiple-output (MIMO) system with spatial component interleaver is investigated. For the ideal precoded spatial multiplexing MIMO system with spatial component interleaver based on singular value decomposition (SVD) of the MIMO channel, the average pairwise error probability (PEP) of coded bits is derived. Based on the PEP analysis, the optimum spatial Q-component interleaver design criterion is provided to achieve the minimum error probability. For the limited feedback precoded proposed scheme with linear zero forcing (ZF) receiver, in order to minimize a bound on the average probability of a symbol vector error, a novel effective signal-to-noise ratio (SNR)-based precoding matrix selection criterion and a simplified criterion are proposed. Based on the average mutual information (AMI)-maximization criterion, the optimal constellation rotation angles are investigated. Simulation results indicate that the optimized spatial multiplexing MIMO system with spatial component interleaver can achieve significant performance advantages compared to the conventional spatial multiplexing MIMO system.
NASA Astrophysics Data System (ADS)
Le Nir, Vincent; Moonen, Marc; Verlinden, Jan; Guenach, Mamoun
2009-02-01
Recently, the duality between Multiple Input Multiple Output (MIMO) Multiple Access Channels (MAC) and MIMO Broadcast Channels (BC) has been established under a total power constraint. The same set of rates for MAC can be achieved in BC exploiting the MAC-BC duality formulas while preserving the total power constraint. In this paper, we describe the BC optimal power allo- cation applying this duality in a downstream x-Digital Subscriber Lines (xDSL) context under a total power constraint for all modems over all tones. Then, a new algorithm called BC-Optimal Spectrum Balancing (BC-OSB) is devised for a more realistic power allocation under per-modem total power constraints. The capacity region of the primal BC problem under per-modem total power constraints is found by the dual optimization problem for the BC under per-modem total power constraints which can be rewritten as a dual optimization problem in the MAC by means of a precoder matrix based on the Lagrange multipliers. We show that the duality gap between the two problems is zero. The multi-user power allocation problem has been solved for interference channels and MAC using the OSB algorithm. In this paper we solve the problem of multi-user power allocation for the BC case using the OSB algorithm as well and we derive a computational efficient algorithm that will be referred to as BC-OSB. Simulation results are provided for two VDSL2 scenarios: the first one with Differential-Mode (DM) transmission only and the second one with both DM and Phantom- Mode (PM) transmissions.
Self-Coexistence among IEEE 802.22 Networks: Distributed Allocation of Power and Channel
Sakin, Sayef Azad; Alamri, Atif; Tran, Nguyen H.
2017-01-01
Ensuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to opportunistic access of incumbent-free radio resources by users in co-located networks. In this study, we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink channels of IEEE 802.22 networks. We formulate the self-coexistence problem as a mixed-integer non-linear optimization problem for maximizing the network data rate, which is an NP-hard one. This work explores a sub-optimal solution by dividing the optimization problem into downlink channel allocation and power assignment sub-problems. Considering fairness, quality of service and minimum interference for customer-premises-equipment, we also develop a greedy algorithm for channel allocation and a non-cooperative game-theoretic framework for near-optimal power allocation. The base stations of networks are treated as players in a game, where they try to increase spectrum utilization by controlling power and reaching a Nash equilibrium point. We further develop a utility function for the game to increase the data rate by minimizing the transmission power and, subsequently, the interference from neighboring networks. A theoretical proof of the uniqueness and existence of the Nash equilibrium has been presented. Performance improvements in terms of data-rate with a degree of fairness compared to a cooperative branch-and-bound-based algorithm and a non-cooperative greedy approach have been shown through simulation studies. PMID:29215591
Self-Coexistence among IEEE 802.22 Networks: Distributed Allocation of Power and Channel.
Sakin, Sayef Azad; Razzaque, Md Abdur; Hassan, Mohammad Mehedi; Alamri, Atif; Tran, Nguyen H; Fortino, Giancarlo
2017-12-07
Ensuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to opportunistic access of incumbent-free radio resources by users in co-located networks. In this study, we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink channels of IEEE 802.22 networks. We formulate the self-coexistence problem as a mixed-integer non-linear optimization problem for maximizing the network data rate, which is an NP-hard one. This work explores a sub-optimal solution by dividing the optimization problem into downlink channel allocation and power assignment sub-problems. Considering fairness, quality of service and minimum interference for customer-premises-equipment, we also develop a greedy algorithm for channel allocation and a non-cooperative game-theoretic framework for near-optimal power allocation. The base stations of networks are treated as players in a game, where they try to increase spectrum utilization by controlling power and reaching a Nash equilibrium point. We further develop a utility function for the game to increase the data rate by minimizing the transmission power and, subsequently, the interference from neighboring networks. A theoretical proof of the uniqueness and existence of the Nash equilibrium has been presented. Performance improvements in terms of data-rate with a degree of fairness compared to a cooperative branch-and-bound-based algorithm and a non-cooperative greedy approach have been shown through simulation studies.
NASA Astrophysics Data System (ADS)
Lu, Mengqian; Lall, Upmanu; Robertson, Andrew W.; Cook, Edward
2017-03-01
Streamflow forecasts at multiple time scales provide a new opportunity for reservoir management to address competing objectives. Market instruments such as forward contracts with specified reliability are considered as a tool that may help address the perceived risk associated with the use of such forecasts in lieu of traditional operation and allocation strategies. A water allocation process that enables multiple contracts for water supply and hydropower production with different durations, while maintaining a prescribed level of flood risk reduction, is presented. The allocation process is supported by an optimization model that considers multitime scale ensemble forecasts of monthly streamflow and flood volume over the upcoming season and year, the desired reliability and pricing of proposed contracts for hydropower and water supply. It solves for the size of contracts at each reliability level that can be allocated for each future period, while meeting target end of period reservoir storage with a prescribed reliability. The contracts may be insurable, given that their reliability is verified through retrospective modeling. The process can allow reservoir operators to overcome their concerns as to the appropriate skill of probabilistic forecasts, while providing water users with short-term and long-term guarantees as to how much water or energy they may be allocated. An application of the optimization model to the Bhakra Dam, India, provides an illustration of the process. The issues of forecast skill and contract performance are examined. A field engagement of the idea is useful to develop a real-world perspective and needs a suitable institutional environment.
Jevtić, Aleksandar; Gutiérrez, Álvaro
2011-01-01
Swarms of robots can use their sensing abilities to explore unknown environments and deploy on sites of interest. In this task, a large number of robots is more effective than a single unit because of their ability to quickly cover the area. However, the coordination of large teams of robots is not an easy problem, especially when the resources for the deployment are limited. In this paper, the Distributed Bees Algorithm (DBA), previously proposed by the authors, is optimized and applied to distributed target allocation in swarms of robots. Improved target allocation in terms of deployment cost efficiency is achieved through optimization of the DBA’s control parameters by means of a Genetic Algorithm. Experimental results show that with the optimized set of parameters, the deployment cost measured as the average distance traveled by the robots is reduced. The cost-efficient deployment is in some cases achieved at the expense of increased robots’ distribution error. Nevertheless, the proposed approach allows the swarm to adapt to the operating conditions when available resources are scarce. PMID:22346677
NASA Astrophysics Data System (ADS)
Razurel, Pierre; Niayifar, Amin; Perona, Paolo
2017-04-01
Hydropower plays an important role in supplying worldwide energy demand where it contributes to approximately 16% of global electricity production. Although hydropower, as an emission-free renewable energy, is a reliable source of energy to mitigate climate change, its development will increase river exploitation. The environmental impacts associated with both small hydropower plants (SHP) and traditional dammed systems have been found to the consequence of changing natural flow regime with other release policies, e.g. the minimal flow. Nowadays, in some countries, proportional allocation rules are also applied aiming to mimic the natural flow variability. For example, these dynamic rules are part of the environmental guidance in the United Kingdom and constitute an improvement in comparison to static rules. In a context in which the full hydropower potential might be reached in a close future, a solution to optimize the water allocation seems essential. In this work, we present a model that enables to simulate a wide range of water allocation rules (static and dynamic) for a specific hydropower plant and to evaluate their associated economic and ecological benefits. It is developed in the form of a graphical user interface (GUI) where, depending on the specific type of hydropower plant (i.e., SHP or traditional dammed system), the user is able to specify the different characteristics (e.g., hydrological data and turbine characteristics) of the studied system. As an alternative to commonly used policies, a new class of dynamic allocation functions (non-proportional repartition rules) is introduced (e.g., Razurel et al., 2016). The efficiency plot resulting from the simulations shows the environmental indicator and the energy produced for each allocation policies. The optimal water distribution rules can be identified on the Pareto's frontier, which is obtained by stochastic optimization in the case of storage systems (e.g., Niayifar and Perona, submitted) and by direct simulation for small hydropower ones (Razurel et al., 2016). Compared to proportional and constant minimal flows, economic and ecological efficiencies are found to be substantially improved in the case of using non-proportional water allocation rules for both SHP and traditional systems.
Optimal Allocation of Restoration Practices Using Indexes for Stream Health
Methodologies that allocate the placement of agricultural and urban green infrastructure management practices with the intent to achieve both economic and environmental objectives typically use objectives related to individual intermediary environmental outputs, yet guidance is n...
Clean Quantum and Classical Communication Protocols.
Buhrman, Harry; Christandl, Matthias; Perry, Christopher; Zuiddam, Jeroen
2016-12-02
By how much must the communication complexity of a function increase if we demand that the parties not only correctly compute the function but also return all registers (other than the one containing the answer) to their initial states at the end of the communication protocol? Protocols that achieve this are referred to as clean and the associated cost as the clean communication complexity. Here we present clean protocols for calculating the inner product of two n-bit strings, showing that (in the absence of preshared entanglement) at most n+3 qubits or n+O(sqrt[n]) bits of communication are required. The quantum protocol provides inspiration for obtaining the optimal method to implement distributed cnot gates in parallel while minimizing the amount of quantum communication. For more general functions, we show that nearly all Boolean functions require close to 2n bits of classical communication to compute and close to n qubits if the parties have access to preshared entanglement. Both of these values are maximal for their respective paradigms.
Application of a Noise Adaptive Contrast Sensitivity Function to Image Data Compression
NASA Astrophysics Data System (ADS)
Daly, Scott J.
1989-08-01
The visual contrast sensitivity function (CSF) has found increasing use in image compression as new algorithms optimize the display-observer interface in order to reduce the bit rate and increase the perceived image quality. In most compression algorithms, increasing the quantization intervals reduces the bit rate at the expense of introducing more quantization error, a potential image quality degradation. The CSF can be used to distribute this error as a function of spatial frequency such that it is undetectable by the human observer. Thus, instead of being mathematically lossless, the compression algorithm can be designed to be visually lossless, with the advantage of a significantly reduced bit rate. However, the CSF is strongly affected by image noise, changing in both shape and peak sensitivity. This work describes a model of the CSF that includes these changes as a function of image noise level by using the concepts of internal visual noise, and tests this model in the context of image compression with an observer study.
NASA Technical Reports Server (NTRS)
Noble, Viveca K.
1993-01-01
There are various elements such as radio frequency interference (RFI) which may induce errors in data being transmitted via a satellite communication link. When a transmission is affected by interference or other error-causing elements, the transmitted data becomes indecipherable. It becomes necessary to implement techniques to recover from these disturbances. The objective of this research is to develop software which simulates error control circuits and evaluate the performance of these modules in various bit error rate environments. The results of the evaluation provide the engineer with information which helps determine the optimal error control scheme. The Consultative Committee for Space Data Systems (CCSDS) recommends the use of Reed-Solomon (RS) and convolutional encoders and Viterbi and RS decoders for error correction. The use of forward error correction techniques greatly reduces the received signal to noise needed for a certain desired bit error rate. The use of concatenated coding, e.g. inner convolutional code and outer RS code, provides even greater coding gain. The 16-bit cyclic redundancy check (CRC) code is recommended by CCSDS for error detection.
Computational modeling of the nonlinear stochastic dynamics of horizontal drillstrings
NASA Astrophysics Data System (ADS)
Cunha, Americo; Soize, Christian; Sampaio, Rubens
2015-11-01
This work intends to analyze the nonlinear stochastic dynamics of drillstrings in horizontal configuration. For this purpose, it considers a beam theory, with effects of rotatory inertia and shear deformation, which is capable of reproducing the large displacements that the beam undergoes. The friction and shock effects, due to beam/borehole wall transversal impacts, as well as the force and torque induced by bit-rock interaction, are also considered in the model. Uncertainties of bit-rock interaction model are taken into account using a parametric probabilistic approach. Numerical simulations have shown that the mechanical system of interest has a very rich nonlinear stochastic dynamics, which generate phenomena such as bit-bounce, stick-slip, and transverse impacts. A study aiming to maximize the drilling process efficiency, varying drillstring velocities of translation and rotation is presented. Also, the work presents the definition and solution of two optimizations problems, one deterministic and one robust, where the objective is to maximize drillstring rate of penetration into the soil respecting its structural limits.
Resource allocation for error resilient video coding over AWGN using optimization approach.
An, Cheolhong; Nguyen, Truong Q
2008-12-01
The number of slices for error resilient video coding is jointly optimized with 802.11a-like media access control and the physical layers with automatic repeat request and rate compatible punctured convolutional code over additive white gaussian noise channel as well as channel times allocation for time division multiple access. For error resilient video coding, the relation between the number of slices and coding efficiency is analyzed and formulated as a mathematical model. It is applied for the joint optimization problem, and the problem is solved by a convex optimization method such as the primal-dual decomposition method. We compare the performance of a video communication system which uses the optimal number of slices with one that codes a picture as one slice. From numerical examples, end-to-end distortion of utility functions can be significantly reduced with the optimal slices of a picture especially at low signal-to-noise ratio.
Location-allocation models and new solution methodologies in telecommunication networks
NASA Astrophysics Data System (ADS)
Dinu, S.; Ciucur, V.
2016-08-01
When designing a telecommunications network topology, three types of interdependent decisions are combined: location, allocation and routing, which are expressed by the following design considerations: how many interconnection devices - consolidation points/concentrators should be used and where should they be located; how to allocate terminal nodes to concentrators; how should the voice, video or data traffic be routed and what transmission links (capacitated or not) should be built into the network. Including these three components of the decision into a single model generates a problem whose complexity makes it difficult to solve. A first method to address the overall problem is the sequential one, whereby the first step deals with the location-allocation problem and based on this solution the subsequent sub-problem (routing the network traffic) shall be solved. The issue of location and allocation in a telecommunications network, called "The capacitated concentrator location- allocation - CCLA problem" is based on one of the general location models on a network in which clients/demand nodes are the terminals and facilities are the concentrators. Like in a location model, each client node has a demand traffic, which must be served, and the facilities can serve these demands within their capacity limit. In this study, the CCLA problem is modeled as a single-source capacitated location-allocation model whose optimization objective is to determine the minimum network cost consisting of fixed costs for establishing the locations of concentrators, costs for operating concentrators and costs for allocating terminals to concentrators. The problem is known as a difficult combinatorial optimization problem for which powerful algorithms are required. Our approach proposes a Fuzzy Genetic Algorithm combined with a local search procedure to calculate the optimal values of the location and allocation variables. To confirm the efficiency of the proposed algorithm with respect to the quality of solutions, significant size test problems were considered: up to 100 terminal nodes and 50 concentrators on a 100 × 100 square grid. The performance of this hybrid intelligent algorithm was evaluated by measuring the quality of its solutions with respect to the following statistics: the standard deviation and the ratio of the best solution obtained.
NASA Astrophysics Data System (ADS)
Agueh, Max; Diouris, Jean-François; Diop, Magaye; Devaux, François-Olivier; De Vleeschouwer, Christophe; Macq, Benoit
2008-12-01
Based on the analysis of real mobile ad hoc network (MANET) traces, we derive in this paper an optimal wireless JPEG 2000 compliant forward error correction (FEC) rate allocation scheme for a robust streaming of images and videos over MANET. The packet-based proposed scheme has a low complexity and is compliant to JPWL, the 11th part of the JPEG 2000 standard. The effectiveness of the proposed method is evaluated using a wireless Motion JPEG 2000 client/server application; and the ability of the optimal scheme to guarantee quality of service (QoS) to wireless clients is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavignet, A.A.; Bradbury, L.J.; Quetier, F.P.
In current practice, the optimization of drilling hydraulics consists of the selection of nozzle sizes that maximize either jet impact or hydraulic power at the nozzle. But what is required for a real optimization is the knowledge of the hydraulic forces available for cleaning at the rock face, not at the nozzle. This paper shows the results of hot-wire anemometry experiments that provide insight into the flow distribution in a jet bit. Direct measurements of the flow field, including turbulence levels, are reported and discussed.
Optimized planning methodologies of ASON implementation
NASA Astrophysics Data System (ADS)
Zhou, Michael M.; Tamil, Lakshman S.
2005-02-01
Advanced network planning concerns effective network-resource allocation for dynamic and open business environment. Planning methodologies of ASON implementation based on qualitative analysis and mathematical modeling are presented in this paper. The methodology includes method of rationalizing technology and architecture, building network and nodal models, and developing dynamic programming for multi-period deployment. The multi-layered nodal architecture proposed here can accommodate various nodal configurations for a multi-plane optical network and the network modeling presented here computes the required network elements for optimizing resource allocation.
Challenge of Near-Field Recording beyond 50.4 Gbit/in2
NASA Astrophysics Data System (ADS)
Kishima, Koichiro; Ichimura, Isao; Saito, Kimihiro; Yamamoto, Kenji; Kuroda, Yuji; Iida, Atsushi; Masuhara, Shin; Osato, Kiyoshi
2002-03-01
The possibility of an areal density over 50 Gbit/in2 was examined in near-field phase-change recording. The disk structure was optimized to maximize readout signals under the land-and-groove recording condition at a tracking pitch of 160 nm. We also evaluated the signal crosstalk from adjacent tracks. Eye diagrams of 50.4 Gbit/in2 areal density were demonstrated using 1.5 \\mathit{NA} optics and a GaN laser diode. The track pitch and linear bit density are 160 nm and 80 nm/bit, respectively. The transmission electron microscope (TEM) micrograph of recorded amorphous marks at an areal density of 50.4 Gbit/in2 is also presented.
NASA Astrophysics Data System (ADS)
Song, Y.; Yao, Q.; Wang, G.; Yang, X.; Mayes, M. A.
