Sample records for optimal control modification

  1. Optimal Control Modification for Robust Adaptation of Singularly Perturbed Systems with Slow Actuators

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham; Stepanyan, Vahram; Boskovic, Jovan

    2009-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. The model matching conditions in the transformed time coordinate results in increase in the feedback gain and modification of the adaptive law.

  2. Optimal Control Modification Adaptive Law for Time-Scale Separated Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2010-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.

  3. Optimal Control Modification for Time-Scale Separated Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2012-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.

  4. Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.

    2010-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.

  5. Robust Optimal Adaptive Control Method with Large Adaptive Gain

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2009-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.

  6. Asymptotic Linearity of Optimal Control Modification Adaptive Law with Analytical Stability Margins

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2010-01-01

    Optimal control modification has been developed to improve robustness to model-reference adaptive control. For systems with linear matched uncertainty, optimal control modification adaptive law can be shown by a singular perturbation argument to possess an outer solution that exhibits a linear asymptotic property. Analytical expressions of phase and time delay margins for the outer solution can be obtained. Using the gradient projection operator, a free design parameter of the adaptive law can be selected to satisfy stability margins.

  7. Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2012-01-01

    This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.

  8. Performance Optimizing Adaptive Control with Time-Varying Reference Model Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Hashemi, Kelley E.

    2017-01-01

    This paper presents a new adaptive control approach that involves a performance optimization objective. The control synthesis involves the design of a performance optimizing adaptive controller from a subset of control inputs. The resulting effect of the performance optimizing adaptive controller is to modify the initial reference model into a time-varying reference model which satisfies the performance optimization requirement obtained from an optimal control problem. The time-varying reference model modification is accomplished by the real-time solutions of the time-varying Riccati and Sylvester equations coupled with the least-squares parameter estimation of the sensitivities of the performance metric. The effectiveness of the proposed method is demonstrated by an application of maneuver load alleviation control for a flexible aircraft.

  9. Output Feedback Adaptive Control of Non-Minimum Phase Systems Using Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan

    2018-01-01

    This paper describes output feedback adaptive control approaches for non-minimum phase SISO systems with relative degree 1 and non-strictly positive real (SPR) MIMO systems with uniform relative degree 1 using the optimal control modification method. It is well-known that the standard model-reference adaptive control (MRAC) cannot be used to control non-SPR plants to track an ideal SPR reference model. Due to the ideal property of asymptotic tracking, MRAC attempts an unstable pole-zero cancellation which results in unbounded signals for non-minimum phase SISO systems. The optimal control modification can be used to prevent the unstable pole-zero cancellation which results in a stable adaptation of non-minimum phase SISO systems. However, the tracking performance using this approach could suffer if the unstable zero is located far away from the imaginary axis. The tracking performance can be recovered by using an observer-based output feedback adaptive control approach which uses a Luenberger observer design to estimate the state information of the plant. Instead of explicitly specifying an ideal SPR reference model, the reference model is established from the linear quadratic optimal control to account for the non-minimum phase behavior of the plant. With this non-minimum phase reference model, the observer-based output feedback adaptive control can maintain stability as well as tracking performance. However, in the presence of the mismatch between the SPR reference model and the non-minimum phase plant, the standard MRAC results in unbounded signals, whereas a stable adaptation can be achieved with the optimal control modification. An application of output feedback adaptive control for a flexible wing aircraft illustrates the approaches.

  10. Control Systems with Normalized and Covariance Adaptation by Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T. (Inventor); Burken, John J. (Inventor); Hanson, Curtis E. (Inventor)

    2016-01-01

    Disclosed is a novel adaptive control method and system called optimal control modification with normalization and covariance adjustment. The invention addresses specifically to current challenges with adaptive control in these areas: 1) persistent excitation, 2) complex nonlinear input-output mapping, 3) large inputs and persistent learning, and 4) the lack of stability analysis tools for certification. The invention has been subject to many simulations and flight testing. The results substantiate the effectiveness of the invention and demonstrate the technical feasibility for use in modern aircraft flight control systems.

  11. Performance Optimizing Multi-Objective Adaptive Control with Time-Varying Model Reference Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan

    2017-01-01

    This paper presents a new adaptive control approach that involves a performance optimization objective. The problem is cast as a multi-objective optimal control. The control synthesis involves the design of a performance optimizing controller from a subset of control inputs. The effect of the performance optimizing controller is to introduce an uncertainty into the system that can degrade tracking of the reference model. An adaptive controller from the remaining control inputs is designed to reduce the effect of the uncertainty while maintaining a notion of performance optimization in the adaptive control system.

  12. On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2011-01-01

    This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.

  13. Verifiable Adaptive Control with Analytical Stability Margins by Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2010-01-01

    This paper presents a verifiable model-reference adaptive control method based on an optimal control formulation for linear uncertain systems. A predictor model is formulated to enable a parameter estimation of the system parametric uncertainty. The adaptation is based on both the tracking error and predictor error. Using a singular perturbation argument, it can be shown that the closed-loop system tends to a linear time invariant model asymptotically under an assumption of fast adaptation. A stability margin analysis is given to estimate a lower bound of the time delay margin using a matrix measure method. Using this analytical method, the free design parameter n of the optimal control modification adaptive law can be determined to meet a specification of stability margin for verification purposes.

  14. Interactive Implementation of the Optimal Systems Control Design Program (OPTSYSX) on the IBM 3033.

    DTIC Science & Technology

    1984-03-01

    DAS A44 159 INTERACTIVE IMPLEMENTATION OF THE OPTIMAL SYSTEMS I CONTROL DESIGN PROGRAM (OPTSYSX) ON THE 1DM 3033(U NAVAL POSTGRADUATE SCHOOL MONTEREY...noesear end idswtif’r b block number) Optimal Systems Control Systems Control Control Systems 10.; ABSTRACT (Continu an reveree side ff Roe684v ad Id yI...34 by block number) .- This thesis discusses the modification of an existing Optimal Systems Control FORTRAN program (OPTSYS) originally obtained from

  15. An Analysis of the Optimal Control Modification Method Applied to Flutter Suppression

    NASA Technical Reports Server (NTRS)

    Drew, Michael; Nguyen, Nhan T.; Hashemi, Kelley E.; Ting, Eric; Chaparro, Daniel

    2017-01-01

    Unlike basic Model Reference Adaptive Control (MRAC)l, Optimal Control Modification (OCM) has been shown to be a promising MRAC modification with robustness and analytical properties not present in other adaptive control methods. This paper presents an analysis of the OCM method, and how the asymptotic property of OCM is useful for analyzing and tuning the controller. We begin with a Lyapunov stability proof of an OCM controller having two adaptive gain terms, then the less conservative and easily analyzed OCM asymptotic property is presented. Two numerical examples are used to show how this property can accurately predict steady state stability and quantitative robustness in the presence of time delay, and relative to linear plant perturbations, and nominal Loop Transfer Recovery (LTR) tuning. The asymptotic property of the OCM controller is then used as an aid in tuning the controller applied to a large scale aeroservoelastic longitudinal aircraft model for flutter suppression. Control with OCM adaptive augmentation is shown to improve performance over that of the nominal non-adaptive controller when significant disparities exist between the controller/observer model and the true plant model.

