Cahyadi, Christine; Heng, Paul Wan Sia; Chan, Lai Wah
2011-03-01
The aim of this study was to identify and optimize the critical process parameters of the newly developed Supercell quasi-continuous coater for optimal tablet coat quality. Design of experiments, aided by multivariate analysis techniques, was used to quantify the effects of various coating process conditions and their interactions on the quality of film-coated tablets. The process parameters varied included batch size, inlet temperature, atomizing pressure, plenum pressure, spray rate and coating level. An initial screening stage was carried out using a 2(6-1(IV)) fractional factorial design. Following these preliminary experiments, optimization study was carried out using the Box-Behnken design. Main response variables measured included drug-loading efficiency, coat thickness variation, and the extent of tablet damage. Apparent optimum conditions were determined by using response surface plots. The process parameters exerted various effects on the different response variables. Hence, trade-offs between individual optima were necessary to obtain the best compromised set of conditions. The adequacy of the optimized process conditions in meeting the combined goals for all responses was indicated by the composite desirability value. By using response surface methodology and optimization, coating conditions which produced coated tablets of high drug-loading efficiency, low incidences of tablet damage and low coat thickness variation were defined. Optimal conditions were found to vary over a large spectrum when different responses were considered. Changes in processing parameters across the design space did not result in drastic changes to coat quality, thereby demonstrating robustness in the Supercell coating process. © 2010 American Association of Pharmaceutical Scientists
Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Mihm, Sebastian; Duda, Thomas; Gruner, Heiko; Thomas, Georg; Dzur, Birger
2012-06-01
Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.
NASA Astrophysics Data System (ADS)
Janneck, Robby; Vercesi, Federico; Heremans, Paul; Genoe, Jan; Rolin, Cedric
2016-09-01
Organic thin film transistors (OTFTs) based on single crystalline thin films of organic semiconductors have seen considerable development in the recent years. The most successful method for the fabrication of single crystalline films are solution-based meniscus guided coating techniques such as dip-coating, solution shearing or zone casting. These upscalable methods enable rapid and efficient film formation without additional processing steps. The single-crystalline film quality is strongly dependent on solvent choice, substrate temperature and coating speed. So far, however, process optimization has been conducted by trial and error methods, involving, for example, the variation of coating speeds over several orders of magnitude. Through a systematic study of solvent phase change dynamics in the meniscus region, we develop a theoretical framework that links the optimal coating speed to the solvent choice and the substrate temperature. In this way, we can accurately predict an optimal processing window, enabling fast process optimization. Our approach is verified through systematic OTFT fabrication based on films grown with different semiconductors, solvents and substrate temperatures. The use of best predicted coating speeds delivers state of the art devices. In the case of C8BTBT, OTFTs show well-behaved characteristics with mobilities up to 7 cm2/Vs and onset voltages close to 0 V. Our approach also explains well optimal recipes published in the literature. This route considerably accelerates parameter screening for all meniscus guided coating techniques and unveils the physics of single crystalline film formation.
NASA Astrophysics Data System (ADS)
Gao, Feng
The hot section components in gas turbines are subjected to a harsh environment with the temperature being increased continuously. The higher temperature has directly resulted in severe oxidation of these components. Monolithic coatings such as MCrAIY and aluminide have been traditionally used to protect the components from oxidation; however, increased operating temperature quickly deteriorates the coatings due to accelerated diffusion of aluminum in the coatings. To improve the oxidation resistance a group of multilayered coatings are developed in this study. The multilayered coatings consist of a Cr-Si co-deposited layer as the diffusion barrier, a plasma sprayed NiCrA1Y coating as the middle layer and an aluminized top layer. The Cr-Si and aluminized layers are fabricated using pack cementation processes and the NiCrA1Y coatings are produced using the Mettech Axial III(TM) System. All of the coating processes are optimized using the methodology of Design of Experiments (DOE) and the results are analyzed using statistical method. The optimal processes are adopted to fabricate the multilayered coatings for oxidation tests. The coatings are exposed in air at 1050°C and 1150°C for 1000 hr. The results indicate that a Cr layer and a silicon-rich barrier layer have formed on the interface between the Cr-Si coating and the NiCrA1Y coating. This barrier layer not only prevents aluminum and chromium from diffusing into the substrate, but also impedes the diffusion of other elements from the substrate into the coating. The results also reveal that, for optimal oxidation resistance at 1050°C, the top layer in a multilayered coating should have at least Al/Ni ratio of one; whereas the multilayered coating with the All Ni ratio of two in the top layer exhibits the best oxidation resistance at 1150°C. The DOE methodology provides an excellent means for process optimization and the selection of oxidation test matrix, and also offers a more thorough understanding of the effects of process parameters on the coating microstructure, and the effects of layers and their interactions on the oxidation behavior of the multilayered coatings.
NASA Astrophysics Data System (ADS)
Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine
2012-09-01
The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.
NASA Astrophysics Data System (ADS)
Zheng, Erhu; Huang, Yi; Zhang, Haiyang
2017-03-01
As CMOS technology reaches 14nm node and beyond, one of the key challenges of the extension of 193nm immersion lithography is how to control the line edge and width roughness (LER/LWR). For Self-aligned Multiple Patterning (SaMP), LER becomes larger while LWR becomes smaller as the process proceeds[1]. It means plasma etch process becomes more and more dominant for LER reduction. In this work, we mainly focus on the core etch solution including an extra plasma coating process introduced before the bottom anti reflective coating (BARC) open step, and an extra plasma cure process applied right after BARC-open step. Firstly, we leveraged the optimal design experiment (ODE) to investigate the impact of plasma coating step on LER and identified the optimal condition. ODE is an appropriate method for the screening experiments of non-linear parameters in dynamic process models, especially for high-cost-intensive industry [2]. Finally, we obtained the proper plasma coating treatment condition that has been proven to achieve 32% LER improvement compared with standard process. Furthermore, the plasma cure scheme has been also optimized with ODE method to cover the LWR degradation induced by plasma coating treatment.
NASA Astrophysics Data System (ADS)
Sadeghimeresht, E.; Markocsan, N.; Nylén, P.
2016-12-01
Selection of the thermal spray process is the most important step toward a proper coating solution for a given application as important coating characteristics such as adhesion and microstructure are highly dependent on it. In the present work, a process-microstructure-properties-performance correlation study was performed in order to figure out the main characteristics and corrosion performance of the coatings produced by different thermal spray techniques such as high-velocity air fuel (HVAF), high-velocity oxy fuel (HVOF), and atmospheric plasma spraying (APS). Previously optimized HVOF and APS process parameters were used to deposit Ni, NiCr, and NiAl coatings and compare with HVAF-sprayed coatings with randomly selected process parameters. As the HVAF process presented the best coating characteristics and corrosion behavior, few process parameters such as feed rate and standoff distance (SoD) were investigated to systematically optimize the HVAF coatings in terms of low porosity and high corrosion resistance. The Ni and NiAl coatings with lower porosity and better corrosion behavior were obtained at an average SoD of 300 mm and feed rate of 150 g/min. The NiCr coating sprayed at a SoD of 250 mm and feed rate of 75 g/min showed the highest corrosion resistance among all investigated samples.
Advanced thermal barrier coatings for operation in high hydrogen content fueled gas turbines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampath, Sanjay
2015-04-02
The Center for Thermal Spray Research (CTSR) at Stony Brook University in partnership with its industrial Consortium for Thermal Spray Technology is investigating science and technology related to advanced metallic alloy bond coats and ceramic thermal barrier coatings for applications in the hot section of gasified coal-based high hydrogen turbine power systems. In conjunction with our OEM partners (GE and Siemens) and through strategic partnership with Oak Ridge National Laboratory (ORNL) (materials degradation group and high temperature materials laboratory), a systems approach, considering all components of the TBC (multilayer ceramic top coat, metallic bond coat & superalloy substrate) is beingmore » taken during multi-layered coating design, process development and subsequent environmental testing. Recent advances in process science and advanced in situ thermal spray coating property measurement enabled within CTSR has been incorporated for full-field enhancement of coating and process reliability. The development of bond coat processing during this program explored various aspects of processing and microstructure and linked them to performance. The determination of the bond coat material was carried out during the initial stages of the program. Based on tests conducted both at Stony Brook University as well as those carried out at ORNL it was determined that the NiCoCrAlYHfSi (Amdry) bond coats had considerable benefits over NiCoCrAlY bond coats. Since the studies were also conducted at different cycling frequencies, thereby addressing an associated need for performance under different loading conditions, the Amdry bond coat was selected as the material of choice going forward in the program. With initial investigations focused on the fabrication of HVOF bond coats and the performance of TBC under furnace cycle tests , several processing strategies were developed. Two-layered HVOF bond coats were developed to render optimal balance of density and surface roughness and resulted in improved TBC lifetimes. Processing based approaches of identifying optimal processing regimes deploying advanced in-situ coating property measurements and in-flight diagnostic tools were used to develop process maps for bond coats. Having established a framework for the bond coat processing using the HVOF process, effort were channeled towards fabrication of APS and VPS bond coats with the same material composition. Comparative evaluation of the three deposition processes with regard to their microstrcuture , surface profiles and TBC performance were carried out and provided valuable insights into factors that require concurrent consideration for the development of bond coats for advanced TBC systems. Over the course of this program several advancements were made on the development of durable thermal barrier coatings. Process optimization techniques were utilized to identify processing regimes for both conventional YSZ as well as other TBC compositions such as Gadolinium Zirconate and other Co-doped materials. Measurement of critical properties for these formed the initial stages of the program to identify potential challenges in their implementation as part of a TBC system. High temperature thermal conductivity measurements as well as sintering behavior of both YSZ and GDZ coatings were evaluated as part of initial efforts to undersand the influence of processing on coating properties. By effectively linking fundamental coating properties of fracture toughness and elastic modulus to the cyclic performance of coatings, a durability strategy for APS YSZ coatings was developed. In order to meet the goals of fabricating a multimaterial TBC system further research was carried out on the development of a gradient thermal conductivity model and the evaluation of sintering behavior of multimaterial coatings. Layer optimization for desired properties in the multimaterial TBC was achieved by an iterative feedback approach utilizing process maps and in-situ and ex-situ coating property sensors. Addressing the challenges pertaining to the integration of the two materials YSZ and GDZ led to one of most the critical outcomes of this program, the development of durable multimaterial, multifunctional TBC systems.« less
Processing and plating helical metallic coils
NASA Technical Reports Server (NTRS)
1972-01-01
The results of research efforts to develop an optimized nickel cobalt coating suitable as a recording medium are outlined. The coating is to be used directly on a BeCu helical coil substrate of a helical coil NASA recorder. Specifically, efforts were made to: optimize the coating thickness; establish processes and techniques adaptable for the production of finalized plated helical coils; design and fabricate the equipment required for production and testing of the coils; and deliver finalized helical coils to NASA.
Investigation about the Chrome Steel Wire Arc Spray Process and the Resulting Coating Properties
NASA Astrophysics Data System (ADS)
Wilden, J.; Bergmann, J. P.; Jahn, S.; Knapp, S.; van Rodijnen, F.; Fischer, G.
2007-12-01
Nowadays, wire-arc spraying of chromium steel has gained an important market share for corrosion and wear protection applications. However, detailed studies are the basis for further process optimization. In order to optimize the process parameters and to evaluate the effects of the spray parameters DoE-based experiments had been carried out with high-speed camera shoots. In this article, the effects of spray current, voltage, and atomizing gas pressure on the particle jet properties, mean particle velocity and mean particle temperature and plume width on X46Cr13 wire are presented using an online process monitoring device. Moreover, the properties of the coatings concerning the morphology, composition and phase formation were subject of the investigations using SEM, EDX, and XRD-analysis. These deep investigations allow a defined verification of the influence of process parameters on spray plume and coating properties and are the basis for further process optimization.
Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony
2017-10-01
This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates.
Johnson, Ian; Wang, Sebo Michelle; Silken, Christine; Liu, Huinan
2016-05-01
Nanocomposite coatings offer multiple functions simultaneously to improve the interfacial properties of magnesium (Mg) alloys for skeletal implant applications, e.g., controlling the degradation rate of Mg substrates, improving bone cell functions, and providing drug delivery capability. However, the effective service time of nanocomposite coatings may be limited due to their early delamination from the Mg-based substrates. Therefore, the objective of this study was to address the delamination issue of nanocomposite coatings, improve the coating properties for reducing the degradation of Mg-based substrates, and thus improve their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The surface conditions of the substrates, polymer component type of the nanocomposite coatings, and post-deposition processing are the key parameters that contribute to the efficacy of the nanocomposite coatings in regulating substrate degradation and bone cell responses. Specifically, the effects of metallic surface versus alkaline heat-treated hydroxide surface of the substrates on coating quality were investigated. For the nanocomposite coatings, nanophase hydroxyapatite (nHA) was dispersed in three types of biodegradable polymers, i.e., poly(lactic-co-glycolic acid) (PLGA), poly(l-lactic acid) (PLLA), or poly(caprolactone) (PCL) to determine which polymer component could provide integrated properties for slowest Mg degradation. The nanocomposite coatings with or without post-deposition processing, i.e., melting, annealing, were compared to determine which processing route improved the properties of the nanocomposite coatings most significantly. The results showed that optimizing the coating processes addressed the delamination issue. The melted then annealed nHA/PCL coating on the metallic Mg substrates showed the slowest degradation and the best coating adhesion, among all the combinations of conditions studied; and, it improved the adhesion density of BMSCs. This study elucidated the key parameters for optimizing nanocomposite coatings on Mg-based substrates for skeletal implant applications, and provided rational design guidelines for the nanocomposite coatings on Mg alloys for potential clinical translation of biodegradable Mg-based implants. This manuscript describes the systemic optimization of nanocomposite coatings to control the degradation and bioactivity of magnesium for skeletal implant applications. The key parameters influencing the integrity and functions of the nanocomposite coatings on magnesium were identified, guidelines for the optimization of the coatings were established, and the benefits of coating optimization were demonstrated through reduced magnesium degradation and increased bone marrow derived mesenchymal stem cell (BMSC) adhesion in vitro. The guidelines developed in this manuscript are valuable for the biometal field to improve the design of bioresorbable implants and devices, which will advance the clinical translation of magnesium-based implants. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Selection criteria for wear resistant powder coatings under extreme erosive wear conditions
NASA Astrophysics Data System (ADS)
Kulu, P.; Pihl, T.
2002-12-01
Wear-resistant thermal spray coatings for sliding wear are hard but brittle (such as carbide and oxide based coatings), which makes them useless under impact loading conditions and sensitive to fatigue. Under extreme conditions of erosive wear (impact loading, high hardness of abrasives, and high velocity of abradant particles), composite coatings ensure optimal properties of hardness and toughness. The article describes tungsten carbide-cobalt (WC-Co) systems and self-fluxing alloys, containing tungsten carbide based hardmetal particles [NiCrSiB-(WC-Co)] deposited by the detonation gun, continuous detonation spraying, and spray fusion processes. Different powder compositions and processes were studied, and the effect of the coating structure and wear parameters on the wear resistance of coatings are evaluated. The dependence of the wear resistance of sprayed and fused coatings on their hardness is discussed, and hardness criteria for coating selection are proposed. The so-called “double cemented” structure of WC-Co based hardmetal or metal matrix composite coatings, as compared with a simple cobalt matrix containing particles of WC, was found optimal. Structural criteria for coating selection are provided. To assist the end user in selecting an optimal deposition method and materials, coating selection diagrams of wear resistance versus hardness are given. This paper also discusses the cost-effectiveness of coatings in the application areas that are more sensitive to cost, and composite coatings based on recycled materials are offered.
Teżyk, Michał; Jakubowska, Emilia; Milanowski, Bartłomiej; Lulek, Janina
2017-10-01
The aim of this study was to optimize the process of tablets compression and identification of film-coating critical process parameters (CPPs) affecting critical quality attributes (CQAs) using quality by design (QbD) approach. Design of experiment (DOE) and regression methods were employed to investigate hardness, disintegration time, and thickness of uncoated tablets depending on slugging and tableting compression force (CPPs). Plackett-Burman experimental design was applied to identify critical coating process parameters among selected ones that is: drying and preheating time, atomization air pressure, spray rate, air volume, inlet air temperature, and drum pressure that may influence the hardness and disintegration time of coated tablets. As a result of the research, design space was established to facilitate an in-depth understanding of existing relationship between CPPs and CQAs of intermediate product (uncoated tablets). Screening revealed that spray rate and inlet air temperature are two most important factors that affect the hardness of coated tablets. Simultaneously, none of the tested coating factors have influence on disintegration time. The observation was confirmed by conducting film coating of pilot size batches.
Bilayer tablets of Paliperidone for Extended release osmotic drug delivery
NASA Astrophysics Data System (ADS)
Chowdary, K. Sunil; Napoleon, A. A.
2017-11-01
The purpose of this study is to develop and optimize the formulation of paliperidone bilayer tablet core and coating which should meet in vitro performance of trilayered Innovator sample Invega. Optimization of core formulations prepared by different ratio of polyox grades and optimization of coating of (i) sub-coating build-up with hydroxy ethyl cellulose (HEC) and (ii).enteric coating build-up with cellulose acetate (CA). Some important influence factors such as different core tablet compositions and different coating solution ingredients involved in the formulation procedure were investigated. The optimization of formulation and process was conducted by comparing different in vitro release behaviours of Paliperidone. In vitro dissolution studies of Innovator sample (Invega) with formulations of different release rate which ever close release pattern during the whole 24 h test is finalized.
A Robot Trajectory Optimization Approach for Thermal Barrier Coatings Used for Free-Form Components
NASA Astrophysics Data System (ADS)
Cai, Zhenhua; Qi, Beichun; Tao, Chongyuan; Luo, Jie; Chen, Yuepeng; Xie, Changjun
2017-10-01
This paper is concerned with a robot trajectory optimization approach for thermal barrier coatings. As the requirements of high reproducibility of complex workpieces increase, an optimal thermal spraying trajectory should not only guarantee an accurate control of spray parameters defined by users (e.g., scanning speed, spray distance, scanning step, etc.) to achieve coating thickness homogeneity but also help to homogenize the heat transfer distribution on the coating surface. A mesh-based trajectory generation approach is introduced in this work to generate path curves on a free-form component. Then, two types of meander trajectories are generated by performing a different connection method. Additionally, this paper presents a research approach for introducing the heat transfer analysis into the trajectory planning process. Combining heat transfer analysis with trajectory planning overcomes the defects of traditional trajectory planning methods (e.g., local over-heating), which helps form the uniform temperature field by optimizing the time sequence of path curves. The influence of two different robot trajectories on the process of heat transfer is estimated by coupled FEM models which demonstrates the effectiveness of the presented optimization approach.
Electrostatic coating technologies for food processing.
Barringer, Sheryl A; Sumonsiri, Nutsuda
2015-01-01
The application of electrostatics in both powder and liquid coating can improve the quality of food, such as its appearance, aroma, taste, and shelf life. Coatings can be found most commonly in the snack food industry, as well as in confectionery, bakery, meat and cheese processing. In electrostatic powder coating, the most important factors influencing coating quality are powder particle size, density, flowability, charge, and resistivity, as well as the surface properties and characteristics of the target. The most important factors during electrostatic liquid coating, also known as electrohydrodynamic coating, include applied voltage and electrical resistivity and viscosity of the liquid. A good understanding of these factors is needed for the design of optimal coating systems for food processing.
Abrasive wear response of TIG-melted TiC composite coating: Taguchi approach
NASA Astrophysics Data System (ADS)
Maleque, M. A.; Bello, K. A.; Adebisi, A. A.; Dube, A.
2017-03-01
In this study, Taguchi design of experiment approach has been applied to assess wear behaviour of TiC composite coatings deposited on AISI 4340 steel substrates by novel powder preplacement and TIG torch melting processes. To study the abrasive wear behaviour of these coatings against alumina ball at 600° C, a Taguchi’s orthogonal array is used to acquire the wear test data for determining optimal parameters that lead to the minimization of wear rate. Composite coatings are developed based on Taguchi’s L-16 orthogonal array experiment with three process parameters (welding current, welding speed, welding voltage and shielding gas flow rate) at four levels. In this technique, mean response and signal-to-noise ratio are used to evaluate the influence of the TIG process parameters on the wear rate performance of the composite coated surfaces. The results reveal that welding voltage is the most significant control parameter for minimizing wear rate while the current presents the least contribution to the wear rate reduction. The study also shows the best optimal condition has been arrived at A3 (90 A), B4 (2.5 mm/s), C3 (30 V) and D3 (20 L/min), which gives minimum wear rate in TiC embedded coatings. Finally, a confirmatory experiment has been conducted to verify the optimized result and shows that the error between the predicted values and the experimental observation at the optimal condition lies within the limit of 4.7 %. Thus, the validity of the optimum condition for the coatings is established.
Shah, Neha; Mehta, Tejal; Aware, Rahul; Shetty, Vasant
2017-12-01
The present work aims at studying process parameters affecting coating of minitablets (3 mm in diameter) through Wurster coating process. Minitablets of Naproxen with high drug loading were manufactured using 3 mm multi-tip punches. The release profile of core pellets (published) and minitablets was compared with that of marketed formulation. The core formulation of minitablets was found to show similarity in dissolution profile with marketed formulation and hence was further carried forward for functional coating over it. Wurster processing was implemented to pursue functional coating over core formulation. Different process parameters were screened and control strategy was applied for factors significantly affecting the process. Modified Plackett Burman Design was applied for studying important factors. Based on the significant factors and minimum level of coating required for functionalization, optimized process was executed. Final coated batch was evaluated for coating thickness, surface morphology, and drug release study.
Electrodeposited MCrAlY Coatings for Gas Turbine Engine Applications
NASA Astrophysics Data System (ADS)
Zhang, Y.
2015-11-01
Electrolytic codeposition is a promising alternative process for fabricating MCrAlY coatings. The coating process involves two steps, i.e., codeposition of CrAlY-based particles and a metal matrix of Ni, Co, or (Ni,Co), followed by a diffusion heat treatment to convert the composite coating to the desired MCrAlY microstructure. Despite the advantages such as low cost and non-line-of-sight, this coating process is less known than electron beam-physical vapor deposition and thermal spray processes for manufacturing high-temperature coatings. This article provides an overview of the electro-codeposited MCrAlY coatings for gas turbine engine applications, highlighting the unique features of this coating process and some important findings in the past 30 years. Challenges and research opportunities for further optimization of this type of MCrAlY coatings are also discussed.
NASA Astrophysics Data System (ADS)
Wang, Miqi; Zhou, Zehua; Wu, Lintao; Ding, Ying; Xu, Feilong; Wang, Zehua
2018-04-01
A new compound Fe-W-C powder for reactive plasma cladding was fabricated by precursor carbonization process using sucrose as a precursor. The application of quadratic general rotary unitized design was highlighted to develop a mathematical model to predict and accomplish the desired surface hardness of plasma-cladded coating. The microstructure and microhardness of the coating with optimal parameters were also investigated. According to the developed empirical model, the optimal process parameters were determined as follows: 1.4 for C/W atomic ratio, 20 wt.% for W content, 130 A for scanning current and 100 mm/min (1.67 mm/s) for scanning rate. The confidence level of the model was 99% according to the results of the F-test and lack-of-fit test. Microstructural study showed that the dendritic structure was comprised of a mechanical mixture of α-Fe and carbides, while the interdendritic structure was a eutectic of α-Fe and carbides in the composite coating with optimal parameters. WC phase generation can be confirmed from the XRD pattern. Due to good preparation parameters, the average microhardness of cladded coating can reach 1120 HV0.1, which was four times the substrate microhardness.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.
2012-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability
Laser Cladding of TiAl Intermetallic Alloy on Ti6Al4V -Process Optimization and Properties
NASA Astrophysics Data System (ADS)
Cárcel, B.; Serrano, A.; Zambrano, J.; Amigó, V.; Cárcel, A. C.
In order to improve Ti6Al4V high-temperature resistance and its tribological properties, the deposition of TiAl intermetallic (Ti-48Al-2Cr-2Nb) coating on a Ti6Al4V substrate by coaxial laser cladding has been investigated. Laser cladding by powder injection is an emerging laser material processing technique that allows the deposition of thick protective coatings on substrates,using a high power laser beam as heat source. Laser cladding is a multiple-parameter-dependent process. The main process parameters involved (laser power, powder feeding rate, scanning speed and preheating temperature) has been optimized. The microstructure and geometrical quantities (clad area and dilution) of the coating was characterized by optical microscopy and scanning electron microscopy (SEM). In addition the cooling rate of the clad during the process was measured by a dual-color pyrometer. This result has been related to defectology and mechanical coating properties.
Evaluating the process parameters of the dry coating process using a 2(5-1) factorial design.
Kablitz, Caroline Désirée; Urbanetz, Nora Anne
2013-02-01
A recent development of coating technology is dry coating, where polymer powder and liquid plasticizer are layered on the cores without using organic solvents or water. Several studies evaluating the process were introduced in literature, however, little information about the critical process parameters (CPPs) is given. Aim of the study was the investigation and optimization of CPPs with respect to one of the critical quality attributes (CQAs), the coating efficiency of the dry coating process in a rotary fluid bed. Theophylline pellets were coated with hydroxypropyl methylcellulose acetate succinate as enteric film former and triethyl citrate and acetylated monoglyceride as plasticizer. A 2(5-1) design of experiments (DOEs) was created investigating five independent process parameters namely coating temperature, curing temperature, feeding/spraying rate, air flow and rotor speed. The results were evaluated by multilinear regression using the software Modde(®) 7. It is shown, that generally, low feeding/spraying rates and low rotor speeds increase coating efficiency. High coating temperatures enhance coating efficiency, whereas medium curing temperatures have been found to be optimum in terms of coating efficiency. This study provides a scientific base for the design of efficient dry coating processes with respect to coating efficiency.
Development of low-stress Iridium coatings for astronomical x-ray mirrors
NASA Astrophysics Data System (ADS)
Döhring, Thorsten; Probst, Anne-Catherine; Stollenwerk, Manfred; Wen, Mingwu; Proserpio, Laura
2016-07-01
Previously used mirror technologies are not suitable for the challenging needs of future X-ray telescopes. This is why the required high precision mirror manufacturing triggers new technical developments around the world. Some aspects of X-ray mirrors production are studied within the interdisciplinary project INTRAAST, a German acronym for "industry transfer of astronomical mirror technologies". The project is embedded in a cooperation of Aschaffenburg University of Applied Sciences and the Max-Planck-Institute for extraterrestrial Physics. One important task is the development of low-stress Iridium coatings for X-ray mirrors based on slumped thin glass substrates. The surface figure of the glass substrates is measured before and after the coating process by optical methods. Correlating the surface shape deformation to the parameters of coating deposition, here especially to the Argon sputtering pressure, allows for an optimization of the process. The sputtering parameters also have an influence on the coating layer density and on the micro-roughness of the coatings, influencing their X-ray reflection properties. Unfortunately the optimum coating process parameters seem to be contrarious: low Argon pressure resulted in better micro-roughness and higher density, whereas higher pressure leads to lower coating stress. Therefore additional measures like intermediate coating layers and temperature treatment will be considered for further optimization. The technical approach for the low-stress Iridium coating development, the experimental equipment, and the obtained first experimental results are presented within this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beardsley, M B
2008-03-26
The feasibility to coat large SNF/HLW containers with a structurally amorphous material (SAM) was demonstrated on sub-scale models fabricated from Type 316L stainless steel. The sub-scale model were coated with SAM 1651 material using kerosene high velocity oxygen fuel (HVOF) torch to thicknesses ranging from 1 mm to 2 mm. The process parameters such as standoff distance, oxygen flow, and kerosene flow, were optimized in order to improve the corrosion properties of the coatings. Testing in an electrochemical cell and long-term exposure to a salt spray environment were used to guide the selection of process parameters.
NASA Astrophysics Data System (ADS)
Gibbons, Gregory John; Hansell, Robert George
2006-09-01
This article details the down-selection procedure for thermally sprayed coatings for aluminum injection mould tooling. A down-selection metric was used to rank a wide range of coatings. A range of high-velocity oxyfuel (HVOF) and atmospheric plasma spray (APS) systems was used to identify the optimal coating-process-system combinations. Three coatings were identified as suitable for further study; two CrC NiCr materials and one Fe Ni Cr alloy. No APS-deposited coatings were suitable for the intended application due to poor substrate adhesion (SA) and very high surface roughness (SR). The DJ2700 deposited coating properties were inferior to the coatings deposited using other HVOF systems and thus a Taguchi L18 five parameter, three-level optimization was used to optimize SA of CRC-1 and FE-1. Significant mean increases in bond strength were achieved (147±30% for FE-1 [58±4 MPa] and 12±1% for CRC-1 [67±5 MPa]). An analysis of variance (ANOVA) indicated that the coating bond strengths were primarily dependent on powder flow rate and propane gas flow rate, and also secondarily dependent on spray distance. The optimal deposition parameters identified were: (CRC-1/FE-1) O2 264/264 standard liters per minute (SLPM); C3H8 62/73 SLPM; air 332/311 SLPM; feed rate 30/28 g/min; and spray distance 150/206 mm.
Oral controlled release optimization of pellets prepared by extrusion-spheronization processing.
Bianchini, R; Vecchio, C
1989-06-01
Controlled release high dosage forms of a typical drug such as Indobufen were prepared as multiple-unit doses by employing extrusion-spheronization processing and subsequently film coating operations. The effects of drug particle size, drug/binder ratio, extruder screen size and preparation reproducibility on the physical properties of the spherical granules were evaluated. Controlled release optimization was obtained on the same granules by coating with polymeric membranes of different thickness consisting of water-soluble and insoluble substances. Film coating was applied from an organic solution using pan coating technique. The drug diffusion is allowed by dissolution of part of the membrane leaving small channels of the polymer coat. Further preparations were conducted to evaluate coatings applied from aqueous dispersion (pseudolatex) using air suspension coating technique. In this system the drug diffusion is governed by the intrinsic pore network of the membrane. The most promising preparations having the desired in vitro release, were metered into hard capsules to obtain the drug unit dosage. Accelerated stability tests were carried out to assess the influence of time and the other storage parameters on the drug release profile.
Atomic Layer Deposition for Coating of High Aspect Ratio TiO2 Nanotube Layers
2016-01-01
We present an optimized approach for the deposition of Al2O3 (as a model secondary material) coating into high aspect ratio (≈180) anodic TiO2 nanotube layers using the atomic layer deposition (ALD) process. In order to study the influence of the diffusion of the Al2O3 precursors on the resulting coating thickness, ALD processes with different exposure times (i.e., 0.5, 2, 5, and 10 s) of the trimethylaluminum (TMA) precursor were performed. Uniform coating of the nanotube interiors was achieved with longer exposure times (5 and 10 s), as verified by detailed scanning electron microscopy analysis. Quartz crystal microbalance measurements were used to monitor the deposition process and its particular features due to the tube diameter gradient. Finally, theoretical calculations were performed to calculate the minimum precursor exposure time to attain uniform coating. Theoretical values on the diffusion regime matched with the experimental results and helped to obtain valuable information for further optimization of ALD coating processes. The presented approach provides a straightforward solution toward the development of many novel devices, based on a high surface area interface between TiO2 nanotubes and a secondary material (such as Al2O3). PMID:27643411
Localized analysis of paint-coat drying using dynamic speckle interferometry
NASA Astrophysics Data System (ADS)
Sierra-Sosa, Daniel; Tebaldi, Myrian; Grumel, Eduardo; Rabal, Hector; Elmaghraby, Adel
2018-07-01
The paint-coating is part of several industrial processes, including the automotive industry, architectural coatings, machinery and appliances. These paint-coatings must comply with high quality standards, for this reason evaluation techniques from paint-coatings are in constant development. One important factor from the paint-coating process is the drying, as it has influence on the quality of final results. In this work we present an assessment technique based on the optical dynamic speckle interferometry, this technique allows for the temporal activity evaluation of the paint-coating drying process, providing localized information from drying. This localized information is relevant in order to address the drying homogeneity, optimal drying, and quality control. The technique relies in the definition of a new temporal history of the speckle patterns to obtain the local activity; this information is then clustered to provide a convenient indicative of different drying process stages. The experimental results presented were validated using the gravimetric drying curves
Liu, Ronghua; Li, Lian; Yin, Wenping; Xu, Dongbo; Zang, Hengchang
2017-09-15
The fluidized bed granulation and pellets coating technologies are widely used in pharmaceutical industry, because the particles made in a fluidized bed have good flowability, compressibility, and the coating thickness of pellets are homogeneous. With the popularization of process analytical technology (PAT), real-time analysis for critical quality attributes (CQA) was getting more attention. Near-infrared (NIR) spectroscopy, as a PAT tool, could realize the real-time monitoring and control during the granulating and coating processes, which could optimize the manufacturing processes. This article reviewed the application of NIR spectroscopy in CQA (moisture content, particle size and tablet/pellet thickness) monitoring during fluidized bed granulation and coating processes. Through this review, we would like to provide references for realizing automated control and intelligent production in fluidized bed granulation and pellets coating of pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.
Optimization Control of the Color-Coating Production Process for Model Uncertainty
He, Dakuo; Wang, Zhengsong; Yang, Le; Mao, Zhizhong
2016-01-01
Optimized control of the color-coating production process (CCPP) aims at reducing production costs and improving economic efficiency while meeting quality requirements. However, because optimization control of the CCPP is hampered by model uncertainty, a strategy that considers model uncertainty is proposed. Previous work has introduced a mechanistic model of CCPP based on process analysis to simulate the actual production process and generate process data. The partial least squares method is then applied to develop predictive models of film thickness and economic efficiency. To manage the model uncertainty, the robust optimization approach is introduced to improve the feasibility of the optimized solution. Iterative learning control is then utilized to further refine the model uncertainty. The constrained film thickness is transformed into one of the tracked targets to overcome the drawback that traditional iterative learning control cannot address constraints. The goal setting of economic efficiency is updated continuously according to the film thickness setting until this reaches its desired value. Finally, fuzzy parameter adjustment is adopted to ensure that the economic efficiency and film thickness converge rapidly to their optimized values under the constraint conditions. The effectiveness of the proposed optimization control strategy is validated by simulation results. PMID:27247563
Optimization Control of the Color-Coating Production Process for Model Uncertainty.
He, Dakuo; Wang, Zhengsong; Yang, Le; Mao, Zhizhong
2016-01-01
Optimized control of the color-coating production process (CCPP) aims at reducing production costs and improving economic efficiency while meeting quality requirements. However, because optimization control of the CCPP is hampered by model uncertainty, a strategy that considers model uncertainty is proposed. Previous work has introduced a mechanistic model of CCPP based on process analysis to simulate the actual production process and generate process data. The partial least squares method is then applied to develop predictive models of film thickness and economic efficiency. To manage the model uncertainty, the robust optimization approach is introduced to improve the feasibility of the optimized solution. Iterative learning control is then utilized to further refine the model uncertainty. The constrained film thickness is transformed into one of the tracked targets to overcome the drawback that traditional iterative learning control cannot address constraints. The goal setting of economic efficiency is updated continuously according to the film thickness setting until this reaches its desired value. Finally, fuzzy parameter adjustment is adopted to ensure that the economic efficiency and film thickness converge rapidly to their optimized values under the constraint conditions. The effectiveness of the proposed optimization control strategy is validated by simulation results.
NASA Astrophysics Data System (ADS)
Baik, Ki-Ho; Dean, Robert L.; Mueller, Mark; Lu, Maiying; Lem, Homer Y.; Osborne, Stephen; Abboud, Frank E.
2002-07-01
A chemically amplified resist (CAR) process has been recognized as an approach to meet the demanding critical dimension (CD) specifications of 100nm node technology and beyond. Recently, significant effort has been devoted to optimizing CAR materials, which offer the characteristics required for next generation photomask fabrication. In this paper, a process established with a positive-tone CAR from TOK and 50kV MEBES eXara system is discussed. This resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. The coating process is conducted in an environment with amine concentration less than 2 ppb. A nitrogen environment is provided during plate transfer steps. Resolution using a 60nm writing grid is 90nm line and space patterns. CD linearity is maintained down to 240nm for isolated lines or spaces by applying embedded proximity effect correction (emPEC). Optimizations of post-apply bake (PAB) and post-expose bake (PEB) time, temperature, and uniformity are completed to improve adhesion, coating uniformity, and resolution. A puddle develop process is optimized to improve line edge roughness, edge slope, and resolution. Dry etch process is optimized on a TetraT system to transfer the resist image into the chrome layer with minimum etch bias.
Numerical analysis of heat treatment of TiCN coated AA7075 aluminium alloy
NASA Astrophysics Data System (ADS)
Srinath, M. K.; Prasad, M. S. Ganesha
2018-04-01
The Numerical analysis of heat treatments of TiCN coated AA7075 aluminium alloys is presented in this paper. The Convection-Diffusion-Reaction (CDR) equation with solutions in the Streamlined-Upward Petrov-Galerkin (SUPG) method for different parameters is provided for the understanding of the process. An experimental process to improve the surface properties of AA-7075 aluminium alloy was attempted through the coatings of TiCN and subsequent heat treatments. From the experimental process, optimized temperature and time was obtained which gave the maximum surface hardness and corrosion resistance. The paper gives an understanding and use of the CDR equation for application of the process. Expression to determine convection, diffusion and reaction parameters are provided which is used to obtain the overall expression of the heat treatment process. With the substitution of the optimized temperature and time, the governing equation may be obtained. Additionally, the total energy consumed during the heat treatment process is also developed to give a mathematical formulation of the energy consumed.
Synthesis study on transverse variable asphalt application rates for seal coats.
DOT National Transportation Integrated Search
2009-06-01
This report documents a cooperative effort to collect, process, and make available information about successful methods of varying seal coat asphalt application rates across treated roadways to optimize aggregate retention and avoid wheel path flushi...
Application of TiC reinforced Fe-based coatings by means of High Velocity Air Fuel Spraying
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Sommer, J.
2017-03-01
In the field of hydraulic applications, different development trends can cause problems for coatings currently used as wear and corrosion protection for piston rods. Aqueous hydraulic fluids and rising raw material prices necessitate the search for alternatives to conventional coatings like galvanic hard chrome or High Velocity Oxygen Fuel (HVOF)-sprayed WC/Co coatings. In a previous study, Fe/TiC coatings sprayed by a HVOF-process, were identified to be promising coating systems for wear and corrosion protection in hydraulic systems. In this feasibility study, the novel High Velocity Air Fuel (HVAF)-process, a modification of the HVOF-process, is investigated using the same feedstock material, which means the powder is not optimized for the HVAF-process. The asserted benefits of the HVAF-process are higher particle velocities and lower process temperatures, which can result in a lower porosity and oxidation of the coating. Further benefits of the HVAF process are claimed to be lower process costs and higher deposition rates. In this study, the focus is set on to the applicability of Fe/TiC coatings by HVAF in general. The Fe/TiC HVAF coating could be produced, successfully. The HVAF- and HVOF-coatings, produced with the same powder, were investigated using micro-hardness, porosity, wear and corrosion tests. A similar wear coefficient and micro-hardness for both processes could be achieved. Furthermore the propane/hydrogen proportion of the HVAF process and its influence on the coating thickness and the porosity was investigated.
Qiao, Mingxi; Zhang, Liqiang; Ma, Yingliang; Zhu, Jesse; Chow, Kwok
2010-10-01
An electrostatic dry powder coating process for pharmaceutical solid dosage forms was developed for the first time by electrostatic dry powder coating in a pan coater system. Two immediate release coating compositions with Opadry® AMB and Eudragit® EPO were successfully applied using this process. A liquid plasticizer was sprayed onto the surface of the tablet cores to increase the conductivity of tablet cores to enhance particle deposition, electrical resistivity reduced from greater than 1×10(13)Ωm to less than 1×10(9)Ωm, and to lower the glass transition temperature (T(g)) of the coating polymer for film forming in the pan coater. The application of liquid plasticizer was followed by spraying charged coating particles using an electrostatic charging gun to enhance the uniform deposition on tablet surface. The coating particles were coalesced into a thin film by curing at an acceptable processing temperature as formation was confirmed by SEM micrographs. The results also show that the optimized dry powder coating process produces tablets with smooth surface, good coating uniformity and release profile that are comparable to that of the tablet cores. The data also suggest that this novel electrostatic dry powder coating technique is an alternative to aqueous- or solvent-based coating process for pharmaceutical products. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhuri, Ahsan; Love, Norman
High-velocity oxy–fuel (HVOF) thermal spraying was developed in 1930 and has been commercially available for twenty-five years. HVOF thermal spraying has several benefits over the more conventional plasma spray technique including a faster deposition rate which leads to quicker turn-around, with more durable coatings and higher bond strength, hardness and wear resistance due to a homogeneous distribution of the sprayed particles. HVOF thermal spraying is frequently used in engineering to deposit cermets, metallic alloys, composites and polymers, to enhance product life and performance. HVOF thermal spraying system is a highly promising technique for applying durable coatings on structural materials formore » corrosive and high temperature environments in advanced ultra-supercritical coal- fired (AUSC) boilers, steam turbines and gas turbines. HVOF thermal spraying is the preferred method for producing coatings with low porosity and high adhesion. HVOF thermal spray process has been shown to be one of the most efficient techniques to deposit high performance coatings at moderate cost. Variables affecting the deposit formation and coating properties include hardware characteristics such as nozzle geometry and spraying distance and process parameters such as equivalence ratio, gas flow density, and powder feedstock. In the spray process, the powder particles experience very high speeds combined with fast heating to the powder material melting point or above. This high temperature causes evaporation of the powder, dissolution, and phase transformations. Due to the complex nature of the HVOF technique, the control and optimization of the process is difficult. In general, good coating quality with suitable properties and required performance for specific applications is the goal in producing thermal spray coatings. In order to reach this goal, a deeper understanding of the spray process as a whole is needed. Although many researchers studied commercial HVOF thermal spray systems, there exists a lack of fundamental understanding of the effect of hardware characteristics and operating parameters on HVOF thermally sprayed coatings. Motivated by these issues, this study is devoted to investigate the effect of hardware characteristics (e.g. spraying distance) and operating parameters (e.g. combustion chamber pressure, equivalence ratio, and total gas flow rate) on HVOF sprayed coatings using Inconel 718 alloy. The current study provides extensive understanding of several key operating and process parameters to optimize the next generation of HVOF thermally sprayed coatings for high temperature and harsh environment applications. A facility was developed to support this endeavor in a safe and efficient way, including a HVOF thermal spray system with a Data Acquisition and Remote Controls system (DARCS). The coatings microstructure and morphology were examined using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Nanoindentation.« less
Yang, Zhibin; Chueh, Chu-Chen; Zuo, Fan; ...
2015-04-30
A fully printable perovskite solar cell (PVSC) is demonstrated using a blade-coating technique under ambient conditions with controlled humidity. The influence of humidity on perovskite's crystallization is systematically investigated to realize the ambient processing condition. A high power conversion efficiency of 10.44% is achieved after optimizing the blade-coating process and, more importantly, a high-performance flexible PVSC is demonstrated for the first time. A high efficiency of 7.14% is achieved.
NASA Astrophysics Data System (ADS)
Ghosh, D.; Lamy, D.; Sopkow, T.; Smuga-Otto, I.
Wear- and corrosion-resistant coatings deposited by plasma spray process are increasingly used in severe environments in resource industries, such as oil and gas, oil sands, mining, pulp and paper, etc. While there is a large volume of literature in the area of plasma spray coatings, comparatively few papers deal with the co-relation between coating properties and microstructure as a function of plasma spray processing parameters. In this study, the effect of some plasma spray processing variables and atmosphere (air or inert gas) on the microstructure and the properties of WC-Co coatings were studied. The properties of the coatings measured include: microhardness, porosity by image analysis, wear resistance by dry sand/rubber wheel abrasion test (ASTM G 65-91) and corrosion properties by AC impedance technique. Phase analyses of the coatings were also performed by X-ray diffraction. From the above, optimized coatings were developed for oil and gas industry applications.
Cell and module formation research area
NASA Technical Reports Server (NTRS)
Bickler, D. B.
1982-01-01
Metallization is discussed. The influence of hydrogen on the firing of base-metal pastes in reducing atmospheres is reported. A method for optimization of metallization patterns is presented. A process sequence involving an AR coating and thick-film metallization system capable of penetrating the AR coating during firing is reported. Design and construction of the NMA implantation machine is reported. Implanted back-surface fields and NMA primary (front) junctions are discussed. The use of glass beads, a wave-soldering device, and ion milling is reported. Processing through the module fabrication and environmental testing of its design are reported. Metallization patterns by mathematical optimization are assessed.
Process simulation for advanced composites production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allendorf, M.D.; Ferko, S.M.; Griffiths, S.
1997-04-01
The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coatingmore » techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.« less
Vitre-graf Coating on Mullite. Low Cost Silicon Array Project: Large Area Sillicon Sheet Task
NASA Technical Reports Server (NTRS)
Rossi, R. C.
1979-01-01
The processing parameters of the Vitre-Graf coating for optimal performance and economy when applied to mullite and graphite as substrates were presented. A minor effort was also performed on slip-cast fused silica substractes.
Titanium dioxide antireflection coating for silicon solar cells by spray deposition
NASA Technical Reports Server (NTRS)
Kern, W.; Tracy, E.
1980-01-01
A high-speed production process is described for depositing a single-layer, quarter-wavelength thick antireflection coating of titanium dioxide on metal-patterned single-crystal silicon solar cells for terrestrial applications. Controlled atomization spraying of an organotitanium solution was selected as the most cost-effective method of film deposition using commercial automated equipment. The optimal composition consists of titanium isopropoxide as the titanium source, n-butyl acetate as the diluent solvent, sec-butanol as the leveling agent, and 2-ethyl-1-hexanol to render the material uniformly depositable. Application of the process to the coating of circular, large-diameter solar cells with either screen-printed silver metallization or with vacuum-evaporated Ti/Pd/Ag metallization showed increases of over 40% in the electrical conversion efficiency. Optical characteristics, corrosion resistance, and several other important properties of the spray-deposited film are reported. Experimental evidence indicates a wide tolerance in the coating thickness upon the overall efficiency of the cell. Considerations pertaining to the optimization of AR coatings in general are discussed, and a comprehensive critical survey of the literature is presented.
Advances in the Development of a WCl6 CVD System for Coating UO2 Powders with Tungsten
NASA Technical Reports Server (NTRS)
Mireles, Omar R.; Tieman, Alyssa; Broadway, Jeramie; Hickman, Robert
2013-01-01
Demonstrated viability and utilization of: a) Fluidized powder bed. b) WCl6 CVD process. c) Coated spherical particles with tungsten. The highly corrosive nature of the WCl6 solid reagent limits material of construction. Indications that identifying optimized process variables with require substantial effort and will likely vary with changes in fuel requirements.
Sol-gel antireflective spin-coating process for large-size shielding windows
NASA Astrophysics Data System (ADS)
Belleville, Philippe F.; Prene, Philippe; Mennechez, Francoise; Bouigeon, Christian
2002-10-01
The interest of the antireflective coatings applied onto large-area glass components increases everyday for the potential application such as building or shop windows. Today, because of the use of large size components, sol-gel process is a competitive way for antireflective coating mass production. The dip-coating technique commonly used for liquid-deposition, implies a safety hazard due to coating solution handling and storage in the case of large amounts of highly flammable solvent use. On the other hand, spin-coating is a liquid low-consumption technique. Mainly devoted to coat circular small-size substrate, we have developed a spin-coating machine able to coat large-size rectangular windows (up to 1 x 1.7 m2). Both solutions and coating conditions have been optimized to deposit optical layers with accurate and uniform thickness and to highly limit the edge effects. Experimental single layer antireflective coating deposition process onto large-area shielding windows (1000 x 1700 x 20 mm3) is described. Results show that the as-developed process could produce low specular reflection value (down to 1% one side) onto white-glass windows over the visible range (460-750 nm). Low-temperature curing process (120°C) used after sol-gel deposition enables antireflective-coating to withstand abrasion-resistance properties in compliance to US-MIL-C-0675C moderate test.
NASA Astrophysics Data System (ADS)
Xiao, Jie
Polymer nanocomposites have a great potential to be a dominant coating material in a wide range of applications in the automotive, aerospace, ship-making, construction, and pharmaceutical industries. However, how to realize design sustainability of this type of nanostructured materials and how to ensure the true optimality of the product quality and process performance in coating manufacturing remain as a mountaintop area. The major challenges arise from the intrinsic multiscale nature of the material-process-product system and the need to manipulate the high levels of complexity and uncertainty in design and manufacturing processes. This research centers on the development of a comprehensive multiscale computational methodology and a computer-aided tool set that can facilitate multifunctional nanocoating design and application from novel function envisioning and idea refinement, to knowledge discovery and design solution derivation, and further to performance testing in industrial applications and life cycle analysis. The principal idea is to achieve exceptional system performance through concurrent characterization and optimization of materials, product and associated manufacturing processes covering a wide range of length and time scales. Multiscale modeling and simulation techniques ranging from microscopic molecular modeling to classical continuum modeling are seamlessly coupled. The tight integration of different methods and theories at individual scales allows the prediction of macroscopic coating performance from the fundamental molecular behavior. Goal-oriented design is also pursued by integrating additional methods for bio-inspired dynamic optimization and computational task management that can be implemented in a hierarchical computing architecture. Furthermore, multiscale systems methodologies are developed to achieve the best possible material application towards sustainable manufacturing. Automotive coating manufacturing, that involves paint spay and curing, is specifically discussed in this dissertation. Nevertheless, the multiscale considerations for sustainable manufacturing, the novel concept of IPP control, and the new PPDE-based optimization method are applicable to other types of manufacturing, e.g., metal coating development through electroplating. It is demonstrated that the methodological development in this dissertation can greatly facilitate experimentalists in novel material invention and new knowledge discovery. At the same time, they can provide scientific guidance and reveal various new opportunities and effective strategies for sustainable manufacturing.
NASA Astrophysics Data System (ADS)
Skoog, Shelby A.; Kumar, Girish; Goering, Peter L.; Williams, Brian; Stiglich, Jack; Narayan, Roger J.
2016-06-01
Tantalum is a promising orthopaedic implant coating material due to its robust mechanical properties, corrosion resistance, and excellent biocompatibility. Previous studies have demonstrated improved biocompatibility and tissue integration of surface-treated tantalum coatings compared to untreated tantalum. Surface modification of tantalum coatings with biologically inspired microscale and nanoscale features may be used to evoke optimal tissue responses. The goal of this study was to evaluate commercial tantalum coatings with nanoscale, sub-microscale, and microscale surface topographies for orthopaedic and dental applications using human bone marrow-derived mesenchymal stem cells (hBMSCs). Tantalum coatings with different microscale and nanoscale surface topographies were fabricated using a diffusion process or chemical vapor deposition. Biological evaluation of the tantalum coatings using hBMSCs showed that tantalum coatings promote cellular adhesion and growth. Furthermore, hBMSC adhesion to the tantalum coatings was dependent on surface feature characteristics, with enhanced cell adhesion on sub-micrometer- and micrometer-sized surface topographies compared to hybrid nano-/microstructures. Nanostructured and microstructured tantalum coatings should be further evaluated to optimize the surface coating features to promote osteogenesis and enhance osseointegration of tantalum-based orthopaedic implants.
A parylene coating process for hybrid circuits
NASA Technical Reports Server (NTRS)
1976-01-01
The parylene coating process developed during this program consists of (1) obtaining a hybrid cover with a hole in it, (2) sealing of the circuit with a hole in the cover, (3) parylene coating through the hole with the external leads protected from parylene by appropriate fixturing, and (4) sealing of the hole by soldering a pretinned kovar tab. Development of the above process required optimization of the parylene coater parameters to obtain a uniform consistent coating which could offer adequate protection to the circuits, fixture design for packages of various types, determination of the size of the deposition hole, and the amount of dimer charge per run, a process to hermetically seal the deposition holes and establishment of quality control techniques or acceptance criteria for the deposited film.
Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters
NASA Astrophysics Data System (ADS)
Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon
2017-12-01
Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.
Wide band antireflective coatings Al2O3 / HfO2 / MgF2 for UV region
NASA Astrophysics Data System (ADS)
Winkowski, P.; Marszałek, Konstanty W.
2013-07-01
Deposition technology of the three layers antireflective coatings consists of hafnium compound are presented in this paper. Oxide films were deposited by means of e-gun evaporation in vacuum of 5x10-5 mbar in presence of oxygen and fluoride films by thermal evaporation. Substrate temperature was 250°C. Coatings were deposited onto optical lenses made from quartz glass (Corning HPFS). Thickness and deposition rate were controlled by thickness measuring system Inficon XTC/2. Simulations leading to optimization of thickness and experimental results of optical measurements carried during and after deposition process were presented. Physical thickness measurements were made during deposition process and were equal to 43 nm/74 nm/51 nm for Al2O3 / HfO2 / MgF2 respectively. Optimization was carried out for ultraviolet region from 230nm to the beginning of visible region 400 nm. In this region the average reflectance of the antireflective coating was less than 0.5% in the whole range of application.
NASA Astrophysics Data System (ADS)
Venkatesh, C.; Sundara Moorthy, N.; Venkatesan, R.; Aswinprasad, V.
The moving parts of any mechanism and machine parts are always subjected to a significant wear due to the development of friction. It is an utmost important aspect to address the wear problems in present environment. But the complexity goes on increasing to replace the worn out parts if they are very precise. Technology advancement in surface engineering ensures the minimum surface wear with the introduction of polycrystalline nano nickel coating. The enhanced tribological property of the nano nickel coating was achieved by the development of grain size and hardness of the surface. In this study, it has been decided to focus on the optimized parameters of the pulsed electro deposition to develop such a coating. Taguchi’s method coupled gray relational analysis was employed by considering the pulse frequency, average current density and duty cycle as the chief process parameters. The grain size and hardness were considered as responses. Totally, nine experiments were conducted as per L9 design of experiment. Additionally, response graph method has been applied to determine the most significant parameter to influence both the responses. In order to improve the degree of validation, confirmation test and predicted gray grade were carried out with the optimized parameters. It has been observed that there was significant improvement in gray grade for the optimal parameters.
NASA Astrophysics Data System (ADS)
Maleque, M. A.; Bello, K. A.; Adebisi, A. A.; Akma, N.
2017-03-01
Tungsten inert gas (TIG) torch is one of the most recently used heat source for surface modification of engineering parts, giving similar results to the more expensive high power laser technique. In this study, ceramic-based embedded composite coating has been produced by precoated silicon carbide (SiC) powders on the AISI 4340 low alloy steel substrate using TIG welding torch process. A design of experiment based on Taguchi approach has been adopted to optimize the TIG cladding process parameters. The L9 orthogonal array and the signal-to-noise was used to study the effect of TIG welding parameters such as arc current, travelling speed, welding voltage and argon flow rate on tribological response behaviour (wear rate, surface roughness and wear track width). The objective of the study was to identify optimal design parameter that significantly minimizes each of the surface quality characteristics. The analysis of the experimental results revealed that the argon flow rate was found to be the most influential factor contributing to the minimum wear and surface roughness of the modified coating surface. On the other hand, the key factor in reducing wear scar is the welding voltage. Finally, a convenient and economical Taguchi approach used in this study was efficient to find out optimal factor settings for obtaining minimum wear rate, wear scar and surface roughness responses in TIG-coated surfaces.
Development of Cold Spray Coatings for Accident-Tolerant Fuel Cladding in Light Water Reactors
NASA Astrophysics Data System (ADS)
Maier, Benjamin; Yeom, Hwasung; Johnson, Greg; Dabney, Tyler; Walters, Jorie; Romero, Javier; Shah, Hemant; Xu, Peng; Sridharan, Kumar
2018-02-01
The cold spray coating process has been developed at the University of Wisconsin-Madison for the deposition of oxidation-resistant coatings on zirconium alloy light water reactor fuel cladding with the goal of improving accident tolerance during loss of coolant scenarios. Coatings of metallic (Cr), alloy (FeCrAl), and ceramic (Ti2AlC) materials were successfully deposited on zirconium alloy flats and cladding tube sections by optimizing the powder size, gas preheat temperature, pressure and composition, and other process parameters. The coatings were dense and exhibited excellent adhesion to the substrate. Evaluation of the samples after high-temperature oxidation tests at temperatures up to 1300°C showed that the cold spray coatings significantly mitigate oxidation kinetics because of the formation of thin passive oxide layers on the surface. The results of the study indicate that the cold spray coating process is a viable near-term option for developing accident-tolerant zirconium alloy fuel cladding.
Development & characterization of alumina coating by atmospheric plasma spraying
NASA Astrophysics Data System (ADS)
Sebastian, Jobin; Scaria, Abyson; Kurian, Don George
2018-03-01
Ceramic coatings are applied on metals to prevent them from oxidation and corrosion at room as well as elevated temperatures. The service environment, mechanisms of protection, chemical and mechanical compatibility, application method, control of coating quality and ability of the coating to be repaired are the factors that need to be considered while selecting the required coating. The coatings based on oxide materials provides high degree of thermal insulation and protection against oxidation at high temperatures for the underlying substrate materials. These coatings are usually applied by the flame or plasma spraying methods. The surface cleanliness needs to be ensured before spraying. Abrasive blasting can be used to provide the required surface roughness for good adhesion between the substrate and the coating. A pre bond coat like Nickel Chromium can be applied on to the substrate material before spraying the oxide coating to avoid chances of poor adhesion between the oxide coating and the metallic substrate. Plasma spraying produces oxide coatings of greater density, higher hardness, and smooth surface finish than that of the flame spraying process Inert gas is often used for generation of plasma gas so as to avoid the oxidation of the substrate material. The work focuses to develop, characterize and optimize the parameters used in Al2O3 coating on transition stainless steel substrate material for minimizing the wear rate and maximizing the leak tightness using plasma spray process. The experiment is designed using Taguchi’s L9 orthogonal array. The parameters that are to be optimized are plasma voltage, spraying distance and the cooling jet pressure. The characterization techniques includes micro-hardness and porosity tests followed by Grey relational analysis of the results.
NASA Astrophysics Data System (ADS)
Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2018-02-01
In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al2O3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.
Spray process for in situ synthesizing Ti(C,N)-TiB2-Al2O3 composite ceramic coatings
NASA Astrophysics Data System (ADS)
Zhou, Jian; Liu, Hongwei; Sun, Sihao
2017-12-01
Using core wires with Ti-B4C-C as core and Al as strip materials, Ti(C,N)-TiB2-Al2O3 composite ceramic coatings were prepared on 45 steel substrates by the reactive arc spray technology. The influence of spray voltage, current, gas pressure and distance on the coatings was discussed. The spray parameters were optimized with porosity of the coatings as evaluation standard. The results showed that the most important factor which influences the quality of the coatings was spray distance. Then spray gas pressure, current and voltage followed in turn. The optimum process was spray current of 120A, voltage of 36, gas pressure of 0.7MPa and distance of 160mm. The porosity of coatings prepared in this spray process was only 2.11%. The coatings were composed of TiB2, TiC0.3N0.7, TiN, Al2O3 and AlN. Good properties and uniform distribution of these ceramic phases made the coatings have excellent comprehensive performances.
Investigation of photolithography process on SPOs for the Athena mission
NASA Astrophysics Data System (ADS)
Massahi, S.; Girou, D. A.; Ferreira, D. D. M.; Christensen, F. E.; Jakobsen, A. C.; Shortt, B.; Collon, M.; Landgraf, B.
2015-09-01
As part of the ongoing effort to optimize the throughput of the Athena optics we have produced mirrors with a state-of-the-art cleaning process. We report on the studies related to the importance of the photolithographic process. Pre-coating characterization of the mirrors has shown and still shows photoresist remnants on the SiO2- rib bonding zones, which influences the quality of the metallic coating and ultimately the mirror performance. The size of the photoresist remnants is on the order of 10 nm which is about half the thickness of final metallic coating. An improved photoresist process has been developed including cleaning with O2 plasma in order to remove the remaining photoresist remnants prior to coating. Surface roughness results indicate that the SiO2-rib bonding zones are as clean as before the photolithography process is performed.
Towards fully spray coated organic light emitting devices
NASA Astrophysics Data System (ADS)
Gilissen, Koen; Stryckers, Jeroen; Manca, Jean; Deferme, Wim
2014-10-01
Pi-conjugated polymer light emitting devices have the potential to be the next generation of solid state lighting. In order to achieve this goal, a low cost, efficient and large area production process is essential. Polymer based light emitting devices are generally deposited using techniques based on solution processing e.g.: spin coating, ink jet printing. These techniques are not well suited for cost-effective, high throughput, large area mass production of these organic devices. Ultrasonic spray deposition however, is a deposition technique that is fast, efficient and roll to roll compatible which can be easily scaled up for the production of large area polymer light emitting devices (PLEDs). This deposition technique has already successfully been employed to produce organic photovoltaic devices (OPV)1. Recently the electron blocking layer PEDOT:PSS2 and metal top contact3 have been successfully spray coated as part of the organic photovoltaic device stack. In this study, the effects of ultrasonic spray deposition of polymer light emitting devices are investigated. For the first time - to our knowledge -, spray coating of the active layer in PLED is demonstrated. Different solvents are tested to achieve the best possible spray-able dispersion. The active layer morphology is characterized and optimized to produce uniform films with optimal thickness. Furthermore these ultrasonic spray coated films are incorporated in the polymer light emitting device stack to investigate the device characteristics and efficiency. Our results show that after careful optimization of the active layer, ultrasonic spray coating is prime candidate as deposition technique for mass production of PLEDs.
Pushing the Limits of Broadband and High-Frequency Metamaterial Silicon Antireflection Coatings
NASA Astrophysics Data System (ADS)
Coughlin, K. P.; McMahon, J. J.; Crowley, K. T.; Koopman, B. J.; Miller, K. H.; Simon, S. M.; Wollack, E. J.
2018-05-01
Broadband refractive optics realized from high-index materials provide compelling design solutions for the next generation of observatories for the cosmic microwave background and for sub-millimeter astronomy. In this paper, work is presented which extends the state of the art in silicon lenses with metamaterial antireflection coatings toward larger-bandwidth and higher-frequency operation. Examples presented include octave bandwidth coatings with less than 0.5% reflection, a prototype 4:1 bandwidth coating, and a coating optimized for 1.4 THz. For these coatings, the detailed design, fabrication and testing processes are described as well as the inherent performance trade-offs.
Liu, Chunye; Chen, Jierong
2005-01-01
An overview is provided on the advancement and development of coating preparation methodology and materials used in capillaries and channels in microfluidic chip. Discussion is also given on the effects of coatings in the resolutions of separation and the reproducibility of separations. Dynamic coatings and linked coatings, classified as homo-polymers, copolymers and heterocyclic compounds, are further discussed, and so are the methods for the preparation of the coatings by cross-linked reaction, sol-gel process, photomodification and chemical deposition, etc. The discussion will be useful for the optimization of capillary columns that are used in capillary electrophoresis and nanochannels of chip.
NASA Astrophysics Data System (ADS)
Han, Su Jung; Pala, Zdenek; Sampath, Sanjay
2016-02-01
Manganese cobalt spinel (Mn1.5Co1.5O4, MCO) coatings are prepared by the air plasma spray (APS) process to examine their efficacy in serving as protective coatings from Cr-poisoning of the cathode side in intermediate temperature-solid oxide fuel cells (IT-SOFCs). These complex oxides are susceptible to process induced stoichiometric and phase changes which affect their functional performance. To critically examine these effects, MCO coatings are produced with deliberate modifications to the spray process parameters to explore relationship among process conditions, microstructure and functional properties. The resultant interplay among particle thermal and kinetic energies are captured through process maps, which serve to characterize the parametric effects on properties. The results show significant changes to the chemistry and phase composition of the deposited material resulting from preferential evaporation of oxygen. Post deposition annealing recovers oxygen in the coatings and allows partial recovery of the spinel phase, which is confirmed through thermo-gravimetric analysis (TGA)/differential scanning calorimetry (DSC), X-ray Diffraction (XRD), and magnetic hysteresis measurements. In addition, coatings with high density after sintering show excellent electrical conductivity of 40 S cm-1 at 800 °C while simultaneously providing requisite protection characteristics against Cr-poisoning. This study provides a framework for optimal evaluation of MCO coatings in intermediate temperature SOFCs.
Zhang, Martin Yi; Ye, Chang; Erasquin, Uriel Joseph; Huynh, Toan; Cai, Chengzhi; Cheng, Gary J
2011-02-01
In this work, laser coating of biphasic calcium phosphate/titanium (BCP/Ti) nanocomposite on Ti-6Al-4 V substrates was developed. A continuous wave neodymium-doped yttrium aluminium garnet (Nd:YAG) laser was used to form a robust multilayer of BCP/Ti nanocomposite starting from hydroxyapatite and titanium nanoparticles. In this process, low power coating is realized because of the strong laser-nanoparticle interaction and good sinterability of nanosized titanium. To guide the optimization of laser processing conditions for the coating process, a multiphysics model coupling electromagnetic module with heat transfer module was developed. This model was validated by laser coating experiments. Important features of the coated samples, including microstructures, chemical compositions, and interfacial bonding strength, were characterized. We found that a multilayer of BCP, consisting of 72% hydroxyapatite (HA) and 28% beta-tricalcium phosphate (β-TCP), and titanium nanocomposite was formed on Ti-6Al-4 V substrates. Significantly, the coating/substrate interfacial bonding strength was found to be two times higher than that of the commercial plasma sprayed coatings. Preliminary cell culture studies showed that the resultant BCP/Ti nanocomposite coating supported the adhesion and proliferation of osteoblast-like UMR-106 cells.
NASA Astrophysics Data System (ADS)
Ramachandran, C. S.; Balasubramanian, V.; Ananthapadmanabhan, P. V.
2011-03-01
Atmospheric plasma spraying is used extensively to make Thermal Barrier Coatings of 7-8% yttria-stabilized zirconia powders. The main problem faced in the manufacture of yttria-stabilized zirconia coatings by the atmospheric plasma spraying process is the selection of the optimum combination of input variables for achieving the required qualities of coating. This problem can be solved by the development of empirical relationships between the process parameters (input power, primary gas flow rate, stand-off distance, powder feed rate, and carrier gas flow rate) and the coating quality characteristics (deposition efficiency, tensile bond strength, lap shear bond strength, porosity, and hardness) through effective and strategic planning and the execution of experiments by response surface methodology. This article highlights the use of response surface methodology by designing a five-factor five-level central composite rotatable design matrix with full replication for planning, conduction, execution, and development of empirical relationships. Further, response surface methodology was used for the selection of optimum process parameters to achieve desired quality of yttria-stabilized zirconia coating deposits.
Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2018-02-02
In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at ~ 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al 2 O 3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.
NASA Astrophysics Data System (ADS)
Pourbaghi-Masouleh, M.; Asgharzadeh, H.
2013-08-01
In this study, the Taguchi method of design of experiment (DOE) was used to optimize the hydroxyapatite (HA) coatings on various metallic substrates deposited by sol-gel dip-coating technique. The experimental design consisted of five factors including substrate material (A), surface preparation of substrate (B), dipping/withdrawal speed (C), number of layers (D), and calcination temperature (E) with three levels of each factor. An orthogonal array of L18 type with mixed levels of the control factors was utilized. The image processing of the micrographs of the coatings was conducted to determine the percentage of coated area ( PCA). Chemical and phase composition of HA coatings were studied by XRD, FT-IR, SEM, and EDS techniques. The analysis of variance (ANOVA) indicated that the PCA of HA coatings was significantly affected by the calcination temperature. The optimum conditions from signal-to-noise ( S/N) ratio analysis were A: pure Ti, B: polishing and etching for 24 h, C: 50 cm min-1, D: 1, and E: 300 °C. In the confirmation experiment using the optimum conditions, the HA coating with high PCA of 98.5 % was obtained.
Desai, Parind M; Puri, Vibha; Brancazio, David; Halkude, Bhakti S; Hartman, Jeremy E; Wahane, Aniket V; Martinez, Alexander R; Jensen, Keith D; Harinath, Eranda; Braatz, Richard D; Chun, Jung-Hoon; Trout, Bernhardt L
2018-01-01
We developed and evaluated a solvent-free injection molding (IM) coating technology that could be suitable for continuous manufacturing via incorporation with IM tableting. Coating formulations (coating polymers and plasticizers) were prepared using hot-melt extrusion and screened via stress-strain analysis employing a universal testing machine. Selected coating formulations were studied for their melt flow characteristics. Tablets were coated using a vertical injection molding unit. Process parameters like softening temperature, injection pressure, and cooling temperature played a very important role in IM coating processing. IM coating employing polyethylene oxide (PEO) based formulations required sufficient room humidity (>30% RH) to avoid immediate cracks, whereas other formulations were insensitive to the room humidity. Tested formulations based on Eudrajit E PO and Kollicoat IR had unsuitable mechanical properties. Three coating formulations based on hydroxypropyl pea starch, PEO 1,000,000 and Opadry had favorable mechanical (<700MPa Young's modulus, >35% elongation, >95×10 4 J/m 3 toughness) and melt flow (>0.4g/min) characteristics, that rendered acceptable IM coats. These three formulations increased the dissolution time by 10, 15 and 35min, respectively (75% drug release), compared to the uncoated tablets (15min). Coated tablets stored in several environmental conditions remained stable to cracking for the evaluated 8-week time period. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pîslaru-Dănescu, Lucian; Chitanu, Elena; El-Leathey, Lucia-Andreea; Marinescu, Virgil; Marin, Dorian; Sbârcea, Beatrice-Gabriela
2018-05-01
The paper proposes a new and complex process for the synthesis of ZnO nanoparticles for antireflective coating corresponding to silicone solar cells applications. The process consists of two major steps: preparation of seed layer and hydrothermal growth of ZnO nanoparticles. Due to the fact that the seed layer morphology influences the ZnO nanoparticles proprieties, the process optimization of the seed layer preparation is necessary. Following the hydrothermal growth of the ZnO nanoparticles, antireflective coating of silicone solar cells is achieved. After determining the functional parameters of the solar cells provided either with glass or with ZnO, it is concluded that all the parameters values are superior in the case of solar cells with ZnO antireflection coating and are increasing along with the solar irradiance.