2017-12-01
Increasing evidences is indicating that soil organic matter (SOM) decomposition and stabilization process is a continuum process and controlled by both microbial functions and their interaction with minerals (known as the microbial efficiency-matrix stabilization theory (MEMS)). Our metagenomics analysis of soil samples from both P-deficit and P-fertilization sites in Panama has demonstrated that community-level enzyme functions could adapt to maximize the acquisition of limiting nutrients and minimize energy demand for foraging (known as the optimal foraging theory). This optimization scheme can mitigate the imbalance of C/P ratio between soil substrate and microbial community and relieve the P limitation on microbial carbon use efficiency over the time. Dynamic allocation of multiple enzyme groups and their interaction with microbial/substrate stoichiometry has rarely been considered in biogeochemical models due to the difficulties in identifying microbial functional groups and quantifying the change in enzyme expression in response to soil nutrient availability. This study aims to represent the omics-informed optimal foraging theory in the Continuum Microbial ENzyme Decomposition model (CoMEND), which was developed to represent the continuum SOM decomposition process following the MEMS theory. The SOM pools in the model are classified based on soil chemical composition (i.e. Carbohydrates, lignin, N-rich SOM and P-rich SOM) and the degree of SOM depolymerization. The enzyme functional groups for decomposition of each SOM pool and N/P mineralization are identified by the relative composition of gene copy numbers. The responses of microbial activities and SOM decomposition to nutrient availability are simulated by optimizing the allocation of enzyme functional groups following the optimal foraging theory. The modeled dynamic enzyme allocation in response to P availability is evaluated by the metagenomics data measured from P addition and P-deficit soil samples in Panama sites.The implementation of dynamic enzyme allocation in response to nutrient availability in the CoMEND model enables us to capture the varying microbial C/P ratio and soil carbon dynamics in response to shifting nutrient constraints over time in tropical soils.
Quantization and training of object detection networks with low-precision weights and activations
NASA Astrophysics Data System (ADS)
Yang, Bo; Liu, Jian; Zhou, Li; Wang, Yun; Chen, Jie
2018-01-01
As convolutional neural networks have demonstrated state-of-the-art performance in object recognition and detection, there is a growing need for deploying these systems on resource-constrained mobile platforms. However, the computational burden and energy consumption of inference for these networks are significantly higher than what most low-power devices can afford. To address these limitations, this paper proposes a method to train object detection networks with low-precision weights and activations. The probability density functions of weights and activations of each layer are first directly estimated using piecewise Gaussian models. Then, the optimal quantization intervals and step sizes for each convolution layer are adaptively determined according to the distribution of weights and activations. As the most computationally expensive convolutions can be replaced by effective fixed point operations, the proposed method can drastically reduce computation complexity and memory footprint. Performing on the tiny you only look once (YOLO) and YOLO architectures, the proposed method achieves comparable accuracy to their 32-bit counterparts. As an illustration, the proposed 4-bit and 8-bit quantized versions of the YOLO model achieve a mean average precision of 62.6% and 63.9%, respectively, on the Pascal visual object classes 2012 test dataset. The mAP of the 32-bit full-precision baseline model is 64.0%.
Bit error rate tester using fast parallel generation of linear recurring sequences
Pierson, Lyndon G.; Witzke, Edward L.; Maestas, Joseph H.
2003-05-06
A fast method for generating linear recurring sequences by parallel linear recurring sequence generators (LRSGs) with a feedback circuit optimized to balance minimum propagation delay against maximal sequence period. Parallel generation of linear recurring sequences requires decimating the sequence (creating small contiguous sections of the sequence in each LRSG). A companion matrix form is selected depending on whether the LFSR is right-shifting or left-shifting. The companion matrix is completed by selecting a primitive irreducible polynomial with 1's most closely grouped in a corner of the companion matrix. A decimation matrix is created by raising the companion matrix to the (n*k).sup.th power, where k is the number of parallel LRSGs and n is the number of bits to be generated at a time by each LRSG. Companion matrices with 1's closely grouped in a corner will yield sparse decimation matrices. A feedback circuit comprised of XOR logic gates implements the decimation matrix in hardware. Sparse decimation matrices can be implemented with minimum number of XOR gates, and therefore a minimum propagation delay through the feedback circuit. The LRSG of the invention is particularly well suited to use as a bit error rate tester on high speed communication lines because it permits the receiver to synchronize to the transmitted pattern within 2n bits.
Dodson, Zan M.; Agadjanian, Victor; Driessen, Julia
2016-01-01
Proper allocation of limited healthcare resources is a challenging task for policymakers in developing countries. Allocation of and access to these resources typically varies based on how need is defined, thus determining how individuals access and acquire healthcare. Using the introduction of antiretroviral therapy in southern Mozambique as an example, we examine alternative definitions of need for rural populations and how they might impact the allocation of this vital health service. Our results show that how need is defined matters when allocating limited healthcare resources and the use of need-based metrics can help ensure more optimal distribution of services. PMID:28596630
NASA Astrophysics Data System (ADS)
Liu, Dedi; Guo, Shenglian; Shao, Quanxi; Liu, Pan; Xiong, Lihua; Wang, Le; Hong, Xingjun; Xu, Yao; Wang, Zhaoli
2018-01-01
Human activities and climate change have altered the spatial and temporal distribution of water availability which is a principal prerequisite for allocation of different water resources. In order to quantify the impacts of climate change and human activities on water availability and optimal allocation of water resources, hydrological models and optimal water resource allocation models should be integrated. Given that increasing human water demand and varying water availability conditions necessitate adaptation measures, we propose a framework to assess the effects of these measures on optimal allocation of water resources. The proposed model and framework were applied to a case study of the middle and lower reaches of the Hanjiang River Basin in China. Two representative concentration pathway (RCP) scenarios (RCP2.6 and RCP4.5) were employed to project future climate, and the Variable Infiltration Capacity (VIC) hydrological model was used to simulate the variability of flows under historical (1956-2011) and future (2012-2099) conditions. The water availability determined by simulating flow with the VIC hydrological model was used to establish the optimal water resources allocation model. The allocation results were derived under an extremely dry year (with an annual average water flow frequency of 95%), a very dry year (with an annual average water flow frequency of 90%), a dry year (with an annual average water flow frequency of 75%), and a normal year (with an annual average water flow frequency of 50%) during historical and future periods. The results show that the total available water resources in the study area and the inflow of the Danjiangkou Reservoir will increase in the future. However, the uneven distribution of water availability will cause water shortage problems, especially in the boundary areas. The effects of adaptation measures, including water saving, and dynamic control of flood limiting water levels (FLWLs) for reservoir operation, were assessed and implemented to alleviate water shortages. The negative impacts from the South-to-North Water Transfer Project (Middle Route) in the mid-lower reaches of the Hanjiang River Basin can be avoided through the dynamic control of FLWLs in Danjiangkou Reservoir, under the historical and future RCP2.6 and RCP4.5 scenarios. However, the effects of adaptation measures are limited due to their own constraints, such as the characteristics of the reservoirs influencing the FLWLs. The utilization of storm water appears necessary to meet future water demand. Overall, the results indicate that the framework for assessing the effects of adaptation measures on water resources allocation might aid water resources management, not only in the study area but also in other places where water availability conditions vary due to climate change and human activities.
NASA Technical Reports Server (NTRS)
Bien, D. D.
1973-01-01
This analysis considers the optimum allocation of redundancy in a system of serially connected subsystems in which each subsystem is of the k-out-of-n type. Redundancy is optimally allocated when: (1) reliability is maximized for given costs; or (2) costs are minimized for given reliability. Several techniques are presented for achieving optimum allocation and their relative merits are discussed. Approximate solutions in closed form were attainable only for the special case of series-parallel systems and the efficacy of these approximations is discussed.
Optimization Case Study: ISR Allocation in the Global Force Management Process
2016-09-01
Communications Intelligence (COMINT), and other intelligence collection capabilities. The complexity of FMV force allocation makes FMV the ideal...Joint Staff (2014). 5 This chapter will step through the GFM allocation process and develop an understanding of the GFM process depicted in Figure 1...contentious. The contentious issue will go through a resolution process consisting of action officer and General Officer/Flag Officer (GOFO) level forums
NASA Astrophysics Data System (ADS)
Panda, Satyasen
2018-05-01
This paper proposes a modified artificial bee colony optimization (ABC) algorithm based on levy flight swarm intelligence referred as artificial bee colony levy flight stochastic walk (ABC-LFSW) optimization for optical code division multiple access (OCDMA) network. The ABC-LFSW algorithm is used to solve asset assignment problem based on signal to noise ratio (SNR) optimization in OCDM networks with quality of service constraints. The proposed optimization using ABC-LFSW algorithm provides methods for minimizing various noises and interferences, regulating the transmitted power and optimizing the network design for improving the power efficiency of the optical code path (OCP) from source node to destination node. In this regard, an optical system model is proposed for improving the network performance with optimized input parameters. The detailed discussion and simulation results based on transmitted power allocation and power efficiency of OCPs are included. The experimental results prove the superiority of the proposed network in terms of power efficiency and spectral efficiency in comparison to networks without any power allocation approach.
NASA Technical Reports Server (NTRS)
Baumert, L. D.; Mceliece, R. J.; Rodemich, E. R.; Rumsey, H., Jr.
1978-01-01
The design of an optimal merged keycode data base information retrieval system is detailed. A probability distribution of n-bit binary words that minimized false drops was developed for the case where the set of desired records was a subset of tagged records.
Reactive Power Pricing Model Considering the Randomness of Wind Power Output
NASA Astrophysics Data System (ADS)
Dai, Zhong; Wu, Zhou
2018-01-01
With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.
Optimising the location of antenatal classes.
Tomintz, Melanie N; Clarke, Graham P; Rigby, Janette E; Green, Josephine M
2013-01-01
To combine microsimulation and location-allocation techniques to determine antenatal class locations which minimise the distance travelled from home by potential users. Microsimulation modeling and location-allocation modeling. City of Leeds, UK. Potential users of antenatal classes. An individual-level microsimulation model was built to estimate the number of births for small areas by combining data from the UK Census 2001 and the Health Survey for England 2006. Using this model as a proxy for service demand, we then used a location-allocation model to optimize locations. Different scenarios show the advantage of combining these methods to optimize (re)locating antenatal classes and therefore reduce inequalities in accessing services for pregnant women. Use of these techniques should lead to better use of resources by allowing planners to identify optimal locations of antenatal classes which minimise women's travel. These results are especially important for health-care planners tasked with the difficult issue of targeting scarce resources in a cost-efficient, but also effective or accessible, manner. (169 words). Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1971-01-01
The optimal allocation of resources to the national space program over an extended time period requires the solution of a large combinatorial problem in which the program elements are interdependent. The computer model uses an accelerated search technique to solve this problem. The model contains a large number of options selectable by the user to provide flexible input and a broad range of output for use in sensitivity analyses of all entering elements. Examples of these options are budget smoothing under varied appropriation levels, entry of inflation and discount effects, and probabilistic output which provides quantified degrees of certainty that program costs will remain within planned budget. Criteria and related analytic procedures were established for identifying potential new space program directions. Used in combination with the optimal resource allocation model, new space applications can be analyzed in realistic perspective, including the advantage gain from existing space program plant and on-going programs such as the space transportation system.
Studies in integrated line-and packet-switched computer communication systems
NASA Astrophysics Data System (ADS)
Maglaris, B. S.
1980-06-01
The problem of efficiently allocating the bandwidth of a trunk to both types of traffic is handled for various system and traffic models. A performance analysis is carried out both for variable and fixed frame schemes. It is shown that variable frame schemes, adjusting the frame length according to the traffic variations, offer better trunk utilization at the cost of the additional hardware and software complexity needed because of the lack of synchronization. An optimization study on the fixed frame schemes follows. The problem of dynamically allocating the fixed frame to both types of traffic is formulated as a Markovian Decision process. It is shown that the movable boundary scheme, suggested for commercial implementations of integrated multiplexors, offers optimal or near optimal performance and simplicity of implementation. Finally, the behavior of the movable boundary integrated scheme is studied for tandem link connections. Under the assumptions made for the line-switched traffic, the forward allocation technique is found to offer the best alternative among different path set-up strategies.
A supplier selection and order allocation problem with stochastic demands
NASA Astrophysics Data System (ADS)
Zhou, Yun; Zhao, Lei; Zhao, Xiaobo; Jiang, Jianhua
2011-08-01
We consider a system comprising a retailer and a set of candidate suppliers that operates within a finite planning horizon of multiple periods. The retailer replenishes its inventory from the suppliers and satisfies stochastic customer demands. At the beginning of each period, the retailer makes decisions on the replenishment quantity, supplier selection and order allocation among the selected suppliers. An optimisation problem is formulated to minimise the total expected system cost, which includes an outer level stochastic dynamic program for the optimal replenishment quantity and an inner level integer program for supplier selection and order allocation with a given replenishment quantity. For the inner level subproblem, we develop a polynomial algorithm to obtain optimal decisions. For the outer level subproblem, we propose an efficient heuristic for the system with integer-valued inventory, based on the structural properties of the system with real-valued inventory. We investigate the efficiency of the proposed solution approach, as well as the impact of parameters on the optimal replenishment decision with numerical experiments.
A review of distributed parameter groundwater management modeling methods
Gorelick, Steven M.
1983-01-01
Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.
A Review of Distributed Parameter Groundwater Management Modeling Methods
NASA Astrophysics Data System (ADS)
Gorelick, Steven M.
1983-04-01
Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.
Hamdan, Sadeque; Cheaitou, Ali
2017-08-01
This data article provides detailed optimization input and output datasets and optimization code for the published research work titled "Dynamic green supplier selection and order allocation with quantity discounts and varying supplier availability" (Hamdan and Cheaitou, 2017, In press) [1]. Researchers may use these datasets as a baseline for future comparison and extensive analysis of the green supplier selection and order allocation problem with all-unit quantity discount and varying number of suppliers. More particularly, the datasets presented in this article allow researchers to generate the exact optimization outputs obtained by the authors of Hamdan and Cheaitou (2017, In press) [1] using the provided optimization code and then to use them for comparison with the outputs of other techniques or methodologies such as heuristic approaches. Moreover, this article includes the randomly generated optimization input data and the related outputs that are used as input data for the statistical analysis presented in Hamdan and Cheaitou (2017 In press) [1] in which two different approaches for ranking potential suppliers are compared. This article also provides the time analysis data used in (Hamdan and Cheaitou (2017, In press) [1] to study the effect of the problem size on the computation time as well as an additional time analysis dataset. The input data for the time study are generated randomly, in which the problem size is changed, and then are used by the optimization problem to obtain the corresponding optimal outputs as well as the corresponding computation time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kesheng
2007-08-02
An index in a database system is a data structure that utilizes redundant information about the base data to speed up common searching and retrieval operations. Most commonly used indexes are variants of B-trees, such as B+-tree and B*-tree. FastBit implements a set of alternative indexes call compressed bitmap indexes. Compared with B-tree variants, these indexes provide very efficient searching and retrieval operations by sacrificing the efficiency of updating the indexes after the modification of an individual record. In addition to the well-known strengths of bitmap indexes, FastBit has a special strength stemming from the bitmap compression scheme used. Themore » compression method is called the Word-Aligned Hybrid (WAH) code. It reduces the bitmap indexes to reasonable sizes and at the same time allows very efficient bitwise logical operations directly on the compressed bitmaps. Compared with the well-known compression methods such as LZ77 and Byte-aligned Bitmap code (BBC), WAH sacrifices some space efficiency for a significant improvement in operational efficiency. Since the bitwise logical operations are the most important operations needed to answer queries, using WAH compression has been shown to answer queries significantly faster than using other compression schemes. Theoretical analyses showed that WAH compressed bitmap indexes are optimal for one-dimensional range queries. Only the most efficient indexing schemes such as B+-tree and B*-tree have this optimality property. However, bitmap indexes are superior because they can efficiently answer multi-dimensional range queries by combining the answers to one-dimensional queries.« less
Schweigkofler, U; Reimertz, C; Auhuber, T C; Jung, H G; Gottschalk, R; Hoffmann, R
2011-10-01
The outcome of injured patients depends on intrastractural circumstances as well as on the time until clinical treatment begins. A rapid patient allocation can only be achieved occur if informations about the care capacity status of the medical centers are available. Considering this an improvement at the interface prehospital/clinical care seems possible. In 2010 in Frankfurt am Main the announcement of free capacity (positive proof) was converted to a web-based negative proof of interdisciplinary care capacities. So-called closings are indicated in a web portal, recorded centrally and registered at the local health authority and the management of participating hospitals. Analyses of the allocations to hospitals of all professional disciplines from the years 2009 and 2010 showed an optimized use of the resources. A decline of the allocations by the order from 261 to 0 could be reached by the introduction of the clear care capacity proof system. The health authorities as the regulating body rarely had to intervene (decline from 400 to 7 cases). Surgical care in Frankfurt was guaranteed at any time by one of the large medical centers. The web-based care capacity proof system introduced in 2010 does justice to the demand for optimum resource use on-line. Integration of this allocation system into the developing trauma networks can optimize the process for a quick and high quality care of severely injured patients. It opens new approaches to improve allocation of high numbers of casualties in disaster medicine.
NASA Astrophysics Data System (ADS)
Berchtold, Waldemar; Schäfer, Marcel; Rettig, Michael; Steinebach, Martin
2014-02-01
3D models and applications are of utmost interest in both science and industry. With the increment of their usage, their number and thereby the challenge to correctly identify them increases. Content identification is commonly done by cryptographic hashes. However, they fail as a solution in application scenarios such as computer aided design (CAD), scientific visualization or video games, because even the smallest alteration of the 3D model, e.g. conversion or compression operations, massively changes the cryptographic hash as well. Therefore, this work presents a robust hashing algorithm for 3D mesh data. The algorithm applies several different bit extraction methods. They are built to resist desired alterations of the model as well as malicious attacks intending to prevent correct allocation. The different bit extraction methods are tested against each other and, as far as possible, the hashing algorithm is compared to the state of the art. The parameters tested are robustness, security and runtime performance as well as False Acceptance Rate (FAR) and False Rejection Rate (FRR), also the probability calculation of hash collision is included. The introduced hashing algorithm is kept adaptive e.g. in hash length, to serve as a proper tool for all applications in practice.
NASA Astrophysics Data System (ADS)
Kaune, Alexander; López, Patricia; Werner, Micha; de Fraiture, Charlotte
2017-04-01
Hydrological information on water availability and demand is vital for sound water allocation decisions in irrigation districts, particularly in times of water scarcity. However, sub-optimal water allocation decisions are often taken with incomplete hydrological information, which may lead to agricultural production loss. In this study we evaluate the benefit of additional hydrological information from earth observations and reanalysis data in supporting decisions in irrigation districts. Current water allocation decisions were emulated through heuristic operational rules for water scarce and water abundant conditions in the selected irrigation districts. The Dynamic Water Balance Model based on the Budyko framework was forced with precipitation datasets from interpolated ground measurements, remote sensing and reanalysis data, to determine the water availability for irrigation. Irrigation demands were estimated based on estimates of potential evapotranspiration and coefficient for crops grown, adjusted with the interpolated precipitation data. Decisions made using both current and additional hydrological information were evaluated through the rate at which sub-optimal decisions were made. The decisions made using an amended set of decision rules that benefit from additional information on demand in the districts were also evaluated. Results show that sub-optimal decisions can be reduced in the planning phase through improved estimates of water availability. Where there are reliable observations of water availability through gauging stations, the benefit of the improved precipitation data is found in the improved estimates of demand, equally leading to a reduction of sub-optimal decisions.