  16. Evolution of Query Optimization Methods

    NASA Astrophysics Data System (ADS)

    Hameurlain, Abdelkader; Morvan, Franck

    Query optimization is the most critical phase in query processing. In this paper, we try to describe synthetically the evolution of query optimization methods from uniprocessor relational database systems to data Grid systems through parallel, distributed and data integration systems. We point out a set of parameters to characterize and compare query optimization methods, mainly: (i) size of the search space, (ii) type of method (static or dynamic), (iii) modification types of execution plans (re-optimization or re-scheduling), (iv) level of modification (intra-operator and/or inter-operator), (v) type of event (estimation errors, delay, user preferences), and (vi) nature of decision-making (centralized or decentralized control).

  17. Chemical modification: the key to clinical application of RNA interference?

    PubMed Central

    Corey, David R.

    2007-01-01

    RNA interference provides a potent and specific method for controlling gene expression in human cells. To translate this potential into a broad new family of therapeutics, it is necessary to optimize the efficacy of the RNA-based drugs. As discussed in this Review, it might be possible to achieve this optimization using chemical modifications that improve their in vivo stability, cellular delivery, biodistribution, pharmacokinetics, potency, and specificity. PMID:18060019

  18. Automatic Control of Personal Rapid Transit Vehicles

    NASA Technical Reports Server (NTRS)

    Smith, P. D.

    1972-01-01

    The requirements for automatic longitudinal control of a string of closely packed personal vehicles are outlined. Optimal control theory is used to design feedback controllers for strings of vehicles. An important modification of the usual optimal control scheme is the inclusion of jerk in the cost functional. While the inclusion of the jerk term was considered, the effect of its inclusion was not sufficiently studied. Adding the jerk term will increase passenger comfort.

  19. Expected treatment dose construction and adaptive inverse planning optimization: Implementation for offline head and neck cancer adaptive radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan Di; Liang Jian

    Purpose: To construct expected treatment dose for adaptive inverse planning optimization, and evaluate it on head and neck (h and n) cancer adaptive treatment modification. Methods: Adaptive inverse planning engine was developed and integrated in our in-house adaptive treatment control system. The adaptive inverse planning engine includes an expected treatment dose constructed using the daily cone beam (CB) CT images in its objective and constrains. Feasibility of the adaptive inverse planning optimization was evaluated retrospectively using daily CBCT images obtained from the image guided IMRT treatment of 19 h and n cancer patients. Adaptive treatment modification strategies with respect tomore » the time and the number of adaptive inverse planning optimization during the treatment course were evaluated using the cumulative treatment dose in organs of interest constructed using all daily CBCT images. Results: Expected treatment dose was constructed to include both the delivered dose, to date, and the estimated dose for the remaining treatment during the adaptive treatment course. It was used in treatment evaluation, as well as in constructing the objective and constraints for adaptive inverse planning optimization. The optimization engine is feasible to perform planning optimization based on preassigned treatment modification schedule. Compared to the conventional IMRT, the adaptive treatment for h and n cancer illustrated clear dose-volume improvement for all critical normal organs. The dose-volume reductions of right and left parotid glands, spine cord, brain stem and mandible were (17 {+-} 6)%, (14 {+-} 6)%, (11 {+-} 6)%, (12 {+-} 8)%, and (5 {+-} 3)% respectively with the single adaptive modification performed after the second treatment week; (24 {+-} 6)%, (22 {+-} 8)%, (21 {+-} 5)%, (19 {+-} 8)%, and (10 {+-} 6)% with three weekly modifications; and (28 {+-} 5)%, (25 {+-} 9)%, (26 {+-} 5)%, (24 {+-} 8)%, and (15 {+-} 9)% with five weekly modifications. Conclusions: Adaptive treatment modification can be implemented including the expected treatment dose in the adaptive inverse planning optimization. The retrospective evaluation results demonstrate that utilizing the weekly adaptive inverse planning optimization, the dose distribution of h and n cancer treatment can be largely improved.« less

  20. Computational alternatives to obtain time optimal jet engine control. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Basso, R. J.; Leake, R. J.

    1976-01-01

    Two computational methods to determine an open loop time optimal control sequence for a simple single spool turbojet engine are described by a set of nonlinear differential equations. Both methods are modifications of widely accepted algorithms which can solve fixed time unconstrained optimal control problems with a free right end. Constrained problems to be considered have fixed right ends and free time. Dynamic programming is defined on a standard problem and it yields a successive approximation solution to the time optimal problem of interest. A feedback control law is obtained and it is then used to determine the corresponding open loop control sequence. The Fletcher-Reeves conjugate gradient method has been selected for adaptation to solve a nonlinear optimal control problem with state variable and control constraints.

  1. The integrated manual and automatic control of complex flight systems

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1985-01-01

    Pilot/vehicle analysis techniques for optimizing aircraft handling qualities are presented. The analysis approach considered is based on the optimal control frequency domain techniques. These techniques stem from an optimal control approach of a Neal-Smith like analysis on aircraft attitude dynamics extended to analyze the flared landing task. Some modifications to the technique are suggested and discussed. An in depth analysis of the effect of the experimental variables, such as prefilter, is conducted to gain further insight into the flared land task for this class of vehicle dynamics.

  2. Advances in Adaptive Control Methods

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2009-01-01

    This poster presentation describes recent advances in adaptive control technology developed by NASA. Optimal Control Modification is a novel adaptive law that can improve performance and robustness of adaptive control systems. A new technique has been developed to provide an analytical method for computing time delay stability margin for adaptive control systems.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaitsgory, Vladimir, E-mail: vladimir.gaitsgory@mq.edu.au; Rossomakhine, Sergey, E-mail: serguei.rossomakhine@flinders.edu.au

    The paper aims at the development of an apparatus for analysis and construction of near optimal solutions of singularly perturbed (SP) optimal controls problems (that is, problems of optimal control of SP systems) considered on the infinite time horizon. We mostly focus on problems with time discounting criteria but a possibility of the extension of results to periodic optimization problems is discussed as well. Our consideration is based on earlier results on averaging of SP control systems and on linear programming formulations of optimal control problems. The idea that we exploit is to first asymptotically approximate a given problem ofmore » optimal control of the SP system by a certain averaged optimal control problem, then reformulate this averaged problem as an infinite-dimensional linear programming (LP) problem, and then approximate the latter by semi-infinite LP problems. We show that the optimal solution of these semi-infinite LP problems and their duals (that can be found with the help of a modification of an available LP software) allow one to construct near optimal controls of the SP system. We demonstrate the construction with two numerical examples.« less

  4. Optimality of affine control system of several species in competition on a sequential batch reactor

    NASA Astrophysics Data System (ADS)

    Rodríguez, J. C.; Ramírez, H.; Gajardo, P.; Rapaport, A.