NASA Astrophysics Data System (ADS)
Cho, Young-Sang; Hong, Jeong-Jin; Yang, Seung-Man; Choi, Chul-Jin
2010-08-01
Stable dispersion of colloidal indium tin oxide nanoparticles was prepared by using indium tin oxide nanopowder, organic solvent, and suitable dispersants through attrition process. Various comminution parameters during the attrition step were studied to optimize the process for the stable dispersion of indium tin oxide sol. The transparent and conductive films were fabricated on glass substrate using the indium tin oxide sol by spin coating process. To obtain antireflective function, partially hydrolyzed alkyl silicate was deposited as over-coat layer on the pre-fabricated indium tin oxide film by spin coating technique. This double-layered structure of the nanostructured film was characterized by measuring the surface resistance and reflectance spectrum in the visible wavelength region. The final film structure was enough to satisfy the TCO regulations for EMI shielding purposes.
Nozzle Mounting Method Optimization Based on Robot Kinematic Analysis
NASA Astrophysics Data System (ADS)
Chen, Chaoyue; Liao, Hanlin; Montavon, Ghislain; Deng, Sihao
2016-08-01
Nowadays, the application of industrial robots in thermal spray is gaining more and more importance. A desired coating quality depends on factors such as a balanced robot performance, a uniform scanning trajectory and stable parameters (e.g. nozzle speed, scanning step, spray angle, standoff distance). These factors also affect the mass and heat transfer as well as the coating formation. Thus, the kinematic optimization of all these aspects plays a key role in order to obtain an optimal coating quality. In this study, the robot performance was optimized from the aspect of nozzle mounting on the robot. An optimized nozzle mounting for a type F4 nozzle was designed, based on the conventional mounting method from the point of view of robot kinematics validated on a virtual robot. Robot kinematic parameters were obtained from the simulation by offline programming software and analyzed by statistical methods. The energy consumptions of different nozzle mounting methods were also compared. The results showed that it was possible to reasonably assign the amount of robot motion to each axis during the process, so achieving a constant nozzle speed. Thus, it is possible optimize robot performance and to economize robot energy.
Vapor deposition on doublet airfoil substrates: Control of coating thickness and microstructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G., E-mail: haydn@virginia.edu
Gas jet assisted vapor deposition processes for depositing coatings are conducted at higher pressures than conventional physical vapor deposition methods, and have shown promise for coating complex shaped substrates including those with non-line-of-sight (NLS) regions on their surface. These regions typically receive vapor atoms at a lower rate and with a wider incident angular distribution than substrate regions in line-of-sight (LS) of the vapor source. To investigate the coating of such substrates, the thickness and microstructure variation along the inner (curved) surfaces of a model doublet airfoil containing both LS and NLS regions has been investigated. Results from atomistic simulationsmore » and experiments confirm that the coating's thickness is thinner in flux-shadowed regions than in other regions for all the coating processes investigated. They also indicated that the coatings columnar microstructure and pore volume fraction vary with surface location through the LS to NLS transition zone. A substrate rotation strategy for optimizing the thickness over the entire doublet airfoil surface was investigated, and led to the identification of a process that resulted in only small variation of coating thickness, columnar growth angle, and pore volume fraction on all doublet airfoil surfaces.« less
NASA Astrophysics Data System (ADS)
Mole, Tracey Lawrence
In this work, an effective and systematic model is devised to synthesize the optimal formulation for an explicit engineering application in the nuclear industry, i.e. radioactive decontamination and waste reduction. Identification of an optimal formulation that is suitable for the desired system requires integration of all the interlacing behaviors of the product constituents. This work is unique not only in product design, but also in these design techniques. The common practice of new product development is to design the optimized product for a particular industrial niche and then subsequent research for the production process is conducted, developed and optimized separately from the product formulation. In this proposed optimization design technique, the development process, disposal technique and product formulation is optimized simultaneously to improve production profit, product behavior and disposal emissions. This "cradle to grave" optimization approach allowed a complex product formulation development process to be drastically simplified. The utilization of these modeling techniques took an industrial idea to full scale testing and production in under 18 months by reducing the number of subsequent laboratory trials required to optimize the formula, production and waste treatment aspects of the product simultaneously. This particular development material involves the use of a polymer matrix that is applied to surfaces as part of a decontamination system. The polymer coating serves to initially "fix" the contaminants in place for detection and ultimate elimination. Upon mechanical entrapment and removal, the polymer coating containing the radioactive isotopes can be dissolved in a solvent processor, where separation of the radioactive metallic particles can take place. Ultimately, only the collection of divided solids should be disposed of as nuclear waste. This creates an attractive alternative to direct land filling or incineration. This philosophy also provides waste generators a way to significantly reduce waste and associated costs, and help meet regulatory, safety and environmental requirements. In order for the polymeric film exhibit the desired performance, a combination of discrete constraints must be fulfilled. These interacting characteristics include the choice of polymer used for construction, drying time, storage constraints, decontamination ability, removal behavior, application process, coating strength and dissolvability processes. Identification of an optimized formulation that is suitable for this entire decontamination system requires integration of all the interlacing characteristics of the coating composition that affect the film behavior. A novel systematic method for developing quantitative values for theses qualitative characteristics is being developed in order to simultaneously optimize the design formulation subject to the discrete product specifications. This synthesis procedure encompasses intrinsic characteristics vital to successful product development, which allows for implementation of the derived model optimizations to operate independent of the polymer film application. This contribution illustrates the optimized synthesis example by which a large range of polymeric compounds and mixtures can be completed. (Abstract shortened by UMI.)
Enayatifard, Reza; Mahjoob, Aiding; Ebrahimi, Pouneh; Ebrahimnejad, Pedram
2015-01-01
Objective(s): A Box-Behnken design was used for evaluation of Eudragit coated diclofenac pellets. The purpose of this work was to optimize diclofenac pellets to improve the physicochemical properties using experimental design. Materials and Methods: Diclofenac was loaded onto the non-pareil beads using conventional coating pan. Film coating of pellets was done at the same pan. The effect of plasticizer level, curing temperature and curing time was determined on the release of diclofenac from pellets coated with polymethacrylates. Results: Increasing the plasticizer in the coating formula led to decrease in drug release and increasing the curing temperature and time resulted in higher drug release. The optimization process generated an optimum of 35% drug release at 3 hr. The level of plasticizer concentration, curing temperature and time were 20% w/w, 55 °C and 24 hr, respectively. Conclusion: This study showed that by controllinig the physical variables optimum drug release were obtained. PMID:26351563
Freire, Cristina; Podczeck, Fridrun; Veiga, Francisco; Sousa, João
2010-02-01
Colon-specific delivery of drugs can be achieved with dosage forms coated with biopolymers that are metabolized selectively by the colonic microflora and yet resistant to enzymatic digestion in the small intestine. The aim of this study was to study the influence of formulation factors on the performance of mixed films from high-amylose starches and Surelease((R)), applied using a spray-coating process, as potential colon-specific delivery devices. 5-Aminosalicylic acid-loaded pellets were prepared by an extrusion-spheronization process and film coated with mixtures of the starches and Surelease((R)). Optimization of the coating formulation, that is, starch-to-Surelease((R)) ratio, film-coating thickness, and type of starch, was undertaken first in enzyme-free media resembling the conditions in the stomach and small intestine. The effect of curing of the film coating on the drug release profile upon storage was also evaluated. Optimized coating formulations were further assessed for enzymatic digestibility using artificial gastric and intestinal juices containing commercially available pepsin and pancreatin or alpha-amylase from hog pancreas, respectively. Finally, drug release was assessed in fluid-simulating conditions in the colon (SCF) containing Bacillus licheniformis alpha-amylase. Film coatings comprising high-amylose starches and Surelease((R)) in a ratio of 1:2 (w/w) and film thickness of approximately 45 microm were able to withstand the chemical and enzymatic environment of the upper gastrointestinal tract, in particular, resisted degradation by the pancreatic alpha-amylases. Stability of the coatings during storage was achieved with additional curing. In SCF, these coatings were susceptible to enzymatic degradation. This study showed that high amylose starch-mixed films can be successfully used as colon-specific delivery devices. The preparation of the coating dispersions described is simple and rapid, without the need to extract the amylose component of starch.
Xiong, Zhaokun; Cao, Jinyan; Yang, Dan; Lai, Bo; Yang, Ping
2017-01-01
A coagulation-flocculation as pre-treatment combined with mFe/Cu/O 3 (CF-mFe/Cu/O 3 ) process was developed to degrade the pollutants in automobile coating wastewater (ACW). In coagulation-flocculation (CF) process, high turbidity removal efficiency (97.1%) and low COD removal efficiency (10.5%) were obtained under the optimal conditions using Al 2 (SO 4 ) 3 ·18H 2 O and CaO. The effluent of CF process (ECF) was further disposed by mFe/Cu/O 3 process, and its key operating parameters were optimized by batch experiments. Optimally, COD removal efficiency of ECF obtained by the mFe/Cu/O 3 process (i.e., 87.6% after 30 min treatment) was much higher than those of mFe/Cu alone (8.3%), ozone alone (46.6%), and mFe/Cu/air (6.1%), which confirms the superiority of the mFe/Cu/O 3 process. In addition, the analysis results of UV-vis, excitation-emission matrix (EEM) fluorescence spectra and GC/MS further confirm that the phenol pollutants of ECF had been effectively decomposed or transformed after CF-mFe/Cu/O 3 process treatment. Meanwhile, B/C ratio of ACW increased from 0.19 to 0.56, which suggests the biodegradability was improved significantly. Finally, the operating cost of CF-mFe/Cu/O 3 process was about 1.83 USD t -1 for ACW treatment. Therefore, the combined process is a promising treatment technology for the coating wastewater from automobile manufacturing. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Kun; Liu, Junyao; Lei, Ting; Xiao, Tao
2015-10-01
A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.
UV dichroic coatings on metallic reflectors
NASA Astrophysics Data System (ADS)
Raghunath, C.; Babu, N. J.; chandran, K. M.
2008-05-01
The work presented here explains the design and deposition process of dichroic coating on metallic reflectors developed for UV curing systems. Special designs are adopted to achieve the spectral band and optimized to suit to the requirements. A mirror, which reflects the UV radiation (220 - 400 nm) and absorbs visible and infrared radiation (400 - 2000nm), is described in detail.
NASA Astrophysics Data System (ADS)
Ivanov, V. V.; Popov, S. I.; Kirichek, A. V.
2018-03-01
The article suggests the technology of vibration finishing processing of aluminum alloys with simultaneous coating. On the basis of experimental studies, cast alloys, working media, operating modes of equipment, activating solutions were chosen. The practical application of the developed technology on real parts is shown.
NASA Astrophysics Data System (ADS)
Osborne, Stephen; Smith, Eryn; Woster, Eric; Pelayo, Anthony
2002-03-01
As integrated circuits require smaller lines to provide the memory and processing capability for tomorrow's marketplace, the photomask industry is adopting higher contrast resists to improve photomask lithography. Photomask yield for several high-contrast resist recipes may be improved by coating masks at the mask shop. When coating at a mask shop, an effective method is available that uses coat/bake cluster tools to ensure blanks are clean prior to coating. Many high-contrast resists are available, and some are more susceptible to time-dependent performance factors than conventional resists. One of these factors is the time between coating and writing. Although future methods may reduce the impact of this factor, one current trend is to reduce this time by coating plates at the mask shop just prior to writing. Establishing an effective process to clean blanks prior to coating is necessary for product quality control and is a new task that is critical for maskmakers who previously purchased mask plates but have decided to begin coating them within their facility. This paper provides a strategy and method to be used within coat/bake cluster tools to remove particle contamination from mask blanks. The process uses excimer-UV ionizing radiation and ozone to remove organic contaminants, and then uses a wet process combined with megasonic agitation, surfactant, and spin forces. Megasonic agitation with surfactant lifts up particles, while the convective outflow of water enhances centripetal shear without accumulating harmful charge.
NASA Astrophysics Data System (ADS)
Durga Prasada Rao, V.; Harsha, N.; Raghu Ram, N. S.; Navya Geethika, V.
2018-02-01
In this work, turning was performed to optimize the surface finish or roughness (Ra) of stainless steel 304 with uncoated and coated carbide tools under dry conditions. The carbide tools were coated with Titanium Aluminium Nitride (TiAlN) nano coating using Physical Vapour Deposition (PVD) method. The machining parameters, viz., cutting speed, depth of cut and feed rate which show major impact on Ra are considered during turning. The experiments are designed as per Taguchi orthogonal array and machining process is done accordingly. Then second-order regression equations have been developed on the basis of experimental results for Ra in terms of machining parameters used. Regarding the effect of machining parameters, an upward trend is observed in Ra with respect to feed rate, and as cutting speed increases the Ra value increased slightly due to chatter and vibrations. The adequacy of response variable (Ra) is tested by conducting additional experiments. The predicted Ra values are found to be a close match of their corresponding experimental values of uncoated and coated tools. The corresponding average % errors are found to be within the acceptable limits. Then the surface roughness equations of uncoated and coated tools are set as the objectives of optimization problem and are solved by using Differential Evolution (DE) algorithm. Also the tool lives of uncoated and coated tools are predicted by using Taylor’s tool life equation.
Tribological Behavior of Electroless Ni-P Coatings in Various Corrosive Environments
NASA Astrophysics Data System (ADS)
Panja, Bikash; Das, Suman Kalyan; Sahoo, Prasanta
2016-04-01
The present paper deals with the study of tribological characteristics, viz. friction and wear, of electroless Ni-P coating in corrosive environments (brine, acidic and alkaline) by varying different coating process parameters as well as varying the tribological testing parameters, viz. applied load and speed. The optimized results of coating process parameters for minimum friction and wear performance of the coating are presented. Moreover, a detailed study of the tribological behavior of the coating is undertaken individually for the three corrosive environments. The results obtained are compared among each other and also with the dry condition test of the coating. It is found that the friction coefficient of Ni-P coating decreases with increase in load for all environments. In case of wear, the wear rate of Ni-P coating gradually increases with increase in load for all mediums but the same decreases after 40N in brine and alkaline mediums. However, for acidic solution, the wear rate shows a continuous increasing trend. It is observed that alkaline and brine environments are favorable from friction and wear point of view of the coating, respectively. Microstructure study of the coatings is also performed and the coating is found to be of cauliflower-like morphology. The coating also exhibits amorphous structure in as-deposited condition, which gradually turns crystalline with heat treatment.
NASA Technical Reports Server (NTRS)
Fitzgerald, B.
1973-01-01
The R-512E (Si-20Cr-20Fe) fused slurry silicide coating process was optimized to coat full size (20in x 20in) single face rib and corrugation stiffened panels fabricated from FS-85 columbium alloy for 100 mission space shuttle heat shield applications. Structural life under simulated space shuttle lift-off stresses and reentry conditions demonstrated reuse capability well beyond 100 flights for R-512E coated FS-85 columbium heat shield panels. Demonstrated coating damage tolerance showed no immediate structural failure on exposure. The FS-85 columbium alloy was selected from five candidate alloys (Cb-752, C-129Y, WC-3015, B-66 and FS-85) based on the evaluation tests which have designed to determine: (1) change in material properties due to coating and reuse; (2) alloy tolerance to coating damage; (3) coating emittance characteristics under reuse conditions; and (4) new coating chemistries for improved coating life.
Nemati, Narguess; Bozorg, Mansoor; Penkov, Oleksiy V; Shin, Dong-Gap; Sadighzadeh, Asghar; Kim, Dae-Eun
2017-09-06
A novel functional multilayer coating with periodically stacked nanolayers of amorphous carbon (a:C)/tungsten carbide (WC) and an adhesion layer of chromium (Cr) was deposited on 304 stainless steel using a dual magnetron sputtering technique. Through process optimization, highly densified coatings with high elasticity and shear modulus, excellent wear resistance, and minimal susceptibility to corrosive and caustic media could be acquired. The structural and mechanical properties of the optimized coatings were studied in detail using a variety of analytical techniques. Furthermore, finite element method simulations indicated that the stress generated due to contact against a steel ball was distributed well within the coating, which allowed the stresses to be lower than the yield threshold of the coating. Thus, an ultralow wear rate of ∼10 -12 mm 3 /N mm could be achieved in dry sliding conditions under relatively high Hertzian contact pressures of ∼0.4-0.9 GPa. The amorphous and pinhole-free structure of the individual layers, sufficient number of pairs, and the relatively dense stacked layers resulted in significant polarization resistance (Z″ = 5.5 × 10 6 Ω cm 2 ) and increased the corrosion resistance of the coating by 10-fold compared to that of recently reported corrosion-resistant coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, Claus; Armstrong, Beth L; Maxey, L Curt
2013-08-01
Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 System s nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able tomore » remove defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have a deleterious effect on coating quality. Based on this and other experimental data a radiative transfer model was developed for IR heating that also included a mass transfer module for drying. This will prove invaluable for battery coating optimization especially where IR drying is being employed. A stress model was also developed that predicts that under certain drying conditions tensile stresses are formed in the coating which could lead to cracking that is sometimes observed after drying is complete. Prediction of under what conditions these stresses form is vital to improving coating quality. In addition to understanding the drying process other parameters such as slurry quality and equipment optimization were examined. Removal of particles and gels by filtering, control of viscosity by %solids and mixing adjustments, removal of trapped gas in the slurry and modification of coater speed and slot die gap were all found to be important for producing uniform and flaw-free coatings. Second, an in-line Hi-Pot testing method has been developed specifically for NCS that will enable detection of coating flaws that could lead to soft or hard electrical shorts within the cell. In this way flawed material can be rejected before incorporation into the cell thus greatly reducing the amount of scrap that is generated. Improved battery safety is an extremely important benefit of NCS. Evaluation of battery safety is usually accomplished by conducting a variety of tests including nail penetration, hot box, over charge, etc. For these tests entire batteries must be built but the resultant temperature and voltage responses reveal little about the breakdown mechanism. In this report is described a pinch test which is used to evaluate NCS quality at various stages including coated anode and cathode as well as assembled cell. Coupled with post-microscopic examination of the damaged pinch point test data can assist in the coating optimization from an improved end-use standpoint. As a result of this work two invention disclosures, one for optimizing drying methodology and the other for an in-line system for flaw detection, have been filed. In addition, 2 papers are being written for submission to peer-reviewed journals.« less
Interferometric nanoporous anodic alumina photonic coatings for optical sensing
NASA Astrophysics Data System (ADS)
Chen, Yuting; Santos, Abel; Wang, Ye; Kumeria, Tushar; Wang, Changhai; Li, Junsheng; Losic, Dusan
2015-04-01
Herein, we present a systematic study on the development, optical optimization and sensing applicability of colored photonic coatings based on nanoporous anodic alumina films grown on aluminum substrates. These optical nanostructures, so-called distributed Bragg reflectors (NAA-DBRs), are fabricated by galvanostatic pulse anodization process, in which the current density is altered in a periodic manner in order to engineer the effective medium of the resulting photonic coatings. As-prepared NAA-DBR photonic coatings present brilliant interference colors on the surface of aluminum, which can be tuned at will within the UV-visible spectrum by means of the anodization profile. A broad library of NAA-DBR colors is produced by means of different anodization profiles. Then, the effective medium of these NAA-DBR photonic coatings is systematically assessed in terms of optical sensitivity, low limit of detection and linearity by reflectometric interference spectroscopy (RIfS) in order to optimize their nanoporous structure toward optical sensors with enhanced sensing performance. Finally, we demonstrate the applicability of these photonic nanostructures as optical platforms by selectively detecting gold(iii) ions in aqueous solutions. The obtained results reveal that optimized NAA-DBR photonic coatings can achieve an outstanding sensing performance for gold(iii) ions, with a sensitivity of 22.16 nm μM-1, a low limit of detection of 0.156 μM (i.e. 30.7 ppb) and excellent linearity within the working range (0.9983).Herein, we present a systematic study on the development, optical optimization and sensing applicability of colored photonic coatings based on nanoporous anodic alumina films grown on aluminum substrates. These optical nanostructures, so-called distributed Bragg reflectors (NAA-DBRs), are fabricated by galvanostatic pulse anodization process, in which the current density is altered in a periodic manner in order to engineer the effective medium of the resulting photonic coatings. As-prepared NAA-DBR photonic coatings present brilliant interference colors on the surface of aluminum, which can be tuned at will within the UV-visible spectrum by means of the anodization profile. A broad library of NAA-DBR colors is produced by means of different anodization profiles. Then, the effective medium of these NAA-DBR photonic coatings is systematically assessed in terms of optical sensitivity, low limit of detection and linearity by reflectometric interference spectroscopy (RIfS) in order to optimize their nanoporous structure toward optical sensors with enhanced sensing performance. Finally, we demonstrate the applicability of these photonic nanostructures as optical platforms by selectively detecting gold(iii) ions in aqueous solutions. The obtained results reveal that optimized NAA-DBR photonic coatings can achieve an outstanding sensing performance for gold(iii) ions, with a sensitivity of 22.16 nm μM-1, a low limit of detection of 0.156 μM (i.e. 30.7 ppb) and excellent linearity within the working range (0.9983). Electronic supplementary information (ESI) available: The Supporting Information file provides further information about real-time monitoring of ΔOTeff with changes in the refractive index of the medium filling the nanopores, demonstration of visual red shift in a NAA-DBR sample after infiltration with isopropanol and calculations of linearity (R2) for each NAA-DBR coating. See DOI: 10.1039/c5nr00369e
NASA Astrophysics Data System (ADS)
Munagala, Venkata Naga Vamsi; Akinyi, Valary; Vo, Phuong; Chromik, Richard R.
2018-06-01
The powder microstructure and morphology has significant influence on the cold sprayability of Ti6Al4V coatings. Here, we compare the cold sprayability and properties of coatings obtained from Ti6Al4V powders of spherical morphology (SM) manufactured using plasma gas atomization and irregular morphology (IM) manufactured using the Armstrong process. Coatings deposited using IM powders had negligible porosity and better properties compared to coatings deposited using SM powders due to higher particle impact velocities, porous surface morphology and more deformable microstructure. To evaluate the cohesive strength, multi-scale indentation was performed and hardness loss parameter was calculated. Coatings deposited using SM powders exhibited poor cohesive strength compared to coatings deposited using IM powders. Images of the residual indents showed de-bonding and sliding of adjacent splats in the coatings deposited using SM powders irrespective of the load. Coatings deposited using IM powders showed no evidence of de-bonding at low loads. At high loads, splat de-bonding was observed resulting in hardness loss despite negligible porosity. Thus, while the powders from Armstrong process lead to a significant improvement in sprayability and coating properties, further optimization of powder and cold spray process will be required as well as consideration of post-annealing treatments to obtain acceptable cohesive strength.
NASA Astrophysics Data System (ADS)
Wen, Wen; Li, Haibin; Chen, Xiaojing; Chang, Chengkang
Silica anti-reflective coatings have been prepared by a sol-gel dip-coating process using the sol containing phosphoric acid as a pore-forming template. The effect of the aging time of the sol on the anti-reflective properties has been investigated. The surface topography of the silica AR coatings has been characterized. With increasing sol aging time, more over-sized pores larger than 100 nm are formed in the silica coatings. These could act as scattering centers, scattering visible light and thereby lowering transmittance. The optimal aging time was identified as 1 day, and the corresponding silica coatings showed a maximum transmittance of 99.2%, representing an 8% increase compared to the bare glass substrate.
Bioceramic coating of hydroxyapatite fabricated on Ti-6Al-4V with Nd-YAG laser
NASA Astrophysics Data System (ADS)
Tlotleng, Monnamme; Akinlabi, Esther T.; Shukla, Mukul; Pityana, Sisa
2015-03-01
This paper presents on the direct laser melted hydroxyapatite coatings achieved by melting the pre-placed powder beds using Nd-YAG laser. The process development and optimized parameters are reported. The results show that by changing the laser power and the beam inclined plane it is possible that a desirable coating of HAP that is rich on the surface can be produced. The microstructures of the coatings showed balling and cracking at beam angles between 0-15° and at 27° a successful coating was achieved with laser power and scanning speed of 750W and 5mm/s respectively. The said coating was pore and crack free while it retained non-decomposed HAP crystallites on the surface (mixed). The microstructure of the transition layer concluded a moderate temperature process since the formed dendrites did not develop or form secondary arms. The Ca/P conducted on the coating using EDS concluded Ca/P ratio of 8.04 and the absence of titanium phosphates phase (TiP2). TiP2 is typically associated with the decomposition of HAP and indicate the presence of high processing temperatures. Even so, the current results indicated that the investigated process was successful in depositing HAP coating with desirable microstructures even though its bio-corrosion properties still need to be ascertained before it could be qualified as suitable for biomedical applications.
Stocker, Elena; Becker, Karin; Hate, Siddhi; Hohl, Roland; Schiemenz, Wolfgang; Sacher, Stephan; Zimmer, Andreas; Salar-Behzadi, Sharareh
2017-01-01
This study aimed to apply quality risk management based on the The International Conference on Harmonisation guideline Q9 for the early development stage of hot melt coated multiparticulate systems for oral administration. N-acetylcysteine crystals were coated with a formulation composing tripalmitin and polysorbate 65. The critical quality attributes (CQAs) were initially prioritized using failure mode and effects analysis. The CQAs of the coated material were defined as particle size, taste-masking efficiency, and immediate release profile. The hot melt coated process was characterized via a flowchart, based on the identified potential critical process parameters (CPPs) and their impact on the CQAs. These CPPs were prioritized using a process failure mode, effects, and criticality analysis and their critical impact on the CQAs was experimentally confirmed using a statistical design of experiments. Spray rate, atomization air pressure, and air flow rate were identified as CPPs. Coating amount and content of polysorbate 65 in the coating formulation were identified as critical material attributes. A hazard and critical control points analysis was applied to define control strategies at the critical process points. A fault tree analysis evaluated causes for potential process failures. We successfully demonstrated that a standardized quality risk management approach optimizes the product development sustainability and supports the regulatory aspects. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Alkaline fuel cell with nitride membrane
NASA Astrophysics Data System (ADS)
Sun, Shen-Huei; Pilaski, Moritz; Wartmann, Jens; Letzkus, Florian; Funke, Benedikt; Dura, Georg; Heinzel, Angelika
2017-06-01
The aim of this work is to fabricate patterned nitride membranes with Si-MEMS-technology as a platform to build up new membrane-electrode-assemblies (MEA) for alkaline fuel cell applications. Two 6-inch wafer processes based on chemical vapor deposition (CVD) were developed for the fabrication of separated nitride membranes with a nitride thickness up to 1 μm. The mechanical stability of the perforated nitride membrane has been adjusted in both processes either by embedding of subsequent ion implantation step or by optimizing the deposition process parameters. A nearly 100% yield of separated membranes of each deposition process was achieved with layer thickness from 150 nm to 1 μm and micro-channel pattern width of 1μm at a pitch of 3 μm. The process for membrane coating with electrolyte materials could be verified to build up MEA. Uniform membrane coating with channel filling was achieved after the optimization of speed controlled dip-coating method and the selection of dimethylsulfoxide (DMSO) as electrolyte solvent. Finally, silver as conductive material was defined for printing a conductive layer onto the MEA by Ink-Technology. With the established IR-thermography setup, characterizations of MEAs in terms of catalytic conversion were performed successfully. The results of this work show promise for build up a platform on wafer-level for high throughput experiments.
Modeling of Thickness and Profile Uniformity of Thermally Sprayed Coatings Deposited on Cylinders
NASA Astrophysics Data System (ADS)
Yanjun, Zhang; Wenbo, Li; Dayu, Li; Jinkun, Xiao; Chao, Zhang
2018-02-01
In thermal spraying processes, kinematic parameters of the robot play a decisive role in the coating thickness and profile. In this regard, some achievements have been made to optimize the spray trajectory on flat surfaces. However, few reports have focused on nonholonomic or variable-curvature cylindrical surfaces. The aim of this study is to investigate the correlation between the coating profile, coating thickness, and scanning step, which is determined by the radius of curvature and scanning angle. A mathematical simulation model was developed to predict the thickness of thermally sprayed coatings. Experiments were performed on cylinders with different radiuses of curvature to evaluate the predictive ability of the model.
Synthesis of copper coated carbon nanotubes for aluminium matrix composites
NASA Astrophysics Data System (ADS)
Maqbool, Adnan; Khalid, F. Ahmad; Hussain, M. Asif; Bakhsh, Nabi
2014-06-01
In this investigation copper coated carbon nanotubes (CNTs) were prepared to enhance the interfacial bonding between CNTs and aluminum matrix by the molecular-level mixing process. In optimized plating bath of (1:1) by wt. CNT with Cu, thickness of coated CNTs is reduced to 100 nm to promote uniform distribution of Cu nanoparticle on the surface of pretreated CNTs. The mixing of CNTs was accomplished by ultrasonication and ball milling. Scanning electron microscope analysis revealed the homogenous dispersion of Cu-coated CNTs in nanocomposites samples compared to the uncoated CNTs. The samples were pressureless sintered under vacuum. The densification increased with the increase in the CNTs content and is more pronounced in Cu-coated CNT nanocomposites.
Galí, A; García-Montoya, E; Ascaso, M; Pérez-Lozano, P; Ticó, J R; Miñarro, M; Suñé-Negre, J M
2016-09-01
Although tablet coating processes are widely used in the pharmaceutical industry, they often lack adequate robustness. Up-scaling can be challenging as minor changes in parameters can lead to varying quality results. To select critical process parameters (CPP) using retrospective data of a commercial product and to establish a design of experiments (DoE) that would improve the robustness of the coating process. A retrospective analysis of data from 36 commercial batches. Batches were selected based on the quality results generated during batch release, some of which revealed quality deviations concerning the appearance of the coated tablets. The product is already marketed and belongs to the portfolio of a multinational pharmaceutical company. The Statgraphics 5.1 software was used for data processing to determine critical process parameters in order to propose new working ranges. This study confirms that it is possible to determine the critical process parameters and create design spaces based on retrospective data of commercial batches. This type of analysis is thus converted into a tool to optimize the robustness of existing processes. Our results show that a design space can be established with minimum investment in experiments, since current commercial batch data are processed statistically.
Factors influencing the preparation of silver-coated glass frit with polyvinyl-pyrrolidone
NASA Astrophysics Data System (ADS)
Xiang, Feng; Gan, Weiping
2018-01-01
In this work, a new electroless silver plating method for the synthesis of silver-coated glass frit composite powders with good morphology has been proposed and the polyvinyl-pyrrolidone (PVP) was used the activating agent. It was found that the weight ratio of PVP to glass frit affected the distribution and number of silver nanoparticles. Moreover, the loading capacity of the glass frit, the pH value and reaction temperature could influence the size of the silver nanoparticles and morphology of silver on the surface of glass frit. The as-prepared silver-coated glass frit was used to prepare a silver paste using an optimized process to form silver nanoparticles with uniform size and high density. The silver paste with silver-coated glass frit increased the photovoltaic conversion efficiency of silicon solar cells by 0.271% compared with the silver paste prepared with pure glass frit. The silver nanoparticles can promoted the precipitation of Ag crystallites on the silicon wafer. Therefore, the silver-coated glass frit can further optimize and enhance the electrical performance of solar cells.
NASA Astrophysics Data System (ADS)
Valente, T.; Bartuli, C.; Sebastiani, M.; Loreto, A.
2005-12-01
The experimental measurement of residual stresses originating within thick coatings deposited by thermal spray on solid substrates plays a role of fundamental relevance in the preliminary stages of coating design and process parameters optimization. The hole-drilling method is a versatile and widely used technique for the experimental determination of residual stress in the most superficial layers of a solid body. The consolidated procedure, however, can only be implemented for metallic bulk materials or for homogeneous, linear elastic, and isotropic materials. The main objective of the present investigation was to adapt the experimental method to the measurement of stress fields built up in ceramic coatings/metallic bonding layers structures manufactured by plasma spray deposition. A finite element calculation procedure was implemented to identify the calibration coefficients necessary to take into account the elastic modulus discontinuities that characterize the layered structure through its thickness. Experimental adjustments were then proposed to overcome problems related to the low thermal conductivity of the coatings. The number of calculation steps and experimental drilling steps were finally optimized.
Study of controlled-release floating tablets of dipyridamole using the dry-coated method.
Chen, Kai; Wen, Haoyang; Yang, Feifei; Yu, Yibin; Gai, Xiumei; Wang, Haiying; Li, Pingfei; Pan, Weisan; Yang, Xinggang
2018-01-01
Dipyridamole (DIP), having a short biological half-life, has a narrow absorption window and is primarily absorbed in the stomach. So, the purpose of this study was to prepare controlled-release floating (CRF) tablets of dipyridamole by the dry-coated method. The influence of agents with different viscosity, hydroxypropylmethylcellulose (HPMC) and polyvinylpyrollidon K30 (PVP K30) in the core tablet and low-viscosity HPMC and PVP K30 in the coating layer on drug release, were investigated. Then, a study with a three-factor, three-level orthogonal experimental design was used to optimize the formulation of the CRF tablets. After data processing, the optimized formulation was found to be: 80 mg HPMC K4M in the core tablet, 80 mg HPMC E15 in core tablet and 40 mg PVP K30 in the coating layer. Moreover, an in vitro buoyancy study showed that the optimized formulation had an excellent floating ability and could immediately float without a lag time and this lasted more than 12 h. Furthermore, an in vivo gamma scintigraphic study showed that the gastric residence time of the CRF tablet was about 8 h.
NASA Astrophysics Data System (ADS)
Yao, Kai; Wu, Xueyan; An, Zhentao
2017-01-01
A flexible shielding fabric with dense uniform coating was prepared after electrical deposition of amorphous Ni-Fe-P and Ni-P alloy on copper-coated polyethylene terephthalate (PET) fabric. The effects of coating composition and the deposition rate were discussed by the current density, temperature and pH value. The morphology, composition, and structure of coating were analyzed by SEM, EDS, and XRD characterizations. The EMI shielding effectiveness and corrosion resistance were also tested. The results fabric possesses dense, smooth, and uniform coating, when the processing conditions are 60°C, pH=1.5, and current density =8.7A/dm2. The coating fabric consists of amorphous Ni-Fe-P alloy with 16.62% P (weight percent), which has excellent of corrosion resistance. By contrast the EMI shielding effectiveness of amorphous Ni-Fe-P was better than amorphous Ni-P. The EMI shielding effectiveness of this coated fabric achieves 69.20dB-80.30dB in a broad frequency range between 300 kHz˜1.5 GHz.
NASA Astrophysics Data System (ADS)
Wang, Yuanyuan; Zhang, Deyuan; Cai, Jun
2016-02-01
Diatomite has delicate porous structures and various shapes, making them ideal templates for microscopic core-shell particles fabrication. In this study, a new process of magnetron sputtering assisted with photoresist positioning was proposed to fabricate lightweight silver coated porous diatomite with superior coating quality and performance. The diatomite has been treated with different sputtering time to investigate the silver film growing process on the surface. The morphologies, constituents, phase structures and surface roughness of the silver coated diatomite were analyzed with SEM, EDS, XRD and AFM respectively. The results showed that the optimized magnetron sputtering time was 8-16 min, under which the diatomite templates were successfully coated with uniform silver film, which exhibits face centered cubic (fcc) structure, and the initial porous structures were kept. Moreover, this silver coating has lower surface roughness (RMS 4.513 ± 0.2 nm) than that obtained by electroless plating (RMS 15.692 ± 0.5 nm). And the infrared emissivity of coatings made with magnetron sputtering and electroless plating silver coated diatomite can reach to the lowest value of 0.528 and 0.716 respectively.
Using fuzzy rule-based knowledge model for optimum plating conditions search
NASA Astrophysics Data System (ADS)
Solovjev, D. S.; Solovjeva, I. A.; Litovka, Yu V.; Arzamastsev, A. A.; Glazkov, V. P.; L’vov, A. A.
2018-03-01
The paper discusses existing approaches to plating process modeling in order to decrease the distribution thickness of plating surface cover. However, these approaches do not take into account the experience, knowledge, and intuition of the decision-makers when searching the optimal conditions of electroplating technological process. The original approach to optimal conditions search for applying the electroplating coatings, which uses the rule-based model of knowledge and allows one to reduce the uneven product thickness distribution, is proposed. The block diagrams of a conventional control system of a galvanic process as well as the system based on the production model of knowledge are considered. It is shown that the fuzzy production model of knowledge in the control system makes it possible to obtain galvanic coatings of a given thickness unevenness with a high degree of adequacy to the experimental data. The described experimental results confirm the theoretical conclusions.
NASA Astrophysics Data System (ADS)
Coşkun, M. İbrahim; Karahan, İsmail H.; Yücel, Yasin; Golden, Teresa D.
2016-10-01
CoCrMo biomedical alloys were coated with a hydroxyapatite layer to improve biocompatibility and in vitro corrosion performance. A fast electrodeposition process was completed in 5 minutes for the hydroxyapatite coating. Effect of the solution temperature and applied potential on the in vitro corrosion performance of the hydroxyapatite coatings was modeled by response surface methodology (RSM) coupled with central composite design (CCD). A 5-level-2-factor experimental plan designed by CCD was used; the experimental plan contained 13 coating experiments with a temperature range from 283 K to 347 K (10 °C to 74 °C) and potential range from -1.2 to -1.9 V. Corrosion potential ( E corr) of the coatings in a simulated body fluid solution was chosen as response for the model. Predicted and experimental values fitted well with an R 2 value of 0.9481. Response surface plots of the impedance and polarization resistance ( R P) were investigated. Optimized parameters for electrodeposition of hydroxyapatite were determined by RSM as solution temperature of 305.48 K (32.33 °C) and potential of -1.55 V. Hydroxyapatite coatings fabricated at optimized parameters showed excellent crystal formation and high in vitro corrosion resistance.
Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2002-01-01
Advanced thermal barrier coatings, having significantly reduced long-term thermal conductivities, are being developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and physical vapor-deposited thermal barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.
Development of Advanced Low Conductivity Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2004-01-01
Advanced multi-component, low conductivity oxide thermal barrier coatings have been developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and electron beam-physical vapor deposited (EB-PVD) thermal barrier coatings under the NASA Ultra-Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities and improved thermal stability due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.
Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase
NASA Astrophysics Data System (ADS)
von Niessen, Konstantin; Gindrat, Malko
2011-06-01
Plasma spray-physical vapor deposition (PS-PVD) is a low pressure plasma spray technology recently developed by Sulzer Metco AG (Switzerland). Even though it is a thermal spray process, it can deposit coatings out of the vapor phase. The basis of PS-PVD is the low pressure plasma spraying (LPPS) technology that has been well established in industry for several years. In comparison to conventional vacuum plasma spraying (VPS) or low pressure plasma spraying (LPPS), the new proposed process uses a high energy plasma gun operated at a reduced work pressure of 0.1 kPa (1 mbar). Owing to the high energy plasma and further reduced work pressure, PS-PVD is able to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional physical vapor deposition (PVD) technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and electron beam-physical vapor deposition (EB-PVD) coatings. In contrast to EB-PVD, PS-PVD incorporates the vaporized coating material into a supersonic plasma plume. Owing to the forced gas stream of the plasma jet, complex shaped parts such as multi-airfoil turbine vanes can be coated with columnar thermal barrier coatings using PS-PVD. Even shadowed areas and areas which are not in the line of sight of the coating source can be coated homogeneously. This article reports on the progress made by Sulzer Metco in developing a thermal spray process to produce coatings out of the vapor phase. Columnar thermal barrier coatings made of Yttria-stabilized Zircona (YSZ) are optimized to serve in a turbine engine. This process includes not only preferable coating properties such as strain tolerance and erosion resistance but also the simultaneous coverage of multiple air foils.
Thanawala, Karan; Mutneja, Nisha; Khanna, Anand S; Raman, R K Singh
2014-11-11
In recent years corrosion-resistant self-healing coatings have witnessed strong growth and their successful laboratory design and synthesis categorises them in the family of smart/multi-functional materials. Among various approaches for achieving self-healing, microcapsule embedment through the material matrix is the main one for self-healing ability in coatings. The present work focuses on optimizing the process parameters for developing microcapsules by in-situ polymerization of linseed oil as core and urea-formaldehyde as shell material. Characteristics of these microcapsules with respect to change in processing parameters such as stirring rate and reaction time were studied by using optical microscopy (OM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The effectiveness of these microcapsules in coatings was characterized by studying their adhesion, performance, and mechanical properties.
Thanawala, Karan; Mutneja, Nisha; Khanna, Anand S.; Singh Raman, R. K.
2014-01-01
In recent years corrosion-resistant self-healing coatings have witnessed strong growth and their successful laboratory design and synthesis categorises them in the family of smart/multi-functional materials. Among various approaches for achieving self-healing, microcapsule embedment through the material matrix is the main one for self-healing ability in coatings. The present work focuses on optimizing the process parameters for developing microcapsules by in-situ polymerization of linseed oil as core and urea-formaldehyde as shell material. Characteristics of these microcapsules with respect to change in processing parameters such as stirring rate and reaction time were studied by using optical microscopy (OM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The effectiveness of these microcapsules in coatings was characterized by studying their adhesion, performance, and mechanical properties. PMID:28788249
NASA Astrophysics Data System (ADS)
Kingswell, R.; Scott, K. T.; Wassell, L. L.
1993-06-01
The vacuum plasma spray (VPS) deposition of metal, ceramic, and cermet coatings has been investigated using designed statistical experiments. Processing conditions that were considered likely to have a significant influence on the melting characteristics of the precursor powders and hence deposition efficiency were incorporated into full and fractional factorial experimental designs. The processing of an alumina powder was very sensitive to variations in the deposition conditions, particularly the injection velocity of the powder into the plasma flame, the plasma gas composition, and the power supplied to the gun. Using a combination of full and fractional factorial experimental designs, it was possible to rapidly identify the important spraying variables and adjust these to produce a deposition efficiency approaching 80 percent. The deposition of a nickel-base alloy metal powder was less sensitive to processing conditions. Generally, however, a high degree of particle melting was achieved for a wide range of spray conditions. Preliminary experiments performed using a tungsten carbide/cobalt cermet powder indicated that spray efficiency was not sensitive to deposition conditions. However, microstructural analysis revealed considerable variations in the degree of tungsten carbide dissolution. The structure and properties of the optimized coatings produced in the factorial experiments are also discussed.
Risk Management Approach & Progress in Cd and Cr6+ Elimination
2014-11-18
Documentation Available by 2015? Gaps Conversion Coating- Aluminum Avionics/Electrical- Class 3 9 7 Medium yes- joint service/OEM/ NASA effort to...Optimized conditions validated by NASA . – FRC validation: immersion process – Based on data from the lab Surtec 650V optimization, an 1800-gallon tank...acting similarly, 650V not • Plans: scale up to 80 gallon process line; assess Metalast TCP/HF- EPA and Henkel products; further study 650V
Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Halbig, Michael Charles; Puleo, Bernadette J.; Costa, Gustavo; Mccue, Terry R.
2017-01-01
This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiC-SiC Ceramic Matrix Composite (CMC) combustors particularly under the NASA Environmentally Responsible Aviation, Fundamental Aeronautics and Transformative Aeronautics Concepts Programs. The emphases have been placed on the current design challenges of the 2700-3000F capable environmental barrier coatings for low NOX emission combustors for next generation turbine engines by using advanced plasma spray based processes, and the coating processing and integration with SiC-SiC CMCs and component systems. The developments also have included candidate coating composition system designs, degradation mechanisms, performance evaluation and down-selects; the processing optimizations using TriplexPro Air Plasma Spray Low Pressure Plasma Spray (LPPS), Plasma Spray Physical Vapor Deposition and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements under the NASA development programs, as demonstrated in the simulated engine high heat flux, combustion environments, in conjunction with high heat flux, mechanical creep and fatigue loading testing conditions.
An environmentally compliant cerium-based conversion coating for aluminum protection
NASA Astrophysics Data System (ADS)
Lin, Xuan
Chromate conversion coatings have been extensively used in the aircraft industry for the corrosion protection of aluminum alloys. Unfortunately, hexavalent chromium, which is a primary component in the chromating process, is a confirmed carcinogen. Because of rising remediation and disposal costs caused by increasingly strict regulations, the replacement of the traditional chromate conversion process is becoming a top priority in the metal finishing industry. This research focused on the electrodeposition of cerium-based coatings on 7075-T6 aluminum alloy in an electrolyte containing a cerium salt, an oxidizing agent and an organic solvent. The cerium-rich deposits were characterized by phase composition, oxidation state, coating thickness, surface morphology, deposition mechanism and polarization behavior. Chemical and electrochemical tests were utilized to compare the corrosion resistance between cerium-based coatings and chromate conversion coatings. To characterize and simulate the deposition process, a variety of approaches were utilized to study the oxidation states of cerium in various soluble and precipitated forms as a function of hydrogen peroxide and electrolyte pH. The pH ranges where the oxidation and reduction reactions dominate were determined. Further studies were performed to optimize the corrosion performance of cerium-based coatings and to understand the effects of electrolyte constituents and deposition parameters. The optimum levels for these variables were identified. A patent disclosure on the cerium-based coating process was made to the University of Missouri-Rolla and has now been officially filed with the U.S. Patent Office.
Transparent superhydrophobic surfaces using a spray coating process
Polyzos, Georgios; Jang, Gyoung Gug; Smith, D. Barton; ...
2017-11-03
One significant maintenance problem and cost associated with solar energy conversion systems is the soiling due to the accumulation of dust and other pollutants. Here in this work, we describe a scalable approach for applying antisoiling coatings based on superhydrophobic (SH) silica particles using a spray coating process. A large water contact angle (WCA) is one of the characteristics of excellent SH surfaces and because of the low surface energy and low adhesion forces the soiling rate is reduced. Our findings indicate that the WCA depends strongly on the ratio of the polymer binder and the nanoparticles. The nanoparticle surfacemore » coverage of the spray coated samples was substantially improved after rinsing with solvent. This process tended to remove large aggregates and excess polymer binder and further increased the WCA by allowing exposure of the functionalized nanoparticles. The durability of the SH coatings was enhanced when the substrate was pretreated with polymer binder and an optimal curing time between 30 and 60 min. The abrasion tests of the SH coatings we report in this study showed that the WCA decreased from ~ 166° to ~ 157° after exposure to 2.6 g of sand. Such coatings will help reduce costs of periodic cleaning of solar energy conversion systems (photovoltaic panels and concentrated solar mirrors).« less
Drevet, Richard; Benhayoune, Hicham
2013-10-01
Strontium-substituted calcium phosphate coatings are synthesized by pulsed electrodeposition on titanium alloy (Ti6Al4V) substrates. Experimental conditions of the process are optimized in order to obtain a coating with a 5% atomic substitution of calcium by strontium which corresponds to the best observations on the osteoblast cells activity and on the osteoclast cells proliferation. The physical and chemical characterizations of the obtained coating are carried out by scanning electron microscopy associated to energy dispersive X-ray spectroscopy (EDXS) for X-ray microanalysis and the structural characterization of the coating is carried out by X-ray diffraction. The in vitro dissolution/precipitation properties of the coated substrates are investigated by immersion into Dulbecco's Modified Eagle Medium (DMEM) from 1h to 14 days. The calcium, phosphorus and strontium concentrations variations in the biological liquid are assessed by Induced Coupled Plasma - Atomic Emission Spectroscopy for each immersion time. The results show that under specific experimental conditions, the electrodeposition process is suitable to synthesize strontium-substituted calcium phosphate coatings. Moreover, the addition of hydrogen peroxide (H2O2) into the electrolytic solution used in the process allows us to observe a control of the strontium release during the immersion of the prosthetic materials into DMEM. © 2013.
NASA Astrophysics Data System (ADS)
Nguyen, Hue Thi; Miao, Lei; Tanemura, Sakae; Tanemura, Masaki; Toh, Shoichi; Kaneko, Kenji; Kawasaki, Masahiro
2004-10-01
Anatase TiO 2 coatings 0.4 μm thick have been successfully fabricated by sol-gel dip-coating process on χ-Al 2O 3 fibers 100 μm by 10 cm long with a surface fish-scale. This was achieved by adjustment of the sol-gel parameters such as molar ratio of the precursors in TiO 2-sols, dip-coating time, drying duration in air, heating processes and number of cyclical repetitions of the process. Two samples were prepared using two sols containing different molar ratios of precursors. XRD, TEM, EDS and SEM characterization confirmed: (1) the similarity of the growth of anatase-TiO 2 from two sols under the optimal sol-gel parameters, (2) that the coatings are composed of aggregated crystallites of 10-25 nm in diameter, (3) the good compositional uniformity of Ti in the fabricated anatase-TiO 2 crystallites, (4) a surface covering ratio of anatase-TiO 2 around the fiber of at least 90%, and (5) that there is a good adherence of the fabricated anatase-TiO 2 layer on alumina fiber as evidenced by the lack of cracking and peeling off traces around the boundary between the coating and the fiber.
Transparent superhydrophobic surfaces using a spray coating process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyzos, Georgios; Jang, Gyoung Gug; Smith, D. Barton
One significant maintenance problem and cost associated with solar energy conversion systems is the soiling due to the accumulation of dust and other pollutants. Here in this work, we describe a scalable approach for applying antisoiling coatings based on superhydrophobic (SH) silica particles using a spray coating process. A large water contact angle (WCA) is one of the characteristics of excellent SH surfaces and because of the low surface energy and low adhesion forces the soiling rate is reduced. Our findings indicate that the WCA depends strongly on the ratio of the polymer binder and the nanoparticles. The nanoparticle surfacemore » coverage of the spray coated samples was substantially improved after rinsing with solvent. This process tended to remove large aggregates and excess polymer binder and further increased the WCA by allowing exposure of the functionalized nanoparticles. The durability of the SH coatings was enhanced when the substrate was pretreated with polymer binder and an optimal curing time between 30 and 60 min. The abrasion tests of the SH coatings we report in this study showed that the WCA decreased from ~ 166° to ~ 157° after exposure to 2.6 g of sand. Such coatings will help reduce costs of periodic cleaning of solar energy conversion systems (photovoltaic panels and concentrated solar mirrors).« less
Graphene oxide as a p-dopant and an anti-reflection coating layer, in graphene/silicon solar cells
NASA Astrophysics Data System (ADS)
Yavuz, S.; Kuru, C.; Choi, D.; Kargar, A.; Jin, S.; Bandaru, P. R.
2016-03-01
It is shown that coating graphene-silicon (Gr/Si) Schottky junction based solar cells with graphene oxide (GO) improves the power conversion efficiency (PCE) of the cells, while demonstrating unprecedented device stability. The PCE has been shown to be increased to 10.6% (at incident radiation of 100 mW cm-2) for the Gr/Si solar cell with an optimal GO coating thickness compared to 3.6% for a bare/uncoated Gr/Si solar cell. The p-doping of graphene by the GO, which also serves as an antireflection coating (ARC) has been shown to be a main contributing factor to the enhanced PCE. A simple spin coating process has been used to apply GO with thickness commensurate with an anti-refection coating (ARC) and indicates the suitability of the developed methodology for large-scale solar cell assembly.It is shown that coating graphene-silicon (Gr/Si) Schottky junction based solar cells with graphene oxide (GO) improves the power conversion efficiency (PCE) of the cells, while demonstrating unprecedented device stability. The PCE has been shown to be increased to 10.6% (at incident radiation of 100 mW cm-2) for the Gr/Si solar cell with an optimal GO coating thickness compared to 3.6% for a bare/uncoated Gr/Si solar cell. The p-doping of graphene by the GO, which also serves as an antireflection coating (ARC) has been shown to be a main contributing factor to the enhanced PCE. A simple spin coating process has been used to apply GO with thickness commensurate with an anti-refection coating (ARC) and indicates the suitability of the developed methodology for large-scale solar cell assembly. Electronic supplementary information (ESI) available: (i) Experimental methods, (ii) optical images of devices with and without graphene oxide (GO), (iii) comparison of the power conversion efficiency (PCE) due to the GO coating and nitric acid doping, (iv) specular and diffuse reflectance measurements, (v) stability data of pristine graphene/silicon (Gr/Si) solar cells. See DOI: 10.1039/c5nr09143h
Deposition efficiency optimization in cold spraying of metal-ceramic powder mixtures
NASA Astrophysics Data System (ADS)
Klinkov, S. V.; Kosarev, V. F.
2017-10-01
In the present paper, results of optimization of the cold spray deposition process of a metal-ceramic powder mixture involving impacts of ceramic particles onto coating surface are reported. In the optimization study, a two-probability model was used to take into account the surface activation induced by the ceramic component of the mixture. The dependence of mixture deposition efficiency on the concentration and size of ceramic particles was analysed to identify the ranges of both parameters in which the effect due to ceramic particles on the mixture deposition efficiency was positive. The dependences of the optimum size and concentration of ceramic particles, and also the maximum gain in deposition efficiency, on the probability of adhesion of metal particles to non-activated coating surface were obtained.
NASA Astrophysics Data System (ADS)
Chen, Xiaolong; Honda, Hiroshi; Kuroda, Seiji; Araki, Hiroshi; Murakami, Hideyuki; Watanabe, Makoto; Sakka, Yoshio
2016-12-01
Effects of the ceramic powder size used for suspension as well as several processing parameters in suspension plasma spraying of YSZ were investigated experimentally, aiming to fabricate highly segmented microstructures for thermal barrier coating (TBC) applications. Particle image velocimetry (PIV) was used to observe the atomization process and the velocity distribution of atomized droplets and ceramic particles travelling toward the substrates. The tested parameters included the secondary plasma gas (He versus H2), suspension injection flow rate, and substrate surface roughness. Results indicated that a plasma jet with a relatively higher content of He or H2 as the secondary plasma gas was critical to produce highly segmented YSZ TBCs with a crack density up to 12 cracks/mm. The optimized suspension flow rate played an important role to realize coatings with a reduced porosity level and improved adhesion. An increased powder size and higher operation power level were beneficial for the formation of highly segmented coatings onto substrates with a wider range of surface roughness.
Dip-Coating Process Engineering and Performance Optimization for Three-State Electrochromic Devices
NASA Astrophysics Data System (ADS)
Wu, Lu; Yang, Dejiang; Fei, Lixun; Huang, Yue; Wu, Fang; Sun, Yiling; Shi, Jiayuan; Xiang, Yong
2017-06-01
Titanium dioxide (TiO2) nanoparticles were modified onto fluorine-doped tin oxide (FTO) via dip-coating technique with different nanoparticle sizes, lifting speeds, precursor concentrations, and dipping numbers. Electrodeposition-based electrochromic device with reversible three-state optical transformation (transparent, mirror, and black) was fabricated subsequently by sandwiching a suitable amount of gel electrolyte between modified FTO electrode and flat FTO electrode. Correlation between dip-coating process engineering, morphological features of TiO2 thin films, i.e., thickness and roughness, as well as performance of electrochromic devices, i.e., optical contrast, switching time, and cycling stability, were investigated. The modified device exhibits high optical contrast of 57%, the short coloration/bleaching switching time of 6 and 20 s, and excellent cycling stability after 1500 cycles of only 27% decrement rate by adjusting dip-coating processes engineering. The results in this study will provide valuable guidance for rational design of the electrochromic device with satisfactory performance.
Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers.
Matsuura, Yuji; Tsuchiuchi, Akio; Noguchi, Hiroshi; Miyagi, Mitsunobu
2007-03-10
To improve the damage threshold of hollow optical waveguides for transmitting Q-switched Nd:YAG laser pulses, we optimize the metallization processes for the inner coating of fibers. For silver-coated hollow fiber as the base, second, and third Nd:YAG lasers, drying silver films at a moderate temperature and with inert gas flow is found to be effective. By using this drying process, the resistance to high-peak-power optical pulse radiation is drastically improved for fibers fabricated with and without the sensitizing process. The maximum peak power transmitted in the fiber is greater than 20 MW. To improve the energy threshold of aluminum-coated hollow fibers for the fourth and fifth harmonics of Nd:YAG lasers, a thin silver film is added between the aluminum film and the glass substrate to increase adhesion of the aluminum coating. By using this primer layer, the power threshold improves to 3 MW for the fourth harmonics of a Q-switched Nd:YAG laser light.
Enhanced post wash retention of combed DNA molecules by varying multiple combing parameters.
Yadav, Hemendra; Sharma, Pulkit
2017-11-01
Recent advances in genomics have created a need for efficient techniques for deciphering information hidden in various genomes. Single molecule analysis is one such technique to understand molecular processes at single molecule level. Fiber- FISH performed with the help of DNA combing can help us in understanding genetic rearrangements and changes in genome at single DNA molecule level. For performing Fiber-FISH we need high retention of combed DNA molecules post wash as Fiber-FISH requires profuse washing. We optimized combing process involving combing solution, method of DNA mounting on glass slides and coating of glass slides to enhance post-wash retention of DNA molecules. It was found that average number of DNA molecules observed post-wash per field of view was maximum with our optimized combing solution. APTES coated glass slides showed lesser retention than PEI surface but fluorescent intensity was higher in case of APTES coated surface. Capillary method used to mount DNA on glass slides also showed lesser retention but straight DNA molecules were observed as compared to force flow method. Copyright © 2017 Elsevier Inc. All rights reserved.
Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay; ...
2014-06-09
Fracture toughness has become one of the dominant design parameters that dictates the selection of materials and their microstructure to obtain durable thermal barrier coatings (TBCs). Much progress has been made in characterizing the fracture toughness of relevant TBC compositions in bulk form, and it has become apparent that this property is significantly affected by process-induced microstructural defects. In this investigation, a systematic study of the influence of coating microstructure on the fracture toughness of atmospheric plasma sprayed (APS) TBCs has been carried out. Yttria partially stabilized zirconia (YSZ) coatings were fabricated under different spray process conditions inducing different levelsmore » of porosity and interfacial defects. Fracture toughness was measured on free standing coatings in as-processed and thermally aged conditions using the double torsion technique. Results indicate significant variance in fracture toughness among coatings with different microstructures including changes induced by thermal aging. Comparative studies were also conducted on an alternative TBC composition, Gd 2Zr 2O 7 (GDZ), which as anticipated shows significantly lower fracture toughness compared to YSZ. Furthermore, the results from these studies not only point towards a need for process and microstructure optimization for enhanced TBC performance but also a framework for establishing performance metrics for promising new TBC compositions.« less
Process-Property Relationship for Air Plasma-Sprayed Gadolinium Zirconate Coatings
NASA Astrophysics Data System (ADS)
Dwivedi, Gopal; Tan, Yang; Viswanathan, Vaishak; Sampath, Sanjay
2015-02-01
The continuous need of elevating operating temperature of gas turbine engines has introduced several challenges with the current state-of-the-art yttria-stabilized zirconia (YSZ)-based thermal barrier coatings (TBCs), requiring examination of new TBC material with high temperature phase stability, lower thermal conductivity, and resistance to environmental ash particles. Gadolinium zirconate (Gd2Zr2O7) (GDZ) has been shown to meet many of these requirements, and has, in fact, been successfully implemented in to engine components. However, several fundamental issues related to the process-ability, toughness, and microstructural differences for GDZ when compared to equivalent YSZ coating. This study seeks to critically address the process-structure-property correlations for plasma-sprayed GDZ coating subjected to controlled parametric exploration. Use of in-flight diagnostics coupled with in situ and ex situ coating property monitoring allows examination and comparison of the process-property interplay and the resultant differences between the two TBC compositions. The results indicate that it is feasible to retain material chemistry and fabricate relevant microstructures of interest with GDZ with concomitant performance advantages such as low conductivity, mechanical compliance, sintering resistance, and suppression of environmentally induced damage from ash particles. This study provides a framework for optimal design and manufacturing of emergent multi-layer and multi-material TBCs.
Studies of the air plasma spraying of zirconia powder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varacalle, D.J. Jr.; Wilson, G.C.; Crawmer, D.E.
As part of an investigation of the dynamics that occur in the air plasma spray process, an experimental and analytical study has been accomplished for the deposition of yttria-stabilized zirconia powder using argon-hydrogen and argon-helium working gases. Numerical models of the plasma dynamics and the related plasma-particle interaction are presented. The analytical studies were conducted to determine the parameter space for the empirical studies. Experiments were then conducted using a Box statistical design-of-experiment approach. A substantial range of plasma processing conditions and their effect on the resultant coating is presented. The coatings were characterized by hardness tests and optical metallographymore » (i.e., image analysis). Coating qualities are discussed with respect to hardness, porosity, surface roughness, deposition efficiency, and microstructure. Attributes of the coatings are correlated with the changes in operating parameters. An optimized coating design predicted by the SDE analysis and verified by the calculations is also presented.« less
NASA Astrophysics Data System (ADS)
Chakraborty, Sujoy; Kar, Siddhartha; Dey, Vidyut; Ghosh, Subrata Kumar
2017-06-01
This paper introduces the surface modification of Al-6351 alloy by green compact SiC-Cu electrode using electro-discharge coating (EDC) process. A Taguchi L-16 orthogonal array is employed to investigate the process by varying tool parameters like composition and compaction load and electro-discharge machining (EDM) parameters like pulse-on time and peak current. Material deposition rate (MDR), tool wear rate (TWR) and surface roughness (SR) are measured on the coated specimens. An optimum condition is achieved by formulating overall evaluation criteria (OEC), which combines multi-objective task into a single index. The signal-to-noise (S/N) ratio, and the analysis of variance (ANOVA) is employed to investigate the effect of relevant process parameters. A confirmation test is conducted based on optimal process parameters and experimental results are provided to illustrate the effectiveness of this approach. The modified surface is characterized by optical microscope and X-ray diffraction (XRD) analysis. XRD analysis of the deposited layer confirmed the transfer of tool materials to the work surface and formation of inter-metallic phases. The micro-hardness of the resulting composite layer is also measured which is 1.5-3 times more than work material’s one and highest layer thickness (LT) of 83.644μm has been successfully achieved.
NASA Astrophysics Data System (ADS)
Tanaka, Teruya; Muroga, Takeo
2014-12-01
An Er2O3 ceramic coating fabricated using the metal-organic decomposition (MOD) method on a Cr2O3-covered low-activation ferritic steel JLF-1 substrate was examined to improve hydrogen permeation barrier performance of the coating. The Cr2O3 layer was obtained before coating by heat treating the substrate at 700 °C under reduced pressures of <5 × 10-3 Pa and 5 Pa. The Cr2O3 layer was significantly stable even with heat treatment at 700 °C in air. This layer prevented further production of Fe2O3, which has been considered to degrade coating performance. An MOD Er2O3 coating with a smooth surface was successfully obtained on a Cr2O3-covered JLF-1 substrate by dip coating followed by drying and baking. Preprocessing to obtain a Cr2O3 layer would provide flexibility in the coating process for blanket components and ducts. Moreover, the Cr2O3 layer suppressed hydrogen permeation through the JLF-1 substrate. While further optimization of the coating fabrication process is required, it would be possible to suppress hydrogen permeation significantly by multilayers of Cr2O3 and MOD oxide ceramic.
Burghoorn, Marieke; Roosen-Melsen, Dorrit; de Riet, Joris; Sabik, Sami; Vroon, Zeger; Yakimets, Iryna; Buskens, Pascal
2013-01-01
Anti-reflective coatings (ARCs) are used to lower the reflection of light on the surface of a substrate. Here, we demonstrate that the two main drawbacks of moth eye-structured ARCs—i.e., the lack of suitable coating materials and a process for large area, high volume applications—can be largely eliminated, paving the way for cost-efficient and large-scale production of durable moth eye-structured ARCs on polymer substrates. We prepared moth eye coatings on polymethylmethacrylate (PMMA) and polycarbonate using wafer-by-wafer step-and-flash nano-imprint lithography (NIL). The reduction in reflection in the visible field achieved with these coatings was 3.5% and 4.0%, respectively. The adhesion of the coating to both substrates was good. The moth eye coating on PMMA demonstrated good performance in three prototypical accelerated ageing tests. The pencil hardness of the moth eye coatings on both substrates was <4B, which is less than required for most applications and needs further optimization. Additionally, we developed a roll-to-roll UV NIL pilot scale process and produced moth eye coatings on polyethylene terephthalate (PET) at line speeds up to two meters per minute. The resulting coatings showed a good replication of the moth eye structures and, consequently, a lowering in reflection of the coated PET of 3.0%. PMID:28788301
Status and directions of modified tribological surfaces by ion processes
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis
1988-01-01
An overview is presented of recent advances in modifying contacting surfaces in motion by the various ion assisted surface coating/modification processes to reduce and control tribological failures. The ion assisted coating processes and the surface modification processes offer the greatest potential to custom tailor and optimize the tribological performance. Hard, wear resistant and low shear coatings deposited by the ion assisted processes are discussed. Primarily the recent advances of sputtered MoS2 ion plated Au, Ag, Pb lubricating films and sputtered and ion plated hard, wear resistant TiN, HfN, TiC films are described in terms of structural property performance interrelationships which lead to improved adhesion, cohesion, nucleation, morphological growth, density, film thickness as determined by structural and chemical characterization and frictional and wear behavior. Also, the recent tribological advances using the surface modification processes such as ion implantation, ion beam mixing is discussed with emphasis on the development of lubricous high temperature ceramic surfaces.
NASA Technical Reports Server (NTRS)
Wolfe, Douglas E.; Singh, Jogender
2005-01-01
Various advanced Hafnia-based thermal barrier coatings (TBC) were applied on nickel-based superalloy coupons by electron beam physical vapor deposition. In addition, microstructural modifications to the coating material were made in an effort to reduce the thermal conductivity of the coating materials. Various processing parameters and coating system modifications were made in order to deposit the alloyed TBC with the desired microstructure and thus coating performance, some of which include applying coatings at substrate temperatures of 1150 C on both PtAl and CoNiCrAlY bond coated samples, as well as using 8YSZ as a bond layer. In addition, various characterization techniques including thermal cyclic tests, scanning electron microscopy, x-ray diffraction, thermal conductivity, and reflectivity measurements were performed. Although the coating microstructure was never fully optimized due to funding being cut short, significant reductions in thermal conductivity were accomplished through both chemistry changes (composition) and microstructural modifications.
Optimization of imprintable nanostructured a-Si solar cells: FDTD study.
Fisker, Christian; Pedersen, Thomas Garm
2013-03-11
We present a finite-difference time-domain (FDTD) study of an amorphous silicon (a-Si) thin film solar cell, with nano scale patterns on the substrate surface. The patterns, based on the geometry of anisotropically etched silicon gratings, are optimized with respect to the period and anti-reflection (AR) coating thickness for maximal absorption in the range of the solar spectrum. The structure is shown to increase the cell efficiency by 10.2% compared to a similar flat solar cell with an optimized AR coating thickness. An increased back reflection can be obtained with a 50 nm zinc oxide layer on the back reflector, which gives an additional efficiency increase, leading to a total of 14.9%. In addition, the patterned cells are shown to be up to 3.8% more efficient than an optimized textured reference cell based on the Asahi U-type glass surface. The effects of variations of the optimized solar cell structure due to the manufacturing process are investigated, and shown to be negligible for variations below ±10%.
SkyMapper Filter Set: Design and Fabrication of Large-Scale Optical Filters
NASA Astrophysics Data System (ADS)
Bessell, Michael; Bloxham, Gabe; Schmidt, Brian; Keller, Stefan; Tisserand, Patrick; Francis, Paul
2011-07-01
The SkyMapper Southern Sky Survey will be conducted from Siding Spring Observatory with u, v, g, r, i, and z filters that comprise glued glass combination filters with dimensions of 309 × 309 × 15 mm. In this article we discuss the rationale for our bandpasses and physical characteristics of the filter set. The u, v, g, and z filters are entirely glass filters, which provide highly uniform bandpasses across the complete filter aperture. The i filter uses glass with a short-wave pass coating, and the r filter is a complete dielectric filter. We describe the process by which the filters were constructed, including the processes used to obtain uniform dielectric coatings and optimized narrowband antireflection coatings, as well as the technique of gluing the large glass pieces together after coating using UV transparent epoxy cement. The measured passbands, including extinction and CCD QE, are presented.
Production of Conductive PEDOT-Coated PVA-GO Composite Nanofibers
NASA Astrophysics Data System (ADS)
Zubair, Nur Afifah; Rahman, Norizah Abdul; Lim, Hong Ngee; Sulaiman, Yusran
2017-02-01
Electrically conductive nanofiber is well known as an excellent nanostructured material for its outstanding performances. In this work, poly(3,4-ethylenedioxythiophene) (PEDOT)-coated polyvinyl alcohol-graphene oxide (PVA-GO)-conducting nanofibers were fabricated via a combined method using electrospinning and electropolymerization techniques. During electrospinning, the concentration of PVA-GO solution and the applied voltage were deliberately altered in order to determine the optimized electrospinning conditions. The optimized parameters obtained were 0.1 mg/mL of GO concentration with electrospinning voltage of 15 kV, which displayed smooth nanofibrous morphology and smaller diameter distribution. The electrospun PVA-GO nanofiber mats were further modified by coating with the conjugated polymer, PEDOT, using electropolymerization technique which is a facile approach for coating the nanofibers. SEM images of the obtained nanofibers indicated that cauliflower-like structures of PEDOT were successfully grown on the surface of the electrospun nanofibers during the potentiostatic mode of the electropolymerization process. The conductive nature of PEDOT coating strongly depends on the different electropolymerization parameters, resulting in good conductivity of PEDOT-coated nanofibers. The optimum electropolymerization of PEDOT was at a potential of 1.2 V in 5 min. The electrochemical measurements demonstrated that the fabricated PVA-GO/PEDOT composite nanofiber could enhance the current response and reduce the charge transfer resistance of the nanofiber.
Optimization of the laser remelting process for HVOF-sprayed Stellite 6 wear resistant coatings
NASA Astrophysics Data System (ADS)
Ciubotariu, Costel-Relu; Frunzăverde, Doina; Mărginean, Gabriela; Șerban, Viorel-Aurel; Bîrdeanu, Aurel-Valentin
2016-03-01
Cobalt base alloys are used in all industrial areas due to their excellent wear resistance. Several studies have shown that Stellite 6 coatings are suitable not only for protection against sliding wear, but also in case of exposure to impact loading. In this respect, a possible application is the protection of hydropower plant components affected by cavitation. The main problem in connection with Stellite 6 is the deposition procedure of the protective layers, both welding and thermal spraying techniques requesting special measures in order to prevent the brittleness of the coating. In this study, Stellite 6 layers were HVOF thermally sprayed on a martensitic 13-4 stainless steel substrate, as usually used for hydraulic machinery components. In order to improve the microstructure of the HVOF-sprayed coatings and their adhesion to the substrate, laser remelting was applied, using a TRUMPF Laser type HL 124P LCU and different working parameters. The microstructure of the coatings, obtained for various remelting conditions, was evaluated by light microscopy, showing the optimal value of the pulse power, which provided a homogenous Stellite 6 layer with good adhesion to the substrate.