Wang, Fei; Salous, Sana; Zhou, Jianjiang
2017-01-01
In this paper, we investigate a low probability of intercept (LPI)-based optimal power allocation strategy for a joint bistatic radar and communication system, which is composed of a dedicated transmitter, a radar receiver, and a communication receiver. The joint system is capable of fulfilling the requirements of both radar and communications simultaneously. First, assuming that the signal-to-noise ratio (SNR) corresponding to the target surveillance path is much weaker than that corresponding to the line of sight path at radar receiver, the analytically closed-form expression for the probability of false alarm is calculated, whereas the closed-form expression for the probability of detection is not analytically tractable and is approximated due to the fact that the received signals are not zero-mean Gaussian under target presence hypothesis. Then, an LPI-based optimal power allocation strategy is presented to minimize the total transmission power for information signal and radar waveform, which is constrained by a specified information rate for the communication receiver and the desired probabilities of detection and false alarm for the radar receiver. The well-known bisection search method is employed to solve the resulting constrained optimization problem. Finally, numerical simulations are provided to reveal the effects of several system parameters on the power allocation results. It is also demonstrated that the LPI performance of the joint bistatic radar and communication system can be markedly improved by utilizing the proposed scheme. PMID:29186850
Shi, Chenguang; Wang, Fei; Salous, Sana; Zhou, Jianjiang
2017-11-25
In this paper, we investigate a low probability of intercept (LPI)-based optimal power allocation strategy for a joint bistatic radar and communication system, which is composed of a dedicated transmitter, a radar receiver, and a communication receiver. The joint system is capable of fulfilling the requirements of both radar and communications simultaneously. First, assuming that the signal-to-noise ratio (SNR) corresponding to the target surveillance path is much weaker than that corresponding to the line of sight path at radar receiver, the analytically closed-form expression for the probability of false alarm is calculated, whereas the closed-form expression for the probability of detection is not analytically tractable and is approximated due to the fact that the received signals are not zero-mean Gaussian under target presence hypothesis. Then, an LPI-based optimal power allocation strategy is presented to minimize the total transmission power for information signal and radar waveform, which is constrained by a specified information rate for the communication receiver and the desired probabilities of detection and false alarm for the radar receiver. The well-known bisection search method is employed to solve the resulting constrained optimization problem. Finally, numerical simulations are provided to reveal the effects of several system parameters on the power allocation results. It is also demonstrated that the LPI performance of the joint bistatic radar and communication system can be markedly improved by utilizing the proposed scheme.
Abouleish, Amr E; Dexter, Franklin; Epstein, Richard H; Lubarsky, David A; Whitten, Charles W; Prough, Donald S
2003-04-01
Determination of operating room (OR) block allocation and case scheduling is often not based on maximizing OR efficiency, but rather on tradition and surgeon convenience. As a result, anesthesiology groups often incur additional labor costs. When negotiating financial support, heads of anesthesiology departments are often challenged to justify the subsidy necessary to offset these additional labor costs. In this study, we describe a method for calculating a statistically sound estimate of the excess labor costs incurred by an anesthesiology group because of inefficient OR allocation and case scheduling. OR information system and anesthesia staffing data for 1 yr were obtained from two university hospitals. Optimal OR allocation for each surgical service was determined by maximizing the efficiency of use of the OR staff. Hourly costs were converted to dollar amounts by using the nationwide median compensation for academic and private-practice anesthesia providers. Differences between actual costs and the optimal OR allocation were determined. For Hospital A, estimated annual excess labor costs were $1.6 million (95% confidence interval, $1.5-$1.7 million) and $2.0 million ($1.89-$2.05 million) when academic and private-practice compensation, respectively, was calculated. For Hospital B, excess labor costs were $1.0 million ($1.08-$1.17 million) and $1.4 million ($1.32-1.43 million) for academic and private-practice compensation, respectively. This study demonstrates a methodology for an anesthesiology group to estimate its excess labor costs. The group can then use these estimates when negotiating for subsidies with its hospital, medical school, or multispecialty medical group. We describe a new application for a previously reported statistical method to calculate operating room (OR) allocations to maximize OR efficiency. When optimal OR allocations and case scheduling are not implemented, the resulting increase in labor costs can be used in negotiations as a statistically sound estimate for the increased labor cost to the anesthesiology department.
Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Xu, Jun; Yang, Jianfeng; Zhou, Haiying; Shi, Hongling; Zhou, Peng
2015-01-01
Memory and energy optimization strategies are essential for the resource-constrained wireless sensor network (WSN) nodes. In this article, a new memory-optimized and energy-optimized multithreaded WSN operating system (OS) LiveOS is designed and implemented. Memory cost of LiveOS is optimized by using the stack-shifting hybrid scheduling approach. Different from the traditional multithreaded OS in which thread stacks are allocated statically by the pre-reservation, thread stacks in LiveOS are allocated dynamically by using the stack-shifting technique. As a result, memory waste problems caused by the static pre-reservation can be avoided. In addition to the stack-shifting dynamic allocation approach, the hybrid scheduling mechanism which can decrease both the thread scheduling overhead and the thread stack number is also implemented in LiveOS. With these mechanisms, the stack memory cost of LiveOS can be reduced more than 50% if compared to that of a traditional multithreaded OS. Not is memory cost optimized, but also the energy cost is optimized in LiveOS, and this is achieved by using the multi-core “context aware” and multi-core “power-off/wakeup” energy conservation approaches. By using these approaches, energy cost of LiveOS can be reduced more than 30% when compared to the single-core WSN system. Memory and energy optimization strategies in LiveOS not only prolong the lifetime of WSN nodes, but also make the multithreaded OS feasible to run on the memory-constrained WSN nodes. PMID:25545264
An improved robust buffer allocation method for the project scheduling problem
NASA Astrophysics Data System (ADS)
Ghoddousi, Parviz; Ansari, Ramin; Makui, Ahmad
2017-04-01
Unpredictable uncertainties cause delays and additional costs for projects. Often, when using traditional approaches, the optimizing procedure of the baseline project plan fails and leads to delays. In this study, a two-stage multi-objective buffer allocation approach is applied for robust project scheduling. In the first stage, some decisions are made on buffer sizes and allocation to the project activities. A set of Pareto-optimal robust schedules is designed using the meta-heuristic non-dominated sorting genetic algorithm (NSGA-II) based on the decisions made in the buffer allocation step. In the second stage, the Pareto solutions are evaluated in terms of the deviation from the initial start time and due dates. The proposed approach was implemented on a real dam construction project. The outcomes indicated that the obtained buffered schedule reduces the cost of disruptions by 17.7% compared with the baseline plan, with an increase of about 0.3% in the project completion time.
Short-term storage allocation in a filmless hospital
NASA Astrophysics Data System (ADS)
Strickland, Nicola H.; Deshaies, Marc J.; Reynolds, R. Anthony; Turner, Jonathan E.; Allison, David J.
1997-05-01
Optimizing limited short term storage (STS) resources requires gradual, systematic changes, monitored and modified within an operational PACS environment. Optimization of the centralized storage requires a balance of exam numbers and types in STS to minimize lengthy retrievals from long term archive. Changes to STS parameters and work procedures were made while monitoring the effects on resource allocation by analyzing disk space temporally. Proportions of disk space allocated to each patient category on STS were measured to approach the desired proportions in a controlled manner. Key factors for STS management were: (1) sophisticated exam prefetching algorithms: HIS/RIS-triggered, body part-related and historically-selected, and (2) a 'storage onion' design allocating various exam categories to layers with differential deletion protection. Hospitals planning for STS space should consider the needs of radiology, wards, outpatient clinics and clinicoradiological conferences for new and historical exams; desired on-line time; and potential increase in image throughput and changing resources, such as an increase in short term storage disk space.
Mitigating energy loss on distribution lines through the allocation of reactors
NASA Astrophysics Data System (ADS)
Miranda, T. M.; Romero, F.; Meffe, A.; Castilho Neto, J.; Abe, L. F. T.; Corradi, F. E.
2018-03-01
This paper presents a methodology for automatic reactors allocation on medium voltage distribution lines to reduce energy loss. In Brazil, some feeders are distinguished by their long lengths and very low load, which results in a high influence of the capacitance of the line on the circuit’s performance, requiring compensation through the installation of reactors. The automatic allocation is accomplished using an optimization meta-heuristic called Global Neighbourhood Algorithm. Given a set of reactor models and a circuit, it outputs an optimal solution in terms of reduction of energy loss. The algorithm is also able to verify if the voltage limits determined by the user are not being violated, besides checking for energy quality. The methodology was implemented in a software tool, which can also show the allocation graphically. A simulation with four real feeders is presented in the paper. The obtained results were able to reduce the energy loss significantly, from 50.56%, in the worst case, to 93.10%, in the best case.
Application of evolutionary computation in ECAD problems
NASA Astrophysics Data System (ADS)
Lee, Dae-Hyun; Hwang, Seung H.
1998-10-01
Design of modern electronic system is a complicated task which demands the use of computer- aided design (CAD) tools. Since a lot of problems in ECAD are combinatorial optimization problems, evolutionary computations such as genetic algorithms and evolutionary programming have been widely employed to solve those problems. We have applied evolutionary computation techniques to solve ECAD problems such as technology mapping, microcode-bit optimization, data path ordering and peak power estimation, where their benefits are well observed. This paper presents experiences and discusses issues in those applications.
On the optimal use of a slow server in two-stage queueing systems
NASA Astrophysics Data System (ADS)
Papachristos, Ioannis; Pandelis, Dimitrios G.
2017-07-01
We consider two-stage tandem queueing systems with a dedicated server in each queue and a slower flexible server that can attend both queues. We assume Poisson arrivals and exponential service times, and linear holding costs for jobs present in the system. We study the optimal dynamic assignment of servers to jobs assuming that two servers cannot collaborate to work on the same job and preemptions are not allowed. We formulate the problem as a Markov decision process and derive properties of the optimal allocation for the dedicated (fast) servers. Specifically, we show that the one downstream should not idle, and the same is true for the one upstream when holding costs are larger there. The optimal allocation of the slow server is investigated through extensive numerical experiments that lead to conjectures on the structure of the optimal policy.
A hybrid Jaya algorithm for reliability-redundancy allocation problems
NASA Astrophysics Data System (ADS)
Ghavidel, Sahand; Azizivahed, Ali; Li, Li
2018-04-01
This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching-learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability-redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series-parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30-100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results.
Plant allocation of carbon to defense as a function of herbivory, light and nutrient availability
DeAngelis, Donald L.; Ju, Shu; Liu, Rongsong; Bryant, John P.; Gourley, Stephen A.
2012-01-01
We use modeling to determine the optimal relative plant carbon allocations between foliage, fine roots, anti-herbivore defense, and reproduction to maximize reproductive output. The model treats these plant components and the herbivore compartment as variables. Herbivory is assumed to be purely folivory. Key external factors include nutrient availability, degree of shading, and intensity of herbivory. Three alternative functional responses are used for herbivory, two of which are variations on donor-dependent herbivore (models 1a and 1b) and one of which is a Lotka–Volterra type of interaction (model 2). All three were modified to include the negative effect of chemical defenses on the herbivore. Analysis showed that, for all three models, two stable equilibria could occur, which differs from most common functional responses when no plant defense component is included. Optimal strategies of carbon allocation were defined as the maximum biomass of reproductive propagules produced per unit time, and found to vary with changes in external factors. Increased intensity of herbivory always led to an increase in the fractional allocation of carbon to defense. Decreases in available limiting nutrient generally led to increasing importance of defense. Decreases in available light had little effect on defense but led to increased allocation to foliage. Decreases in limiting nutrient and available light led to decreases in allocation to reproduction in models 1a and 1b but not model 2. Increases in allocation to plant defense were usually accompanied by shifts in carbon allocation away from fine roots, possibly because higher plant defense reduced the loss of nutrients to herbivory.
NASA Astrophysics Data System (ADS)
Pournazeri, S.
2011-12-01
A comprehensive optimization model named Cooperative Water Allocation Model (CWAM) is developed for equitable and efficient water allocation and valuation of Zab river basin in order to solve the draught problems of Orumieh Lake in North West of Iran. The model's methodology consists of three phases. The first represents an initial water rights allocation among competing users. The second comprises the water reallocation process for complete usage by consumers. The third phase performs an allocation of the net benefit of the stakeholders participating in a coalition by applying cooperative game theory. The environmental constraints are accounted for in the water allocation model by entering probable environmental damage in a target function, and inputting the minimum water requirement of users. The potential of underground water usage is evaluated in order to compensate for the variation in the amount of surface water. This is conducted by applying an integrated economic- hydrologic river basin model. A node-link river basin network is utilized in CWAM which consists of two major blocks. The first indicates the internal water rights allocation and the second is associated to water and net benefit reallocation. System control, loss in links by evaporation or seepage, modification of inflow into the node, loss in nodes and loss in outflow are considered in this model. Water valuation is calculated for environmental, industrial, municipal and agricultural usage by net benefit function. It can be seen that the water rights are allocated efficiently and incomes are distributed appropriately based on quality and quantity limitations.
Sensitivity analysis of key components in large-scale hydroeconomic models
NASA Astrophysics Data System (ADS)
Medellin-Azuara, J.; Connell, C. R.; Lund, J. R.; Howitt, R. E.
2008-12-01
This paper explores the likely impact of different estimation methods in key components of hydro-economic models such as hydrology and economic costs or benefits, using the CALVIN hydro-economic optimization for water supply in California. In perform our analysis using two climate scenarios: historical and warm-dry. The components compared were perturbed hydrology using six versus eighteen basins, highly-elastic urban water demands, and different valuation of agricultural water scarcity. Results indicate that large scale hydroeconomic hydro-economic models are often rather robust to a variety of estimation methods of ancillary models and components. Increasing the level of detail in the hydrologic representation of this system might not greatly affect overall estimates of climate and its effects and adaptations for California's water supply. More price responsive urban water demands will have a limited role in allocating water optimally among competing uses. Different estimation methods for the economic value of water and scarcity in agriculture may influence economically optimal water allocation; however land conversion patterns may have a stronger influence in this allocation. Overall optimization results of large-scale hydro-economic models remain useful for a wide range of assumptions in eliciting promising water management alternatives.
Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module
NASA Astrophysics Data System (ADS)
Martinez, Gregory D.; McKay, James; Farmer, Ben; Scott, Pat; Roebber, Elinore; Putze, Antje; Conrad, Jan
2017-11-01
We introduce ScannerBit, the statistics and sampling module of the public, open-source global fitting framework GAMBIT. ScannerBit provides a standardised interface to different sampling algorithms, enabling the use and comparison of multiple computational methods for inferring profile likelihoods, Bayesian posteriors, and other statistical quantities. The current version offers random, grid, raster, nested sampling, differential evolution, Markov Chain Monte Carlo (MCMC) and ensemble Monte Carlo samplers. We also announce the release of a new standalone differential evolution sampler, Diver, and describe its design, usage and interface to ScannerBit. We subject Diver and three other samplers (the nested sampler MultiNest, the MCMC GreAT, and the native ScannerBit implementation of the ensemble Monte Carlo algorithm T-Walk) to a battery of statistical tests. For this we use a realistic physical likelihood function, based on the scalar singlet model of dark matter. We examine the performance of each sampler as a function of its adjustable settings, and the dimensionality of the sampling problem. We evaluate performance on four metrics: optimality of the best fit found, completeness in exploring the best-fit region, number of likelihood evaluations, and total runtime. For Bayesian posterior estimation at high resolution, T-Walk provides the most accurate and timely mapping of the full parameter space. For profile likelihood analysis in less than about ten dimensions, we find that Diver and MultiNest score similarly in terms of best fit and speed, outperforming GreAT and T-Walk; in ten or more dimensions, Diver substantially outperforms the other three samplers on all metrics.
Algorithms for synthesizing management solutions based on OLAP-technologies
NASA Astrophysics Data System (ADS)
Pishchukhin, A. M.; Akhmedyanova, G. F.
2018-05-01
OLAP technologies are a convenient means of analyzing large amounts of information. An attempt was made in their work to improve the synthesis of optimal management decisions. The developed algorithms allow forecasting the needs and accepted management decisions on the main types of the enterprise resources. Their advantage is the efficiency, based on the simplicity of quadratic functions and differential equations of only the first order. At the same time, the optimal redistribution of resources between different types of products from the assortment of the enterprise is carried out, and the optimal allocation of allocated resources in time. The proposed solutions can be placed on additional specially entered coordinates of the hypercube representing the data warehouse.
NASA Astrophysics Data System (ADS)
Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah@Rozita
2016-11-01
Two new methods adopted from methods commonly used in the field of transportation and logistics are proposed to solve a specific issue of investment allocation problem. Vehicle routing problem and capacitated vehicle routing methods are applied to optimize the fund allocation of a portfolio of investment assets. This is done by determining the sequence of the assets. As a result, total investment risk is minimized by this sequence.
Kulkarni, Shruti R; Rajendran, Bipin
2018-07-01
We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classification accuracy of 98.17% on the MNIST test database with four times fewer parameters compared to the state-of-the-art. We present several insights from extensive numerical experiments regarding optimization of learning parameters and network configuration to improve its accuracy. We also describe a number of strategies to optimize the SNN for implementation in memory and energy constrained hardware, including approximations in computing the neuronal dynamics and reduced precision in storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline. Further, the proposed SNN, which is trained based on the precise spike timing information outperforms an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that use spike based information encoding and learning for real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
50 CFR 600.325 - National Standard 4-Allocations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... promote conservation (in the sense of wise use) by optimizing the yield in terms of size, value, market... Section 600.325 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND....325 National Standard 4—Allocations. (a) Standard 4. Conservation and management measures shall not...
Asset Allocation to Cover a Region of Piracy
2011-09-01
1087-1092. 8. Kirkpatrick, S., Optimization by Simulated Annealing. Science, 1983. 220(4598): p. 671-680. 9. Daskin , M. S., A bibliography for some...... a uniform piracy risk and where some areas are more vulnerable than others. Simulated annealing was used to allocate the patrolling naval assets
Priority setting in health care: disentangling risk aversion from inequality aversion.
Echazu, Luciana; Nocetti, Diego
2013-06-01
In this paper, we introduce a tractable social welfare function that is rich enough to disentangle attitudes towards risk in health outcomes from attitudes towards health inequalities across individuals. Given this preference specification, we evaluate how the introduction of uncertainty over the severity of illness and over the effectiveness of treatments affects the optimal allocation of healthcare resources. We show that the way in which uncertainty affects the optimal allocation within our proposed specification may differ sharply from that in the standard expected utility framework. Copyright © 2012 John Wiley & Sons, Ltd.
A model for dynamic allocation of human attention among multiple tasks
NASA Technical Reports Server (NTRS)
Sheridan, T. B.; Tulga, M. K.
1978-01-01
The problem of multi-task attention allocation with special reference to aircraft piloting is discussed with the experimental paradigm used to characterize this situation and the experimental results obtained in the first phase of the research. A qualitative description of an approach to mathematical modeling, and some results obtained with it are also presented to indicate what aspects of the model are most promising. Two appendices are given which (1) discuss the model in relation to graph theory and optimization and (2) specify the optimization algorithm of the model.
Optimization of Wireless Transceivers under Processing Energy Constraints
NASA Astrophysics Data System (ADS)
Wang, Gaojian; Ascheid, Gerd; Wang, Yanlu; Hanay, Oner; Negra, Renato; Herrmann, Matthias; Wehn, Norbert
2017-09-01
Focus of the article is on achieving maximum data rates under a processing energy constraint. For a given amount of processing energy per information bit, the overall power consumption increases with the data rate. When targeting data rates beyond 100 Gb/s, the system's overall power consumption soon exceeds the power which can be dissipated without forced cooling. To achieve a maximum data rate under this power constraint, the processing energy per information bit must be minimized. Therefore, in this article, suitable processing efficient transmission schemes together with energy efficient architectures and their implementations are investigated in a true cross-layer approach. Target use cases are short range wireless transmitters working at carrier frequencies around 60 GHz and bandwidths between 1 GHz and 10 GHz.