    2014-09-01

    In this paper, we analyse the optimality of affine control system of several species in competition for a single substrate on a sequential batch reactor, with the objective being to reach a given (low) level of the substrate. We allow controls to be bounded measurable functions of time plus possible impulses. A suitable modification of the dynamics leads to a slightly different optimal control problem, without impulsive controls, for which we apply different optimality conditions derived from Pontryagin principle and the Hamilton-Jacobi-Bellman equation. We thus characterise the singular trajectories of our problem as the extremal trajectories keeping the substrate at a constant level. We also establish conditions for which an immediate one impulse (IOI) strategy is optimal. Some numerical experiences are then included in order to illustrate our study and show that those conditions are also necessary to ensure the optimality of the IOI strategy.

  5. In-flight performance optimization for rotorcraft with redundant controls

    NASA Astrophysics Data System (ADS)

    Ozdemir, Gurbuz Taha

    A conventional helicopter has limits on performance at high speeds because of the limitations of main rotor, such as compressibility issues on advancing side or stall issues on retreating side. Auxiliary lift and thrust components have been suggested to improve performance of the helicopter substantially by reducing the loading on the main rotor. Such a configuration is called the compound rotorcraft. Rotor speed can also be varied to improve helicopter performance. In addition to improved performance, compound rotorcraft and variable RPM can provide a much larger degree of control redundancy. This additional redundancy gives the opportunity to further enhance performance and handling qualities. A flight control system is designed to perform in-flight optimization of redundant control effectors on a compound rotorcraft in order to minimize power required and extend range. This "Fly to Optimal" (FTO) control law is tested in simulation using the GENHEL model. A model of the UH-60, a compound version of the UH-60A with lifting wing and vectored thrust ducted propeller (VTDP), and a generic compound version of the UH-60A with lifting wing and propeller were developed and tested in simulation. A model following dynamic inversion controller is implemented for inner loop control of roll, pitch, yaw, heave, and rotor RPM. An outer loop controller regulates airspeed and flight path during optimization. A Golden Section search method was used to find optimal rotor RPM on a conventional helicopter, where the single redundant control effector is rotor RPM. The FTO builds off of the Adaptive Performance Optimization (APO) method of Gilyard by performing low frequency sweeps on a redundant control for a fixed wing aircraft. A method based on the APO method was used to optimize trim on a compound rotorcraft with several redundant control effectors. The controller can be used to optimize rotor RPM and compound control effectors through flight test or simulations in order to establish a schedule. The method has been expanded to search a two-dimensional control space. Simulation results demonstrate the ability to maximize range by optimizing stabilator deflection and an airspeed set point. Another set of results minimize power required in high speed flight by optimizing collective pitch and stabilator deflection. Results show that the control laws effectively hold the flight condition while the FTO method is effective at improving performance. Optimizations show there can be issues when the control laws regulating altitude push the collective control towards it limits. So a modification was made to the control law to regulate airspeed and altitude using propeller pitch and angle of attack while the collective is held fixed or used as an optimization variable. A dynamic trim limit avoidance algorithm is applied to avoid control saturation in other axes during optimization maneuvers. Range and power optimization FTO simulations are compared with comprehensive sweeps of trim solutions and FTO optimization shown to be effective and reliable in reaching an optimal when optimizing up to two redundant controls. Use of redundant controls is shown to be beneficial for improving performance. The search method takes almost 25 minutes of simulated flight for optimization to be complete. The optimization maneuver itself can sometimes drive the power required to high values, so a power limit is imposed to restrict the search to avoid conditions where power is more than5% higher than that of the initial trim state. With this modification, the time the optimization maneuver takes to complete is reduced down to 21 minutes without any significant change in the optimal power value.

  6. Advances in adaptive control theory: Gradient- and derivative-free approaches

    NASA Astrophysics Data System (ADS)

    Yucelen, Tansel

    In this dissertation, we present new approaches to improve standard designs in adaptive control theory, and novel adaptive control architectures. We first present a novel Kalman filter based approach for approximately enforcing a linear constraint in standard adaptive control design. One application is that this leads to alternative forms for well known modification terms such as e-modification. In addition, it leads to smaller tracking errors without incurring significant oscillations in the system response and without requiring high modification gain. We derive alternative forms of e- and adaptive loop recovery (ALR-) modifications. Next, we show how to use Kalman filter optimization to derive a novel adaptation law. This results in an optimization-based time-varying adaptation gain that reduces the need for adaptation gain tuning. A second major contribution of this dissertation is the development of a novel derivative-free, delayed weight update law for adaptive control. The assumption of constant unknown ideal weights is relaxed to the existence of time-varying weights, such that fast and possibly discontinuous variation in weights are allowed. This approach is particulary advantageous for applications to systems that can undergo a sudden change in dynamics, such as might be due to reconfiguration, deployment of a payload, docking, or structural damage, and for rejection of external disturbance processes. As a third and final contribution, we develop a novel approach for extending all the methods developed in this dissertation to the case of output feedback. The approach is developed only for the case of derivative-free adaptive control, and the extension of the other approaches developed previously for the state feedback case to output feedback is left as a future research topic. The proposed approaches of this dissertation are illustrated in both simulation and flight test.

  7. Optimal slew path planning for the Sino-French Space-based multiband astronomical Variable Objects Monitor mission

    NASA Astrophysics Data System (ADS)

    She, Yuchen; Li, Shuang

    2018-01-01

    The planning algorithm to calculate a satellite's optimal slew trajectory with a given keep-out constraint is proposed. An energy-optimal formulation is proposed for the Space-based multiband astronomical Variable Objects Monitor Mission Analysis and Planning (MAP) system. The innovative point of the proposed planning algorithm lies in that the satellite structure and control limitation are not considered as optimization constraints but are formulated into the cost function. This modification is able to relieve the burden of the optimizer and increases the optimization efficiency, which is the major challenge for designing the MAP system. Mathematical analysis is given to prove that there is a proportional mapping between the formulation and the satellite controller output. Simulations with different scenarios are given to demonstrate the efficiency of the developed algorithm.

  8. Reduced state feedback gain computation. [optimization and control theory for aircraft control

    NASA Technical Reports Server (NTRS)

    Kaufman, H.

    1976-01-01

    Because application of conventional optimal linear regulator theory to flight controller design requires the capability of measuring and/or estimating the entire state vector, it is of interest to consider procedures for computing controls which are restricted to be linear feedback functions of a lower dimensional output vector and which take into account the presence of measurement noise and process uncertainty. Therefore, a stochastic linear model that was developed is presented which accounts for aircraft parameter and initial uncertainty, measurement noise, turbulence, pilot command and a restricted number of measurable outputs. Optimization with respect to the corresponding output feedback gains was performed for both finite and infinite time performance indices without gradient computation by using Zangwill's modification of a procedure originally proposed by Powell. Results using a seventh order process show the proposed procedures to be very effective.