Salifu, Abdulai; Petrusevski, Branislav; Mwampashi, Emmanuel S; Pazi, Iddi A; Ghebremichael, Kebreab; Buamah, Richard; Aubry, Cyril; Amy, Gary L; Kenedy, Maria D
2016-10-01
There is no known effective treatment for fluoride-related health disorders, hence prevention through water defluoridation is necessary. This study explored the possibility of modifying the physico-chemical properties of bauxite, a locally available material in many countries including Ghana, by thermal treatment and an aluminum coating, for water defluoridation. The study mainly focused on investigating the effects of varying synthesis process conditions on the defluoridation efficiency of Granular Aluminum Coated Bauxite (GACB). GACB performed better than raw bauxite (RB) and was able to reduce fluoride concentration in groundwater from 5 ± 0.2 mg/L to ≤ 1.5 mg/L, World Health Organization (WHO) guideline. Based on nonlinear Chi-square (χ(2)) analysis, the best-fitting isotherm model for the fluoride-GACB system was in the order: Freundlich > Redlich-Perterson ≈ Langmuir > Temkin. The fluoride adsorption capacity of GACB (qmax = 12.29 mg/g) based on the Langmuir model was found to be either comparable or higher than the capacities of some reported fluoride adsorbents. Aluminum (Al) coating procedures optimized in this study could therefore be a useful approach for synthesizing an effective fluoride adsorbent using bauxite, a locally available material. Kinetic and isotherm analysis, thermodynamic calculations, as well as FTIR and Raman analysis suggested the mechanism of fluoride adsorption onto GACB was complex and involved both physical adsorption and chemisorption processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Maghsoodi, Sina; Brophy, Brenor L.; Abrams, Ze'ev R.; Gonsalves, Peter R.
2016-06-28
Disclosed herein are coating materials and methods for applying a top-layer coating that is durable, abrasion resistant, highly transparent, hydrophobic, low-friction, moisture-sealing, anti-soiling, and self-cleaning to an existing conventional high temperature anti-reflective coating. The top coat imparts superior durability performance and new properties to the under-laying conventional high temperature anti-reflective coating without reducing the anti-reflectiveness of the coating. Methods and data for optimizing the relative thickness of the under-layer high temperature anti-reflective coating and the top-layer thickness for optimizing optical performance are also disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, C.; Armstrong, B.; Maxey, C.
2012-12-15
Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 System’s nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able to removemore » defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have a deleterious effect on coating quality. Based on this and other experimental data a radiative transfer model was developed for IR heating that also included a mass transfer module for drying. This will prove invaluable for battery coating optimization especially where IR drying is being employed. A stress model was also developed that predicts that under certain drying conditions tensile stresses are formed in the coating which could lead to cracking that is sometimes observed after drying is complete. Prediction of under what conditions these stresses form is vital to improving coating quality. In addition to understanding the drying process other parameters such as slurry quality and equipment optimization were examined. Removal of particles and gels by filtering, control of viscosity by %solids and mixing adjustments, removal of trapped gas in the slurry and modification of coater speed and slot die gap were all found to be important for producing uniform and flaw-free coatings. Second, an in-line Hi-Pot testing method has been developed specifically for NCS that will enable detection of coating flaws that could lead to soft or hard electrical shorts within the cell. In this way flawed material can be rejected before incorporation into the cell thus greatly reducing the amount of scrap that is generated. Improved battery safety is an extremely important benefit of NCS. Evaluation of battery safety is usually accomplished by conducting a variety of tests including nail penetration, hot box, over charge, etc. For these tests entire batteries must be built but the resultant temperature and voltage responses reveal little about the breakdown mechanism. In this report is described a pinch test which is used to evaluate NCS quality at various stages including coated anode and cathode as well as assembled cell. Coupled with post-microscopic examination of the damaged ‘pinch point’ test data can assist in the coating optimization from an improved end-use standpoint. As a result of this work two invention disclosures, one for optimizing drying methodology and the other for an in-line system for flaw detection, have been filed. In addition, 2 papers are being written for submission to peer-reviewed journals.« less
NASA Astrophysics Data System (ADS)
Lilja, Mirjam; Butt, Umer; Shen, Zhijian; Bjöörn, Dorota
2013-11-01
Understanding of nucleation and growth kinetics of biomimetically deposited hydroxyapatite (HA) on crystalline TiO2 surfaces is important with respect to the application and performance of HA as functional implant coatings. Arc-evaporation was used to deposit TiO2 coatings dominated by anatase phase, rutile phase or their mixtures. Subsequent formation of HA from phosphate buffered saline solution (PBS) was investigated in real-time using in situ quartz crystal microbalance with dissipation technique (QCM-D). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to characterize the presence, morphology and crystal structure of TiO2 coatings and the formed HA. Increasing temperature of the PBS, increasing flow rate and applying a higher ion concentration in solution were found to accelerate HA nucleation process and hence affect growth kinetics. Lower PBS temperature resulted in the formation of HA coatings with flake-like morphology and increasing HA porosity. All TiO2 coatings under study enabled HA formation at body temperature, while in contrast Ti reference surfaces only supported HA nucleation and growth at elevated temperatures. QCM-D technique is a powerful tool for studying the impact of process parameters during biomimetic coating deposition on coating structure evolution in real time and provides valuable information for understanding, optimizing as well as tailoring the biomimetic HA growth processes.
The role of nano-particles in the field of thermal spray coating technology
NASA Astrophysics Data System (ADS)
Siegmann, Stephan; Leparoux, Marc; Rohr, Lukas
2005-06-01
Nano-particles play not only a key role in recent research fields, but also in the public discussions about health and safety in nanotechnology. Nevertheless, the worldwide activities in nano-particles research increased dramatically during the last 5 to 10 years. There are different potential routes for the future production of nano-particles at large scale. The main directions envisaged are mechanical milling, wet chemical reactions or gas phase processes. Each of the processes has its specific advantages and limitations. Mechanical milling and wet chemical reactions are typically time intensive and batch processes, whereas gas phase productions by flames or plasma can be carried out continuously. Materials of interest are mainly oxide ceramics, carbides, nitrides, and pure metals. Nano-ceramics are interesting candidates for coating technologies due to expected higher coating toughness, better thermal shock and wear resistance. Especially embedded nano-carbides and-nitrides offer homogenously distributed hard phases, which enhance coatings hardness. Thermal spraying, a nearly 100 years old and world wide established coating technology, gets new possibilities thanks to optimized, nano-sized and/or nano-structured powders. Latest coating system developments like high velocity flame spraying (HVOF), cold gas deposition or liquid suspension spraying in combination with new powder qualities may open new applications and markets. This article gives an overview on the latest activities in nano-particle research and production in special relation to thermal spray coating technology.
Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2004-01-01
Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. For future high performance engines, the development of advanced ceramic barrier coating systems will allow these coatings to be used to simultaneously increase engine operating temperature and reduce cooling requirements, thereby leading to significant improvements in engine power density and efficiency. In order to meet future engine performance and reliability requirements, the coating systems must be designed with increased high temperature stability, lower thermal conductivity, and improved thermal stress and erosion resistance. In this paper, ceramic coating design and testing considerations will be described for high temperature and high-heat-flux engine applications in hot corrosion and oxidation, erosion, and combustion water vapor environments. Further coating performance and life improvements will be expected by utilizing advanced coating architecture design, composition optimization, and improved processing techniques, in conjunction with modeling and design tools.
Kinetic Migration of Diethylhexyl Phthalate in Functional PVC Films
NASA Astrophysics Data System (ADS)
Fei, Fei; Liu, Zhongwei; Chen, Qiang; Liu, Fuping
2012-02-01
Plasticizers that are generally used in plastics to produce flexible food packaging materials have proved to cause reproductive system problems and women's infertility. A long-term consumption may even cause cancer diseases. Hence a nano-scale layer, named as functional barrier layer, was deposited on the plastic surface to prevent plasticizer diethylhexyl phthalate's (DEHP) migration from plastics to foods. The feasibility of functional barrier layer i.e. SiOx coating through plasma enhanced chemical vapor deposition (PECVD) process was then described in this paper. We used Fourier transform infrared spectroscopy (FTIR) to analyze the chemical composition of coatings, scanning electron microscope (SEM) to explore the topography of the coating surfaces, surface profilemeter to measure thickness of coatings, and high-performance liquid chromatography (HPLC) to evaluate the barrier properties of coatings. The results have clearly shown that the coatings can perfectly block the migration of the DEHP from plastics to their containers. It is also concluded that process parameters significantly influence the block efficiency of the coatings. When the deposition conditions of SiOx coatings were optimized, i.e. 50 W of the discharge power, 4:1 of ratio of O2: HMDSO, and ca.100 nm thickness of SiOx, 71.2% of the DEHP was effectively blocked.
An update on coating/manufacturing techniques of microneedles.
Tarbox, Tamara N; Watts, Alan B; Cui, Zhengrong; Williams, Robert O
2017-12-29
Recently, results have been published for the first successful phase I human clinical trial investigating the use of dissolving polymeric microneedles… Even so, further clinical development represents an important hurdle that remains in the translation of microneedle technology to approved products. Specifically, the potential for accumulation of polymer within the skin upon repeated application of dissolving and coated microneedles, combined with a lack of safety data in humans, predicates a need for further clinical investigation. Polymers are an important consideration for microneedle technology-from both manufacturing and drug delivery perspectives. The use of polymers enables a tunable delivery strategy, but the scalability of conventional manufacturing techniques could arguably benefit from further optimization. Micromolding has been suggested in the literature as a commercially viable means to mass production of both dissolving and swellable microneedles. However, the reliance on master molds, which are commonly manufactured using resource intensive microelectronics industry-derived processes, imparts notable material and design limitations. Further, the inherently multi-step filling and handling processes associated with micromolding are typically batch processes, which can be challenging to scale up. Similarly, conventional microneedle coating processes often follow step-wise batch processing. Recent developments in microneedle coating and manufacturing techniques are highlighted, including micromilling, atomized spraying, inkjet printing, drawing lithography, droplet-born air blowing, electro-drawing, continuous liquid interface production, 3D printing, and polyelectrolyte multilayer coating. This review provides an analysis of papers reporting on potentially scalable production techniques for the coating and manufacturing of microneedles.
Lithographic performance of recent DUV photoresists
NASA Astrophysics Data System (ADS)
Streefkerk, Bob; van Ingen Schenau, Koen; Buijk, Corine
1998-06-01
Commercially available photoresists from the major photoresist vendors are investigated using a PAS 5500/300 wafer stepper, a 31.1 mm diameter field size high throughput wafer stepper with variable NA capability up to 0.63. The critical dimension (CD) investigated is 0.25 micrometers and lower for dense and isolated lines and 0.25 micrometers for dense contact holes. The photoresist process performance is quantified by measuring exposure-defocus windows for a specific resolution using a CD SEM. Photoresists that are comparable with or better than APEX-E with RTC top coat, which is the current base line process for lines and spaces imaging performance, are Clariant AZ-DX1300 and Shin Etsu SEPR-4103PB50. Most recent photoresists have much improved delay performance when compared to APEX without top coat. Improvement, when an organic BARC is applied, depends on the actual photoresist characteristics. The optimal photoresist found for 0.25 micrometers contact holes is TOK DP015 C. This process operates at optimal conditions.
Continuous API-crystal coating via coacervation in a tubular reactor.
Besenhard, M O; Thurnberger, A; Hohl, R; Faulhammer, E; Rattenberger, J; Khinast, J G
2014-11-20
We present a proof-of-concept study of a continuous coating process of single API crystals in a tubular reactor using coacervation as a microencapsulation technique. Continuous API crystal coating can have several advantages, as in a single step (following crystallization) individual crystals can be prepared with a functional coating, either to change the release behavior, to protect the API from gastric juice or to modify the surface energetics of the API (i.e., to tailor the hydrophobic/hydrophilic characteristics, flowability or agglomeration tendency, etc.). The coating process was developed for the microencapsulation of a lipophilic core material (ibuprofen crystals of 20 μm- to 100 μm-size), with either hypromellose phthalate (HPMCP) or Eudragit L100-55. The core material was suspended in an aqueous solution containing one of these enteric polymers, fed into the tubing and mixed continuously with a sodium sulfate solution as an antisolvent to induce coacervation. A subsequent temperature treatment was applied to optimize the microencapsulation of crystals via the polymer-rich coacervate phase. Cross-linking of the coating shell was achieved by mixing the processed material with an acidic solution (pH<3). Flow rates, temperature profiles and polymer-to-antisolvent ratios had to be tightly controlled to avoid excessive aggregation, leading to pipe plugging. This work demonstrates the potential of a tubular reactor design for continuous coating applications and is the basis for future work, combining continuous crystallization and coating. Copyright © 2014 Elsevier B.V. All rights reserved.
Furnace Cyclic Oxidation Behavior of Multi-Component Low Conductivity Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Nesbitt, James A.; Barrett, Charles A.; McCue, Terry R.; Miller, Robert A.
2004-01-01
Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to further increase engine operating temperatures and reduce cooling, thus helping achieve future engine low emission, high efficiency and improved reliability goals. Advanced multi-component zirconia-based thermal barrier coatings are being developed using an oxide defect clustering design approach to achieve the required coating low thermal conductivity and high temperature stability. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of the candidate coating materials was conducted using conventional furnace cyclic oxidation tests. In this paper, furnace cyclic oxidation behavior of plasma-sprayed zirconia-based defect cluster thermal barrier coatings was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied using scanning electron microscopy (SEM) combined with X-ray diffraction (XRD) phase analysis after the furnace tests. The coating cyclic lifetime is also discussed in relation to coating processing, phase structures, dopant concentration, and other thermo-physical properties.
Synthesis of nano-sized lithium cobalt oxide via a sol-gel method
NASA Astrophysics Data System (ADS)
Li, Guangfen; Zhang, Jing
2012-07-01
In this study, nano-structured LiCoO2 thin film were synthesized by coupling a sol-gel process with a spin-coating method using polyacrylic acid (PAA) as chelating agent. The optimized conditions for obtaining a better gel formulation and subsequent homogenous dense film were investigated by varying the calcination temperature, the molar mass of PAA, and the precursor's molar ratios of PAA, lithium, and cobalt ions. The gel films on the silicon substrate surfaces were deposited by multi-step spin-coating process for either increasing the density of the gel film or adjusting the quantity of PAA in the film. The gel film was calcined by an optimized two-step heating procedure in order to obtain regular nano-structured LiCoO2 materials. Both atomic force microscopy (AFM) and scanning electron microscopy (SEM) were utilized to analyze the crystalline and the morphology of the films, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yong; Phillpot, Simon
Fuel cladding chemical interactions (FCCI) have been acknowledged as a critical issue in a metallic fuel/steel cladding system due to the formation of low melting intermetallic eutectic compounds between the fuel and cladding steel, resulting in reduction in cladding wall thickness as well as a formation of eutectic compounds that can initiate melting in the fuel at lower temperature. In order to mitigate FCCI, diffusion barrier coatings on the cladding inner surface have been considered. In order to generate the required coating techniques, pack cementation, electroplating, and electrophoretic deposition have been investigated. However, these methods require a high processing temperaturemore » of above 700 oC, resulting in decarburization and decomposition of the martensites in a ferritic/martensitic (F/M) cladding steel. Alternatively, organometallic chemical vapor deposition (OMCVD) can be a promising process due to its low processing temperature of below 600 oC. The aim of the project is to conduct applied and fundamental research towards the development of diffusion barrier coatings on the inner surface of F/M fuel cladding tubes. Advanced cladding steels such as T91, HT9 and NF616 have been developed and extensively studied as advanced cladding materials due to their excellent irradiation and corrosion resistance. However, the FCCI accelerated by the elevated temperature and high neutron exposure anticipated in fast reactors, can have severe detrimental effects on the cladding steels through the diffusion of Fe into fuel and lanthanides towards into the claddings. To test the functionality of developed coating layer, the diffusion couple experiments were focused on using T91 as cladding and Ce as a surrogate lanthanum fission product. By using the customized OMCVD coating equipment, thin and compact layers with a few micron between 1.5 µm and 8 µm thick and average grain size of 200 nm and 5 µm were successfully obtained at the specimen coated between 300oC and 500 oC, respectively. The coating layer contains both carbon and vanadium elements as quantified by WED, and the phases mainly consist of a mixture of V2C and VC, which was confirmed using X-ray diffraction patterns. In addition, the ratio between V and C varies with processing temperature, and it was observed that a higher temperature promotes the carbon adsorption and increases thickness of the coating. With optimized deposition conditions, we can apply the coating technique toward the actual T91 cladding materials, and provide the possibilities for the real application in sodium-cooled fast reactors (SFRs). Diffusion couple experiments were performed at both 550 oC and 690 oC, which corresponds to normal and aggressive operating temperatures, respectively. The results show that vanadium carbide coating with wider thickness (8 µm) and lower carbon concentration (27 at.%) reduced the width of the inter diffusion region, indicating that vanadium carbide coating can mitigate FCCI effectively. In specific, inter-diffusion between Fe and Ce was prohibited over most area, but Ce diffusion occurred toward the coating and the Fe substrate through thinner coating layer, which needs further optimization in terms of uniform coating thickness. Overall, it is concluded that this coating process can be successfully applied onto the inner surface of HT9 cladding tubes and the FCCI can be effectively mitigated if not totally eliminated.« less
Spraylon fluorocarbon encapsulation for silicon solar cell arrays
NASA Technical Reports Server (NTRS)
1977-01-01
A development program was performed for evaluating, modifying, and optimizing the Lockheed formulated liquid transparent filmforming Spraylon fluorocarbon protective coating for silicon solar cells and modules. The program objectives were designed to meet the requirements of the low-cost automated solar cell array fabrication process. As part of the study, a computer program was used to establish the limits of the safe working stress in the coated silicon solar cell array system under severe thermal shock.
NASA Astrophysics Data System (ADS)
Hasan, S.; Stokes, J.
2011-01-01
High Velocity Oxy-Fuel (HVOF) has the potential to produce hydroxyapatite (HA; Bio-ceramic) coatings based on its experience with other sprayed ceramic materials. This technique should offer mechanical and biological results comparable to other thermal spraying processes, such as atmospheric plasma thermal spray, currently FDA approved for HA deposition. Deposition of HA via HVOF is a new venture especially using the Sulzer Metco Diamond Jet (DJ) process, and the aim of this article was to establish this technique's potential in providing superior HA coating results compared to the FDA-approved plasma spray technique. In this research, a Design of Experiment (DOE) model was developed to optimize the Sulzer Metco DJ HVOF process for the deposition of HA. In order to select suitable ranges for the production of HA coatings, the parameters were first investigated. Five parameters (factors) were researched over two levels namely: oxygen flow rate, propylene flow rate, air flow rate, spray distance, and powder flow rate. Coating crystallinity and purity were measured at the surface of each sample as the responses to the factors used. The research showed that propylene, air flow rate, spray distance, and powder feed rate had the largest effect on the responses, and the study aimed to find the preferred optimized settings to achieve high crystallinity and purity of percentages of up to 95%. This research found crystallinity and purity values of 93.8 and 99.8%, respectively, for a set of HVOF parameters which showed improvement compared to the crystallinity and purity values of 87.6 and 99.4%, respectively, found using the FDA-approved Sulzer Metco Atmospheric Plasma thermal spray process. Hence, a new technique for HA deposition now exists using the DJ HVOF facility; however, other mechanical and biorelated properties must also be assessed.
Array automated assembly task, phase 2. Low cost silicon solar array project
NASA Technical Reports Server (NTRS)
Rhee, S. S.; Jones, G. T.; Allison, K. T.
1978-01-01
Several modifications instituted in the wafer surface preparation process served to significantly reduce the process cost to 1.55 cents per peak watt in 1975 cents. Performance verification tests of a laser scanning system showed a limited capability to detect hidden cracks or defects, but with potential equipment modifications this cost effective system could be rendered suitable for applications. Installation of electroless nickel plating system was completed along with an optimization of the wafer plating process. The solder coating and flux removal process verification test was completed. An optimum temperature range of 500-550 C was found to produce uniform solder coating with the restriction that a modified dipping procedure is utilized. Finally, the construction of the spray-on dopant equipment was completed.
Mozafari, Masoud; Salahinejad, Erfan; Shabafrooz, Vahid; Yazdimamaghani, Mostafa; Vashaee, Daryoosh; Tayebi, Lobat
2013-01-01
Surface modification, particularly coatings deposition, is beneficial to tissue-engineering applications. In this work, bioactive glass/zirconium titanate composite thin films were prepared by a sol-gel spin-coating method. The surface features of the coatings were studied by scanning electron microscopy, atomic force microscopy, and spectroscopic reflection analyses. The results show that uniform and sound multilayer thin films were successfully prepared through the optimization of the process variables and the application of carboxymethyl cellulose as a dispersing agent. Also, it was found that the thickness and roughness of the multilayer coatings increase nonlinearly with increasing the number of the layers. This new class of nanocomposite coatings, comprising the bioactive and inert components, is expected not only to enhance bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. PMID:23641155
Design optimization of a radial functionally graded dental implant.
Ichim, Paul I; Hu, Xiaozhi; Bazen, Jennifer J; Yi, Wei
2016-01-01
In this work, we use FEA to test the hypothesis that a low-modulus coating of a cylindrical zirconia dental implant would reduce the stresses in the peri-implant bone and we use design optimization and the rule of mixture to estimate the elastic modulus and the porosity of the coating that provides optimal stress shielding. We show that a low-modulus coating of a dental implant significantly reduces the maximum stresses in the peri-implant bone without affecting the average stresses thus creating a potentially favorable biomechanical environment. Our results suggest that a resilient coating is capable of reducing the maximum compressive and tensile stresses in the peri-implant bone by up to 50% and the average stresses in the peri-implant bone by up to 15%. We further show that a transitional gradient between the high-modulus core and the low-modulus coating is not necessary and for a considered zirconia/HA composite the optimal thickness of the coating is 100 µ with its optimal elastic at the lowest value considered of 45 GPa. © 2015 Wiley Periodicals, Inc.
Applying quality by design (QbD) concept for fabrication of chitosan coated nanoliposomes.
Pandey, Abhijeet P; Karande, Kiran P; Sonawane, Raju O; Deshmukh, Prashant K
2014-03-01
In the present investigation, a quality by design (QbD) strategy was successfully applied to the fabrication of chitosan-coated nanoliposomes (CH-NLPs) encapsulating a hydrophilic drug. The effects of the processing variables on the particle size, encapsulation efficiency (%EE) and coating efficiency (%CE) of CH-NLPs (prepared using a modified ethanol injection method) were investigated. The concentrations of lipid, cholesterol, drug and chitosan; stirring speed, sonication time; organic:aqueous phase ratio; and temperature were identified as the key factors after risk analysis for conducting a screening design study. A separate study was designed to investigate the robustness of the predicted design space. The particle size, %EE and %CE of the optimized CH-NLPs were 111.3 nm, 33.4% and 35.2%, respectively. The observed responses were in accordance with the predicted response, which confirms the suitability and robustness of the design space for CH-NLP formulation. In conclusion, optimization of the selected key variables will help minimize the problems related to size, %EE and %CE that are generally encountered when scaling up processes for NLP formulations. The robustness of the design space will help minimize both intra-batch and inter-batch variations, which are quite common in the pharmaceutical industry.
Rastegar, M; Shadbad, K Rahmati; Khataee, A R; Pourrajab, R
2012-01-01
Optimization of photocatalytic degradation of C.I. Reactive Green 19 (RG 19) under UV light irradiation using ceramic-coated TiO2 nanoparticles in a continuous circulation rectangular photoreactor was studied. The used catalyst was TiO2 Millennium PC-500 (crystallite mean size 8 nm) immobilized on ceramic plates. A central composite design was used for optimization of the UV/TiO2 process. Predicted values of decolorization efficiency were found to be in good agreement with experimental values (R2 = 0.97 and Adj-R2 = 0.91). Optimization results showed that maximum decolorization efficiency was achieved at the optimum conditions of: initial dye concentration 10 mg/L, UV light intensity 47.2 W/m2, flow rate 150 mL/min and reaction time 240 min. Photocatalytic mineralization of RG 19 was monitored by chemical oxygen demand (COD) decrease and changes in the UV-Vis spectrum.
Processing of Copper Zinc Tin Sulfide Nanocrystal Dispersions for Thin Film Solar Cells
NASA Astrophysics Data System (ADS)
Williams, Bryce Arthur
A scalable and inexpensive renewable energy source is needed to meet the expected increase in electricity demand throughout the developed and developing world in the next 15 years without contributing further to global warming through CO2 emissions. Photovoltaics may meet this need but current technologies are less than ideal requiring complex manufacturing processes and/or use of toxic, rare-earth materials. Copper zinc tin sulfide (Cu 2ZnSnS4, CZTS) solar cells offer a true "green" alternative based upon non-toxic and abundant elements. Solution-based processes utilizing CZTS nanocrystal dispersions followed by high temperature annealing have received significant research attention due to their compatibility with traditional roll-to-roll coating processes. In this work, CZTS nanocrystal (5-35 nm diameters) dispersions were utilized as a production pathway to form solar absorber layers. Aerosol-based coating methods (aerosol jet printing and ultrasonic spray coating) were optimized for formation of dense, crack-free CZTS nanocrystal coatings. The primary variables underlying determination of coating morphology within the aerosol-coating parameter space were investigated. It was found that the liquid content of the aerosol droplets at the time of substrate impingement play a critical role. Evaporation of the liquid from the aerosol droplets during coating was altered through changes to coating parameters as well as to the CZTS nanocrystal dispersions. In addition, factors influencing conversion of CZTS nanocrystal coatings into dense, large-grained polycrystalline films suitable for solar cell development during thermal annealing were studied. The roles nanocrystal size, carbon content, sodium uptake, and sulfur pressure were found to have pivotal roles in film microstructure evolution. The effects of these parameters on film morphology, grain growth rates, and chemical makeup were analyzed from electron microscopy images as well as compositional analysis techniques. From these results, a deeper understanding of the interplay between the numerous annealing variables was achieved and improved annealing processes were developed.
de Haan, Hendrick W; Paquet, Chantal
2011-12-01
The effects of including a hydrophilic coating around the particles are studied across a wide range of particle sizes by performing Monte Carlo simulations of protons diffusing through a system of magnetic particles. A physically realistic methodology of implementing the coating by cross boundary jump scaling and transition probabilities at the coating surface is developed. Using this formulation, the coating has three distinct impacts on the relaxation rate: an enhancement at small particle sizes, a degradation at intermediate particle sizes, and no effect at large particles sizes. These varied effects are reconciled with the underlying dephasing mechanisms by using the concept of a full dephasing zone to present a physical picture of the dephasing process with and without the coating for all sizes. The enhancement at small particle sizes is studied systemically to demonstrate the existence of an optimal ratio of diffusion coefficients inside/outside the coating to achieve maximal increase in the relaxation rate. Copyright © 2011 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. John J. Moore; Dr. Jianliang Lin,
2012-07-31
The main objective of this research program was to design and develop an optimal coating system that extends die life by minimizing premature die failure. In high-pressure aluminum die-casting, the die, core pins and inserts must withstand severe processing conditions. Many of the dies and tools in the industry are being coated to improve wear-resistance and decrease down-time for maintenance. However, thermal fatigue in metal itself can still be a major problem, especially since it often leads to catastrophic failure (i.e. die breakage) as opposed to a wear-based failure (parts begin to go out of tolerance). Tooling costs remain themore » largest portion of production costs for many of these parts, so the ability prevent catastrophic failures would be transformative for the manufacturing industry.The technology offers energy savings through reduced energy use in the die casting process from several factors, including increased life of the tools and dies, reuse of the dies and die components, reduction/elimination of lubricants, and reduced machine down time, and reduction of Al solder sticking on the die. The use of the optimized die coating system will also reduce environmental wastes and scrap parts. Current (2012) annual energy saving estimates, based on initial dissemination to the casting industry in 2010 and market penetration of 80% by 2020, is 3.1 trillion BTU's/year. The average annual estimate of CO2 reduction per year through 2020 is 0.63 Million Metric Tons of Carbon Equivalent (MM TCE).« less
Efficiency of surface cleaning by a glow discharge for plasma spraying coating
NASA Astrophysics Data System (ADS)
Kadyrmetov, A. M.; Kashapov, N. F.; Sharifullin, S. N.; Saifutdinov, A. I.; Fadeev, S. A.
2016-06-01
The article presents the results of experimental studies of the quality of cleaning steel surfaces by a glow discharge for plasma spraying. Shows the results of measurements of the angle of surface wetting and bond strength of the plasma coating to the surface treated. The dependence of the influence of the glow discharge power, chamber pressure, distance between the electrodes and the processing time of the surface on cleaning efficiency. Optimal fields of factors is found. It is shown increase joint strength coating and base by 30-80% as a result of cleaning the substrate surface by a glow discharge plasma spraying.
NASA Astrophysics Data System (ADS)
Krimi, Soufiene; Beigang, René
2017-02-01
In this contribution, we present a highly accurate approach for real-time thickness measurements of multilayered coatings using terahertz time domain spectroscopy in reflection geometry. The proposed approach combines the benefits of a model-based material parameters extraction method to calibrate the specimen under test, a generalized modeling method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity and the precision of the minimum thickness measurement limit. Furthermore, a novel self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the car painting process and the influence of the spraying conditions and the sintering process on ceramic thermal barrier coatings (TBCs) in aircraft industry. In addition, the developed approach enables for some applications the simultaneous determination of the complex refractive index and the coating thickness. Hence, a pre-calibration of the specimen under test is not required for such cases. Due to the high robustness of the self-calibration method and the genetic optimization algorithms, the approach has been successfully applied to resolve individual layer thicknesses within multi-layered coated samples down to less than 10 µm. The regression method can be applied in time-domain, frequency-domain or in both the time and frequency-domain simultaneously. The data evaluation uses general-purpose computing on graphics processing units and thanks to the developed highly parallelized algorithm lasts less than 300 ms. Thus, industrial requirements for fast thickness measurements with an "every-second-cycle" can be fulfilled.
Saindane, Nilesh; Vavia, Pradeep
2012-09-01
The aim of the present investigation was to develop controlled porosity osmotic system for poorly water-soluble drug based on drug in polymer-surfactant layer technology. A poorly water-soluble drug, glipizide (GZ), was selected as the model drug. The technology involved core of the pellets containing osmotic agent coated with drug dispersed in polymer and surfactant layer, finally coated with release-retardant layer with pore former. The optimized drug-layer-coated pellets were evaluated for solubility of GZ at different pH conditions and characterized for amorphous nature of the drug by differential scanning calorimetry and X-ray powder diffractometry. The optimized release-retardant layer pellets were evaluated for in vitro drug release at different pH, hydrodynamic, and osmolality conditions. The optimized drug layer showed improvement in solubility (10 times in pH 1.2, 11 times in pH 4.5, and 21 times in pH 6.8), whereas pellets coated with cellulose acetate (15.0%, w/w, weight gain) with pore former triethyl citrate (10.0%, w/w, of polymer) demonstrated zero-order drug release for 24 h at different pH conditions; moreover, retardation of drug release was observed with increment of osmolality. This system could be a platform technology for controlled delivery of poorly water-soluble drugs. Copyright © 2012 Wiley Periodicals, Inc.
Patel, Rajankumar L.; Jiang, Ying-Bing; Choudhury, Amitava; Liang, Xinhua
2016-01-01
Atomic layer deposition (ALD) has evolved as an important technique to coat conformal protective thin films on cathode and anode particles of lithium ion batteries to enhance their electrochemical performance. Coating a conformal, conductive and optimal ultrathin film on cathode particles has significantly increased the capacity retention and cycle life as demonstrated in our previous work. In this work, we have unearthed the synergetic effect of electrochemically active iron oxide films coating and partial doping of iron on LiMn1.5Ni0.5O4 (LMNO) particles. The ionic Fe penetrates into the lattice structure of LMNO during the ALD process. After the structural defects were saturated, the iron started participating in formation of ultrathin oxide films on LMNO particle surface. Owing to the conductive nature of iron oxide films, with an optimal film thickness of ~0.6 nm, the initial capacity improved by ~25% at room temperature and by ~26% at an elevated temperature of 55 °C at a 1C cycling rate. The synergy of doping of LMNO with iron combined with the conductive and protective nature of the optimal iron oxide film led to a high capacity retention (~93% at room temperature and ~91% at 55 °C) even after 1,000 cycles at a 1C cycling rate. PMID:27142704
NASA Astrophysics Data System (ADS)
Brakensiek, Nickolas L.; Kidd, Brian; Mesawich, Michael; Stevens, Don, Jr.; Gotlinsky, Barry
2003-06-01
A design of experiment (DOE) was implemented to show the effects of various point of use filters on the coat process. The DOE takes into account the filter media, pore size, and pumping means, such as dispense pressure, time, and spin speed. The coating was executed on a TEL Mark 8 coat track, with an IDI M450 pump, and PALL 16 stack Falcon filters. A KLA 2112 set at 0.69 μm pixel size was used to scan the wafers to detect and identify the defects. The process found for DUV42P to maintain a low defect coating irrespective of the filter or pore size is a high start pressure, low end pressure, low dispense time, and high dispense speed. The IDI M450 pump has the capability to compensate for bubble type defects by venting the defects out of the filter before the defects are in the dispense line and the variable dispense rate allows the material in the dispense line to slow down at the end of dispense and not create microbubbles in the dispense line or tip. Also the differential pressure sensor will alarm if the pressure differential across the filter increases over a user-determined setpoint. The pleat design allows more surface area in the same footprint to reduce the differential pressure across the filter and transport defects to the vent tube. The correct low defect coating process will maximize the advantage of reducing filter pore size or changing the filter media.
NASA Astrophysics Data System (ADS)
Liu, Daiming; Wang, Qingkang
2018-08-01
Light trapping is particularly important because of the desire to produce low-cost solar cells with the thinnest possible photoactive layers. Herein, along the research line of "optimization →fabrication →characterization →application", concave arrays were incorporated into amorphous silicon thin-film solar cell for lifting its photoelectric conversion efficiency. In advance, based on rigorous coupled wave analysis method, optics simulations were performed to obtain the optimal period of 10 μm for concave arrays. Microfabrication processes were used to etch concave arrays on glass, and nanoimprint was devoted to transfer the pattern onto polymer coatings with a high fidelity. Spectral characterizations prove that the concave-arrays coating enjoys excellent the light-trapping behaviors, by reducing the reflectance to 7.4% from 8.6% of bare glass and simultaneously allowing a high haze ratio of ∼ 70% in 350-800 nm. Compared with bare cell, the concave-arrays coating based amorphous silicon thin-film solar cell possesses the improving photovoltaic performances. Relative enhancements are 3.46% and 3.57% in short circuit current and photoelectric conversion efficiency, respectively. By the way, this light-trapping coating is facile, low-cost and large-scale, and can be straightforward introduced in other ready-made solar devices.
Marchiori, G; Lopomo, N; Boi, M; Berni, M; Bianchi, M; Gambardella, A; Visani, A; Russo, A; Marcacci, M
2016-01-01
Realizing hard ceramic coatings on the plastic component of a joint prosthesis can be strategic for the mechanical preservation of the whole implant and to extend its lifetime. Recently, thanks to the Plasma Pulsed Deposition (PPD) method, zirconia coatings on ultra-high molecular weight polyethylene (UHMWPE) substrates resulted in a feasible outcome. Focusing on both the highly specific requirements defined by the biomedical application and the effective possibilities given by the deposition method in the perspectives of technological transfer, it is mandatory to optimize the coating in terms of load bearing capacity. The main goal of this study was to identify through Finite Element Analysis (FEA) the optimal coating thickness that would be able to minimize UHMWPE strain, possible insurgence of cracks within the coating and stresses at coating-substrate interface. Simulations of nanoindentation and microindentation tests were specifically carried out. FEA findings demonstrated that, in general, thickening the zirconia coating strongly reduced the strains in the UHMWPE substrate, although the 1 μm thickness value was identified as critical for the presence of high stresses within the coating and at the interface with the substrate. Therefore, the optimal thickness resulted to be highly dependent on the specific loading condition and final applications. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Khan, Zeeshan; Islam, Saeed; Shah, Rehan Ali; Khan, Muhammad Altaf; Bonyah, Ebenezer; Jan, Bilal; Khan, Aurangzeb
Modern optical fibers require a double-layer coating on the glass fiber in order to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low and high density polyethylene (LDPE/HDPE), nylon and Polysulfone. One of the most important things which affect the final product after processing is the design of the coating die. In the present study, double-layer optical fiber coating is performed using melt polymer satisfying Oldroyd 8-constant fluid model in a pressure type die with the effect of magneto-hydrodynamic (MHD). Wet-on-wet coating process is applied for double-layer optical fiber coating. The coating process in the coating die is modeled as a simple two-layer Couette flow of two immiscible fluids in an annulus with an assigned pressure gradient. Based on the assumptions of fully developed laminar and MHD flow, the Oldroyd 8-constant model of non-Newtonian fluid of two immiscible resin layers is modeled. The governing nonlinear equations are solved analytically by the new technique of Optimal Homotopy Asymptotic Method (OHAM). The convergence of the series solution is established. The results are also verified by the Adomian Decomposition Method (ADM). The effect of important parameters such as magnetic parameter Mi , the dilatant constant α , the Pseodoplastic constant β , the radii ratio δ , the pressure gradient Ω , the speed of fiber optics V , and the viscosity ratio κ on the velocity profiles, thickness of coated fiber optics, volume flow rate, and shear stress on the fiber optics are investigated. At the end the result of the present work is also compared with the experimental results already available in the literature by taking non-Newtonian parameters tends to zero.
Structure and properties of polymer nanocomposite coatings applied by the HVOF process
NASA Astrophysics Data System (ADS)
Petrovicova, Elena
1999-11-01
A high velocity oxy-fuel (HVOF) combustion spray process was used to produce coatings from nylon 11 powders with average starting particle diameters of 30 and 60 gin. Silica and carbon black were used as nanosized reinforcements, and their nominal content was varied from 0 to 15 vol. %. Optimization of the HVOF processing parameters was based on an assessment of the degree of splatting of polymer particles, and was accomplished by varying the jet temperature (via the hydrogen/oxygen ratio). Gas mixtures with low hydrogen contents minimized polymer particle degradation. Analytical modeling of particle temperature profiles confirmed the effect of the gas velocity and temperature on the particle heating and resulting coating properties. The morphology of the polymer and the microstructure of the coatings depended on the reinforcement surface chemistry and the volume fraction of the reinforcement, as well as the initial nylon 11 particle size. Although all reinforced coatings had higher crystallinities than pure nylon 11 coatings, coatings produced from a smaller starting polymer particle size (30 mum) exhibited improved spatial distribution of the silica in the matrix and lower crystallinity. In addition, coatings produced from the smaller polymer particles had a higher density and lower porosity due to a higher degree of melting and splatting compared to coatings produced from larger particles (60 mum). Nanoreinforced coatings exhibited increased scratch and sliding wear resistance and improved mechanical and barrier properties. Improvements of up to 35% in scratch and 67% in wear resistance were obtained for coatings with nominal 15 vol. % contents of hydrophobic silica or carbon black, relative to nonreinforced coatings. Reinforcement of the polymer matrix resulted in increases of ca. 200% in the storage modulus both below and above the glass transition temperature. The increase in crystallinity seemed to further enhance the reinforcement provided by the nanoparticulates. Results also showed a decrease in the water vapor transmission rate through nanoreinforced coatings by up to 50% compared to pure polymer coatings. The aqueous permeability of coatings produced from 30 mum polymer particles was lower due to the decrease in porosity. Crystallinity seemed to have a strong influence on the mechanical properties, whereas permeability of thermally sprayed coatings was dominated by coating porosity.
Internal Diameter HVAF Spraying for Wear and Corrosion Applications
NASA Astrophysics Data System (ADS)
Lyphout, C.; Björklund, S.
2015-01-01
Electrolytic hard chrome (EHC) methods are still widely utilized in the printing, automotive and off-shore industries. Alternative methods to EHC have been widely developed in the past decade by conventional HVOF processes and more recently HVAF systems, which are processing at higher kinetic energy and more particularly at lower temperature, significantly increasing wear and corrosion resistance properties. A dedicated internal diameter HVAF system is here presented, and coatings characteristics are compared to the one obtained by standard HVAF coatings. Specially R&D designed fixtures with inside bore of 200 mm have been manufactured for this purpose, with a possibility to spray samples at increasing depth up to 400 mm while simulating closed bottom bore spraying. WC-based and Cr3C2-based powder feedstock materials have been deposited onto high-strength steel substrates. Respective coating microstructures, thermally induced stresses and corrosion resistance are discussed for further optimization of coating performances. The fact that the ID-HVAF system is utilized both for spraying and gritblasting procedures is also given a particular interest.
Mechanical Characteristics of SiC Coating Layer in TRISO Fuel Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Hosemann; J. N. Martos; D. Frazer
2013-11-01
Tristructural isotropic (TRISO) particles are considered as advanced fuel forms for a variety of fission platforms. While these fuel structures have been tested and deployed in reactors, the mechanical properties of these structures as a function of production parameters need to be investigated in order to ensure their reliability during service. Nanoindentation techniques, indentation crack testing, and half sphere crush testing were utilized in order to evaluate the integrity of the SiC coating layer that is meant to prevent fission product release in the coated particle fuel form. The results are complimented by scanning electron microscopy (SEM) of the grainmore » structure that is subject to change as a function of processing parameters and can alter the mechanical properties such as hardness, elastic modulus, fracture toughness and fracture strength. Through utilization of these advanced techniques, subtle differences in mechanical properties that can be important for in-pile fuel performance can be distinguished and optimized in iteration with processing science of coated fuel particle production.« less
Low Cost High Performance Nanostructured Spectrally Selective Coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Sungho
2017-04-05
Sunlight absorbing coating is a key enabling technology to achieve high-temperature high-efficiency concentrating solar power operation. A high-performance solar absorbing material must simultaneously meet all the following three stringent requirements: high thermal efficiency (usually measured by figure of merit), high-temperature durability, and oxidation resistance. The objective of this research is to employ a highly scalable process to fabricate and coat black oxide nanoparticles onto solar absorber surface to achieve ultra-high thermal efficiency. Black oxide nanoparticles have been synthesized using a facile process and coated onto absorber metal surface. The material composition, size distribution and morphology of the nanoparticle are guidedmore » by numeric modeling. Optical and thermal properties have been both modeled and measured. High temperature durability has been achieved by using nanocomposites and high temperature annealing. Mechanical durability on thermal cycling have also been investigated and optimized. This technology is promising for commercial applications in next-generation high-temperature concentration solar power (CSP) plants.« less
Just, Sarah; Toschkoff, Gregor; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes; Knop, Klaus; Kleinebudde, Peter
2013-11-30
The objective of this study was to enhance the inter-tablet coating uniformity in an active coating process at lab and pilot scale by statistical design of experiments. The API candesartan cilexetil was applied onto gastrointestinal therapeutic systems containing the API nifedipine to obtain fixed dose combinations of these two drugs with different release profiles. At lab scale, the parameters pan load, pan speed, spray rate and number of spray nozzles were examined. At pilot scale, the parameters pan load, pan speed, spray rate, spray time, and spray pressure were investigated. A low spray rate and a high pan speed improved the coating uniformity at both scales. The number of spray nozzles was identified as the most influential variable at lab scale. With four spray nozzles, the highest CV value was equal to 6.4%, compared to 13.4% obtained with two spray nozzles. The lowest CV of 4.5% obtained with two spray nozzles was further reduced to 2.3% when using four spray nozzles. At pilot scale, CV values between 2.7% and 11.1% were achieved. Since the test of uniformity of dosage units accepts CV values of up to 6.25%, this active coating process is well suited to comply with the pharmacopoeial requirements. Copyright © 2013 Elsevier B.V. All rights reserved.
Recent developments in turning hardened steels - A review
NASA Astrophysics Data System (ADS)
Sivaraman, V.; Prakash, S.
2017-05-01
Hard materials ranging from HRC 45 - 68 such as hardened AISI H13, AISI 4340, AISI 52100, D2 STL, D3 STEEL Steel etc., need super hard tool materials to machine. Turning of these hard materials is termed as hard turning. Hard turning makes possible direct machining of the hard materials and also eliminates the lubricant requirement and thus favoring dry machining. Hard turning is a finish turning process and hence conventional grinding is not required. Development of the new advanced super hard tool materials such as ceramic inserts, Cubic Boron Nitride, Polycrystalline Cubic Boron Nitride etc. enabled the turning of these materials. PVD and CVD methods of coating have made easier the production of single and multi layered coated tool inserts. Coatings of TiN, TiAlN, TiC, Al2O3, AlCrN over cemented carbide inserts has lead to the machining of difficult to machine materials. Advancement in the process of hard machining paved way for better surface finish, long tool life, reduced tool wear, cutting force and cutting temperatures. Micro and Nano coated carbide inserts, nanocomposite coated PCBN inserts, micro and nano CBN coated carbide inserts and similar developments have made machining of hardened steels much easier and economical. In this paper, broad literature review on turning of hardened steels including optimizing process parameters, cooling requirements, different tool materials etc., are done.
Butruk, Beata; Trzaskowski, Maciej; Ciach, Tomasz
2012-08-01
In this paper the authors present a simple method of coating polyurethane (PU) surface with poly(vinyl pirrolidone) (PVP) hydrogel. The hydrogel-coated materials were designed for use in biomedical applications, especially in blood-contacting devices. The coating is formed due to free radical macromolecular grafting-crosslinking. Polymer surface was first immersed in an organic solution containing radical source: cumene hydroperoxide (CHP) with an addition of a branching and anchoring agent: ethylene glycol dimethylacrylate (EGDMA). In the second step, the substrate was immersed in a water solution containing given concentration of PVP and Fe(2+). The novelty of the process consists in the fact that free radicals are formed mostly at the polymer/solution interface, what assures high grafting efficiency together with the formation of covalent bonds between polymer substrate and modifying layer. The process was optimized for reagents concentrations. The coating properties: thickness and the swelling ratio were strongly influenced by CHP, Fe(2+), PVP and EGMDA concentrations. The chemical composition of the surface analyzed with FTIR-ATR spectroscopy confirmed the presence of PVP coating. In vitro biocompatibility tests with L929 fibroblasts confirmed non-cytotoxicity of the coatings. Hydrogel coating significantly improved polyurethane hemocompatibility. Studies with human whole blood revealed that both, the platelet consumption and the level of platelet activation were as low as for negative control. Copyright © 2012 Elsevier B.V. All rights reserved.
ASRM process development in aqueous cleaning
NASA Technical Reports Server (NTRS)
Swisher, Bill
1992-01-01
Viewgraphs are included on process development in aqueous cleaning which is taking place at the Aerojet Advanced Solid Rocket Motor (ASRM) Division under a NASA Marshall Space and Flight Center contract for design, development, test, and evaluation of the ASRM including new production facilities. The ASRM will utilize aqueous cleaning in several manufacturing process steps to clean case segments, nozzle metal components, and igniter closures. ASRM manufacturing process development is underway, including agent selection, agent characterization, subscale process optimization, bonding verification, and scale-up validation. Process parameters are currently being tested for optimization utilizing a Taguci Matrix, including agent concentration, cleaning solution temperature, agitation and immersion time, rinse water amount and temperature, and use/non-use of drying air. Based on results of process development testing to date, several observations are offered: aqueous cleaning appears effective for steels and SermeTel-coated metals in ASRM processing; aqueous cleaning agents may stain and/or attack bare aluminum metals to various extents; aqueous cleaning appears unsuitable for thermal sprayed aluminum-coated steel; aqueous cleaning appears to adequately remove a wide range of contaminants from flat metal surfaces, but supplementary assistance may be needed to remove clumps of tenacious contaminants embedded in holes, etc.; and hot rinse water appears to be beneficial to aid in drying of bare steel and retarding oxidation rate.
NASA Astrophysics Data System (ADS)
Keshri, Anup Kumar
Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O 3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ˜27% and ˜24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O 3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.
He, Zhicai; Liu, Feng; Wang, Cheng; ...
2015-08-20
Here, we developed a simultaneous spin-coating/solvent-annealing process and demonstrated morphology optimization for PTB7 based organic photovoltaics. This novel processing method enhances the edge-on crystalline content in thin films and induces the formation of weak PCBM aggregates. As a result, the efficiency of polymer solar cells increased from 9.2% to a certified high efficiency of 9.61%, owing to an enhanced short-circuit current (J sc, 18.4 mA cm –2vs. 17. 5 mA cm –2) and an improved fill factor.
Polarization Phase-Compensating Coats for Metallic Mirrors
NASA Technical Reports Server (NTRS)
Balasubramanian, Kunjithapatham
2006-01-01
A method of compensating for or minimizing phase differences between orthogonal polarizations of light reflected from metallic mirrors at oblique incidence, as, for example, from weakly curved mirrors, is undergoing development. The method is intended to satisfy a need to maintain precise polarization phase relationships or minimum polarization differences needed for proper operation of telescopes and other scientific instruments that include single or multiple mirrors. The basic idea of the method is to optimally coat mirrors with thin engineered layers of materials that introduce phase differences that, as nearly precisely as possible, are opposite of the undesired phase differences arising in reflection with non-optimum coatings. Depending on the specific optical system, the method could involve any or all of the following elements: a) Optimization of a single coat on all the mirrors in the system. b) Optimization of a unique coat for each mirror such that the polarization phase effects of the coat on one mirror compensate, to an acceptably high degree over an acceptably wide wavelength range, for those of the coat on another mirror. c) Tapering the coat on each mirror. Optimization could involve the choice of a single dielectric coating material and its thickness, or design of a more complex coat consisting of multiple layers of different dielectric materials and possibly some metallic materials. Such designs and coatings are particularly significant and needed for obtaining very high quality of wavefront required in high-contrast imaging instruments such as the NASA Terrestrial Planet Finder Coronagraph.
Optimization of propranolol HCl release kinetics from press coated sustained release tablets.
Ali, Adel Ahmed; Ali, Ahmed Mahmoud
2013-01-01
Press-coated sustained release tablets offer a valuable, cheap and easy manufacture alternative to the highly expensive, multi-step manufacture and filling of coated beads. In this study, propranolol HCl press-coated tablets were prepared using hydroxylpropylmethylcellulose (HPMC) as tablet coating material together with carbopol 971P and compressol as release modifiers. The prepared formulations were optimized for zero-order release using artificial neural network program (INForm, Intelligensys Ltd, North Yorkshire, UK). Typical zero-order release kinetics with extended release profile for more than 12 h was obtained. The most important variables considered by the program in optimizing formulations were type and proportion of polymer mixture in the coat layer and distribution ratio of drug between core and coat. The key elements found were; incorporation of 31-38 % of the drug in the coat, fixing the amount of polymer in coat to be not less than 50 % of coat layer. Optimum zero-order release kinetics (linear regression r2 = 0.997 and Peppas model n value > 0.80) were obtained when 2.5-10 % carbopol and 25-42.5% compressol were incorporated into the 50 % HPMC coat layer.
Furnace Cyclic Oxidation Behavior of Multicomponent Low Conductivity Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Zhu, Dongming; Nesbitt, James A.; Barrett, Charles A.; McCue, Terry R.; Miller, Robert A.
2004-03-01
Ceramic thermal barrier coatings (TBCs) will play an increasingly important role in advanced gas turbine engines due to their ability to further increase engine operating temperatures and reduce cooling, thus helping achieve future engine low emission, high efficiency, and improved reliability goals. Advanced multicomponent zirconia (ZrO2)-based TBCs are being developed using an oxide defect clustering design approach to achieve the required coating low thermal conductivity and high-temperature stability. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of the candidate coating materials was conducted using conventional furnace cyclic oxidation tests. In this paper, furnace cyclic oxidation behavior of plasma-sprayed ZrO2-based defect cluster TBCs was investigated at 1163°C using 45 min hot-time cycles. The ceramic coating failure mechanisms were studied using scanning electron microscopy (SEM) combined with x-ray diffraction (XRD) phase analysis after the furnace tests. The coating cyclic lifetime is also discussed in relation to coating processing, phase structures, dopant concentration, and other thermo-physical properties.
Nganga, Sara; Moritz, Niko; Kolakovic, Ruzica; Jakobsson, Kristina; Nyman, Johan O; Borgogna, Massimiliano; Travan, Andrea; Crosera, Matteo; Donati, Ivan; Vallittu, Pekka K; Sandler, Niklas
2014-10-22
Biostable fiber-reinforced composites, based on bisphenol-A-dimethacrylate and triethyleneglycoldimethacrylate thermoset polymer matrix reinforced with E-glass fibers have been successfully used in cranial reconstructions and the material has been approved for clinical use. As a further refinement of these implants, antimicrobial, non-cytotoxic coatings on the composites were created by an immersion procedure driven by strong electrostatic interactions. Silver nanoparticles (nAg) were immobilized in lactose-modified chitosan (Chitlac) to prepare the bacteriostatic coatings. Herein, we report the use of inkjet technology (a drop-on-demand inkjet printer) to deposit functional Chitlac-nAg coatings on the thermoset substrates. Characterization methods included scanning electron microscopy, scanning white light interferometry and electro-thermal atomic absorption spectroscopy. Inkjet printing enabled the fast and flexible functionalization of the thermoset surfaces with controlled coating patterns. The coatings were not impaired by the printing process: the kinetics of silver release from the coatings created by inkjet printing and conventional immersion technique was similar. Further research is foreseen to optimize printing parameters and to tailor the characteristics of the coatings for specific clinical applications.
Marciello, Marzia; Filice, Marco; Olea, David; Velez, Marisela; Guisan, José M; Mateo, Cesar
2014-12-16
The preparation and performance of a suitable chimeric biosensor based on antibodies (Abs) immobilized on lipase-coated magnetic particles by means of a standing orienting strategy are presented. This novel system is based on hydrophobic magnetic particles coated with modified lipase molecules able to orient and further immobilize different Abs in a covalent way without any previous site-selective chemical modification of biomacromolecules. Different key parameters attending the process were studied and optimized. The optimal preparation was performed using a controlled loading (1 nmol Ab g(-1) chimeric support) at pH 9 and a short reaction time to recover a biological activity of about 80%. AFM microscopy was used to study and confirm the Abs-oriented immobilization on lipase-coated magnetic particles and the final achievement of a highly active and recyclable chimeric immune sensor. This direct technique was demonstrated to be a powerful alternative to the indirect immunoactivity assay methods for the study of biomacromolecule-oriented immobilizations.
Manufacturing issues which affect coating erosion performance in wind turbine blades
NASA Astrophysics Data System (ADS)
Cortés, E.; Sánchez, F.; Domenech, L.; Olivares, A.; Young, T. M.; O'Carroll, A.; Chinesta, F.
2017-10-01
Erosion damage, caused by repeated rain droplet impact on the leading edges of wind turbine blades, is a major cause for cost concern. Resin Infusion (RI) is used in wind energy blades where low weight and high mechanical performance materials are demanded. The surface coating plays a crucial role in the manufacturing and performance response. The Leading Edge coating is usually moulded, painted or sprayed onto the blade surface so adequate adhesion in the layers' characterization through the thickness is required for mechanical performance and durability reasons. In the current work, an investigation has been directed into the resulting rain erosion durability of the coating was undertaken through a combination of mass loss testing measurements with manufacturing processing parameter variations. The adhesion and erosion is affected by the shock wave caused by the collapsing water droplet on impact. The stress waves are transmitted to the substrate, so microestructural discontinuities in coating layers and interfaces play a key role on its degradation. Standard industrial systems are based on a multilayer system, with a high number of interfaces that tend to accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations and their potential stress reduction on the interface. In this research, the input parameters for the appropriate definition of the Cohesive Zone Modelling (CZM) of the coating-substrate interface are outlined by means of Pull off testing and Peeling testing results. It allowed one to optimize manufacturing and coating process for blades into a knowledge-based guidance for leading edge coating material development. It was achieved by investigating the erosion degradation process using both numerical and laboratory techniques (Pull off, Peeling and Rain Erosion Testing in a whirling arm rain erosion test facility).
Nanosecond multi-pulse laser milling for certain area removal of metal coating on plastics surface
NASA Astrophysics Data System (ADS)
Zhao, Kai; Jia, Zhenyuan; Ma, Jianwei; Liu, Wei; Wang, Ling
2014-12-01
Metal coating with functional pattern on engineering plastics surface plays an important role in industry applications; it can be obtained by adding or removing certain area of metal coating on engineering plastics surface. However, the manufacturing requirements are improved continuously and the plastic substrate presents three-dimensional (3D) structure-many of these parts cannot be fabricated by conventional processing methods, and a new manufacturing method is urgently needed. As the laser-processing technology has many advantages like high machining accuracy and constraints free substrate structure, the machining of the parts is studied through removing certain area of metal coating based on the nanosecond multi-pulse laser milling. To improve the edge quality of the functional pattern, generation mechanism and corresponding avoidance strategy of the processing defects are studied. Additionally, a prediction model for the laser ablation depth is proposed, which can effectively avoid the existence of residual metal coating and reduces the damage of substrate. With the optimal machining parameters, an equiangular spiral pattern on copper-clad polyimide (CCPI) is machined based on the laser milling at last. The experimental results indicate that the edge of the pattern is smooth and consistent, the substrate is flat and without damage. The achievements in this study could be applied in industrial production.
Pedraza, F; Mahadik, S A; Bouchaud, B
2015-12-21
In this work, superhydrophobic cerium oxide coating surface (111) with dual scale texture on Ni20Cr substrate is obtained by combination of electropolishing the substrate and subsequent cathodic electrodeposition and long-term UVH surface relaxation. To form hierarchical structures of CeO2 is controllable by varying the substrate roughness, and electropolishing period. The results indicated that at the optimal condition, the surface of the cerium oxide coating showed a superhydrophobicity with a great water contact angle (151.0 ± 1.4°) with Gecko state. An interface model for electropolishing of substrate surface in cerium nitrate medium is proposed. We expect that this facile process can be readily and widely adopted for the design of superhydrophobic coating on engineering materials.
Structural and optical properties of copper-coated substrates for solar thermal absorbers
NASA Astrophysics Data System (ADS)
Pratesi, Stefano; De Lucia, Maurizio; Meucci, Marco; Sani, Elisa
2016-10-01
Spectral selectivity, i.e. merging a high absorbance at sunlight wavelengths to a low emittance at the wavelengths of thermal spectrum, is a key characteristics for materials to be used for solar thermal receivers. It is known that spectrally selective absorbers can raise the receiver efficiency for all solar thermal technologies. Tubular sunlight receivers for parabolic trough collector (PTC) systems can be improved by the use of spectrally selective coatings. Their absorbance is increased by deposing black films, while the thermal emittance is minimized by the use of properly-prepared substrates. In this work we describe the intermediate step in the fabrication of black-chrome coated solar absorbers, namely the fabrication and characterization of copper coatings on previously nickel-plated stainless steel substrates. We investigate the copper surface features and optical properties, correlating them to the coating thickness and to the deposition process, in the perspective to assess optimal conditions for solar absorber applications.
NASA Astrophysics Data System (ADS)
Mariajayaprakash, Arokiasamy; Senthilvelan, Thiyagarajan; Vivekananthan, Krishnapillai Ponnambal
2013-07-01
The various process parameters affecting the quality characteristics of the shock absorber during the process were identified using the Ishikawa diagram and by failure mode and effect analysis. The identified process parameters are welding process parameters (squeeze, heat control, wheel speed, and air pressure), damper sealing process parameters (load, hydraulic pressure, air pressure, and fixture height), washing process parameters (total alkalinity, temperature, pH value of rinsing water, and timing), and painting process parameters (flowability, coating thickness, pointage, and temperature). In this paper, the process parameters, namely, painting and washing process parameters, are optimized by Taguchi method. Though the defects are reasonably minimized by Taguchi method, in order to achieve zero defects during the processes, genetic algorithm technique is applied on the optimized parameters obtained by Taguchi method.
Kim, Jong Soo; Lee, Ji-Soo; Chang, Pahn-Shick; Lee, Hyeon Gyu
2010-09-30
Response surface methodology was used to optimize coating conditions, including chitosan concentration (X(1)) and coating time (X(2)), for sustained release of chitosan-coated Ca-pectinate (CP) microparticles containing oryzanol (OZ). The optimized values of X(1) and X(2) were found to be 1.48% and 69.92 min, respectively. These optimized values agreed favorably with the predicted results, indicating the utility of predictive models for the release of OZ in simulated intestinal fluid. In vitro release studies revealed that the chitosan-coated CP microparticles were quite stable under acidic conditions, but swell and disintegrate under alkaline conditions. In vivo release study of OZ, physically entrapped within chitosan-coated CP microcapsules, demonstrated the sustained release of OZ and could be used to improve the bioavailability of OZ following oral administration. Copyright 2010 Elsevier B.V. All rights reserved.
Reflow process stabilization by chemical characteristics and process conditions
NASA Astrophysics Data System (ADS)
Kim, Myoung-Soo; Park, Jeong-Hyun; Kim, Hak-Joon; Kim, Il-Hyung; Jeon, Jae-Ha; Gil, Myung-Goon; Kim, Bong-Ho
2002-07-01
With the shrunken device rule below 130nm, the patterning of smaller contact hole with enough process margin is required for mass production. Therefore, shrinking technology using thermal reflow process has been applied for smaller contact hole formation. In this paper, we have investigated the effects of chemical characteristics such as molecular weight, blocking ratio of resin, cross-linker amount and solvent type with its composition to reflow process of resist and found the optimized chemical composition for reflow process applicable condition. And several process conditions like resist coating thickness and multi-step thermal reflow method have been also evaluated to stabilize the pattern profile and improve CD uniformity after reflow process. From the experiment results, it was confirmed that the effect of crosslinker in resist to reflow properties such as reflow temperature and reflow rate were very critical and it controlled the pattern profile during reflow processing. And also, it showed stable CD uniformity and improved resist properties for top loss, film shrinkage and etch selectivity. The application of lower coating thickness of resist induced symmetric pattern profile even at edge with wider process margin. The introduction of two-step baking method for reflow process showed uniform CD value, also. It is believed that the application of resist containing crosslinker and optimized process conditions for smaller contact hole patterning is necessary for the mass production with a design rule below 130nm.
Chang, Yaw-Jen; Chang, Cheng-Hao
2016-06-01
Based on the principle of immobilized metal affinity chromatography (IMAC), it has been found that a Ni-Co alloy-coated protein chip is able to immobilize functional proteins with a His-tag attached. In this study, an intelligent computational approach was developed to promote the performance and repeatability of a Ni-Co alloy-coated protein chip. This approach was launched out of L18 experiments. Based on the experimental data, the fabrication process model of a Ni-Co protein chip was established by using an artificial neural network, and then an optimal fabrication condition was obtained using the Taguchi genetic algorithm. The result was validated experimentally and compared with a nitrocellulose chip. Consequentially, experimental outcomes revealed that the Ni-Co alloy-coated chip, fabricated using the proposed approach, had the best performance and repeatability compared with the Ni-Co chips of an L18 orthogonal array design and the nitrocellulose chip. Moreover, the low fluorescent background of the chip surface gives a more precise fluorescent detection. Based on a small quantity of experiments, this proposed intelligent computation approach can significantly reduce the experimental cost and improve the product's quality. © 2015 Society for Laboratory Automation and Screening.
Preparation of acetaminophen capsules containing beads prepared by hot-melt direct blend coating.
Pham, Loan; Christensen, John M
2014-02-01
Twelve hydrophobic coating agents were assessed for their effects on drug release after coating sugar cores by a flexible hot-melt coating method using direct blending. Drug-containing pellets were also produced and used as cores. The cores were coated with single or double wax layers containing acetaminophen (APAP). The harder the wax, the slower the resultant drug releases from single-coated beads. Wax coating can be deposited on cores up to 28% of the beads final weight and reaching 58% with wax and drug. Carnauba-coated beads dissolved in approximately 6 h releasing 80% of the loaded drug. Applying another wax layer extended drug release over 20 h, while still delivering 80% of the loaded drug. When drug-containing pellets (33-58% drug loading) were used as cores, double wax-coated pellets exhibited a near zero-order drug release for 16 h, releasing 80% of the loaded drug delivering 18 mg/h. The simple process of hot-melt coating by direct blending of pellet-containing drug-coated formulations provides excellent options for immediate and sustained release formulations when higher lipid coating or drug loading is warranted. Predicted plasma drug concentration time profiles using convolution and in vitro drug release properties of the beads were performed for optimal formulations.
Optimization of antireflection coating design for multijunction solar cells and concentrator systems
NASA Astrophysics Data System (ADS)
Valdivia, Christopher E.; Desfonds, Eric; Masson, Denis; Fafard, Simon; Carlson, Andrew; Cook, John; Hall, Trevor J.; Hinzer, Karin
2008-06-01
Photovoltaic solar cells are a route towards local, environmentally benign, sustainable and affordable energy solutions. Antireflection coatings are necessary to input a high percentage of available light for photovoltaic conversion, and therefore have been widely exploited for silicon solar cells. Multi-junction III-V semiconductor solar cells have achieved the highest efficiencies of any photovoltaic technology, yielding up to 40% in the laboratory and 37% in commercial devices under varying levels of concentrated light. These devices benefit from a wide absorption spectrum (300- 1800 nm), but this also introduces significant challenges for antireflection coating design. Each sub-cell junction is electrically connected in series, limiting the overall device photocurrent by the lowest current-producing junction. Therefore, antireflection coating optimization must maximize the current from the limiting sub-cells at the expense of the others. Solar concentration, necessary for economical terrestrial deployment of multi-junction solar cells, introduces an angular-dependent irradiance spectrum. Antireflection coatings are optimized for both direct normal incidence in air and angular incidence in an Opel Mk-I concentrator, resulting in as little as 1-2% loss in photocurrent as compared to an ideal zero-reflectance solar cell, showing a similar performance to antireflection coatings on silicon solar cells. A transparent conductive oxide layer has also been considered to replace the metallic-grid front electrode and for inclusion as part of a multi-layer antireflection coating. Optimization of the solar cell, antireflection coating, and concentrator system should be considered simultaneously to enable overall optimal device performance.
Influence of Process Parameters on the Process Efficiency in Laser Metal Deposition Welding
NASA Astrophysics Data System (ADS)
Güpner, Michael; Patschger, Andreas; Bliedtner, Jens
Conventionally manufactured tools are often completely constructed of a high-alloyed, expensive tool steel. An alternative way to manufacture tools is the combination of a cost-efficient, mild steel and a functional coating in the interaction zone of the tool. Thermal processing methods, like laser metal deposition, are always characterized by thermal distortion. The resistance against the thermal distortion decreases with the reduction of the material thickness. As a consequence, there is a necessity of a special process management for the laser based coating of thin parts or tools. The experimental approach in the present paper is to keep the energy and the mass per unit length constant by varying the laser power, the feed rate and the powder mass flow. The typical seam parameters are measured in order to characterize the cladding process, define process limits and evaluate the process efficiency. Ways to optimize dilution, angular distortion and clad height are presented.
NASA Astrophysics Data System (ADS)
Pai, Rajesh V.; Mollick, P. K.; Kumar, Ashok; Banerjee, J.; Radhakrishna, J.; Chakravartty, J. K.
2016-05-01
UO2 microspheres prepared by internal gelation technique were coated with pyrolytic carbon and silicon carbide using CVD technique. The particles which were not meeting the specifications were rejected. The rejected/failed UO2 based coated particles prepared by CVD technique was used for oxidation and recovery and recycling. The oxidation behaviour of sintered UO2 microspheres coated with different layers of carbon and SiC was studied by thermal techniques to develop a method for recycling and recovery of uranium from the failed/rejected coated particles. It was observed that the complete removal of outer carbon from the spheres is difficult. The crushing of microspheres enabled easier accessibility of oxygen and oxidation of carbon and uranium at 800-1000 °C. With the optimized process of multiple crushing using die & plunger and sieving the broken coated layers, we could recycle around fifty percent of the UO2 microspheres which could be directly recoated. The rest of the particles were recycled using a wet recycling method.
Development of strain tolerant thermal barrier coating systems, tasks 1 - 3
NASA Technical Reports Server (NTRS)
Anderson, N. P.; Sheffler, K. D.
1983-01-01
Insulating ceramic thermal barrier coatings can reduce gas turbine airfoil metal temperatures as much as 170 C (about 300 F), providing fuel efficiency improvements greater than one percent and durability improvements of 2 to 3X. The objective was to increase the spalling resistance of zirconia based ceramic turbine coatings. To accomplish this, two baseline and 30 candidate duplex (layered MCrAlY/zirconia based ceramic) coatings were iteratively evaluated microstructurally and in four series of laboratory burner rig tests. This led to the selection of two candidate optimized 0.25 mm (0.010 inch) thick plasma sprayed partially stabilized zirconia ceramics containing six weight percent yttria and applied with two different sets of process parameters over a 0.13 mm (0.005 inch) thick low pressure chamber sprayed MCrAlY bond coat. Both of these coatings demonstrated at least 3X laboratory cyclic spalling life improvement over the baseline systems, as well as cyclic oxidation life equivalent to 15,000 commercial engine flight hours.
Preparation of bilayer-core osmotic pump tablet by coating the indented core tablet.
Liu, Longxiao; Xu, Xiangning
2008-03-20
In this paper, a bilayer-core osmotic pump tablet (OPT) which does not require laser drilling to form the drug delivery orifice is described. The bilayer-core consisted of two layers: (a) push layer and (b) drug layer, and was made with a modified upper tablet punch, which produced an indentation at the center of the drug layer surface. The indented tablets were coated by using a conventional pan-coating process. Although the bottom of the indentation could be coated, the side face of the indentation was scarcely sprayed by the coating solution and this part of the tablet remained at least partly uncoated leaving an aperture from which drug release could occur. Nifedipine was selected as the model drug. Sodium chloride was used as osmotic agent, polyvinylpyrrolidone as suspending agent and croscarmellose sodium as expanding agent. The indented core tablet was coated by ethyl cellulose as semipermeable membrane containing polyethylene glycol 400 for controlling the membrane permeability. The formulation of core tablet was optimized by orthogonal design and the release profiles of various formulations were evaluated by similarity factor (f(2)). It was found that the optimal OPT was able to deliver nifedipine at an approximate zero-order up to 24 h, independent on both release media and agitation rates. The preparation of bilayer-core OPT was simplified by coating the indented core tablet, by which sophisticated technology of the drug layer identification and laser drilling could be eliminated. It might be promising in the field of preparation of bilayer-core OPT.