Optimized scalable network switch
Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Takken, Todd E [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY
2007-12-04
In a massively parallel computing system having a plurality of nodes configured in m multi-dimensions, each node including a computing device, a method for routing packets towards their destination nodes is provided which includes generating at least one of a 2m plurality of compact bit vectors containing information derived from downstream nodes. A multilevel arbitration process in which downstream information stored in the compact vectors, such as link status information and fullness of downstream buffers, is used to determine a preferred direction and virtual channel for packet transmission. Preferred direction ranges are encoded and virtual channels are selected by examining the plurality of compact bit vectors. This dynamic routing method eliminates the necessity of routing tables, thus enhancing scalability of the switch.
Optimized scalable network switch
Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.
2010-02-23
In a massively parallel computing system having a plurality of nodes configured in m multi-dimensions, each node including a computing device, a method for routing packets towards their destination nodes is provided which includes generating at least one of a 2m plurality of compact bit vectors containing information derived from downstream nodes. A multilevel arbitration process in which downstream information stored in the compact vectors, such as link status information and fullness of downstream buffers, is used to determine a preferred direction and virtual channel for packet transmission. Preferred direction ranges are encoded and virtual channels are selected by examining the plurality of compact bit vectors. This dynamic routing method eliminates the necessity of routing tables, thus enhancing scalability of the switch.
Yeh, C H; Chow, C W; Chen, H Y; Chen, J; Liu, Y L
2014-04-21
We propose and experimentally demonstrate a white-light phosphor-LED visible light communication (VLC) system with an adaptive 84.44 to 190 Mbit/s 16 quadrature-amplitude-modulation (QAM) orthogonal-frequency-division-multiplexing (OFDM) signal utilizing bit-loading method. Here, the optimal analogy pre-equalization design is performed at LED transmitter (Tx) side and no blue filter is used at the Rx side. Hence, the ~1 MHz modulation bandwidth of phosphor-LED could be extended to 30 MHz. In addition, the measured bit error rates (BERs) of < 3.8 × 10(-3) [forward error correction (FEC) threshold] at different measured data rates can be achieved at practical transmission distances of 0.75 to 2 m.
2 GHz clock quantum key distribution over 260 km of standard telecom fiber.
Wang, Shuang; Chen, Wei; Guo, Jun-Fu; Yin, Zhen-Qiang; Li, Hong-Wei; Zhou, Zheng; Guo, Guang-Can; Han, Zheng-Fu
2012-03-15
We report a demonstration of quantum key distribution (QKD) over a standard telecom fiber exceeding 50 dB in loss and 250 km in length. The differential phase shift QKD protocol was chosen and implemented with a 2 GHz system clock rate. By careful optimization of the 1 bit delayed Faraday-Michelson interferometer and the use of the superconducting single photon detector (SSPD), we achieved a quantum bit error rate below 2% when the fiber length was no more than 205 km, and of 3.45% for a 260 km fiber with 52.9 dB loss. We also improved the quantum efficiency of SSPD to obtain a high key rate for 50 km length.
Image coding using entropy-constrained residual vector quantization
NASA Technical Reports Server (NTRS)
Kossentini, Faouzi; Smith, Mark J. T.; Barnes, Christopher F.
1993-01-01
The residual vector quantization (RVQ) structure is exploited to produce a variable length codeword RVQ. Necessary conditions for the optimality of this RVQ are presented, and a new entropy-constrained RVQ (ECRVQ) design algorithm is shown to be very effective in designing RVQ codebooks over a wide range of bit rates and vector sizes. The new EC-RVQ has several important advantages. It can outperform entropy-constrained VQ (ECVQ) in terms of peak signal-to-noise ratio (PSNR), memory, and computation requirements. It can also be used to design high rate codebooks and codebooks with relatively large vector sizes. Experimental results indicate that when the new EC-RVQ is applied to image coding, very high quality is achieved at relatively low bit rates.
2013-08-31
13.3 µs) used in the data frame. The preamble uses direct-sequence spread spectrum (DSSS) to reduce the negative impact of fading. Three bits... ifr t covers one of the allocated hops of index h i . The received reference symbol transmitted in hop 1,2,..., Hh i N is ( )h...are recovered based on the phase difference between the constellation points demodulated from the sub-band m of the information symbol ( ) ifr t
Su, Jiann
2016-05-23
Drilling results from the microhole project at the Sandia High Operating Temperature test facility. The project is seeking to help reduce the cost of exploration and monitoring of geothermal wells and formations by drilling smaller holes. The tests were part of a control algorithm development to optimize the weight-on-bit (WOB) used during drilling with a percussive hammer.
Compact disk error measurements
NASA Technical Reports Server (NTRS)
Howe, D.; Harriman, K.; Tehranchi, B.
1993-01-01
The objectives of this project are as follows: provide hardware and software that will perform simple, real-time, high resolution (single-byte) measurement of the error burst and good data gap statistics seen by a photoCD player read channel when recorded CD write-once discs of variable quality (i.e., condition) are being read; extend the above system to enable measurement of the hard decision (i.e., 1-bit error flags) and soft decision (i.e., 2-bit error flags) decoding information that is produced/used by the Cross Interleaved - Reed - Solomon - Code (CIRC) block decoder employed in the photoCD player read channel; construct a model that uses data obtained via the systems described above to produce meaningful estimates of output error rates (due to both uncorrected ECC words and misdecoded ECC words) when a CD disc having specific (measured) error statistics is read (completion date to be determined); and check the hypothesis that current adaptive CIRC block decoders are optimized for pressed (DAD/ROM) CD discs. If warranted, do a conceptual design of an adaptive CIRC decoder that is optimized for write-once CD discs.
a High-Level Technique for Estimation and Optimization of Leakage Power for Full Adder
NASA Astrophysics Data System (ADS)
Shrivas, Jayram; Akashe, Shyam; Tiwari, Nitesh
2013-06-01
Optimization of power is a very important issue in low-voltage and low-power application. In this paper, we have proposed power gating technique to reduce leakage current and leakage power of one-bit full adder. In this power gating technique, we use two sleep transistors i.e., PMOS and NMOS. PMOS sleep transistor is inserted between power supply and pull up network. And NMOS sleep transistor is inserted between pull down network and ground terminal. These sleep transistors (PMOS and NMOS) are turned on when the circuit is working in active mode. And sleep transistors (PMOS and NMOS) are turned off when circuit is working in standby mode. We have simulated one-bit full adder and compared with the power gating technique using cadence virtuoso tool in 45 nm technology at 0.7 V at 27°C. By applying this technique, we have reduced leakage current from 2.935 pA to 1.905 pA and leakage power from 25.04μw to 9.233μw. By using this technique, we have reduced leakage power up to 63.12%.
Spatially adaptive bases in wavelet-based coding of semi-regular meshes
NASA Astrophysics Data System (ADS)
Denis, Leon; Florea, Ruxandra; Munteanu, Adrian; Schelkens, Peter
2010-05-01
In this paper we present a wavelet-based coding approach for semi-regular meshes, which spatially adapts the employed wavelet basis in the wavelet transformation of the mesh. The spatially-adaptive nature of the transform requires additional information to be stored in the bit-stream in order to allow the reconstruction of the transformed mesh at the decoder side. In order to limit this overhead, the mesh is first segmented into regions of approximately equal size. For each spatial region, a predictor is selected in a rate-distortion optimal manner by using a Lagrangian rate-distortion optimization technique. When compared against the classical wavelet transform employing the butterfly subdivision filter, experiments reveal that the proposed spatially-adaptive wavelet transform significantly decreases the energy of the wavelet coefficients for all subbands. Preliminary results show also that employing the proposed transform for the lowest-resolution subband systematically yields improved compression performance at low-to-medium bit-rates. For the Venus and Rabbit test models the compression improvements add up to 1.47 dB and 0.95 dB, respectively.
A 16-bit Coherent Ising Machine for One-Dimensional Ring and Cubic Graph Problems
NASA Astrophysics Data System (ADS)
Takata, Kenta; Marandi, Alireza; Hamerly, Ryan; Haribara, Yoshitaka; Maruo, Daiki; Tamate, Shuhei; Sakaguchi, Hiromasa; Utsunomiya, Shoko; Yamamoto, Yoshihisa
2016-09-01
Many tasks in our modern life, such as planning an efficient travel, image processing and optimizing integrated circuit design, are modeled as complex combinatorial optimization problems with binary variables. Such problems can be mapped to finding a ground state of the Ising Hamiltonian, thus various physical systems have been studied to emulate and solve this Ising problem. Recently, networks of mutually injected optical oscillators, called coherent Ising machines, have been developed as promising solvers for the problem, benefiting from programmability, scalability and room temperature operation. Here, we report a 16-bit coherent Ising machine based on a network of time-division-multiplexed femtosecond degenerate optical parametric oscillators. The system experimentally gives more than 99.6% of success rates for one-dimensional Ising ring and nondeterministic polynomial-time (NP) hard instances. The experimental and numerical results indicate that gradual pumping of the network combined with multiple spectral and temporal modes of the femtosecond pulses can improve the computational performance of the Ising machine, offering a new path for tackling larger and more complex instances.
NASA Astrophysics Data System (ADS)
Tran, T.
With the onset of the SmallSat era, the RSO catalog is expected to see continuing growth in the near future. This presents a significant challenge to the current sensor tasking of the SSN. The Air Force is in need of a sensor tasking system that is robust, efficient, scalable, and able to respond in real-time to interruptive events that can change the tracking requirements of the RSOs. Furthermore, the system must be capable of using processed data from heterogeneous sensors to improve tasking efficiency. The SSN sensor tasking can be regarded as an economic problem of supply and demand: the amount of tracking data needed by each RSO represents the demand side while the SSN sensor tasking represents the supply side. As the number of RSOs to be tracked grows, demand exceeds supply. The decision-maker is faced with the problem of how to allocate resources in the most efficient manner. Braxton recently developed a framework called Multi-Objective Resource Optimization using Genetic Algorithm (MOROUGA) as one of its modern COTS software products. This optimization framework took advantage of the maturing technology of evolutionary computation in the last 15 years. This framework was applied successfully to address the resource allocation of an AFSCN-like problem. In any resource allocation problem, there are five key elements: (1) the resource pool, (2) the tasks using the resources, (3) a set of constraints on the tasks and the resources, (4) the objective functions to be optimized, and (5) the demand levied on the resources. In this paper we explain in detail how the design features of this optimization framework are directly applicable to address the SSN sensor tasking domain. We also discuss our validation effort as well as present the result of the AFSCN resource allocation domain using a prototype based on this optimization framework.
Liang, Jie; Zhong, Minzhou; Zeng, Guangming; Chen, Gaojie; Hua, Shanshan; Li, Xiaodong; Yuan, Yujie; Wu, Haipeng; Gao, Xiang
2017-02-01
Land-use change has direct impact on ecosystem services and alters ecosystem services values (ESVs). Ecosystem services analysis is beneficial for land management and decisions. However, the application of ESVs for decision-making in land use decisions is scarce. In this paper, a method, integrating ESVs to balance future ecosystem-service benefit and risk, is developed to optimize investment in land for ecological conservation in land use planning. Using ecological conservation in land use planning in Changsha as an example, ESVs is regarded as the expected ecosystem-service benefit. And uncertainty of land use change is regarded as risk. This method can optimize allocation of investment in land to improve ecological benefit. The result shows that investment should be partial to Liuyang City to get higher benefit. The investment should also be shifted from Liuyang City to other regions to reduce risk. In practice, lower limit and upper limit for weight distribution, which affects optimal outcome and selection of investment allocation, should be set in investment. This method can reveal the optimal spatial allocation of investment to maximize the expected ecosystem-service benefit at a given level of risk or minimize risk at a given level of expected ecosystem-service benefit. Our results of optimal analyses highlight tradeoffs between future ecosystem-service benefit and uncertainty of land use change in land use decisions. Copyright © 2016 Elsevier B.V. All rights reserved.
Mathematical programming for the efficient allocation of health care resources.
Stinnett, A A; Paltiel, A D
1996-10-01
Previous discussions of methods for the efficient allocation of health care resources subject to a budget constraint have relied on unnecessarily restrictive assumptions. This paper makes use of established optimization techniques to demonstrate that a general mathematical programming framework can accommodate much more complex information regarding returns to scale, partial and complete indivisibility and program interdependence. Methods are also presented for incorporating ethical constraints into the resource allocation process, including explicit identification of the cost of equity.
Utilizing a language model to improve online dynamic data collection in P300 spellers.
Mainsah, Boyla O; Colwell, Kenneth A; Collins, Leslie M; Throckmorton, Chandra S
2014-07-01
P300 spellers provide a means of communication for individuals with severe physical limitations, especially those with locked-in syndrome, such as amyotrophic lateral sclerosis. However, P300 speller use is still limited by relatively low communication rates due to the multiple data measurements that are required to improve the signal-to-noise ratio of event-related potentials for increased accuracy. Therefore, the amount of data collection has competing effects on accuracy and spelling speed. Adaptively varying the amount of data collection prior to character selection has been shown to improve spelling accuracy and speed. The goal of this study was to optimize a previously developed dynamic stopping algorithm that uses a Bayesian approach to control data collection by incorporating a priori knowledge via a language model. Participants ( n = 17) completed online spelling tasks using the dynamic stopping algorithm, with and without a language model. The addition of the language model resulted in improved participant performance from a mean theoretical bit rate of 46.12 bits/min at 88.89% accuracy to 54.42 bits/min ( ) at 90.36% accuracy.
Koppa, Santosh; Mohandesi, Manouchehr; John, Eugene
2016-12-01
Power consumption is one of the key design constraints in biomedical devices such as pacemakers that are powered by small non rechargeable batteries over their entire life time. In these systems, Analog to Digital Convertors (ADCs) are used as interface between analog world and digital domain and play a key role. In this paper we present the design of an 8-bit Charge Redistribution Successive Approximation Register (CR-SAR) analog to digital converter in standard TSMC 0.18μm CMOS technology for low power and low data rate devices such as pacemakers. The 8-bit optimized CR-SAR ADC achieves low power of less than 250nW with conversion rate of 1KB/s. This ADC achieves integral nonlinearity (INL) and differential nonlinearity (DNL) less than 0.22 least significant bit (LSB) and less than 0.04 LSB respectively as compared to the standard requirement for the INL and DNL errors to be less than 0.5 LSB. The designed ADC operates at 1V supply voltage converting input ranging from 0V to 250mV.
Learning may need only a few bits of synaptic precision
NASA Astrophysics Data System (ADS)
Baldassi, Carlo; Gerace, Federica; Lucibello, Carlo; Saglietti, Luca; Zecchina, Riccardo
2016-05-01
Learning in neural networks poses peculiar challenges when using discretized rather then continuous synaptic states. The choice of discrete synapses is motivated by biological reasoning and experiments, and possibly by hardware implementation considerations as well. In this paper we extend a previous large deviations analysis which unveiled the existence of peculiar dense regions in the space of synaptic states which accounts for the possibility of learning efficiently in networks with binary synapses. We extend the analysis to synapses with multiple states and generally more plausible biological features. The results clearly indicate that the overall qualitative picture is unchanged with respect to the binary case, and very robust to variation of the details of the model. We also provide quantitative results which suggest that the advantages of increasing the synaptic precision (i.e., the number of internal synaptic states) rapidly vanish after the first few bits, and therefore that, for practical applications, only few bits may be needed for near-optimal performance, consistent with recent biological findings. Finally, we demonstrate how the theoretical analysis can be exploited to design efficient algorithmic search strategies.
Electrophoresis gel image processing and analysis using the KODAK 1D software.
Pizzonia, J
2001-06-01
The present article reports on the performance of the KODAK 1D Image Analysis Software for the acquisition of information from electrophoresis experiments and highlights the utility of several mathematical functions for subsequent image processing, analysis, and presentation. Digital images of Coomassie-stained polyacrylamide protein gels containing molecular weight standards and ethidium bromide stained agarose gels containing DNA mass standards are acquired using the KODAK Electrophoresis Documentation and Analysis System 290 (EDAS 290). The KODAK 1D software is used to optimize lane and band identification using features such as isomolecular weight lines. Mathematical functions for mass standard representation are presented, and two methods for estimation of unknown band mass are compared. Given the progressive transition of electrophoresis data acquisition and daily reporting in peer-reviewed journals to digital formats ranging from 8-bit systems such as EDAS 290 to more expensive 16-bit systems, the utility of algorithms such as Gaussian modeling, which can correct geometric aberrations such as clipping due to signal saturation common at lower bit depth levels, is discussed. Finally, image-processing tools that can facilitate image preparation for presentation are demonstrated.
NASA Astrophysics Data System (ADS)
Kibria, Mirza Golam; Villardi, Gabriel Porto; Ishizu, Kentaro; Kojima, Fumihide; Yano, Hiroyuki
2016-12-01
In this paper, we study inter-operator spectrum sharing and intra-operator resource allocation in shared spectrum access communication systems and propose efficient dynamic solutions to address both inter-operator and intra-operator resource allocation optimization problems. For inter-operator spectrum sharing, we present two competent approaches, namely the subcarrier gain-based sharing and fragmentation-based sharing, which carry out fair and flexible allocation of the available shareable spectrum among the operators subject to certain well-defined sharing rules, traffic demands, and channel propagation characteristics. The subcarrier gain-based spectrum sharing scheme has been found to be more efficient in terms of achieved throughput. However, the fragmentation-based sharing is more attractive in terms of computational complexity. For intra-operator resource allocation, we consider resource allocation problem with users' dissimilar service requirements, where the operator supports users with delay constraint and non-delay constraint service requirements, simultaneously. This optimization problem is a mixed-integer non-linear programming problem and non-convex, which is computationally very expensive, and the complexity grows exponentially with the number of integer variables. We propose less-complex and efficient suboptimal solution based on formulating exact linearization, linear approximation, and convexification techniques for the non-linear and/or non-convex objective functions and constraints. Extensive simulation performance analysis has been carried out that validates the efficiency of the proposed solution.
Noninferiority trial designs for odds ratios and risk differences.
Hilton, Joan F
2010-04-30
This study presents constrained maximum likelihood derivations of the design parameters of noninferiority trials for binary outcomes with the margin defined on the odds ratio (ψ) or risk-difference (δ) scale. The derivations show that, for trials in which the group-specific response rates are equal under the point-alternative hypothesis, the common response rate, π(N), is a fixed design parameter whose value lies between the control and experimental rates hypothesized at the point-null, {π(C), π(E)}. We show that setting π(N) equal to the value of π(C) that holds under H(0) underestimates the overall sample size requirement. Given {π(C), ψ} or {π(C), δ} and the type I and II error rates, or algorithm finds clinically meaningful design values of π(N), and the corresponding minimum asymptotic sample size, N=n(E)+n(C), and optimal allocation ratio, γ=n(E)/n(C). We find that optimal allocations are increasingly imbalanced as ψ increases, with γ(ψ)<1 and γ(δ)≈1/γ(ψ), and that ranges of allocation ratios map to the minimum sample size. The latter characteristic allows trialists to consider trade-offs between optimal allocation at a smaller N and a preferred allocation at a larger N. For designs with relatively large margins (e.g. ψ>2.5), trial results that are presented on both scales will differ in power, with more power lost if the study is designed on the risk-difference scale and reported on the odds ratio scale than vice versa. 2010 John Wiley & Sons, Ltd.