  9. An Optimal Control Modification to Model-Reference Adaptive Control for Fast Adaptation

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Krishnakumar, Kalmanje; Boskovic, Jovan

    2008-01-01

    This paper presents a method that can achieve fast adaptation for a class of model-reference adaptive control. It is well-known that standard model-reference adaptive control exhibits high-gain control behaviors when a large adaptive gain is used to achieve fast adaptation in order to reduce tracking error rapidly. High gain control creates high-frequency oscillations that can excite unmodeled dynamics and can lead to instability. The fast adaptation approach is based on the minimization of the squares of the tracking error, which is formulated as an optimal control problem. The necessary condition of optimality is used to derive an adaptive law using the gradient method. This adaptive law is shown to result in uniform boundedness of the tracking error by means of the Lyapunov s direct method. Furthermore, this adaptive law allows a large adaptive gain to be used without causing undesired high-gain control effects. The method is shown to be more robust than standard model-reference adaptive control. Simulations demonstrate the effectiveness of the proposed method.

  10. The application of quadratic optimal cooperative control synthesis to a CH-47 helicopter

    NASA Technical Reports Server (NTRS)

    Townsend, Barbara K.

    1987-01-01

    A control-system design method, quadratic optimal cooperative control synthesis (CCS), is applied to the design of a stability and control augmentation system (SCAS). The CCS design method is different from other design methods in that it does not require detailed a priori design criteria, but instead relies on an explicit optimal pilot-model to create desired performance. The design method, which was developed previously for fixed-wing aircraft, is simplified and modified for application to a Boeing CH-47 helicopter. Two SCAS designs are developed using the CCS design methodology. The resulting CCS designs are then compared with designs obtained using classical/frequency-domain methods and linear quadratic regulator (LQR) theory in a piloted fixed-base simulation. Results indicate that the CCS method, with slight modifications, can be used to produce controller designs which compare favorably with the frequency-domain approach.

  11. The application of quadratic optimal cooperative control synthesis to a CH-47 helicopter

    NASA Technical Reports Server (NTRS)

    Townsend, Barbara K.

    1986-01-01

    A control-system design method, Quadratic Optimal Cooperative Control Synthesis (CCS), is applied to the design of a Stability and Control Augmentation Systems (SCAS). The CCS design method is different from other design methods in that it does not require detailed a priori design criteria, but instead relies on an explicit optimal pilot-model to create desired performance. The design model, which was developed previously for fixed-wing aircraft, is simplified and modified for application to a Boeing Vertol CH-47 helicopter. Two SCAS designs are developed using the CCS design methodology. The resulting CCS designs are then compared with designs obtained using classical/frequency-domain methods and Linear Quadratic Regulator (LQR) theory in a piloted fixed-base simulation. Results indicate that the CCS method, with slight modifications, can be used to produce controller designs which compare favorably with the frequency-domain approach.

  12. Pilot Evaluation of Adaptive Control in Motion-Based Flight Simulator

    NASA Technical Reports Server (NTRS)

    Kaneshige, John T.; Campbell, Stefan Forrest

    2009-01-01

    The objective of this work is to assess the strengths, weaknesses, and robustness characteristics of several MRAC (Model-Reference Adaptive Control) based adaptive control technologies garnering interest from the community as a whole. To facilitate this, a control study using piloted and unpiloted simulations to evaluate sensitivities and handling qualities was conducted. The adaptive control technologies under consideration were ALR (Adaptive Loop Recovery), BLS (Bounded Linear Stability), Hybrid Adaptive Control, L1, OCM (Optimal Control Modification), PMRAC (Predictor-based MRAC), and traditional MRAC

  13. MTO1 mediates tissue specificity of OXPHOS defects via tRNA modification and translation optimization, which can be bypassed by dietary intervention

    PubMed Central

    Tischner, Christin; Hofer, Annette; Wulff, Veronika; Stepek, Joanna; Dumitru, Iulia; Becker, Lore; Haack, Tobias; Kremer, Laura; Datta, Alexandre N.; Sperl, Wolfgang; Floss, Thomas; Wurst, Wolfgang; Chrzanowska-Lightowlers, Zofia; De Angelis, Martin Hrabe; Klopstock, Thomas; Prokisch, Holger; Wenz, Tina

    2015-01-01

    Mitochondrial diseases often exhibit tissue-specific pathologies, but this phenomenon is poorly understood. Here we present regulation of mitochondrial translation by the Mitochondrial Translation Optimization Factor 1, MTO1, as a novel player in this scenario. We demonstrate that MTO1 mediates tRNA modification and controls mitochondrial translation rate in a highly tissue-specific manner associated with tissue-specific OXPHOS defects. Activation of mitochondrial proteases, aberrant translation products, as well as defects in OXPHOS complex assembly observed in MTO1 deficient mice further imply that MTO1 impacts translation fidelity. In our mouse model, MTO1-related OXPHOS deficiency can be bypassed by feeding a ketogenic diet. This therapeutic intervention is independent of the MTO1-mediated tRNA modification and involves balancing of mitochondrial and cellular secondary stress responses. Our results thereby establish mammalian MTO1 as a novel factor in the tissue-specific regulation of OXPHOS and fine tuning of mitochondrial translation accuracy. PMID:25552653

  14. A novel model of motor learning capable of developing an optimal movement control law online from scratch.

    PubMed

    Shimansky, Yury P; Kang, Tao; He, Jiping

    2004-02-01

    A computational model of a learning system (LS) is described that acquires knowledge and skill necessary for optimal control of a multisegmental limb dynamics (controlled object or CO), starting from "knowing" only the dimensionality of the object's state space. It is based on an optimal control problem setup different from that of reinforcement learning. The LS solves the optimal control problem online while practicing the manipulation of CO. The system's functional architecture comprises several adaptive components, each of which incorporates a number of mapping functions approximated based on artificial neural nets. Besides the internal model of the CO's dynamics and adaptive controller that computes the control law, the LS includes a new type of internal model, the minimal cost (IM(mc)) of moving the controlled object between a pair of states. That internal model appears critical for the LS's capacity to develop an optimal movement trajectory. The IM(mc) interacts with the adaptive controller in a cooperative manner. The controller provides an initial approximation of an optimal control action, which is further optimized in real time based on the IM(mc). The IM(mc) in turn provides information for updating the controller. The LS's performance was tested on the task of center-out reaching to eight randomly selected targets with a 2DOF limb model. The LS reached an optimal level of performance in a few tens of trials. It also quickly adapted to movement perturbations produced by two different types of external force field. The results suggest that the proposed design of a self-optimized control system can serve as a basis for the modeling of motor learning that includes the formation and adaptive modification of the plan of a goal-directed movement.