Jeong, Hee-June; Yang, Hyeon-Woo; Yun, Kang-Seop; Noh, Eul; Jung, Sang-Chul; Kang, Wooseung; Kim, Sun-Jae
2014-01-01
A SiO x coating material for Si anode in lithium-ion battery was processed by using SiCl4 and ethylene glycol. The produced SiO x particles after heat treatment at 725°C for 1 h were porous and irregularly shaped with amorphous structure. Pitch carbon added to SiO x was found to strongly affect solid electrolyte interphase stabilization and cyclic stability. When mixed with an optimal amount of 30 wt% pitch carbon, the SiO x showed a high charge/discharge cyclic stability of about 97% for the 2nd to the 50th cycle. The initial specific capacity of the SiO x was measured to be 1401 mAh/g. On the basis of the evaluation of the SiO x coating material, the process utilized in this study is considered an efficient method to produce SiO x with high performance in an economical way.
Jeong, Hee-June; Yang, Hyeon-Woo; Yun, Kang-Seop; Noh, Eul; Kang, Wooseung
2014-01-01
A SiOx coating material for Si anode in lithium-ion battery was processed by using SiCl4 and ethylene glycol. The produced SiOx particles after heat treatment at 725°C for 1 h were porous and irregularly shaped with amorphous structure. Pitch carbon added to SiOx was found to strongly affect solid electrolyte interphase stabilization and cyclic stability. When mixed with an optimal amount of 30 wt% pitch carbon, the SiOx showed a high charge/discharge cyclic stability of about 97% for the 2nd to the 50th cycle. The initial specific capacity of the SiOx was measured to be 1401 mAh/g. On the basis of the evaluation of the SiOx coating material, the process utilized in this study is considered an efficient method to produce SiOx with high performance in an economical way. PMID:25050401
Dwindling the resistance value of PEDOT:PSS – coated on fabric yarns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amba Sankar, K.N., E-mail: amb@psgias.ac.in; Kallol, Mohanta
2016-05-23
Herein we describe by dip coating method to transform typical fabric yarn to conductive fiber. Different types of yarns have been used to coat from a known conductive polymer, Poly (3,4ethylenedioxythiophene) Poly (styrene sulfonic acid). We have optimized the method to have lesser resistance of the conductive yarns. The minimum resistance achieved has a value of 77 Ω/cm. This value is not high as metals but could be comparable to that of metal oxides or semiconducting materials. However, flexibility of yarns and feeling of fabric combining with the conductivity developed in this process is suitable for wearable electronics and alsomore » as gas sensors, electromagnetic shielding.« less
Wang, ShuLing; Xu, Hui
2016-12-01
An inorganic-organic hybrid nanocomposite (zinc oxide/polypyrrole) that represents a novel kind of coating for in-tube solid-phase microextraction is reported. The composite coating was prepared by a facile electrochemical polymerization strategy on the inner surface of a stainless-steel tube. Based on the coated tube, a novel online in-tube solid-phase microextraction with liquid chromatography and mass spectrometry method was developed and applied for the extraction of three monohydroxy polycyclic aromatic hydrocarbons in human urine. The coating displayed good extraction ability toward monohydroxy polycyclic aromatic hydrocarbons. In addition, long lifespan, excellent stability, and good compression resistance were also obtained for the coating. The experimental conditions affecting the extraction were optimized systematically. Under the optimal conditions, the limits of detection and quantification were in the range of 0.039-0.050 and 0.130-0.167 ng/mL, respectively. Good linearity (0.2-100 ng/mL) was obtained with correlation coefficients larger than 0.9967. The repeatability, expressed as relative standard deviation, ranged between 2.5% and 9.4%. The method offered the advantage of process simplicity, rapidity, automation, and sensitivity in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities of Hubei province. An acceptable recovery of monohydroxy polycyclic aromatic hydrocarbons (64-122%) represented the additional attractive features of the method in real urine analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of extended release dosage forms using non-uniform drug distribution techniques.
Huang, Kuo-Kuang; Wang, Da-Peng; Meng, Chung-Ling
2002-05-01
Development of an extended release oral dosage form for nifedipine using the non-uniform drug distribution matrix method was conducted. The process conducted in a fluid bed processing unit was optimized by controlling the concentration gradient of nifedipine in the coating solution and the spray rate applied to the non-pareil beads. The concentration of nifedipine in the coating was controlled by instantaneous dilutions of coating solution with polymer dispersion transported from another reservoir into the coating solution at a controlled rate. The USP dissolution method equipped with paddles at 100 rpm in 0.1 N hydrochloric acid solution maintained at 37 degrees C was used for the evaluation of release rate characteristics. Results indicated that (1) an increase in the ethyl cellulose content in the coated beads decreased the nifedipine release rate, (2) incorporation of water-soluble sucrose into the formulation increased the release rate of nifedipine, and (3) adjustment of the spray coating solution and the transport rate of polymer dispersion could achieve a dosage form with a zero-order release rate. Since zero-order release rate and constant plasma concentration were achieved in this study using the non-uniform drug distribution technique, further studies to determine in vivo/in vitro correlation with various non-uniform drug distribution dosage forms will be conducted.
Stress and structure development in polymeric coatings
NASA Astrophysics Data System (ADS)
Vaessen, Diane Melissa
2002-09-01
The main goal of this research is to measure the stress evolution in various polymer coating systems to establish the mechanisms responsible for stress development, stress relaxation, and defect formation. Investigated systems include ultraviolet (UV)-curable coatings, dense and porous coatings from polymer solutions, and latex coatings. Coating stress was measured using a controlled environment stress apparatus based on a cantilever deflection principle. For acrylate coatings, it was found that by cycling a UV-lamp on and off, keeping the total dose constant, coating stress was lowered by 60% by decreasing the cycle period. A stress minimum was also found to exist for a given dose of radiation. The lower stress is attributed to stress relaxation and/or slower reaction during dark periods. A viscoelastic stress model of this process was formulated and predicted stress values close to those observed experimentally. During drying of cellulose acetate (CA) coatings cast in acetone, final stress increased from 10 to 45 MPa as coating thickness decreased from 60 to 10 mum. This thickness dependent coating stress for a solvent-cast polymer coating is a new finding and is attributed to (1) less shrinkage in thicker coatings due to more trapped solvent (from skinning) and (2) greater amounts of polymer stress relaxation in thicker coatings. For porous CA coatings prepared by dry-cast phase separation, final in-plane stresses ranged from 20 MPa for coatings containing small pores (˜1 mum) to 5 MPa for coatings containing small pores and macrovoids (˜200 mum). For these coatings, a small amount of stress relaxation occurs due to capillary pressure relief. A stress plateau for the macrovoid-containing coating is likely caused by stress-induced rupture of the polymer-rich phase. Measured stress in pigment-free latex coatings was much lower (˜0.3 MPa) than UV-curable and solvent-cast polymer coatings and was found to increase with increasing latex glass transition temperature. Observations from infrared spectroscopy, scanning electron microscopy, camera imaging, and indentation were also studied to correlate coating properties to measured stresses. The results obtained in this thesis will lead to strategies for material selection, process optimization, and defect elimination in polymeric coatings.
NASA Astrophysics Data System (ADS)
Kar, Siddhartha; Chakraborty, Sujoy; Dey, Vidyut; Ghosh, Subrata Kumar
2017-10-01
This paper investigates the application of Taguchi method with fuzzy logic for multi objective optimization of roughness parameters in electro discharge coating process of Al-6351 alloy with powder metallurgical compacted SiC/Cu tool. A Taguchi L16 orthogonal array was employed to investigate the roughness parameters by varying tool parameters like composition and compaction load and electro discharge machining parameters like pulse-on time and peak current. Crucial roughness parameters like Centre line average roughness, Average maximum height of the profile and Mean spacing of local peaks of the profile were measured on the coated specimen. The signal to noise ratios were fuzzified to optimize the roughness parameters through a single comprehensive output measure (COM). Best COM obtained with lower values of compaction load, pulse-on time and current and 30:70 (SiC:Cu) composition of tool. Analysis of variance is carried out and a significant COM model is observed with peak current yielding highest contribution followed by pulse-on time, compaction load and composition. The deposited layer is characterised by X-Ray Diffraction analysis which confirmed the presence of tool materials on the work piece surface.
Organic antireflective coatings for 193-nm lithography
NASA Astrophysics Data System (ADS)
Trefonas, Peter, III; Blacksmith, Robert F.; Szmanda, Charles R.; Kavanagh, Robert J.; Adams, Timothy G.; Taylor, Gary N.; Coley, Suzanne; Pohlers, Gerd
1999-06-01
Organic anti-reflective coatings (ARCs) continue to play an important role in semiconductor manufacturing. These materials provide a convenient means of greatly reducing the resist photospeed swing and reflective notching. In this paper, we describe a novel class of ARC materials optimized for lithographic applications using 193 nm exposure tools. These ARCs are based upon polymers containing hydroxyl-alkyl methacrylate monomers for crosslinkable sites, styrene for a chromophore at 193 nm, and additional alkyl-methacrylate monomers as property modifiers. A glycouril crosslinker and a thermally-activated acidic catalyst provide a route to forming an impervious crosslinked film activate data high bake temperatures. ARC compositions can be adjusted to optimize the film's real and imaginary refractive indices. Selection of optimal target indices for 193 nm lithographic processing through simulations is described. Potential chromophores for 193 nm were explored using ZNDO modeling. We show how these theoretical studies were combined with material selection criteria to yield a versatile organic anti-reflectant film, Shipley 193 G0 ARC. Lithographic process data indicates the materials is capable of supporting high resolution patterning, with the line features displaying a sharp resist/ARC interface with low line edge roughness. The resist Eo swing is successfully reduced from 43 percent to 6 percent.
Non-Enzymatic Glucose Sensor Composed of Carbon-Coated Nano-Zinc Oxide
Chung, Ren-Jei; Wang, An-Ni; Liao, Qing-Liang; Chuang, Kai-Yu
2017-01-01
Nowadays glucose detection is of great importance in the fields of biological, environmental, and clinical analyzes. In this research, we report a zinc oxide (ZnO) nanorod powder surface-coated with carbon material for non-enzymatic glucose sensor applications through a hydrothermal process and chemical vapor deposition method. A series of tests, including crystallinity analysis, microstructure observation, and electrochemical property investigations were carried out. For the cyclic voltammetric (CV) glucose detection, the low detection limit of 1 mM with a linear range from 0.1 mM to 10 mM was attained. The sensitivity was 2.97 μA/cm2mM, which is the most optimized ever reported. With such good analytical performance from a simple process, it is believed that the nanocomposites composed of ZnO nanorod powder surface-coated with carbon material are promising for the development of cost-effective non-enzymatic electrochemical glucose biosensors with high sensitivity. PMID:28336869
Quality Designed Twin Wire Arc Spraying of Aluminum Bores
NASA Astrophysics Data System (ADS)
König, Johannes; Lahres, Michael; Methner, Oliver
2015-01-01
After 125 years of development in combustion engines, the attractiveness of these powerplants still gains a great deal of attention. The efficiency of engines has been increased continuously through numerous innovations during the last years. Especially in the field of motor engineering, consequent friction optimization leads to cost-effective fuel consumption advantages and a CO2 reduction. This is the motivation and adjusting lever of NANOSLIDE® from Mercedes-Benz. The twin wire arc-spraying process of the aluminum bore creates a thin, iron-carbon-alloyed coating which is surface-finished through honing. Due to the continuous development in engines, the coating strategies must be adapted in parallel to achieve a quality-conformed coating result. The most important factors to this end are the controlled indemnification of a minimal coating thickness and a homogeneous coating deposition of the complete bore. A specific system enables the measuring and adjusting of the part and the central plunging of the coating torch into the bore to achieve a homogeneous coating thickness. Before and after measurement of the bore diameter enables conclusions about the coating thickness. A software tool specifically developed for coating deposition can transfer this information to a model that predicts the coating deposition as a function of the coating strategy.
Sörensen, Jan H; Lilja, Mirjam; Åstrand, Maria; Sörensen, Torben C; Procter, Philip; Strømme, Maria; Steckel, Hartwig
2014-01-01
The migration, loosening and cut-out of implants and nosocomial infections are current problems associated with implant surgery. New innovative strategies to overcome these issues are emphasized in today's research. The current work presents a novel strategy involving co-precipitation of tobramycin with biomimetic hydroxyapatite (HA) formation to produce implant coatings that control local drug delivery to prevent early bacterial colonization of the implant. A submicron- thin HA layer served as seed layer for the co-precipitation process and allowed for incorporation of tobramycin in the coating from a stock solution of antibiotic concentrations as high as 20 mg/ml. Concentrations from 0.5 to 20 mg/ml tobramycin and process temperatures of 37 °C and 60 °C were tested to assess the optimal parameters for a thin tobramycin- delivering HA coating on discs and orthopedic fixation pins. The morphology and thickness of the coating and the drug-release profile were evaluated via scanning electron microscopy and high performance liquid chromatography. The coatings delivered pharmaceutically relevant amounts of tobramycin over a period of 12 days. To the best of our knowledge, this is the longest release period ever observed for a fast-loaded biomimetic implant coating. The presented approach could form the foundation for development of combination device/antibiotic delivery vehicles tailored to meet well-defined clinical needs while combating infections and ensuring fast implant in-growth.
Morphology and FT-IR analysis of anti-pollution flashover coatings with adding nano SiO2 particles
NASA Astrophysics Data System (ADS)
Guo, Kai; Du, Yishu; Wu, Yaping; Mi, Xuchun; Li, Xingeng; Chen, Suhong
2017-12-01
By adding nano SiO2 particles, an enhanced K-PRTV anti-pollution flashover coating had been prepared. Optical profile meter (GT-K), atomic force microscopy (AFM), infrared spectrometer (FT-IR) and EDS characterization were carried out on the coating surface analysis. Those results has been use to optimize the further design and platform of the enhanced K-PRTV pollution flash coating experiment. It is also to improve the plan formulation, formulation optimization and preparation of the hydrophobic modified K-PRTV which is based on anti-pollution coating experiment. More importantly, the anti-pollution flashover K-PRTV coating with super hydrophobic modified is the great significance for K-PRTV coating.
Improved Thermal Cycling Durability of Thermal Barrier Coatings Manufactured by PS-PVD
NASA Astrophysics Data System (ADS)
Rezanka, S.; Mauer, G.; Vaßen, R.
2014-01-01
The plasma spray-physical vapor deposition (PS-PVD) process is a promising method to manufacture thermal barrier coatings (TBCs). It fills the gap between traditional thermal spray processes and electron beam physical vapor deposition (EB-PVD). The durability of PS-PVD manufactured columnar TBCs is strongly influenced by the compatibility of the metallic bondcoat (BC) and the ceramic TBC. Earlier investigations have shown that a smooth BC surface is beneficial for the durability during thermal cycling. Further improvements of the bonding between BC and TBC could be achieved by optimizing the formation of the thermally grown oxide (TGO) layer. In the present study, the parameters of pre-heating and deposition of the first coating layer were investigated in order to adjust the growth of the TGO. Finally, the durability of the PS-PVD coatings was improved while the main advantage of PS-PVD, i.e., much higher deposition rate in comparison to EB-PVD, could be maintained. For such coatings, improved thermal cycling lifetimes more than two times higher than conventionally sprayed TBCs, were measured in burner rigs at ~1250 °C/1050 °C surface/substrate exposure temperatures.
Preparation and evaluation of enteric coated tablets of hot melt extruded lansoprazole
Alsulays, Bader B.; Kulkarni, Vijay; Alshehri, Sultan M.; Almutairy, Bjad K.; Ashour, Eman A.; Morott, Joseph T.; Alshetaili, Abdullah S.; Park, Jun-Bom; Tiwari, Roshan V.; Repka, Michael A.
2017-01-01
The objective of this work was to use hot-melt extrusion (HME) technology to improve the physiochemical properties of lansoprazole (LNS) to prepare stable enteric coated LNS tablets. For the extrusion process, we chose Kollidon® 12 PF (K12) polymeric matrix. Lutrol® F 68 was selected as the plasticizer and magnesium oxide (MgO) as the alkalizer. With or without the alkalizer, LNS at 10% drug load was extruded with K12 and F68. LNS changed to the amorphous phase and showed better release compared to that of the pure crystalline drug. Inclusion of MgO improved LNS extrudability and release and resulted in over 80% drug release in the buffer stage. Hot-melt extruded LNS was physically and chemically stable after 12 months of storage. Both formulations were studied for compatibility with Eudragit® L 100-55. The optimized formulation was compressed into a tablet followed by coating process utilizing a pan coater using L 100-55 as an enteric coating polymer. In a two-step dissolution study, the release profile of the enteric coated LNS tablets in the acidic stage was less than 10% of the LNS, while that in the buffer stage was more than 80%. Drug content analysis revealed the LNS content to be 97%, indicating the chemical stability of the enteric coated tablet after storage for 6 months. HME, which has not been previously used for LNS, is a valuable technique to reduce processing time in the manufacture of enteric coated formulations of an acid-sensitive active pharmaceutical ingredient as compared to the existing methods. PMID:27486807
NASA Astrophysics Data System (ADS)
Avice, J.; Piombini, H.; Boscher, C.; Belleville, P.; Vaudel, G.; Brotons, G.; Ruello, P.; Gusev, V.
2017-11-01
The MegaJoule Laser (LMJ) for inertial confinement fusion experiments is currently in operation at CEA-CESTA in France. All the lenses are coated by an antireflective (AR) layer to optimize the light power transmission. This AR layer is manufactured by sol-gel process, a soft chemical process, associated with a liquid phase coating technique to realize thin film of metal oxide. These optical components are hardened into ammoniac vapors in order to mechanically reinforce the AR coating and to make them more handling. This hardening induces a thickness reduction of the layer so an increase of the stiffness and sometimes a crazing of the layer. As these optical components undergo a high-power laser beam, so, it is important to verify if the AR properties (optical and mechanical) influence the value of the threshold laser damage. A series of coated samples have been manufactured having variable elastic moduli to discuss this point. In that purpose, a homemade Laser Induced Damage Threshold (LIDT) setup has been developed to test the layers under laser flux. We describe the used methods and different results are given. Preliminary results obtained on several coated samples with variable elastic moduli are presented. We show that whatever are the elastic stiffness of the AR coating, an overall decrease of the threshold appears with no noticeable effect of the mechanical properties of the AR coatings. Some possible explanations are given.
Fox-Rabinovich, German S; Yamamoto, Kenji; Beake, Ben D; Gershman, Iosif S; Kovalev, Anatoly I; Veldhuis, Stephen C; Aguirre, Myriam H; Dosbaeva, Goulnara; Endrino, Jose L
2012-08-01
Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear resistance under extreme tribological conditions.
Fox-Rabinovich, German S; Yamamoto, Kenji; Beake, Ben D; Gershman, Iosif S; Kovalev, Anatoly I; Veldhuis, Stephen C; Aguirre, Myriam H.; Dosbaeva, Goulnara; Endrino, Jose L
2012-01-01
Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear resistance under extreme tribological conditions. PMID:27877499
NASA Astrophysics Data System (ADS)
Pinc, William Ross
The aim of the work presented in this dissertation is to investigate the corrosion protection mechanism of cerium-based conversion coatings (CeCCs) used in the corrosion protection of high strength aluminum alloys. The corrosion resistance of CeCCs involves two general mechanisms; barrier and active. The barrier protection mechanism was influenced by processing parameters, specifically surface preparation, post-treatment, and the use of gelatin. Post-treatment and the addition of gelatin to the coating solution resulted in fewer cracks and transformation of the coating to CePO4, which increased the corrosion resistance by improving the barrier aspect of CeCCs. CeCCs were found to best act as barriers when crack size was limited and CePO4 was present in the coating. CeCCs were found to protect areas of the substrate that were exposed in the coating, indicating that the coatings were more than simple barriers. CeCCs contained large cracks, underneath which subsurface crevices were connected to the surface by the cracks. Despite the observation that no cerium was present in crevices, coatings with crevices exhibited significant corrosion protection. The impedance of post-treated coatings with crevices increased during salt spray exposure. The increase in impedance was associated with the formation of protective oxides / hydroxides; however, crevice-free coatings also exhibited active protection leading to the conclusion that the formation of interfacial layers between the CeCC and the substrate also contributed to the active protection. Based on the overall results of the study, the optimal corrosion protection of CeCCs occurred when processing conditions produced coatings with morphologies and compositions that facilitated both the barrier and active protection mechanisms.
Yazdani, Nuri; Chawla, Vipin; Edwards, Eve; Wood, Vanessa; Park, Hyung Gyu; Utke, Ivo
2014-01-01
Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays.
Adineh, Vahid R; Marceau, Ross K W; Chen, Yu; Si, Kae J; Velkov, Tony; Cheng, Wenlong; Li, Jian; Fu, Jing
2017-10-01
We present a novel approach for analysis of low-conductivity and insulating materials with conventional pulsed-voltage atom probe tomography (APT), by incorporating an ultrathin metallic coating on focused ion beam prepared needle-shaped specimens. Finite element electrostatic simulations of coated atom probe specimens were performed, which suggest remarkable improvement in uniform voltage distribution and subsequent field evaporation of the insulated samples with a metallic coating of approximately 10nm thickness. Using design of experiment technique, an experimental investigation was performed to study physical vapor deposition coating of needle specimens with end tip radii less than 100nm. The final geometries of the coated APT specimens were characterized with high-resolution scanning electron microscopy and transmission electron microscopy, and an empirical model was proposed to determine the optimal coating thickness for a given specimen size. The optimal coating strategy was applied to APT specimens of resin embedded Au nanospheres. Results demonstrate that the optimal coating strategy allows unique pulsed-voltage atom probe analysis and 3D imaging of biological and insulated samples. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Lingzhi; Xiao, Yong; Wen, Jihong; Zhang, Hao; Wen, Xisen
2018-07-01
Acoustic coatings with periodically arranged internal cavities have been successfully applied in submarines for the purpose of decoupling water from vibration of underwater structures, and thus reducing underwater sound radiation. Previous publications on decoupling acoustic coatings with cavities are mainly focused on the case of coatings with specific shaped cavities, including cylindrical and conical cavities. To explore better decoupling performance, an optimal design of acoustic coating with complex shaped cavities is attempted in this paper. An equivalent fluid model is proposed to characterize coatings with general axisymmetrical cavities. By employing the equivalent fluid model, an analytical vibroacoustic model is further developed for the prediction of sound radiation from an infinite plate covered with an equivalent fluid layer (as a replacement of original coating) and immersed in water. Numerical examples are provided to verify the equivalent fluid model. Based on a combining use of the analytical vibroacoustic model and a differential evolution algorithm, optimal designs for acoustic coatings with cavities are conducted. Numerical results demonstrate that the decoupling performance of acoustic coating can be significantly improved by employing special axisymmetrical cavities as compared to traditional cylindrical cavities.
Optimization of the Automated Spray Layer-by-Layer Technique for Thin Film Deposition
2010-06-01
pieces. All silicon was cleaned with ethanol and Milli-Q water to hydroxylate the surface. Quartz Crystal Microbalance Si02 coated sensors (Q-sense...was deposited onto a SiO2 coated QCM crystal using the automated dipping process described earlier. Once the film was deposited, it was dried over...night, and then placed in the QCM -D device. An additional layer of PAH was deposited onto the crystal in the QCM -D chamber at a flow rate of 1pL/minute
Reflection/suppression coatings for 900 - 1200 A radiation
NASA Technical Reports Server (NTRS)
Edelstein, Jerry
1989-01-01
The design and performance of multiple-layer, selective-reflection, selective-suppression coatings for the 900 - 1200 A band are described. These coatings are designed to optimize both high reflectivity at a desirable wavelength and low reflectivity at an undesirable wavelength. The minimum structure for a selective coating consists of a thin metal or metal oxide layer (50 - 150 A thickness) over an aluminum substrate protected with a semi-transparent dielectric (100 - 1000 A thickness). Predicted coating performance is strongly effected by varying the layer combination and thickness. A graphical method of optimizing the coating layer structure is developed. Aluminum, silicon, their oxides, and gold have been investigated as coating layer materials. A very simple coating with a 1026 to 1216 A reflectivity ratio greater than 100 was fabricated. Such reflection/suppression coatings may be of great utility to spaceborne EUV spectrographs.
In-situ phosphatizing coatings for aerospace, OEM and coil coating applications
NASA Astrophysics Data System (ADS)
Neuder, Heather Aurelia
The current metal coating process is a multi-step process. The surface is cleaned, primered, dried and then painted. The process is labor intensive and time consuming. The wash primer is a conversion coating, which prepares metal surface for better paint adhesion. The wash primers currently used often contain hexavalent chromium (Cr6+), which seals the pores in the conversion coating. The presence of hexavalent chromium, a known carcinogen, and volatile organic compounds (VOCs) make waste disposal expensive and pose dangers to workers. The novel technique of in-situ phosphatizing coating (ISPC) is a single-step, chrome-free alternative to the present coating practice. Formulation of an ISPC involves predispersal of an in-situ phosphatizing reagent (ISPR) into the paint system to form a stable formulation. The ISPR reacts with the metal surface and bonds with the paint film simultaneously, which eliminates the need for a conversion coating. In acid catalyzed paint systems, such as polyester-melamine paints, the ISPR also catalyzes cross-linking reactions between the melamine and the polyester polyols. ISPCs are formulated using commercially available coating systems including: polyester-melamine, two-component epoxy, polyurethane and high-hydroxy content polyester-melamine coil coating. The ISPCs are applied to metal substrates and their performances are evaluated using electrochemical, thermal and standard American Society for Testing and Materials (ASTM) testing methods. In addition, ISPCs were designed and formulated based on: (1) phosphate chemistry, (2) polymer chemistry, (3) sol-gel chemistry, and (4) the ion-exchange principle. Organo-functionalized silanes, which serve as excellent coupling and dispersion agents, are incorporated into the optimized ISPC formula and evaluated using standard ASTM testing methods and electrochemical spectroscopy. Also, an ion-exchange pigment, which leads to better adhesion by forming a mixed metal silicate surface, is dispersed into an ISPC and the performance of the final coating formulation is evaluated. Successful ISPCs formulated for multiple coating systems exhibited excellent adhesion, hardness and gloss, which supports their suitability as a chrome-free, single-step alternative for aerospace, original equipment manufacturing (OEM) and coil coating applications.
Pratheeksha, Parakandy Muzhikara; Mohan, Erabhoina Hari; Sarada, Bulusu Venkata; Ramakrishna, Mantripragada; Hembram, Kalyan; Srinivas, Pulakhandam Veera Venkata; Daniel, Paul Joseph; Rao, Tata Narasinga; Anandan, Srinivasan
2016-12-21
In the present study, LiFePO 4 (LFP) has been synthesized using a flame spray pyrolysis unit followed by carbon coating on LFP using a novel strategy of dehydration assisted polymerization process (DAP) in order to improve its electronic conductivity. Characterization studies revealed the presence of a pure LFP structure and the formation of a thin, uniform and graphitic carbon layer with a thickness of 6-8 nm on the surface of the LFP. A carbon coated LFP with 3 wt% of carbon, using a DAP process, delivered a specific capacity of 167 mA h g -1 at a 0.1C rate, whereas LFP carbon coated by a carbothermal process (CLFP-C) delivered a capacity of 145 mA h g -1 at 0.1C. Further carbon coated LFP by the DAP exhibited a good rate capability and cyclic stability. The enhanced electrochemical performance of C-LFP by DAP is attributed to the presence of a uniform, thin and ordered graphitic carbon layer with a core-shell structure, which greatly increased the electronic conductivity of LFP and thereby showed an improved electro-chemical performance. Interestingly, the developed carbon coating process has been extended to synthesize a bulk quantity (0.5 kg) of carbon coated LFP under optimized experimental conditions as a part of up-scaling and the resulting material electro-chemical performance has been evaluated and compared with commercial electrode materials. Bulk C-LFP showed a capacity of 131 mA h g -1 and 87 mA h g -1 at a rate of 1C and at 10C, respectively, illustrating that the developed DAP process greatly improved the electrochemical performance of LFP in terms of rate capability and cyclic stability, not only during the lab scale synthesis but also during the large scale synthesis. Benchmark studies concluded that the electro-chemical performance of C-LFP by DAP is comparable with that of TODA LFP and better than that of UNTPL LFP. The DAP process developed in the present study can be extended to other electrode materials as well.
NASA Astrophysics Data System (ADS)
Stackpoole, Margaret Mary
Use of preceramic polymers offers many advantages over conventional ceramic processing routes. Advantages include being able to plastically form the part, form a pyrolized ceramic material at lower temperatures and form high purity microstructures which are tailorable depending on property requirements. To date preceramic polymers are mostly utilized in the production of low dimensional products such as fibers since loss of volatiles during pyrolysis leads to porosity and large shrinkage (in excess of 30%). These problems have been partially solved by use of active fillers (e.g. Ti, Cr, B). The reactive filler converts to a ceramic material with a volume expansion and this increases the density and reduces shrinkage and porosity. The expansion of the reactive filler thus compensates for the polymer shrinkage if the appropriate volume fraction of filler is present in a reactive atmosphere (e.g. N2 or NH3). This approach has resulted in structural composites with limited success. The present research investigates the possibility of using filled preceramic polymers to form net shaped ceramic composite materials and to investigate the use of these unique composite materials to join and coat ceramics and ceramic composites. The initial research focused on phase and microstructural development of bulk composites from the filled polymer/ceramic systems. A processing technique was developed to insure consistency between different samples and the most promising filler/polymer choices for this application have been determined. The processing temperatures and atmospheres have also been optimized. The work covers processing and characterization of bulk composites, joints and coatings. With careful control of processing near net shape bulk composites were fabricated. Both ambient and high temperature strength and fracture toughness was obtained for these composite systems. The potential of using reactively filled preceramic polymers to process joints and coatings was also investigated. A critical thickness below which crack free joints/coatings could be processed was determined. Finally, mechanical properties of the joints and coatings at ambient and elevated temperatures (including oxidation studies) have been evaluated. The interfacial fracture behavior of the joints and coatings was also evaluated.
A Safer Formulation Concept for Flame-Generated Engineered Nanomaterials
Gass, Samuel; Cohen, Joel M.; Pyrgiotakis, Georgios; Sotiriou, Georgios A.; Pratsinis, Sotiris E.; Demokritou, Philip
2013-01-01
The likely success or failure of the nanotechnology industry depends on the environmental health and safety of engineered nanomaterials (ENMs). While efforts toward engineering safer ENMs are sparse, such efforts are considered crucial to the sustainability of the nanotech industry. A promising approach in this regard is to coat potentially toxic nanomaterials with a biologically inert layer of amorphous SiO2. Core-shell particles exhibit the surface properties of their amorphous SiO2 shell while maintaining specific functional properties of their core material. A major challenge in the development of functional core-shell particles is the design of scalable high-yield processes that can meet large-scale industrial demand. Here, we present a safer formulation concept for flame-generated ENMs based on a one-step, in flight SiO2 encapsulation process, which was recently introduced by the authors as a means for a scalable manufacturing of SiO2 coated ENMs. Firstly, the versatility of the SiO2-coating process is demonstrated by applying it to four ENMs (CeO2, ZnO, Fe2O3, Ag) marked by their prevalence in consumer products as well as their range in toxicity. The ENM-dependent coating fundamentals are assessed and process parameters are optimized for each ENM investigated. The effects of the SiO2-coating on core material structure, composition and morphology, as well as the coating efficiency on each nanostructured material, are evaluated using state-of-the-art analytical methods (XRD, N2 adsorption, TEM, XPS, isopropanol chemisorption). Finally, the biological interactions of SiO2-coated vs. uncoated ENMs are evaluated using cellular bioassays, providing valuable evidence for reduced toxicity for the SiO2-coated ENMs. Results indicate that the proposed ‘safer by design’ concept bears great promise for scaled-up application in industry in order to reduce the toxicological profile of ENMs for certain applications. PMID:23961338
NASA Astrophysics Data System (ADS)
Petráčková, K.; Kondás, J.; Guagliano, M.
2017-12-01
Cold-sprayed coatings made of A357 aluminum alloy, a casting alloy widely used in aerospace, underwent set of standard tests as well as newly developed fatigue test to gain an information about potential of cold spray for repair and additive manufacturing of loaded parts. With optimal spray parameters, coating deposition on substrate with smooth surface resulted in relatively good bonding, which can be further improved by application of grit blasting on substrate's surface. However, no enhancement of adhesion was obtained for shot-peened surface. Process temperature, which was set either to 450 or 550 °C, was shown to have an effect on adhesion and cohesion strength, but it does not influence residual stress in the coating. To assess cold spray perspectives for additive manufacturing, flat tensile specimens were machined from coating and tested in as-sprayed and heat-treated (solution treatment and aging) condition. Tensile properties of the coating after the treatment correspond to properties of the cast A357-T61 aluminum alloy. Finally, fatigue specimen was proposed to test overall performance of the coating and coating's fatigue limit is compared to the results obtained on cast A357-T61 aluminum alloy.
Fixation of Radiological Contamination; International Collaborative Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rick Demmer
2013-03-01
A cooperative international project was conducted by the Idaho National Laboratory (INL) and the United Kingdom’s National Nuclear Laboratory (NNL) to integrate a capture coating with a high performance atomizing process. The initial results were promising, and lead to further trials. The somewhat longer testing and optimization process has resulted in a product that could be demonstrated in the field to reduce airborne radiological dust and contamination.
Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr
Miola, Marta; Verné, Enrica; Ciraldo, Francesca Elisa; Cordero-Arias, Luis; Boccaccini, Aldo R.
2015-01-01
In this research work, the original 45S5 bioactive glass was modified by introducing zinc and/or strontium oxide (6 mol%) in place of calcium oxide. Sr was added for its ability to stimulate bone formation and Zn for its role in bone metabolism, antibacterial properties, and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology while compositional analysis (EDS) demonstrated the effective incorporation of these elements in the glass network. Bioactivity test in simulated body fluid (SBF) up to 1 month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD). Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD) and alternating current EPD (AC-EPD). The stability of the suspension was analyzed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, whereas the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover, the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses, and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behavior of 45S5-Sr-containing coating while coatings containing Zn exhibited no hydroxyapatite formation. PMID:26539431
Liu, Mingming; Zeng, Zhaorui; Fang, Huaifang
2005-05-27
Three types of novel acrylate/silicone co-polymer coatings, including co-poly(methyl acrylate/hydroxy-terminated silicone oil) (MA/OH-TSO), co-poly(methyl methacrylate/OH-TSO) (MMA/OH-TSO) and co-poly(butyl methacrylate/OH-TSO) (BMA/OH-TSO), were prepared for the first time by sol-gel method and cross-linking technology and subsequently applied to headspace solid-phase microextraction (HS-SPME) of 2-chloroethyl ethyl sulfide (CEES), a surrogate of mustard, in soil. The underlying mechanisms of the coating process were discussed and confirmed by IR spectra. The selectivity of the three types of sol-gel-derived acrylate/silicone coated fibers was studied, and the BMA/OH-TSO coated fibers exhibited the highest extraction ability to CEES. The concentration of BMA and OH-TSO in sol solution was optimized, and the BMA/OH-TSO (3:1)-coated fibers possessed the highest extraction efficiency. Compared with commercially available polyacrylate (PA) fiber, the sol-gel-derived BMA/OH-TSO (3:1) fibers showed much higher extraction efficiency to CEES. Therefore, the BMA/OH-TSO (3:1)-coated fibers were chosen for the analysis of CEES in soil matrix. The reproducibility of coating preparation was satisfactory, with the RSD 2.39% within batch and 3.52% between batches, respectively. The coatings proved to be quite stable at high temperature (to 350 degrees C) and in different solvents (organic or inorganic), thus their lifetimes (to 150 times) are longer than conventional fibers. Extraction parameters, such as the volume of water added to the soil, extraction temperature and time, and the ionic strength were optimized. The linearity was from 0.1 to 10 microg/g, the limit of detection (LOD) was 2.7 ng/g, and the RSD was 2.19%. The recovery of CEES was 88.06% in agriculture soil, 92.61% in red clay, and 101.95% in sandy soil, respectively.
Broadband angle-independent antireflection coatings on nanostructured light trapping solar cells
NASA Astrophysics Data System (ADS)
Vázquez-Guardado, Abraham; Boroumand, Javaneh; Franklin, Daniel; Chanda, Debashis
2018-03-01
Backscattering from nanostructured surfaces greatly diminishes the efficacy of light trapping solar cells. While the analytical design of broadband, angle-independent antireflection coatings on nanostructured surfaces proved inefficient, numerical optimization proves a viable alternative. Here, we numerically design and experimentally verify the performance of single and bilayer antireflection coatings on a 2D hexagonal diffractive light trapping pattern on crystalline silicon substrates. Three well-known antireflection coatings, aluminum oxide, silicon nitride, and silicon oxide, which also double as high-quality surface passivation materials, are studied in the 400-1000 nm band. By varying thickness and conformity, the optimal parameters that minimize the broadband total reflectance (specular and scattering) from the nanostructured surface are obtained. The design results in a single-layer antireflection coating with normal-angle wavelength-integrated reflectance below 4% and a bilayer antireflection coating demonstrating reflection down to 1.5%. We show experimentally an angle-averaged reflectance of ˜5.2 % up to 60° incident angle from the optimized bilayer antireflection-coated nanostructured surface, paving the path toward practical implementation of the light trapping solar cells.
NASA Technical Reports Server (NTRS)
Sliney, Harold E.
1991-01-01
Plasma sprayed composite coating of metal-bonded chromium carbide with additions of silver and thermochemically stable fluorides were previously reported to be lubricative in pin on desk bench tests from room temperature to 900 C. An early coating formulation of this type, designated as PS-200, was successfully tested as a cylinder coating in a Stirling engine at a TRRT of 760 C in a hydrogen atmosphere, and as a backup lubricant for gas bearings to 650 C. A subsequent optimization program has shown that tribological properties are further improved by increasing the solid lubricant content. The improved coating is designated as PS-212. The same powder formulation was used to make free-standing powder metallurgy (PM-212) parts by sintering or hot isostatic pressing. The process is very attractive for making parts that cannot be readily plasma sprayed such as bushings and cylinders that have small bore diameters and/or high length to diameter ratios. The properties of coatings and free-standing parts fabricated from these powders are reviewed.
NASA Astrophysics Data System (ADS)
Puranen, Jouni; Lagerbom, Juha; Hyvärinen, Leo; Kylmälahti, Mikko; Himanen, Olli; Pihlatie, Mikko; Kiviaho, Jari; Vuoristo, Petri
2011-01-01
Manganese cobalt oxide spinel doped with Fe2O3 was studied as a protective coating on ferritic stainless steel interconnects. Chromium alloying causes problems at high operation temperatures in such oxidizing conditions where chromium compounds evaporate and poison the cathode active area, causing the degradation of the solid oxide fuel cell. In order to prevent chromium evaporation, these interconnectors need a protective coating to block the chromium evaporation and to maintain an adequate electrical conductivity. Thermal spraying is regarded as a promising way to produce dense and protective layers. In the present work, the ceramic Mn-Co-Fe oxide spinel coatings were produced by using the atmospheric plasma spray process. Coatings with low thickness and low amount of porosity were produced by optimizing deposition conditions. The original spinel structure decomposed because of the fast transformation of solid-liquid-solid states but was partially restored by using post-annealing treatment.
Modeling and Tool Wear in Routing of CFRP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iliescu, D.; Fernandez, A.; Gutierrez-Orrantia, M. E.
2011-01-17
This paper presents the prediction and evaluation of feed force in routing of carbon composite material. In order to extend tool life and improve quality of the machined surface, a better understanding of uncoated and coated tool behaviors is required. This work describes (1) the optimization of the geometry of multiple teeth tools minimizing the tool wear and the feed force, (2) the optimization of tool coating and (3) the development of a phenomenological model between the feed force, the routing parameters and the tool wear. The experimental results indicate that the feed rate, the cutting speed and the toolmore » wear are the most significant factors affecting the feed force. In the case of multiple teeth tools, a particular geometry with 14 teeth right helix right cut and 11 teeth left helix right cut gives the best results. A thick AlTiN coating or a diamond coating can dramatically improve the tool life while minimizing the axial force, roughness and delamination. A wear model has then been developed based on an abrasive behavior of the tool. The model links the feed rate to the tool geometry parameters (tool diameter), to the process parameters (feed rate, cutting speed and depth of cut) and to the wear. The model presented has been verified by experimental tests.« less
NASA Astrophysics Data System (ADS)
Jacobs, Stephen D.
2011-10-01
Deterministic final polishing of high precision optics using sub-aperture processing with magnetorheological finishing (MRF) is an accepted practice throughout the world. A wide variety of materials can be successfully worked with aqueous (pH 10), magnetorheological (MR) fluids, using magnetic carbonyl iron (CI) and either ceria or nanodiamond nonmagnetic abrasives. Polycrystalline materials like zinc sulfide (ZnS) and zinc selenide (ZnSe) are difficult to polish at pH 10 with MRF, due to their grain size and the relatively low stiffness of the MR fluid lap. If microns of material are removed, the grain structure of the material begins to appear. In 2005, Kozhinova et al. (Appl. Opt. 44 4671-4677) demonstrated that lowering pH could improve MRF of ZnS. However, magnetic CI particle corrosion rendered their low pH approach unstable and unsuitable for commercial implementation. In 2009, Shafrir et al. described a sol-gel coating process for manufacturing a zirconia-coated CI particle that protects the magnetic core from aqueous corrosion (Appl. Opt .48 6797-6810). The coating process produces free nanozirconia polishing abrasives during the coating procedure, thereby creating an MR polishing powder that is "self-charged" with the polishing abrasive. By simply adding water, it was possible to polish optical glasses and ceramics with good stability at pH 8 for three weeks. The development of a corrosion resistant, MR polishing powder, opens up the possibility for polishing additional materials, wherein the pH may be adjusted to optimize effectiveness. In this paper we describe the CI coating process, the characterization of the coated powder, and procedures for making stable MR fluids with adjustable pH, giving polishing results for a variety of optical glasses and crystalline ceramics.
Cold Spraying of Cu-Al-Bronze for Cavitation Protection in Marine Environments
NASA Astrophysics Data System (ADS)
Krebs, S.; Gärtner, F.; Klassen, T.
2015-01-01
Traveling at high speeds, ships have to face the problem of rudder cavitation-erosion. At present, the problem is countered by fluid dynamically optimized rudders, synthetic, and weld-cladded coatings on steel basis. Nevertheless, docking and repair is required after certain intervals. Bulk Cu-Al-bronzes are in use at ships propellers to withstand corrosion and cavitation. Deposited as coatings with bulk-like properties, such bronzes could also enhance rudder life times. The present study investigates the coating formation by cold spraying CuAl10Fe5Ni5 bronze powders. By calculations of the impact conditions, the range of optimum spray parameters was preselected in terms of the coating quality parameter η on steel substrates with different temperatures. As-atomized and annealed powders were compared to optimize cavitation resistance of the coatings. Results provide insights about the interplay between the mechanical properties of powder and substrate for coating formation. Single particle impact morphologies visualize the deformation behavior. Coating performance was assessed by analyzing microstructures, bond strength, and cavitation resistance. These first results demonstrate that cold-sprayed bronze coatings have a high potential for ensuring a good performances in rudder protection. With further optimization, such coatings could evolve towards a competitive alternative to existing anti-cavitation procedures.
Johnson, Ian; Akari, Khalid; Liu, Huinan
2013-09-20
Biodegradable magnesium (Mg) and its alloys have many attractive properties (e.g. comparable mechanical properties to cortical bone) for orthopedic implant applications, but they degrade too rapidly in the human body to meet clinical requirements. Nanostructured hydroxyapatite (nHA)/poly(lactic-co-glycolic acid) (PLGA) composite coatings provide synergistic properties for controlling degradation of Mg-based substrates and improving bone-implant integration. In this study, nHA/PLGA composites were spin coated onto Mg-based substrates and the results showed that the nHA/PLGA coatings retained nano-scale features with nHA dispersed in PLGA matrix. In comparison with non-coated Mg, the nHA/PLGA composite coated Mg increased the corrosion potential and decreased the corrosion current in revised simulated body fluid (rSBF). After 24 h of immersion in rSBF, increased calcium phosphate (CaP) deposition and formation of Mg-substituted CaP rosettes were observed on the surface of the nHA/PLGA coated Mg, indicating greater bioactivity. In contrast, no significant CaP was deposited on the PLGA coated Mg. Since both PLGA coating and nHA/PLGA coating showed some degree of delamination from Mg-based substrates during extended immersion in rSBF, the coating processing and properties should be further optimized in order to take full advantage of biodegradable Mg and nHA/PLGA nanocomposites for orthopedic applications.
NASA Astrophysics Data System (ADS)
Johnson, Ian; Akari, Khalid; Liu, Huinan
2013-09-01
Biodegradable magnesium (Mg) and its alloys have many attractive properties (e.g. comparable mechanical properties to cortical bone) for orthopedic implant applications, but they degrade too rapidly in the human body to meet clinical requirements. Nanostructured hydroxyapatite (nHA)/poly(lactic-co-glycolic acid) (PLGA) composite coatings provide synergistic properties for controlling degradation of Mg-based substrates and improving bone-implant integration. In this study, nHA/PLGA composites were spin coated onto Mg-based substrates and the results showed that the nHA/PLGA coatings retained nano-scale features with nHA dispersed in PLGA matrix. In comparison with non-coated Mg, the nHA/PLGA composite coated Mg increased the corrosion potential and decreased the corrosion current in revised simulated body fluid (rSBF). After 24 h of immersion in rSBF, increased calcium phosphate (CaP) deposition and formation of Mg-substituted CaP rosettes were observed on the surface of the nHA/PLGA coated Mg, indicating greater bioactivity. In contrast, no significant CaP was deposited on the PLGA coated Mg. Since both PLGA coating and nHA/PLGA coating showed some degree of delamination from Mg-based substrates during extended immersion in rSBF, the coating processing and properties should be further optimized in order to take full advantage of biodegradable Mg and nHA/PLGA nanocomposites for orthopedic applications.
Vanadium diffusion coating on HT-9 cladding for mitigating the fuel cladding chemical interactions
NASA Astrophysics Data System (ADS)
Lo, Wei-Yang; Yang, Yong
2014-08-01
Fuel cladding chemical interaction (FCCI) has been identified as one of the crucial issues for developing Ferritic/Martensitic (F/M) stainless steel claddings for metallic fuels in a fast reactor. The anticipated elevated temperature and high neutron flux can significantly aggravate the FCCI, in terms of formation of inter-diffusion and lower melting point eutectic phases. To mitigate the FCCI, vanadium carbide coating as a diffusion barrier was deposited on the HT-9 substrate using a pack cementation diffusion coating (PCDC) method, and the processing temperature was optimized down to 730 °C. A solid metallurgical bonding between the coating layer and substrate was achieved, and the coating is free from through depth cracks. The microstructural characterizations using SEM and TEM show a nanostructured grain structure. EDS/WDS and XRD analysis confirm the phase of coating layer as V2C. Diffusion couple tests at 660 °C for 100 h demonstrate that V2C layer with a thickness of less than 5 μm can effectively eliminate the inter-diffusion between the lanthanide cerium and HT-9 steel.
Structure and Properties of the Aluminide Coatings on the Inconel 625 Superalloy
NASA Astrophysics Data System (ADS)
Adamiak, Stanisław; Bochnowski, Wojciech; Dziedzic, Andrzej; Filip, Ryszard; Szeregij, Eugeniusz
2016-01-01
The research samples used in this study were based on the Inconel 625 alloy; the examined samples were coated with aluminide films deposited in a low-activity chemical vapor deposition (CVD) process. The samples' microstructure was investigated with optical and electron microscopy and energy dispersive X-ray spectroscopy analysis. Hardness measurements were performed using Vickers and Berkovich test methods. The adhesion of the aluminide coating was determined by fractography. It was shown that the fracture mechanism was different for the respective zones of the aluminide coating and the substrate material. The outer zone of the aluminide coating is characterized by an intercrystalline fracture, with a small contribution of transcrystalline fracture within individual grains (large crystallites in the bottom of the zone, composed of smaller crystallites, also show an intercrystalline fracture). The substrate material exhibited a ductile intercrystalline fracture. Based on this investigation, an increase of the microhardness of the material occurring at loads below 0.2 N was observed. When determining microhardness of aluminide coating it is necessary to take into account the optimal choice of the indentation tip.
NASA Astrophysics Data System (ADS)
Kang, Karam
Current Ti-based dental implants exhibit failure (2-10%), due to various mechanisms, including chemical corrosion of the surface of the TiO2 naturally covered Ti-based implants. This thesis focused on developing a unique biocompatible/bio-inert/corrosion resistant/low cost Ultrananocrystalline Diamond (UNCD) coating (with 3-5 nm grain size) for encapsulation of Tibased micro-implants to potentially eliminate the corrosion/mechanical induced failure of current commercial Ti-based dental implants. Microwave Plasma Chemical Vapor Deposition (MPCVD) and Hot Filament Chemical Vapor Deposition (HFCVD) processes were used to grow UNCD coatings. The surface topography and chemistry of UNCD coatings were characterized using scanning electron microscopy (SEM), Raman, and X-ray photoelectron spectroscopies (XPS) respectively. In conclusion, this thesis contributed to establish the optimal conditions to grow UNCD coatings on the complex 3-D geometry of Ti-based micro-implants, with geometry similar to real implants, relevant to developing UNCD-coated Ti-based dental implants with superior mechanical/chemical performance than current Ti-based implants.
Xing, Cheng-Mei; Meng, Fan-Ning; Quan, Miao; Ding, Kai; Dang, Yuan; Gong, Yong-Kuan
2017-09-01
A versatile fabrication and performance optimization strategy of PEG and zwitterionic polymer coatings is developed on the sensor chip of surface plasma resonance (SPR) instrument. A random copolymer bearing phosphorylcholine zwitterion and active ester side chains (PMEN) and carboxylic PEG coatings with comparable thicknesses were deposited on SPR sensor chips via amidation coupling on the precoated polydopamine (PDA) intermediate layer. The PMEN coating showed much stronger resistance to bovine serum albumin (BSA) adsorption than PEG coating at very thin thickness (∼1nm). However, the BSA resistant efficacy of PEG coating could exceed that of PMEN due to stronger steric repelling effect when the thickness increased to 1.5∼3.3nm. Interestingly, both the PEG and PMEN thick coatings (≈3.6nm) showed ultralow fouling by BSA and bovine plasma fibrinogen (Fg). Moreover, changes in the PEG end group from -OH to -COOH, protein adsorption amount could increase by 10-fold. Importantly, the optimized PMEN and PEG-OH coatings were easily duplicated on other substrates due to universal adhesion of the PDA layer, showed excellent resistance to platelet, bacteria and proteins, and no significant difference in the antifouling performances was observed. These detailed results can explain the reported discrepancy in performances between PEG and zwitterionic polymer coatings by thickness. This facile and substrate-independent coating strategy may benefit the design and manufacture of advanced antifouling biomedical devices and long circulating nanocarriers. Prevention of biofouling is one of the biggest challenges for all biomedical applications. However, it is very difficult to fabricate a highly hydrophilic antifouling coating on inert materials or large devices. In this study, PEG and zwitterion polymers, the most widely investigated polymers with best antifouling performance, are conveniently immobilized on different kinds of substrates from their aqueous solutions by precoating a polydopamine intermediate layer as the universal adhesive and readily re-modifiable surface. Importantly, the coating fabrication and antifouling performance can be monitored and optimized quantitatively by a surface plasma resonance (SPR) system. More significantly, the SPR on-line optimized coatings were successfully duplicated off-line on other substrates, and supported by their excellent antifouling properties. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Yu, Jianxin; Wu, Caiying; Xing, Jun
2004-05-21
Allyloxy bisbenzo 16-crown-5 trimethoxysilane was first used as precursor to prepare the sol-gel-derived bisbenzo crown ether/hydroxyl-terminated silicone oil (OH-TSO) SPME coating. The coating procedure involving sol solution composition and conditioning process was presented. Compared with commercial SPME stationary phases, the new coatings showed higher extraction efficiency and therefore could provide higher sensitivity for organphosphorous pesticides (OPs). Limits of detection (LODs) were in the range of 0.003-1.0 ng/g for these OPs in food samples (honey, juice, orange and pakchoi). The optimal extraction conditions of the new coatings to OPs in these samples were investigated by adjusting extraction time, salt addition, extraction temperature, and dilution ratios of samples with distilled water by using SPME coupled with gas chromatography (GC)-flame photometric detection (FPD). The method was applied to determine the concentrations of OPs in real samples.
Thermal Spraying of Bioactive Polymer Coatings for Orthopaedic Applications
NASA Astrophysics Data System (ADS)
Chebbi, A.; Stokes, J.
2012-06-01
Flame sprayed biocompatible polymer coatings, made of biodegradable and non-biodegradable polymers, were investigated as single coatings on titanium and as top coatings on plasma sprayed Hydroxyapatite. Biocompatible polymers can act as drug carriers for localized drug release following implantation. The polymer matrix consisted of a biodegradable polymer, polyhydroxybutyrate 98%/ polyhydroxyvalerate 2% (PHBV) and a non-biodegradable polymer, polymethylmethacrylate (PMMA). Screening tests were performed to determine the suitable range of spraying parameters, followed by a Design of Experiments study to determine the effects of spraying parameters on coating characteristics (thickness, roughness, adhesion, wettability), and to optimize the coating properties accordingly. Coatings characterization showed that optimized flame sprayed biocompatible polymers underwent little chemical degradation, did not produce acidic by-products in vitro, and that cells proliferated well on their surface.
Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks.
Sergeant, Nicholas P; Pincon, Olivier; Agrawal, Mukul; Peumans, Peter
2009-12-07
Spectral control of the emissivity of surfaces is essential in applications such as solar thermal and thermophotovoltaic energy conversion in order to achieve the highest conversion efficiencies possible. We investigated the spectral performance of planar aperiodic metal-dielectric multilayer coatings for these applications. The response of the coatings was optimized for a target operational temperature using needle-optimization based on a transfer matrix approach. Excellent spectral selectivity was achieved over a wide angular range. These aperiodic metal-dielectric stacks have the potential to significantly increase the efficiency of thermophotovoltaic and solar thermal conversion systems. Optimal coatings for concentrated solar thermal conversion were modeled to have a thermal emissivity <7% at 720K while absorbing >94% of the incident light. In addition, optimized coatings for solar thermophotovoltaic applications were modeled to have thermal emissivity <16% at 1750K while absorbing >85% of the concentrated solar radiation.
Fundamentals and applications of solar energy. Part 2
NASA Astrophysics Data System (ADS)
Faraq, I. H.; Melsheimer, S. S.
Applications of techniques of chemical engineering to the development of materials, production methods, and performance optimization and evaluation of solar energy systems are discussed. Solar thermal storage systems using phase change materials, liquid phase Diels-Alder reactions, aquifers, and hydrocarbon oil were examined. Solar electric systems were explored in terms of a chlorophyll solar cell, the nonequilibrium electric field effects developed at photoelectrode/electrolyte interfaces, and designs for commercial scale processing of solar cells using continuous thin-film coating production methods. Solar coal gasification processes were considered, along with multilayer absorber coatings for solar concentrator receivers, solar thermal industrial applications, the kinetics of anaerobic digestion of crop residues to produce methane, and a procedure for developing a computer simulation of a solar cooling system.
Process optimization of ultrasonic spray coating of polymer films.
Bose, Sanjukta; Keller, Stephan S; Alstrøm, Tommy S; Boisen, Anja; Almdal, Kristoffer
2013-06-11
In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect to thickness, roughness (profilometer), and morphology (optical microscopy). Polyvinylpyrrolidone (PVP) is used to do a full factorial design of experiments with selected process parameters such as temperature, distance between spray nozzle and substrate, and speed of the spray nozzle. A mathematical model is developed for statistical analysis which identifies the distance between nozzle and substrate as the most significant parameter. Depending on the drying of the sprayed droplets on the substrate, we define two broad regimes, "dry" and "wet". The optimum condition of spraying lies in a narrow window between these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating with poly (D,L-lactide) (PDLLA). The results confirm the processing knowledge obtained with PVP and indicate that the observed trends are identical for spraying of other polymer films.
Optimization of equipment for electron radiation processing
NASA Astrophysics Data System (ADS)
Tartz, M.; Hartmann, E.; Lenk, M.; Mehnert, R.
1999-05-01
In the course of the last decade, IOM Leipzig has developed low-energy electron accelerators for electron beam curing of polymer coatings and printing inks. In order to optimize the electron irradiation field, electron optical calculations have been carried out using the commercially available EGUN code. The present study outlines the design of the diode-type low-energy electron accelerators LEA and EBOGEN, taking into account the electron optical effects of secondary components such as the retaining rods installed in the cathode assembly.
Tribology of nitrided-coated steel-a review
NASA Astrophysics Data System (ADS)
Bhaskar, Santosh V.; Kudal, Hari N.
2017-01-01
Surface engineering such as surface treatment, coating, and surface modification are employed to increase surface hardness, minimize adhesion, and hence, to reduce friction and improve resistance to wear. To have optimal tribological performance of Physical Vapor Deposition (PVD) hard coating to the substrate materials, pretreatment of the substrate materials is always advisable to avoid plastic deformation of the substrate, which may result in eventual coating failure. The surface treatment results in hardening of the substrate and increase in load support effect. Many approaches aim to improve the adhesion of the coatings onto the substrate and nitriding is the one of the best suitable options for the same. In addition to tribological properties, nitriding leads to improved corrosion resistance. Often corrosion resistance is better than that obtainable with other surface engineering processes such as hard-chrome and nickel plating. Ability of this layer to withstand thermal stresses gives stability which extends the surface life of tools and other components exposed to heat. Most importantly, the nitrogen picked-up by the diffusion layer increases the rotating-bending fatigue strength in components. The present article reviews mainly the tribological advancement of different nitrided-coated steels based on the types of coatings, structure, and the tribo-testing parameters, in recent years.
Chang, Wei-Chieh; Lan, Ding-Hung; Lee, Kun-Mu; Wang, Xiao-Feng; Liu, Cheng-Liang
2017-04-10
This study investigated a new film-deposition technique, ultrasonic spray-coating, for use in the production of a photoactive layer of perovskite solar cells. Stable atomization and facile fabrication of perovskite thin films by ultrasonic spray-coating were achieved in a one-step method through manipulating the ink formulation (e.g., solution concentration, precursor composition, and mixing solvent ratio) and the drying kinetics (e.g., post-annealing temperature). The performance of the perovskite solar cells was mainly influenced by the intrinsic film morphology and crystalline orientation of the deposited perovskite layer. By suitable optimization of the spreading and drying conditions of the ink, ultrasonic spray-coated perovskite photovoltaic devices were obtained with a maximum power conversion efficiency of 11.30 %, a fill factor of 73.6 %, a short-circuit current of 19.7 mA cm -1 , and an open-circuit voltage of 0.78 V, respectively. Notably, the average power efficiency reached above 10 %, attributed to the large flower-like perovskite crystal with orientation along the (1 1 2)/(2 0 0) and (2 2 4)/(4 0 0) directions. Thus, the ultrasonic spray-coating method for perovskite photoactive layers, combining advantages of good photovoltaic performance results and benefits from cost and processing, has the potential for large-scale commercial production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimization of contaminated oxide inversion layer solar cell. [considering silicon oxide coating
NASA Technical Reports Server (NTRS)
Call, R. L.
1976-01-01
Contaminated oxide cells have been fabricated with efficiencies of 8.6% with values of I sub sc = 120 ma, V sub oc = .54 volts, and curve factor of .73. Attempts to optimize the fabrication step to yield a higher output have not been successful. The fundamental limitation is the inadequate antireflection coating afforded by the silicon dioxide coating used to hold the contaminating ions. Coatings of SiO, therefore, were used to obtain a good antireflection coating, but the thinness of the coatings prevented a large concentration of the contaminating ions, and the cells was weak. Data of the best cell were .52 volts V sub oc, 110 ma I sub sc, .66 CFF and 6.7% efficiency.
2013-04-01
which freezes ions into well defined structures and coats them with an inert layer of weakly bound adducts. These cold aggregates were then...evaporation of the cryogenic solvent. Instrument development. Cryogenic ion processing. Cold ion spectroscopy. Trapped reaction intermediates U U U...spectrometer. The key advance incorporated into this instrument is the introduction of a cryogenic (10K) ion processing stage, where ions can be frozen
High-efficiency screen-printed belt co-fired solar cells on cast multicrystalline silicon
NASA Astrophysics Data System (ADS)
Upadhyaya, Ajay; Sheoran, Manav; Rohatgi, Ajeet
2005-01-01
High-efficiency 4cm2 untextured screen-printed solar cells were achieved on cast multicrystalline silicon. These cells were fabricated using a simple manufacturable process involving POCl3 diffusion for emitter, PECVD SiNx:H deposition for a single-layer antireflection coating and rapid co-firing of Ag grid, Al backcontact, and Al-BSF in a belt furnace. An optimized process sequence contributed to effective impurity gettering and defect passivation, resulting in high average bulk lifetimes in the range of 100-250 μs after the cell processing. The contact firing contributed to good ohmic contacts with low series resistance of <1Ωcm2, low backsurface recombination velocity of <500cm/s, and high fill factors of ˜0.78. These parameters resulted in 16.9% and 16.8% efficient untextured screen-printed cells with a single layer AR coating on heat exchanger method (HEM) and Baysix mc-Si. The identical process applied to the untextured float zone wafers gave an efficiency of 17.2%. The same optimized co-firing cycle, when applied to HEM mc-Si wafers with starting lifetimes varying over a wide range of 4-70 μs, resulted in cell efficiencies in the range of 16.5%-17%.
NASA Astrophysics Data System (ADS)
Bai, Xiao
Hydroxyapatite [Ca10(PO4)6(OH) 2, HA] has been widely applied as a coating on various biomedical bone/dental implants to improve biocompatibility and bioactivity. It has been observed that primary reasons leading to implantation failure of commercial HA coated implants processed by plasma spraying are the poor mechanical properties of coatings and infections accompanied by implantation. It has been also reported an ideal coating should be able to stimulate new bone growth at the initial stage of implantation and stay stable both mechanically and chemically thereafter. This research has investigated a functionally graded hydroxyapatite (FGHA) coating that is capable of improving the stability of implants, facilitating recovery, and preventing infections after implantation. A series of FGHA coatings with incorporated Ag 0 ˜ 13.53 wt. % has been deposited onto Ti substrate using ion beam assisted deposition (IBAD) with in-situ heat treatment. The compositional, microstructural, mechanical, and biological properties of coatings have been analyzed via various tests. The relationship among processing parameters, coating properties and biological behaviors has been established and the processing parameters for processing FGHA coatings with/without incorporated Ag have been optimized. Microstructure observations of coating cross section via transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) for set temperature coatings deposited at 450°C ˜ 750°C reveals that in-situ substrate temperature is the primary factor controlling the crystallinity of the coatings. The microstructure observation of cross section via TEM/STEM for both FGHA coatings with/without incorporated Ag has shown that coatings are dense and have a gradually decreased crystallinity from substrate/coating interface to top surface. In particular, the interface has an atomically intermixed structure; the region near the interface has a columnar grain structure whereas the region near coating top surface is mostly amorphous. TEM/STEM observation of FGHA coating with incorporated Ag has also demonstrated that the metallic silver particles in size of 10 ˜ 50 nm distribute at the coating cross section throughout the coating thickness. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis have shown that coatings consist of HA and various calcium phosphate compounds. The pull off tests have shown that the average adhesion strength of FGHA coatings (both with and without Ag) to substrate are in the range of 83.44 +/- 5.71 ˜ 89.36 +/- 5.13 MPa. Further optical observation of pull off area of coating shows that no coating delamination is observed and epoxy failure is dominant, indicating a well-boned interface and a strong coating itself. It has been concluded that the high adhesion strength of coating to substrate is attributed to the atomic intermixed interface and dense structure of coating, which is resulted from the increased mobility of coating atoms at high substrate temperature under bombardment of assisted ion beam. Culture tests have shown a distinct increase in osteoblast cell attachment to FGHA surface after 24 hours culture test when compared to blank Ti controls. Both calcium and silver release tests of Ag-doped FGHA coatings have shown the release rate is high at the initial stage and it steadily decreases, which is the expected performance of FGHA coatings. Antibacterial test using S. aureus has revealed that Ag doped FGHA coatings show an inhibitory effect when compared to coating without Ag and blank Ti. In particular, with higher amounts of Ag in coatings, the inhibition of S. aureus is stronger. Cytotoxicity test indicates that the FGHA coating with the highest amounts of Ag shows a negative effect on the osteoblast response.
Black Molecular Adsorber Coatings for Spaceflight Applications
NASA Technical Reports Server (NTRS)
Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.
2014-01-01
The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.
Black molecular adsorber coatings for spaceflight applications
NASA Astrophysics Data System (ADS)
Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.
2014-09-01
The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.
Fabrication of a Flexible Amperometric Glucose Sensor Using Additive Processes
Du, Xiaosong; Durgan, Christopher J.; Matthews, David J.; Motley, Joshua R.; Tan, Xuebin; Pholsena, Kovit; Árnadóttir, Líney; Castle, Jessica R.; Jacobs, Peter G.; Cargill, Robert S.; Ward, W. Kenneth; Conley, John F.; Herman, Gregory S.
2015-01-01
This study details the use of printing and other additive processes to fabricate a novel amperometric glucose sensor. The sensor was fabricated using a Au coated 12.7 μm thick polyimide substrate as a starting material, where micro-contact printing, electrochemical plating, chloridization, electrohydrodynamic jet (e-jet) printing, and spin coating were used to pattern, deposit, chloridize, print, and coat functional materials, respectively. We have found that e-jet printing was effective for the deposition and patterning of glucose oxidase inks with lateral feature sizes between ~5 to 1000 μm in width, and that the glucose oxidase was still active after printing. The thickness of the permselective layer was optimized to obtain a linear response for glucose concentrations up to 32 mM and no response to acetaminophen, a common interfering compound, was observed. The use of such thin polyimide substrates allow wrapping of the sensors around catheters with high radius of curvature ~250 μm, where additive and microfabrication methods may allow significant cost reductions. PMID:26634186
NASA Astrophysics Data System (ADS)
Liu, Dawei; Wang, Yan; Zhang, Ying; Ouyang, Taoyuan; Zhou, Tong; Fang, Xuanwei; Suo, Jinping
2018-04-01
A TiC + mixture (TiC/Al2O3 (1:1 wt.%)) +Al2O3 self-healing triple layer coating (TLC) was designed and manufactured by our group, and the crack-filling heat treatment process had been roughly explored in the past. In this work, the accelerating test with a thick TiC + mixture (TiC/Al2O3 (1:1 wt.%)) double-layer coating (DLC) was carried out. The DLC coating warped when the heat treatment temperature was lower than 550 °C, which was rare in similar researches, and it crushed into fan-shaped pieces when the treatment temperature was higher than 650 °C. The two different spalling failures were explained by weight gain, porosity and stress analyses. The heating rate had a significant effect. The bonding strength and hydrogen permeation of the TLC samples were also tested. Remaining at 650 °C for 40 h was proved to be an optimal crack-filling heat treatment process, considering the hydrogen resistance.
NASA Astrophysics Data System (ADS)
Pilipavicius, J.; Kaleinikaite, R.; Pucetaite, M.; Velicka, M.; Kareiva, A.; Beganskiene, A.
2016-07-01
In this work sol-gel process for preparation of the uniform hybrid silica-3-aminopropyltriethoxysilane (APTES) coatings on glass surface is presented from mechanistic point of view. The suggested synthetic approach is straightforward, scalable and provides the means to tune the amount of amino groups on the surface simply by changing concentration of APTES in the initial sol. Deposition rate of different size silver nanoprisms (AgNPRs) on hybrid silica coatings of various amounts of APTES were studied and their performance as SERS materials were probed. The acquired data shows that the deposition rate of AgNPRs can be tuned by changing the amount of APTES. The optimal amount of APTES was found to be crucial for successful AgNPRs assembly and subsequent uniformity of the final SERS substrate-too high APTES content may result in rapid non-stable aggregation and non-uniform assembly process. SERS study revealed that SERS enhancement is the strongest at moderate AgNPRs aggregation level whereas it significantly drops at high aggregation levels.
TOPSIS based parametric optimization of laser micro-drilling of TBC coated nickel based superalloy
NASA Astrophysics Data System (ADS)
Parthiban, K.; Duraiselvam, Muthukannan; Manivannan, R.
2018-06-01
The technique for order of preference by similarity ideal solution (TOPSIS) approach was used for optimizing the process parameters of laser micro-drilling of nickel superalloy C263 with Thermal Barrier Coating (TBC). Plasma spraying was used to deposit the TBC and a pico-second Nd:YAG pulsed laser was used to drill the specimens. Drilling angle, laser scan speed and number of passes were considered as input parameters. Based on the machining conditions, Taguchi L8 orthogonal array was used for conducting the experimental runs. The surface roughness and surface crack density (SCD) were considered as the output measures. The surface roughness was measured using 3D White Light Interferometer (WLI) and the crack density was measured using Scanning Electron Microscope (SEM). The optimized result achieved from this approach suggests reduced surface roughness and surface crack density. The holes drilled at an inclination angle of 45°, laser scan speed of 3 mm/s and 400 number of passes found to be optimum. From the Analysis of variance (ANOVA), inclination angle and number of passes were identified as the major influencing parameter. The optimized parameter combination exhibited a 19% improvement in surface finish and 12% reduction in SCD.
Experimental evaluation of optimization method for developing ultraviolet barrier coatings
NASA Astrophysics Data System (ADS)
Gonome, Hiroki; Okajima, Junnosuke; Komiya, Atsuki; Maruyama, Shigenao
2014-01-01
Ultraviolet (UV) barrier coatings can be used to protect many industrial products from UV attack. This study introduces a method of optimizing UV barrier coatings using pigment particles. The radiative properties of the pigment particles were evaluated theoretically, and the optimum particle size was decided from the absorption efficiency and the back-scattering efficiency. UV barrier coatings were prepared with zinc oxide (ZnO) and titanium dioxide (TiO2). The transmittance of the UV barrier coating was calculated theoretically. The radiative transfer in the UV barrier coating was modeled using the radiation element method by ray emission model (REM2). In order to validate the calculated results, the transmittances of these coatings were measured by a spectrophotometer. A UV barrier coating with a low UV transmittance and high VIS transmittance could be achieved. The calculated transmittance showed a similar spectral tendency with the measured one. The use of appropriate particles with optimum size, coating thickness and volume fraction will result in effective UV barrier coatings. UV barrier coatings can be achieved by the application of optical engineering.