Scott, Nick; Hussain, S Azfar; Martin-Hughes, Rowan; Fowkes, Freya J I; Kerr, Cliff C; Pearson, Ruth; Kedziora, David J; Killedar, Madhura; Stuart, Robyn M; Wilson, David P
2017-09-12
The high burden of malaria and limited funding means there is a necessity to maximize the allocative efficiency of malaria control programmes. Quantitative tools are urgently needed to guide budget allocation decisions. A geospatial epidemic model was coupled with costing data and an optimization algorithm to estimate the optimal allocation of budgeted and projected funds across all malaria intervention approaches. Interventions included long-lasting insecticide-treated nets (LLINs), indoor residual spraying (IRS), intermittent presumptive treatment during pregnancy (IPTp), seasonal mass chemoprevention in children (SMC), larval source management (LSM), mass drug administration (MDA), and behavioural change communication (BCC). The model was applied to six geopolitical regions of Nigeria in isolation and also the nation as a whole to minimize incidence and malaria-attributable mortality. Allocative efficiency gains could avert approximately 84,000 deaths or 15.7 million cases of malaria in Nigeria over 5 years. With an additional US$300 million available, approximately 134,000 deaths or 37.3 million cases of malaria could be prevented over 5 years. Priority funding should go to LLINs, IPTp and BCC programmes, and SMC should be expanded in seasonal areas. To minimize mortality, treatment expansion is critical and prioritized over some LLIN funding, while to minimize incidence, LLIN funding remained a priority. For areas with lower rainfall, LSM is prioritized over IRS but MDA is not recommended unless all other programmes are established. Substantial reductions in malaria morbidity and mortality can be made by optimal targeting of investments to the right malaria interventions in the right areas.
Buehler, James W; Holtgrave, David R
2007-03-29
Controversy and debate can arise whenever public health agencies determine how program funds should be allocated among constituent jurisdictions. Two common strategies for making such allocations are expert review of competitive applications and the use of funding formulas. Despite widespread use of funding formulas by public health agencies in the United States, formula allocation strategies in public health have been subject to relatively little formal scrutiny, with the notable exception of the attention focused on formula funding of HIV care programs. To inform debates and deliberations in the selection of a formula-based approach, we summarize key challenges to formula-based funding, based on prior reviews of federal programs in the United States. The primary challenge lies in identifying data sources and formula calculation methods that both reflect and serve program objectives, with or without adjustments for variations in the cost of delivering services, the availability of local resources, capacity, or performance. Simplicity and transparency are major advantages of formula-based allocations, but these advantages can be offset if formula-based allocations are perceived to under- or over-fund some jurisdictions, which may result from how guaranteed minimum funding levels are set or from "hold-harmless" provisions intended to blunt the effects of changes in formula design or random variations in source data. While fairness is considered an advantage of formula-based allocations, the design of a formula may implicitly reflect unquestioned values concerning equity versus equivalence in setting funding policies. Whether or how past or projected trends are taken into account can also have substantial impacts on allocations. Insufficient attention has been focused on how the approach to designing funding formulas in public health should differ for treatment or service versus prevention programs. Further evaluations of formula-based versus competitive allocation methods are needed to promote the optimal use of public health funds. In the meantime, those who use formula-based strategies to allocate funds should be familiar with the nuances of this approach.
Scale-Free Compact Routing Schemes in Networks of Low Doubling Dimension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konjevod, Goran; Richa, Andréa W.; Xia, Donglin
In this work, we consider compact routing schemes in networks of low doubling dimension, where the doubling dimension is the least value α such that any ball in the network can be covered by at most 2 α balls of half radius. There are two variants of routing-scheme design: (i) labeled (name-dependent) routing, in which the designer is allowed to rename the nodes so that the names (labels) can contain additional routing information, for example, topological information; and (ii) name-independent routing, which works on top of the arbitrary original node names in the network, that is, the node names aremore » independent of the routing scheme. In this article, given any constant ε ϵ (0, 1) and an n-node edge-weighted network of doubling dimension α ϵ O(loglog n), we present —a (1 + ε)-stretch labeled compact routing scheme with Γlog n-bit routing labels, O(log 2 n/loglog n)-bit packet headers, and ((1/ε) O(α) log 3 n)-bit routing information at each node; —a (9 + ε)-stretch name-independent compact routing scheme with O(log 2 n/loglog n)-bit packet headers, and ((1/ε) O(α) log 3 n)-bit routing information at each node. In addition, we prove a lower bound: any name-independent routing scheme with o(n (ε/60)2) bits of storage at each node has stretch no less than 9 - ε for any ε ϵ (0, 8). Therefore, our name-independent routing scheme achieves asymptotically optimal stretch with polylogarithmic storage at each node and packet headers. Note that both schemes are scale-free in the sense that their space requirements do not depend on the normalized diameter Δ of the network. Finally, we also present a simpler nonscale-free (9 + ε)-stretch name-independent compact routing scheme with improved space requirements if Δ is polynomial in n.« less
Scale-Free Compact Routing Schemes in Networks of Low Doubling Dimension
Konjevod, Goran; Richa, Andréa W.; Xia, Donglin
2016-06-15
In this work, we consider compact routing schemes in networks of low doubling dimension, where the doubling dimension is the least value α such that any ball in the network can be covered by at most 2 α balls of half radius. There are two variants of routing-scheme design: (i) labeled (name-dependent) routing, in which the designer is allowed to rename the nodes so that the names (labels) can contain additional routing information, for example, topological information; and (ii) name-independent routing, which works on top of the arbitrary original node names in the network, that is, the node names aremore » independent of the routing scheme. In this article, given any constant ε ϵ (0, 1) and an n-node edge-weighted network of doubling dimension α ϵ O(loglog n), we present —a (1 + ε)-stretch labeled compact routing scheme with Γlog n-bit routing labels, O(log 2 n/loglog n)-bit packet headers, and ((1/ε) O(α) log 3 n)-bit routing information at each node; —a (9 + ε)-stretch name-independent compact routing scheme with O(log 2 n/loglog n)-bit packet headers, and ((1/ε) O(α) log 3 n)-bit routing information at each node. In addition, we prove a lower bound: any name-independent routing scheme with o(n (ε/60)2) bits of storage at each node has stretch no less than 9 - ε for any ε ϵ (0, 8). Therefore, our name-independent routing scheme achieves asymptotically optimal stretch with polylogarithmic storage at each node and packet headers. Note that both schemes are scale-free in the sense that their space requirements do not depend on the normalized diameter Δ of the network. Finally, we also present a simpler nonscale-free (9 + ε)-stretch name-independent compact routing scheme with improved space requirements if Δ is polynomial in n.« less
Meinzer, Caitlyn; Martin, Renee; Suarez, Jose I
2017-09-08
In phase II trials, the most efficacious dose is usually not known. Moreover, given limited resources, it is difficult to robustly identify a dose while also testing for a signal of efficacy that would support a phase III trial. Recent designs have sought to be more efficient by exploring multiple doses through the use of adaptive strategies. However, the added flexibility may potentially increase the risk of making incorrect assumptions and reduce the total amount of information available across the dose range as a function of imbalanced sample size. To balance these challenges, a novel placebo-controlled design is presented in which a restricted Bayesian response adaptive randomization (RAR) is used to allocate a majority of subjects to the optimal dose of active drug, defined as the dose with the lowest probability of poor outcome. However, the allocation between subjects who receive active drug or placebo is held constant to retain the maximum possible power for a hypothesis test of overall efficacy comparing the optimal dose to placebo. The design properties and optimization of the design are presented in the context of a phase II trial for subarachnoid hemorrhage. For a fixed total sample size, a trade-off exists between the ability to select the optimal dose and the probability of rejecting the null hypothesis. This relationship is modified by the allocation ratio between active and control subjects, the choice of RAR algorithm, and the number of subjects allocated to an initial fixed allocation period. While a responsive RAR algorithm improves the ability to select the correct dose, there is an increased risk of assigning more subjects to a worse arm as a function of ephemeral trends in the data. A subarachnoid treatment trial is used to illustrate how this design can be customized for specific objectives and available data. Bayesian adaptive designs are a flexible approach to addressing multiple questions surrounding the optimal dose for treatment efficacy within the context of limited resources. While the design is general enough to apply to many situations, future work is needed to address interim analyses and the incorporation of models for dose response.
Designing Nanoscale Counter Using Reversible Gate Based on Quantum-Dot Cellular Automata
NASA Astrophysics Data System (ADS)
Moharrami, Elham; Navimipour, Nima Jafari
2018-04-01
Some new technologies such as Quantum-dot Cellular Automata (QCA) is suggested to solve the physical limits of the Complementary Metal-Oxide Semiconductor (CMOS) technology. The QCA as one of the novel technologies at nanoscale has potential applications in future computers. This technology has some advantages such as minimal size, high speed, low latency, and low power consumption. As a result, it is used for creating all varieties of memory. Counter circuits as one of the important circuits in the digital systems are composed of some latches, which are connected to each other in series and actually they count input pulses in the circuit. On the other hand, the reversible computations are very important because of their ability in reducing energy in nanometer circuits. Improving the energy efficiency, increasing the speed of nanometer circuits, increasing the portability of system, making smaller components of the circuit in a nuclear size and reducing the power consumption are considered as the usage of reversible logic. Therefore, this paper aims to design a two-bit reversible counter that is optimized on the basis of QCA using an improved reversible gate. The proposed reversible structure of 2-bit counter can be increased to 3-bit, 4-bit and more. The advantages of the proposed design have been shown using QCADesigner in terms of the delay in comparison with previous circuits.
Using genetic algorithm to solve a new multi-period stochastic optimization model
NASA Astrophysics Data System (ADS)
Zhang, Xin-Li; Zhang, Ke-Cun
2009-09-01
This paper presents a new asset allocation model based on the CVaR risk measure and transaction costs. Institutional investors manage their strategic asset mix over time to achieve favorable returns subject to various uncertainties, policy and legal constraints, and other requirements. One may use a multi-period portfolio optimization model in order to determine an optimal asset mix. Recently, an alternative stochastic programming model with simulated paths was proposed by Hibiki [N. Hibiki, A hybrid simulation/tree multi-period stochastic programming model for optimal asset allocation, in: H. Takahashi, (Ed.) The Japanese Association of Financial Econometrics and Engineering, JAFFE Journal (2001) 89-119 (in Japanese); N. Hibiki A hybrid simulation/tree stochastic optimization model for dynamic asset allocation, in: B. Scherer (Ed.), Asset and Liability Management Tools: A Handbook for Best Practice, Risk Books, 2003, pp. 269-294], which was called a hybrid model. However, the transaction costs weren't considered in that paper. In this paper, we improve Hibiki's model in the following aspects: (1) The risk measure CVaR is introduced to control the wealth loss risk while maximizing the expected utility; (2) Typical market imperfections such as short sale constraints, proportional transaction costs are considered simultaneously. (3) Applying a genetic algorithm to solve the resulting model is discussed in detail. Numerical results show the suitability and feasibility of our methodology.
Tracking historical increases in nitrogen-driven crop production possibilities
NASA Astrophysics Data System (ADS)
Mueller, N. D.; Lassaletta, L.; Billen, G.; Garnier, J.; Gerber, J. S.
2015-12-01
The environmental costs of nitrogen use have prompted a focus on improving the efficiency of nitrogen use in the global food system, the primary source of nitrogen pollution. Typical approaches to improving agricultural nitrogen use efficiency include more targeted field-level use (timing, placement, and rate) and modification of the crop mix. However, global efficiency gains can also be achieved by improving the spatial allocation of nitrogen between regions or countries, due to consistent diminishing returns at high nitrogen use. This concept is examined by constructing a tradeoff frontier (or production possibilities frontier) describing global crop protein yield as a function of applied nitrogen from all sources, given optimal spatial allocation. Yearly variation in country-level input-output nitrogen budgets are utilized to parameterize country-specific hyperbolic yield-response models. Response functions are further characterized for three ~15-year eras beginning in 1961, and series of calculations uses these curves to simulate optimal spatial allocation in each era and determine the frontier. The analyses reveal that excess nitrogen (in recent years) could be reduced by ~40% given optimal spatial allocation. Over time, we find that gains in yield potential and in-country nitrogen use efficiency have led to increases in the global nitrogen production possibilities frontier. However, this promising shift has been accompanied by an actual spatial distribution of nitrogen use that has become less optimal, in an absolute sense, relative to the frontier. We conclude that examination of global production possibilities is a promising approach to understanding production constraints and efficiency opportunities in the global food system.
NASA Astrophysics Data System (ADS)
Xiang, Yu; Tao, Cheng
2018-05-01
During the operation of the personal rapid transit system(PRT), the empty vehicle resources is distributed unevenly because of different passenger demand. In order to maintain the balance between supply and demand, and to meet the passenger needs of the ride, PRT empty vehicle resource allocation model is constructed based on the future demand forecasted by historical demand in this paper. The improved genetic algorithm is implied in distribution of the empty vehicle which can reduce the customers waiting time and improve the operation efficiency of the PRT system so that all passengers can take the PRT vehicles in the shortest time. The experimental result shows that the improved genetic algorithm can allocate the empty vehicle from the system level optimally, and realize the distribution of the empty vehicle resources reasonably in the system.
NASA Astrophysics Data System (ADS)
Zhu, Wenlong; Ma, Shoufeng; Tian, Junfang
2017-01-01
This paper investigates the revenue-neutral tradable credit charge and reward scheme without initial credit allocations that can reassign network traffic flow patterns to optimize congestion and emissions. First, we prove the existence of the proposed schemes and further decentralize the minimum emission flow pattern to user equilibrium. Moreover, we design the solving method of the proposed credit scheme for minimum emission problem. Second, we investigate the revenue-neutral tradable credit charge and reward scheme without initial credit allocations for bi-objectives to obtain the Pareto system optimum flow patterns of congestion and emissions; and present the corresponding solutions are located in the polyhedron constituted by some inequalities and equalities system. Last, numerical example based on a simple traffic network is adopted to obtain the proposed credit schemes and verify they are revenue-neutral.
Gui, Zhipeng; Yu, Manzhu; Yang, Chaowei; Jiang, Yunfeng; Chen, Songqing; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Hassan, Mohammed Anowarul; Jin, Baoxuan
2016-01-01
Dust storm has serious disastrous impacts on environment, human health, and assets. The developments and applications of dust storm models have contributed significantly to better understand and predict the distribution, intensity and structure of dust storms. However, dust storm simulation is a data and computing intensive process. To improve the computing performance, high performance computing has been widely adopted by dividing the entire study area into multiple subdomains and allocating each subdomain on different computing nodes in a parallel fashion. Inappropriate allocation may introduce imbalanced task loads and unnecessary communications among computing nodes. Therefore, allocation is a key factor that may impact the efficiency of parallel process. An allocation algorithm is expected to consider the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire simulation. This research introduces three algorithms to optimize the allocation by considering the spatial and communicational constraints: 1) an Integer Linear Programming (ILP) based algorithm from combinational optimization perspective; 2) a K-Means and Kernighan-Lin combined heuristic algorithm (K&K) integrating geometric and coordinate-free methods by merging local and global partitioning; 3) an automatic seeded region growing based geometric and local partitioning algorithm (ASRG). The performance and effectiveness of the three algorithms are compared based on different factors. Further, we adopt the K&K algorithm as the demonstrated algorithm for the experiment of dust model simulation with the non-hydrostatic mesoscale model (NMM-dust) and compared the performance with the MPI default sequential allocation. The results demonstrate that K&K method significantly improves the simulation performance with better subdomain allocation. This method can also be adopted for other relevant atmospheric and numerical modeling. PMID:27044039
Optimal assignment of workers to supporting services in a hospital
NASA Astrophysics Data System (ADS)
Sawik, Bartosz; Mikulik, Jerzy
2008-01-01
Supporting services play an important role in health care institutions such as hospitals. This paper presents an application of operations research model for optimal allocation of workers among supporting services in a public hospital. The services include logistics, inventory management, financial management, operations management, medical analysis, etc. The optimality criterion of the problem is to minimize operations costs of supporting services subject to some specific constraints. The constraints represent specific conditions for resource allocation in a hospital. The overall problem is formulated as an integer program in the literature known as the assignment problem, where the decision variables represent the assignment of people to various jobs. The results of some computational experiments modeled on a real data from a selected Polish hospital are reported.
NASA Astrophysics Data System (ADS)
Wei, J.; Wang, G.; Liu, R.
2008-12-01
The Tarim River Basin is the longest inland river in China. Due to water scarcity, ecologically-fragile is becoming a significant constraint to sustainable development in this region. To effectively manage the limited water resources for ecological purposes and for conventional water utilization purposes, a real-time water resources allocation Decision Support System (DSS) has been developed. Based on workflows of the water resources regulations and comprehensive analysis of the efficiency and feasibility of water management strategies, the DSS includes information systems that perform data acquisition, management and visualization, and model systems that perform hydrological forecast, water demand prediction, flow routing simulation and water resources optimization of the hydrological and water utilization process. An optimization and process control strategy is employed to dynamically allocate the water resources among the different stakeholders. The competitive targets and constraints are taken into considered by multi-objective optimization and with different priorities. The DSS of the Tarim River Basin has been developed and been successfully utilized to support the water resources management of the Tarim River Basin since 2005.
Optimal Budget Allocation for Sample Average Approximation
2011-06-01
an optimization algorithm applied to the sample average problem. We examine the convergence rate of the estimator as the computing budget tends to...regime for the optimization algorithm . 1 Introduction Sample average approximation (SAA) is a frequently used approach to solving stochastic programs...appealing due to its simplicity and the fact that a large number of standard optimization algorithms are often available to optimize the resulting sample
NASA Astrophysics Data System (ADS)
Iguchi, Kyosuke; Matsuoka, Ayako
2014-07-01
One of the design challenges for future magnetospheric satellite missions is optimizing the mass, size, and power consumption of the instruments to meet the mission requirements. We have developed a digital-type fluxgate (DFG) magnetometer that is anticipated to have significantly less mass and volume than the conventional analog-type. Hitherto, the lack of a space-grade digital-to-analog converter (DAC) with good accuracy has prevented the development of a high-performance DFG. To solve this problem, we developed a high-resolution DAC using parts whose performance was equivalent to existing space-grade parts. The developed DAC consists of a 1-bit second-order sigma-delta modulator and a fourth-order analog low-pass filter. We tested the performance of the DAC experimentally and found that it had better than 17-bits resolution in 80% of the measurement range, and the linearity error was 2-13.3 of the measurement range. We built a DFG flight model (in which this DAC was embedded) for a sounding rocket experiment as an interim step in the development of a future satellite mission. The noise of this DFG was 0.79 nTrms at 0.1-10 Hz, which corresponds to a roughly 17-bit resolution. The results show that the sigma-delta DAC and the DFG had a performance that is consistent with our optimized design, and the noise was as expected from the noise simulation. Finally, we have confirmed that the DFG worked successfully during the flight of the sounding rocket.