  15. Computational Efficiency of the Simplex Embedding Method in Convex Nondifferentiable Optimization

    NASA Astrophysics Data System (ADS)

    Kolosnitsyn, A. V.

    2018-02-01

    The simplex embedding method for solving convex nondifferentiable optimization problems is considered. A description of modifications of this method based on a shift of the cutting plane intended for cutting off the maximum number of simplex vertices is given. These modification speed up the problem solution. A numerical comparison of the efficiency of the proposed modifications based on the numerical solution of benchmark convex nondifferentiable optimization problems is presented.

  16. Generalized filtering of laser fields in optimal control theory: application to symmetry filtering of quantum gate operations

    NASA Astrophysics Data System (ADS)

    Schröder, Markus; Brown, Alex

    2009-10-01

    We present a modified version of a previously published algorithm (Gollub et al 2008 Phys. Rev. Lett.101 073002) for obtaining an optimized laser field with more general restrictions on the search space of the optimal field. The modification leads to enforcement of the constraints on the optimal field while maintaining good convergence behaviour in most cases. We demonstrate the general applicability of the algorithm by imposing constraints on the temporal symmetry of the optimal fields. The temporal symmetry is used to reduce the number of transitions that have to be optimized for quantum gate operations that involve inversion (NOT gate) or partial inversion (Hadamard gate) of the qubits in a three-dimensional model of ammonia.

  17. Fuzzy Adaptive Control for Intelligent Autonomous Space Exploration Problems

    NASA Technical Reports Server (NTRS)

    Esogbue, Augustine O.

    1998-01-01

    The principal objective of the research reported here is the re-design, analysis and optimization of our newly developed neural network fuzzy adaptive controller model for complex processes capable of learning fuzzy control rules using process data and improving its control through on-line adaption. The learned improvement is according to a performance objective function that provides evaluative feedback; this performance objective is broadly defined to meet long-range goals over time. Although fuzzy control had proven effective for complex, nonlinear, imprecisely-defined processes for which standard models and controls are either inefficient, impractical or cannot be derived, the state of the art prior to our work showed that procedures for deriving fuzzy control, however, were mostly ad hoc heuristics. The learning ability of neural networks was exploited to systematically derive fuzzy control and permit on-line adaption and in the process optimize control. The operation of neural networks integrates very naturally with fuzzy logic. The neural networks which were designed and tested using simulation software and simulated data, followed by realistic industrial data were reconfigured for application on several platforms as well as for the employment of improved algorithms. The statistical procedures of the learning process were investigated and evaluated with standard statistical procedures (such as ANOVA, graphical analysis of residuals, etc.). The computational advantage of dynamic programming-like methods of optimal control was used to permit on-line fuzzy adaptive control. Tests for the consistency, completeness and interaction of the control rules were applied. Comparisons to other methods and controllers were made so as to identify the major advantages of the resulting controller model. Several specific modifications and extensions were made to the original controller. Additional modifications and explorations have been proposed for further study. Some of these are in progress in our laboratory while others await additional support. All of these enhancements will improve the attractiveness of the controller as an effective tool for the on line control of an array of complex process environments.

  18. Metabolic regulation and maximal reaction optimization in the central metabolism of a yeast cell

    NASA Astrophysics Data System (ADS)

    Kasbawati, Gunawan, A. Y.; Hertadi, R.; Sidarto, K. A.

    2015-03-01

    Regulation of fluxes in a metabolic system aims to enhance the production rates of biotechnologically important compounds. Regulation is held via modification the cellular activities of a metabolic system. In this study, we present a metabolic analysis of ethanol fermentation process of a yeast cell in terms of continuous culture scheme. The metabolic regulation is based on the kinetic formulation in combination with metabolic control analysis to indicate the key enzymes which can be modified to enhance ethanol production. The model is used to calculate the intracellular fluxes in the central metabolism of the yeast cell. Optimal control is then applied to the kinetic model to find the optimal regulation for the fermentation system. The sensitivity results show that there are external and internal control parameters which are adjusted in enhancing ethanol production. As an external control parameter, glucose supply should be chosen in appropriate way such that the optimal ethanol production can be achieved. For the internal control parameter, we find three enzymes as regulation targets namely acetaldehyde dehydrogenase, pyruvate decarboxylase, and alcohol dehydrogenase which reside in the acetaldehyde branch. Among the three enzymes, however, only acetaldehyde dehydrogenase has a significant effect to obtain optimal ethanol production efficiently.

  19. Adaptive Wing Camber Optimization: A Periodic Perturbation Approach

    NASA Technical Reports Server (NTRS)

    Espana, Martin; Gilyard, Glenn

    1994-01-01

    Available redundancy among aircraft control surfaces allows for effective wing camber modifications. As shown in the past, this fact can be used to improve aircraft performance. To date, however, algorithm developments for in-flight camber optimization have been limited. This paper presents a perturbational approach for cruise optimization through in-flight camber adaptation. The method uses, as a performance index, an indirect measurement of the instantaneous net thrust. As such, the actual performance improvement comes from the integrated effects of airframe and engine. The algorithm, whose design and robustness properties are discussed, is demonstrated on the NASA Dryden B-720 flight simulator.

  20. Implications of optimization cost for balancing exploration and exploitation in global search and for experimental optimization

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Anirban

    Global optimization based on expensive and time consuming simulations or experiments usually cannot be carried out to convergence, but must be stopped because of time constraints, or because the cost of the additional function evaluations exceeds the benefits of improving the objective(s). This dissertation sets to explore the implications of such budget and time constraints on the balance between exploration and exploitation and the decision of when to stop. Three different aspects are considered in terms of their effects on the balance between exploration and exploitation: 1) history of optimization, 2) fixed evaluation budget, and 3) cost as a part of objective function. To this end, this research develops modifications to the surrogate-based optimization technique, Efficient Global Optimization algorithm, that controls better the balance between exploration and exploitation, and stopping criteria facilitated by these modifications. Then the focus shifts to examining experimental optimization, which shares the issues of cost and time constraints. Through a study on optimization of thrust and power for a small flapping wing for micro air vehicles, important differences and similarities between experimental and simulation-based optimization are identified. The most important difference is that reduction of noise in experiments becomes a major time and cost issue, and a second difference is that parallelism as a way to cut cost is more challenging. The experimental optimization reveals the tendency of the surrogate to display optimistic bias near the surrogate optimum, and this tendency is then verified to also occur in simulation based optimization.