Development of silane-hydrolysate binder for UV-resistant thermal control coatings
NASA Technical Reports Server (NTRS)
Patterson, W. J.
1981-01-01
Detailed characterizaton and formulation studies were performed on a methyltriakoxysilane hydrolysate as a binder for thermal control coatings. The binder was optimized by varying hydrolysis temperature, time, catalyst type, and water concentration. The candidate coating formulations, based on this binder with TiO2 pigment, were optimized via a detailed series of sprayed test panels that included the parameters of binder/pigment ratio, ethanol content, pigment particle size, coating thickness and cure conditions. A typical optimized coating was prepared by acetic acid catalyzed hydrolysis of methyltriethoxysilane with 3.25 mol-equivalents of water over a 24 hour period at room temperature. The resulting hydrolysate was directly mixed with pre-milled TiO2 (12 grams pigment/26 grams binder) to yield a sprayable consistency. Panels were sprayed to result in a nominal cure coating thickness of 2 mils. Cure was affected by air drying for 24 hr at room temperature plus 72 hr at 150 F. These coatings are typically extremely tough and abrasion-resistant, with an absorptance (alpha) of 0.20 and emittance (e) of 0.89. No significant coating damage was observed in the mandrel bend test, even after exposure to thermal cycling from -160 to 160 F. Vacuum exposure of the coatings for 930 hours at 1 equivalent UV sun resulted in no visible degradation and no significant increase in absorptance.
Absorbing TiOx thin film enabling laser welding of polyurethane membranes and polyamide fibers
Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M; Hegemann, Dirk
2015-01-01
We report on the optical properties of thin titanium suboxide (TiOx) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiOx coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiOx coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiOx films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties. PMID:27877837
Absorbing TiOx thin film enabling laser welding of polyurethane membranes and polyamide fibers
NASA Astrophysics Data System (ADS)
Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M.; Hegemann, Dirk
2015-10-01
We report on the optical properties of thin titanium suboxide (TiOx) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiOx coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiOx coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiOx films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties.
Absorbing TiO x thin film enabling laser welding of polyurethane membranes and polyamide fibers.
Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M; Hegemann, Dirk
2015-10-01
We report on the optical properties of thin titanium suboxide (TiO x ) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiO x coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiO x coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiO x films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties.
NASA Astrophysics Data System (ADS)
Tinguely, Jean-Claude; Solarska, Renata; Braun, Artur; Graule, Thomas
2011-04-01
A new approach for the large-scale production of flexible photoelectrodes for dye-sensitized solar cells (DSSCs) is presented by roll-to-roll coating of a titanium dioxide nanodispersion containing the block copolymer 'Pluronic®' (PEOx-PPOy-PEOx, PEO: poly(ethylene oxide), PPO: poly(propylene oxide)). Functional DSSCs were assembled and the different coating procedures compared with respect to their solar power conversion efficiency. It is shown that the binder 'Pluronic' can be removed at processing temperatures as low as 140 °C, thus aiding achievement of sufficient adhesion to the ITO-PET support, higher porosity of the TiO2 layer and decreased crack appearance. Further optimization of this method is particularly promising when combined with other known low-temperature methods.
Kloust, Hauke; Schmidtke, Christian; Feld, Artur; Schotten, Theo; Eggers, Robin; Fittschen, Ursula E A; Schulz, Florian; Pöselt, Elmar; Ostermann, Johannes; Bastús, Neus G; Weller, Horst
2013-04-16
Herein we demonstrate that seeded emulsion polymerization is a powerful tool to produce multiply functionalized PEO coated iron oxide nanocrystals. Advantageously, by simple addition of functional surfactants, functional monomers, or functional polymerizable linkers-solely or in combinations thereof-during the seeded emulsion polymerization process, a broad range of in situ functionalized polymer-coated iron oxide nanocrystals were obtained. This was demonstrated by purposeful modulation of the zeta potential of encapsulated iron oxide nanocrystals and conjugation of a dyestuff. Successful functionalization was unequivocally proven by TXRF. Furthermore, the spatial position of the functional groups can be controlled by choosing the appropriate spacers. In conclusion, this methodology is highly amenable for combinatorial strategies and will spur rapid expedited synthesis and purposeful optimization of a broad scope of nanocrystals.
Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding
NASA Astrophysics Data System (ADS)
Alat, Ece; Motta, Arthur T.; Comstock, Robert J.; Partezana, Jonna M.; Wolfe, Douglas E.
2016-09-01
In an attempt to develop an accident-tolerant fuel (ATF) that can delay the deleterious consequences of loss-of-coolant-accidents (LOCA), multilayer coatings were deposited onto ZIRLO® coupon substrates by cathodic arc physical vapor deposition (CA-PVD). Coatings were composed of alternating TiN (top) and Ti1-xAlxN (2-layer, 4-layer, 8-layer and 16-layer) layers. The minimum TiN top coating thickness and coating architecture were optimized for good corrosion and oxidation resistance. Corrosion tests were performed in static pure water at 360 °C and 18.7 MPa for up to 90 days. The optimized coatings showed no spallation/delamination and had a maximum of 6 mg/dm2 weight gain, which is 6 times smaller than that of a control sample of uncoated ZIRLO® which showed a weight gain of 40.2 mg/dm2. The optimized architecture features a ∼1 μm TiN top layer to prevent boehmite phase formation during corrosion and a TiN/TiAlN 8-layer architecture which provides the best corrosion performance.
Loiselle, Alayna E.; Wei, Lai; Faryad, Muhammad; Paul, Emmanuel M.; Lewis, Gregory S.; Gao, Jun; Lakhtakia, Akhlesh
2013-01-01
Impaired healing of cortical bone grafts represents a significant clinical problem. Cadaveric bone grafts undergo extensive chemical processing to decrease the risk of disease transmission; however, these processing techniques alter the bone surface and decrease the osteogenic potential of cells at the healing site. Extensive work has been done to optimize the surface of bone grafts, and hydroxyapatite (HAP) and nanotopography both increase osteoblastic differentiation. HAP is the main mineral component of bone and can enhance osteoblastic differentiation and bone implant healing in vivo, while nanotopography can enhance osteoblastic differentiation, adhesion, and proliferation. This is the first study to test the combined effects of HAP and nanotopographies on bone graft healing. With the goal of identifying the optimized surface features to improve bone graft healing, we tested the hypothesis that HAP-based nanotopographic resurfacing of bone grafts improves integration of cortical bone grafts by enhancing osteoblastic differentiation. Here we show that osteoblastic cells cultured on processed bones coated with specific-scale (50–60 nm) HAP nanotopographies display increased osteoblastic differentiation compared to cells on uncoated bone, bones coated with poly-l-lactic acid nanotopographies, or other HAP nanotopographies. Further, bone grafts coated with 50–60-nm HAP exhibited increased formation of new bone and improved healing, with mechanical properties equivalent to live autografts. These data indicate the potential for specific HAP nanotopographies to not only increase osteoblastic differentiation but also improve bone graft incorporation, which could significantly increase patient quality of life after traumatic bone injuries or resection of an osteosarcoma. PMID:23510012
NASA Astrophysics Data System (ADS)
Yoon, Soon Uk; Mahanty, Biswanath; Ha, Hun Moon; Kim, Chang Gyun
2016-06-01
Phenol adsorption from aqueous solution was carried out using uncoated and methyl acrylic acid (MAA)-coated iron oxide nanoparticles (NPs), having size <10 nm, as adsorbents. Batch adsorption studies revealed that the phenol removal efficiency of MAA-coated NPs (950 mg g-1) is significantly higher than that of uncoated NPs (550 mg g-1) under neutral to acidic conditions. However, this improvement disappears above pH 9. The adsorption data under optimized conditions (pH 7) were modeled with pseudo-first- and pseudo-second-order kinetics and subjected to Freundlich and Langmuir isotherms. The analysis determined that pseudo-second-order kinetics and the Freundlich model are appropriate for both uncoated and MAA-coated NPs (all R 2 > 0.98). X-ray photoelectron spectroscopy analysis of pristine and phenol-adsorbed NPs revealed core-level binding energy and charge for Fe(2 s) and O(1 s) on the NP surfaces. The calculations suggest that phenol adsorption onto MAA-coated NPs is a charge transfer process, where the adsorbate (phenol) acts as an electron donor and the NP surface (Fe, O) as an electron acceptor. However, a physisorption process appears to be the relevant mechanism for uncoated NPs.
NASA Astrophysics Data System (ADS)
Lee, Seong Yun; Kim, Jae Young; Lee, Jun Young; Song, Ho Jun; Lee, Sangkug; Choi, Kyung Ho; Shin, Gyojic
2014-06-01
An excellent transparent film with effective absorption property in near-infrared (NIR) region based on cesium-doped tungsten oxide nanoparticles was fabricated using a facile double layer coating method via the theoretical considerations. The optical performance was evaluated; the double layer-coated film exhibited 10% transmittance at 1,000 nm in the NIR region and over 80% transmittance at 550 nm in the visible region. To optimize the selectivity, the optical spectrum of this film was correlated with a theoretical model by combining the contributions of the Mie-Gans absorption-based localized surface plasmon resonance and reflections by the interfaces of the heterogeneous layers and the nanoparticles in the film. Through comparison of the composite and double layer coating method, the difference of the nanoscale distances between nanoparticles in each layer was significantly revealed. It is worth noting that the nanodistance between the nanoparticles decreased in the double layer film, which enhanced the optical properties of the film, yielding a haze value of 1% or less without any additional process. These results are very attractive for the nanocomposite coating process, which would lead to industrial fields of NIR shielding and thermo-medical applications.
Novel benzo-15-crown-5 sol-gel coating for solid-phase microextraction.
Wang, Danhua; Xing, Jun; Peng, Jiagang; Wu, Caiying
2003-07-11
A novel dihydroxy-terminated benzo-15-crown-5 was synthesized and applied to prepare a solid-phase microextraction (SPME) fiber coating with sol-gel technology. The optimization of the sol-gel process was studied. The coating method with sol-gel was improved and completed in one run, which economized materials and allowed easier control of the fiber thickness. The repeatability of coating fiber to fiber was better than 4.94% (RSD). The surface of the fiber coating was well-distributed and an electron microscopy experiment suggested a porous structure for crown ether coating, providing high surface areas and allowing for high extraction efficiency. The coating has a high thermal stability (350 degrees C), long lifetime and can stand solvent (organic and inorganic) rinsing due to the chemical binding between the coating and the fiber surface. Non-polar benzene, toluene, ethylbenzene, xylenes, chlorobenzenes, polar phenolic compounds and arylamines were used to evaluate the character of the fiber coating by headspace SPME-gas chromatography technology. For phenols, the linear concentrations ranged from 5 to 1000 microg/l, the detection limits were between 0.05 and 1 microg/l, and the RSD was less than 5%. The addition of benzo-crown ether not only increases the thermal stability of the fiber coating, but also enhances the selectivity of the fiber coating. Compared with commercially available SPME fibers poly(dimethylsiloxane) and polyacrylate, the few phases showed better selectivity and sensitivity towards non-polar and polar aromatic compounds.
Development of nanostructured antireflection coatings for infrared technologies and applications
NASA Astrophysics Data System (ADS)
Pethuraja, Gopal G.; Zeller, John W.; Welser, Roger E.; Efstathiadis, Harry; Haldar, Pradeep; Wijewarnasuriya, Priyalal S.; Dhar, Nibir K.; Sood, Ashok K.
2017-09-01
Infrared (IR) sensing technologies and systems operating from the near-infrared (NIR) to long-wave infrared (LWIR) spectra are being developed for a variety of defense and commercial systems applications. Reflection losses affecting a significant portion of the incident signal limits the performance of IR sensing systems. One of the critical technologies that will overcome this limitation and enhance the performance of IR sensing systems is the development of advanced antireflection (AR) coatings. Magnolia is actively involved in the development and advancement of ultrahigh performance AR coatings for a wide variety of defense and commercial applications. Ultrahigh performance nanostructured AR coatings have been demonstrated for UV to LWIR spectral bands using various substrates. The AR coatings enhance the optical transmission through optical components and devices by significantly minimizing reflection losses, a substantial improvement over conventional thin-film AR coating technologies. Nanostructured AR coatings are fabricated using a tunable self-assembly process on substrates that are transparent for a given spectrum of interest ranging from UV to LWIR. The nanostructured multilayer structures have been designed, developed and optimized for various optoelectronic applications. The optical properties of the AR-coated optical components and sensor substrates have been measured and fine-tuned to achieve a predicted high level of performance of the coatings. In this paper, we review our latest work on high quality nanostructure-based AR coatings, including recent efforts towards the development of nanostructured AR coatings on IR-transparent substrates.
NASA Astrophysics Data System (ADS)
Lawal, S. A.; Choudhury, I. A.; Nukman, Y.
2015-01-01
The understanding of cutting fluids performance in turning process is very important in order to improve the efficiency of the process. This efficiency can be determined based on certain process parameters such as flank wear, cutting forces developed, temperature developed at the tool chip interface, surface roughness on the work piece, etc. In this study, the objective is to determine the influence of cutting fluids on flank wear during turning of AISI 4340 with coated carbide inserts. The performances of three types of cutting fluids were compared using Taguchi experimental method. The results show that palm kernel oil based cutting fluids performed better than the other two cutting fluids in reducing flank wear. Mathematical models for cutting parameters such as cutting speed, feed rate, depth of cut and cutting fluids were obtained from regression analysis using MINITAB 14 software to predict flank wear. Experiments were conducted based on the optimized values to validate the regression equations for flank wear and 5.82 % error was obtained. The optimal cutting parameters for the flank wear using S/N ratio were 160 m/min of cutting speed (level 1), 0.18 mm/rev of feed (level 1), 1.75 mm of depth of cut (level 2) and 2.97 mm2/s palm kernel oil based cutting fluid (level 3). ANOVA shows cutting speed of 85.36 %; and feed rate 4.81 %) as significant factors.
Energy and Process Optimization and Benchmarking of Army Industrial Processes
2006-09-01
casting is a metal part formed by pouring molten iron, steel, aluminum, zinc , titanium, magnesium, copper, brass, bronze or cobalt, in nearly all...blanketing techniques. The loss of high-priced alloys is also mini- mized, while slag or dross rates are cut in half to help decrease disposal costs...fabricated of iron and steel; hot dip coating such items with aluminum, lead, or zinc ; retin- ning cans and utensils; (3) engraving, chasing and
NASA Astrophysics Data System (ADS)
Hou, Lei; Bi, Siyi; Zhao, Hang; Xu, Yumeng; Mu, Yuhang; Lu, Yinxiang
2017-05-01
High corrosion resistant Cu-Co-P coatings were firstly prepared on polyethylene terephthalate (PET) substrate by electroless plating in combination with UV/ozonolysis irradiation under optimized cobalt sulfate heptahydrate concentration, pH value, plating temperature and time. The copper polyalloy/PET composite can be obtained in three steps, namely: (i) the generation of oxygen-containing functionalities (carboxylic groups) onto PET surface through UV irradiation combined with ozone, (ii) Cu seeding catalysts were obtained after being immersed into cupric citrate and NaBH4 solutions subsequently, and (iii) Cu-Co-P polyalloy metallization using electroless plating bath. Attenuated total reflection fourier transformation infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), water contact angle measurement and energy dispersive X-ray analysis (EDAX) were utilized to track the surface changes during the whole process. The electroless plating conditions were optimized by an orthogonal experiment (L9(3)4) for Cu-Co-P coating as follows: CoSO4·7H2O addition of 0.08 M, pH value, plating temperature and time were set on 10.0, 35 °C and 25 min, respectively. Under the optimal conditions, copper polyalloy possessed high adhesive strength and the lowest surface resistance (8.06 Ω/sq), while maintaining reliability even after over 1000 times of bending and mechanical stress. The results of scanning electron microscope (SEM) and atomic force microscope (AFM) measurements showed that Cu-Co-P layer formed on PET surface was imparted with fine uniformity and high compactness. Electrochemical test revealed the optimized Cu-Co-P coatings exhibited high corrosion resistance in NaCl, NaOH and HCl solutions, respectively. The excellent electromagnetic interference shielding effectiveness (EMI SE >99.999% at frequency ranging from 30 MHz to 1000 MHz) of copper polyalloy/PET composites was confirmed by the spectrum analyzer. Therefore, this copper polyalloy will have potential applications in microelectronics packaging and coatings for anti-corrosion and electromagnetic interference shielding.
Synthesis of alumina ceramic encapsulation for self-healing materials on thermal barrier coating
NASA Astrophysics Data System (ADS)
Golim, O. P.; Prastomo, N.; Izzudin, H.; Hastuty, S.; Sundawa, R.; Sugiarti, E.; Thosin, K. A. Z.
2018-03-01
Durability of Thermal Barrier Coating or TBC can be optimized by inducing Self-Healing capabilities with intermetallic materials MoSi2. Nevertheless, high temperature operation causes the self-healing materials to become oxidized and lose its healing capabilities. Therefore, a method to introduce ceramic encapsulation for MoSi2 is needed to protect it from early oxidation. The encapsulation process is synthesized through a simple precipitation method with colloidal aluminum hydroxide as precursor and variations on calcination process. Semi-quantitative analysis on the synthesized sample is done by using X-ray diffraction (XRD) method. Meanwhile, qualitative analysis on the morphology of the encapsulation was carried out by using Scanning Electron Microscope (SEM) and Field Emission Scanning Electron Microscope (FESEM) equipped with dual Focus Ion Beam (FIB). The result of the experiment shows that calcination process significantly affects the final characteristic of encapsulation. The optimum encapsulation process was synthesized by colloidal aluminum hydroxide as a precursor, with a double step calcination process in low pressure until 900 °C.
Avachat, Amelia M; Shinde, Amol S
2016-01-01
Objective of this study was to develop Vancomycin HCl pellets loaded with Saccharomyces boulardii (S.b.) for pH-dependent system and CODES™ for augmenting the efficacy of Vancomycin HCl in the treatment of colitis. Pellets were prepared by extrusion-spheronization. In the pH-dependent system, the pellets were coated with Eudragit FS 30D. These pellets exhibited spherical form and a uniform surface coating. The CODES™ system consisted of three components: core containing mannitol, drug and probiotic, an inner acid-soluble coating layer, and an outer layer of enteric coating material. Statistical factorial design was used to optimize both formulations. Scanning electron micrographs of coated pellets revealed uniform coating. In vitro drug release of these coated pellets was studied sequentially in various buffers with (2%) and without rat cecal content for a period of 12 h. From the optimized pH-dependent formulation, F6 (20% w/w coating level and 15% w/v concentration of polymer), higher amount of probiotic was released in earlier time phase (first 5 h) as compared to the CODES™ and so R5 [containing acid-soluble inner coating layer (15% w/w coating level and 12% w/v concentration of Eudragit E100), and an outer layer of enteric coating material (12% w/w coating level and 10% w/v concentration of Eudragit L100)] was considered as the best formulation after confirming in vivo X-ray studies conducted on rabbits, suggesting that Vancomycin HCl and S.b. may be co-administered as pellets [CODES™] to enhance the effectiveness of Vancomycin HCl in the treatment of colitis without its associated side effects, which can only be confirmed after clinical trials.
Processing-Related Issues for the Design and Lifing of SiC/SiC Hot-Section Components
NASA Technical Reports Server (NTRS)
DiCarlo, J.; Bhatt, R.; Morscher, G.; Yun, H. M.
2006-01-01
For successful SiC/SiC engine components, numerous process steps related to the fiber, fiber architecture, interphase coating, and matrix need to be optimized. Under recent NASA-sponsored programs, it was determined that many of these steps in their initial approach were inadequate, resulting in less than optimum thermostructural and life properties for the as-fabricated components. This presentation will briefly review many of these process issues, the key composite properties they degrade, their underlying mechanisms, and current process remedies developed by NASA and others.
Lee, Kyung-Min; Armstrong, Paul R; Thomasson, J Alex; Sui, Ruixiu; Casada, Mark; Herrman, Timothy J
2010-10-27
Tracing grain from the farm to its final processing destination as it moves through multiple grain-handling systems, storage bins, and bulk carriers presents numerous challenges to existing record-keeping systems. This study examines the suitability of coded caplets to trace grain, in particular, to evaluate methodology to test tracers' ability to withstand the rigors of a commercial grain handling and storage systems as defined by physical properties using measurement technology commonly applied to assess grain hardness and end-use properties. Three types of tracers to dispense into bulk grains for tracing the grain back to its field of origin were developed using three food-grade substances [processed sugar, pregelatinized starch, and silicified microcrystalline cellulose (SMCC)] as a major component in formulations. Due to a different functionality of formulations, the manufacturing process conditions varied for each tracer type, resulting in unique variations in surface roughness, weight, dimensions, and physical and spectroscopic properties before and after coating. The applied two types of coating [pregelatinized starch and hydroxypropylmethylcellulose (HPMC)] using an aqueous coating system containing appropriate plasticizers showed uniform coverage and clear coating. Coating appeared to act as a barrier against moisture penetration, to protect against mechanical damage of the surface of the tracers, and to improve the mechanical strength of tracers. The results of analysis of variance (ANOVA) tests showed the type of tracer, coating material, conditioning time, and a theoretical weight gain significantly influenced the morphological and physical properties of tracers. Optimization of these factors needs to be pursued to produce desirable tracers with consistent quality and performance when they flow with bulk grains throughout the grain marketing channels.
Double-chimera proteins to enhance recruitment of endothelial cells and their progenitor cells.
Behjati, M; Kazemi, M; Hashemi, M; Zarkesh-Esfahanai, S H; Bahrami, E; Hashemi-Beni, B; Ahmadi, R
2013-08-20
Enhanced attraction of selective vascular reparative cells is of great importance in order to increase vascular patency after endovascular treatments. We aimed to evaluate efficient attachment of endothelial cells and their progenitors on surfaces coated with mixture of specific antibodies, L-selectin and VE-cadherin, with prohibited platelet attachment. The most efficient conditions for coating of L-selectin-Fc chimera and VE-cadherin-Fc chimera proteins were first determined by protein coating on ELISA plates. The whole processes were repeated on titanium substrates, which are commonly used to coat stents. Endothelial progenitor cells (EPCs) and human umbilical vein endothelial cells (HUVECs) were isolated and characterized by flow cytometry. Cell attachment, growth, proliferation, viability and surface cytotoxicity were evaluated using nuclear staining and MTT assay. Platelet and cell attachment were evaluated using scanning electron microscopy. Optimal concentration of each protein for surface coating was 50 ng/ml. The efficacy of protein coating was both heat and pH independent. Calcium ions had significant impact on simultaneous dual-protein coating (P<0.05). Coating stability data revealed more than one year stability for these coated proteins at 4°C. L-selectin and VE-cadherin (ratio of 50:50) coated surface showed highest EPC and HUVEC attachment, viability and proliferation compared to single protein coated and non-coated titanium surfaces (P<0.05). This double coated surface did not show any cytotoxic effect. Surfaces coated with L-selectin and VE-cadherin are friendly surface for EPC and endothelial cell attachment with less platelet attachment. These desirable factors make the L-selectin and VE-cadherin coated surfaces perfect candidate endovascular device. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Zhang, Bokai; Kwok, Chi Tat; Cheng, Fai Tsun; Man, Hau Chung
2011-12-01
In order to improve the bone bioactivity and osteointegration of metallic implants, hydroxyapatite (HA) is often coated on their surface so that a real bond with the surrounding bone tissue can be formed. In the present study, cathodic electrophoretic deposition (EPD) has been attempted for depositing nanostructured HA coatings on titanium alloy Ti6Al4V followed by sintering at 800 degrees C. Nano-sized HA powder was used in the EPD process to produce dense coatings. Moreover, multiwalled carbon nanotubes (CNTs) were also used to reinforce the HA coating for enhancing its mechanical strength. The surface morphology, compositions and microstructure of the monolithic coating of HA and nanocomposite coatings of HA with different CNT contents (4 to 25%) on Ti6Al4V were investigated by scanning-electron microscopy, energy-dispersive X-ray spectroscopy and Xray diffractometry, respectively. Electrochemical corrosion behavior of the various coatings in Hanks' solution at 37 degrees C was investigated by means of open-circuit potential measurement and cyclic potentiodynamic polarization tests. Surface hardness, adhesion strength and bone bioactivity of the coatings were also studied. The HA and HA/CNT coatings had a thickness of about 10 microm, with corrosion resistance higher than that of the substrate and adhesion strength higher than that of plasma sprayed HA coating. The properties of the composite coatings were optimized by varying the CNT contents. The enhanced properties could be attributed to the use of nano-sized HA particles and CNTs. Compared with the monolithic HA coating, the CNT-reinforced HA coating markedly increased the coating hardness without deteriorating the corrosion resistance or adhesion strength.
Sol-gel coated ion sources for liquid chromatography-direct electron ionization mass spectrometry.
Riboni, Nicolò; Magrini, Laura; Bianchi, Federica; Careri, Maria; Cappiello, Achille
2017-07-25
Advances in interfacing liquid chromatography and electron ionization mass spectrometry are presented. New ion source coatings synthesized by sol-gel technology were developed and tested as vaporization surfaces in terms of peak intensity, peak width and peak delay for the liquid chromatography-direct electron ionization mass spectrometry (Direct-EI) determination of environmental pollutants like polycyclic aromatic hydrocarbons and steroids. Silica-, titania-, and zirconia-based coatings were sprayed inside the stainless steel ion source and characterized in terms of thermal stability, film thickness and morphology. Negligible weight losses until 350-400 °C were observed for all the materials, with coating thicknesses in the 6 (±1)-11 (±2) μm range for optimal ionization process. The best performances in terms of both peak intensity and peak width were obtained by using the silica-based coating: the detection of the investigated compounds was feasible at low ng μl -1 levels with a good precision (RSD < 9% for polycyclic aromatic hydrocarbons and <11% for hormones). Copyright © 2017 Elsevier B.V. All rights reserved.
Tuning the Outward to Inward Swelling in Lithiated Silicon Nanotubes via Surface Oxide Coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiangwei; Luo, Hao; Liu, Yang
2016-09-14
The electrochemically-induced mechanical degradation hinders the application of Si anodes in advanced lithium-ion batteries. Hollow structures and surface coatings have been often used to mitigate the degradation of Si-based anodes. However, the structural change and degradation mechanism during lithiation/delithiation of hollow Si structures with coatings remain unclear. Here, we combine in situ TEM experiment and chemomechanical modeling to study the electrochemically induced swelling of amorphous-Si (a-Si) nanotubes with different thicknesses of surface SiOx layers. Surprisingly, we find that no inward expansion occurs at the inner surface during lithiation of a-Si nanotubes with native oxides. In contrast, inward expansion can bemore » induced by increasing the thickness of SiOx on the outer surface. Moreover, both the sandwich lithiation mechanism and two-stage lithiation process in a-Si nanotubes remain unchanged with the increasing thickness of surface coatings. Our chemomechanical modeling reveals the mechanical confinement effects in lithiated a-Si nanotubes with and without SiOx coatings. This work not only provides insights into the degradation of nanotube anodes with surface coatings, but also sheds light onto the optimal design of hollow anodes for high-performance lithium-ion batteries.« less
Life prediction of coated and uncoated metallic interconnect for solid oxide fuel cell applications
NASA Astrophysics Data System (ADS)
Liu, W. N.; Sun, X.; Stephens, E.; Khaleel, M. A.
In this paper, we present an integrated experimental and modeling methodology in predicting the life of coated and uncoated metallic interconnect (IC) for solid oxide fuel cell (SOFC) applications. The ultimate goal is to provide cell designer and manufacture with a predictive methodology such that the life of the IC system can be managed and optimized through different coating thickness to meet the overall cell designed life. Crofer 22 APU is used as the example IC material system. The life of coated and uncoated Crofer 22 APU under isothermal cooling was predicted by comparing the predicted interfacial strength and the interfacial stresses induced by the cooling process from the operating temperature to room temperature, together with the measured oxide scale growth kinetics. It was found that the interfacial strength between the oxide scale and the Crofer 22 APU substrate decreases with the growth of the oxide scale, and that the interfacial strength for the oxide scale/spinel coating interface is much higher than that of the oxide scale/Crofer 22 APU substrate interface. As expected, the predicted life of the coated Crofer 22 APU is significantly longer than that of the uncoated Crofer 22 APU.
1975-10-01
DC anodizing all adhesion values were lower but almost equal. 36 mnamnminmh TABU X SWOT OF EFFECT OF CURRaTT DEÄITT, TIME ABD SEAUK OF CHJOOC...Continuum Interpretation for Fracture and Adhesion", J. Appl . Polymer Science, 1^, 29 (I969) 3. Williams, M. L., "Stress Singularities, Adhesion, and
Thin coatings for heavy industry: Advanced coatings for pipes and valves
NASA Astrophysics Data System (ADS)
Vernhes, Luc
Pipes and valves are pressure vessels that regulate the flow of materials (liquids, gases, and slurries) by controlling the passageways. To optimize processes, reduce costs, and comply with government regulations, original equipment manufacturers (OEMs) must maintain their products in state-of-the-art condition. The first valves were invented over 3,000 years ago to supply water to farms and cities. They were made with bronze alloys, providing good corrosion resistance and acceptable tribological performance. The industrial revolution drove manufacturers to develop new and improved tribological materials. In the 20th century, innovative alloys such as Monel copper-nickel and Stellite cobalt-chrome as well as hard chrome plating were introduced to better control tribological properties and maximize in-service life. Since then, new materials have been regularly introduced to extend the range of applications for valves. For example, Teflon fluoropolymers are used in corrosive chemical and petrochemical processes, the nickel-based superalloys Hastelloy and Inconel for petrochemical applications, and creep-resistant chromium-rich F91 steel for supercritical power plants. Recently, the valve industry has embraced the use of hard thermal sprayed coatings for the most demanding applications, and is investing heavily in research to develop the most suitable coatings for specific uses. There is increasing evidence that the optimal solution to erosive, corrosive, and fretting wear problems lies in the design and manufacture of multi-layer, graded, and/or nanostructured coatings and coating systems that combine controlled hardness with high elastic modulus, high toughness, and good adhesion. The overall objectives of this thesis were 1) to report on advances in the development of structurally controlled hard protective coatings with tailored mechanical, elastoplastic, and thermal properties; and 2) to describe enhanced wear-, erosion-, and corrosion-resistance and other characteristics suitable for applications such as pipes and valves. From these general objectives, three specific objectives were derived: 1) to select and assess the best candidates for alternatives to hard chromium electroplating, which has been classified by the U.S. Environmental Protection Agency (EPA) as an environmentally unfriendly process; 2) to investigate recurrent failures occurring in the field with thermal sprayed HVOF Cr3C 2-NiCr coating applied to Inconel 718 PH when exposed to supercritical steam lines and thermal shocks in supercritical power plants (determining the root causes of coating failures and assessing potential coating alternatives to alleviate these issues); and 3) to develop new coating architectures, including complex microstructures and interfaces, and to better understand and optimize complex tribomechanical properties. The main results are presented in the form of articles in peer-reviewed journals. In the first article, a variety of chromium-free protective coatings were assessed as alternatives to hard chromium (HC) electroplating, such as nanostructured cobalt-phosphor (NCP) deposited by electroplating and tungsten/tungsten carbide (W/WC) applied by chemical vapor deposition. In order to compare performance across the coatings, a series of laboratory tests were performed, including hardness, microscratch, pin-on-disk, and electrochemical polarization measurements. Mechanical and fatigue resistance were also determined using prototype valves with coated ball under severe tribocorrosion conditions. It was found that W/WC coating exhibits superior wear and corrosion resistance due to high hardness and high pitting resistance, respectively, whereas NCP exhibits better wear resistance than HC with alumina ball as well as low corrosion potential, making it suitable for use as sacrificial protective coating. Both nanostructured coatings exhibited superior tribomechanical and functional characteristics compared to HC. The second article presents an investigation of an HVOF 80/20 Cr 3C2-NiCr coating failure in an on-off metal-seated ball valve (MSBV) used in supercritical steam lines in a power plant, along with an assessment of alternative coating solutions that are less susceptible to this failure mode. HVOF 80/20 Cr3C2-NiCr coating has been used to protect thousands of MSBVs without incident. However, in this case the valves were challenged with exposure to rapid variations in high-pressure flow and temperature, resulting in a unique situation that caused the coating to undergo cracking and cohesive failure. Carbide precipitation was found to be a major factor, resulting in coating embrittlement. Reduced coating toughness and ductility allowed thermal, mechanical, and residual stresses to initiate cracks and propagate them more easily, leading to coating failure with exposure to thermal shock. To alleviate these issues, possible coating alternatives were assessed. The third article presents the mechanical, tribological, and corrosion properties of two novel hybrid coating systems: 1) a tungsten-tungsten carbide (W-WC) top layer and a laser cladded cobalt-chromium (Co-Cr) interlayer (StelliteRTM 6 superalloy) applied to a 316 stainless steel substrate; and 2) the same W-WC top layer and an HVOF spray-and-fused Ni-W-Cr-B interlayer (ColmonoyRTM 88 superalloy) applied to an InconelRTM 718 substrate. X-ray diffraction, energy dispersive spectroscopy, and scanning electron microscopy were used to analyze the microstructure of the coating layers. Microindentation was used to measure surface hardness and the hardness profile of the coating systems. Rockwell indentation was used to assess coating adhesion according to CEN/TS 1071-8. Surface load-carrying capacity was also assessed by measuring micro- and macrohardness at high loads. Tribological properties were assessed with a linear reciprocating ball-on-flat sliding wear test, and corrosion resistance was measured by potentiodynamic polarization and electrochemical impedance spectroscopy.
Preparation of Permanent Mold Coating Using Magnesia Powder for Magnesium Alloys
NASA Astrophysics Data System (ADS)
Guo, Guangsi; Wang, Guangtai; Yu, Haifeng; Ye, Sheng
A kind of permanent mold coating for magnesium alloy was developed using magnesia powder and diatomite as refractory aggregate. The properties of the coating were tested and analyzed by various ingredients. The final ingredient was determined through the tests which are to find out the optimal proportion of two kinds of aggregate and the influences to coating properties by changing the proportion of binder and suspending agents. The experimental results shown that the permanent mold coating performed good properties on magnesium alloys when the optimized ratio of magnesia powder and diatomite was 6: 4, and the integrated property is very excellent when the coating was prepared with 2 percent of sodium bentonite, 0.4 percent of CMC, 7 percent of sodium hexametaphosphate, and 7 percent of sodium silicate. The excellent performance has also been proved by actual casting test.
Controlled Release Oral Delivery of Apigenin Containing Pellets with Antioxidant Activity.
Pápay, Zsófia Edit; Kállai-Szabó, Nikolett; Balogh, Emese; Ludányi, Krisztina; Klebovich, Imre; Antal, István
2017-01-01
Drug delivery of phytochemicals has gained interest recently due to their remarkable health effects. Apigenin, a plant flavonoid, has antioxidant, anti-inflammatory and anticancer activities but its delivery is challenging. It could be absorbed through the whole intestine, however, it has poor bioavailability due to its low aqueous solubility. In Europe, the daily intake was estimated to be as low as 3 ± 1 mg. Pellets offer several advantages such as improved bioavailability and various resultant drug release profiles can be obtained by simply mixing pellets with different coatings. The objective of our study was to develop a carrier system containing 20 mg apigenin thus enhancing intake and to offer reduction of oxidative stress which can cause inflammation in the intestine. The apigenin powder was dispersed in aqueous solution of binding material and layered onto the inert cores in a fluidized bed apparatus. The layered cores were further coated with enteric polymers and the process parameters were optimized. The prepared pellets met with the requirements and have good physical characteristic. 10% (w/w) Eudragit® L was suitable for enteric coating with a complete release at pH 6.8 within 1 hour. 15% (w/w) Eudragit® FS coating ensured acid resistance ability and colonic delivery. The therapeutic efficiency was confirmed with antioxidant activity measurement by using DPPH* assay. Enteric coated spheres allow targeted delivery into the intestine and colon thus reaching the main absorption site. Pellets were proved to be an optimal delivery system for apigenin thus providing enhanced apigenin intake. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Niyanth; Dehoff, Ryan R.; Jordan, Brian H.
2016-10-01
ORNL partnered with Fabrisonic, LLC to develop galling resistant hard facing coatings on sonotrodes used to fabricate 3D printed materials using ultrasonic additive manufacturing. The development and deployment of a coated sonotrode is expected to push the existing state of the art to facilitate the solidstate additive manufacturing of hard steels and titanium alloys. To this effect a structurally amorphous stainless steel material and cobalt chrome material were deposited on the sonotrode material. Both the deposits showed good adhesion to the substrate. The coatings made using the structurally amorphous steel materials showed cracking during the initial trials and cracking wasmore » eliminated by deposition on a preheated substrate. Both the coatings show hardness in excess of 600 HVN. Thus the phase 1 of this project has been used to identify suitable materials to use to coat the sonotrode. Despite the fact that successful deposits were obtained, the coatings need to be evaluated by performing detailed galling tests at various temperatures. In addition field tests are also necessary to test the stability of these coatings in a high cycle ultrasonic vibration mode. If awarded, phase 2 of the project would be used to optimize the composition of the deposit material to maximize galling resistance. The industrial partner would then use the coated sonotrode to fabricate builds made of austenitic stainless steel to test the viability of using a coated sonotrode.« less
Lavrentyev, A I; Rokhlin, S I
2001-04-01
An ultrasonic method proposed by us for determination of the complete set of acoustical and geometrical properties of a thin isotropic layer between semispaces (J. Acoust. Soc. Am. 102 (1997) 3467) is extended to determination of the properties of a coating on a thin plate. The method allows simultaneous determination of the coating thickness, density, elastic moduli and attenuation (longitudinal and shear) from normal and oblique incidence reflection (transmission) frequency spectra. Reflection (transmission) from the coated plate is represented as a function of six nondimensional parameters of the coating which are determined from two experimentally measured spectra: one at normal and one at oblique incidence. The introduction of the set of nondimensional parameters allows one to transform the reconstruction process from one search in a six-dimensional space to two searches in three-dimensional spaces (one search for normal incidence and one for oblique). Thickness, density, and longitudinal and shear elastic moduli of the coating are calculated from the nondimensional parameters determined. The sensitivity of the method to individual properties and its stability against experimental noise are studied and the inversion algorithm is accordingly optimized. An example of the method and experimental measurement for comparison is given for a polypropylene coating on a steel foil.
NASA Astrophysics Data System (ADS)
Ziemian, Constance W.; Wright, Wendelin J.; Cipoletti, David E.
2018-05-01
Cold spray is a promising method by which to deposit dense Fe-based metallic glass coatings on conventional metal substrates. Relatively low process temperatures offer the potential to prevent the crystallization of amorphous feedstock powders while still providing adequate particle softening for bonding and coating formation. In this study, Fe48Mo14Cr15Y2C15B6 powder was sprayed onto a mild steel substrate, using a variety of process conditions, to investigate the feasibility of forming well-bonded amorphous Fe-based coatings. Particle splat adhesion was examined relative to impact conditions, and the limiting values of temperature and velocity associated with successful softening and adhesion were empirically established. Variability of particle sizes, impact temperatures, and impact velocities resulted in splat morphologies ranging from well-adhered deformed particles to substrate craters formed by rebounded particles and a variety of particle/substrate interface conditions. Transmission electron microscopy studies revealed the presence of a thin oxide layer between well-adhered particles and the substrate, suggesting that bonding is feasible even with an increased oxygen content at the interface. Results indicate that the proper optimization of cold spray process parameters supports the formation of Fe-based metallic glass coatings that successfully retain their amorphous structure, as well as the superior corrosion and wear-resistant properties of the feedstock powder.
Diao, Chien-Chen; Kuo, Hsin-Hui; Tzou, Wen-Cheng; Chen, Yen-Lin; Yang, Cheng-Fu
2014-01-03
In this study, a new thin-film deposition process, spray coating method (SPM), was investigated to deposit the high-densified CuInSe₂ absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe₂ precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe₂ absorber layers. After spraying on Mo/glass substrates, the CuInSe₂ thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N₂ as atmosphere. When the CuInSe₂ thin films were annealed, without extra Se or H₂Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe₂ absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe₂ absorber layers could be controlled as the volume of used dispersed CuInSe₂-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe₂ absorber layers obtained by the Spray Coating Method.
Kim, Min-cheol; Kim, Byeong Jo; Yoon, Jungjin; Lee, Jin-wook; Suh, Dongchul; Park, Nam-gyu; Choi, Mansoo; Jung, Hyun Suk
2015-12-28
The spin-coating method, which is widely used for thin film device fabrication, is incapable of large-area deposition or being performed continuously. In perovskite hybrid solar cells using CH(3)NH(3)PbI(3) (MAPbI(3)), large-area deposition is essential for their potential use in mass production. Prior to replacing all the spin-coating process for fabrication of perovskite solar cells, herein, a mesoporous TiO(2) electron-collection layer is fabricated by using the electro-spray deposition (ESD) system. Moreover, impedance spectroscopy and transient photocurrent and photovoltage measurements reveal that the electro-sprayed mesoscopic TiO(2) film facilitates charge collection from the perovskite. The series resistance of the perovskite solar cell is also reduced owing to the highly porous nature of, and the low density of point defects in, the film. An optimized power conversion efficiency of 15.11% is achieved under an illumination of 1 sun; this efficiency is higher than that (13.67%) of the perovskite solar cell with the conventional spin-coated TiO(2) films. Furthermore, the large-area coating capability of the ESD process is verified through the coating of uniform 10 × 10 cm(2) TiO(2) films. This study clearly shows that ESD constitutes therefore a viable alternative for the fabrication of high-throughput, large-area perovskite solar cells.
Hot Deformation Behavior and Processing Maps of Diamond/Cu Composites
NASA Astrophysics Data System (ADS)
Zhang, Hongdi; Liu, Yue; Zhang, Fan; Zhang, Di; Zhu, Hanxing; Fan, Tongxiang
2018-03-01
The hot deformation behaviors of 50 vol pct uncoated and Cr-coated diamond/Cu composites were investigated using hot isothermal compression tests under the temperature and strain rate ranging from 1073 K to 1273 K (800 °C to 1000 °C) and from 0.001 to 5 s-1, respectively. Dynamic recrystallization was determined to be the primary restoration mechanism during deformation. The Cr3C2 coating enhanced the interfacial bonding and resulted in a larger flow stress for the Cr-coated diamond/Cu composites. Moreover, the enhanced interfacial affinity led to a higher activation energy for the Cr-coated diamond/Cu composites (238 kJ/mol) than for their uncoated counterparts (205 kJ/mol). The strain-rate-dependent constitutive equations of the diamond/Cu composites were derived based on the Arrhenius model, and a high correlation (R = 0.99) was observed between the calculated flow stresses and experimental data. With the help of processing maps, hot extrusions were realized at 1123 K/0.01 s-1 and 1153 K/0.01 s-1 (850 °C/0.01 s-1 and 880 °C/0.01 s-1) for the uncoated and coated diamond/Cu composites, respectively. The combination of interface optimization and hot extrusion led to increases of the density and thermal conductivity, thereby providing a promising route for the fabrication of diamond/Cu composites.
Hot Deformation Behavior and Processing Maps of Diamond/Cu Composites
NASA Astrophysics Data System (ADS)
Zhang, Hongdi; Liu, Yue; Zhang, Fan; Zhang, Di; Zhu, Hanxing; Fan, Tongxiang
2018-06-01
The hot deformation behaviors of 50 vol pct uncoated and Cr-coated diamond/Cu composites were investigated using hot isothermal compression tests under the temperature and strain rate ranging from 1073 K to 1273 K (800 °C to 1000 °C) and from 0.001 to 5 s-1, respectively. Dynamic recrystallization was determined to be the primary restoration mechanism during deformation. The Cr3C2 coating enhanced the interfacial bonding and resulted in a larger flow stress for the Cr-coated diamond/Cu composites. Moreover, the enhanced interfacial affinity led to a higher activation energy for the Cr-coated diamond/Cu composites (238 kJ/mol) than for their uncoated counterparts (205 kJ/mol). The strain-rate-dependent constitutive equations of the diamond/Cu composites were derived based on the Arrhenius model, and a high correlation ( R = 0.99) was observed between the calculated flow stresses and experimental data. With the help of processing maps, hot extrusions were realized at 1123 K/0.01 s-1 and 1153 K/0.01 s-1 (850 °C/0.01 s-1 and 880 °C/0.01 s-1) for the uncoated and coated diamond/Cu composites, respectively. The combination of interface optimization and hot extrusion led to increases of the density and thermal conductivity, thereby providing a promising route for the fabrication of diamond/Cu composites.
Kinetics of cellular uptake of viruses and nanoparticles via clathrin-mediated endocytosis
NASA Astrophysics Data System (ADS)
Banerjee, Anand; Berezhkovskii, Alexander; Nossal, Ralph
2016-02-01
Several viruses exploit clathrin-mediated endocytosis to gain entry into host cells. This process is also used extensively in biomedical applications to deliver nanoparticles (NPs) to diseased cells. The internalization of these nano-objects is controlled by the assembly of a clathrin-containing protein coat on the cytoplasmic side of the plasma membrane, which drives the invagination of the membrane and the formation of a cargo-containing endocytic vesicle. Current theoretical models of receptor-mediated endocytosis of viruses and NPs do not explicitly take coat assembly into consideration. In this paper we study cellular uptake of viruses and NPs with a focus on coat assembly. We characterize the internalization process by the mean time between the binding of a particle to the membrane and its entry into the cell. Using a coarse-grained model which maps the stochastic dynamics of coat formation onto a one-dimensional random walk, we derive an analytical formula for this quantity. A study of the dependence of the mean internalization time on NP size shows that there is an upper bound above which this time becomes extremely large, and an optimal size at which it attains a minimum. Our estimates of these sizes compare well with experimental data. We also study the sensitivity of the obtained results on coat parameters to identify factors which significantly affect the internalization kinetics.
Optimizing the withdrawal speed using dip coating for optical sensor
NASA Astrophysics Data System (ADS)
Samat, S. F. A.; Sarah, M. S. P.; Idros, M. Faizol Md; Rusop, M.
2018-05-01
The processing route of sol-gel has been used for many productions of thin film using metal oxide such as titanium dioxide, zinc oxide, carbon dioxide and so on. For this research the thin film phase was studied has high transmittance using dip coating technique with different withdrawal speed for optical sensing. The result obtained from optical transmittance spectra that transmits at 30nm and bend at 350nm to 800nm was in the visible light wavelength range. From the data, the withdrawal speed was low at 5s and 10s could give the highest transmittance which were 90.41% and 87.91% respectively.
Assessment of DNA complexation onto polyelectrolyte-coated magnetic silica nanoparticles.
Dávila-Ibáñez, Ana B; Buurma, Niklaas J; Salgueiriño, Verónica
2013-06-07
The polyelectrolyte-DNA complexation method to form magnetoplexes using silica-coated iron oxide magnetic nanoparticles as inorganic substrates is an attractive and promising process in view of the potential applications including magnetofection, DNA extraction and purification, and directed assembly of nanostructures. Herein, we present a systematic physico-chemical study that provides clear evidence of the type of interactions established, reflects the importance of the DNA length, the nanoparticle size and the ionic strength, and permits the identification of the parameters controlling both the stability and the type of magnetoplexes formed. This information can be used to develop targeted systems with properties optimized for the various proposed applications of magnetoplexes.
Electroless shielding of plastic electronic enclosures
NASA Astrophysics Data System (ADS)
Thompson, D.
1985-12-01
The containment or exclusion of radio frequency interference (RFI) via metallized plastic enclosures and the electroless plating as a solution are examined. The electroless coating and process, shielding principles and test data, shielding design requirements, and shielding advantages and limitations are reviewed. It is found that electroless shielding provides high shielding effectiveness to plastic substrates. After application of a conductive metallic coating by electroless plating, various plastics have passed the ASTM adhesion test after thermal cycle and severe environmental testing. Electroless shielding provides a lightweight, totally metallized housing to EMI/RFI shielding. Various compositions of electroless deposits are found to optimize electroless shielding cost/benefit ratio.
Chemorheology of in-mold coating for compression molded SMC applications
NASA Astrophysics Data System (ADS)
Ko, Seunghyun; Straus, Elliott J.; Castro, Jose M.
2015-05-01
In-mold coating (IMC) is applied to compression molded sheet molding compound (SMC) exterior automotive or truck body panels as an environmentally friendly alternative to make the surface conductive for subsequent electrostatic painting operations. The coating is a thermosetting liquid that when injected onto the surface of the part cures and bonds to provide a smooth conductive surface. In order to optimize the IMC process, it is essential to predict the time available for flow, that is the time before the thermosetting reaction starts (inhibition time) as well as the time when the coating has enough structural integrity so that the mold can be opened without damaging the part surface (cure time). To predict both the inhibition time and the cure time, it is critical to study the chemorheology of IMC. In this paper, we study the chemorheology for a typical commercial IMC system, and show its relevance to both the flow and cure time for the IMC stage during SMC compression molding.
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Stueber, Thomas J.; Norris, Mary Jo
1998-01-01
A Monte Carlo computational model has been developed which simulates atomic oxygen attack of protected polymers at defect sites in the protective coatings. The parameters defining how atomic oxygen interacts with polymers and protective coatings as well as the scattering processes which occur have been optimized to replicate experimental results observed from protected polyimide Kapton on the Long Duration Exposure Facility (LDEF) mission. Computational prediction of atomic oxygen undercutting at defect sites in protective coatings for various arrival energies was investigated. The atomic oxygen undercutting energy dependence predictions enable one to predict mass loss that would occur in low Earth orbit, based on lower energy ground laboratory atomic oxygen beam systems. Results of computational model prediction of undercut cavity size as a function of energy and defect size will be presented to provide insight into expected in-space mass loss of protected polymers with protective coating defects based on lower energy ground laboratory testing.
NASA Astrophysics Data System (ADS)
Ashassi-Sorkhabi, H.; Bagheri, R.; Rezaei-Moghadam, B.
2016-02-01
In this research, the nanocomposite coatings comprising the polypyrrole-nanodiamond, PPy-ND, on St-12 steel electrodes were electro-synthesized using in situ polymerization process under ultrasonic irradiation. The corrosion protection performance and morphology characterization of prepared coatings were investigated by electrochemical methods and scanning electron microscopy, SEM, respectively. Also, the experimental design was employed to determine the best values considering the effective parameters such as the concentration of nanoparticles, the applied current density and synthesis time to achieve the most protective films. A response surface methodology, RSM, involving a central composite design, CCD, was applied to the modeling and optimization of the PPy-ND nanocomposite deposition. Pareto graphic analysis of the parameters indicated that the applied current density and some of the interactions were effective on the response. The electrochemical results proved that the embedment of diamond nanoparticle, DNP, improves the corrosion resistance of PPy coatings significantly. Therefore, desirable correlation exists between predicted data and experimental results.
Advanced Microstructural Study of Suspension Plasma Sprayed Hydroxyapatite Coatings
NASA Astrophysics Data System (ADS)
Podlesak, Harry; Pawlowski, Lech; D'Haese, Romain; Laureyns, Jacky; Lampke, Thomas; Bellayer, Severine
2010-03-01
Fine, home-synthesized, hydroxyapatite powder was formulated with water and alcohol to obtain a suspension used to plasma spray coatings onto a titanium substrate. The deposition process was optimized using statistical design of 2 n experiments with two variables: spray distance and electric power input to plasma. X-ray diffraction (XRD) was used to determine quantitatively the phase composition of obtained deposits. Raman microscopy and electron probe microanalysis (EPMA) enabled localization of the phases in different positions of the coating cross sections. Transmission electron microscopic (TEM) study associated with energy-dispersive x-ray spectroscopy (EDS) enabled visualization and analysis of a two-zone microstructure. One zone contained crystals of hydroxyapatite, tetracalcium phosphate, and a phase rich in calcium oxide. This zone included lamellas, usually observed in thermally sprayed coatings. The other zone contained fine hydroxyapatite grains that correspond to nanometric and submicrometric solids from the suspension that were agglomerated and sintered in the cold regions of plasma jet and on the substrate.
NASA Astrophysics Data System (ADS)
Goto, Masahiro; Sasaki, Michiko; Xu, Yibin; Zhan, Tianzhuo; Isoda, Yukihiro; Shinohara, Yoshikazu
2017-06-01
p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p-n modules of bismuth telluride without any doping process.
Gemini primary mirror in situ wash
NASA Astrophysics Data System (ADS)
Vucina, Tomislav; Boccas, Maxime; Araya, Claudio; Ah Hee, Clayton; Cavedoni, Chas
2008-07-01
The Gemini twins were the first large modern telescopes to receive protected silver coatings on their mirrors in 2004. The low emissivity requirement is fundamental for the IR optimization. In the mid-IR a factor of two reduction in telescope emissivity is equivalent to increasing the collecting area by the same factor. Our emissivity maintenance requirement is very stringent: 0.5% maximum degradation during operations, at any single wavelength beyond 2.2 μm. We developed a very rigorous standard to wash the primary mirrors in the telescope without science down time. The in-situ washes are made regularly, and the reflectivity and emissivity gains are significant. The coating lifetime has been extended far more than our original expectations. In this report we describe the in-situ process and hardware, explain our maintenance plan, and show results of the coating performance over time.
NASA Astrophysics Data System (ADS)
Viazzi, Céline; Rouessac, Vincent; Lenormand, Pascal; Julbe, Anne; Ansart, Florence; Guizard, Christian
2011-03-01
Sol-gel routes are often investigated and adapted to prepare, by suitable chemical modifications, submicronic powders and derived materials with controlled morphology, which cannot be obtained by conventional solid state chemistry paths. Wet chemistry methods provide attractive alternative routes because mixing of species occurs at the atomic scale. In this paper, ultrafine powders were prepared by a novel synthesis method based on the sol-gel process and were dispersed into suspensions before processing. This paper presents new developments for the preparation of functional materials like yttria-stabilized-zirconia (YSZ, 8% Y2O3) used as electrolyte for solid oxide fuel cells. YSZ thick films were coated onto porous Ni-YSZ substrates using a suspension with an optimized formulation deposited by either a dip-coating or a spin-coating process. The suspension composition is based on YSZ particles encapsulated by a zirconium alkoxide which was added with an alkoxide derived colloidal sol. The in situ growth of these colloids increases significantly the layer density after an appropriated heat treatment. The derived films were continuous, homogeneous and around 20 μm thick. The possible up-scaling of this process has been also considered and the suitable processing parameters were defined in order to obtain, at an industrial scale, homogeneous, crack-free, thick and adherent films after heat treatment at 1400 °C.
Development of Charge Drain Coatings: Final CRADA Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elam, Jeffrey W.
2017-01-17
The primary goal of this CRADA project was to develop and optimize tunable resistive coatings prepared by atomic layer deposition (ALD) for use as charge-drain coatings on the KLA-Tencor digital pattern generators (DPGs).
Combinatorial chemical bath deposition of CdS contacts for chalcogenide photovoltaics
Mokurala, Krishnaiah; Baranowski, Lauryn L.; de Souza Lucas, Francisco W.; ...
2016-08-01
Contact layers play an important role in thin film solar cells, but new material development and optimization of its thickness is usually a long and tedious process. A high-throughput experimental approach has been used to accelerate the rate of research in photovoltaic (PV) light absorbers and transparent conductive electrodes, however the combinatorial research on contact layers is less common. Here, we report on the chemical bath deposition (CBD) of CdS thin films by combinatorial dip coating technique and apply these contact layers to Cu(In,Ga)Se 2 (CIGSe) and Cu 2ZnSnSe 4 (CZTSe) light absorbers in PV devices. Combinatorial thickness steps ofmore » CdS thin films were achieved by removal of the substrate from the chemical bath, at regular intervals of time, and in equal distance increments. The trends in the photoconversion efficiency and in the spectral response of the PV devices as a function of thickness of CdS contacts were explained with the help of optical and morphological characterization of the CdS thin films. The maximum PV efficiency achieved for the combinatorial dip-coating CBD was similar to that for the PV devices processed using conventional CBD. Finally, the results of this study lead to the conclusion that combinatorial dip-coating can be used to accelerate the optimization of PV device performance of CdS and other candidate contact layers for a wide range of emerging absorbers.« less
Microencapsulation Technologies for Corrosion Protective Coating Applications
NASA Technical Reports Server (NTRS)
Li, Wenyan; Buhrow, Jerry; Jolley, Scott; Calle, Luz; Pearman, Benjamin; Zhang, Xuejun
2015-01-01
Microencapsulation technologies for functional smart Coatings for autonomous corrosion control have been a research area of strong emphasis during the last decade. This work concerns the development of pH sensitive micro-containers (microparticles and microcapsules) for autonomous corrosion control. This paper presents an overview of the state-of-the-art in the field of microencapsulation for corrosion control applications, as well as the technical details of the pH sensitive microcontainer approach, such as selection criteria for corrosion indicators and corrosion inhibitors; the development and optimization of encapsulation methods; function evaluation before and after incorporation of the microcontainers into coatings; and further optimization to improve coating compatibility and performance.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Arkadeb; Duari, Santanu; Barman, Tapan Kumar; Sahoo, Prasanta
2017-10-01
The present study aims to evaluate the friction and wear behaviour of electroless Ni-P coatings sliding against hardened chromium coated steel under lubrication. Tribological tests are carried out on a block-on-roller configuration multi tribotester. The effect of variation of applied normal load, rotation speed of the counterface roller and test duration on the coefficient of friction and wear depth is analyzed using Taguchi's robust design philosophy and design of experiments. Optimal setting of the tribo-testing parameters is evaluated using a hybrid grey fuzzy reasoning analysis in a quest to achieve optimal tribological performance of the coatings under lubrication. Analysis of variance reveals the highest contribution by applied normal load in controlling the tribological behaviour under lubrication. Whereas the interaction effect of load and time is also seen to cast a significant effect. Surface morphology studies reveal a typical nodular structure of the deposits. The coatings are seen to be amorphous in its as-deposited condition which becomes crystalline on heat treatment. Further, the synergistic effects of test parameters, microstructure of the coatings, lubrication, etc. on the tribological behaviour are assessed.
Current Thoughts on Reactive Element Effects in Alumina-Forming Systems: In Memory of John Stringer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naumenko, D.; Pint, B. A.; Quadakkers, W. J.
In memory of John Stringer (1934–2014), one of the leaders in studying the reactive element (RE) effects, this paper reviews the current status of understanding of the effect of RE dopants on high-temperature oxidation behavior, with an emphasis on recent research related to deploying alumina-forming alloys and coatings with optimal performance in commercial systems. Additionally, to the well-known interaction between indigenous sulfur and RE additions, effects have been observed with C, N, and O found in commercial alloys and coatings. While there are many similarities between alumina-forming alloys and coatings, the latter bring additional complicating factors such as the effectsmore » of O incorporation during thermal spraying MCrAlY coatings, coating roughness, and heat treatments that must be considered in optimizing the beneficial dopant addition. We can see analogies between RE effects in alloys and in the substrates beneath diffusion M–Al coatings. Recently, there has been more interest in the influence of mixed oxidant environments, since these may modify the manifestation of the RE effect. Some thoughts are provided on optimizing the RE benefit and modeling oxidation of RE-doped alloys.« less
Current Thoughts on Reactive Element Effects in Alumina-Forming Systems: In Memory of John Stringer
Naumenko, D.; Pint, B. A.; Quadakkers, W. J.
2016-05-06
In memory of John Stringer (1934–2014), one of the leaders in studying the reactive element (RE) effects, this paper reviews the current status of understanding of the effect of RE dopants on high-temperature oxidation behavior, with an emphasis on recent research related to deploying alumina-forming alloys and coatings with optimal performance in commercial systems. Additionally, to the well-known interaction between indigenous sulfur and RE additions, effects have been observed with C, N, and O found in commercial alloys and coatings. While there are many similarities between alumina-forming alloys and coatings, the latter bring additional complicating factors such as the effectsmore » of O incorporation during thermal spraying MCrAlY coatings, coating roughness, and heat treatments that must be considered in optimizing the beneficial dopant addition. We can see analogies between RE effects in alloys and in the substrates beneath diffusion M–Al coatings. Recently, there has been more interest in the influence of mixed oxidant environments, since these may modify the manifestation of the RE effect. Some thoughts are provided on optimizing the RE benefit and modeling oxidation of RE-doped alloys.« less
Nakano, Yoshio; Katakuse, Yoshimitsu; Azechi, Yasutaka
2018-06-01
An attempt to apply X-Ray Fluorescence (XRF) analysis to evaluate small particle coating process as a Process Analytical Technologies (PAT) was made. The XRF analysis was used to monitor coating level in small particle coating process with at-line manner. The small particle coating process usually consists of multiple coating processes. This study was conducted by a simple coating particles prepared by first coating of a model compound (DL-methionine) and second coating by talc on spherical microcrystalline cellulose cores. The particles with two layered coating are enough to demonstrate the small particle coating process. From the result by the small particle coating process, it was found that the XRF signal played different roles, resulting that XRF signals by first coating (layering) and second coating (mask coating) could demonstrate the extent with different mechanisms for the coating process. Furthermore, the particle coating of the different particle size has also been investigated to evaluate size effect of these coating processes. From these results, it was concluded that the XRF could be used as a PAT in monitoring particle coating processes and become powerful tool in pharmaceutical manufacturing.
2014-01-01
The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n+ emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion. PMID:25520602
Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo
2014-01-01
The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.
Gurram, Rajesh Kumar; Gandra, Suchithra; Shastri, Nalini R
2016-03-10
The objective of the study was to design and optimize a disintegrating pellet formulation of microcrystalline cellulose by non-aqueous extrusion process for a water sensitive drug using various statistical tools. Aspirin was used as a model drug. Disintegrating matrix pellets of aspirin using propylene glycol as a non-aqueous granulation liquid and croscarmellose as a disintegrant was developed. Plackett-Burman design was initially conducted to screen and identify the significant factors. Final optimization of formula was performed by response surface methodology using a central composite design. The critical attributes of the pellet dosage forms (dependent variables); disintegration time, sphericity and yield were predicted with adequate accuracy based on the regression model. Pareto charts and contour charts were studied to understand the influence of factors and predict the responses. A design space was constructed to meet the desirable targets of the responses in terms of disintegration time <5min, maximum yield, sphericity >0.95 and friability <1.7%. The optimized matrix pellets were enteric coated using Eudragit L 100. The drug release from the enteric coated pellets after 30min in the basic media was ~93% when compared to ~77% from the marketed pellets. The delayed release pellets stored at 25°C/60% RH were stable for a period of 10mo. In conclusion, it can be stated that the developed process for disintegrating pellets using non-aqueous granulating agents can be used as an alternative technique for various water sensitive drugs, circumventing the application of volatile organic solvents in conventional drug layering on inert cores. The scope of this study can be further extended to hydrophobic drugs, which may benefit from the rapid disintegration property and the use of various hydrophilic excipients used in the optimized pellet formulation to enhance dissolution and in turn improve bioavailability. Copyright © 2016 Elsevier B.V. All rights reserved.
Optimization of Milling Parameters Employing Desirability Functions
NASA Astrophysics Data System (ADS)
Ribeiro, J. L. S.; Rubio, J. C. Campos; Abrão, A. M.
2011-01-01
The principal aim of this paper is to investigate the influence of tool material (one cermet and two coated carbide grades), cutting speed and feed rate on the machinability of hardened AISI H13 hot work steel, in order to identify the cutting conditions which lead to optimal performance. A multiple response optimization procedure based on tool life, surface roughness, milling forces and the machining time (required to produce a sample cavity) was employed. The results indicated that the TiCN-TiN coated carbide and cermet presented similar results concerning the global optimum values for cutting speed and feed rate per tooth, outperforming the TiN-TiCN-Al2O3 coated carbide tool.
EUV process improvement with novel litho track hardware
NASA Astrophysics Data System (ADS)
Stokes, Harold; Harumoto, Masahiko; Tanaka, Yuji; Kaneyama, Koji; Pieczulewski, Charles; Asai, Masaya
2017-03-01
Currently, there are many developments in the field of EUV lithography that are helping to move it towards increased HVM feasibility. Targeted improvements in hardware design for advanced lithography are of interest to our group specifically for metrics such as CD uniformity, LWR, and defect density. Of course, our work is focused on EUV process steps that are specifically affected by litho track performance, and consequently, can be improved by litho track design improvement and optimization. In this study we are building on our experience to provide continual improvement for LWR, CDU, and Defects as applied to a standard EUV process by employing novel hardware solutions on our SOKUDO DUO coat develop track system. Although it is preferable to achieve such improvements post-etch process we feel, as many do, that improvements after patterning are a precursor to improvements after etching. We hereby present our work utilizing the SOKUDO DUO coat develop track system with an ASML NXE:3300 in the IMEC (Leuven, Belgium) cleanroom environment to improve aggressive dense L/S patterns.
NASA Astrophysics Data System (ADS)
Hasan, S.; Basmage, O.; Stokes, J. T.; Hashmi, M. S. J.
2018-05-01
A review of wire coating studies using plasto-hydrodynamic pressure shows that most of the works were carried out by conducting experiments simultaneously with simulation analysis based upon Bernoulli's principle and Euler and Navier-Stokes (N-S) equations. These characteristics relate to the domain of Computational Fluid Dynamics (CFD) which is an interdisciplinary topic (Fluid Mechanics, Numerical Analysis of Fluid flow and Computer Science). This research investigates two aspects: (i) simulation work and (ii) experimentation. A mathematical model was developed to investigate the flow pattern of the molten polymer and pressure distribution within the wire-drawing dies, assessment of polymer coating thickness on the coated wires and speed of coating on the wires at the outlet of the drawing dies, without deploying any pressurizing pump. In addition to a physical model which was developed within ANSYS™ environment through the simulation design of ANSYS™ Workbench. The design was customized to simulate the process of wire-coating on the fine stainless-steel wires using drawing dies having different bore geometries such as: stepped parallel bore, tapered bore and combined parallel and tapered bore. The convergence of the designed CFD model and numerical and physical solution parameters for simulation were dynamically monitored for the viscous flow of the polypropylene (PP) polymer. Simulation results were validated against experimental results and used to predict the ideal bore shape to produce a thin coating on stainless wires with different diameter. Simulation studies confirmed that a specific speed should be attained by the stainless-steel wires while passing through the drawing dies. It has been observed that all the speed values within specific speed range did not produce a coating thickness having the desired coating characteristic features. Therefore, some optimization of the experimental set up through design of experiments (Stat-Ease) was applied to validate the results. Further rapid solidification of the viscous coating on the wires was targeted so that the coated wires do not stick to the winding spool after the coating process.
NASA Astrophysics Data System (ADS)
Santa Coloma, P.; Izagirre, U.; Belaustegi, Y.; Jorcin, J. B.; Cano, F. J.; Lapeña, N.
2015-08-01
Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an oxidation process occurred in the vicinity of the alloy's intermetallic particles. The amount of the Zr deposits at these locations increased with coating's formulations without Ti, which provided the best corrosion resistance. The Cr-free conversion coatings developed in this study for the AA7075-T6 and AA2024-T3 alloys do not meet yet the strict requirements of the aircraft industry. However, they significantly improved the corrosion performance with respect to the bare alloys and could be a good starting point for further studies and optimization.
Parameter optimization for Ag-coated TiO2 nanotube arrays as recyclable SERS substrates
NASA Astrophysics Data System (ADS)
Sun, Yuyang; Yang, Lulu; Liao, Fan; Dang, Qian; Shao, Mingwang
2018-06-01
The Ag-coated titanium dioxide nanotube arrays (Ag-coated TNTs) are obtained via the deposition of Ag nanoparticles on the two-step anodized TNTs. The wall thickness of TNTs is modulated via finite difference time domain simulation to get the favorable electromagnetic field for surface enhanced Raman scattering (SERS). Ag-coated TNTs with optimal wall thickness of 20 nm were employed as the SERS substrates to detect 2-mercaptobenzoxazole, which show superior detection sensitivity and uniformity. In addition, due to the photocatalysis of TNTs, the SERS substrates could clean themselves and be repeatedly used by photo-degradation of target molecules under the ultra-violet irradiation. The Ag-coated TNTs are a kind of bifunctional SERS substrates which can produce high-quality SERS signals and reuse to reduce the cost.
Effects of sandblasting and silica-coating procedures on pure titanium.
Kern, M; Thompson, V P
1994-10-01
Silica coating titanium improves chemomechanical bonding. Sandblasting is recommended as a pretreatment to thermal silica coating (Silicoater MD) or as part of a tribochemical silica coating process (Rocatec). This study evaluated the effects of sandblasting and coating techniques on volume loss, surface morphology and composition changes in pure titanium. Volume loss of titanium was similar to values reported for base alloys and does not seem to be critical for the clinical fit of restorations. Embedded alumina particles were found in the titanium after sandblasting and the alumina content increased to a range of 27.5-39.3 wt% as measured by EDS. Following tribochemical silica coating, a layer of small silica particles remained on the surface, increasing the silica content to a range of 17.9-19.5 wt%. Ultrasonic cleaning removed loose alumina or silica particles from the surface, resulting in only slight decreases in alumina or silica contents, suggesting firm attachment of most of the alumina and silica to the titanium surface. Silica content following thermal silica coating treatment increased only slightly from the sandblasted specimen to 1.4 wt%. The silica layer employed by these silica coating methods differs widely in both morphology and thickness. These results provide a basis for explanation of adhesive failure modes in bond strength tests and for developing methods to optimize resin bonding. Clinically, ultrasonic cleaning of sandblasted and tribochemically silica coated titanium should improve resin bonding as loose surface particles are removed without relevant changes in composition.