Higginson, Andrew D; Fawcett, Tim W; Trimmer, Pete C; McNamara, John M; Houston, Alasdair I
2012-11-01
Animals live in complex environments in which predation risk and food availability change over time. To deal with this variability and maximize their survival, animals should take into account how long current conditions may persist and the possible future conditions they may encounter. This should affect their foraging activity, and with it their vulnerability to predation across periods of good and bad conditions. Here we develop a comprehensive theory of optimal risk allocation that allows for environmental persistence and for fluctuations in food availability as well as predation risk. We show that it is the duration of good and bad periods, independent of each other, rather than the overall proportion of time exposed to each that is the most important factor affecting behavior. Risk allocation is most pronounced when conditions change frequently, and optimal foraging activity can either increase or decrease with increasing exposure to bad conditions. When food availability fluctuates rapidly, animals should forage more when food is abundant, whereas when food availability fluctuates slowly, they should forage more when food is scarce. We also show that survival can increase as variability in predation risk increases. Our work reveals that environmental persistence should profoundly influence behavior. Empirical studies of risk allocation should therefore carefully control the duration of both good and bad periods and consider manipulating food availability as well as predation risk.
Peden, Al; Baker, Judith J
2002-01-01
Using the optimizing properties of econometric analysis, this study analyzes how physician overhead costs (OC) can be allocated to multiple activities to maximize precision in reimbursing the costs of services. Drawing on work by Leibenstein and Friedman, the analysis also shows that allocating OC to multiple activities unbiased by revenue requires controlling for revenue when making the estimates. Further econometric analysis shows that it is possible to save about 10 percent of OC by paying only for those that are necessary.
2014-01-01
Background The Rapid Bioconversion with Integrated recycle Technology (RaBIT) process reduces capital costs, processing times, and biocatalyst cost for biochemical conversion of cellulosic biomass to biofuels by reducing total bioprocessing time (enzymatic hydrolysis plus fermentation) to 48 h, increasing biofuel productivity (g/L/h) twofold, and recycling biocatalysts (enzymes and microbes) to the next cycle. To achieve these results, RaBIT utilizes 24-h high cell density fermentations along with cell recycling to solve the slow/incomplete xylose fermentation issue, which is critical for lignocellulosic biofuel fermentations. Previous studies utilizing similar fermentation conditions showed a decrease in xylose consumption when recycling cells into the next fermentation cycle. Eliminating this decrease is critical for RaBIT process effectiveness for high cycle counts. Results Nine different engineered microbial strains (including Saccharomyces cerevisiae strains, Scheffersomyces (Pichia) stipitis strains, Zymomonas mobilis 8b, and Escherichia coli KO11) were tested under RaBIT platform fermentations to determine their suitability for this platform. Fermentation conditions were then optimized for S. cerevisiae GLBRCY128. Three different nutrient sources (corn steep liquor, yeast extract, and wheat germ) were evaluated to improve xylose consumption by recycled cells. Capacitance readings were used to accurately measure viable cell mass profiles over five cycles. Conclusion The results showed that not all strains are capable of effectively performing the RaBIT process. Acceptable performance is largely correlated to the specific xylose consumption rate. Corn steep liquor was found to reduce the deleterious impacts of cell recycle and improve specific xylose consumption rates. The viable cell mass profiles indicated that reduction in specific xylose consumption rate, not a drop in viable cell mass, was the main cause for decreasing xylose consumption. PMID:24847379
Marcinkiewicz, Cezary; Li, Jie; Shiloh, Aaron O; Sternberg, Mark
2017-01-01
The aim of this feasibility study was to test the ability of fluorescent nanodiamond particles (F-NDP) covalently conjugated with bitistatin (F-NDP-Bit) to detect vascular blood clots in vivo using extracorporeal near-infrared (NIR) imaging. Specifically, we compared NIR fluorescence properties of F-NDP with N-V (F-NDPNV) and N-V-N color centers and sizes (100–10,000 nm). Optimal NIR fluorescence and tissue penetration across biological tissues (rat skin, porcine axillary veins, and skin) was obtained for F-NDPNV with a mean diameter of 700 nm. Intravital imaging (using in vivo imaging system [IVIS]) in vitro revealed that F-NDPNV-loaded glass capillaries could be detected across 6 mm of rat red-muscle barrier and 12 mm of porcine skin, which equals the average vertical distance of a human carotid artery bifurcation from the surface of the adjacent skin (14 mm). In vivo, feasibility was demonstrated in a rat model of occlusive blood clots generated using FeCl3 in the carotid artery bifurcation. Following systemic infusions of F-NDPNV-Bit (3 or 15 mg/kg) via the external carotid artery or femoral vein (N=3), presence of the particles in the thrombi was confirmed both in situ via IVIS, and ex vivo via confocal imaging. The presence of F-NDPNV in the vascular clots was further confirmed by direct counting of fluorescent particles extracted from clots following tissue solubilization. Our data suggest that F-NDPNV-Bit associate with vascular blood clots, presumably by binding of F-NDPNV-Bit to activated platelets within the blood clot. We posit that F-NDPNV-Bit could serve as a noninvasive platform for identification of vascular thrombi using NIR energy monitored by an extracorporeal device. PMID:29200855
An Optimization Model for the Allocation of University Based Merit Aid
ERIC Educational Resources Information Center
Sugrue, Paul K.
2010-01-01
The allocation of merit-based financial aid during the college admissions process presents postsecondary institutions with complex and financially expensive decisions. This article describes the application of linear programming as a decision tool in merit based financial aid decisions at a medium size private university. The objective defined for…
NASA Astrophysics Data System (ADS)
Xu, Jiuping; Ma, Ning; Lv, Chengwei
2016-08-01
Efficient water transfer and allocation are critical for disaster mitigation in drought emergencies. This is especially important when the different interests of the multiple decision makers and the fluctuating water resource supply and demand simultaneously cause space and time conflicts. To achieve more effective and efficient water transfers and allocations, this paper proposes a novel optimization method with an integrated bi-level structure and a dynamic strategy, in which the bi-level structure works to deal with space dimension conflicts in drought emergencies, and the dynamic strategy is used to deal with time dimension conflicts. Combining these two optimization methods, however, makes calculation complex, so an integrated interactive fuzzy program and a PSO-POA are combined to develop a hybrid-heuristic algorithm. The successful application of the proposed model in a real world case region demonstrates its practicality and efficiency. Dynamic cooperation between multiple reservoirs under the coordination of a global regulator reflects the model's efficiency and effectiveness in drought emergency water transfer and allocation, especially in a fluctuating environment. On this basis, some corresponding management recommendations are proposed to improve practical operations.
Gravelle, Hugh; Siciliani, Luigi
2009-08-01
In many public healthcare systems treatments are rationed by waiting time. We examine the optimal allocation of a fixed supply of a given treatment between different groups of patients. Even in the absence of any distributional aims, welfare is increased by third degree waiting time discrimination: setting different waiting times for different groups waiting for the same treatment. Because waiting time imposes dead weight losses on patients, lower waiting times should be offered to groups with higher marginal waiting time costs and with less elastic demand for the treatment.
Product code optimization for determinate state LDPC decoding in robust image transmission.
Thomos, Nikolaos; Boulgouris, Nikolaos V; Strintzis, Michael G
2006-08-01
We propose a novel scheme for error-resilient image transmission. The proposed scheme employs a product coder consisting of low-density parity check (LDPC) codes and Reed-Solomon codes in order to deal effectively with bit errors. The efficiency of the proposed scheme is based on the exploitation of determinate symbols in Tanner graph decoding of LDPC codes and a novel product code optimization technique based on error estimation. Experimental evaluation demonstrates the superiority of the proposed system in comparison to recent state-of-the-art techniques for image transmission.
Optimized atom position and coefficient coding for matching pursuit-based image compression.
Shoa, Alireza; Shirani, Shahram
2009-12-01
In this paper, we propose a new encoding algorithm for matching pursuit image coding. We show that coding performance is improved when correlations between atom positions and atom coefficients are both used in encoding. We find the optimum tradeoff between efficient atom position coding and efficient atom coefficient coding and optimize the encoder parameters. Our proposed algorithm outperforms the existing coding algorithms designed for matching pursuit image coding. Additionally, we show that our algorithm results in better rate distortion performance than JPEG 2000 at low bit rates.
NASA Astrophysics Data System (ADS)
Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang
2017-08-01
Distributed radar network systems have been shown to have many unique features. Due to their advantage of signal and spatial diversities, radar networks are attractive for target detection. In practice, the netted radars in radar networks are supposed to maximize their transmit power to achieve better detection performance, which may be in contradiction with low probability of intercept (LPI). Therefore, this paper investigates the problem of adaptive power allocation for radar networks in a cooperative game-theoretic framework such that the LPI performance can be improved. Taking into consideration both the transmit power constraints and the minimum signal to interference plus noise ratio (SINR) requirement of each radar, a cooperative Nash bargaining power allocation game based on LPI is formulated, whose objective is to minimize the total transmit power by optimizing the power allocation in radar networks. First, a novel SINR-based network utility function is defined and utilized as a metric to evaluate power allocation. Then, with the well-designed network utility function, the existence and uniqueness of the Nash bargaining solution are proved analytically. Finally, an iterative Nash bargaining algorithm is developed that converges quickly to a Pareto optimal equilibrium for the cooperative game. Numerical simulations and theoretic analysis are provided to evaluate the effectiveness of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Yelkenci Köse, Simge; Demir, Leyla; Tunalı, Semra; Türsel Eliiyi, Deniz
2015-02-01
In manufacturing systems, optimal buffer allocation has a considerable impact on capacity improvement. This study presents a simulation optimization procedure to solve the buffer allocation problem in a heat exchanger production plant so as to improve the capacity of the system. For optimization, three metaheuristic-based search algorithms, i.e. a binary-genetic algorithm (B-GA), a binary-simulated annealing algorithm (B-SA) and a binary-tabu search algorithm (B-TS), are proposed. These algorithms are integrated with the simulation model of the production line. The simulation model, which captures the stochastic and dynamic nature of the production line, is used as an evaluation function for the proposed metaheuristics. The experimental study with benchmark problem instances from the literature and the real-life problem show that the proposed B-TS algorithm outperforms B-GA and B-SA in terms of solution quality.
Decomposition method for zonal resource allocation problems in telecommunication networks
NASA Astrophysics Data System (ADS)
Konnov, I. V.; Kashuba, A. Yu
2016-11-01
We consider problems of optimal resource allocation in telecommunication networks. We first give an optimization formulation for the case where the network manager aims to distribute some homogeneous resource (bandwidth) among users of one region with quadratic charge and fee functions and present simple and efficient solution methods. Next, we consider a more general problem for a provider of a wireless communication network divided into zones (clusters) with common capacity constraints. We obtain a convex quadratic optimization problem involving capacity and balance constraints. By using the dual Lagrangian method with respect to the capacity constraint, we suggest to reduce the initial problem to a single-dimensional optimization problem, but calculation of the cost function value leads to independent solution of zonal problems, which coincide with the above single region problem. Some results of computational experiments confirm the applicability of the new methods.
NASA Technical Reports Server (NTRS)
Leonard, Michael W.
2013-01-01
Integration of the Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) System into the control system of a Short Takeoff and Landing Mobility Concept Vehicle simulation presents a challenge because the CAPIO formulation requires that constrained optimization problems be solved at the controller operating frequency. We present a solution that utilizes a modified version of the well-known L-BFGS-B solver. Despite the iterative nature of the solver, the method is seen to converge in real time with sufficient reliability to support three weeks of piloted runs at the NASA Ames Vertical Motion Simulator (VMS) facility. The results of the optimization are seen to be excellent in the vast majority of real-time frames. Deficiencies in the quality of the results in some frames are shown to be improvable with simple termination criteria adjustments, though more real-time optimization iterations would be required.
Pricing Resources in LTE Networks through Multiobjective Optimization
Lai, Yung-Liang; Jiang, Jehn-Ruey
2014-01-01
The LTE technology offers versatile mobile services that use different numbers of resources. This enables operators to provide subscribers or users with differential quality of service (QoS) to boost their satisfaction. On one hand, LTE operators need to price the resources high for maximizing their profits. On the other hand, pricing also needs to consider user satisfaction with allocated resources and prices to avoid “user churn,” which means subscribers will unsubscribe services due to dissatisfaction with allocated resources or prices. In this paper, we study the pricing resources with profits and satisfaction optimization (PRPSO) problem in the LTE networks, considering the operator profit and subscribers' satisfaction at the same time. The problem is modelled as nonlinear multiobjective optimization with two optimal objectives: (1) maximizing operator profit and (2) maximizing user satisfaction. We propose to solve the problem based on the framework of the NSGA-II. Simulations are conducted for evaluating the proposed solution. PMID:24526889
Pricing resources in LTE networks through multiobjective optimization.
Lai, Yung-Liang; Jiang, Jehn-Ruey
2014-01-01
The LTE technology offers versatile mobile services that use different numbers of resources. This enables operators to provide subscribers or users with differential quality of service (QoS) to boost their satisfaction. On one hand, LTE operators need to price the resources high for maximizing their profits. On the other hand, pricing also needs to consider user satisfaction with allocated resources and prices to avoid "user churn," which means subscribers will unsubscribe services due to dissatisfaction with allocated resources or prices. In this paper, we study the pricing resources with profits and satisfaction optimization (PRPSO) problem in the LTE networks, considering the operator profit and subscribers' satisfaction at the same time. The problem is modelled as nonlinear multiobjective optimization with two optimal objectives: (1) maximizing operator profit and (2) maximizing user satisfaction. We propose to solve the problem based on the framework of the NSGA-II. Simulations are conducted for evaluating the proposed solution.
Optimal allocation of testing resources for statistical simulations
NASA Astrophysics Data System (ADS)
Quintana, Carolina; Millwater, Harry R.; Singh, Gulshan; Golden, Patrick
2015-07-01
Statistical estimates from simulation involve uncertainty caused by the variability in the input random variables due to limited data. Allocating resources to obtain more experimental data of the input variables to better characterize their probability distributions can reduce the variance of statistical estimates. The methodology proposed determines the optimal number of additional experiments required to minimize the variance of the output moments given single or multiple constraints. The method uses multivariate t-distribution and Wishart distribution to generate realizations of the population mean and covariance of the input variables, respectively, given an amount of available data. This method handles independent and correlated random variables. A particle swarm method is used for the optimization. The optimal number of additional experiments per variable depends on the number and variance of the initial data, the influence of the variable in the output function and the cost of each additional experiment. The methodology is demonstrated using a fretting fatigue example.
Optimal Resource Allocation for NOMA-TDMA Scheme with α-Fairness in Industrial Internet of Things.
Sun, Yanjing; Guo, Yiyu; Li, Song; Wu, Dapeng; Wang, Bin
2018-05-15
In this paper, a joint non-orthogonal multiple access and time division multiple access (NOMA-TDMA) scheme is proposed in Industrial Internet of Things (IIoT), which allowed multiple sensors to transmit in the same time-frequency resource block using NOMA. The user scheduling, time slot allocation, and power control are jointly optimized in order to maximize the system α -fair utility under transmit power constraint and minimum rate constraint. The optimization problem is nonconvex because of the fractional objective function and the nonconvex constraints. To deal with the original problem, we firstly convert the objective function in the optimization problem into a difference of two convex functions (D.C.) form, and then propose a NOMA-TDMA-DC algorithm to exploit the global optimum. Numerical results show that the NOMA-TDMA scheme significantly outperforms the traditional orthogonal multiple access scheme in terms of both spectral efficiency and user fairness.
New algorithms for optimal reduction of technical risks
NASA Astrophysics Data System (ADS)
Todinov, M. T.
2013-06-01
The article features exact algorithms for reduction of technical risk by (1) optimal allocation of resources in the case where the total potential loss from several sources of risk is a sum of the potential losses from the individual sources; (2) optimal allocation of resources to achieve a maximum reduction of system failure; and (3) making an optimal choice among competing risky prospects. The article demonstrates that the number of activities in a risky prospect is a key consideration in selecting the risky prospect. As a result, the maximum expected profit criterion, widely used for making risk decisions, is fundamentally flawed, because it does not consider the impact of the number of risk-reward activities in the risky prospects. A popular view, that if a single risk-reward bet with positive expected profit is unacceptable then a sequence of such identical risk-reward bets is also unacceptable, has been analysed and proved incorrect.
Performance of discrete heat engines and heat pumps in finite time
Feldmann; Kosloff
2000-05-01
The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The power output of the engine is optimized with respect to time allocation between the contact time with the hot and cold baths as well as the adiabats. The engine's performance is also optimized with respect to the external fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat pump is also optimized. By varying the time allocation between the adiabats and the contact time with the reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when the temperature approaches absolute zero.
Fully digital programmable optical frequency comb generation and application.
Yan, Xianglei; Zou, Xihua; Pan, Wei; Yan, Lianshan; Azaña, José
2018-01-15
We propose a fully digital programmable optical frequency comb (OFC) generation scheme based on binary phase-sampling modulation, wherein an optimized bit sequence is applied to phase modulate a narrow-linewidth light wave. Programming the bit sequence enables us to tune both the comb spacing and comb-line number (i.e., number of comb lines). The programmable OFCs are also characterized by ultra-flat spectral envelope, uniform temporal envelope, and stable bias-free setup. Target OFCs are digitally programmed to have 19, 39, 61, 81, 101, or 201 comb lines and to have a 100, 50, 20, 10, 5, or 1 MHz comb spacing. As a demonstration, a scanning-free temperature sensing system using a proposed OFC with 1001 comb lines was also implemented with a sensitivity of 0.89°C/MHz.
Fast converging minimum probability of error neural network receivers for DS-CDMA communications.
Matyjas, John D; Psaromiligkos, Ioannis N; Batalama, Stella N; Medley, Michael J
2004-03-01
We consider a multilayer perceptron neural network (NN) receiver architecture for the recovery of the information bits of a direct-sequence code-division-multiple-access (DS-CDMA) user. We develop a fast converging adaptive training algorithm that minimizes the bit-error rate (BER) at the output of the receiver. The adaptive algorithm has three key features: i) it incorporates the BER, i.e., the ultimate performance evaluation measure, directly into the learning process, ii) it utilizes constraints that are derived from the properties of the optimum single-user decision boundary for additive white Gaussian noise (AWGN) multiple-access channels, and iii) it embeds importance sampling (IS) principles directly into the receiver optimization process. Simulation studies illustrate the BER performance of the proposed scheme.