  1. Optimization of selenylation modification for garlic polysaccharide based on immune-enhancing activity.

    PubMed

    Gao, Zhenzhen; Chen, Jin; Qiu, Shulei; Li, Youying; Wang, Deyun; Liu, Cui; Li, Xiuping; Hou, Ranran; Yue, Chanjuan; Liu, Jie; Li, Hongquan; Hu, Yuanliang

    2016-01-20

    Garlic polysaccharide (GPS) was modified in selenylation respectively by nitric acid-sodium selenite (NA-SS), glacial acetic acid-selenous acid (GA-SA), glacial acetic acid-sodium selenite (GA-SS) and selenium oxychloride (SOC) methods each under nine modification conditions of L9(3(4)) orthogonal design and each to obtain nine selenizing GPSs (sGPSs). Their structures were identified, yields and selenium contents were determined, selenium yields were calculated, and the immune-enhancing activities of four sGPSs with higher selenium yields were compared taking unmodified GPS as control. The results showed that among four methods the selenylation efficiency of NA-SS method were the highest, the activity of sGPS5 was the strongest and significantly stronger than that of unmodified GPS. This indicates that selenylation modification can significantly enhance the immune-enhancing activity of GPS, NA-SS method is the best method and the optimal conditions are 0.8:1 weight ratio of sodium selenite to GPS, reaction temperature of 70 °C and reaction time of 10h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The modification of hybrid method of ant colony optimization, particle swarm optimization and 3-OPT algorithm in traveling salesman problem

    NASA Astrophysics Data System (ADS)

    Hertono, G. F.; Ubadah; Handari, B. D.

    2018-03-01

    The traveling salesman problem (TSP) is a famous problem in finding the shortest tour to visit every vertex exactly once, except the first vertex, given a set of vertices. This paper discusses three modification methods to solve TSP by combining Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) and 3-Opt Algorithm. The ACO is used to find the solution of TSP, in which the PSO is implemented to find the best value of parameters α and β that are used in ACO.In order to reduce the total of tour length from the feasible solution obtained by ACO, then the 3-Opt will be used. In the first modification, the 3-Opt is used to reduce the total tour length from the feasible solutions obtained at each iteration, meanwhile, as the second modification, 3-Opt is used to reduce the total tour length from the entire solution obtained at every iteration. In the third modification, 3-Opt is used to reduce the total tour length from different solutions obtained at each iteration. Results are tested using 6 benchmark problems taken from TSPLIB by calculating the relative error to the best known solution as well as the running time. Among those modifications, only the second and third modification give satisfactory results except the second one needs more execution time compare to the third modifications.

  3. LED lighting – modification of growth, metabolism, yield and flour composition in wheat by spectral quality and intensity

    USDA-ARS?s Scientific Manuscript database

    The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plan...

  4. Imagining a brighter future: the effect of positive imagery training on mood, prospective mental imagery and emotional bias in older adults.

    PubMed

    Murphy, Susannah E; Clare O'Donoghue, M; Drazich, Erin H S; Blackwell, Simon E; Christina Nobre, Anna; Holmes, Emily A

    2015-11-30

    Positive affect and optimism play an important role in healthy ageing and are associated with improved physical and cognitive health outcomes. This study investigated whether it is possible to boost positive affect and associated positive biases in this age group using cognitive training. The effect of computerised imagery-based cognitive bias modification on positive affect, vividness of positive prospective imagery and interpretation biases in older adults was measured. 77 older adults received 4 weeks (12 sessions) of imagery cognitive bias modification or a control condition. They were assessed at baseline, post-training and at a one-month follow-up. Both groups reported decreased negative affect and trait anxiety, and increased optimism across the three assessments. Imagery cognitive bias modification significantly increased the vividness of positive prospective imagery post-training, compared with the control training. Contrary to our hypothesis, there was no difference between the training groups in negative interpretation bias. This is a useful demonstration that it is possible to successfully engage older adults in computer-based cognitive training and to enhance the vividness of positive imagery about the future in this group. Future studies are needed to assess the longer-term consequences of such training and the impact on affect and wellbeing in more vulnerable groups. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  5. Reducing usage of the computational resources by event driven approach to model predictive control

    NASA Astrophysics Data System (ADS)

    Misik, Stefan; Bradac, Zdenek; Cela, Arben

    2017-08-01

    This paper deals with a real-time and optimal control of dynamic systems while also considers the constraints which these systems might be subject to. Main objective of this work is to propose a simple modification of the existing Model Predictive Control approach to better suit needs of computational resource-constrained real-time systems. An example using model of a mechanical system is presented and the performance of the proposed method is evaluated in a simulated environment.

  6. Preliminary control law and hardware designs for a ride quality augmentation system for commuter aircraft. Phase 2

    NASA Technical Reports Server (NTRS)

    Davis, D. J.; Linse, D. J.; Suikat, R.; Entz, D. P.

    1986-01-01

    The continued investigation of the design of Ride Quality Augmentation Systems (RQAS) for commuter aircraft is described. The purpose of these RQAS is the reduction of the vertical and lateral acceleration response of the aircraft due to atmospheric turbulence by the application of active control. The current investigations include the refinement of the sample data feedback control laws based on the control-rate-weighting and output-weighting optimal control design techniqes. These control designs were evaluated using aircraft time simulations driven by Dryden spectra turbulence. Fixed gain controllers were tested throughout the aircrft operating envelope. The preliminary design of the hardware modifications necessary to implement and test the RQAS on a commuter aircraft is included. These include a separate surface elevator and the flap modifications to provide both direct lift and roll control. A preliminary failure mode investigation was made for the proposed configuration. The results indicate that vertical acceleration reductions of 45% and lateral reductions of more than 50% are possible. A fixed gain controller appears to be feasible with only minor response degradation.

  7. A Question of Control? Examining the Role of Control Conditions in Experimental Psychopathology using the Example of Cognitive Bias Modification Research.

    PubMed

    Blackwell, Simon E; Woud, Marcella L; MacLeod, Colin

    2017-10-26

    While control conditions are vitally important in research, selecting the optimal control condition can be challenging. Problems are likely to arise when the choice of control condition is not tightly guided by the specific question that a given study aims to address. Such problems have become increasingly apparent in experimental psychopathology research investigating the experimental modification of cognitive biases, particularly as the focus of this research has shifted from theoretical questions concerning mechanistic aspects of the association between cognitive bias and emotional vulnerability, to questions that instead concern the clinical efficacy of 'cognitive bias modification' (CBM) procedures. We discuss the kinds of control conditions that have typically been employed in CBM research, illustrating how difficulties can arise when changes in the types of research questions asked are not accompanied by changes in the control conditions employed. Crucially, claims made on the basis of comparing active and control conditions within CBM studies should be restricted to those conclusions allowed by the specific control condition employed. CBM studies aiming to establish clinical utility are likely to require quite different control conditions from CBM studies aiming to illuminate mechanisms. Further, conclusions concerning the clinical utility of CBM interventions cannot necessarily be drawn from studies in which the control condition has been chosen to answer questions concerning mechanisms. Appreciating the need to appropriately alter control conditions in the transition from basic mechanisms-focussed investigations to applied clinical research could greatly facilitate the translational process.