Knowles, Brianna R; Wagner, Pawel; Maclaughlin, Shane; Higgins, Michael J; Molino, Paul J
2017-06-07
The growing need to develop surfaces able to effectively resist biological fouling has resulted in the widespread investigation of nanomaterials with potential antifouling properties. However, the preparation of effective antifouling coatings is limited by the availability of reactive surface functional groups and our ability to carefully control and organize chemistries at a materials' interface. Here, we present two methods of preparing hydrophilic low-fouling surface coatings through reaction of silica-nanoparticle suspensions and predeposited silica-nanoparticle films with zwitterionic sulfobetaine (SB). Silica-nanoparticle suspensions were functionalized with SB across three pH conditions and deposited as thin films via a simple spin-coating process to generate hydrophilic antifouling coatings. In addition, coatings of predeposited silica nanoparticles were surface functionalized via exposure to zwitterionic solutions. Quartz crystal microgravimetry with dissipation monitoring was employed as a high throughput technique for monitoring and optimizing reaction to the silica-nanoparticle surfaces. Functionalization of nanoparticle films was rapid and could be achieved over a wide pH range and at low zwitterion concentrations. All functionalized particle surfaces presented a high degree of wettability and resulted in large reductions in adsorption of bovine serum albumin protein. Particle coatings also showed a reduction in adhesion of fungal spores (Epicoccum nigrum) and bacteria (Escherichia coli) by up to 87 and 96%, respectively. These results indicate the potential for functionalized nanosilicas to be further developed as versatile fouling-resistant coatings for widespread coating applications.
Environmentally Friendly Coating Technology for Autonomous Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.; Jolley, Scott T.; Pearman, Benjamin P.; Zhang, Xuejun; Fitzpatrick, Lilliana; Gillis, Mathew; Blanton, Michael;
2016-01-01
This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry.
Chemical and Mechanical Characterization of Diamond-Like Carbon Hard Coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poker, D B; Doughty, C
1999-12-28
This CRADA was intended to investigate and optimize the process used by ASTEX-PlasmaQuest for deposition of diamond-like carbon films. Approval for funding was delayed, and an unexpected move of the PlasmaQuest headquarters and research facilities prevented appropriate samples from being prepared before the end of the CRADA. Therefore, No effort was expended under this program.
Ding, Chunyan; Zhou, Weiwei; Wang, Bin; Li, Xin; Wang, Dong; Zhang, Yong; Wen, Guangwu
2017-08-25
Integration of carbon materials with benign iron oxides is blazing a trail in constructing high-performance anodes for lithium-ion batteries (LIBs). In this paper, a unique general, simple, and controllable strategy is developed toward in situ uniform coating of iron oxide nanostructures with graphitized carbon (GrC) layers. The basic synthetic procedure only involves a simple dip-coating process for the loading of Ni-containing seeds and a subsequent Ni-catalyzed chemical vapor deposition (CVD) process for the growth of GrC layers. More importantly, the CVD treatment is conducted at a quite low temperature (450 °C) and with extremely facile liquid carbon sources consisting of ethylene glycol (EG) and ethanol (EA). The GrC content of the resulting hybrids can be controllably regulated by altering the amount of carbon sources. The electrochemical results reveal remarkable performance enhancements of iron oxide@GrC hybrids compared with pristine iron oxides in terms of high specific capacity, excellent rate and cycling performance. This can be attributed to the network-like GrC coating, which can improve not only the electronic conductivity but also the structural integrity of iron oxides. Moreover, the lithium storage performance of samples with different GrC contents is measured, manifesting that optimized electrochemical property can be achieved with appropriate carbon content. Additionally, the superiority of GrC coating is demonstrated by the advanced performance of iron oxide@GrC compared with its corresponding counterpart, i.e., iron oxides with amorphous carbon (AmC) coating. All these results indicate the as-proposed protocol of GrC coating may pave the way for iron oxides to be promising anodes for LIBs.
Accelerated aging tests on ENEA-ASE solar coating for receiver tube suitable to operate up to 550 °C
NASA Astrophysics Data System (ADS)
Antonaia, A.; D'Angelo, A.; Esposito, S.; Addonizio, M. L.; Castaldo, A.; Ferrara, M.; Guglielmo, A.; Maccari, A.
2016-05-01
A patented solar coating for evacuated receiver, based on innovative graded WN-AlN cermet layer, has been optically designed and optimized to operate at high temperature with high performance and high thermal stability. This solar coating, being designed to operate in solar field with molten salt as heat transfer fluid, has to be thermally stable up to the maximum temperature of 550 °C. With the aim of determining degradation behaviour and lifetime prediction of the solar coating, we chose to monitor the variation of the solar absorptance αs after each thermal annealing cycle carried out at accelerated temperatures under vacuum. This prediction method was coupled with a preliminary Differential Thermal Analysis (DTA) in order to give evidence for any chemical-physical coating modification in the temperature range of interest before performing accelerated aging tests. In the accelerated aging tests we assumed that the temperature dependence of the degradation processes could be described by Arrhenius behaviour and we hypothesized that a linear correlation occurs between optical parameter variation rate (specifically, Δαs/Δt) and degradation process rate. Starting from Δαs/Δt values evaluated at 650 and 690 °C, Arrhenius plot gave an activation energy of 325 kJ mol-1 for the degradation phenomenon, where the prediction on the coating degradation gave a solar absorptance decrease of only 1.65 % after 25 years at 550 °C. This very low αs decrease gave evidence for an excellent stability of our solar coating, also when employed at the maximum temperature (550 °C) of a solar field operating with molten salt as heat transfer fluid.
Low temperature and UV curable sol-gel coatings for long lasting optical fiber biosensors
NASA Astrophysics Data System (ADS)
Otaduy, D.; Villar, A.; Gomez-Herrero, E.; Goitandia, A. M.; Gorritxategi, E.; Quintana, I.
2010-04-01
The use of optical fibers as sensing element is increasing in clinical, pharmaceutical and industrial applications. Excellent light delivery, long interaction length, low cost and ability not only to excite the target molecules but also to capture the emitted light from the targets are the hallmarks of optical fiber as biosensors. In biosensors based on fiber optics the interaction with the analyte can occur within an element of the optical fiber. One of the techniques for this kind of biosensors is to remove the fiber optic cladding and substitute it for biological coatings that will interact with the parameter to sensorize. The deposition of these layers can be made by sol-gel technology. The sol-gel technology is being increasingly used mainly due to the high versatility to tailor their optical features. Incorporation of suitable chemical and biochemical sensing agents have allowed determining pH, gases, and biochemical species, among others. Nonetheless, the relatively high processing temperatures and short lifetime values mean severe drawbacks for a successful exploitation of sol-gel based coated optical fibres. With regard to the latter, herein we present the design, preparation and characterization of novel sol-gel coated optical fibres. Low temperature and UV curable coating formulations were optimized to achieve a good adhesion and optical performance. The UV photopolymerizable formulation was comprised by glycidoxypropyltrimethoxysilane (GLYMO), Tetraethylorthosilicate (TEOS) and an initiator. While the thermoset coating was prepared by using 3-aminopropyltrimethoxysilane, GLYMO, and TEOS as main reagents. Both curable sol-gel coated fibres were analysed by FTIR, SEM and optical characterization. Furthermore, in the present work a new technique for silica cladding removal has been developed by ultra-short pulses laser processing, getting good dimensional accuracy and surface integrity.
Haïdopoulos, M; Turgeon, S; Sarra-Bournet, C; Laroche, G; Mantovani, D
2006-07-01
Metallic endovascular stents are used as medical devices to scaffold biological lumen, most often diseased arteries, after balloon angioplasty. They are commonly made of 316L stainless steel or Nitinol, two alloys containing nickel, an element classified as potentially toxic and carcinogenic by the International Agency for Research on Cancer. Although they are largely implanted, the long-term safety of such metallic elements is still controversial, since the corrosion processes may lead to the release of several metallic ions, including nickel ions in diverse oxidation states. To avoid metallic ion release in the body, the strategy behind this work was to develop a process aiming the complete isolation of the stainless steel device from the body fluids by a thin, cohesive and strongly adherent coating of RF-plasma-polymerized fluoropolymer. Nevertheless, prior to the polymer film deposition, an essential aspect was the development of a pre-treatment for the metallic substrate, based on the electrochemical polishing process, aiming the removal of any fragile interlayer, including the native oxide layer and the carbon contaminated layer, in order to obtain a smooth, defect-free surface to optimize the adhesion of the plasma-deposited thin film. In this work, the optimized parameters for electropolishing, such as the duration and the temperature of the electrolysis, and the complementary acid dipping were presented and accurately discussed. Their effects on roughness as well as on the evolution of surface topography were investigated by Atomic Force Microscopy, stylus profilometry and Scanning Electron Microscopy. The modifications induced on the surface atomic concentrations were studied by X-ray Photoelectron Spectroscopy. The improvements in terms of the surface morphology after the pre-treatment were also emphasized, as well as the influence of the original stainless steel surface finish.
Printing Fabrication of Bulk Heterojunction Solar Cells and In Situ Morphology Characterization.
Liu, Feng; Ferdous, Sunzida; Wan, Xianjian; Zhu, Chenhui; Schaible, Eric; Hexemer, Alexander; Wang, Cheng; Russell, Thomas P
2017-01-29
Polymer-based materials hold promise as low-cost, flexible efficient photovoltaic devices. Most laboratory efforts to achieve high performance devices have used devices prepared by spin coating, a process that is not amenable to large-scale fabrication. This mismatch in device fabrication makes it difficult to translate quantitative results obtained in the laboratory to the commercial level, making optimization difficult. Using a mini-slot die coater, this mismatch can be resolved by translating the commercial process to the laboratory and characterizing the structure formation in the active layer of the device in real time and in situ as films are coated onto a substrate. The evolution of the morphology was characterized under different conditions, allowing us to propose a mechanism by which the structures form and grow. This mini-slot die coater offers a simple, convenient, material efficient route by which the morphology in the active layer can be optimized under industrially relevant conditions. The goal of this protocol is to show experimental details of how a solar cell device is fabricated using a mini-slot die coater and technical details of running in situ structure characterization using the mini-slot die coater.
Solvent replacement for green processing.
Sherman, J; Chin, B; Huibers, P D; Garcia-Valls, R; Hatton, T A
1998-01-01
The implementation of the Montreal Protocol, the Clean Air Act, and the Pollution Prevention Act of 1990 has resulted in increased awareness of organic solvent use in chemical processing. The advances made in the search to find "green" replacements for traditional solvents are reviewed, with reference to solvent alternatives for cleaning, coatings, and chemical reaction and separation processes. The development of solvent databases and computational methods that aid in the selection and/or design of feasible or optimal environmentally benign solvent alternatives for specific applications is also discussed. Images Figure 2 Figure 3 PMID:9539018
Kim, Byungsuk; Woo, Young-Ah
2018-05-30
In this study the authors developed a real-time Process Analytical Technology (PAT) of a coating process by applying in-line Raman spectroscopy to evaluate the coating weight gain, which is a quantitative analysis of the film coating layer. The wide area illumination (WAI) Raman probe was connected to the pan coater for real-time monitoring of changes in the weight gain of coating layers. Under the proposed in-line Raman scheme, a non-contact, non-destructive analysis was performed using WAI Raman probes with a spot size of 6 mm. The in-line Raman probe maintained a focal length of 250 mm, and a compressed air line was designed to protect the lens surface from spray droplets. The Design of Experiment (DOE) was applied to identify factors affecting the Raman spectra background of laser irradiation. The factors selected for DOE were the strength of compressed air connected to the probe, and the shielding of light by the transparent door connecting the probe to the pan coater. To develop a quantitative model, partial least squares (PLS) models as multivariate calibration were developed based on the three regions showing the specificity of TiO 2 individually or in combination. For the three single peaks (636 cm -1 , 512 cm -1 , 398 cm -1 ), least squares method (LSM) was applied to develop three univariate quantitative analysis models. One of best multivariate quantitative model having a factor of 1 gave the lowest RMSEP of 0.128, 0.129, and 0.125, respectively for prediction batches. When LSM was applied to the single peak at 636 cm -1 , the univariate quantitative model with an R 2 of 0.9863, slope of 0.5851, and y-intercept of 0.8066 had the lowest RMSEP of 0.138, 0.144, and 0.153, respectively for prediction batches. The in-line Raman spectroscopic method for the analysis of coating weight gain was verified by considering system suitability and parameters such as specificity, range, linearity, accuracy, and precision in accordance with ICH Q2 regarding method validation. The proposed in-line Raman spectroscopy can be utilized as a PAT for product quality assurance as it offers real-time monitoring of quantitative changes in coating weight gain and process end-points during the film coating process. Copyright © 2018 Elsevier B.V. All rights reserved.
Thermally sprayed prepregs for thixoforging of UD fiber reinforced light metal MMCs
NASA Astrophysics Data System (ADS)
Silber, Martin; Wenzelburger, Martin; Gadow, Rainer
2007-04-01
Low density and good mechanical properties are the basic requirements for lightweight structures in automotive and aerospace applications. With their high specific strength and strain to failure values, aluminum alloys could be used for such applications. Only the insufficient stiffness and thermal and fatigue strength prevented their usage in high-end applications. One possibility to solve this problem is to reinforce the light metal with unidirectional fibers. The UD fiber allows tailoring of the reinforcement to meet the direction of the component's load. In this study, the production of thermally sprayed prepregs for the manufacturing of continuous fiber reinforced MMC by thixoforging is analysed. The main aim is to optimize the winding procedure, which determines the fiber strand position and tension during the coating process. A method to wind and to coat the continuous fibers with an easy-to-use handling technique for the whole manufacturing process is presented. The prepregs were manufactured by producing arc wire sprayed AlSi6 coatings on fibers bundles. First results of bending experiments showed appropriate mechanical properties.
Coatings Boost Solar-Cell Outputs
NASA Technical Reports Server (NTRS)
Rohatgi, Ajeet; Campbell, Robert B.; O'Keefe, T. W.; Rai-Choudbury, Posenjit; Hoffman, Richard A.
1988-01-01
Efficiencies increased by more-complete utilization of incident light. Electrical outputs of thin solar photovoltaic cells made of dendritic-web silicon increased by combination of front-surface, antireflective coatings and back-surface, reflective coatings. Improvements achieved recently through theoretical and experimental studies of ways to optimize coatings for particular wavelengths of incident light, cell thicknesses, and cell materials.
Seuss, Sigrid; Lehmann, Maja; Boccaccini, Aldo R.
2014-01-01
Alternating current (AC) electrophoretic deposition (EPD) was used to produce multifunctional composite coatings combining bioactive glass (BG) particles and chitosan. BG particles of two different sizes were used, i.e., 2 μm and 20–80 nm in average diameter. The parameter optimization and characterization of the coatings was conducted by visual inspection and by adhesion strength tests. The optimized coatings were investigated in terms of their hydroxyapatite (HA) forming ability in simulated body fluid (SBF) for up to 21 days. Fourier transform infrared (FTIR) spectroscopy results showed the successful HA formation on the coatings after 21 days. The first investigations were conducted on planar stainless steel sheets. In addition, scaffolds made from a TiAl4V6 alloy were considered to show the feasibility of coating of three dimensional structures by EPD. Because both BG and chitosan are antibacterial materials, the antibacterial properties of the as-produced coatings were investigated using E. coli bacteria cells. It was shown that the BG particle size has a strong influence on the antibacterial properties of the coatings. PMID:25007822
Ferreira, Mariana S L; Fai, Ana Elizabeth C; Andrade, Cristina T; Picciani, Paulo H; Azero, Edwin G; Gonçalves, Édira C B A
2016-03-30
This study aimed to produce and characterize edible films and coatings from fruit and vegetable residue (FVR) flour and potato peel (P) flour. Two coating approaches (immersion and film) were studied on the quality of acerolas. Film-forming solutions (FFS) presented a viscoelastic behavior and a gelation process occurring at 70 °C. Maximum density (1.018 g cm(-3) ), viscosity (44.404 cP) and starch content were obtained for FFS based on 8% FVR flour with 4% P flour. This same film presented enhanced mechanical properties such as tensile strength and elongation at break (0.092 MPa and 36% respectively). Solubility of the films averaged 87%, demonstrating high hydrophilicity. Improved performance was obtained for film-packaged acerolas, which exhibited an increase in shelf life of 50% compared with control fruits. A lower loss of weight was observed for these samples by about 30-57% compared with control fruits, but minor modifications of pH, titratable acidity and soluble solid content occurred during storage. This study demonstrated the potential of FVR flour for edible coating and film formulation. Practical application on acerolas constituted a motivating route to evaluate and optimize this process; however, microbiological and sensory analyses are necessary to assess the material acceptability and safety. © 2015 Society of Chemical Industry.
Development and optimization of buspirone oral osmotic pump tablet
Derakhshandeh, K.; berenji, M. Ghasemnejad
2014-01-01
The aim of the current study was to design a porous osmotic pump–based drug delivery system for controlling the release of buspirone from the delivery system. The osmotic pump was successfully developed using symmetric membrane coating. The core of the tablets was prepared by direct compression technique and coated using dip-coating technique. Drug release from the osmotic system was studied using USP paddle type apparatus. The effect of various processing variables such as the amount of osmotic agent, the amount of swellable polymer, concentration of the core former, concentration of the plasticizer, membrane thickness, quantum of orifice on drug release from osmotic pump were evaluated. Different kinetic models (zero order, first order and Higuchi model) were applied to drug release data in order to establish the kinetics of drug release. It was found that the drug release was mostly affected by the amount of NaCl as osmotic agent, the swellable polymer; hydroxy propyl methyl cellulose (HPMC), the amount of PEG-400 and cellulose acetate in the coating solution and thickness of the semipermeable membrane. The optimized formulation released buspirone independent of pH and orifice quantum at the osmogen amount of 42%, hydrophilic polymer of 13% and pore size of 0.8 mm on the tablet surface. The drug release of osmotic formulation during 24 h showed zero order kinetics and could be suggested that this formulation as a once-daily regimen improves pharmacokinetic parameters of the drug and enhances patient compliance. PMID:25657794
Development and optimization of buspirone oral osmotic pump tablet.
Derakhshandeh, K; Berenji, M Ghasemnejad
2014-01-01
The aim of the current study was to design a porous osmotic pump-based drug delivery system for controlling the release of buspirone from the delivery system. The osmotic pump was successfully developed using symmetric membrane coating. The core of the tablets was prepared by direct compression technique and coated using dip-coating technique. Drug release from the osmotic system was studied using USP paddle type apparatus. The effect of various processing variables such as the amount of osmotic agent, the amount of swellable polymer, concentration of the core former, concentration of the plasticizer, membrane thickness, quantum of orifice on drug release from osmotic pump were evaluated. Different kinetic models (zero order, first order and Higuchi model) were applied to drug release data in order to establish the kinetics of drug release. It was found that the drug release was mostly affected by the amount of NaCl as osmotic agent, the swellable polymer; hydroxy propyl methyl cellulose (HPMC), the amount of PEG-400 and cellulose acetate in the coating solution and thickness of the semipermeable membrane. The optimized formulation released buspirone independent of pH and orifice quantum at the osmogen amount of 42%, hydrophilic polymer of 13% and pore size of 0.8 mm on the tablet surface. The drug release of osmotic formulation during 24 h showed zero order kinetics and could be suggested that this formulation as a once-daily regimen improves pharmacokinetic parameters of the drug and enhances patient compliance.
NASA Astrophysics Data System (ADS)
Boiko, Andrey V.; Kulik, Victor M.; Chun, Ho-Hwan; Lee, Inwon
2011-12-01
Skin frictional drag reduction efficiency of "stiff" compliant coating was investigated in a wind tunnel experiment. Flat plate compliant coating inserts were installed in a wind tunnel and the measurements of skin frictional drag and velocity field were carried out. The compliant coatings with varying viscoelastic properties had been prepared using different composition. In order to optimize the coating thickness, the most important design parameter, the dynamic viscoelastic properties had been determined experimentally. The aging of the materials (variation of their properties) during half a year was documented as well. A design procedure proposed by Kulik et al. (2008) was applied to get an optimal value for the coating thickness. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coatings. The compliant coatings with the thickness h = 7mm achieved 4~5% drag reduction within a velocity range 30~40 m/s. The drag reduction mechanism of the attenuation of turbulence velocity fluctuations due to the compliant coating was demonstrated. It is envisioned that larger drag reduction effect is obtainable at higher flow velocities for high speed trains and subsonic aircrafts.
An update on pharmaceutical film coating for drug delivery.
Felton, Linda A; Porter, Stuart C
2013-04-01
Pharmaceutical coating processes have generally been transformed from what was essentially an art form in the mid-twentieth century to a much more technology-driven process. This review article provides a basic overview of current film coating processes, including a discussion on polymer selection, coating formulation additives and processing equipment. Substrate considerations for pharmaceutical coating processes are also presented. While polymeric coating operations are commonplace in the pharmaceutical industry, film coating processes are still not fully understood, which presents serious challenges with current regulatory requirements. Novel analytical technologies and various modeling techniques that are being used to better understand film coating processes are discussed. This review article also examines the challenges of implementing process analytical technologies in coating operations, active pharmaceutical ingredients in polymer film coatings, the use of high-solids coating systems and continuous coating and other novel coating application methods.
Efficiency improvement of silicon solar cells enabled by ZnO nanowhisker array coating
2012-01-01
An efficient antireflection coating is critical for the improvement of silicon solar cell performance via increased light coupling. Here, we have grown well-aligned ZnO nanowhisker (NW) arrays on Czochralski silicon solar cells by a seeding-growth two-step process. It is found that the ZnO NWs have a great effect on the macroscopic antireflection effect and, therefore, improves the solar cell performance. The ZnO NW array-coated solar cells display a broadband reflection suppression from 500 to 1,100 nm, and the minimum reflectance smaller than 3% can easily be achieved. By optimizing the time of ZnO NW growth, it has been confirmed that an increase of 3% relatively in the solar cell efficiency can be obtained. These results are quite interesting for the application of ZnO nanostructure in the fabrication of high-efficiency silicon solar cells. PMID:22704578
Biodegradable/biocompatible coated metal implants for orthopedic applications.
Saleh, Mohamed M; Touny, A H; Al-Omair, Mohammed A; Saleh, M M
2016-05-12
Biocompatible metals have been suggested as revolutionary biomaterials for bone-grafting therapies. Although metals and their alloys are widely and successfully used in producing biomedical implants due to their good mechanical properties and corrosion resistance, they have a lack in bioactivity. Therefore coating of the metal surface with calcium phosphates (CaP) is a benign way to achieve well bioactivity and get controlled corrosion properties. The biocompatibility and bioactivity calcium phosphates (CaP) in bone growth were guided them to biomedical treatment of bone defects and fractures. Many techniques have been used for fabrication of CaP coatings on metal substrates such as magnesium and titanium. The present review will focus on the synthesis of CaP and their relative forms using different techniques especially electrochemical techniques. The latter has always been known of its unique way of optimizing the process parameters that led to a control in the structure and characteristics of the produced materials.
Kinematic Optimization of Robot Trajectories for Thermal Spray Coating Application
NASA Astrophysics Data System (ADS)
Deng, Sihao; Liang, Hong; Cai, Zhenhua; Liao, Hanlin; Montavon, Ghislain
2014-12-01
Industrial robots are widely used in the field of thermal spray nowadays. Due to their characteristics of high-accuracy and programmable flexibility, spraying on complex geometrical workpieces can be realized in the equipped spray room. However, in some cases, the robots cannot guarantee the process parameters defined by the robot movement, such as the scanning trajectory, spray angle, relative speed between the torch and the substrate, etc., which have distinct influences on heat and mass transfer during the generation of any thermally sprayed coatings. In this study, an investigation on the robot kinematics was proposed to find the rules of motion in a common case. The results showed that the motion behavior of each axis of robot permits to identify the motion problems in the trajectory. This approach allows to optimize the robot trajectory generation in a limited working envelop. It also minimizes the influence of robot performance to achieve a more constant relative scanning speed which is represented as a key parameter in thermal spraying.
NASA Technical Reports Server (NTRS)
Jayarajan, A.; Johnson, G. A.; Korver, G. L.; Anderson, R. A.
1983-01-01
Five chemically different resin systems with improved fire resistance properties were studied for a possible screenprinting ink application. Fire resistance is hereby defined as the cured ink possessing improvements in flammability, smoke emission, and thermal stability. The developed ink is for application to polyvinyl fluoride film. Only clear inks without pigments were considered. Five formulations were evaluated compared with KC4900 clear acrylic ink, which was used as a baseline. The tests used in the screening evaluation included viscosity, smoke and toxic gas emission, limiting oxygen index (LOI), and polyvinyl fluoride film (PVF) printability. A chlorofluorocarbon resin (FPC461) was selected for optimization studies. The parameters for optimization included screenprinting process performance, quality of coating, and flammability of screenprinted 0.051-mm (0.002-in.) white Tedlar. The quality of the screenprinted coating on Tedlar is dependent on viscosity, curing time, adhesion to polyvinyl fluoride film, drying time (both inscreen and as an applied film), and silk screen mesh material and porosity.
Optimized water vapor permeability of sodium alginate films using response surface methodology
NASA Astrophysics Data System (ADS)
Zhang, Qing; Xu, Jiachao; Gao, Xin; Fu, Xiaoting
2013-11-01
The water vapor permeability (WVP) of films is important when developing pharmaceutical applications. Films are frequently used as coatings, and as such directly influence the quality of the medicine. The optimization of processing conditions for sodium alginate films was investigated using response surface methodology. Single-factor tests and Box-Behnken experimental design were employed. WVP was selected as the response variable, and the operating parameters for the single-factor tests were sodium alginate concentration, carboxymethyl cellulose (CMC) concentration and CaCl2 solution immersion time. The coefficient of determination ( R 2) was 0.97, indicating statistical significance. A minimal WVP of 0.389 8 g·mm/(m2·h·kPa) was achieved under the optimum conditions. These were found to be a sodium alginate concentration, CMC concentration and CaCl2 solution immersion time at 8.04%, 0.13%, and 12 min, respectively. This provides a reference for potential applications in manufacturing film-coated hard capsule shells.
Pulsed arc plasma jet synchronized with drop-on-demand dispenser
NASA Astrophysics Data System (ADS)
Mavier, F.; Lemesre, L.; Rat, V.; Bienia, M.; Lejeune, M.; Coudert, J.-F.
2017-04-01
This work concerns with the liquid injection in arc plasma spraying for the development of finely structured ceramics coatings. Nanostructured coatings can be now achieved with nanopowders dispersed in a liquid (SPS: Suspension Plasma Spraying) or with a salt dissolved into a liquid (SPPS: Solution Precursor Plasma Spraying) injected into the plasma jet. Controlling electric arc instabilities confined in non-transferred arc plasma torch is therefore a key issue to get reproducible coating properties. Adjustment of parameters with a mono-cathode arc plasma allows a new resonance mode called “Mosquito”. A pulsed arc plasma producing a periodic regular voltage signal with modulation of enthalpy is obtained. The basic idea is to synchronize the injection system with the arc to introduce the liquid material in each plasma oscillation in the same conditions, in order to control the plasma treatment of the material in-fly. A custom-developed pulsed arc plasma torch is used with a drop-on-demand dispenser triggered by the arc voltage. A delay is added to adjust the droplets emission time and their penetration into the plasma gusts. Indeed, the treatment of droplets is also shown to be dependent on this injection delay. A TiO2 suspension and an aqueous solution of aluminium nitrate were optimized to get ejectable inks forming individual droplets. The feasibility of the process was demonstrated for SPS and SPPS techniques. Coatings from the suspension and the solution were achieved. First synchronized sprayings show a good penetration of the droplets into the plasma. Coatings show a fine structure of cauliflowers shapes. The synchronization of the ejection allows a control of morphology and a better deposition efficiency. Further investigations will find the optimal operating parameters to show the full potential of this original liquid injection technique.
Wafer-level manufacturing technology of glass microlenses
NASA Astrophysics Data System (ADS)
Gossner, U.; Hoeftmann, T.; Wieland, R.; Hansch, W.
2014-08-01
In high-tech products, there is an increasing demand to integrate glass lenses into complex micro systems. Especially in the lighting industry LEDs and laser diodes used for automotive applications require encapsulated micro lenses. To enable low-cost production, manufacturing of micro lenses on wafer level base using a replication technology is a key technology. This requires accurate forming of thousands of lenses with a diameter of 1-2 mm on a 200 mm wafer compliant with mass production. The article will discuss the technical aspects of a lens manufacturing replication process and the challenges, which need to be solved: choice of an appropriate master for replication, thermally robust interlayer coating, choice of replica glass, bonding and separation procedure. A promising approach for the master substrate material is based on a lens structured high-quality glass wafer with high melting point covered by a coating layer of amorphous silicon or germanium. This layer serves as an interlayer for the glass bonding process. Low pressure chemical vapor deposition and plasma enhanced chemical vapor deposition processes allow a deposition of layer coatings with different hydrogen and doping content influencing their chemical and physical behavior. A time reduced molding process using a float glass enables the formation of high quality lenses while preserving the recyclability of the mother substrate. The challenge is the separation of the replica from the master mold. An overview of chemical methods based on optimized etching of coating layer through small channels will be given and the impact of glass etching on surface roughness is discussed.
Quantitative Analysis of Electroplated Nickel Coating on Hard Metal
Wahab, Hassan A.; Noordin, M. Y.; Izman, S.
2013-01-01
Electroplated nickel coating on cemented carbide is a potential pretreatment technique for providing an interlayer prior to diamond deposition on the hard metal substrate. The electroplated nickel coating is expected to be of high quality, for example, indicated by having adequate thickness and uniformity. Electroplating parameters should be set accordingly for this purpose. In this study, the gap distances between the electrodes and duration of electroplating process are the investigated variables. Their effect on the coating thickness and uniformity was analyzed and quantified using design of experiment. The nickel deposition was carried out by electroplating in a standard Watt's solution keeping other plating parameters (current: 0.1 Amp, electric potential: 1.0 V, and pH: 3.5) constant. The gap distance between anode and cathode varied at 5, 10, and 15 mm, while the plating time was 10, 20, and 30 minutes. Coating thickness was found to be proportional to the plating time and inversely proportional to the electrode gap distance, while the uniformity tends to improve at a large electrode gap. Empirical models of both coating thickness and uniformity were developed within the ranges of the gap distance and plating time settings, and an optimized solution was determined using these models. PMID:23997678
Agarwal, Vaibhav; Bansal, Mayank
2013-08-01
Present work focuses on the use of mimosa seed gum to develop a drug delivery system making combined use of floating and pulsatile principles, for the chrono-prevention of nocturnal acid breakthrough. The desired aim was achieved by fabricating a floating delivery system bearing time - lagged coating of Mimosa pudica seed polymer for the programmed release of Famotidine. Response Surface Methodology was the statistical tool that was employed for experiment designing, mathematical model generation and optimization study. A 3(2) full factorial design was used in designing the experiment.% weight ratio of mimosa gum to hydroxy propyl methyl cellulose in the coating combination and the coating weight were the independent variables, whereas the lag time and the cumulative % drug release in 360 minutes were the observed responses. Results revealed that both the coating composition and the coating weight significantly affected the release of drug from the dosage form. The optimized formulation prepared according to the computer generated software, Design-Expert(®) deciphered response which were in close proximity with the experimental responses, thus confirming the robustness as well as accuracy of the predicted model for the utilization of natural polymer like mimosa seed gum for the chronotherapeutic treatment of nocturnal acid breakthrough.
Optimization and design of pigments for heat-insulating coatings
NASA Astrophysics Data System (ADS)
Wang, Guang-Hai; Zhang, Yue
2010-12-01
This paper reports that heat insulating property of infrared reflective coatings is obtained through the use of pigments which diffuse near-infrared thermal radiation. Suitable structure and size distribution of pigments would attain maximum diffuse infrared radiation and reduce the pigment volume concentration required. The optimum structure and size range of pigments for reflective infrared coatings are studied by using Kubelka—Munk theory, Mie model and independent scattering approximation. Taking titania particle as the pigment embedded in an inorganic coating, the computational results show that core-shell particles present excellent scattering ability, more so than solid and hollow spherical particles. The optimum radius range of core-shell particles is around 0.3 ~ 1.6 μm. Furthermore, the influence of shell thickness on optical parameters of the coating is also obvious and the optimal thickness of shell is 100-300 nm.
Graphene-bimetal plasmonic platform for ultra-sensitive biosensing
NASA Astrophysics Data System (ADS)
Tong, Jinguang; Jiang, Li; Chen, Huifang; Wang, Yiqin; Yong, Ken-Tye; Forsberg, Erik; He, Sailing
2018-03-01
A graphene-bimetal plasmonic platform for surface plasmon resonance biosensing with ultra-high sensitivity was proposed and optimized. In this hybrid configuration, graphene nanosheets was employed to effectively absorb the excitation light and serve as biomolecular recognition elements for increased adsorption of analytes. Coating of an additional Au film prevents oxidation of the Ag substrate during manufacturing process and enhances the sensitivity at the same time. Thus, a bimetal Au-Ag substrate enables improved sensing performance and promotes stability of this plasmonic sensor. In this work we optimized the number of graphene layers as well as the thickness of the Au film and the Ag substrate based on the phase-interrogation sensitivity. We found an optimized configuration consisting of 6 layers of graphene coated on a bimetal surface consisting of a 5 nm Au film and a 30 nm Ag film. The calculation results showed the configuration could achieve a phase sensitivity as high as 1 . 71 × 106 deg/RIU, which was more than 2 orders of magnitude higher than that of bimetal structure and graphene-silver structure. Due to this enhanced sensing performance, the graphene-bimetal plasmonic platform proposed in this paper is potential for ultra-sensitive plasmonic sensing.
Wu, Jionghua; Xu, Xin; Zhao, Yanhong; Shi, Jiangjian; Xu, Yuzhuan; Luo, Yanhong; Li, Dongmei; Wu, Huijue; Meng, Qingbo
2017-08-16
DMF as an additive has been employed in FAI/MAI/IPA (FA= CH 2 (NH 2 ) 2 , MA = CH 3 NH 3 , IPA = isopropanol) solution for a two-step multicycle spin-coating method in order to prepare high-quality FA x MA 1-x PbI 2.55 Br 0.45 perovskite films. Further investigation reveals that the existence of DMF in the FAI/MAI/IPA solution can facilitate perovskite conversion, improve the film morphology, and reduce crystal defects, thus enhancing charge-transfer efficiency. By optimization of the DMF amount and spin-coating cycles, compact, pinhole-free perovskite films are obtained. The nucleation mechanisms of perovskite films in our multicycle spin-coating process are suggested; that is, the introduction of DMF in the spin-coating FAI/MAI/IPA solution can lead to the formation of an amorphous phase PbX 2 -AI-DMSO-DMF (X = I, Br; A = FA, MA) instead of intermediate phase (MA) 2 Pb 3 I 8 ·2DMSO. This amorphous phase, similar to that in the one-step method, can help FAI/MAI penetrate into the PbI 2 framework to completely convert into the perovskite. As high as 20.1% power conversion efficiency (PCE) has been achieved with a steady-state PCE of 19.1%. Our work offers a simple repeatable method to prepare high-quality perovskite films for high-performance PSCs and also help further understand the perovskite-crystallization process.
NASA Astrophysics Data System (ADS)
Shao, Hongyuan; Wang, Weikun; Zhang, Hao; Wang, Anbang; Chen, Xiaonong; Huang, Yaqin
2018-02-01
Despite recent progress in designing modified separators for lithium-sulfur (Li-S) batteries, detail in optimizing the synergistic effect between chemical and physical immobilization for lithium polysulfides (LiPS) in modified separator hasn't been investigated totally. Here, a nano-TiO2 decorated carbon layer (T-DCL) has been successfully applied to modify separator for the Li-S battery. The results indicate that appropriate weight percentage of nano-TiO2 uniformly distributed in conductive carbon layer is effective to chemically and physically immobilize for LiPS, and promote the electron transfer during discharge/charge process. The performance of the modified Li-S battery with T-DCL separator are significantly enhanced, with a specific capacity of 883 mAh g-1 retained after 180 cycles at 0.1 C and 762 mAh g-1 retained after 200 cycles at 0.5C, which are much higher than that of separators only coated with TiO2 layer or conductive carbon layer. Besides, the separator coated with T-DCL also shows low electrochemical impedance and good lithium anode protection. These results indicate that separator with T-DCL is promising to balance the physical and chemical LiPS trapping effect, and optimize the electrochemical performance for Li-S battery.
Diao, Chien-Chen; Kuo, Hsin-Hui; Tzou, Wen-Cheng; Chen, Yen-Lin; Yang, Cheng-Fu
2014-01-01
In this study, a new thin-film deposition process, spray coating method (SPM), was investigated to deposit the high-densified CuInSe2 absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe2 precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe2 absorber layers. After spraying on Mo/glass substrates, the CuInSe2 thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N2 as atmosphere. When the CuInSe2 thin films were annealed, without extra Se or H2Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe2 absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe2 absorber layers could be controlled as the volume of used dispersed CuInSe2-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe2 absorber layers obtained by the Spray Coating Method. PMID:28788451
Mathematical Modelling of Optimization of Structures of Monolithic Coverings Based on Liquid Rubbers
NASA Astrophysics Data System (ADS)
Turgumbayeva, R. Kh; Abdikarimov, M. N.; Mussabekov, R.; Sartayev, D. T.
2018-05-01
The paper considers optimization of monolithic coatings compositions using a computer and MPE methods. The goal of the paper was to construct a mathematical model of the complete factorial experiment taking into account its plan and conditions. Several regression equations were received. Dependence between content components and parameters of rubber, as well as the quantity of a rubber crumb, was considered. An optimal composition for manufacturing the material of monolithic coatings compositions was recommended based on experimental data.
NASA Astrophysics Data System (ADS)
Wang, Xingrui; Zhao, Yang; Liu, Jie; Chen, Jie; Li, Tongbao; Cheng, Xinbin
2016-09-01
One-dimensional multilayer gratings were prepared by four steps. A periodic Si/SiO2 multilayer was firstly deposited on Si substrate using a magnetron sputtering coating process. Then, the multilayer was been bonded and split into small pieces by diamond wire cutting. The side-wall of the cut sample was subsequently grinded and polished until the surface roughness was less than 1nm. Finally, the SiO2 layers were selective etched using hydrofluoric acid to form the grating structure. In the above steps, special attentions were given to optimize the etching processes to achieve a uniform and smooth grating pattern. Transmission electron microscope (TEM) was used to characterize the multilayer gratings. The pitch size of the grating was evaluated by an offline image analysis algorithm and optimized processes are discussed.
Hosny, Khaled Mohamed
2016-01-01
Treatment of osteoporosis with alendronate sodium has several challenges. The first challenge is the low bioavailability. The second main challenge is side effects, which include oesophageal ulceration. The aim of this research was to reformulate alendronate sodium as enteric coated solid lipid nanoparticles in order to enhance its bioavailability, and preventing the free alendronate sodium from coming into direct contact with the gastrointestinal mucosa, and thereby reducing the possibility of side effects. Enteric coated solid lipid nanoparticles were prepared according to the Box-Behnken design employing Design expert® software, and characterized for size, morphology, and entrapment efficiency. The optimized formula was coated with an Eudragit S100 and evaluated for drug release in acidic and basic media, stability studies and pharmacokinetic evaluations on rabbits. The results indicated that, using Derringer's desirability functional tool for optimization, the highest entrapment efficiency value of 74.3% and the smallest size value of 98 nm were predicted under optimum conditions with a desirability value of 0.917. The optimized nanoparticles released alendronate sodium only at an alkaline pH. The pharmacokinetic evaluation revealed that alendronate sodium bioavailability was enhanced by more than 7.4-fold in rabbits. In conclusion, enteric coated solid lipid nanoparticles is a promising formula for the delivery of alendronate sodium, eliminating its oesophageal side effects and enhancing its bioavailability.
Hosny, Khaled Mohamed
2016-01-01
Treatment of osteoporosis with alendronate sodium has several challenges. The first challenge is the low bioavailability. The second main challenge is side effects, which include oesophageal ulceration. The aim of this research was to reformulate alendronate sodium as enteric coated solid lipid nanoparticles in order to enhance its bioavailability, and preventing the free alendronate sodium from coming into direct contact with the gastrointestinal mucosa, and thereby reducing the possibility of side effects. Enteric coated solid lipid nanoparticles were prepared according to the Box-Behnken design employing Design expert® software, and characterized for size, morphology, and entrapment efficiency. The optimized formula was coated with an Eudragit S100 and evaluated for drug release in acidic and basic media, stability studies and pharmacokinetic evaluations on rabbits. The results indicated that, using Derringer's desirability functional tool for optimization, the highest entrapment efficiency value of 74.3% and the smallest size value of 98 nm were predicted under optimum conditions with a desirability value of 0.917. The optimized nanoparticles released alendronate sodium only at an alkaline pH. The pharmacokinetic evaluation revealed that alendronate sodium bioavailability was enhanced by more than 7.4-fold in rabbits. In conclusion, enteric coated solid lipid nanoparticles is a promising formula for the delivery of alendronate sodium, eliminating its oesophageal side effects and enhancing its bioavailability. PMID:27148747
Bera, Hriday; Ippagunta, Sohitha Reddy; Kumar, Sanoj; Vangala, Pavani
2017-07-01
Novel alginate-arabic gum (AG) gel membrane coated alginate-ghatti gum (GG) modified montmorillonite (MMT) composite matrices were developed for intragastric flurbiprofen (FLU) delivery by combining floating and mucoadhesion mechanisms. The clay-biopolymer composite matrices containing FLU as core were accomplished by ionic-gelation technique. Effects of polymer-blend (alginate:GG) ratios and crosslinker (CaCl 2 ) concentrations on drug entrapment efficiency (DEE, %) and cumulative drug release after 8h (Q 8h , %) were studied to optimize the core matrices by a 3 2 factorial design. The optimized matrices (F-O) demonstrated DEE of 91.69±1.43% and Q 8h of 74.96±1.56% with minimum errors in prediction. The alginate-AG gel membrane enveloped optimized matrices (F-O, coated) exhibited superior buoyancy, better ex vivo mucoadhesion and slower drug release rate. The drug release profile of FLU-loaded uncoated and coated optimized matrices was best fitted in Korsmeyer-Peppas model with anomalous diffusion and case-II transport driven mechanism, respectively. The uncoated and coated matrices containing FLU were also characterized for drug-excipients compatibility, drug crystallinity, thermal behaviour and surface morphology. Thus, the newly developed alginate-AG gel membrane coated alginate-GG modified MMT composite matrices are appropriate for intragastric delivery of FLU over an extended period of time with improved therapeutic benefits. Copyright © 2017 Elsevier B.V. All rights reserved.
Processing technology for high efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Spitzer, M. B.; Keavney, C. J.
1985-01-01
Recent advances in silicon solar cell processing have led to attainment of conversion efficiency approaching 20%. The basic cell design is investigated and features of greatest importance to achievement of 20% efficiency are indicated. Experiments to separately optimize high efficiency design features in test structures are discussed. The integration of these features in a high efficiency cell is examined. Ion implantation has been used to achieve optimal concentrations of emitter dopant and junction depth. The optimization reflects the trade-off between high sheet conductivity, necessary for high fill factor, and heavy doping effects, which must be minimized for high open circuit voltage. A second important aspect of the design experiments is the development of a passivation process to minimize front surface recombination velocity. The manner in which a thin SiO2 layer may be used for this purpose is indicated without increasing reflection losses, if the antireflection coating is properly designed. Details are presented of processing intended to reduce recombination at the contact/Si interface. Data on cell performance (including CZ and ribbon) and analysis of loss mechanisms are also presented.
Li, Feng; Li, Xue-Mei; Zhang, Shu-Sheng
2006-10-06
A simple and reliable one-pot approach using surface imprinting coating technique combined with polysaccharide incorporated sol-gel process was established to synthesize a new organic-inorganic hybrid matrix possessing macroporous surface and functional ligand. Using mesoporous silica gel being a support, immobilized metal affinity adsorbent with a macroporous shell/mesoporous core structure was obtained after metal ion loading. In the prepared matrix, covalently bonded coating and morphology manipulation on silica gel was achieved by using one-pot sol-gel process starting from an inorganic precursor,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tierney, J.C.; Glovan, R.J.; Witt, S.J.
1995-12-31
A four-phase experimental design was utilized to evaluate the abrasive wear and corrosion protection characteristics of VERSAlloy 50 coatings applied to AISI 4130 steel sheet. The coatings were applied with the Pressure Controlled Atomization Process (PCAP), a new thermal spray process being developed for the United States Air Force to replace hard chromium plating. Phase 1 of the design consisted of an evaluation of deposit profiles that were sprayed at five different standoff distances. Profile measurements yielded standard deviations ({sigma}) of the plume at each of the spray distances. Phase 2 consisted of a completely randomized series of eight spraymore » tests in which the track gap or distance between consecutive spray passes was varied by amounts of 0.5{sigma}, 1{sigma}, 2{sigma}, and 3{sigma}. The sprayed test coupons were then evaluated for corrosion protection, abrasive wear resistance, microhardness, and porosity. Results from Phase 2 were used to determine the best track gap or overlap for Phase 3 and Phase 4 testing. Phase 3 consisted of 22-run central composite design. The test coupons were evaluated the same as in Phase 2. Statistical analysis of Phase 3 data revealed that the optimal system operating parameters produced coatings that would either provide superior corrosion protection or resistance to abrasive wear. Phase 4 consisted of four spray tests to validate the results obtained in Phase 3. Phase 4 test coupons were again evaluated with the same analysis as in Phases 2 and 3. The validation tests indicated that PCAP system operating parameters could be controlled to produce VERSAlloy 50 coatings with superior corrosion protection or resistance to abrasive wear.« less
The effects of ultrasonic agitation on supercritical CO2 copper electroplating.
Chuang, Ho-Chiao; Yang, Hsi-Min; Wu, Guan-Lin; Sánchez, Jorge; Shyu, Jenq-Huey
2018-01-01
Applying ultrasound to the electroplating process can improve mechanical properties and surface roughness of the coating. Supercritical electroplating process can refine grain to improve the surface roughness and hardness. However, so far there is no research combining the above two processes to explore its effect on the coating. This study aims to use ultrasound (42kHz) in supercritical CO 2 (SC-CO 2 ) electroplating process to investigate the effect of ultrasonic powers and supercritical pressures on the properties of copper films. From the results it was clear that higher ultrasonic irradiation resulted in higher current efficiency, grain refinement, higher hardness, better surface roughness and higher internal stress. SEM was also presented to verify the correctness of the measured data. The optimal parameters were set to obtain the deposit at pressure of 2000psi and ultrasonic irradiation of 0.157W/cm 3 . Compared with SC-CO 2 electroplating process, the current efficiency can be increased from 77.57% to 93.4%, the grain size decreases from 24.34nm to 22.45nm, the hardness increases from 92.87Hv to 174.18Hv, and the surface roughness decreases from 0.83μm to 0.28μm. Therefore, this study has successfully integrated advantages of ultrasound and SC-CO 2 electroplating, and proved that applied ultrasound to SC-CO 2 electroplating process can significantly improve the mechanical properties of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, Cheng-Kuang; Pao, Chun-Wei
2016-08-17
Solution-processed small-molecule organic solar cells are a promising renewable energy source because of their low production cost, mechanical flexibility, and light weight relative to their pure inorganic counterparts. In this work, we developed a coarse-grained (CG) Gay-Berne ellipsoid molecular simulation model based on atomistic trajectories from all-atom molecular dynamics simulations of smaller system sizes to systematically study the nanomorphology of the SMDPPEH/PCBM/solvent ternary blend during solution processing, including the blade-coating process by applying external shear to the solution. With the significantly reduced overall system degrees of freedom and computational acceleration from GPU, we were able to go well beyond the limitation of conventional all-atom molecular simulations with a system size on the order of hundreds of nanometers with mesoscale molecular detail. Our simulations indicate that, similar to polymer solar cells, the optimal blending ratio in small-molecule organic solar cells must provide the highest specific interfacial area for efficient exciton dissociation, while retaining balanced hole/electron transport pathway percolation. We also reveal that blade-coating processes have a significant impact on nanomorphology. For given donor/acceptor blending ratios, applying an external shear force can effectively promote donor/acceptor phase segregation and stacking in the SMDPPEH domains. The present study demonstrated the capability of an ellipsoid-based coarse-grained model for studying the nanomorphology evolution of small-molecule organic solar cells during solution processing/blade-coating and provided links between fabrication protocols and device nanomorphologies.
NASA Astrophysics Data System (ADS)
Vasu, M.; Shivananda, Nayaka H.
2018-04-01
EN47 steel samples are machined on a self-centered lathe using Chemical Vapor Deposition of coated TiCN/Al2O3/TiN and uncoated tungsten carbide tool inserts, with nose radius 0.8mm. Results are compared with each other and optimized using statistical tool. Input (cutting) parameters that are considered in this work are feed rate (f), cutting speed (Vc), and depth of cut (ap), the optimization criteria are based on the Taguchi (L9) orthogonal array. ANOVA method is adopted to evaluate the statistical significance and also percentage contribution for each model. Multiple response characteristics namely cutting force (Fz), tool tip temperature (T) and surface roughness (Ra) are evaluated. The results discovered that coated tool insert (TiCN/Al2O3/TiN) exhibits 1.27 and 1.29 times better than the uncoated tool insert for tool tip temperature and surface roughness respectively. A slight increase in cutting force was observed for coated tools.
Zhang, Lin; Lin, Baojun; Hu, Bo; Xu, Xianbin; Ma, Wei
2018-04-17
Blade-coating serving as a prototype tool for slot-die coating can be very compatible with large-area roll-to-roll coating. Using blade-coating in an ambient environment, an average power conversion efficiency (PCE) of 10.03% is achieved in nonfullerene organic solar cells, which is higher than that of the optimal spin-coated device with a PCE of 9.41%. It is demonstrated that blade-coating can induce a higher degree of molecular packing for both conjugated polymer donors and small-molecular acceptors as it helps to produce a seeding film containing numerous crystal grains, subsequently providing nucleation sites for the residual solution when the motion of the blade exposes a liquid front. Due to this effect, blade-coating can partially replace the role of the additive 1,8-diiodooctane (DIO) and thus achieves the optimized morphology with fewer additives. Moreover, it is found that the blade-coated film with 0.25% DIO possesses not only a smaller domain size but also higher domain purity, suggesting more D/A (donor/acceptor) interfaces and a purer phase domain as compared to the spin-coated film with 1% DIO. Encouragingly, the blade-coated device with less DIO (0.25%) exhibits much better stability than the spin-coated device with 1% DIO, showing excellent prospects. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design and development of multilayer wideband antireflection coating and its annealing study
NASA Astrophysics Data System (ADS)
Jena, S.; Tokas, R. B.; Udupa, D. V.; Thakur, S.; Sahoo, N. K.
2018-04-01
Reflection loss occurs at the glass-air interface, limits performance of many optical devices such as eyeglass, camera lenses, and photovoltaic solar cells. Antireflection (AR) coating on the glass reduces the reflection loss and improves efficiency of such devices. In this paper, wideband AR coating in the visible region has been designed and developed using ZrO2-MgO/SiO2 multilayer. The thicknesses of individual thin layers are numerically optimized to get maximum transmission of the visible light. The optimized four thin layers have been deposited on BK7 glass substrate using electron beam evaporation technique. The measured transmission spectrum of the 4-layer AR coating is compared with that of simulated spectrum. The transmission of the single side AR coating increases by more than 3% as compared to that of bare glass substrate in the wavelength region of 470 nm - 810 nm. The wideband AR coating has been annealed at 200°C for 4 hours in ambient condition. The transmission of the AR coating decreases after the annealing, resulting degradation in its wideband AR characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samad, Ubair Abdus; Center of excellence for research in engineering materials; Khan, Rawaiz
In this study the effect of Ag Nano powder on mechanical properties of epoxy coatings filled with optimized ratio of conducting polymers (Polyaniline and Polyppyrole) was evaluated. Bisphenol A diglycidyl ether epoxy resin (DGEBA) along with polyaminoamide adduct (ARADUR 3282-1 BD) is used as curing agent under optimized stoichiometry values. Curing is performed at room temperature with different percentages of Nano filler. Glass and steel panels were used as coating substrate. Bird applicator was used to coat the samples in order to obtain thin film with wet film thickness (WFT) of about 70-90 µm. The samples were kept in dust freemore » environment for about 7 days at room temperature for complete curing. The coated steel panels were used to evaluate the mechanical properties of coating such as hardness, scratch and impact tests whereas coated glass panels were used for measuring pendulum hardness of the coatings. To check the dispersion and morphology of Nano filler in epoxy matrix scanning electron microscopy (SEM) was used in addition Nano indentation was also performed to observe the effect of Nano filler on modulus of elasticity and hardness at Nano scale.« less
NASA Astrophysics Data System (ADS)
Samad, Ubair Abdus; Khan, Rawaiz; Alam, Mohammad Asif; Al-Othman, Othman Y.; Al-Zahrani, Saeed M.
2015-05-01
In this study the effect of Ag Nano powder on mechanical properties of epoxy coatings filled with optimized ratio of conducting polymers (Polyaniline and Polyppyrole) was evaluated. Bisphenol A diglycidyl ether epoxy resin (DGEBA) along with polyaminoamide adduct (ARADUR 3282-1 BD) is used as curing agent under optimized stoichiometry values. Curing is performed at room temperature with different percentages of Nano filler. Glass and steel panels were used as coating substrate. Bird applicator was used to coat the samples in order to obtain thin film with wet film thickness (WFT) of about 70-90 µm. The samples were kept in dust free environment for about 7 days at room temperature for complete curing. The coated steel panels were used to evaluate the mechanical properties of coating such as hardness, scratch and impact tests whereas coated glass panels were used for measuring pendulum hardness of the coatings. To check the dispersion and morphology of Nano filler in epoxy matrix scanning electron microscopy (SEM) was used in addition Nano indentation was also performed to observe the effect of Nano filler on modulus of elasticity and hardness at Nano scale.
Design of Aerosol Particle Coating: Thickness, Texture and Efficiency
Buesser, B.; Pratsinis, S.E.
2013-01-01
Core-shell particles preserve the performance (e.g. magnetic, plasmonic or opacifying) of a core material while modifying its surface with a shell that facilitates (e.g. by blocking its reactivity) their incorporation into a host liquid or polymer matrix. Here coating of titania (core) aerosol particles with thin silica shells (films or layers) is investigated at non-isothermal conditions by a trimodal aerosol dynamics model, accounting for SiO2 generation by gas phase and surface oxidation of hexamethyldisiloxane (HMDSO) vapor, coagulation and sintering. After TiO2 particles have reached their final primary particle size (e.g. upon completion of sintering during their flame synthesis), coating starts by uniformly mixing them with HMDSO vapor that is oxidized either in the gas phase or on the particles’ surface resulting in SiO2 aerosols or deposits, respectively. Sintering of SiO2 deposited onto the core TiO2 particles takes place transforming rough into smooth coating shells depending on process conditions. The core-shell characteristics (thickness, texture and efficiency) are calculated for two limiting cases of coating shells: perfectly smooth (e.g. hermetic) and fractal-like. At constant TiO2 core particle production rate, the influence of coating weight fraction, surface oxidation and core particle size on coating shell characteristics is investigated and compared to pertinent experimental data through coating diagrams. With an optimal temperature profile for complete precursor conversion, the TiO2 aerosol and SiO2-precursor (HMDSO) vapor concentrations have the strongest influence on product coating shell characteristics. PMID:23729833
Processing and optimization of functional ceramic coatings and inorganic nanomaterials
NASA Astrophysics Data System (ADS)
Nyutu, Edward Kennedy G.
Processing of functional inorganic materials including zero (0-D) dimensional (e.g. nanoparticles), 1-D (nanorods, nanofibers), and 2-D (films/coating) structures is of fundamental and technological interest. This research will have two major sections. The first part of section one focuses on the deposition of silicon dioxide onto a pre-deposited molybdenum disilicide coating on molybdenum substrates for both high (>1000 °C) and moderate (500-600 °C) temperature oxidation protection. Chemical vapor deposition (CVD/MOCVD) techniques will be utilized to deposit the metal suicide and oxide coatings. The focus of this study will be to establish optimum deposition conditions and evaluate the metal oxide coating as oxidation - thermal barriers for Mo substrates under both isothermal (static) and cyclic oxidation conditions. The second part of this section will involve a systematic evaluation of a boron nitride (BN) interface coating prepared by chemical vapor deposition. Ceramic matrix composites (CMCs) are prospective candidates for high (>1000 °C) temperature applications and fiber- matrix interfaces are the dominant design parameters in ceramic matrix composites (CMCs). An important goal of the study is to determine a set of process parameters, which would define a boron nitride (BN) interface coating by a chemical vapor deposition (CVD) process with respect to coating. In the first part of the second section, we will investigate a new approach to synthesize ultrafine metal oxides that combines microwave heating and an in-situ ultrasonic mixing of two or more liquid precursors with a tubular flow reactor. Different metal oxides such as nickel ferrite and zinc aluminate spinels will be studied. The synthesis of metal oxides were investigated in order to study the effects of the nozzle and microwave (INM process) on the purity, composition, and particle size of the resulting powders. The second part of this research section involves a study of microwave frequency effects on the synthesis of nanocrystalline tetragonal barium titanate. The effects of microwave frequency (fixed and variable), microwave bandwidths sweep time, and aging time on the microstructure, particle sizes, phase purity, surface areas, and porosities of the as-prepared BaTiO3 were systematically investigated. The final part of the research involves a new rapid and facile synthetic route to prepare size-tunable, ultranarrow, high surface area OMS-2 nanomaterials via open-vessel microwave-assisted refluxing preparations without employing templates or surfactants. The particle size control is achieved by varying the concentration or type of non-aqueous co-solvent. The structural, textural, and catalytic application properties of the prepared nanomaterials are investigated.
Conceptual design of an aircraft automated coating removal system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, J.E.; Draper, J.V.; Pin, F.G.
1996-05-01
Paint stripping of the U.S. Air Force`s large transport aircrafts is currently a labor-intensive, manual process. Significant reductions in costs, personnel and turnaround time can be accomplished by the judicious use of automation in some process tasks. This paper presents the conceptual design of a coating removal systems for the tail surfaces of the C-5 plane. Emphasis is placed on the technology selection to optimize human-automation synergy with respect to overall costs, throughput, quality, safety, and reliability. Trade- offs between field-proven vs. research-requiring technologies, and between expected gain vs. cost and complexity, have led to a conceptual design which ismore » semi-autonomous (relying on the human for task specification and disturbance handling) yet incorporates sensor- based automation (for sweep path generation and tracking, surface following, stripping quality control and tape/breach handling).« less
Complex technology of vacuum-arc processing of structural material surface
NASA Astrophysics Data System (ADS)
Arustamov, V. N.; Ashurov, Kh. B.; Kadyrov, Kh. Kh.; Khudoikulov, I. Kh.
2015-08-01
The development of environmentally friendly and energy-resource-saving technologies based on vacuum arc discharge is a topical problem in science and engineering. In view of their unique properties, cathode spots of a vacuum arc induce cleaning of the surface of an article (cathode) from various contaminations and pulsed thermal action on the surface layers. These processes occur in complex with vacuum-arc deposition of coatings in the same technological cycle, which makes it possible to considerably increase the efficiency of methods for changing physical, mechanical, and chemical properties of the surface of steel articles, which considerably increase their service life. Analysis of the formation of the temperature regime of the surface during vacuum arc action and of the parameters of the deposited coating will make it possible to optimize the regimes of complex treatment of the surfaces of articles and is of considerable theoretical and practical importance.
Optimization of rotational speed for growing BaFe12O19 thin films using spin coating
NASA Astrophysics Data System (ADS)
Budiawanti, S.; Soegijono, B.; Mudzakir, I.; Suharno, Fadillah, L.
2017-07-01
Barium ferrite (BaFe12O19, BaM) thin films were fabricated by the spin coating of precursors obtained by using a sol-gel method. The effects of the rotational speed on the spin-coating process for growing a BaM thin film were investigated in this study. Coated films were heat-deposited at different rotational speeds ranging from 2000 to 4000 rpm, while the number of layers was set to nine. Further, the effect of the number of layers on the growth of BaM thin films was discussed. For this purpose, we take the layers number 1 to 12 and take the constant rotational speed of 3000 rpm. All the film were characterized using X-Ray diffraction, Scanning Electron microscope, and Energy-dispersive X-Ray spectroscopy and Vibrating Sample Magnetometer. It was found that by increasing the rotational speed the amount of material deposited on the Si substrate decreased. The measured grain size of the BaM thin film was nearly similar for three three different rotational speeds. However, the grain size was found to increase the number of layers.
Yu, Chunhe; Hu, Bin
2009-01-01
A PDMS/poly(vinylalcohol) (PDMS/PVA) film prepared through a sol-gel process was coated on stir bars for sorptive extraction, followed by liquid desorption and large volume injection-GC-flame photometric detector (LVI-GC-FPD) for the determination of five organophosphorus pesticides (OPPs) (phorate, fenitrothion, malathion, parathion, and quinalphos) in honey. The preparation reproducibility of PDMS/PVA-coated stir bar ranged from 4.3 to 13.4% (n = 4) in one batch, and from 6.0 to 12.6% (n = 4) in batch to batch. And one prepared stir bar can be used for more than 50 times without apparent coating loss. The significant parameters affecting stir bar sorptive extraction (SBSE) were investigated and optimized. The LODs for five OPPs ranged from 0.013 (parathion) to 0.081 microg/L (phorate) with the RSDs ranging from 5.3 to 14.2% (c = 1 microg/L, n = 6). The proposed method was successfully applied to the analysis of five OPPs in honey.
NASA Astrophysics Data System (ADS)
Hamzah, Esah; Ourdjini, Ali; Ali, Mubarak; Akhter, Parvez; Hj. Mohd Toff, Mohd Radzi; Abdul Hamid, Mansor
In the present study, the effect of various N2 gas flow rates on friction coefficient and surface roughness of TiN-coated D2 tool steel was examined by a commercially available cathodic arc physical vapor deposition (CAPVD) technique. A Pin-on-Disc test was carried out to study the Coefficient of friction (COF) versus sliding distance. A surface roughness tester measured the surface roughness parameters. The minimum values for the COF and surface roughness were recorded at a N2 gas flow rate of 200 sccm. The increase in the COF and surface roughness at a N2 gas flow rate of 100 sccm was mainly attributed to an increase in both size and number of titanium particles, whereas the increase at 300 sccm was attributed to a larger number of growth defects generated during the coating process. These ideas make it possible to optimize the coating properties as a function of N2 gas flow rate for specific applications, e.g. cutting tools for automobiles, aircraft, and various mechanical parts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ang, Caen K.; Burns, Joseph R.; Terrani, Kurt A.
2016-09-01
There is a need to increase the safety margins of current and future light water reactors (LWRs) due to the unfortunate events at Fukushima Daiichi Nuclear Plant. Safety is crucial to restore public confidence in nuclear energy, acknowledged as an economical, high-density energy solution to climate change. The development of accident-tolerant fuel (ATF) concepts is crucial to this endeavor. The objective of ATF is to delay the consequences of accident progression, being inset in high temperature steam and maintaining high thermomechanical strength for radionuclide retention. The use of advanced SiCf-SiC composite as a substitute for zircaloy-based cladding is being considered.more » However, at normal operations, SiC is vulnerable to the reactor coolant and may corrode at an unacceptable rate. As a ceramic-matrix composite material, it is likely to undergo microcracking operation, which may compromise the ability to contain gaseous fission products. A proposed solution to both issues is the application of mitigation coatings for use in normal operations. At Oak Ridge National Laboratory (ORNL), three coating technologies have been investigated with industry collaborators and vendors. These are electrochemical deposition, cathodic arc physical vapor deposition (PVD hereafter) and vacuum plasma spray (VPS). The objective of this document is to summarize these processing technologies, the resultant as-processed microstructures and properties of the coatings. In all processes, substrate constraint resulted in substantial tensile stresses within the coating layer. Each technology must mitigate this tensile stress. Electrochemical coatings use chromium as the coolant facing material, and are deposited on a nickel or carbon “bond coat”. This is economical but suffers microcracking in the chromium layer. PVD-based coatings use chromium and titanium in both metallic form and nitrides, and can be deposited defense-in-depth as multilayers. This vapor method eliminated tensile stress during processing and coatings were up to ~30 μm thick without microcracking. VPS produced coatings based on Zircaloy-2, which has a proven reactor-compatibility. The tensile stresses appearred to be partially mitigated by annealing. Analysis showed that VPS coatings required further optimizations to prevent adverse reactions with the substrate and need a minimum thickness of ~50 μm. In addition, development of coatings are constrained by neutronic depletion analysis, which clearly indicated enrichment as an issue if the coating is too thick. Based on the present work, the cathodic arc PVD technology was considered ready for the extensive testing and evaluation on cladding materials due to their ability to mitigate the excessive tensile stresses and the reasonable coating quality achieved. The VPS Zircaloy-2 coating technology required additional development toward mitigation of issues related to the substrate reaction and porosity. In the future, PVD and VPS will have be scaled upon successful development and demonstration. Electrochemical coatings, which are proven scalability, currently require development to mitigate issues related to the tensile stress after deposition.« less
NASA Astrophysics Data System (ADS)
Krivina, L. A.; Tarasenko, Yu P.; Fel, Ya A.
2017-05-01
Influence of variable technological factors (arch current, fractional pressure of gas in the camera) on structure, physic-mechanical and tribological features of an ion-plasma coating of titanium nitride has been investigated. The adhesion solidity has been put to the test and the mechanism of destruction of a covering has been also researched by a skretch-test method. The optimal mode of spraying at which the formation of the nanostructured bar coating of TiN has been defined. The covering offers an optimal combination of physic-mechanical, tribological and solidity features.
Levelized cost of energy (LCOE) metric to characterize solar absorber coatings for the CSP industry
Boubault, Antoine; Ho, Clifford K.; Hall, Aaron; ...
2015-07-08
The contribution of each component of a power generation plant to the levelized cost of energy (LCOE) can be estimated and used to increase the power output while reducing system operation and maintenance costs. The LCOE is used in order to quantify solar receiver coating influence on the LCOE of solar power towers. Two new parameters are introduced: the absolute levelized cost of coating (LCOC) and the LCOC efficiency. Depending on the material properties, aging, costs, and temperature, the absolute LCOC enables quantifying the cost-effectiveness of absorber coatings, as well as finding optimal operating conditions. The absolute LCOC is investigatedmore » for different hypothetic coatings and is demonstrated on Pyromark 2500 paint. Results show that absorber coatings yield lower LCOE values in most cases, even at significant costs. Optimal reapplication intervals range from one to five years. At receiver temperatures greater than 700 °C, non-selective coatings are not always worthwhile while durable selective coatings consistently reduce the LCOE—up to 12% of the value obtained for an uncoated receiver. Moreover the absolute LCOC is a powerful tool to characterize and compare different coatings, not only considering their initial efficiencies but also including their durability.« less
Large-Aperture Wide-Bandwidth Anti-Reflection-Coated Silicon Lenses for Millimeter Wavelengths
NASA Technical Reports Server (NTRS)
Datta, R.; Munson, C. D.; Niemack, M. D.; McMahon, J. J.; Britton, J.; Wollack, E. J.; Beall, J.; Devlin, M. J.; Fowler, J.; Gallardo, P.;
2013-01-01
The increasing scale of cryogenic detector arrays for sub-millimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n = 3.4, low loss, and relatively high thermal conductivity is a nearly optimal material for these purposes, but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coffecient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating. We have fabricated and coated silicon lenses as large as 33.4 cm in diameter with coatings optimized for use between 125-165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30 deg. with low cross-polarization. We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to sub-millimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth.
van den Ban, Sander; Pitt, Kendal G; Whiteman, Marshall
2018-02-01
A scientific understanding of interaction of product, film coat, film coating process, and equipment is important to enable design and operation of industrial scale pharmaceutical film coating processes that are robust and provide the level of control required to consistently deliver quality film coated product. Thermodynamic film coating conditions provided in the tablet film coating process impact film coat formation and subsequent product quality. A thermodynamic film coating model was used to evaluate film coating process performance over a wide range of film coating equipment from pilot to industrial scale (2.5-400 kg). An approximate process-imposed transition boundary, from operating in a dry to a wet environment, was derived, for relative humidity and exhaust temperature, and used to understand the impact of the film coating process on product formulation and process control requirements. This approximate transition boundary may aid in an enhanced understanding of risk to product quality, application of modern Quality by Design (QbD) based product development, technology transfer and scale-up, and support the science-based justification of critical process parameters (CPPs).
He, Shuang; Li, Feng; Zhou, Dan; Du, Junrong; Huang, Yuan
2012-10-01
A novel coated gastric floating drug-delivery system (GFDDS) of bergenin (BN) and cetirizine dihydrochloride (CET) was developed. First, the pharmacodynamic studies were performed and the results revealed that the new compounds of bergenin/cetirizine dihydrochloride had comparative efficacy as commercial products (bergenin/chlorphenamine maleate) but with fewer side effects on central nervous system (CNS). Subsequently, bergenin was formulated as an extended-release core tablet while cetirizine dihydrochloride was incorporated into the gastric coating film for immediate release. The formulation of GFDDS was optimized by CET content uniformity test, in vitro buoyancy and drug release. Herein, the effects of sodium bicarbonate (effervescent), hydroxypropyl methylcellulose (HPMC, matrix polymer) and coating weight gain were investigated respectively. The optimized GFDDS exhibited good floating properties (buoyancy lag time < 2 min; floating duration > 10 h) and satisfactory drug-release profiles (immediate release of CET in 10 min and sustained release of BN for 12 h). In vivo gamma scintigraphy proved that the optimized GFDDS could retain in the stomach with a prolonged gastric retention time (GRT) of 5 h, and the coating layer showed no side effect for gastric retention. The novel coated gastric floating drug-delivery system offers a new approach to enhance BN's absorption at its absorption site and the efficacy of both CET and BN.
Recent Advances in the Development of Thick-Section Melt-Infiltrated C/SiC Composites
NASA Technical Reports Server (NTRS)
Babcock, Jason R.; Ramachandran, Gautham; Williams, Brian E.; Effinger, Michael R.
2004-01-01
Using a pressureless melt infiltration and in situ reaction process to form the silicon carbide (SiC) matrix, Ultramet has been developing a means to rapidly fabricate ceramic matrix composites (CMCs) targeting thicker sections. The process also employs a unique route for the application of oxide fiber interface coatings designed to protect the fiber and impart fiber-matrix debond. Working toward a 12 inch diameter, 2.5 inch thick demonstrator component, the effect of various processing parameters on room temperature flexure strength is being studied with plans for more extensive elevated temperature mechanical strength evaluation to follow this initial optimization process.
Peter Christoper, G.V.; Vijaya Raghavan, C.; Siddharth, K.; Siva Selva Kumar, M.; Hari Prasad, R.