Munguía-Rosas, Miguel A; Parra-Tabla, Victor; Ollerton, Jeff; Cervera, J Carlos
2012-02-01
Mixed reproductive strategies may have evolved as a response of plants to cope with environmental variation. One example of a mixed reproductive strategy is dimorphic cleistogamy, where a single plant produces closed, obligately self-pollinated (CL) flowers and open, potentially outcrossed (CH) flowers. Frequently, optimal environmental conditions favour production of more costly CH structures whilst economical and reliable CL structures are produced under less favourable conditions. In this study we explore (1) the effect of light and water on the reproductive phenology and (2) the effect of pollen supplementation on resource allocation to seeds in the cleistogamous weed Ruellia nudiflora. Split-plot field experiments were carried out to assess the effect of shade (two levels: ambient light vs. a reduction of 50 %) and watering (two levels: non-watered vs. watered) on the onset, end and duration of the production of three reproductive structures: CH flowers, CH fruit and CL fruit. We also looked at the effect of these environmental factors on biomass allocation to seeds (seed weight) from obligately self-pollinated flowers (CL), open-pollinated CH flowers and pollen-supplemented CH flowers. CH structures were produced for a briefer period and ended earlier under shaded conditions. These conditions also resulted in an earlier production of CL fruit. Shaded conditions also produced greater biomass allocation to CH seeds receiving extra pollen. Sub-optimal (shaded) conditions resulted in a briefer production period of CH structures whilst these same conditions resulted in an earlier production of CL structures. However, under sub-optimal conditions, plants also allocated more resources to seeds sired from CH flowers receiving large pollen loads. Earlier production of reproductive structures and relatively larger seed might improve subsequent success of CL and pollen-supplemented CH seeds, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canavan, G.H.
Attack allocation optimizations produce stability indices for unsymmetrical forces that indicate significant regions of both stability and instability and that have their minimum values roughly when the two sides have equal forces. This note derives combined stability indices for unsymmetrical offensive force configurations. The indices are based on optimal allocations of offensive missiles between vulnerable missiles and value based on the minimization of first strike cost, which is done analytically. Exchanges are modeled probabalistically and their results are converted into first and second strike costs through approximations to the damage to the value target sets held at risk. The stabilitymore » index is the product of the ratio of first to second strike costs seen by the two sides. Optimal allocations scale directly on the opponent`s vulnerable missiles, inversely on one`s own total weapons, and only logarithmically on the attacker`s damage preference, kill probability, and relative target set. The defender`s allocation scales in a similar manner on the attacker`s parameters. First and second strike magnitudes increase roughly linearly for the side with greater forces and decrease linearly for the side with fewer. Conversely, the first and second strike magnitudes decrease for the side with greater forces and increase for the side with fewer. These trends are derived and discussed analytically. The resulting stability indices exhibit a minimum where the two sides have roughly equal forces. If one side has much larger forces than the other, his costs drop to levels low enough that he is relatively insensitive to whether he strikes first or second. These calculations are performed with the analytic attack allocation appropriate for moderate forces, so some differences could be expected for the largest of the forces considered.« less
Fraser, Nicole; Kerr, Cliff C; Harouna, Zakou; Alhousseini, Zeinabou; Cheikh, Nejma; Gray, Richard; Shattock, Andrew; Wilson, David P; Haacker, Markus; Shubber, Zara; Masaki, Emiko; Karamoko, Djibrilla; Görgens, Marelize
2015-03-01
Niger's low-burden, sex-work-driven HIV epidemic is situated in a context of high economic and demographic growth. Resource availability of HIV/AIDS has been decreasing recently. In 2007-2012, only 1% of HIV expenditure was for sex work interventions, but an estimated 37% of HIV incidence was directly linked to sex work in 2012. The Government of Niger requested assistance to determine an efficient allocation of its HIV resources and to strengthen HIV programming for sex workers. Optima, an integrated epidemiologic and optimization tool, was applied using local HIV epidemic, demographic, programmatic, expenditure, and cost data. A mathematical optimization algorithm was used to determine the best resource allocation for minimizing HIV incidence and disability-adjusted life years (DALYs) over 10 years. Efficient allocation of the available HIV resources, to minimize incidence and DALYs, would increase expenditure for sex work interventions from 1% to 4%-5%, almost double expenditure for antiretroviral treatment and for the prevention of mother-to-child transmission, and reduce expenditure for HIV programs focusing on the general population. Such an investment could prevent an additional 12% of new infections despite a budget of less than half of the 2012 reference year. Most averted infections would arise from increased funding for sex work interventions. This allocative efficiency analysis makes the case for increased investment in sex work interventions to minimize future HIV incidence and DALYs. Optimal HIV resource allocation combined with improved program implementation could have even greater HIV impact. Technical assistance is being provided to make the money invested in sex work programs work better and help Niger to achieve a cost-effective and sustainable HIV response.
Designing an efficient LT-code with unequal error protection for image transmission
NASA Astrophysics Data System (ADS)
S. Marques, F.; Schwartz, C.; Pinho, M. S.; Finamore, W. A.
2015-10-01
The use of images from earth observation satellites is spread over different applications, such as a car navigation systems and a disaster monitoring. In general, those images are captured by on board imaging devices and must be transmitted to the Earth using a communication system. Even though a high resolution image can produce a better Quality of Service, it leads to transmitters with high bit rate which require a large bandwidth and expend a large amount of energy. Therefore, it is very important to design efficient communication systems. From communication theory, it is well known that a source encoder is crucial in an efficient system. In a remote sensing satellite image transmission, this efficiency is achieved by using an image compressor, to reduce the amount of data which must be transmitted. The Consultative Committee for Space Data Systems (CCSDS), a multinational forum for the development of communications and data system standards for space flight, establishes a recommended standard for a data compression algorithm for images from space systems. Unfortunately, in the satellite communication channel, the transmitted signal is corrupted by the presence of noise, interference signals, etc. Therefore, the receiver of a digital communication system may fail to recover the transmitted bit. Actually, a channel code can be used to reduce the effect of this failure. In 2002, the Luby Transform code (LT-code) was introduced and it was shown that it was very efficient when the binary erasure channel model was used. Since the effect of the bit recovery failure depends on the position of the bit in the compressed image stream, in the last decade many e orts have been made to develop LT-code with unequal error protection. In 2012, Arslan et al. showed improvements when LT-codes with unequal error protection were used in images compressed by SPIHT algorithm. The techniques presented by Arslan et al. can be adapted to work with the algorithm for image compression recommended by CCSDS. In fact, to design a LT-code with an unequal error protection, the bit stream produced by the algorithm recommended by CCSDS must be partitioned in M disjoint sets of bits. Using the weighted approach, the LT-code produces M different failure probabilities for each set of bits, p1, ..., pM leading to a total probability of failure, p which is an average of p1, ..., pM. In general, the parameters of the LT-code with unequal error protection is chosen using a heuristic procedure. In this work, we analyze the problem of choosing the LT-code parameters to optimize two figure of merits: (a) the probability of achieving a minimum acceptable PSNR, and (b) the mean of PSNR, given that the minimum acceptable PSNR has been achieved. Given the rate-distortion curve achieved by CCSDS recommended algorithm, this work establishes a closed form of the mean of PSNR (given that the minimum acceptable PSNR has been achieved) as a function of p1, ..., pM. The main contribution of this work is the study of a criteria to select the parameters p1, ..., pM to optimize the performance of image transmission.
Kwon, Ji-Wook; Kim, Jin Hyo; Seo, Jiwon
2015-01-01
This paper proposes a Multiple Leader Candidate (MLC) structure and a Competitive Position Allocation (CPA) algorithm which can be applicable for various applications including environmental sensing. Unlike previous formation structures such as virtual-leader and actual-leader structures with position allocation including a rigid allocation and an optimization based allocation, the formation employing the proposed MLC structure and CPA algorithm is robust against the fault (or disappearance) of the member robots and reduces the entire cost. In the MLC structure, a leader of the entire system is chosen among leader candidate robots. The CPA algorithm is the decentralized position allocation algorithm that assigns the robots to the vertex of the formation via the competition of the adjacent robots. The numerical simulations and experimental results are included to show the feasibility and the performance of the multiple robot system employing the proposed MLC structure and the CPA algorithm. PMID:25954956
Computationally efficient control allocation
NASA Technical Reports Server (NTRS)
Durham, Wayne (Inventor)
2001-01-01
A computationally efficient method for calculating near-optimal solutions to the three-objective, linear control allocation problem is disclosed. The control allocation problem is that of distributing the effort of redundant control effectors to achieve some desired set of objectives. The problem is deemed linear if control effectiveness is affine with respect to the individual control effectors. The optimal solution is that which exploits the collective maximum capability of the effectors within their individual physical limits. Computational efficiency is measured by the number of floating-point operations required for solution. The method presented returned optimal solutions in more than 90% of the cases examined; non-optimal solutions returned by the method were typically much less than 1% different from optimal and the errors tended to become smaller than 0.01% as the number of controls was increased. The magnitude of the errors returned by the present method was much smaller than those that resulted from either pseudo inverse or cascaded generalized inverse solutions. The computational complexity of the method presented varied linearly with increasing numbers of controls; the number of required floating point operations increased from 5.5 i, to seven times faster than did the minimum-norm solution (the pseudoinverse), and at about the same rate as did the cascaded generalized inverse solution. The computational requirements of the method presented were much better than that of previously described facet-searching methods which increase in proportion to the square of the number of controls.
[Equity of Health Resources Allocation in Minority Regions of Sichuan Province].
Chen, Nan; Tang, Wen; Liang, Zhi; Zou, Bo; Li, Xiao-song
2016-03-01
To determine equity of health resources allocation in minority regions of Sichuan province from 2009 to 2013. Health resources distribution equity among populations and across geographic catchments were measured using coefficients of Inter-Individual differences and Individual-Mean differences. Health resources, especially human resources, in minority regions increased slowly over the years. Poorer allocation equity was found in nursing resources compared with doctors and hospital beds. Better distribution equity was found among populations than across geographic catchments. High levels of equity in resource distributions among populations and across geographic catchments were found in Aba. In Liangshan, more equitable distributions were found in doctors and hospital beds compared with nurses. The rest of minority regions had poor absolute allocation equity in doctors and hospital beds among populations. Appropriate allocation of health resources can promote health development. Health resources allocation in minority regions of Sichuan province is unreasonable. The government and relevant departments should take actions to optimize health resources allocations.
Washburn, Kenneth
2012-11-01
1. Comprehend the basis for liver allocation and distribution in the United States. 2. Understand potential solutions to organ inequalities in the United States. 3. Understand the metrics used to assess the performance of organ procurement organizations. Copyright © 2012 American Association for the Study of Liver Diseases.
There is no silver bullet: the value of diversification in planning invasive species surveillance
Denys Yemshanov; Frank H. Koch; Bo Lu; D. Barry Lyons; Jeffrey P. Prestemon; Taylor Scarr; Klaus Koehler
2014-01-01
In this study we demonstrate how the notion of diversification can be used in broad-scale resource allocation for surveillance of invasive species. We consider the problem of short-term surveillance for an invasive species in a geographical environment.Wefind the optimal allocation of surveillance resourcesamongmultiple geographical subdivisions via application of a...
Optimal allocation of invasive species surveillance with the maximum expected coverage concept
Denys Yemshanov; Robert G. Haight; Frank H. Koch; Bo Lu; Robert Venette; D. Barry Lyons; Taylor Scarr; Krista Ryall; Brian. Leung
2015-01-01
We address the problem of geographically allocating scarce survey resources to detect pests in their pathways of introduction given information about their likelihood of movement between origins and destinations. We introduce a model for selecting destination sites for survey that departs from the aim of reducing propagule pressure (PP) in pest destinations and instead...
Allocation of R&D Equipment Expenditure Based on Organisation Discipline Profiles
ERIC Educational Resources Information Center
Wells, Xanthe E.; Foster, Nigel; Finch, Adam; Elsum, Ian
2017-01-01
Sufficient and state-of-the-art research equipment is one component required to maintain the research competitiveness of a R&D organisation. This paper describes an approach to inform more optimal allocation of equipment expenditure levels in a large and diverse R&D organisation, such as CSIRO. CSIRO is Australia's national science agency,…
COOPERATIVE ROUTING FOR DYNAMIC AERIAL LAYER NETWORKS
2018-03-01
Advisor, Computing & Communications Division Information Directorate This report is published in the interest of scientific and technical...information accumulation at the physical layer, and study the cooperative routing and resource allocation problems associated with such SU networks...interference power constraint is studied . In [Shi2012Joint], an optimal power and sub-carrier allocation strategy to maximize SUs’ throughput subject to
Effect of data compression on diagnostic accuracy in digital hand and chest radiography
NASA Astrophysics Data System (ADS)
Sayre, James W.; Aberle, Denise R.; Boechat, Maria I.; Hall, Theodore R.; Huang, H. K.; Ho, Bruce K. T.; Kashfian, Payam; Rahbar, Guita
1992-05-01
Image compression is essential to handle a large volume of digital images including CT, MR, CR, and digitized films in a digital radiology operation. The full-frame bit allocation using the cosine transform technique developed during the last few years has been proven to be an excellent irreversible image compression method. This paper describes the effect of using the hardware compression module on diagnostic accuracy in hand radiographs with subperiosteal resorption and chest radiographs with interstitial disease. Receiver operating characteristic analysis using 71 hand radiographs and 52 chest radiographs with five observers each demonstrates that there is no statistical significant difference in diagnostic accuracy between the original films and the compressed images with a compression ratio as high as 20:1.
Control of Finite-State, Finite Memory Stochastic Systems
NASA Technical Reports Server (NTRS)
Sandell, Nils R.
1974-01-01
A generalized problem of stochastic control is discussed in which multiple controllers with different data bases are present. The vehicle for the investigation is the finite state, finite memory (FSFM) stochastic control problem. Optimality conditions are obtained by deriving an equivalent deterministic optimal control problem. A FSFM minimum principle is obtained via the equivalent deterministic problem. The minimum principle suggests the development of a numerical optimization algorithm, the min-H algorithm. The relationship between the sufficiency of the minimum principle and the informational properties of the problem are investigated. A problem of hypothesis testing with 1-bit memory is investigated to illustrate the application of control theoretic techniques to information processing problems.
Jeankumar, Variam Ullas; Reshma, Rudraraju Srilakshmi; Vats, Rahul; Janupally, Renuka; Saxena, Shalini; Yogeeswari, Perumal; Sriram, Dharmarajan
2016-10-21
A structure based medium throughput virtual screening campaign of BITS-Pilani in house chemical library to identify novel binders of Mycobacterium tuberculosis gyrase ATPase domain led to the discovery of a quinoline scaffold. Further medicinal chemistry explorations on the right hand core of the early hit, engendered a potent lead demonstrating superior efficacy both in the enzyme and whole cell screening assay. The binding affinity shown at the enzyme level was further corroborated by biophysical characterization techniques. Early pharmacokinetic evaluation of the optimized analogue was encouraging and provides interesting potential for further optimization. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Asset Allocation and Optimal Contract for Delegated Portfolio Management
NASA Astrophysics Data System (ADS)
Liu, Jingjun; Liang, Jianfeng
This article studies the portfolio selection and the contracting problems between an individual investor and a professional portfolio manager in a discrete-time principal-agent framework. Portfolio selection and optimal contracts are obtained in closed form. The optimal contract was composed with the fixed fee, the cost, and the fraction of excess expected return. The optimal portfolio is similar to the classical two-fund separation theorem.
Performance Analysis for Channel Estimation With 1-Bit ADC and Unknown Quantization Threshold
NASA Astrophysics Data System (ADS)
Stein, Manuel S.; Bar, Shahar; Nossek, Josef A.; Tabrikian, Joseph
2018-05-01
In this work, the problem of signal parameter estimation from measurements acquired by a low-complexity analog-to-digital converter (ADC) with $1$-bit output resolution and an unknown quantization threshold is considered. Single-comparator ADCs are energy-efficient and can be operated at ultra-high sampling rates. For analysis of such systems, a fixed and known quantization threshold is usually assumed. In the symmetric case, i.e., zero hard-limiting offset, it is known that in the low signal-to-noise ratio (SNR) regime the signal processing performance degrades moderately by ${2}/{\\pi}$ ($-1.96$ dB) when comparing to an ideal $\\infty$-bit converter. Due to hardware imperfections, low-complexity $1$-bit ADCs will in practice exhibit an unknown threshold different from zero. Therefore, we study the accuracy which can be obtained with receive data processed by a hard-limiter with unknown quantization level by using asymptotically optimal channel estimation algorithms. To characterize the estimation performance of these nonlinear algorithms, we employ analytic error expressions for different setups while modeling the offset as a nuisance parameter. In the low SNR regime, we establish the necessary condition for a vanishing loss due to missing offset knowledge at the receiver. As an application, we consider the estimation of single-input single-output wireless channels with inter-symbol interference and validate our analysis by comparing the analytic and experimental performance of the studied estimation algorithms. Finally, we comment on the extension to multiple-input multiple-output channel models.
ERIC Educational Resources Information Center
Cody, Martin L.
1974-01-01
Discusses the optimality of natural selection, ways of testing for optimum solutions to problems of time - or energy-allocation in nature, optimum patterns in spatial distribution and diet breadth, and how best to travel over a feeding area so that food intake is maximized. (JR)
2017-03-01
RECRUITING WITH THE NEW PLANNED RESOURCE OPTIMIZATION MODEL WITH EXPERIMENTAL DESIGN (PROM-WED) by Allison R. Hogarth March 2017 Thesis...with the New Planned Resource Optimization Model With Experimental Design (PROM-WED) 5. FUNDING NUMBERS 6. AUTHOR(S) Allison R. Hogarth 7. PERFORMING...has historically used a non -linear optimization model, the Planned Resource Optimization (PRO) model, to help inform decisions on the allocation of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karve, Abhijit A.; Alexoff, David; Kim, Dohyun
Although important aspects of whole-plant carbon allocation in crop plants (e.g., to grain) occur late in development when the plants are large, techniques to study carbon transport and allocation processes have not been adapted for large plants. Positron emission tomography (PET), developed for dynamic imaging in medicine, has been applied in plant studies to measure the transport and allocation patterns of carbohydrates, nutrients, and phytohormones labeled with positron-emitting radioisotopes. However, the cost of PET and its limitation to smaller plants has restricted its use in plant biology. Here we describe the adaptation and optimization of a commercial clinical PET scannermore » to measure transport dynamics and allocation patterns of 11C-photoassimilates in large crops. Based on measurements of a phantom, we optimized instrument settings, including use of 3-D mode and attenuation correction to maximize the accuracy of measurements. To demonstrate the utility of PET, we measured 11C-photoassimilate transport and allocation in Sorghum bicolor, an important staple crop, at vegetative and reproductive stages (40 and 70 days after planting; DAP). The 11C-photoassimilate transport speed did not change over the two developmental stages. However, within a stem, transport speeds were reduced across nodes, likely due to higher 11C-photoassimilate unloading in the nodes. Photosynthesis in leaves and the amount of 11C that was exported to the rest of the plant decreased as plants matured. In young plants, exported 11C was allocated mostly (88 %) to the roots and stem, but in flowering plants (70 DAP) the majority of the exported 11C (64 %) was allocated to the apex. Our results show that commercial PET scanners can be used reliably to measure whole-plant C-allocation in large plants nondestructively including, importantly, allocation to roots in soil. This capability revealed extreme changes in carbon allocation in sorghum plants, as they advanced to maturity. Further, our results suggest that nodes may be important control points for photoassimilate distribution in crops of the family Poaceae. In conclusion, quantifying real-time carbon allocation and photoassimilate transport dynamics, as demonstrated here, will be important for functional genomic studies to unravel the mechanisms controlling phloem transport in large crop plants, which will provide crucial insights for improving yields.« less
Karve, Abhijit A.; Alexoff, David; Kim, Dohyun; ...