  8. A comparative study of controlled random search algorithms with application to inverse aerofoil design

    NASA Astrophysics Data System (ADS)

    Manzanares-Filho, N.; Albuquerque, R. B. F.; Sousa, B. S.; Santos, L. G. C.

    2018-06-01

    This article presents a comparative study of some versions of the controlled random search algorithm (CRSA) in global optimization problems. The basic CRSA, originally proposed by Price in 1977 and improved by Ali et al. in 1997, is taken as a starting point. Then, some new modifications are proposed to improve the efficiency and reliability of this global optimization technique. The performance of the algorithms is assessed using traditional benchmark test problems commonly invoked in the literature. This comparative study points out the key features of the modified algorithm. Finally, a comparison is also made in a practical engineering application, namely the inverse aerofoil shape design.

  9. Effective Strategy Formation Models for Inventory Management under the Conditions of Uncertainty

    ERIC Educational Resources Information Center

    Kosorukov, Oleg Anatolyevich; Sviridova, Olga Alexandrovna

    2015-01-01

    The article deals with the problem of modeling the commodity flows management of a trading company under the conditions of uncertain demand and long supply. The Author presents an analysis of modifications of diversified inventory management system with random demand, for which one can find the optimal inventory control strategies, including those…

  10. Feedback System Control Optimized Electrospinning for Fabrication of an Excellent Superhydrophobic Surface.

    PubMed

    Yang, Jian; Liu, Chuangui; Wang, Boqian; Ding, Xianting

    2017-10-13

    Superhydrophobic surface, as a promising micro/nano material, has tremendous applications in biological and artificial investigations. The electrohydrodynamics (EHD) technique is a versatile and effective method for fabricating micro- to nanoscale fibers and particles from a variety of materials. A combination of critical parameters, such as mass fraction, ratio of N, N-Dimethylformamide (DMF) to Tetrahydrofuran (THF), inner diameter of needle, feed rate, receiving distance, applied voltage as well as temperature, during electrospinning process, to determine the morphology of the electrospun membranes, which in turn determines the superhydrophobic property of the membrane. In this study, we applied a recently developed feedback system control (FSC) scheme for rapid identification of the optimal combination of these controllable parameters to fabricate superhydrophobic surface by one-step electrospinning method without any further modification. Within five rounds of experiments by testing totally forty-six data points, FSC scheme successfully identified an optimal parameter combination that generated electrospun membranes with a static water contact angle of 160 degrees or larger. Scanning electron microscope (SEM) imaging indicates that the FSC optimized surface attains unique morphology. The optimized setup introduced here therefore serves as a one-step, straightforward, and economic approach to fabricate superhydrophobic surface with electrospinning approach.

  11. Modification of insulin sensitivity and glycemic control by activity and exercise.

    PubMed

    Roberts, Christian K; Little, Jonathan P; Thyfault, John P

    2013-10-01

    Type 2 diabetes has progressed into a major contributor to preventable death, and developing optimal therapeutic strategies to prevent future type 2 diabetes and its primary clinical manifestation of cardiovascular disease is a major public health challenge. This article will provide a brief overview of the role of activity and exercise in modulating insulin sensitivity and will outline the effect of physical activity, high-intensity interval training, and resistance training on insulin sensitivity and glycemic control.

  12. A predictive pilot model for STOL aircraft landing

    NASA Technical Reports Server (NTRS)

    Kleinman, D. L.; Killingsworth, W. R.

    1974-01-01

    An optimal control approach has been used to model pilot performance during STOL flare and landing. The model is used to predict pilot landing performance for three STOL configurations, each having a different level of automatic control augmentation. Model predictions are compared with flight simulator data. It is concluded that the model can be effective design tool for studying analytically the effects of display modifications, different stability augmentation systems, and proposed changes in the landing area geometry.

  13. Development and Testing of Control Laws for the Active Aeroelastic Wing Program

    NASA Technical Reports Server (NTRS)

    Dibley, Ryan P.; Allen, Michael J.; Clarke, Robert; Gera, Joseph; Hodgkinson, John

    2005-01-01

    The Active Aeroelastic Wing research program was a joint program between the U.S. Air Force Research Laboratory and NASA established to investigate the characteristics of an aeroelastic wing and the technique of using wing twist for roll control. The flight test program employed the use of an F/A-18 aircraft modified by reducing the wing torsional stiffness and adding a custom research flight control system. The research flight control system was optimized to maximize roll rate using only wing surfaces to twist the wing while simultaneously maintaining design load limits, stability margins, and handling qualities. NASA Dryden Flight Research Center developed control laws using the software design tool called CONDUIT, which employs a multi-objective function optimization to tune selected control system design parameters. Modifications were made to the Active Aeroelastic Wing implementation in this new software design tool to incorporate the NASA Dryden Flight Research Center nonlinear F/A-18 simulation for time history analysis. This paper describes the design process, including how the control law requirements were incorporated into constraints for the optimization of this specific software design tool. Predicted performance is also compared to results from flight.

  14. Control of nitrification/denitrification in an onsite two-chamber intermittently aerated membrane bioreactor with alkalinity and carbon addition: Model and experiment.

    PubMed

    Perera, Mahamalage Kusumitha; Englehardt, James D; Tchobanoglous, George; Shamskhorzani, Reza

    2017-05-15

    Denitrifying membrane bioreactors (MBRs) are being found useful in water reuse treatment systems, including net-zero water (nearly closed-loop), non-reverse osmosis-based, direct potable reuse (DPR) systems. In such systems nitrogen may need to be controlled in the MBR to meet the nitrate drinking water standard in the finished water. To achieve efficient nitrification and denitrification, the addition of alkalinity and external carbon may be required, and control of the carbon feed rate is then important. In this work, an onsite, two-chamber aerobic nitrifying/denitrifying MBR, representing one unit process of a net-zero water, non-reverse osmosis-based DPR system, was modeled as a basis for control of the MBR internal recycling rate, aeration rate, and external carbon feed rate. Specifically, a modification of the activated sludge model ASM2dSMP was modified further to represent the rate of recycling between separate aerobic and anoxic chambers, rates of carbon and alkalinity feed, and variable aeration schedule, and was demonstrated versus field data. The optimal aeration pattern for the modeled reactor configuration and influent matrix was found to be 30 min of aeration in a 2 h cycle (104 m 3 air/d per 1 m 3 /d average influent), to ultimately meet the nitrate drinking water standard. Optimal recycling ratios (inter-chamber flow to average daily flow) were found to be 1.5 and 3 during rest and mixing periods, respectively. The model can be used to optimize aeration pattern and recycling ratio in such MBRs, with slight modifications to reflect reactor configuration, influent matrix, and target nitrogen species concentrations, though some recalibration may be required. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Supernatural T cells: genetic modification of T cells for cancer therapy.