2013-01-01
In the current study zidovudine loaded PLGA nanoparticles were prepared, coated and further investigated for its effectiveness in brain targeting. IR and DSC studies were performed to determine the interaction between excipients used and to find out the nature of drug in the formulation. Formulations were prepared by adopting 23 factorial designs to evaluate the effects of process and formulation variables. The prepared formulations were subjected for in vitro and in vivo evaluations. In vitro evaluations showed particle size below 100 nm, entrapment efficiency of formulations ranges of 28–57%, process yield of 60–76% was achieved and drug release for the formulations were in the range of 50–85%. The drug release from the formulations was found to follow Higuchi release pattern, n–value obtained after Korsemeyer plot was in the range of 0.56–0.78. In vivo evaluations were performed in mice after intraperitoneal administration of zidovudine drug solution, uncoated and coated formulation. Formulation when coated with Tween 80 achieved a higher concentration in the brain than that of the drug in solution and of the uncoated formulation. Stability studies indicated that there was no degradation of the drug in the formulation after 90 days of preparation when stored in refrigerated condition. PMID:24648825
Multilayer coatings on glass for painting protection and optimized color rendering
NASA Astrophysics Data System (ADS)
Piegari, Angela; Polato, Pietro
2002-06-01
Optical coatings offer a solution to the problem of damage to paintings, caused by ultraviolet and infrared radiation, by cutting radiation wavelengths outside the visible range. Simultaneously, these coatings can enhance an observer's viewing of the paintings by reducing the reflections from ordinary glass panes. All these functions should be performed by the same coating. The design of such a coating, as well as the evaluation of existing products, requires the definition of an appropriate merit function in which coating absorption, high transparency, and color rendering are combined.
Highly reflective polymeric substrates functionalized utilizing atomic layer deposition
NASA Astrophysics Data System (ADS)
Zuzuarregui, Ana; Coto, Borja; Rodríguez, Jorge; Gregorczyk, Keith E.; Ruiz de Gopegui, Unai; Barriga, Javier; Knez, Mato
2015-08-01
Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.
2006-11-26
with controlled micro and nanostructure for highly selective, high sensitivity assays. The process was modeled and a procedure for fabricating SERS...small volumes with controlled micro and nanostructure for highly selective, high sensitivity assays. We proved the feasibility of the technique and...films templated by colloidal crystals. The control over the film structure allowed optimizing their performance for potential sensor applications. The
NASA Astrophysics Data System (ADS)
Coşkun, M. İbrahim; Karahan, İsmail H.; Yücel, Yasin; Golden, Teresa D.
2016-04-01
CoCrMo bio-metallic alloys were coated with a hydroxyapatite (HA) film by electrodeposition using various electrochemical parameters. Response surface methodology and central composite design were used to optimize deposition parameters such as electrolyte pH, deposition potential, and deposition time. The effects of the coating parameters were evaluated within the limits of solution pH (3.66 to 5.34), deposition potential (-1.13 to -1.97 V), and deposition time (6.36 to 73.64 minutes). A 5-level-3-factor experimental plan was used to determine ideal deposition parameters. Optimum conditions for the deposition parameters of the HA coating with high in vitro corrosion performance were determined as electrolyte pH of 5.00, deposition potential of -1.8 V, and deposition time of 20 minutes.
Oxide-dispersion-strengthened turbine blades, volume 1
NASA Technical Reports Server (NTRS)
Millan, P. P., Jr.; Mays, J. C.
1986-01-01
The objective of Project 4 was to develop a high-temperature, uncooled gas turbine blade using MA6000 alloy. The program objectives were achieved. Production scale up of the MA6000 alloy was achieved with a fair degree of tolerance to nonoptimum processing. The blade manufacturing process was also optimized. The mechanical, environmental, and physical property evaluations of MA6000 were conducted. The ultimate tensile strength, to about 704 C (130 F), is higher than DS MAR-M 247 but with a corresponding lower tensile elongation. Also, above 982 C (180 F) MA6000 tensile strength does not decrease as rapidly as MAR-M 247 because the ODS mechanism still remains active. Based on oxidation resistance and diffusional stability considerations, NiCrAlY coatings are recommended. CoCrAly coating should be applied on top of a thin NiCrAlY coating. Vibration tests, whirlpit tests, and a high-rotor-rig test were conducted to ensure successful completion of the engine test of the MA6000 TFE731 high pressure turbine blades. The results of these tests were acceptable. In production quantities, the cost of the Project 4 MA6000 blade is estimated to be about twice that of a cast DS MAR-M 247 blade.
NASA Technical Reports Server (NTRS)
Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Tsurikov, A.; Sutter, J. K.
2003-01-01
High velocity oxy-fuel (HVOF) sprayed, functionally graded polyimide/WC-Co composite coatings on polymer matrix composites (PMC's) are being investigated for applications in turbine engine technologies. This requires that the polyimide, used as the matrix material, be fully crosslinked during deposition in order to maximize its engineering properties. The rapid heating and cooling nature of the HVOF spray process and the high heat flux through the coating into the substrate typically do not allow sufficient time at temperature for curing of the thermoset. It was hypothesized that external substrate preheating might enhance the deposition behavior and curing reaction during the thermal spraying of polyimide thermosets. A simple analytical process model for the deposition of thermosetting polyimide onto polymer matrix composites by HVOF thermal spray technology has been developed. The model incorporates various heat transfer mechanisms and enables surface temperature profiles of the coating to be simulated, primarily as a function of substrate preheating temperature. Four cases were modeled: (i) no substrate preheating; (ii) substrates electrically preheated from the rear; (iii) substrates preheated by hot air from the front face; and (iv) substrates electrically preheated from the rear and by hot air from the front.
Oxide-dispersion-strengthened turbine blades. Volume 2
NASA Technical Reports Server (NTRS)
Millan, P. P., Jr.; Mays, J. C.; Humbert, D. R.
1987-01-01
The overall objective of Project 4 was to develop and test a high-temperature, uncooled gas turbine blade using MA6000 alloy. Production scale up of the MA6000 alloy was achieved with a fair degree of tolerance to non-optimum processing. The blade manufacturing process was also optimized. The mechanical, environmental, and physical property evaluations of MA6000 were conducted. The ultimate tensile strength, to about 704 C (1300 F), is higher than DS MAR-M 247 but with a corresponding lower tensile elongation. Also, above 982 C (1800 F) MA6000 tensile strength does not decrease as rapidly as MAR-M 247 because the ODS mechanism still remains active. Based on oxidation resistance and diffusional stability considerations, NiCrAlY coatings are recommended. CoCrAlY coating should be applied on top of a thin NiCrAlY coating if hot corrosion is expected. Vibration, whirlpit, and high-rotor-rig tests were conducted to ensure successful completion of the engine test of the MA6000 TFE731 high pressure turbine blades. Test results were acceptable. In production quantities, the cost of the Project 4 MA6000 blade is estimated to be twice that of a cast DS MAR-M 247 blade.
Biomedical imaging and therapy with physically and physiologically tailored magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Khandhar, Amit Praful
Magnetic particle imaging (MPI) and magnetic fluid hyperthermia (MFH) are emerging imaging and therapy approaches that have the potential to improve diagnostic safety and disease management of heart disease and cancer - the number 1 and 2 leading causes of deaths in the United States. MPI promises real-time, tomographic and quantitative imaging of superparamagnetic iron oxide nanoparticle (SPION) tracers distributed in vivo, and is targeted to offer a safer angiography alternative for its first clinical application. MFH uses ac-fields to dissipate heat from SPIONs that can be delivered locally to promote hyperthermia therapy (~42°C) in cancer cells. Both technologies use safe radiofrequency magnetic fields to exploit the fundamental magnetic relaxation properties of superparamagnetic iron oxide nanoparticles (SPIONs), which must be tailored for optimal imaging in the case of MPI, and maximum hyperthermia potency in the case of MFH. Furthermore, the magnetic core and shell of SPIONs are both central to the optimization process; the shell, in particular, bridges the translational gap between the optimized core and its safe and effective use in the physiological environment. Unfortunately, existing SPIONs that were originally designed as MRI contrast agents lack the basic physical properties that enable the clinical translation of MPI and MFH. In this work, the core and shell of monodisperse SPIONs were optimized in concert to accomplish two equally important objectives: (1) biocompatibility, and (2) MPI and MFH efficacy of SPIONs in physiological environments. Critically, it was found that the physical and physiological responses of SPIONs are coupled, and impacting one can have consequences on the other. It was shown that the poly(ethylene glycol) (PEG)-based shell when properly optimized reduced protein adsorption to SPION surface and phagocytic uptake in macrophages - both prerequisites for designing long-circulating SPIONs. In MPI, tailoring the surface coating reduced protein adsorption and improved colloidal stability, which were critical in retaining the magnetization relaxation properties of the SPIONs. The improvements in surface coatings enabled the use of larger SPION cores (> 20 nm core diameter), which were used to demonstrate benchmark-imaging performance in some of the world's first MPI scanners at Philips Medical Imaging and University of California, Berkeley. In MFH, it was shown for the first time that optimization of heat loss from SPIONs (W/g) is possible by tailoring the core size and size distribution for the given ac-field conditions. Biodistribution and blood circulation studies in mice showed that SPIONs accumulated primarily in the liver and spleen with minimal renal involvement, and demonstrated gradual clearance. Circulation time was evaluated using the MPI signal detected over time in blood, which offered insight on the relevant circulation time for angiography applications. In comparison with carboxy-dextran coated ResovistRTM SPIONs, the PEG-coated SPIONs developed in this work circulated substantially longer; furthermore, reducing the hydrodynamic diameter showed a 4.5x improvement in blood half-life. The work presented in this thesis demonstrates that the combined effort in optimizing the core and shell properties of SPIONs enhances biocompatibility and efficacy, with the in vivo studies providing critical feedback on the success (or failure) of the optimization process. Future work will entail designing functionalized SPIONs for targeting specific disease sites, which will further enable the molecular level diagnosis and therapy of diseases.
Application of electroless deposition for surface modification of the multiwall carbon nanotubes
NASA Astrophysics Data System (ADS)
Kurkowska, M.; Awietjan, S.; Kozera, R.; Jezierska, E.; Boczkowska, A.
2018-06-01
The paper describes modification of carbon nanotubes surface by attaching the grains of Ni-P, Ni-B, Co-B and Fe-B. The modification was obtained by electroless metallization using sodium hypophosphite (NaH2PO2). We have investigated the parameters of electroless metallization process of CNTs. The uniformity of the coating on the carbon nanotubes was related to proper surface activation. While optimizing the electroless deposition, a range of catalyst concentrations from 0.1 to 1.0 gPd/l were tested. Deposition was used to improve the electrical properties of the later composite materials CNT-Ni-P/epoxy. The best results of electroless deposition were obtained for Ni-P and Ni-B coatings.
Thermal degradation kinetics of phycocyanin encapsulation as an antioxidant agent
NASA Astrophysics Data System (ADS)
Nilamsari, A. M.; Yunanda, A.; Hadiyanto, H.
2018-01-01
Phycocyanin is a blue-light pigment that found in Cyanobacteria and two Eukaryotics algae such as Rhodophyta and Crytophyta. Phycocyanin is soluble in water and has a strong fluorescent properties as an antioxidant and normally used in food industry, cosmetic, biotechnology, and drug. However, Phycocyanin is easily damaged by a heating process. The aim of this study is to obtain the optimal condition of phycocyanin encapsulation with different coating materials, Chitosan and Carrageenan, by the calculation of heat resistance of antioxidant activity (D), range of temperature that increase the rate of degradation (Z), rate constant of degradation (k), and activation energy (Ea). The ratio of phycocyanin and the coating material are 2% (w/v) and 2 % (w/v).
NASA Astrophysics Data System (ADS)
Rahy, Abdelaziz
The primary goal of this project was to develop a flexible transparent conductor with 100 O/sq with 90% transmittance in the wavelength range of 400-700nm on a flexible substrate. A second objective was to simplify the coating process to be commercially viable. The best result achieved so far was 110 O/sq at 88% transmittance using purified single walled nanotubes (SWNTs) coated on a polyethylene naphthalate (PEN) substrate on both sides. The SWNT sample used was purchased from Carbon Nanotechnologies Inc (CNI). Proper sonication of the single walled nanotubes (SWNTs) with a proper solvent selection with no use of surfactant simplified the overall coating procedure from five steps (prior art method) to three steps utilizing a dip coating method. We also found that the use of metallic SWNTs can significantly improve the conductivity and transmittance compared with the use of mixed SWNTs, i.e., unseparated SWNTs We also studied a possible adhesion mechanism between SWNTs and the surface of PEN; we concluded that pi - pi stacking effect and hydrophobic-to-hydrophobic interaction are the major contributing factors to have CNTs adhere on the surface of the PEN substrate. Working devices of polymer light emitting diodes (PLEDs) and solar cell were successfully fabricated using SWNT coated substrates. A no optimized PLEDs device exhibited low turn-on voltage (˜5V), and the fabricated solar cell functioned. The devices have demonstrated the coated film can be used for potential electronic devices.
Large Aircraft Robotic Paint Stripping (LARPS) system and the high pressure water process
NASA Astrophysics Data System (ADS)
See, David W.; Hofacker, Scott A.; Stone, M. Anthony; Harbaugh, Darcy
1993-03-01
The aircraft maintenance industry is beset by new Environmental Protection Agency (EPA) guidelines on air emissions, Occupational Safety and Health Administration (OSHA) standards, dwindling labor markets, Federal Aviation Administration (FAA) safety guidelines, and increased operating costs. In light of these factors, the USAF's Wright Laboratory Manufacturing Technology Directorate and the Aircraft Division of the Oklahoma City Air Logistics Center initiated a MANTECH/REPTECH effort to automate an alternate paint removal method and eliminate the current manual methylene chloride chemical stripping methods. This paper presents some of the background and history of the LARPS program, describes the LARPS system, documents the projected operational flow, quantifies some of the projected system benefits and describes the High Pressure Water Stripping Process. Certification of an alternative paint removal method to replace the current chemical process is being performed in two phases: Process Optimization and Process Validation. This paper also presents the results of the Process Optimization for metal substrates. Data on the coating removal rate, residual stresses, surface roughness, preliminary process envelopes, and technical plans for process Validation Testing will be discussed.
Carbó, Anna; Torres, Rosario; Usall, Josep; Solsona, Cristina; Teixidó, Neus
2017-11-01
The biocontrol agent Candida sake CPA-1 has demonstrated to be effective against several diseases on fruit. However, for application of CPA-1 under field conditions, it was necessary to mix it with a food coating to improve survival under stress conditions, as well as adherence and distribution on fruit surfaces. The objective of this study was to obtain a more competitive formulation under field conditions to be applied independently of any product. To achieve this purpose, the drying process of CPA-1 by a fluidised-bed spray-drying system together with biodegradable coatings was optimised. This approach is novel for the drying system used and the formulation obtained which was able to form a film or coating on fruit surfaces. Several substances were tested as carriers and binders, and drying temperature was optimised. The addition of protective compounds was also tested to improve survival of CPA-1 during the dehydration process. Product shelf life, biocontrol efficacy on grapes against Botrytis cinerea, and the improvement of C. sake behaviour under stress conditions were tested. The optimal temperature of drying was 55 °C and two formulations that were able to develop a coating on fruit surfaces were obtained. One of the formulations was created by using a combination of native and pregelatinised potato starch; the other formulation was obtained using maltodextrin and by adding skimmed milk and sucrose as protectant compounds. The formulated products reduced the incidence and severity of B. cinerea, and CPA-1 survival rate was increased under stress conditions of temperature and humidity.
NASA Astrophysics Data System (ADS)
Flannery, Matthew; Fan, Angie; Desai, Tapan G.
2014-03-01
High powered laser diodes are used in a wide variety of applications ranging from telecommunications to industrial applications. Copper microchannel coolers (MCCs) utilizing high velocity, de-ionized water coolant are used to maintain diode temperatures in the recommended range to produce stable optical power output and control output wavelength. However, aggressive erosion and corrosion attack from the coolant limits the lifetime of the cooler to only 6 months of operation. Currently, gold plating is the industry standard for corrosion and erosion protection in MCCs. However, this technique cannot perform a pin-hole free coating and furthermore cannot uniformly cover the complex geometries of current MCCs involving small diameter primary and secondary channels. Advanced Cooling Technologies, Inc., presents a corrosion and erosion resistant coating (ANCERTM) applied by a vapor phase deposition process for enhanced protection of MCCs. To optimize the coating formation and thickness, coated copper samples were tested in 0.125% NaCl solution and high purity de-ionized (DIW) flow loop. The effects of DIW flow rates and qualities on erosion and corrosion of the ANCERTM coated samples were evaluated in long-term erosion and corrosion testing. The robustness of the coating was also evaluated in thermal cycles between 30°C - 75°C. After 1000 hours flow testing and 30 thermal cycles, the ANCERTM coated copper MCCs showed a corrosion rate 100 times lower than the gold plated ones and furthermore were barely affected by flow rates or temperatures thus demonstrating superior corrosion and erosion protection and long term reliability.
Bahnasy, Mahmoud F; Lucy, Charles A
2012-12-07
A sequential surfactant bilayer/diblock copolymer coating was previously developed for the separation of proteins. The coating is formed by flushing the capillary with the cationic surfactant dioctadecyldimethylammonium bromide (DODAB) followed by the neutral polymer poly-oxyethylene (POE) stearate. Herein we show the method development and optimization for capillary isoelectric focusing (cIEF) separations based on the developed sequential coating. Electroosmotic flow can be tuned by varying the POE chain length which allows optimization of resolution and analysis time. DODAB/POE 40 stearate can be used to perform single-step cIEF, while both DODAB/POE 40 and DODAB/POE 100 stearate allow performing two-step cIEF methodologies. A set of peptide markers is used to assess the coating performance. The sequential coating has been applied successfully to cIEF separations using different capillary lengths and inner diameters. A linear pH gradient is established only in two-step CIEF methodology using 3-10 pH 2.5% (v/v) carrier ampholyte. Hemoglobin A(0) and S variants are successfully resolved on DODAB/POE 40 stearate sequentially coated capillaries. Copyright © 2012 Elsevier B.V. All rights reserved.
Theory, Investigation and Stability of Cathode Electrocatalytic Activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Dong; Liu, Mingfei; Lai, Samson
2012-09-30
The main objective of this project is to systematically characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF, aiming to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating. The understanding gained will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance. More specifically, the technical objectives include: (1) to characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF; (2) to characterize the microscopic details andmore » stability of the LSCF-catalyst (e.g., LSM) interfaces; (3) to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating; and (4) to demonstrate that the performance and stability of porous LSCF cathodes can be enhanced by the application of a thin-film coating of LSM through a solution infiltration process in small homemade button cells and in commercially available cells of larger dimension. We have successfully developed dense, conformal LSM films with desired structure, composition, morphology, and thickness on the LSCF surfaces by two different infiltration processes: a non-aqueous and a water-based sol-gel process. It is demonstrated that the activity and stability of LSCF cathodes can be improved by the introduction of a thin-film LSM coating through an infiltration process. Surface and interface of the LSM-coated LSCF cathode were systematically characterized using advanced microscopy and spectroscopy techniques. TEM observation suggests that a layer of La and Sr oxide was formed on LSCF surfaces after annealing. With LSM infiltration, in contrast, we no longer observe such La/Sr oxide layer on the LSM-coated LSCF samples after annealing under similar conditions. This was also confirmed by x-ray analyses. For example, soft x-ray XANES data reveal that Co cations displace the Mn cations as being more favored to be reduced. Variations in the Sr-O in the annealed LSCF Fourier-transformed (FT) EXAFS suggest that some Sr segregation is occurring, but is not present in the annealed LSM-infiltrated LSCF cathode materials. Further, a surface enhanced Raman technique was also developed into to probe and map LSM and LSCF phase on underlying YSZ substrate, enabling us to capture important chemical information of cathode surfaces under practical operating conditions. Electrochemical models for the design of test cells and understanding of mechanism have been developed for the exploration of fundamental properties of electrode materials. Novel catalyst coatings through particle depositions (SDC, SSC, and LCC) or continuous thin films (PSM and PSCM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized LSM infiltration process. Microstructure examination of the tested cells did not show obvious differences between blank and infiltrated cells, suggesting that the infiltrated LSM may form a coherent film on the LSCF cathodes. There was no significant change in the morphology or microstructure of the LSCF cathode due to the structural similarity of LSCF and LSM. Raman analysis of the tested cells indicated small peaks emerging on the blank cells that correspond to trace amounts of secondary phase formation during operation (e.g., CoO{sub x}). The formation of this secondary phase might be attributed to performance degradation. In contrast, there was no such secondary phase observed in the LSM infiltrated cells, indicating that the LSM modification staved off secondary phase formation and thus improved the stability.« less
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
1988-01-01
The determination of the tribilogically optimum composition of chromium-carbide-based solid lubricant coatings using a foil gas bearing test apparatus is described. The coatings contain a wear resistant chromium carbide `base stock' with the lubricant additives silver and BaF2-CaF2 eutectic. The coating composition is optimized for air-lubricated foil gas bearings at temperatures ranging from 25 to 650 C. The various compositions were prepared by powder blending, then plasma sprayed onto Inconel 718 test journals and diamond ground to the desired coating thickness and surface finish. The journals were operated against preoxidized Ni-Cr alloy foils, and the test bearings were subjected to repeated start-stop cycles under a bearing unit of 14 kPa. Sliding contact between the coated journal and the smooth foil occurs during bearing start-up before lift-off or hydrodynamic lubrication by the air film and during bearing coast-down. The bearings were tested for 9000 start-stop cycles or until specimen reached a predetermined failure level.
The optimal structure-conductivity relation in epoxy-phthalocyanine nanocomposites.
Huijbregts, L J; Brom, H B; Brokken-Zijp, J C M; Kemerink, M; Chen, Z; Goeje, M P de; Yuan, M; Michels, M A J
2006-11-23
Phthalcon-11 (aquocyanophthalocyaninatocobalt (III)) forms semiconducting nanocrystals that can be dispersed in epoxy coatings to obtain a semiconducting material with a low percolation threshold. We investigated the structure-conductivity relation in this composite and the deviation from its optimal realization by combining two techniques. The real parts of the electrical conductivity of a Phthalcon-11/epoxy coating and of Phthalcon-11 powder were measured by dielectric spectroscopy as a function of frequency and temperature. Conducting atomic force microscopy (C-AFM) was applied to quantify the conductivity through the coating locally along the surface. This combination gives an excellent tool to visualize the particle network. We found that a large fraction of the crystals is organized in conducting channels of fractal building blocks. In this picture, a low percolation threshold automatically leads to a conductivity that is much lower than that of the filler. Since the structure-conductivity relation for the found network is almost optimal, a drastic increase in the conductivity of the coating cannot be achieved by changing the particle network, but only by using a filler with a higher conductivity level.
Jeong, Yesul; Pearson, Christopher; Kim, Hyun-Gwan; Park, Man-Young; Kim, Hongdoo; Do, Lee-Mi; Petty, Michael C
2016-01-27
We report on the optimization of the plasma treatment conditions for a solution-processed silicon dioxide gate insulator for application in zinc oxide thin film transistors (TFTs). The SiO2 layer was formed by spin coating a perhydropolysilazane (PHPS) precursor. This thin film was subsequently thermally annealed, followed by exposure to an oxygen plasma, to form an insulating (leakage current density of ∼10(-7) A/cm(2)) SiO2 layer. Optimized ZnO TFTs (40 W plasma treatment of the gate insulator for 10 s) possessed a carrier mobility of 3.2 cm(2)/(V s), an on/off ratio of ∼10(7), a threshold voltage of -1.3 V, and a subthreshold swing of 0.2 V/decade. In addition, long-term exposure (150 min) of the pre-annealed PHPS to the oxygen plasma enabled the maximum processing temperature to be reduced from 180 to 150 °C. The resulting ZnO TFT exhibited a carrier mobility of 1.3 cm(2)/(V s) and on/off ratio of ∼10(7).
Carbon Dots as Fillers Inducing Healing/Self-Healing and Anticorrosion Properties in Polymers.
Zhu, Cheng; Fu, Yijun; Liu, Changan; Liu, Yang; Hu, Lulu; Liu, Juan; Bello, Igor; Li, Hao; Liu, Naiyun; Guo, Sijie; Huang, Hui; Lifshitz, Yeshayahu; Lee, Shuit-Tong; Kang, Zhenhui
2017-08-01
Self-healing is the way by which nature repairs damage and prolongs the life of bio entities. A variety of practical applications require self-healing materials in general and self-healing polymers in particular. Different (complex) methods provide the rebonding of broken bonds, suppressing crack, or local damage propagation. Here, a simple, versatile, and cost-effective methodology is reported for initiating healing in bulk polymers and self-healing and anticorrosion properties in polymer coatings: introduction of carbon dots (CDs), 5 nm sized carbon nanocrystallites, into the polymer matrix forming a composite. The CDs are blended into polymethacrylate, polyurethane, and other common polymers. The healing/self-healing process is initiated by interfacial bonding (covalent, hydrogen, and van der Waals bonding) between the CDs and the polymer matrix and can be optimized by modifying the functional groups which terminate the CDs. The healing properties of the bulk polymer-CD composites are evaluated by comparing the tensile strength of pristine (bulk and coatings) composites to those of fractured composites that are healed and by following the self-healing of scratches intentionally introduced to polymer-CD composite coatings. The composite coatings not only possess self-healing properties but also have superior anticorrosion properties compared to those of the pure polymer coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shrestha, Ranjit; Kim, Wontae
2017-06-01
This paper investigates the possibilities of evaluating non-uniform coating thickness using thermal wave imaging method. A comparative study of pulsed thermography (PT) and lock-in thermography (LIT) based on evaluating the accuracy of predicted coating thickness is presented. In this study, a transient thermal finite element model was created in ANSYS 15. A single square pulse heating for PT and a sinusoidal heating at different modulation frequencies for LIT were used to stimulate the sample according to the experimental procedures. The response of thermally excited surface was recorded and data processing with Fourier transform was carried out to obtain the phase angle. Then calculated phase angle was correlated with the coating thickness. The method demonstrated potential in the evaluation of coating thickness and was successfully applied to measure the non-uniform top layers ranging from 0.1 mm to 0.6 mm; within an accuracy of 0.0003-0.0023 mm for PT and 0.0003-0.0067 mm for LIT. The simulation model enabled a better understanding of PT and LIT and provided a means of establishing the required experimental set-up parameters. This also led to optimization of experimental configurations, thus limiting the number of physical tests necessary.
Mehta, Rashi I; Mehta, Rupal I
2018-03-19
Hydrophilic polymers are ubiquitously applied as surface coatings on catheters and intravascular medical technologies. Recent clinical literature has heightened awareness on the complication of hydrophilic polymer embolism, the phenomenon wherein polymer coating layers separate from catheter and device surfaces, and may be affiliated with a range of unanticipated adverse reactions. Significant system barriers have limited and delayed reporting on this iatrogenic complication, the full effects of which remain underrecognized by healthcare providers and manufacturers of various branded devices. In 2015, the United States Food and Drug Administration acknowledged rising clinical concerns and stated that the agency would work with stakeholders to further evaluate gaps that exist in current national and international device standards for coated intravascular medical technologies. The present article reviews current knowledge on this complication as well as factors that played a role in delaying detection and dissemination of information and new knowledge once hazards and clinical risks were identified. Furthermore, organ-specific effects and adverse reaction patterns are summarized, along with implications for device manufacturing, safety assurance, and regulation. Qualitative and quantitative particulate testing are needed to optimize coated intravascular device technologies. Moreover, general enhanced processes for medical device surveillance are required for timely adverse event management and to ensure patient safety.
Soft plasma electrolysis with complex ions for optimizing electrochemical performance
NASA Astrophysics Data System (ADS)
Kamil, Muhammad Prisla; Kaseem, Mosab; Ko, Young Gun
2017-03-01
Plasma electrolytic oxidation (PEO) was a promising surface treatment for light metals to tailor an oxide layer with excellent properties. However, porous coating structure was generally exhibited due to excessive plasma discharges, restraining its performance. The present work utilized ethylenediaminetetraacetic acid (EDTA) and Cu-EDTA complexing agents as electrolyte additives that alter the plasma discharges to improve the electrochemical properties of Al-1.1Mg alloy coated by PEO. To achieve this purpose, PEO coatings were fabricated under an alternating current in silicate electrolytes containing EDTA and Cu-EDTA. EDTA complexes were found to modify the plasma discharging behaviour during PEO that led to a lower porosity than that without additives. This was attributed to a more homogeneous electrical field throughout the PEO process while the coating growth would be maintained by an excess of dissolved Al due to the EDTA complexes. When Cu-EDTA was used, the number of discharge channels in the coating layer was lower than that with EDTA due to the incorporation of Cu2O and CuO altering the dielectric behaviour. Accordingly, the sample in the electrolyte containing Cu-EDTA constituted superior corrosion resistance to that with EDTA. The electrochemical mechanism for excellent corrosion protection was elucidated in the context of equivalent circuit model.
NASA Astrophysics Data System (ADS)
Koch, D.; Mauer, G.; Vaßen, R.
2017-04-01
Yttria-stabilized zirconia (YSZ) is the state-of-the-art material for the top coat of thermal barrier coatings. To increase the efficiency and lifetime of gas turbines, the integration of MoSi2 as a healing material was proposed. A new method of manufacture was explored in order to enable the spraying of a homogeneous mixed layer of YSZ and MoSi2. As the chemical and physical properties of these powders are very different, they require contrasting process conditions. Due to the evaporation of Si from MoSi2 at spraying conditions suitable for YSZ, more moderate conditions and a shorter time of flight are required for depositing MoSi2. At the same time, the spraying conditions still need to be sufficient for melting the YSZ particles in order to produce a coating. To obtain a homogeneous mixture, both conditions can be matched using an injection system that allows powder injection at two different locations of the plasma jet. Two-color pyrometry during flight (DPV-2000, Tecnar) was used to monitor the actual particle temperature. By optimizing the injection point for the MoSi2, a mixed coating was obtained without decomposition of the MoSi2, which has been analyzed by means of XRD and SEM.
Soft plasma electrolysis with complex ions for optimizing electrochemical performance
Kamil, Muhammad Prisla; Kaseem, Mosab; Ko, Young Gun
2017-01-01
Plasma electrolytic oxidation (PEO) was a promising surface treatment for light metals to tailor an oxide layer with excellent properties. However, porous coating structure was generally exhibited due to excessive plasma discharges, restraining its performance. The present work utilized ethylenediaminetetraacetic acid (EDTA) and Cu-EDTA complexing agents as electrolyte additives that alter the plasma discharges to improve the electrochemical properties of Al-1.1Mg alloy coated by PEO. To achieve this purpose, PEO coatings were fabricated under an alternating current in silicate electrolytes containing EDTA and Cu-EDTA. EDTA complexes were found to modify the plasma discharging behaviour during PEO that led to a lower porosity than that without additives. This was attributed to a more homogeneous electrical field throughout the PEO process while the coating growth would be maintained by an excess of dissolved Al due to the EDTA complexes. When Cu-EDTA was used, the number of discharge channels in the coating layer was lower than that with EDTA due to the incorporation of Cu2O and CuO altering the dielectric behaviour. Accordingly, the sample in the electrolyte containing Cu-EDTA constituted superior corrosion resistance to that with EDTA. The electrochemical mechanism for excellent corrosion protection was elucidated in the context of equivalent circuit model. PMID:28281672
Demonstration of pharmaceutical tablet coating process by injection molding technology.
Puri, Vibha; Brancazio, David; Harinath, Eranda; Martinez, Alexander R; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Braatz, Richard D; Myerson, Allan S; Trout, Bernhardt L
2018-01-15
We demonstrate the coating of tablets using an injection molding (IM) process that has advantage of being solvent free and can provide precision coat features. The selected core tablets comprising 10% w/w griseofulvin were prepared by an integrated hot melt extrusion-injection molding (HME-IM) process. Coating trials were conducted on a vertical injection mold machine. Polyethylene glycol and polyethylene oxide based hot melt extruded coat compositions were used. Tablet coating process feasibility was successfully demonstrated using different coating mold designs (with both overlapping and non-overlapping coatings at the weld) and coat thicknesses of 150 and 300 μm. The resultant coated tablets had acceptable appearance, seal at the weld, and immediate drug release profile (with an acceptable lag time). Since IM is a continuous process, this study opens opportunities to develop HME-IM continuous processes for transforming powder to coated tablets. Copyright © 2017 Elsevier B.V. All rights reserved.
Han, Binghong; Paulauskas, Tadas; Key, Baris; Peebles, Cameron; Park, Joong Sun; Klie, Robert F; Vaughey, John T; Dogan, Fulya
2017-05-03
Surface coating of cathode materials with Al 2 O 3 has been shown to be a promising method for cathode stabilization and improved cycling performance at high operating voltages. However, a detailed understanding on how coating process and cathode composition change the chemical composition, morphology, and distribution of coating within the cathode interface and bulk lattice is still missing. In this study, we use a wet-chemical method to synthesize a series of Al 2 O 3 -coated LiNi 0.5 Co 0.2 Mn 0.3 O 2 and LiCoO 2 cathodes treated under various annealing temperatures and a combination of structural characterization techniques to understand the composition, homogeneity, and morphology of the coating layer and the bulk cathode. Nuclear magnetic resonance and electron microscopy results reveal that the nature of the interface is highly dependent on the annealing temperature and cathode composition. For Al 2 O 3 -coated LiNi 0.5 Co 0.2 Mn 0.3 O 2 , higher annealing temperature leads to more homogeneous and more closely attached coating on cathode materials, corresponding to better electrochemical performance. Lower Al 2 O 3 coating content is found to be helpful to further improve the initial capacity and cyclability, which can greatly outperform the pristine cathode material. For Al 2 O 3 -coated LiCoO 2 , the incorporation of Al into the cathode lattice is observed after annealing at high temperatures, implying the transformation from "surface coatings" to "dopants", which is not observed for LiNi 0.5 Co 0.2 Mn 0.3 O 2 . As a result, Al 2 O 3 -coated LiCoO 2 annealed at higher temperature shows similar initial capacity but lower retention compared to that annealed at a lower temperature, due to the intercalation of surface alumina into the bulk layered structure forming a solid solution.
Kern, M; Thompson, V P
1993-05-01
Silica-coating alloys improves chemo-mechanical bonding. Sandblasting is recommended as pretreatment to thermal silica-coating or as part of a tribochemical silica-coating process. This study evaluated the effects of sandblasting and coating techniques on volume loss, surface morphology and compositional changes in noble (AuAgCu) and base alloys (NiCr and CoCr). Volume loss was statistically significantly higher in the noble as compared to the base alloys but does not seem to be critical for the clinical fit of restorations. Embedded alumina particles were found in all alloys after sandblasting and the alumina content increased to a range of 14 to 37 wt% as measured by EDS. Following tribochemical silica-coating, a layer of small silica particles remained on the surface, increasing the silica content to between 12 and 20 wt%. Ultrasonic cleaning removed loose alumina or silica particles from the surface, resulting in only slight decreases in alumina or silica contents, thus suggesting firm attachment of the major part of alumina and silica to the alloy surface. Clinically, ultrasonic cleaning of sandblasted and tribochemically silica-coated alloys might improve resin bonding as loose surface particles are removed without relevant changes in composition. Silica content following thermal silica-coating treatment increased only slightly from the sandblasted specimen. The silica layer employed by these silica-coating methods differs widely in both morphology and thickness. These results provide a basis for explanation of adhesive failure modes in bond strength tests which will possibly optimize resin bonding. Further research is needed to characterize the outermost surface layers after these treatments and the exact location of adhesive failures.
Bendas, Ehab R; Christensen, J Mark; Ayres, James W
2010-04-01
The basic objective of this study was to develop a novel technique that aids in compaction of coated pellets into tablets and obtain a release pattern from compressed pellets resembling the same pattern before compression. Multi-unit dosage forms of mesalamine targeted to the colon were formulated by extrusion-spheronization, and then coated with Eudragit S (30%). These pellets were filled into gelatin capsules or further formulated and compressed into tablets. Tablets for colonic delivery of mesalamine were prepared by mixing the coated beads with cushioning agents like stearic acid and Explotab, or by applying an additional coat of gelatin (4% weight gain) onto the Eudragit S coated pellets, and then compressing into tablets (tableted reservoir-type pellets). Then additional coating of the tablets prepared by the coating technique was applied utilizing Eudragit L 100-55 (5% weight gain). This technique provides additive protection for the coated beads to withstand the compression force during tableting. Excellent in vitro dissolution results were obtained, which were comparable to the results of the release of mesalamine from uncompressed beads filled in capsules. Mesalamine release from the capsules was 0.3% after 2 hours in gastric pH, 0.37% was released after an additional 1 hour in pH 6, and 89% was released after 1.5 hours in colonic pH 7.2. Various formulation and process parameters have to be optimized in order to obtain tableted reservoir-type pellets having the same release properties as the uncompressed pellets. The coating technique delays the release of mesalamine until the beads reach the terminal ileum and colon. Once released in the colon, mesalamine is minimally absorbed and can act locally to treat ulcerative colitis.
NASA Astrophysics Data System (ADS)
Yin, Yuanjie; Fan, Bozhao; He, Wei; Dai, Xianglu; Guo, Baoqiao; Xie, Huimin
2018-03-01
Diffraction grating strain gauge (DGSG) is an optical strain measurement method. Based on this method, a six-spot diffraction grating strain gauge (S-DGSG) system has been developed with the advantages of high and adjustable sensitivity, compact structure, and non-contact measurement. In this study, this system is applied for the residual stress measurement in thermal barrier coatings (TBCs) combining the hole-drilling method. During the experiment, the specimen’s location is supposed to be reset accurately before and after the hole-drilling, however, it is found that the rigid body displacements from the resetting process could seriously influence the measurement accuracy. In order to understand and eliminate the effects from the rigid body displacements, such as the three-dimensional (3D) rotations and the out-of-plane displacement of the grating, the measurement error of this system is systematically analyzed, and an optimized method is proposed. Moreover, a numerical experiment and a verified tensile test are conducted, and the results verify the applicability of this optimized method successfully. Finally, combining this optimized method, a residual stress measurement experiment is conducted, and the results show that this method can be applied to measure the residual stress in TBCs.
Solventless pharmaceutical coating processes: a review.
Bose, Sagarika; Bogner, Robin H
2007-01-01
Coatings are an essential part in the formulation of pharmaceutical dosage form to achieve superior aesthetic quality (e.g., color, texture, mouth feel, and taste masking), physical and chemical protection for the drugs in the dosage forms, and modification of drug release characteristics. Most film coatings are applied as aqueous- or organic-based polymer solutions. Both organic and aqueous film coating bring their own disadvantages. Solventless coating technologies can overcome many of the disadvantages associated with the use of solvents (e.g., solvent exposure, solvent disposal, and residual solvent in product) in pharmaceutical coating. Solventless processing reduces the overall cost by eliminating the tedious and expensive processes of solvent disposal/treatment. In addition, it can significantly reduce the processing time because there is no drying/evaporation step. These environment-friendly processes are performed without any heat in most cases (except hot-melt coating) and thus can provide an alternative technology to coat temperature-sensitive drugs. This review discusses and compares six solventless coating methods - compression coating, hot-melt coating, supercritical fluid spray coating, electrostatic coating, dry powder coating, and photocurable coating - that can be used to coat the pharmaceutical dosage forms.
Amanzadeh, Hatam; Yamini, Yadollah; Moradi, Morteza; Asl, Yousef Abdossalmi
2016-09-23
In the current study, a graphene/polyvinylchloride nanocomposite was successfully coated on a stainless steel substrate by a simple dip coating process and used as a novel headspace solid phase microextraction (HS-SPME) fiber for the extraction of phthalate esters (PEs) from drinking water and edible vegetable oil samples. The prepared SPME fibers exhibited high extractability for PEs (due to the dominant role of π-π stacking interactions and hydrophobic effects) yielding good sensitivity and precision when followed by a gas chromatograph with a flame ionization detector (GC-FID). The optimization strategy of the extraction process was carried out using the response surface method based on a central composite design. The developed method gave a low limit of detection (0.06-0.08μgL(-1)) and good linearity (0.2-100μgL(-1)) for the determination of the PEs under the optimized conditions (extraction temperature, 70±1°C; extraction time, 35min; salt concentration, 30% w/v; stirring rate, 900rpm; desorption temperature, 230°C; and desorption time, 4min) whereas the repeatability and fiber-to-fiber reproducibility were in the range 6.1-7.8% and 8.9-10.2%, respectively. Finally, the proposed method was successfully applied to the analysis of PEs in drinking water and edible oil samples with good recoveries (87-112%) and satisfactory precisions (RSDs<8.3%), indicating the absence of matrix effects in the proposed HS-SPME method. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of photocatalytic and hydrophobic coatings on brewery surface microorganisms.
Priha, O; Laakso, J; Tapani, K; Levänen, E; Kolari, M; Mäntylä, T; Storgårds, E
2011-11-01
The aim of this study was to determine whether process hygiene in the beverage industry could be improved by applying new coating techniques to process surfaces. Photocatalytic titanium dioxide (TiO(2)) and hydrophobic coatings applied to stainless steel with or without added antimicrobial compounds were studied in laboratory attachment tests and in a 15-month process study. No clear reductions in numbers of attached microbes were obtained with photocatalytic coatings, except for coatings to which silver had been added. These TiO(2)+Ag coatings reduced microbial coverage in laboratory studies and in some process samples. Hydrophobic coatings reduced the area coverage of microorganisms in 4-h laboratory studies but did not affect colony counts in laboratory or process studies. The surfaces had changed from hydrophobic into hydrophilic during the process study. The coatings did not mechanically fully withstand process conditions; part of the hydrophobic coatings had peeled off, most of the precipitated Ag had dissolved, and some of the TiO(2) coatings were damaged. In conclusion, functional coatings have potential for reducing microbial loads on beverage industry surfaces, but these coatings need further development.
On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allendorf, Mark D.; Sopko, J.F.; Houf, William G.
2006-11-01
Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accuratemore » data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are reached concerning the factors affecting the growth rate in on-line APCVD reactors. In addition, a substantial body of data was generated that can be used to model many different industrial tin oxide coating processes. These data include the most extensive compilation of thermochemistry for gas-phase tin-containing species as well as kinetic expressions describing tin oxide growth rates over a wide range of temperatures, pressures, and reactant concentrations.« less
NASA Astrophysics Data System (ADS)
Lan, Ding-Hung; Hong, Shao-Huan; Chou, Li-Hui; Wang, Xiao-Feng; Liu, Cheng-Liang
2018-06-01
Organometal halide perovskite materials have demonstrated tremendous advances in the photovoltaic field recently because of their advantageous features of simple fabrication and high power conversion efficiency. To meet the high demand for high throughput and cost-effective, we present a wet process method that enables the probing of the parameters for perovskite layer deposition through two-step sequential ultrasonic spray-coating. This paper describes a detailed investigation on the effects of modification of spray precursor solution (PbI2 and CH3NH3I precursor concentration and solvents used) and post-annealing condition (temperature and time), which can be performed to create optimal film quality as well as improve device efficiency. Through the systematic optimization, the inverted planar perovskite solar cells show the reproducible photovoltaic properties with best power conversion efficiency (PCE) of 10.40% and average PCE of 9.70 ± 0.40%. A continuous spray-coating technique for rapid fabrication of total 16 pieces of perovskite films was demonstrated for providing a viable alternative for the high throughput production of the perovskite solar cells.
NASA Astrophysics Data System (ADS)
Shao, Yue; Shi, Frank G.
2017-07-01
The effective passive radiation cooling that is enabled by silicone-based composites is investigated for its dependence on coating thickness and filler size in the range of nanometers to micrometers. It is established, contrary to prior reports, that the effective passive radiation cooling does not exhibit a filler size dependence, i.e., there is no optimal size at which a maximum cooling would be reached. However, the apparent cooling effect is filler type dependent and among the fillers investigated, Al2O3 exhibits the best apparent cooling effect. In addition, the apparent cooling effect is dependent on coating thickness: the thickness dependence is non-monotonic, and the maximum cooling occurs at an optimal thickness of 70 μm, regardless of filler type. Potential significant implications of the findings are also discussed.
NASA Astrophysics Data System (ADS)
Wang, Hong-Yuan; Zhu, Rui-Fu; Lu, Yu-Peng; Xiao, Gui-Yong; He, Kun; Yuan, Y. F.; Ma, Xiao-Ni; Li, Ying
2014-02-01
Sandblasting is one of the most effective methods to modify a metal surface and improve its properties for application. Micro-arc oxidation (MAO) could produce a ceramic coating on a dental implant, facilitating cellular differentiation and osseocomposite on it. This study aims to deposit bioceramic Ca- and P-containing coatings on sandblasted commercially pure titanium by an optimum composite technique to improve the bioactive performance. The effect of sandblasting intensity on microstructures and properties of the implant coatings is examined, and the modified surfaces are characterized in terms of their topography, phase, chemical composition, mechanical properties and hydroxyapatite (HA)-inducing ability. The results show that a moderate sandblasting micromachines the substrate in favorable combination of rough and residual stresses; its MAO coating deposits nano-hydroxyapatite after immersion in simulated body fluid (SBF) for 5 days exhibiting better bioactivity. The further improvement of the implant surface performance is attributed to an optimized composite technique.
Electromechanical characterization of individual micron-sized metal coated polymer particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazilchuk, Molly; Kristiansen, Helge; Conpart AS, Skjetten 2013
Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contactmore » behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yersak, Alexander S.; Lee, Yung C.; Spencer, Joseph A.
Spectral reflectometry was implemented as a method for in situ thickness monitoring in a spatial atomic layer deposition (ALD) system. Al{sub 2}O{sub 3} films were grown on a moving polymer web substrate at 100 °C using an atmospheric pressure ALD web coating system, with film growth of 0.11–0.13 nm/cycle. The modular coating head design and the in situ monitoring allowed for the characterization and optimization of the trimethylaluminum and water precursor exposures, purge flows, and web speed. A thickness uniformity of ±2% was achieved across the web. ALD cycle times as low as 76 ms were demonstrated with a web speed of 1 m/smore » and a vertical gap height of 0.5 mm. This atmospheric pressure ALD system with in situ process control demonstrates the feasibility of low-cost, high throughput roll-to-roll ALD.« less
NASA Astrophysics Data System (ADS)
Liu, Chang; Wang, Ning; Long, Yi
2013-10-01
Vanadium dioxide (VO2) has a great potential to be utilized as solar energy switching glazing, even though there exist some intrinsic problems of low luminous transmittance (Tlum) and poor oxidation resistance. Si-Al based anti-reflection (AR) sol-gel coatings processed at low temperature have been developed to tackle these issues assisted by adjusting ramping rate and annealing temperature. Si-Al based AR coating gives large relative enhancement on the transmittance (22% for Tlum, 14% for the whole solar spectrum Tsol,) and successfully maintains IR contrast at 2500 nm wavelength with 18% relative increase in solar modulation (ΔTsol). The optimized Si-Al based AR coating annealing conditions are recorded at 3 °C/min ramping rate and 100 °C annealing temperature. Fluorinated-Si based gel offers a new direction of multifunctional overcoat on thermochromic smart windows with hydrophobicity (contact angle 111°), averaged 14% relatively increased luminous transmittance and enhanced oxidation resistance.
Zirconium Hydroxide-coated Nanofiber Mats for Nerve Agent Decontamination.
Kim, Sohee; Ying, Wu Bin; Jung, Hyunsook; Ryu, Sam Gon; Lee, Bumjae; Lee, Kyung Jin
2017-03-16
Diverse innovative fabrics with specific functionalities have been developed for requirements such as self-decontamination of chemical/biological pollutants and toxic nerve agents. In this work, Zr(OH) 4 -coated nylon-6,6 nanofiber mats were fabricated for the decontamination of nerve agents. Nylon-6,6 fabric was prepared via the electrospinning process, followed by coating with Zr(OH) 4 , which was obtained by the hydrolysis of Zr(OBu) 4 by a sol-gel reaction on nanofiber surfaces. The reaction conditions were optimized by varying the amounts of Zr(OBu) 4 ,the reaction time, and the temperature of the sol-gel reaction. The composite nanofibers show high decontamination efficiency against diisopropylfluorophosphate, which is a nerve agent analogue, due to its high nucleophilicity that aids in the catalysis of the hydrolysis of the phosphonate ester bonds. Composite nanofiber mats have a large potential and can be applied in specific fields such as military and medical markets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemically activated nanodiamonds for aluminum alloy corrosion protection and monitoring
NASA Astrophysics Data System (ADS)
Hannstein, Inga; Adler, Anne-Katrin; Lapina, Victoria; Osipov, Vladimir; Opitz, Jörg; Schreiber, Jürgen; Meyendorf, Norbert
2009-03-01
In the present study, a smart coating for light metal alloys was developed and investigated. Chemically activated nanodiamonds (CANDiT) were electrophoretically deposited onto anodized aluminum alloy AA2024 substrates in order to increase corrosion resistance, enhance bonding properties and establish a means of corrosion monitoring based on the fluorescence behavior of the particles. In order to create stable aqueous CANDiT dispersions suitable for electrophoretic deposition, mechanical milling had to be implemented under specific chemical conditions. The influence of the CANDiT volume fraction and pH of the dispersion on the electrochemical properties of the coated samples was investigated. Linear voltammetry measurements reveal that the chemical characteristics of the CANDiT dispersion have a distinct influence on the quality of the coating. The fluorescence spectra as well as fluorescence excitation spectra of the samples show that corrosion can be easily detected by optical means. Furthermore, an optimization on the basis of "smart" - algorithms for the data processing of a surface analysis by the laser-speckle-method is presented.
Microscopic Examination of Cold Spray Cermet Sn+In2O3 Coatings for Sputtering Target Materials
Baszczuk, A.; Rutkowska-Gorczyca, M.; Jasiorski, M.; Małachowska, A.; Posadowski, W.; Znamirowski, Z.
2017-01-01
Low-pressure cold spraying is a newly developed technology with high application potential. The aim of this study was to investigate potential application of this technique for producing a new type of transparent conductive oxide films target. Cold spraying technique allows the manufacture of target directly on the backing plate; therefore the proposed sputtering target has a form of Sn+In2O3 coating sprayed onto copper substrate. The microstructure and properties of the feedstock powder prepared using three various methods as well as the deposited ones by low-pressure cold spraying coatings were evaluated, compared, and analysed. Produced cermet Sn+In2O3 targets were employed in first magnetron sputtering process to deposit preliminary, thin, transparent conducting oxide films onto the glass substrates. The resistivity of obtained preliminary films was measured and allows believing that fabrication of TCO (transparent conducting oxide) films using targets produced by cold spraying is possible in the future, after optimization of the deposition conditions. PMID:29109810
Microscopic Examination of Cold Spray Cermet Sn+In2O3 Coatings for Sputtering Target Materials.
Winnicki, M; Baszczuk, A; Rutkowska-Gorczyca, M; Jasiorski, M; Małachowska, A; Posadowski, W; Znamirowski, Z; Ambroziak, A
2017-01-01
Low-pressure cold spraying is a newly developed technology with high application potential. The aim of this study was to investigate potential application of this technique for producing a new type of transparent conductive oxide films target. Cold spraying technique allows the manufacture of target directly on the backing plate; therefore the proposed sputtering target has a form of Sn+In 2 O 3 coating sprayed onto copper substrate. The microstructure and properties of the feedstock powder prepared using three various methods as well as the deposited ones by low-pressure cold spraying coatings were evaluated, compared, and analysed. Produced cermet Sn+In 2 O 3 targets were employed in first magnetron sputtering process to deposit preliminary, thin, transparent conducting oxide films onto the glass substrates. The resistivity of obtained preliminary films was measured and allows believing that fabrication of TCO (transparent conducting oxide) films using targets produced by cold spraying is possible in the future, after optimization of the deposition conditions.
NASA Astrophysics Data System (ADS)
Chakrabarty, Rohan; Song, Jun
2017-10-01
During the cold spraying of particle-reinforced metal matrix composite coatings (ceramic and metal particles mixture) on metal substrates, ceramic particles may either get embedded in the substrate/deposited coating or may rebound from the substrate surface. In this study, the dependence of the ceramic rebounding phenomenon on the spray angle and its effect on substrate erosion have been analyzed using finite-element analysis. From the numerical simulations, it was found that the ceramic particle density and substrate material strength played the major roles in determining the embedding and ceramic retention behavior. Substrate material erosion also influenced the ceramic retention, and the material loss increased as the impact angles decreased from normal. In general, the results concluded that decreasing the impact angle promoted the retention possibility of ceramics in the substrate. This study provides new theoretical insights into the effect of spray angles on the ceramic retention and suggests a new route toward optimizing the spraying process to increase the ceramic retention in composite coatings cold spray.
Status of black chrome coating research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettit, R.B.; Sowell, R.R.
1983-01-01
Recent results regarding the optimization of electrodeposited black chrome solar selective coatings for operation in solar collectors to temperatures up to 300/sup 0/C are summarized. Careful control of the electroplating-bath composition and special regard for bath contamination are required in order to obtain coatings that will survive daily collector operation for tens of years. An accelerated temperature aging test is presented which can be used both to estimate the coating lifetime and to monitor the coating during production. Finally, the use of sol-gel protective films to extend the lifetime of the black chrome coating is also discussed.
Reactive Molecular Dynamics Investigations of Alkoxysilane Sol-Gel and Surface Coating Processes
NASA Astrophysics Data System (ADS)
Deetz, Joshua David
The ability to generate nanostructured materials with tailored morphology or chemistry is of great technological interest. One proven method of generating metal-oxide materials, and chemically modifying metal-oxide surfaces is through the reactions of molecular building blocks known as alkoxysilanes. Alkoxysilanes are a class of chemicals which contain one or more organic alkoxy groups bonded to silicon atoms. Alkoxysilane (Si-O-R) chemical groups can undergo reactions to form bridges (Si-O-M) with metal oxides. Due to their ability to "attach" to metal-oxides through condensation reactions, alkoxysilanes have a number of interesting applications, such as: the generation of synthetic siloxane materials through the sol-gel process, and the formation of functionalized surface coatings on metal-oxide surfaces. Despite widespread study of sol-gel and surface coatings processes, it is difficult to predict the morphology of the final products due to the large number of process variables involved, such as precursor molecule structure, solvent effects, solution composition, temperature, and pH. To determine the influence of these variables on the products of sol-gel and coatings processes reactive molecular dynamics simulations are used. A reactive force field was used (ReaxFF) to allow the chemical bonds in simulation to dynamically form and break. The force field parameters were optimized using a parallel optimization scheme with a combination of experimental information, and density functional theory calculations. Polycondensation of alkoxysilanes in mixtures of alcohol and water were studied. Steric effects were observed to influence the rates of hydrolysis and condensation in solutions containing different precursor monomers. By restricting the access of nucleophiles to the central silicon atom, the nucleation rate of siloxanes can be controlled. The influence of solution precursor, water, and methanol composition on reaction rates was explored. It was determined that the rate of alkoxysilane hydrolysis is strongly dependent on the concentration of water. The dynamics of siloxane cluster formation are revealed, which provides insight for experimentalists. The silanization of hydroxylated silica surfaces by alkoxysilanes was modeled in pseudo-infinite liquid solution. Butyl-, octyl-, or dodecylsilanes were exposed to hydroxylated silica surfaces in order to observe the influence of silyl headgroup size on the morphology and formation kinetics of silane films on silica substrates. The radius of gyration and order parameter of the hydrocarbon silyl groups were found to increase with grafting density. This was the first simulation study of the dynamic grafting of alkoxysilanes to a substrate.
Antireflective coatings for multijunction solar cells under wide-angle ray bundles.
Victoria, Marta; Domínguez, César; Antón, Ignacio; Sala, Gabriel
2012-03-26
Two important aspects must be considered when optimizing antireflection coatings (ARCs) for multijunction solar cells to be used in concentrators: the angular light distribution over the cell created by the particular concentration system and the wide spectral bandwidth the solar cell is sensitive to. In this article, a numerical optimization procedure and its results are presented. The potential efficiency enhancement by means of ARC optimization is calculated for several concentrating PV systems. In addition, two methods for ARCs direct characterization are presented. The results of these show that real ARCs slightly underperform theoretical predictions.
2006-07-01
TBC benefit Substrale limit 1 1 0 0 ---------- .- -.. . . . . . . --- I single crystal S1000 conventlonally cest allos . .- alloy. E directionally...usually heat treated or processed) forms. Developments in casting technologies made it possible to produce directionally-solidified and single - crystal ...advanced single - crystal superalloys with improved strength meant reductions in chromium and silicon contents. The scale growth and spallation rates can be
Aerospace Non Chrome Corrosion Inhibiting Primer Systems
2009-09-01
Meet all HSE specifications, TSCA, REACh, Akzo • Strippable • No weight increase over current system • Meet specification requirements for corrosion, not...Positive and negative controls • Primer only and topcoated samples Aerospace Coatings | Title 9 OEM CF Optimization/ Down Selects •Usual issues...found to be true • Good NSS ≠ Good filiform ≠ Good cure ≠ Good application properties • Down select process is to minimize ≠ and move to a balance of
Optimization of Immobilization of Nanodiamonds on Graphene
NASA Astrophysics Data System (ADS)
Pille, A.; Lange, S.; Utt, K.; Eltermann, M.
2015-04-01
We report using simple dip-coating method to cover the surface of graphene with nanodiamonds for future optical detection of defects on graphene. Most important part of the immobilization process is the pre-functionalization of both, nanodiamond and graphene surfaces to obtain the selectiveness of the method. This work focuses on an example of using electrostatic attraction to confine nanodiamonds to graphene. Raman spectroscopy, microluminescence imaging and scanning electron microscopy were applied to characterize obtained samples.
Lee, Ji-Soo; Kim, Jong Soo; Lee, Hyeon Gyu
2009-05-01
Response surface methodology was used to optimize microparticle preparation conditions, including the ratio of pectin:gamma-oryzanol (OZ) (X(1)), agitation speed (X(2)), and the concentration of emulsifier (X(3)), for maximal entrapment efficiency (EE) of OZ-loaded Ca pectinate microparticles. The optimized values of X(1), X(2), and X(3) were found to be 2.72:5.28, 1143.5 rpm, and 2.61%, respectively. Experimental results obtained for the optimum formulation agreed favorably with the predicted results, indicating the usefulness of predicting models for EE. In order to evaluate the effect of chitosan-coating and blending on the release pattern of the entrapped OZ from microparticles, chitosan-coated and blended Ca pectinate microparticles were prepared. Release studies revealed that the chitosan treatments, especially the chitosan-coating, were effective in suppressing the release in both simulated gastric fluid (SGF) and intestinal fluid (SIF).
Optimization studies on compression coated floating-pulsatile drug delivery of bisoprolol.
Jagdale, Swati C; Bari, Nilesh A; Kuchekar, Bhanudas S; Chabukswar, Aniruddha R
2013-01-01
The purpose of the present work was to design and optimize compression coated floating pulsatile drug delivery systems of bisoprolol. Floating pulsatile concept was applied to increase the gastric residence of the dosage form having lag phase followed by a burst release. The prepared system consisted of two parts: a core tablet containing the active ingredient and an erodible outer shell with gas generating agent. The rapid release core tablet (RRCT) was prepared by using superdisintegrants with active ingredient. Press coating of optimized RRCT was done by polymer. A 3² full factorial design was used for optimization. The amount of Polyox WSR205 and Polyox WSR N12K was selected as independent variables. Lag period, drug release, and swelling index were selected as dependent variables. Floating pulsatile release formulation (FPRT) F13 at level 0 (55 mg) for Polyox WSR205 and level +1 (65 mg) for Polyox WSR N12K showed lag time of 4 h with >90% drug release. The data were statistically analyzed using ANOVA, and P < 0.05 was statistically significant. Release kinetics of the optimized formulation best fitted the zero order model. In vivo study confirms burst effect at 4 h in indicating the optimization of the dosage form.
Optimization Studies on Compression Coated Floating-Pulsatile Drug Delivery of Bisoprolol
Jagdale, Swati C.; Bari, Nilesh A.; Kuchekar, Bhanudas S.; Chabukswar, Aniruddha R.
2013-01-01
The purpose of the present work was to design and optimize compression coated floating pulsatile drug delivery systems of bisoprolol. Floating pulsatile concept was applied to increase the gastric residence of the dosage form having lag phase followed by a burst release. The prepared system consisted of two parts: a core tablet containing the active ingredient and an erodible outer shell with gas generating agent. The rapid release core tablet (RRCT) was prepared by using superdisintegrants with active ingredient. Press coating of optimized RRCT was done by polymer. A 32 full factorial design was used for optimization. The amount of Polyox WSR205 and Polyox WSR N12K was selected as independent variables. Lag period, drug release, and swelling index were selected as dependent variables. Floating pulsatile release formulation (FPRT) F13 at level 0 (55 mg) for Polyox WSR205 and level +1 (65 mg) for Polyox WSR N12K showed lag time of 4 h with >90% drug release. The data were statistically analyzed using ANOVA, and P < 0.05 was statistically significant. Release kinetics of the optimized formulation best fitted the zero order model. In vivo study confirms burst effect at 4 h in indicating the optimization of the dosage form. PMID:24367788
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Salzar, Robert S.
1996-01-01
A user's guide for the computer program OPTCOMP2 is presented in this report. This program provides a capability to optimize the fabrication or service-induced residual stresses in unidirectional metal matrix composites subjected to combined thermomechanical axisymmetric loading by altering the processing history, as well as through the microstructural design of interfacial fiber coatings. The user specifies the initial architecture of the composite and the load history, with the constituent materials being elastic, plastic, viscoplastic, or as defined by the 'user-defined' constitutive model, in addition to the objective function and constraints, through a user-friendly data input interface. The optimization procedure is based on an efficient solution methodology for the inelastic response of a fiber/interface layer(s)/matrix concentric cylinder model where the interface layers can be either homogeneous or heterogeneous. The response of heterogeneous layers is modeled using Aboudi's three-dimensional method of cells micromechanics model. The commercial optimization package DOT is used for the nonlinear optimization problem. The solution methodology for the arbitrarily layered cylinder is based on the local-global stiffness matrix formulation and Mendelson's iterative technique of successive elastic solutions developed for elastoplastic boundary-value problems. The optimization algorithm employed in DOT is based on the method of feasible directions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malobabic, Sina; Jupe, Marco; Ristau, Detlev
Nowadays, Ion Beam Sputter (IBS) processes are very well optimized on an empirical basis. To achieve further progresses, a modification of the IBS process by guiding the coating material using an axial magnetic field and an additional electrical field has been studied. The electro-magnetic (EM) field leads to a significant change in plasma properties and deposition rate distributions, whereas an increase in deposition rate along the centerline of the axial EM field around 150% was observed. These fundamental studies on the prototype are the basis for the development of an applicable and workable design of a separation device.
Adena, Sandeep Kumar Reddy; Upadhyay, Mansi; Vardhan, Harsh; Mishra, Brahmeshwar
2018-03-01
The purpose of this research study was to develop, optimize, and characterize dasatinib loaded polyethylene glycol (PEG) stabilized chitosan capped gold nanoparticles (DSB-PEG-Ch-GNPs). Gold (III) chloride hydrate was reduced with chitosan and the resulting nanoparticles were coated with thiol-terminated PEG and loaded with dasatinib (DSB). Plackett-Burman design (PBD) followed by Box-Behnken experimental design (BBD) were employed to optimize the process parameters. Polynomial equations, contour, and 3D response surface plots were generated to relate the factors and responses. The optimized DSB-PEG-Ch-GNPs were characterized by FTIR, XRD, HR-SEM, EDX, TEM, SAED, AFM, DLS, and ZP. The results of the optimized DSB-PEG-Ch-GNPs showed particle size (PS) of 24.39 ± 1.82 nm, apparent drug content (ADC) of 72.06 ± 0.86%, and zeta potential (ZP) of -13.91 ± 1.21 mV. The responses observed and the predicted values of the optimized process were found to be close. The shape and surface morphology studies showed that the resulting DSB-PEG-Ch-GNPs were spherical and smooth. The stability and in vitro drug release studies confirmed that the optimized formulation was stable at different conditions of storage and exhibited a sustained drug release of the drug of up to 76% in 48 h and followed Korsmeyer-Peppas release kinetic model. A process for preparing gold nanoparticles using chitosan, anchoring PEG to the particle surface, and entrapping dasatinib in the chitosan-PEG surface corona was optimized.
Tsui, Y C; Doyle, C; Clyne, T W
1998-11-01
Heat treatment and the introduction of a Ti bond coat have been applied to hydroxyapatite (HA) coatings sprayed using different plasma powers and gas mixtures. Attempts were made in this way to achieve optimal coating properties for orthopaedic implants. In particular, the effects on the degree of crystallinity, the adhesion, the OH ion content and the purity were evaluated. Heat treatment at 700 C for 1 h in air proved to be effective in increasing the crystallinity, regaining the OH- ion and removing other non-HA compounds, although it caused a significant decrease in the degree of adhesion (interfacial fracture toughness) for those specimens sprayed at high powers. This heat treatment was found to induce significant transformation of amorphous HA to the crystalline form, while not detrimentally changing the properties of the underlying Ti-6Al-4V substrates. Precoating with a 100 microm Ti layer increased the adhesion of the HA coatings on Ti-6Al-4V substrates, primarily by providing a rougher surface and promoting better mechanical interlocking. Changes in coating properties during immersion in biological fluids were also studied and were found to depend critically on the chemical composition of the fluids. Small precipitates formed on the coating surfaces when immersed in Ringers solution. These might account for the apparent drop in the degree of crystallinity when measured using X-ray diffraction. A significant drop in the interfacial adhesion was found for those coatings sprayed at high powers. This could be offset by prior precoating with a titanium bond coat and suitable heat treatment. In summary, the following processing sequence is suggested in order to achieve optimum coating properties: precoating the substrate with a layer of Ti (approximately 100 microm), spraying HA at a sufficiently high-power level (depending on particle size and gas mixture) and heat treatment at 700 degrees C for 1 h in air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Binghong; Paulauskas, Tadas; Key, Baris
Here, surface coating of cathode materials with Al 2O 3 has been shown to be a promising method for cathode stabilization and improved cycling performance at high operating voltages. However, a detailed understanding on how coating process and cathode composition changes the chemical composition, morphology and distribution of coating within cathode interface and bulk lattice, is still missing. In this study, we use a wet-chemical method to synthesize a series of Al 2O 3-coated LiNi 0.5Co 0.2Mn 0.3O 2 and LiCoO 2 cathodes treated under various annealing temperatures and a combination of structural characterization techniques to understand the composition, homogeneitymore » and morphology of coating layer and the bulk cathode. Nuclear magnetic resonance and electron microscopy results reveal that the nature of the interface is highly depended on the annealing temperature and cathode composition. For Al 2O 3-coated LiNi 0.5Co 0.2Mn 0.3O 2, higher annealing temperature leads to more homogeneous and more closely attached coating on cathode materials, corresponding to better electrochemical performance. Lower Al 2O 3 coating content is found to be helpful to further improve the initial capacity and cyclability, which can greatly outperform the pristine cathode material. For Al 2O 3-coated LiCoO 2, the incorporation of Al into the cathode lattice is observed after annealing at high temperatures, implying the transformation from “surface coatings” to “dopants”, which is not observed for LiNi 0.5Co 0.2Mn 0.3O 2. As a result, Al 2O 3-coated LiCoO 2 annealed at higher temperature shows similar initial capacity but lower retention compared to that annealed at a lower temperature, due to the intercalation of surface alumina into the bulk layered structure forming a solid solution.« less
Han, Binghong; Paulauskas, Tadas; Key, Baris; ...
2017-04-07
Here, surface coating of cathode materials with Al 2O 3 has been shown to be a promising method for cathode stabilization and improved cycling performance at high operating voltages. However, a detailed understanding on how coating process and cathode composition changes the chemical composition, morphology and distribution of coating within cathode interface and bulk lattice, is still missing. In this study, we use a wet-chemical method to synthesize a series of Al 2O 3-coated LiNi 0.5Co 0.2Mn 0.3O 2 and LiCoO 2 cathodes treated under various annealing temperatures and a combination of structural characterization techniques to understand the composition, homogeneitymore » and morphology of coating layer and the bulk cathode. Nuclear magnetic resonance and electron microscopy results reveal that the nature of the interface is highly depended on the annealing temperature and cathode composition. For Al 2O 3-coated LiNi 0.5Co 0.2Mn 0.3O 2, higher annealing temperature leads to more homogeneous and more closely attached coating on cathode materials, corresponding to better electrochemical performance. Lower Al 2O 3 coating content is found to be helpful to further improve the initial capacity and cyclability, which can greatly outperform the pristine cathode material. For Al 2O 3-coated LiCoO 2, the incorporation of Al into the cathode lattice is observed after annealing at high temperatures, implying the transformation from “surface coatings” to “dopants”, which is not observed for LiNi 0.5Co 0.2Mn 0.3O 2. As a result, Al 2O 3-coated LiCoO 2 annealed at higher temperature shows similar initial capacity but lower retention compared to that annealed at a lower temperature, due to the intercalation of surface alumina into the bulk layered structure forming a solid solution.« less
Low-Cost Detection of Thin Film Stress during Fabrication
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2015-01-01
NASA's Marshall Space Flight Center has developed a simple, cost-effective optical method for thin film stress measurements during growth and/or subsequent annealing processes. Stress arising in thin film fabrication presents production challenges for electronic devices, sensors, and optical coatings; it can lead to substrate distortion and deformation, impacting the performance of thin film products. NASA's technique measures in-situ stress using a simple, noncontact fiber optic probe in the thin film vacuum deposition chamber. This enables real-time monitoring of stress during the fabrication process and allows for efficient control of deposition process parameters. By modifying process parameters in real time during fabrication, thin film stress can be optimized or controlled, improving thin film product performance.
Magnesium-Aluminum-Zirconium Oxide Amorphous Ternary Composite: A Dense and Stable Optical Coating
NASA Technical Reports Server (NTRS)
Sahoo, N. K.; Shapiro, A. P.
1998-01-01
In the present work, the process parameter dependent optical and structural properties of MgO-Al(2)O(3)-ZrO(2) ternary mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases and process dependent material composition of films have been investigated through the use of Atomic Force Microscopy (AFM), X-ray diffraction analysis and Energy Dispersive X- ray (EDX) analysis. EDX analysis made evident the correlation between the optical constants and the process dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.