2015-11-09
Although important aspects of whole-plant carbon allocation in crop plants (e.g., to grain) occur late in development when the plants are large, techniques to study carbon transport and allocation processes have not been adapted for large plants. Positron emission tomography (PET), developed for dynamic imaging in medicine, has been applied in plant studies to measure the transport and allocation patterns of carbohydrates, nutrients, and phytohormones labeled with positron-emitting radioisotopes. However, the cost of PET and its limitation to smaller plants has restricted its use in plant biology. Here we describe the adaptation and optimization of a commercial clinical PET scannermore » to measure transport dynamics and allocation patterns of 11C-photoassimilates in large crops. Based on measurements of a phantom, we optimized instrument settings, including use of 3-D mode and attenuation correction to maximize the accuracy of measurements. To demonstrate the utility of PET, we measured 11C-photoassimilate transport and allocation in Sorghum bicolor, an important staple crop, at vegetative and reproductive stages (40 and 70 days after planting; DAP). The 11C-photoassimilate transport speed did not change over the two developmental stages. However, within a stem, transport speeds were reduced across nodes, likely due to higher 11C-photoassimilate unloading in the nodes. Photosynthesis in leaves and the amount of 11C that was exported to the rest of the plant decreased as plants matured. In young plants, exported 11C was allocated mostly (88 %) to the roots and stem, but in flowering plants (70 DAP) the majority of the exported 11C (64 %) was allocated to the apex. Our results show that commercial PET scanners can be used reliably to measure whole-plant C-allocation in large plants nondestructively including, importantly, allocation to roots in soil. This capability revealed extreme changes in carbon allocation in sorghum plants, as they advanced to maturity. Further, our results suggest that nodes may be important control points for photoassimilate distribution in crops of the family Poaceae. In conclusion, quantifying real-time carbon allocation and photoassimilate transport dynamics, as demonstrated here, will be important for functional genomic studies to unravel the mechanisms controlling phloem transport in large crop plants, which will provide crucial insights for improving yields.« less
Allocating HIV prevention funds in the United States: recommendations from an optimization model.
Lasry, Arielle; Sansom, Stephanie L; Hicks, Katherine A; Uzunangelov, Vladislav
2012-01-01
The Centers for Disease Control and Prevention (CDC) had an annual budget of approximately $327 million to fund health departments and community-based organizations for core HIV testing and prevention programs domestically between 2001 and 2006. Annual HIV incidence has been relatively stable since the year 2000 and was estimated at 48,600 cases in 2006 and 48,100 in 2009. Using estimates on HIV incidence, prevalence, prevention program costs and benefits, and current spending, we created an HIV resource allocation model that can generate a mathematically optimal allocation of the Division of HIV/AIDS Prevention's extramural budget for HIV testing, and counseling and education programs. The model's data inputs and methods were reviewed by subject matter experts internal and external to the CDC via an extensive validation process. The model projects the HIV epidemic for the United States under different allocation strategies under a fixed budget. Our objective is to support national HIV prevention planning efforts and inform the decision-making process for HIV resource allocation. Model results can be summarized into three main recommendations. First, more funds should be allocated to testing and these should further target men who have sex with men and injecting drug users. Second, counseling and education interventions ought to provide a greater focus on HIV positive persons who are aware of their status. And lastly, interventions should target those at high risk for transmitting or acquiring HIV, rather than lower-risk members of the general population. The main conclusions of the HIV resource allocation model have played a role in the introduction of new programs and provide valuable guidance to target resources and improve the impact of HIV prevention efforts in the United States.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canavan, G.H.
The optimal allocation of space-based interceptors (SBIs) between fixed, heavy missiles and mobile singlets can be derived from approximate expressions for the boost-phase penetration of each. Singlets can cluster before launch and have shorter burn times, which reduce their availability to SBIs by an order of magnitude. Singlet penetration decreased slowly with the number of SBIs allocated to them; heavy missile penetration falls rapidly. The allocation to the heavy missiles falls linearly with their number. The penetration of heavy and singlet missiles is proportional to their numbers and inversely proportional to their availability. 8 refs., 2 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, He; Sun, Yannan; Carroll, Thomas E.
We propose a coordination algorithm for cooperative power allocation among a collection of commercial buildings within a campus. We introduced thermal and power models of a typical commercial building Heating, Ventilation, and Air Conditioning (HVAC) system, and utilize model predictive control to characterize their power flexibility. The power allocation problem is formulated as a cooperative game using the Nash Bargaining Solution (NBS) concept, in which buildings collectively maximize the product of their utilities subject to their local flexibility constraints and a total power limit set by the campus coordinator. To solve the optimal allocation problem, a distributed protocol is designedmore » using dual decomposition of the Nash bargaining problem. Numerical simulations are performed to demonstrate the efficacy of our proposed allocation method« less
2007-03-01
01101101 " => data...3401101010" => inv_data := Xං" when " => inv_data := X്" when " => inv_data := X"b8" when " 01101101 " => inv_data := X"b3...3400110011" when " 01101101 " => data := " when " => data := " when " => data := "
Throughput of Coded Optical CDMA Systems with AND Detectors
NASA Astrophysics Data System (ADS)
Memon, Kehkashan A.; Umrani, Fahim A.; Umrani, A. W.; Umrani, Naveed A.
2012-09-01
Conventional detection techniques used in optical code-division multiple access (OCDMA) systems are not optimal and result in poor bit error rate performance. This paper analyzes the coded performance of optical CDMA systems with AND detectors for enhanced throughput efficiencies and improved error rate performance. The results show that the use of AND detectors significantly improve the performance of an optical channel.
Variable-rate optical communication through the turbulent atmosphere. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Levitt, B. K.
1971-01-01
It was demonstrated that the data transmitter can extract real time, channel state information by processing the field received when a pilot tone is sent from the data receiver to the data transmitter. Based on these channel measurements, optimal variable rate techniques were derived and significant improvements in system perforamnce were obtained, particularly at low bit error rates.
Speech coding at low to medium bit rates
NASA Astrophysics Data System (ADS)
Leblanc, Wilfred Paul
1992-09-01
Improved search techniques coupled with improved codebook design methodologies are proposed to improve the performance of conventional code-excited linear predictive coders for speech. Improved methods for quantizing the short term filter are developed by employing a tree search algorithm and joint codebook design to multistage vector quantization. Joint codebook design procedures are developed to design locally optimal multistage codebooks. Weighting during centroid computation is introduced to improve the outlier performance of the multistage vector quantizer. Multistage vector quantization is shown to be both robust against input characteristics and in the presence of channel errors. Spectral distortions of about 1 dB are obtained at rates of 22-28 bits/frame. Structured codebook design procedures for excitation in code-excited linear predictive coders are compared to general codebook design procedures. Little is lost using significant structure in the excitation codebooks while greatly reducing the search complexity. Sparse multistage configurations are proposed for reducing computational complexity and memory size. Improved search procedures are applied to code-excited linear prediction which attempt joint optimization of the short term filter, the adaptive codebook, and the excitation. Improvements in signal to noise ratio of 1-2 dB are realized in practice.
Sequenced subjective accents for brain-computer interfaces
NASA Astrophysics Data System (ADS)
Vlek, R. J.; Schaefer, R. S.; Gielen, C. C. A. M.; Farquhar, J. D. R.; Desain, P.
2011-06-01
Subjective accenting is a cognitive process in which identical auditory pulses at an isochronous rate turn into the percept of an accenting pattern. This process can be voluntarily controlled, making it a candidate for communication from human user to machine in a brain-computer interface (BCI) system. In this study we investigated whether subjective accenting is a feasible paradigm for BCI and how its time-structured nature can be exploited for optimal decoding from non-invasive EEG data. Ten subjects perceived and imagined different metric patterns (two-, three- and four-beat) superimposed on a steady metronome. With an offline classification paradigm, we classified imagined accented from non-accented beats on a single trial (0.5 s) level with an average accuracy of 60.4% over all subjects. We show that decoding of imagined accents is also possible with a classifier trained on perception data. Cyclic patterns of accents and non-accents were successfully decoded with a sequence classification algorithm. Classification performances were compared by means of bit rate. Performance in the best scenario translates into an average bit rate of 4.4 bits min-1 over subjects, which makes subjective accenting a promising paradigm for an online auditory BCI.
Suess, D.; Fuger, M.; Abert, C.; Bruckner, F.; Vogler, C.
2016-01-01
We report two effects that lead to a significant reduction of the switching field distribution in exchange spring media. The first effect relies on a subtle mechanism of the interplay between exchange coupling between soft and hard layers and anisotropy that allows significant reduction of the switching field distribution in exchange spring media. This effect reduces the switching field distribution by about 30% compared to single-phase media. A second effect is that due to the improved thermal stability of exchange spring media over single-phase media, the jitter due to thermal fluctuation is significantly smaller for exchange spring media than for single-phase media. The influence of this overall improved switching field distribution on the transition jitter in granular recording and the bit error rate in bit-patterned magnetic recording is discussed. The transition jitter in granular recording for a distribution of Khard values of 3% in the hard layer, taking into account thermal fluctuations during recording, is estimated to be a = 0.78 nm, which is similar to the best reported calculated jitter in optimized heat-assisted recording media. PMID:27245287
Xu, M; Li, Y; Kang, T Z; Zhang, T S; Ji, J H; Yang, S W
2016-11-14
Two orthogonal modulation optical label switching(OLS) schemes, which are based on payload of polarization multiplexing-differential quadrature phase shift keying(POLMUX-DQPSK or PDQ) modulated with identifications of duobinary (DB) label and pulse position modulation(PPM) label, are researched in high bit-rate OLS network. The BER performance of hybrid modulation with payload and label signals are discussed and evaluated in theory and simulation. The theoretical BER expressions of PDQ, PDQ-DB and PDQ-PPM are given with analysis method of hybrid modulation encoding in different the bit-rate ratios of payload and label. Theoretical derivation results are shown that the payload of hybrid modulation has a certain gain of receiver sensitivity than payload without label. The sizes of payload BER gain obtained from hybrid modulation are related to the different types of label. The simulation results are consistent with that of theoretical conclusions. The extinction ratio (ER) conflicting between hybrid encoding of intensity and phase types can be compromised and optimized in OLS system of hybrid modulation. The BER analysis method of hybrid modulation encoding in OLS system can be applied to other n-ary hybrid modulation or combination modulation systems.
Capacity-optimized mp2 audio watermarking
NASA Astrophysics Data System (ADS)
Steinebach, Martin; Dittmann, Jana
2003-06-01
Today a number of audio watermarking algorithms have been proposed, some of them at a quality making them suitable for commercial applications. The focus of most of these algorithms is copyright protection. Therefore, transparency and robustness are the most discussed and optimised parameters. But other applications for audio watermarking can also be identified stressing other parameters like complexity or payload. In our paper, we introduce a new mp2 audio watermarking algorithm optimised for high payload. Our algorithm uses the scale factors of an mp2 file for watermark embedding. They are grouped and masked based on a pseudo-random pattern generated from a secret key. In each group, we embed one bit. Depending on the bit to embed, we change the scale factors by adding 1 where necessary until it includes either more even or uneven scale factors. An uneven group has a 1 embedded, an even group a 0. The same rule is later applied to detect the watermark. The group size can be increased or decreased for transparency/payload trade-off. We embed 160 bits or more in an mp2 file per second without reducing perceived quality. As an application example, we introduce a prototypic Karaoke system displaying song lyrics embedded as a watermark.
FPGA-based LDPC-coded APSK for optical communication systems.
Zou, Ding; Lin, Changyu; Djordjevic, Ivan B
2017-02-20
In this paper, with the aid of mutual information and generalized mutual information (GMI) capacity analyses, it is shown that the geometrically shaped APSK that mimics an optimal Gaussian distribution with equiprobable signaling together with the corresponding gray-mapping rules can approach the Shannon limit closer than conventional quadrature amplitude modulation (QAM) at certain range of FEC overhead for both 16-APSK and 64-APSK. The field programmable gate array (FPGA) based LDPC-coded APSK emulation is conducted on block interleaver-based and bit interleaver-based systems; the results verify a significant improvement in hardware efficient bit interleaver-based systems. In bit interleaver-based emulation, the LDPC-coded 64-APSK outperforms 64-QAM, in terms of symbol signal-to-noise ratio (SNR), by 0.1 dB, 0.2 dB, and 0.3 dB at spectral efficiencies of 4.8, 4.5, and 4.2 b/s/Hz, respectively. It is found by emulation that LDPC-coded 64-APSK for spectral efficiencies of 4.8, 4.5, and 4.2 b/s/Hz is 1.6 dB, 1.7 dB, and 2.2 dB away from the GMI capacity.
Physically unclonable cryptographic primitives using self-assembled carbon nanotubes.
Hu, Zhaoying; Comeras, Jose Miguel M Lobez; Park, Hongsik; Tang, Jianshi; Afzali, Ali; Tulevski, George S; Hannon, James B; Liehr, Michael; Han, Shu-Jen
2016-06-01
Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO2 trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size.
Physically unclonable cryptographic primitives using self-assembled carbon nanotubes
NASA Astrophysics Data System (ADS)
Hu, Zhaoying; Comeras, Jose Miguel M. Lobez; Park, Hongsik; Tang, Jianshi; Afzali, Ali; Tulevski, George S.; Hannon, James B.; Liehr, Michael; Han, Shu-Jen
2016-06-01
Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO2 trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size.
A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling.
Li, Bin-Bin; Wang, Ling
2007-06-01
This paper proposes a hybrid quantum-inspired genetic algorithm (HQGA) for the multiobjective flow shop scheduling problem (FSSP), which is a typical NP-hard combinatorial optimization problem with strong engineering backgrounds. On the one hand, a quantum-inspired GA (QGA) based on Q-bit representation is applied for exploration in the discrete 0-1 hyperspace by using the updating operator of quantum gate and genetic operators of Q-bit. Moreover, random-key representation is used to convert the Q-bit representation to job permutation for evaluating the objective values of the schedule solution. On the other hand, permutation-based GA (PGA) is applied for both performing exploration in permutation-based scheduling space and stressing exploitation for good schedule solutions. To evaluate solutions in multiobjective sense, a randomly weighted linear-sum function is used in QGA, and a nondominated sorting technique including classification of Pareto fronts and fitness assignment is applied in PGA with regard to both proximity and diversity of solutions. To maintain the diversity of the population, two trimming techniques for population are proposed. The proposed HQGA is tested based on some multiobjective FSSPs. Simulation results and comparisons based on several performance metrics demonstrate the effectiveness of the proposed HQGA.
Li, Guangxia; An, Kang; Gao, Bin; Zheng, Gan
2017-01-01
This paper proposes novel satellite-based wireless sensor networks (WSNs), which integrate the WSN with the cognitive satellite terrestrial network. Having the ability to provide seamless network access and alleviate the spectrum scarcity, cognitive satellite terrestrial networks are considered as a promising candidate for future wireless networks with emerging requirements of ubiquitous broadband applications and increasing demand for spectral resources. With the emerging environmental and energy cost concerns in communication systems, explicit concerns on energy efficient resource allocation in satellite networks have also recently received considerable attention. In this regard, this paper proposes energy-efficient optimal power allocation schemes in the cognitive satellite terrestrial networks for non-real-time and real-time applications, respectively, which maximize the energy efficiency (EE) of the cognitive satellite user while guaranteeing the interference at the primary terrestrial user below an acceptable level. Specifically, average interference power (AIP) constraint is employed to protect the communication quality of the primary terrestrial user while average transmit power (ATP) or peak transmit power (PTP) constraint is adopted to regulate the transmit power of the satellite user. Since the energy-efficient power allocation optimization problem belongs to the nonlinear concave fractional programming problem, we solve it by combining Dinkelbach’s method with Lagrange duality method. Simulation results demonstrate that the fading severity of the terrestrial interference link is favorable to the satellite user who can achieve EE gain under the ATP constraint comparing to the PTP constraint. PMID:28869546
NASA Astrophysics Data System (ADS)
Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter
2014-05-01
Optimal management of conjunctive use of surface water and groundwater has been attempted with different algorithms in the literature. In this study, a hydro-economic modelling approach to optimize conjunctive use of scarce surface water and groundwater resources under uncertainty is presented. A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due to head-dependent pumping costs. These dynamic pumping costs strongly affect the total costs and can lead to non-convexity of the future cost function. The water user groups (agriculture, industry, domestic) are characterized by inelastic demands and fixed water allocation and water supply curtailment costs. As in traditional SDP approaches, one step-ahead sub-problems are solved to find the optimal management at any time knowing the inflow scenario and reservoir/aquifer storage levels. These non-linear sub-problems are solved using a genetic algorithm (GA) that minimizes the sum of the immediate and future costs for given surface water reservoir and groundwater aquifer end storages. The immediate cost is found by solving a simple linear allocation sub-problem, and the future costs are assessed by interpolation in the total cost matrix from the following time step. Total costs for all stages, reservoir states, and inflow scenarios are used as future costs to drive a forward moving simulation under uncertain water availability. The use of a GA to solve the sub-problems is computationally more costly than a traditional SDP approach with linearly interpolated future costs. However, in a two-reservoir system the future cost function would have to be represented by a set of planes, and strict convexity in both the surface water and groundwater dimension cannot be maintained. The optimization framework based on the GA is still computationally feasible and represents a clean and customizable method. The method has been applied to the Ziya River basin, China. The basin is located on the North China Plain and is subject to severe water scarcity, which includes surface water droughts and groundwater over-pumping. The head-dependent groundwater pumping costs will enable assessment of the long-term effects of increased electricity prices on the groundwater pumping. The coupled optimization framework is used to assess realistic alternative development scenarios for the basin. In particular the potential for using electricity pricing policies to reach sustainable groundwater pumping is investigated.
Scheduling Jobs with Variable Job Processing Times on Unrelated Parallel Machines
Zhang, Guang-Qian; Wang, Jian-Jun; Liu, Ya-Jing
2014-01-01
m unrelated parallel machines scheduling problems with variable job processing times are considered, where the processing time of a job is a function of its position in a sequence, its starting time, and its resource allocation. The objective is to determine the optimal resource allocation and the optimal schedule to minimize a total cost function that dependents on the total completion (waiting) time, the total machine load, the total absolute differences in completion (waiting) times on all machines, and total resource cost. If the number of machines is a given constant number, we propose a polynomial time algorithm to solve the problem. PMID:24982933
Ryeznik, Yevgen; Sverdlov, Oleksandr; Wong, Weng Kee
2015-08-01
Response-adaptive randomization designs are becoming increasingly popular in clinical trial practice. In this paper, we present RARtool , a user interface software developed in MATLAB for designing response-adaptive randomized comparative clinical trials with censored time-to-event outcomes. The RARtool software can compute different types of optimal treatment allocation designs, and it can simulate response-adaptive randomization procedures targeting selected optimal allocations. Through simulations, an investigator can assess design characteristics under a variety of experimental scenarios and select the best procedure for practical implementation. We illustrate the utility of our RARtool software by redesigning a survival trial from the literature.