Visibly transparent polymer solar cells produced by solution processing.
Chen, Chun-Chao; Dou, Letian; Zhu, Rui; Chung, Choong-Heui; Song, Tze-Bin; Zheng, Yue Bing; Hawks, Steve; Li, Gang; Weiss, Paul S; Yang, Yang
2012-08-28
Visibly transparent photovoltaic devices can open photovoltaic applications in many areas, such as building-integrated photovoltaics or integrated photovoltaic chargers for portable electronics. We demonstrate high-performance, visibly transparent polymer solar cells fabricated via solution processing. The photoactive layer of these visibly transparent polymer solar cells harvests solar energy from the near-infrared region while being less sensitive to visible photons. The top transparent electrode employs a highly transparent silver nanowire-metal oxide composite conducting film, which is coated through mild solution processes. With this combination, we have achieved 4% power-conversion efficiency for solution-processed and visibly transparent polymer solar cells. The optimized devices have a maximum transparency of 66% at 550 nm.
MgO-Al2O3-ZrO2 Amorphous Ternary Composite: A Dense and Stable Optical Coating
NASA Technical Reports Server (NTRS)
Shaoo, Naba K.; Shapiro, Alan P.
1998-01-01
The process-parameter-dependent optical and structural properties of MgO-Al2O3-ZrO2 ternary mixed-composite material were investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases, and process- dependent material composition of films were investigated through the use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray analysis. Energy-dispersive x-ray analysis made evident the correlation between the optical constants and the process-dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.
Rajabi Khorrami, Afshin; Rashidpur, Amene
2012-05-21
In this work, a molecular sol-gel imprinting approach has been introduced to produce a fiber coating for selective direct immersion solid-phase microextraction (SPME) of caffeine. The polymerization mixture was composed of vinyl trimethoxysilane and methacrylic acid as vinyl sol-gel precursor and functional monomer, respectively. Caffeine was used as template molecule during polymerization process. The prepared fibers could be coupled directly to gas chromatography/mass spectrometry (GC/MS) and used for trace analysis of caffeine in a complex sample such as human serum. The parameters influencing SPME such as time, temperature and stirring speed were optimized. The prepared coating showed good selectivity towards caffeine in the presence of some structurally related compounds. Also, it offered high imprinting capability in comparison to bare fiber and non-imprinted coating. Linear range for caffeine detection was 1-80 μg mL(-1) and the limit of detection was 0.1 μg mL(-1). The intra-day and inter-day precisions of the peak areas for five replicates were 10 and 16%, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ye, Pan; Dong, Hui; Xu, Yunlong; Zhao, Chongjun; Liu, Dong
2018-01-01
Here we report a novel transitional metal oxide (NiCo2O4) coated Li[Ni0.03Mn1.97]O4 micro-/nano- spheres as high-performance Li-ion battery cathode material. A thin layer of ∼10 nm NiCo2O4 was formed by simple wet-chemistry approach adjacent to the surface of Li[Ni0.03Mn1.97]O4 micro-/nano- spheres, leading to significantly enhanced battery electrochemical performance. The optimized sample(1 wt%) not only delivers excellent discharge capacity and cycling stability improvement at both room temperature and elevated temperatures, but also effectively prevents Mn dissolution while retaining its coating structure intact according to XRF and TEM results. The CV and EIS break-down analysis indicated a much faster electrochemical reaction kinetics, more reversible electrode process and greatly reduced charge transfer and Warburg resistance, clearly illustrating the dual role of NiCo2O4 coating to boost electron transport and Li+ diffusion, and alleviation of manganese dissolving. This approach may render as an efficient technique to realize high-performance lithium ion battery cathode material.
Lin, Hungyen; May, Robert K; Evans, Michael J; Zhong, Shuncong; Gladden, Lynn F; Shen, Yaochun; Zeitler, J Axel
2015-01-01
A novel in-line technique utilising pulsed terahertz radiation for direct measurement of the film coating thickness of individual tablets during the coating process was previously developed and demonstrated on a production-scale coater. Here, we use this technique to monitor the evolution of tablet film coating thickness and its inter-tablet variability during the coating process under a number of different process conditions that have been purposefully induced in the production-scale coating process. The changes that were introduced to the coating process include removing the baffles from the coater, adding uncoated tablets to the running process, halting the drum, blockage of spray guns and changes to the spray rate. The terahertz sensor was able to pick up the resulting changes in average coating thickness in the coating drum and we report the impact of these process changes on the resulting coating quality. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:2513–2522, 2015 PMID:26037660
The Effect of Surfactant Content over Cu-Ni Coatings Electroplated by the sc-CO₂ Technique.
Chuang, Ho-Chiao; Sánchez, Jorge; Cheng, Hsiang-Yun
2017-04-19
Co-plating of Cu-Ni coatings by supercritical CO₂ (sc-CO₂) and conventional electroplating processes was studied in this work. 1,4-butynediol was chosen as the surfactant and the effects of adjusting the surfactant content were described. Although the sc-CO₂ process displayed lower current efficiency, it effectively removed excess hydrogen that causes defects on the coating surface, refined grain size, reduced surface roughness, and increased electrochemical resistance. Surface roughness of coatings fabricated by the sc-CO₂ process was reduced by an average of 10%, and a maximum of 55%, compared to conventional process at different fabrication parameters. Cu-Ni coatings produced by the sc-CO₂ process displayed increased corrosion potential of ~0.05 V over Cu-Ni coatings produced by the conventional process, and 0.175 V over pure Cu coatings produced by the conventional process. For coatings ~10 µm thick, internal stress developed from the sc-CO₂ process were ~20 MPa lower than conventional process. Finally, the preferred crystal orientation of the fabricated coatings remained in the (111) direction regardless of the process used or surfactant content.
NASA Astrophysics Data System (ADS)
Heredia-Munoz, Manuel Antonio
Water is perhaps the most important resource that sustains human life. According to the World Health Organization (WHO), almost two billion people do not have access to the required water that is needed to satisfy their daily needs and one billion do not have access to clean sources of water for consumption, most of them living in isolated and poor areas around the globe. Poor quality water increases the risk of cholera, typhoid fever and dysentery, and other water-borne illness making this problem a real crisis that humankind is facing. Several water disinfection technologies have been proposed as solutions for this problem. Solar water disinfection using TiO2 coated PET bottles was the alternative that is studied in this work. This technology does not only inactivate bacteria but also disintegrates organic chemicals that can be present in water. The objectives of this work address the optimization of the TiO 2 coated PET bottles technologies. The improvement on the bottle coating process, using two coats of 10% W/V of TiO2 in a solution of vinegar and sodium bicarbonate to form the TiO2 film, the use of a different indigo carmine (1.25 X 10-1mg/pill) concentration in the pill indicator of contamination, the increase of the disinfection rate through shaking the bottles, degradation under intermittent UV radiation and the effect of bottle size on photocatalytic water disinfection were among the most important findings. A new mathematical model that describes better photocatalytic water disinfection in TiO2 coated bottles and simulates water disinfection under different working conditions was another important achievement. These results can now be used to design a strategy for disseminating this technology in areas where it is required and, in that way, generate the greatest positive impact on the people needing safe drinking water.
NASA Astrophysics Data System (ADS)
Zhang, Jie; Dai, Chang-Song; Wei, Jie; Wen, Zhao-Hui
2012-11-01
In order to improve the bonding strength between calcium phosphate/chitosan composite coatings and a micro-arc oxidized (MAO)-AZ91D Mg alloy, different influencing parameters were investigated in the process of electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). Surface morphology and phase constituents of the as-prepared materials were investigated by using X-ray diffractometer (XRD), Fourier-transformed infrared spectrophotometer (FTIR), Raman spectrometer, scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS), and a thermo gravimetric and differential thermal analyzer (TG-DTA). Scratch tests were carried out to study the bonding properties between the coatings and the substrates. In vitro immersion tests were conducted to determine the corrosion behaviors of samples with and without deposit layers through electrochemical experiments. In the EPD process, the acetic acid content in the electrophoresis suspension and the electrophoretic voltage played important roles in improving the bonding properties, while the contents of chitosan (CS) and nano-hydroxyapatite (nHA, Ca10(PO4)6(OH)2) in the suspension had less significant influences on the mechanical bonding strength. It was observed that the coatings showed the excellent bonding property when an electrophoretic voltage was in a range of 40-110 V with other reagent amounts as follows: acetic acid: 4.5 vol.%, CS ≤ 0.25 g, nHA ≤ 2.0 g in 200 ml of a CS-acetic acid aqueous solution and nHA ≤ 2.5 g in 300 ml of absolute ethanol. The morphology of the composite coating obtained under the above optimal condition had a flake-like crystal structure. The EPD in the nHA/CS-acetic acid/ethanol suspension resulted in hydroxyapatite, chitosan, brushite (DCPD, CaHPO4·2H2O) and Ca(OH)2 in the coatings. After the as-prepared coating materials were immersed into PBS, Ca(OH)2 could be converted into HA and DCPD. The results of the electrochemical tests manifested that the corrosion resistance of the Mg alloy was improved by coating this composite film.
NASA Astrophysics Data System (ADS)
Behrani, Vikas
Industrial and power generation processes employ units like boilers and gasifiers to burn sulfur containing fuels to produce steam and syn gas (H 2 and CO), which can generate electricity using turbines and fuel cells. These units often operate under environments containing gases such as H 2S, SO2, O2 etc, which can attack the metallic structure and impose serious problems of corrosion. Corrosion control in high temperature sulfur bearing environments is a challenging problem requiring information on local gaseous species at the surface of alloy and mechanisms of degradation in these environments. Coatings have proved to be a better alternative for improving corrosion resistance without compromising the bulk mechanical properties. Changes in process conditions may result in thermal and/or environment cycling between oxidizing and sulfidizing environments at the alloy surface, which can damage the protective scale formed on the alloy surface, leading to increase in corrosion rates. Objective of this study was to understand the effect of fluctuating environments on corrosion kinetics of carbon steels and develop diffusion based coatings to mitigate the high temperatures corrosion under these conditions. More specifically, the focus was: (1) to characterize the local gaseous environments at the surface of alloys in boilers; (2) optimizing diffusion coatings parameters for carbon steel; (3) understand the underlying failure mechanisms in cyclic environments; (4) to improve aluminide coating behavior by co-deposition of reactive elements such as Yttrium and Hafnium; (5) to formulate a plausible mechanism of coating growth and effects of alloying elements on corrosion; and (6) to understand the spallation behavior of scale by measuring stresses in the scales. The understanding of coating mechanism and effects of fluctuating gaseous environments provides information for designing materials with more reliable performance. The study also investigates the mechanism behind the effect of REs on scale adhesion and sulfidation behavior. Thus, the present work will have a broad impact on the field of materials and coatings selection for high temperature industrial environments such as boilers and gasifiers, and provides information on RE-modified aluminized coatings on carbon steel as an alternative for the use of bulk superalloys under high temperature sulfur bearing environments.
Ultraviolet (UV)-Curable Coatings for Department of Defense (DoD) Applications
2009-09-01
complete) Task II – Demonstration/Validation • Make final selection of coatings for dem/val (in-progress) • Conduct lab testing and optimization (in...away; target rating of 4B or 5B Strippability Chemical Strippers Removal of the coating to the substrate Dry Media (blasting) Removal of the coating...stakeholders and ESTCP • Selected vendors to conduct final reformulation and submit for testing to JTP at the CTIO • Purchase portable lamp system
Glovebox Advanced Casting System Casting Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fielding, Randall Sidney
2016-03-01
Casting optimization in the GACS included three broad areas; casting of U-10Zr pins, incorporation of an integral FCCI barrier, and development of a permanent crucible coating. U-10Zr casting was improved over last year’s results by modifying the crucible design to minimize contact with the colder mold. Through these modifications casting of a three pin batch was successful. Incorporation of an integral FCCI barrier also was optimized through furnace chamber pressure changes during the casting cycle to reduce gas pressures in the mold cavities which led to three full length pins being cast which incorporated FCCI barriers of three different thicknesses.more » Permanent crucible coatings were tested against a base case; 1500°C for 10 minutes in a U-20Pu-10Zr molten alloy. None of the candidate coating materials showed evidence of failure upon initial visual examination. In all areas of work a large amount of characterization will be needed to fully determine the effects of the optimization activities. The characterization activities and future work will occur next year.« less
Yoon, Byung Jo Victor; Xavier, Fred; Walker, Brendon R; Grinberg, Samuel; Cammisa, Frank P; Abjornson, Celeste
2016-10-01
Titanium plasma spray coating on polyetheretherketone (PEEK) is a recent innovation to interbody spacer technology. The inherent hydrophobic properties of standard, uncoated PEEK implants can hamper cell attachment and bone healing during fusion. The addition of titanium coating not only offers initial stability due to increased surface roughness but also long-term stability due to bony ongrowth created from osteoconductive microenvironment on the device surface. The previously established hydrophilic and osteophilic properties of commercially pure titanium (CPTi) can potentially provide an ideal environment promoting cell attachment and bony ongrowth when applied at the end plate level of the fusion site. Because the surface material composition and topography is what seems to directly affect cell adhesion, it is important to determine the ideal titanium coating for the highest effectiveness. The purpose of the study is to determine whether there is an optimal surface roughness for the titanium coatings and whether different polishing methods have a greater effect than roughness or topography in mediating cell adhesion to the surface. The study was divided into two phases. In Phase 1, the effects of varying surface roughnesses on identical polishing method were compared. In Phase 2, the effect of varying polishing methods was compared on identical surface roughnesses. Coating thickness, porosity, and surface roughness were characterized using an optical microscope as per ASTM F 1854 standards. For both phases, PEEK coupons with plasma-sprayed CPTi were used, and human mesenchymal stem cells (hMSCs) at an initial density of 25,000 cells/cm 2 were seeded and cultured for 24 hours before fixation in 10% formalin. The cultured hMSCs were visualized by 4',6-diamidino-2-phenylindole (DAPI) staining, a fluorescent stain that binds to the DNA of living cells. Samples were imaged using an environmental scanning electron microscope (eSEM) (Carl Zeiss Microscopy, Thornwood, NY, USA) using a backscattered detector. Image analysis of the CPTi coatings showed uniform and rough surfaces. For Phase 1, roughness was evaluated as fine, medium, and coarse. The eSEM image analysis and cell counting by DAPI demonstrated that hMSCs have a tendency to form stronger adhesion and greater pseudopodia extensions on fine roughness surfaces. Individual hMSCs were seen forming cytoplasmic processes extending across the width of a pore. There was a 4- and 20-fold reduction in adhered hMSCs with an increase to medium and coarse roughnesses, respectively. For Phase 2, studied groups are (1) medium CPTi coating with zirconia polishing, (2) medium CPTi coating with CPTi polishing, and (3) fine CPTi coating with CPTi polishing. The eSEM image analysis and cell counting by DAPI demonstrated that hMSCs have a tendency to form stronger adhesion and greater pseudopodia extensions on Group 3 over the other two groups. There was a twofold reduction in adhered hMSCs on medium roughness relative to fine. No difference in cell adhesion was found between Groups 1 and 2. Individual hMSCs were seen forming cytoplasmic processes extending across the width of a pore. Previously, it was accepted without much scrutiny that surface coatings were beneficial. This study begins to discover that surface topography directly affects the potential for cells to adhere and proliferate and lead to greater surgical efficacy. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vetrivendan, E.; Jayaraj, J.; Ningshen, S.; Mallika, C.; Kamachi Mudali, U.
2018-02-01
Argon shrouded plasma spraying (ASPS) was used to deposit a Ta coating on commercially pure Ti (CP-Ti) under inert argon, for dissolver vessel application in the aqueous spent fuels reprocessing plant with high plutonium content. Oxidation during plasma spraying was minimized by shrouding argon system. Porosity and oxide content were controlled by optimizing the spraying parameters, to obtain a uniform and dense Ta coating. The Ta particle temperature and velocity were optimized by judiciously controlling the spray parameters, using a spray diagnostic charge-coupled device camera. The corrosion resistance of the Ta coatings developed by ASPS was investigated by electrochemical studies in 11.5 M HNO3 and 11.5 M HNO3 + 0.05 M NaF. Similarly, the durability of the ASPS Ta coating/substrate was evaluated as per ASTM A262 Practice-C test in boiling nitric acid and fluorinated nitric acid for 240 h. The ASPS Ta coating exhibited higher corrosion resistance than the CP-Ti substrate, as evident from electrochemical studies, and low corrosion rate with excellent coating stability in boiling nitric, and fluorinated nitric acid. The results of the present study revealed that tantalum coating by ASPS is a promising strategy for improving the corrosion resistance in the highly corrosive reprocessing environment.
Large-aperture Wide-bandwidth Antireflection-coated Silicon Lenses for Millimeter Wavelengths
NASA Technical Reports Server (NTRS)
Datta, R.; Munson, C. D.; Niemack, M. D.; McMahon, J. J.; Britton, J.; Wollack, Edward J.; Beall, J.; Devlin, M. J.; Fowler, J.; Gallardo, P.;
2013-01-01
The increasing scale of cryogenic detector arrays for submillimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n 3.4, low loss, and high thermal conductivity is a nearly optimal material for these purposes but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coefficient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three-axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating.We have fabricated silicon lenses as large as 33.4 cm in diameter with micromachined layers optimized for use between 125 and 165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30deg with low cross polarization.We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to submillimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth.
NASA Astrophysics Data System (ADS)
Wei, Ying-Kang; Luo, Xiao-Tao; Li, Cheng-Xin; Li, Chang-Jiu
2017-01-01
Magnesium-based alloys have excellent physical and mechanical properties for a lot of applications. However, due to high chemical reactivity, magnesium and its alloys are highly susceptible to corrosion. In this study, Al6061 coating was deposited on AZ31B magnesium by cold spray with a commercial Al6061 powder blended with large-sized stainless steel particles (in-situ shot-peening particles) using nitrogen gas. Microstructure and corrosion behavior of the sprayed coating was investigated as a function of shot-peening particle content in the feedstock. It is found that by introducing the in-situ tamping effect using shot-peening (SP) particles, the plastic deformation of deposited particles is significantly enhanced, thereby resulting in a fully dense Al6061 coating. SEM observations reveal that no SP particle is deposited into Al6061 coating at the optimization spraying parameters. Porosity of the coating significantly decreases from 10.7 to 0.4% as the SP particle content increases from 20 to 60 vol.%. The electrochemical corrosion experiments reveal that this novel in-situ SP-assisted cold spraying is effective to deposit fully dense Al6061 coating through which aqueous solution is not permeable and thus can provide exceptional protection of the magnesium-based materials from corrosion.
Tian, Ruiyuan; Liu, Haiqiang; Jiang, Yi; Chen, Jiankun; Tan, Xinghua; Liu, Guangyao; Zhang, Lina; Gu, Xiaohua; Guo, Yanjun; Wang, Hanfu; Sun, Lianfeng; Chu, Weiguo
2015-06-03
Application of LiFePO4 (LFP) to large current power supplies is greatly hindered by its poor electrical conductivity (10(-9) S cm(-1)) and sluggish Li+ transport. Carbon coating is considered to be necessary for improving its interparticle electronic conductivity and thus electrochemical performance. Here, we proposed a novel, green, low cost and controllable CVD approach using solid glucose as carbon source which can be extended to most cathode and anode materials in need of carbon coating. Hydrothermally synthesized LFP nanorods with optimized thickness of carbon coated by this recipe are shown to have superb high-rate performance, high energy, and power densities, as well as long high-rate cycle lifetime. For 200 C (18s) charge and discharge, the discharge capacity and voltage are 89.69 mAh g(-1) and 3.030 V, respectively, and the energy and power densities are 271.80 Wh kg(-1) and 54.36 kW kg(-1), respectively. The capacity retention of 93.0%, and the energy and power density retention of 93.6% after 500 cycles at 100 C were achieved. Compared to the conventional carbon coating through direct mixing with glucose (or other organic substances) followed by annealing (DMGA), the carbon phase coated using this CVD recipe is of higher quality and better uniformity. Undoubtedly, this approach enhances significantly the electrochemical performance of high power LFP and thus broadens greatly the prospect of its applications to large current power supplies such as electric and hybrid electric vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmehl, Joerg, E-mail: joerg.schmehl@med.uni-tuebingen.de; Ruhr, Juergen von der; Dobratz, Markus
Purpose. The efficacy of drug-eluting balloons has been demonstrated in clinical trials. The drug predominantly used is paclitaxel because of its lipophilic properties and the rapid onset of action. The aim of the investigation was to evaluate the feasibility and efficacy of an alternative balloon coating with rapamycin that can be applied on site.MethodsThe balloon coating (3.0/18 and 3.0/12 mm, Cathy No. 4, Translumina GmbH) with rapamycin was conducted with a coating machine (Translumina GmbH). Concentrations were 2, 2 Multiplication-Sign 2, 3, and 4 %. Measurements regarding the amount of substance released to the vessel wall were carried out onmore » explanted porcine coronaries by means of ultraviolet and visible-light spectroscopy. Inflation time varied between 30 and 120 s. The biological effect of the coating was evaluated in a porcine peripheral overstretch and stent implantation model. Results. The amount of rapamycin on the balloon surface ranged from 558 {+-} 108 {mu}g for the 2 % solution to 1,441 {+-} 228 {mu}g in the 4 % solution. An amount of 95 {+-} 63-193 {+-} 113 {mu}g was released into the vessel wall. The quantitative measurements of the angiographic examinations 4 weeks after treatment revealed a reduction of diameter stenosis from 20.6 {+-} 17.4 % in the control group to 11.6 {+-} 5.5 % in the drug-eluting balloon group. Conclusion. A balloon coating with rapamycin omitting an excipient is possible with a dose-adjustable coating machine. However, the biological effects are moderate, which make further optimization of the coating process and evaluation of appropriate excipients necessary.« less
Establishment of an immortalized mouse dermal papilla cell strain with optimized culture strategy.
Guo, Haiying; Xing, Yizhan; Zhang, Yiming; He, Long; Deng, Fang; Ma, Xiaogen; Li, Yuhong
2018-01-01
Dermal papilla (DP) plays important roles in hair follicle regeneration. Long-term culture of mouse DP cells can provide enough cells for research and application of DP cells. We optimized the culture strategy for DP cells from three dimensions: stepwise dissection, collagen I coating, and optimized culture medium. Based on the optimized culture strategy, we immortalized primary DP cells with SV40 large T antigen, and established several immortalized DP cell strains. By comparing molecular expression and morphologic characteristics with primary DP cells, we found one cell strain named iDP6 was similar with primary DP cells. Further identifications illustrate that iDP6 expresses FGF7 and α-SMA, and has activity of alkaline phosphatase. During the process of characterization of immortalized DP cell strains, we also found that cells in DP were heterogeneous. We successfully optimized culture strategy for DP cells, and established an immortalized DP cell strain suitable for research and application of DP cells.
Establishment of an immortalized mouse dermal papilla cell strain with optimized culture strategy
Zhang, Yiming; He, Long; Deng, Fang; Ma, Xiaogen
2018-01-01
Dermal papilla (DP) plays important roles in hair follicle regeneration. Long-term culture of mouse DP cells can provide enough cells for research and application of DP cells. We optimized the culture strategy for DP cells from three dimensions: stepwise dissection, collagen I coating, and optimized culture medium. Based on the optimized culture strategy, we immortalized primary DP cells with SV40 large T antigen, and established several immortalized DP cell strains. By comparing molecular expression and morphologic characteristics with primary DP cells, we found one cell strain named iDP6 was similar with primary DP cells. Further identifications illustrate that iDP6 expresses FGF7 and α-SMA, and has activity of alkaline phosphatase. During the process of characterization of immortalized DP cell strains, we also found that cells in DP were heterogeneous. We successfully optimized culture strategy for DP cells, and established an immortalized DP cell strain suitable for research and application of DP cells. PMID:29383288
Precision Optical Coatings for Large Space Telescope Mirrors
NASA Astrophysics Data System (ADS)
Sheikh, David
This proposal “Precision Optical Coatings for Large Space Telescope Mirrors” addresses the need to develop and advance the state-of-the-art in optical coating technology. NASA is considering large monolithic mirrors 1 to 8-meters in diameter for future telescopes such as HabEx and LUVOIR. Improved large area coating processes are needed to meet the future requirements of large astronomical mirrors. In this project, we will demonstrate a broadband reflective coating process for achieving high reflectivity from 90-nm to 2500-nm over a 2.3-meter diameter coating area. The coating process is scalable to larger mirrors, 6+ meters in diameter. We will use a battery-driven coating process to make an aluminum reflector, and a motion-controlled coating technology for depositing protective layers. We will advance the state-of-the-art for coating technology and manufacturing infrastructure, to meet the reflectance and wavefront requirements of both HabEx and LUVOIR. Specifically, we will combine the broadband reflective coating designs and processes developed at GSFC and JPL with large area manufacturing technologies developed at ZeCoat Corporation. Our primary objectives are to: Demonstrate an aluminum coating process to create uniform coatings over large areas with near-theoretical aluminum reflectance Demonstrate a motion-controlled coating process to apply very precise 2-nm to 5- nm thick protective/interference layers to large areas, Demonstrate a broadband coating system (90-nm to 2500-nm) over a 2.3-meter coating area and test it against the current coating specifications for LUVOIR/HabEx. We will perform simulated space-environment testing, and we expect to advance the TRL from 3 to >5 in 3-years.
Zarate, J; Virdis, L; Orive, G; Igartua, M; Hernández, R M; Pedraz, J L
2011-01-01
Bovine serum albumin (BSA) loaded calcium alginate microparticles (MPs) produced in this study by a w/o emulsification and external gelation method exhibited spherical and fairly smooth and porous morphology with 1.052 ± 0.057 µm modal particle size. The high permeability of the calcium alginate hydrogel lead to a potent burst effect and too fast protein release. To overcome these problems, MPs were coated with polycations, such as chitosan, poly-L-lysine and DEAE-dextran. Our results demonstrated that coated MPs showed slower release and were able to significantly reduce the release of BSA in the first hour. Therefore, this method can be applied to prepare coated alginate MPs which could be an optimal system for the controlled release of biotherapeutic molecules. Nevertheless, further studies are needed to optimize delivery properties which could provide a sustained release of proteins.
Urea encapsulation in modified starch matrix for nutrients retention
NASA Astrophysics Data System (ADS)
Naz, Muhammad Yasin; Sulaiman, Shaharin Anwar; Ariff, Mohd. Hazwan Bin Mohd.; Ariwahjoedi, Bambang
2014-10-01
It has been estimated that 20-70% of the used urea goes to the environment via leaching, nitrification and volatilization which not only harms the environment but also reduces the urea efficiency. By coating the urea granules, the farmers can achieve high urea performance through controlling the excess release of nitrogen. Up until now, different materials have been tested for nutrients retention. However, most of them are either expensive or unfriendly to the environment. Being cheap and biodegradable materials, the starches may also be used to coat the urea fertilizer for controlling the nutrients release. However, the pure starches do not meet the standards set by many industrial processes due to their slow tacking and too low viscosities and should be modified for getting smooth, compact and mechanically stronger coatings. In these studies, the tapioca starch was modified by reacting it with urea and different masses of borax. The prepared solutions were used to coat the urea granules of 3.45 mm average diameter. Different volumes (1, 1.5 and 2 mL) of each solution were used to coat 30 g of urea fluidized above the minimum level of fluidization. It was noticed that the coating thickness, percent coating, dissolution rate and percent release follow an increasing trend with an increase of solution volume; however, some random results were obtained while investigating the solution volume effects on the percent release. It was seen that the nutrients percent release over time increases with an increase in solution volume from 1 to 1.5 mL and thereafter reaches to a steady state. It confirms that the 1.5 mL of solution for 30 g urea samples will give the optimized coating results.
NASA Astrophysics Data System (ADS)
McKinney, Luke; Frank, Felix; Graper, David; Dean, Jesse; Forrester, Paul; Rioblanc, Maxence; Nantel, Marc; Marjoribanks, Robin
2005-09-01
Ultrafast-laser micromachining has promise as an approach to trimming and 'healing' small laser-produced damage sites in laser-system optics--a common experience in state-of-the-art high-power laser systems. More-conventional approaches currently include mechanical micromachining, chemical modification, and treatment using cw and long-pulse lasers. Laser-optics materials of interest include fused silica, multilayer dielectric stacks for anti-reflection coatings or high-reflectivity mirrors, and inorganic crystals such as KD*P, used for Pockels cells and frequency-doubling. We report on novel efforts using ultrafast-laser pulsetrain-burst processing (microsecond bursts at 133 MHz) to mitigate damage in fused silica, dielectric coatings, and KD*P crystals. We have established the characteristics of pulsetrain-burst micromachining in fused silica, multilayer mirrors, and KD*P, and determined the etch rates and morphology under different conditions of fluence-delivery. From all of these, we have begun to identify new means to optimize the laser-repair of optics defects and damage.
Kundu, Chanchal Kumar; Wang, Xin; Hou, Yanbei; Hu, Yuan
2018-02-01
Phosphorylated chitosan (PCS) was synthesized and grafted onto the surface of polyamide 6.6 (PA 6.6) fabrics via UV-induced grafting polymerization in order to improve the flame retardant properties. Subsequently, PCS grafted PA 6.6 fabrics were modified by (3-aminopropyl) triethoxysilane (APTES) through sol-gel process in order to form a cross-linking coating. The results obtained from the vertical burning test indicated that only the PCS grafted and simultaneously sol-gel treated fabrics could stop the melt dripping. A maximum reduction (30%) in the peak heat release rate was achieved for the PA6.6-PCS-4W-SG fabric sample. The optimal flame retardant effect was achieved for the PA6.6 fabrics treated by PCS and APTES simultaneously, which was attributed to the joint effect of thermal shielding exerted by the silica and char-forming effect derived from PCS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Colloidal CuInSe2 nanocrystals thin films of low surface roughness
NASA Astrophysics Data System (ADS)
de Kergommeaux, Antoine; Fiore, Angela; Faure-Vincent, Jérôme; Pron, Adam; Reiss, Peter
2013-03-01
Thin-film processing of colloidal semiconductor nanocrystals (NCs) is a prerequisite for their use in (opto-)electronic devices. The commonly used spin-coating is highly materials consuming as the overwhelming amount of deposited matter is ejected from the substrate during the spinning process. Also, the well-known dip-coating and drop-casting procedures present disadvantages in terms of the surface roughness and control of the film thickness. We show that the doctor blade technique is an efficient method for preparing nanocrystal films of controlled thickness and low surface roughness. In particular, by optimizing the deposition conditions, smooth and pinhole-free films of 11 nm CuInSe2 NCs have been obtained exhibiting a surface roughness of 13 nm root mean square (rms) for a 350 nm thick film, and less than 4 nm rms for a 75 nm thick film. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November 2012, Ha Long, Vietnam.
Neetoo, Hudaa; Mahomoodally, Fawzi
2014-01-01
The relatively high incidence of Listeria monocytogenes in cold smoked salmon (CSS) is of concern as it is a refrigerated processed food of extended durability (REPFED). The objectives of this study were to compare and optimize the antimicrobial effectiveness of films and coatings incorporating nisin (Nis) and sodium lactate (SL), sodium diacetate (SD), potassium sorbate (PS), and/or sodium benzoate (SB) in binary or ternary combinations on CSS. Surface treatments incorporating Nis (25000 IU/mL) in combination with PS (0.3%) and SB (0.1%) had the highest inhibitory activity, reducing the population of L. monocytogenes by a maximum of 3.3 log CFU/cm(2) (films) and 2.9 log CFU/cm(2) (coatings) relative to control samples after 10 days of storage at 21°C. During refrigerated storage, coatings were more effective in inhibiting growth of L. monocytogenes than their film counterparts. Cellulose-based coatings incorporating Nis, PS, and SB reduced the population of L. monocytogenes, and anaerobic and aerobic spoilage flora by a maximum of 4.2, 4.8, and 4.9 log CFU/cm(2), respectively, after 4 weeks of refrigerated storage. This study highlights the effectiveness of cellulose-based edible coatings incorporating generally regarded as safe (GRAS) natural and chemical antimicrobials to inhibit the development of L. monocytogenes and spoilage microflora thus enhancing the safety and quality of CSS.
Mahomoodally, Fawzi
2014-01-01
The relatively high incidence of Listeria monocytogenes in cold smoked salmon (CSS) is of concern as it is a refrigerated processed food of extended durability (REPFED). The objectives of this study were to compare and optimize the antimicrobial effectiveness of films and coatings incorporating nisin (Nis) and sodium lactate (SL), sodium diacetate (SD), potassium sorbate (PS), and/or sodium benzoate (SB) in binary or ternary combinations on CSS. Surface treatments incorporating Nis (25000 IU/mL) in combination with PS (0.3%) and SB (0.1%) had the highest inhibitory activity, reducing the population of L. monocytogenes by a maximum of 3.3 log CFU/cm2 (films) and 2.9 log CFU/cm2 (coatings) relative to control samples after 10 days of storage at 21°C. During refrigerated storage, coatings were more effective in inhibiting growth of L. monocytogenes than their film counterparts. Cellulose-based coatings incorporating Nis, PS, and SB reduced the population of L. monocytogenes, and anaerobic and aerobic spoilage flora by a maximum of 4.2, 4.8, and 4.9 log CFU/cm2, respectively, after 4 weeks of refrigerated storage. This study highlights the effectiveness of cellulose-based edible coatings incorporating generally regarded as safe (GRAS) natural and chemical antimicrobials to inhibit the development of L. monocytogenes and spoilage microflora thus enhancing the safety and quality of CSS. PMID:25089272
Development of the Molecular Adsorber Coating for Spacecraft and Instrument Interiors
NASA Technical Reports Server (NTRS)
Abraham, Nithin
2011-01-01
On-orbit Molecular Contamination occurs when materials outgas and deposit onto very sensitive interior surfaces of the spacecraft and instruments. The current solution, Molecular Adsorber Pucks, has disadvantages, which are reviewed. A new innovative solution, Molecular Adsorber Coating (MAC), is currently being formulated, optimized, and tested. It is a sprayable alternative composed of Zeolite-based coating with adsorbing properties.
Tool wear modeling using abductive networks
NASA Astrophysics Data System (ADS)
Masory, Oren
1992-09-01
A tool wear model based on Abductive Networks, which consists of a network of `polynomial' nodes, is described. The model relates the cutting parameters, components of the cutting force, and machining time to flank wear. Thus real time measurements of the cutting force can be used to monitor the machining process. The model is obtained by a training process in which the connectivity between the network's nodes and the polynomial coefficients of each node are determined by optimizing a performance criteria. Actual wear measurements of coated and uncoated carbide inserts were used for training and evaluating the established model.
Nano rods for coloured glasses obtained by hybrid sol-gel coating.
Veron, Olivier; Blondeau, Jean-Philippe; Moineau, Johanne; Aubert, Pierre-Henri; Vignolle, Caroline Andreazza; Banet, Philippe; Allam, Lévi
2011-09-01
Many new materials are now allowing new properties thanks to nanotechnology because this domain of physics gives possibilities to optimize targeted properties even if these materials react in very various influential parameters. Architectural, automotive, bone pathologies, environment, display applications are some concerned domains. The sol-gel process is a method allowing the realisation of coats at ambiant temperature, thus it is possible to realize Liquid Crystal Display (LCD), water-repellent coatings on privacy glass, antireflective coatings, hydrophobic or hydrophilic surfaces, bone tissue regeneration. In this study, the purpose is to show the thermal influence on a covered glass with a complex hybrid sol-gel solution. This coated glass is going to change color from red to orange under the heat influence. This color change effect comes from the evolution of various compounds organizations then/or from their loss during the degassing sequence. We show in spite of the complexity of the process that the responsible is mainly the organic dye. Thus the structure of the heated glass at 250 degrees C looks radically different than the heated one at 350 degrees C. SEM measurement allows to identify the surface compositions and to determine the elementary composition along the sample's cross section. TGA is used to justify a mass loss when samples are annealed. UV/Visible measurement is realized by two methods: in-line transmission to evaluate luminous flux and thus give colorimetric dot in the normalized CIE diagram and diffuse transmission to observe the size influence of the pigments. Infrared Reflectivity allows to evaluate the influence of species on the structure and to better target the nature of the lost compounds during annealing. TEM measurement proves that the obtained iron particles are nano rods for both samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renteria, A. Flores; Saruhan-Brings, B.; Ilavsky, J.
2008-03-03
Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified asmore » open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 11000C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renteria, A. F.; Saruhan, B.; Ilavsky, J.
2007-01-01
Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based ,TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified asmore » open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 1100C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.« less
The optimal SAM surface functional group for producing a biomimetic HA coating on Ti.
Liu, D P; Majewski, P; O'Neill, B K; Ngothai, Y; Colby, C B
2006-06-15
Commercial interest is growing in biomimetic methods that employ self assembled mono-layers (SAMs) to produce biocompatible HA coatings on Ti-based orthopedic implants. Recently, separate studies have considered HA formation for various SAM surface functional groups. However, these have often neglected to verify crystallinity of the HA coating, which is essential for optimal bioactivity. Furthermore, differing experimental and analytical methods make performance comparisons difficult. This article investigates and evaluates HA formation for four of the most promising surface functional groups: --OH, --SO(3)H, --PO(4)H(2) and --COOH. All of them successfully formed a HA coating at Ca/P ratios between 1.49 and 1.62. However, only the --SO(3)H and --COOH end groups produced a predominantly crystalline HA. Furthermore, the --COOH end group yielded the thickest layer and possessed crystalline characteristics very similar to that of the human bone. The --COOH end group appears to provide the optimal SAM surface interface for nucleation and growth of biomimetic crystalline HA. Intriguingly, this finding may lend support to explanations elsewhere of why human bone sialoprotein is such a potent nucleator of HA and is attributed to the protein's glutamic acid-rich sequences.
Ye, Zhi-Long; Deng, Yujun; Ye, Xin; Lou, Yaoyin; Chen, Shaohua
2018-01-01
Fluidized granulation is one of the common methods used in wastewater treatment and resource recovery with harvesting millimeter-scale large particles. Presently, effective methods are lacking to measure the fluidized granules ranging from micro- to millimeter scales, with the consequence of ineffectively controlling and optimizing the granulation process. In this work, recovering struvite (MgNH 4 PO 4 ·6H 2 O) from swine wastewater by using a fluidized bed was taken as an example. Image processing was applied to analyze the properties of different types of struvite granules, including morphology, particle size distribution, number density and mass concentration. Four stages of the struvite crystal evolution were therefore defined: aggregation, aggregate compaction, cluster-agglomerating and coating growth. These stages could occur simultaneously or sequentially. Up-flow rates of 30-80 mm/s in the fluidized bed sustained 600-876 g/L granular solids. Results revealed that the coating-growth granules were formed with compact aggregates or cluster-agglomerating granules as the nuclei. The growth rates for the different types of particles, including population growth, mass increase and particle size enlargement, were determined. In final, a schematic illustration for struvite granulation process is also presented.
NASA Technical Reports Server (NTRS)
Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; Mcgaw, Mike; Munafo, Paul M.
1993-01-01
Topics addressed are: (1) cryogenic tankage; (2) launch vehicle TPS/insulation; (3) durable passive thermal control devices and/or coatings; (4) development and characterization of processing methods to reduce anisotropy of material properties in Al-Li; (5) durable thermal protection system (TPS); (6) unpressurized Al-Li structures (interstages, thrust structures); (7) near net shape sections; (8) pressurized structures; (9) welding and joining; (10) micrometeoroid and debris hypervelocity shields; (11) state-of-the-art shell buckling structure optimizer program to serve as a rapid design tool; (12) test philosophy; (13) reduced load cycle time; (14) structural analysis methods; (15) optimization of structural criteria; and (16) develop an engineering approach to properly trade material and structural concepts selection, fabrication, facilities, and cost.
NASA Astrophysics Data System (ADS)
Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; McGaw, Mike; Munafo, Paul M.
1993-02-01
Topics addressed are: (1) cryogenic tankage; (2) launch vehicle TPS/insulation; (3) durable passive thermal control devices and/or coatings; (4) development and characterization of processing methods to reduce anisotropy of material properties in Al-Li; (5) durable thermal protection system (TPS); (6) unpressurized Al-Li structures (interstages, thrust structures); (7) near net shape sections; (8) pressurized structures; (9) welding and joining; (10) micrometeoroid and debris hypervelocity shields; (11) state-of-the-art shell buckling structure optimizer program to serve as a rapid design tool; (12) test philosophy; (13) reduced load cycle time; (14) structural analysis methods; (15) optimization of structural criteria; and (16) develop an engineering approach to properly trade material and structural concepts selection, fabrication, facilities, and cost.
Polyelectrolyte/Graphene Oxide Barrier Film for Flexible OLED.
Yang, Seung-Yeol; Park, Jongwhan; Kim, Yong-Seog
2015-10-01
Ultra-thin flexible nano-composite barrier layer consists of graphene oxide and polyelectrolyte was prepared using the layer-by-layer processing method. Microstructures of the barrier layer was optimized via modifying coating conditions and inducing chemical reactions. Although the barrier layer consists of hydrophilic polyelectrolyte was not effective in blocking the water vapor permeation, the chemical reduction of graphene oxide as well as conversion of polyelectrolyte to hydrophobic nature were very effective in reducing the permeation.
A continuous silicon-coating facility
NASA Technical Reports Server (NTRS)
Butter, C.; Heaps, J. D.
1979-01-01
Automatic continuous silicon-coating facility is used to process 100 by 10 cm graphite-coated ceramic substrates for silicon solar cells. Process reduces contamination associated with conventional dip-coating processes, improving material service life.
The Effect of Surfactant Content over Cu-Ni Coatings Electroplated by the sc-CO2 Technique
Chuang, Ho-Chiao; Sánchez, Jorge; Cheng, Hsiang-Yun
2017-01-01
Co-plating of Cu-Ni coatings by supercritical CO2 (sc-CO2) and conventional electroplating processes was studied in this work. 1,4-butynediol was chosen as the surfactant and the effects of adjusting the surfactant content were described. Although the sc-CO2 process displayed lower current efficiency, it effectively removed excess hydrogen that causes defects on the coating surface, refined grain size, reduced surface roughness, and increased electrochemical resistance. Surface roughness of coatings fabricated by the sc-CO2 process was reduced by an average of 10%, and a maximum of 55%, compared to conventional process at different fabrication parameters. Cu-Ni coatings produced by the sc-CO2 process displayed increased corrosion potential of ~0.05 V over Cu-Ni coatings produced by the conventional process, and 0.175 V over pure Cu coatings produced by the conventional process. For coatings ~10 µm thick, internal stress developed from the sc-CO2 process were ~20 MPa lower than conventional process. Finally, the preferred crystal orientation of the fabricated coatings remained in the (111) direction regardless of the process used or surfactant content. PMID:28772787
Fracture toughness of esthetic dental coating systems by nanoindentation and FIB sectional analysis.
Pecnik, Christina Martina; Courty, Diana; Muff, Daniel; Spolenak, Ralph
2015-07-01
Improving the esthetics of Ti-based dental implants is the last challenge remaining in the optimization process. The optical issues were recently solved by the application of highly and selectively reflective coatings on Ti implants. This work focuses on the mechanical durability of these esthetic ceramic based coating systems (with and without adhesion layers). The coating systems (Ti-ZrO2, Ti-Al-ZrO2, Ti-Ti-Al-ZrO2, Ti-Ag-ZrO2, Ti-Ti-Ag-ZrO2, Ti-Bragg and Ti-TiO2-Bragg) were subjected to nanoindentation experiments and examined using scanning electron microscopy and focused ion beam cross sectional analysis. Three coating systems contained adhesion layers (10nm of Ti or 60nm of TiO2 layers). The fracture toughness of selected samples was assessed applying two different models from literature, a classical for bulk materials and an energy-based model, which was further developed and adjusted. The ZrO2 based coating systems (total film thickness<200nm) followed a circumferential cracking behavior in contrast to Bragg coated samples (total film thickness around 1.5μm), which showed radial cracking emanating from the indent corners. For Ti-ZrO2 samples, a fracture toughness between 2.70 and 3.70MPam(1/2) was calculated using an energy-based model. The classical model was applied to Bragg coated samples and their fracture toughness ranged between 0.70 and 0.80MPam(1/2). Furthermore, coating systems containing an additional layer (Ti-Ti-Al-ZrO2, Ti-Ti-Ag-ZrO2 and Ti-TiO2-Bragg) showed an improved adhesion between the substrate and the coating. The addition of a Ti or TiO2 layer improved the adhesion between substrate and coating. The validity of the models for the assessment of the fracture toughness depended on the layer structure and fracture profile of the samples investigated here (classical model for thick coatings and energy-based model for thin coatings). Copyright © 2015 Elsevier Ltd. All rights reserved.
TiO2-coated mesoporous carbon: conventional vs. microwave-annealing process.
Coromelci-Pastravanu, Cristina; Ignat, Maria; Popovici, Evelini; Harabagiu, Valeria
2014-08-15
The study of coating mesoporous carbon materials with titanium oxide nanoparticles is now becoming a promising and challenging area of research. To optimize the use of carbon materials in various applications, it is necessary to attach functional groups or other nanostructures to their surface. The combination of the distinctive properties of mesoporous carbon materials and titanium oxide is expected to be applied in field emission displays, nanoelectronic devices, novel catalysts, and polymer or ceramic reinforcement. But, their synthesis is still largely based on conventional techniques, such as wet impregnation followed by chemical reduction of the metal nanoparticle precursors, which takes time and money. The thermal heating based techniques are time consuming and often lack control of particle size and morphology. Hence, since there is a growing interest in microwave technology, an alternative way of power input into chemical reactions through dielectric heating is the use of microwaves. This work is focused on the advantages of microwave-assisted synthesis of TiO2-coated mesoporous carbon over conventional thermal heating method. The reviewed studies showed that the microwave-assisted synthesis of such composites allows processes to be completed within a shorter reaction time allowing the nanoparticles formation with superior properties than that obtained by conventional method. Copyright © 2014 Elsevier B.V. All rights reserved.
Masoum, Saeed; Gholami, Ali; Ghaheri, Salehe; Bouveresse, Delphine Jouan-Rimbaud; Cordella, Christophe B Y; Rutledge, Douglas N
2016-07-01
A new composite coating of polypyrrole and sodium lauryl ether sulfate was electrochemically prepared on a stainless-steel wire using cyclic voltammetry. The application and performance of the fiber was evaluated for the headspace solid-phase microextraction of a fragrance in aqueous bleach samples followed by gas chromatography combined with mass spectrometry to assess the fragrance stability in this kind of household cleaning product. To obtain a stable and efficient composite coating, parameters related to the coating process such as scan rate and numbers of cycles were optimized using a central composite design. In addition, the effects of various parameters on the extraction efficiency of the headspace solid-phase microextraction process such as extraction temperature and time, ionic strength, sample volume, and stirring rate were investigated by experimental design methods using Plackett-Burman and Doehlert designs. The optimum values of 53°C and 28 min for sample temperature and time, respectively, were found through response surface methodology. Results show that the combination of polypyrrole and sodium lauryl ether sulfate in a composite form presents desirable opportunities to produce new materials to study fragrance stability by headspace solid-phase microextraction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oxide-dispersion-strengthened turbine blades, volume 1. [MA6000 alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millan, P.P. Jr.; Mays, J.C.
1986-10-01
The objective of Project 4 was to develop a high-temperature, uncooled gas turbine blade using MA6000 alloy. The program objectives were achieved. Production scale up of the MA6000 alloy was achieved with a fair degree of tolerance to nonoptimum processing. The blade manufacturing process was also optimized. The mechanical, environmental, and physical property evaluations of MA6000 were conducted. The ultimate tensile strength, to about 704 C (130 F), is higher than DS MAR-M 247 but with a corresponding lower tensile elongation. Also, above 982 C (180 F) MA6000 tensile strength does not decrease as rapidly as MAR-M 247 because themore » ODS mechanism still remains active. Based on oxidation resistance and diffusional stability considerations, NiCrAlY coatings are recommended. CoCrAly coating should be applied on top of a thin NiCrAlY coating. Vibration tests, whirlpit tests, and a high-rotor-rig test were conducted to ensure successful completion of the engine test of the MA6000 TFE731 high pressure turbine blades. The results of these tests were acceptable. In production quantities, the cost of the Project 4 MA6000 blade is estimated to be about twice that of a cast DS MAR-M 247 blade.« less
Characterisation of anti-erosive properties of nanocomposite coatings by the methods of sclerometry
NASA Astrophysics Data System (ADS)
Kudryakov, O. V.; Varavka, V. N.; Ilyasov, V. V.
2017-05-01
Results of research of coatings of the different metal-ceramics systems are given. Coatings were received by ion-plasma sedimentation in vacuum in the form of multilayered composite material, which had a thickness of layers within nanometric range. Selection of composite systems is determined by applied research problem - namely designing of the anti-erosive coatings durable in the condition of drop impingement impacts. For this purpose the sclerometric studies, the bench erosive tests and optimization of the obtained data were done.
In-line monitoring of pellet coating thickness growth by means of visual imaging.
Oman Kadunc, Nika; Sibanc, Rok; Dreu, Rok; Likar, Boštjan; Tomaževič, Dejan
2014-08-15
Coating thickness is the most important attribute of coated pharmaceutical pellets as it directly affects release profiles and stability of the drug. Quality control of the coating process of pharmaceutical pellets is thus of utmost importance for assuring the desired end product characteristics. A visual imaging technique is presented and examined as a process analytic technology (PAT) tool for noninvasive continuous in-line and real time monitoring of coating thickness of pharmaceutical pellets during the coating process. Images of pellets were acquired during the coating process through an observation window of a Wurster coating apparatus. Image analysis methods were developed for fast and accurate determination of pellets' coating thickness during a coating process. The accuracy of the results for pellet coating thickness growth obtained in real time was evaluated through comparison with an off-line reference method and a good agreement was found. Information about the inter-pellet coating uniformity was gained from further statistical analysis of the measured pellet size distributions. Accuracy and performance analysis of the proposed method showed that visual imaging is feasible as a PAT tool for in-line and real time monitoring of the coating process of pharmaceutical pellets. Copyright © 2014 Elsevier B.V. All rights reserved.
Hude, Rahul U; Jagdale, Swati C
2016-01-01
6-MP has short elimination time (<2 h) and low bioavailability (~ 50%). Present study was aimed to develop time controlled and site targeted delivery of 6-Mercaptopurine (6-MP) for treatment of colon diseases. Compression coating technique was used. 32 full factorial design was designed for optimization of the outer coat for the core tablet. For outer coat amount of Eudragit RS 100 and hydroxypropyl methylcellulose (HPMC K100) were employed as independent variables each at three levels while responses evaluated were swelling index and bursting time. Direct compression method was used for tablets formulation. 80% w/w of microcrystalline cellulose and 20% w/w of croscarmellose sodium were found to be optimum concentration for the core tablet. The outer coat of optimized batch (ED) contains 21.05% w/w Eudragit RS 100 and 78.95% w/w HPMC K100 of total polymer weight. In-vitro dissolution study indicated that combination of polymer retards the drug release in gastric region and releases ≥95% of drug in colonic region after ≥7 h. Whereas in case of in-vivo placebo x-ray imaging study had shown that the tablet reaches colonic part after 5±0.5 h providing the proof of arrival in the colon. Stability study indicated that the optimized formulation were physically and chemically stable. Present research work concluded that compression coating by Eudragit RS 100 and HPMC K100 to 6-MP core provides potential colon targeted system with advantages of reduced gastric exposure and enhanced bioavailability. Formulation can be considered as potential and promising candidate for the treatment of colon diseases.
Yadav, Monu; Parle, Milind; Sharma, Nidhi; Dhingra, Sameer; Raina, Neha; Jindal, Deepak Kumar
2017-11-01
To develop statistically optimized brain targeted Tween 80 coated chitosan nanoparticulate formulation for oral delivery of doxycycline hydrochloride for the treatment of psychosis and to evaluate its protective effect on ketamine induced behavioral, biochemical, neurochemical and histological alterations in mice. 3 2 full factorial design was used to optimize the nanoparticulate formulation to minimize particle size and maximize entrapment efficiency, while independent variables chosen were concentration of chitosan and Tween 80. The optimized formulation was characterized by particle size, drug entrapment efficiency, Fourier transform infrared, Transmission electron microscopy analysis and drug release behavior. Pure doxycycline hydrochloride (25 and 50 mg/kg, p.o.) and optimized doxycycline hydrochloride encapsulated Tween 80 coated chitosan nanoparticles (DCNP opt ) (equivalent to 25 mg/kg doxycycline hydrochloride, p.o.) were explored against ketamine induced psychosis in mice. The experimental studies for DCNP opt , with mean particle size 237 nm and entrapment efficiency 78.16%, elucidated that the formulation successfully passed through blood brain barrier and exhibited significant antipsychotic activity. The underlying mechanism of action was further confirmed by behavioral, biochemical, neurochemical estimations and histopathological study. Significantly enhanced GABA and GSH level and diminished MDA, TNF-α and dopamine levels were observed after administration of DCNP opt at just half the dose of pure doxycycline hydrochloride, showing better penetration of doxycyline hydrochloride in the form of Tween 80 coated nanoparticles through blood brain barrier. This study demonstrates the hydrophilic drug doxycycline hydrochloride, loaded in Tween 80 coated chitosan nanoparticles, can be effectively brain targeted through oral delivery and therefore represents a suitable approach for the treatment of psychotic symptoms.
Background-reducing X-ray multilayer mirror
Bloch, Jeffrey J.; Roussel-Dupre', Diane; Smith, Barham W.
1992-01-01
Background-reducing x-ray multilayer mirror. A multiple-layer "wavetrap" deposited over the surface of a layered, synthetic-microstructure soft x-ray mirror optimized for reflectivity at chosen wavelengths is disclosed for reducing the reflectivity of undesired, longer wavelength incident radiation incident thereon. In three separate mirror designs employing an alternating molybdenum and silicon layered, mirrored structure overlaid by two layers of a molybdenum/silicon pair anti-reflection coating, reflectivities of near normal incidence 133, 171, and 186 .ANG. wavelengths have been optimized, while that at 304 .ANG. has been minimized. The optimization process involves the choice of materials, the composition of the layer/pairs as well as the number thereof, and the distance therebetween for the mirror, and the simultaneous choice of materials, the composition of the layer/pairs, and their number and distance for the "wavetrap."
Microstructure and Mechanical Properties of Microwave Post-processed Ni Coating
NASA Astrophysics Data System (ADS)
Zafar, Sunny; Sharma, Apurbba Kumar
2017-03-01
Flame-sprayed coatings are widely used in the industries attributed to their low cost and simple processing. However, the presence of porosity and poor adhesion with the substrate requires suitable post-processing of the as-sprayed deposits. In the present work, post-processing of the flame-sprayed Ni-based coating has been successfully attempted using microwave hybrid heating. Microwave post-processing of the flame-sprayed coatings was carried out at 2.45 GHz in a 1 kW multimode industrial microwave applicator. The microwave-processed and as-sprayed deposits were characterized for their microstructure, porosity, fracture toughness and surface roughness. The properties of the coatings were correlated with their abrasive wear behavior using a sliding abrasion test on a pin-on-disk tribometer. Microwave post-processing led to healed micropores and microcracks, thus causing homogenization of the microstructure in the coating layer. Therefore, microwave post-processed coating layer exhibits improved mechanical and tribological properties compared to the as-sprayed coating layer.
Advanced methods for processing ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, W.B.
1997-04-01
Combustion chemical vapor deposition (combustion CVD) is being developed for the deposition of high temperature oxide coatings. The process is being evaluated as an alternative to more capital intensive conventional coating processes. The thrusts during this reporting period were the development of the combustion CVD process for depositing lanthanum monazite, the determination of the influence of aerosol size on coating morphology, the incorporation of combustion CVD coatings into thermal barrier coatings (TBCs) and related oxidation research, and continued work on the deposition of zirconia-yttria coatings.
A study of the influence of air-knife tilting on coating thickness in hot-dip galvanizing
NASA Astrophysics Data System (ADS)
Cho, Tae-Seok; Kwon, Young-Doo; Kwon, Soon-Bum
2009-09-01
Gas wiping is a decisive operation in hot-dip galvanizing process. In special, it has a crucial influence on the thickness and uniformity in coating film, but may be subsequently responsible for the problem of splashing. The progress of industry demands continuously the reduction of production costs which may relate directly with the increase of coating speed, and the speed up of coating results in the increase of stagnation pressure in gas wiping system in final. It is known that the increase of stagnation pressure may accompany a harmful problem of splashing in general. Together with these, also, from the view point of energy consumption, it is necessary to design a nozzle optimally. And there is known that the downward tilting of nozzle using in air knife system is effective to prevent in somewhat the harmful problem of splashing. In these connections, first, we design a nozzle with constant expansion rate. Next, for the case of actual coating conditions in field, the effects of tilting of the constant expansion rate nozzle are investigated by numerical analysis. Under the present numerical conditions, it was turned out that the nozzle of constant expansion rate of p = having a downward jet angle of 5° is the most effective to diminish the onset of splashing, while the influence of small tilting of the nozzle on impinging wall pressure itself is not so large.
Zasada, Katarzyna; Łukasiewicz-Atanasov, Magdalena; Kłysik, Katarzyna; Lewandowska-Łańcucka, Joanna; Gzyl-Malcher, Barbara; Puciul-Malinowska, Agnieszka; Karewicz, Anna; Nowakowska, Maria
2015-11-01
Ultrathin "one-component" multilayer polymeric films for potential biomedical applications were designed based on polyvinyl alcohol,-a non-toxic, fully degradable synthetic polymer. Good uniformity of the obtained film and adequate adsorption properties of the polymeric layers were achieved by functional modification of the polymer, which involved synthesis of cationic and anionic derivatives. Synthesized polymers were characterized by FTIR, NMR spectroscopy, dynamic light scattering measurements and elemental analysis. The layer by layer assembly technique was used to build up a multilayer film and this process was followed using UV-Vis spectroscopy and ellipsometry. The morphology and thickness of the obtained multilayered film material was evaluated by atomic force microscopy (AFM). Preliminary studies on the application of the obtained multilayer film for coating of liposomal nanocarriers containing phenytoin, an antiarrhythmic drug, were performed. The coating effectively stabilizes liposomes and the effect increases with an increasing number of deposited layers until the polymeric film reaches the optimal thickness. The obtained release profiles suggest that bilayer-coated liposomes release phenytoin less rapidly than uncoated ones. The cytotoxicity studies performed for all obtained nanocarriers confirmed that none of them has negative effect on cell viability. All of the performed experiments suggest that liposomes coated with ultrathin film obtained from PVA derivatives can be attractive drug nanocarriers. Copyright © 2015 Elsevier B.V. All rights reserved.
Processing of fused silicide coatings for carbon-based materials
NASA Technical Reports Server (NTRS)
Smialek, J. L.
1982-01-01
The processing and oxidation resistance of fused Al-Si and Ni-Si slurry coatings on ATJ graphite was studied. Ni-Si coatings in the 70 to 90 percent Si range were successfully processed to melt, wet, and bond to the graphite. The molten coatings also infiltrated the porosity in graphite and reacted with it to form SiC in the coating. Cyclic oxidation at 1200 C showed that these coatings were not totally protective because of local attack of the substrate, due to the extreme thinness of the coatings in combination with coating cracks.
NASA Astrophysics Data System (ADS)
Pérez, Nicolás; Moya, C.; Tartaj, P.; Labarta, A.; Batlle, X.
2017-01-01
The control of magnetic interactions is becoming essential to expand/improve the applicability of magnetic nanoparticles (NPs). Here, we show that an optimized microemulsion method can be used to obtain homogenous silica coatings on even single magnetic nuclei of highly crystalline Fe3-xO4 NPs (7 and 16 nm) derived from a high-temperature method. We show that the thickness of this coating is controlled almost at will allowing much higher average separation among particles as compared to the oleic acid coating present on pristine NPs. Magnetic susceptibility studies show that the thickness of the silica coating allows the control of magnetic interactions. Specifically, as this effect is better displayed for the smallest particles, we show that dipole-dipole interparticle interactions can be tuned progressively for the 7 nm NPs, from almost non-interacting to strongly interacting particles at room temperature. The quantitative analysis of the magnetic properties unambiguously suggests that dipolar interactions significantly broaden the effective distribution of energy barriers by spreading the distribution of activation magnetic volumes.
Economical Fabrication of Thick-Section Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Babcock, Jason; Ramachandran, Gautham; Williams, Brian; Benander, Robert
2010-01-01
A method was developed for producing thick-section [>2 in. (approx.5 cm)], continuous fiber-reinforced ceramic matrix composites (CMCs). Ultramet-modified fiber interface coating and melt infiltration processing, developed previously for thin-section components, were used for the fabrication of CMCs that were an order of magnitude greater in thickness [up to 2.5 in. (approx.6.4 cm)]. Melt processing first involves infiltration of a fiber preform with the desired interface coating, and then with carbon to partially densify the preform. A molten refractory metal is then infiltrated and reacts with the excess carbon to form the carbide matrix without damaging the fiber reinforcement. Infiltration occurs from the inside out as the molten metal fills virtually all the available void space. Densification to <5 vol% porosity is a one-step process requiring no intermediate machining steps. The melt infiltration method requires no external pressure. This prevents over-infiltration of the outer surface plies, which can lead to excessive residual porosity in the center of the part. However, processing of thick-section components required modification of the conventional process conditions, and the means by which the large amount of molten metal is introduced into the fiber preform. Modification of the low-temperature, ultraviolet-enhanced chemical vapor deposition process used to apply interface coatings to the fiber preform was also required to accommodate the high preform thickness. The thick-section CMC processing developed in this work proved to be invaluable for component development, fabrication, and testing in two complementary efforts. In a project for the Army, involving SiC/SiC blisk development, nominally 0.8 in. thick x 8 in. diameter (approx. 2 cm thick x 20 cm diameter) components were successfully infiltrated. Blisk hubs were machined using diamond-embedded cutting tools and successfully spin-tested. Good ply uniformity and extremely low residual porosity (<2 percent) were achieved, the latter being far lower than that achieved with SiC matrix composites fabricated via CVI or PIP. The pyrolytic carbon/zirconium nitride interface coating optimized in this work for use on carbon fibers was incorporated in the SiC/SiC composites and yielded a >41 ksi (approx. 283 MPa) flexural strength.
Low Conductivity Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming
2005-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and requirements will be discussed. An experimental approach is established to monitor in real time the thermal conductivity of the coating systems subjected to high-heat-flux, steady-state and cyclic temperature gradients. Advanced low conductivity thermal barrier coatings have also been developed using a multi-component defect clustering approach, and shown to have improved thermal stability. The durability and erosion resistance of low conductivity thermal barrier coatings have been improved utilizing advanced coating architecture design, composition optimization, in conjunction with more sophisticated modeling and design tools.
Laksmana, F L; Van Vliet, L J; Hartman Kok, P J A; Vromans, H; Frijlink, H W; Van der Voort Maarschalk, K
2009-04-01
This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. The method applies the MATLAB image processing toolbox to images of coated particles taken with Confocal Laser Scanning Microscopy (CSLM). The coating thicknesses have been determined along the particle perimeter, from which a statistical analysis could be performed to obtain relevant thickness properties, e.g. the minimum coating thickness and the span of the thickness distribution. The characterization of the pore structure involved a proper segmentation of pores from the coating and a granulometry operation. The presented method facilitates the quantification of porosity, thickness and pore size distribution of a coating. These parameters are considered the important coating properties, which are critical to coating functionality. Additionally, the effect of the coating process variations on coating quality can straight-forwardly be assessed. Enabling a good characterization of the coating qualities, the presented method can be used as a fast and effective tool to predict coating functionality. This approach also enables the influence of different process conditions on coating properties to be effectively monitored, which latterly leads to process tailoring.
Hall, Colin J; Ponnusamy, Thirunavukkarasu; Murphy, Peter J; Lindberg, Mats; Antzutkin, Oleg N; Griesser, Hans J
2014-06-11
Plasma-polymerized organosilicone coatings can be used to impart abrasion resistance and barrier properties to plastic substrates such as polycarbonate. Coating rates suitable for industrial-scale deposition, up to 100 nm/s, can be achieved through the use of microwave plasma-enhanced chemical vapor deposition (PECVD), with optimal process vapors such as tetramethyldisiloxane (TMDSO) and oxygen. However, it has been found that under certain deposition conditions, such coatings are subject to post-plasma changes; crazing or cracking can occur anytime from days to months after deposition. To understand the cause of the crazing and its dependence on processing plasma parameters, the effects of post-plasma reactions on the chemical bonding structure of coatings deposited with varying TMDSO-to-O2 ratios was studied with (29)Si and (13)C solid-state magic angle spinning nuclear magnetic resonance (MAS NMR) using both single-pulse and cross-polarization techniques. The coatings showed complex chemical compositions significantly altered from the parent monomer. (29)Si MAS NMR spectra revealed four main groups of resonance lines, which correspond to four siloxane moieties (i.e., mono (M), di (D), tri (T), and quaternary (Q)) and how they are bound to oxygen. Quantitative measurements showed that the ratio of TMDSO to oxygen could shift the chemical structure of the coating from 39% to 55% in Q-type bonds and from 28% to 16% for D-type bonds. Post-plasma reactions were found to produce changes in relative intensities of (29)Si resonance lines. The NMR data were complemented by Fourier transform infrared (FTIR) spectroscopy. Together, these techniques have shown that the bonding environment of Si is drastically altered by varying the TMDSO-to-O2 ratio during PECVD, and that post-plasma reactions increase the cross-link density of the silicon-oxygen network. It appears that Si-H and Si-OH chemical groups are the most susceptible to post-plasma reactions. Coatings produced at a low TMDSO-to-oxygen ratio had little to no singly substituted moieties, displayed a highly cross-linked structure, and showed less post-plasma reactions. However, these chemically more stable coatings are less compatible mechanically with plastic substrates, because of their high stiffness.
NASA Astrophysics Data System (ADS)
Sun, Yi
Cellular/foam materials found in nature such as bone, wood, and bamboo are usually functionally graded by having a non-uniform density distribution and inhomogenous composition that optimizes their global mechanical performance. Inspired by such naturally engineered products, the current study was conducted towards the development of functionally graded hybrid metal foams (FGHMF) with electrodeposited (ED) nanocrystalline coatings. First, the deformation and failure mechanisms of aluminum/copper (Al/Cu) hybrid foams were investigated using finite element analyses at different scales. The micro-scale behavior was studied based on single ligament models discretized using continuum elements and the macro-scale behavior was investigated using beam-element based finite element models of representative unit volumes consisting of multiple foam cells. With a detailed constitutive material behavior and material failure considered for both the aluminum ligament and the nano-copper coating, the numerical models were able to capture the unique behavior of Al/Cu hybrid foams, such as the typically observed sudden load drop after yielding. The numerical models indicate that such load drop is caused by the fracture of foam ligaments initiated from the rupture of the ED nano-copper coating due to its low ductility. This failure mode jeopardizes the global energy absorption capacity of hybrid foams, especially when a thick coating is applied. With the purpose of enhancing the performance of Al/Cu hybrid foams, an annealing process, which increased the ductility of the nanocrystalline copper coating by causing recovery, recrystallination and grain growth, was introduced in the manufacturing of Al/Cu hybrid foams. Quasi-static experimental results indicate that when a proper amount of annealing is applied, the ductility of the ED copper can be effectively improved and the compressive and tensile behavior of Al/Cu hybrid foams can be significantly enhanced, including better energy absorption capacity. The behavior of Al/Cu hybrid foams under high-strain-rate condition was then investigated using experiments on a split Hopkinson pressure bar. It was found that the ED nano-copper coating can also effectively enhance the energy absorption capacities of aluminum open-cell foams under high strain rate. Similar to the quasi-static behavior, a large stress drop was observed in the compressive response of Al/Cu hybrid foams under high strain rate, which was accompanied by dramatic shattering of material. It is shown that a more ductile behavior and better energy absorption performance under high strain rate condition can be also obtained by introducing an annealing process. Finally, the manufacturing process of Al/Cu hybrid foams was customized to fabricate FGHMF systems with two dimensional property gradients. The performance of these FGHMFs at both quasi-static and dynamic conditions was evaluated. Under quasi-static condition, two flexural type loading conditions were considered, namely, a three point bending condition and a cantilever beam condition. The dynamic behavior of FGHMFs was investigated by conducting drop weight tower tests on a three point bending setup. It was found that the failure mechanism of hybrid metal foams can be modified and the mechanical properties, such as stiffness and strength, and energy absorption capacities of hybrid metal foams can be optimized under both quasi-static and dynamic conditions by introducing strategically designed coating patterns. The presented novel approach and findings in this study provide valuable information on the development of high performance hybrid and functionally-graded cellular materials.
Lin, Jiahao; Cai, Qiang; Tang, Yinian; Xu, Yanjun; Wang, Qian; Li, Tingting; Xu, Huihao; Wang, Shuaiyu; Fan, Kai; Liu, Zhongjie; Jin, Yipeng; Lin, Degui
2018-01-30
Highly ordered mesoporous silica nanoparticles (MSNs) with pore diameter of 2.754nm and particle size of 115±15nm were prepared with etching method. Homogeneous PEGylated lipid bilayer with 10-15nm thickness was coated around the surface of MSNs using film hydration method. Systematic optimization and characterization of co-encapsulation process of paclitaxel (Tax) and curcumin (Cur) into PEGylated lipid bilayer coated mesoporous silica nanoparticles (PLMSNs) were performed carrying out single factor test, associated with Box-Behnken Design. The concentration of encapsulated drugs was measured by reversed phase high performance liquid chromatography (RP-HPLC) method. Optimal factor settings were as follows: 50mg MSNs, ratio of MSNs to lipid (w/w)=1:1.11, and ratio of lipid to CHO (w/w)=3.93:1. The average experimental EE Tax , EE Cur and stability score value were (77.48±2.73) %, (30.70±3.56) % and 4 point respectively based on the conditions mentioned above. Morphology determination of Tax-Cur-PLMSNs revealed that the composite nanoparticles were spherical particals with uniform dispersion. In vitro release experiment indicated that PLMSNs improved dissolution of Tax compared to Tax powder suspension and exhibited sustained release property. Tax-Cur-PLMSNs manifested definite and persistently promoted cytotoxic effect against canine breast cancer cells. This prolonged and enhanced activity of Tax-Cur-PLMSNs might contribute to its sustained release effect. Copyright © 2017. Published by Elsevier B.V.