    PubMed

    Kershaw, Michael H; Teng, Michele W L; Smyth, Mark J; Darcy, Phillip K

    2005-12-01

    Immunotherapy is receiving much attention as a means of treating cancer, but complete, durable responses remain rare for most malignancies. The natural immune system seems to have limitations and deficiencies that might affect its ability to control malignant disease. An alternative to relying on endogenous components in the immune repertoire is to generate lymphocytes with abilities that are greater than those of natural T cells, through genetic modification to produce 'supernatural' T cells. This Review describes how such T cells can circumvent many of the barriers that are inherent in the tumour microenvironment while optimizing T-cell specificity, activation, homing and antitumour function.

  16. Costs of Limiting Route Optimization to Published Waypoints in the Traffic Aware Planner

    NASA Technical Reports Server (NTRS)

    Karr, David A.; Vivona, Robert A.; Wing, David J.

    2013-01-01

    The Traffic Aware Planner (TAP) is an airborne advisory tool that generates optimized, traffic-avoiding routes to support the aircraft crew in making strategic reroute requests to Air Traffic Control (ATC). TAP is derived from a research-prototype self-separation tool, the Autonomous Operations Planner (AOP), in which optimized route modifications that avoid conflicts with traffic and weather, using waypoints at explicit latitudes and longitudes (a technique supported by self-separation concepts), are generated by maneuver patterns applied to the existing route. For use in current-day operations in which trajectory changes must be requested from ATC via voice communication, TAP produces optimized routes described by advisories that use only published waypoints prior to a reconnection waypoint on the existing route. We describe how the relevant algorithms of AOP have been modified to implement this requirement. The modifications include techniques for finding appropriate published waypoints in a maneuver pattern and a method for combining the genetic algorithm of AOP with an exhaustive search of certain types of advisory. We demonstrate methods to investigate the increased computation required by these techniques and to estimate other costs (measured in terms such as time to destination and fuel burned) that may be incurred when only published waypoints are used.

  17. Design modification and optimisation of the perfusion system of a tri-axial bioreactor for tissue engineering.

    PubMed

    Hussein, Husnah; Williams, David J; Liu, Yang

    2015-07-01

    A systematic design of experiments (DOE) approach was used to optimize the perfusion process of a tri-axial bioreactor designed for translational tissue engineering exploiting mechanical stimuli and mechanotransduction. Four controllable design parameters affecting the perfusion process were identified in a cause-effect diagram as potential improvement opportunities. A screening process was used to separate out the factors that have the largest impact from the insignificant ones. DOE was employed to find the settings of the platen design, return tubing configuration and the elevation difference that minimise the load on the pump and variation in the perfusion process and improve the controllability of the perfusion pressures within the prescribed limits. DOE was very effective for gaining increased knowledge of the perfusion process and optimizing the process for improved functionality. It is hypothesized that the optimized perfusion system will result in improved biological performance and consistency.

  18. A High-Order, Linear Time-Invariant Model for Application to Higher Harmonic Control and Flight Control System Interaction

    NASA Technical Reports Server (NTRS)

    Cheng, Rendy P.; Tischler, Mark B.; Celi, Roberto

    2006-01-01

    This research describes a new methodology for the extraction of a high-order, linear time invariant model, which allows the periodicity of the helicopter response to be accurately captured. This model provides the needed level of dynamic fidelity to permit an analysis and optimization of the AFCS and HHC algorithms. The key results of this study indicate that the closed-loop HHC system has little influence on the AFCS or on the vehicle handling qualities, which indicates that the AFCS does not need modification to work with the HHC system. However, the results show that the vibration response to maneuvers must be considered during the HHC design process, and this leads to much higher required HHC loop crossover frequencies. This research also demonstrates that the transient vibration responses during maneuvers can be reduced by optimizing the closed-loop higher harmonic control algorithm using conventional control system analyses.

  19. Study of the modifications needed for efficient operation of NASTRAN on the Control Data Corporation STAR-100 computer

    NASA Technical Reports Server (NTRS)

    1975-01-01

    NASA structural analysis (NASTRAN) computer program is operational on three series of third generation computers. The problem and difficulties involved in adapting NASTRAN to a fourth generation computer, namely, the Control Data STAR-100, are discussed. The salient features which distinguish Control Data STAR-100 from third generation computers are hardware vector processing capability and virtual memory. A feasible method is presented for transferring NASTRAN to Control Data STAR-100 system while retaining much of the machine-independent code. Basic matrix operations are noted for optimization for vector processing.

  20. Computation of output feedback gains for linear stochastic systems using the Zangwill-Powell method

    NASA Technical Reports Server (NTRS)

    Kaufman, H.

    1977-01-01

    Because conventional optimal linear regulator theory results in a controller which requires the capability of measuring and/or estimating the entire state vector, it is of interest to consider procedures for computing controls which are restricted to be linear feedback functions of a lower dimensional output vector and which take into account the presence of measurement noise and process uncertainty. To this effect a stochastic linear model has been developed that accounts for process parameter and initial uncertainty, measurement noise, and a restricted number of measurable outputs. Optimization with respect to the corresponding output feedback gains was then performed for both finite and infinite time performance indices without gradient computation by using Zangwill's modification of a procedure originally proposed by Powell.

  1. Intracycle angular velocity control of cross-flow turbines

    NASA Astrophysics Data System (ADS)

    Strom, Benjamin; Brunton, Steven L.; Polagye, Brian

    2017-08-01

    Cross-flow turbines, also known as vertical-axis turbines, are attractive for power generation from wind and water currents. Some cross-flow turbine designs optimize unsteady fluid forces and maximize power output by controlling blade kinematics within one rotation. One established method is to dynamically pitch the blades. Here we introduce a mechanically simpler alternative: optimize the turbine rotation rate as a function of angular blade position. We demonstrate experimentally that this approach results in a 59% increase in power output over standard control methods. Analysis of fluid forcing and blade kinematics suggest that power increase is achieved through modification of the local flow conditions and alignment of fluid force and rotation rate extrema. The result is a low-speed, structurally robust turbine that achieves high efficiency and could enable a new generation of environmentally benign turbines for renewable power generation.

  2. Reliability optimization design of the gear modification coefficient based on the meshing stiffness

    NASA Astrophysics Data System (ADS)

    Wang, Qianqian; Wang, Hui

    2018-04-01

    Since the time varying meshing stiffness of gear system is the key factor affecting gear vibration, it is important to design the meshing stiffness to reduce vibration. Based on the effect of gear modification coefficient on the meshing stiffness, considering the random parameters, reliability optimization design of the gear modification is researched. The dimension reduction and point estimation method is used to estimate the moment of the limit state function, and the reliability is obtained by the forth moment method. The cooperation of the dynamic amplitude results before and after optimization indicates that the research is useful for the reduction of vibration and noise and the improvement of the reliability.

  3. Concept report: Microprocessor control of electrical power system

    NASA Technical Reports Server (NTRS)

    Perry, E.

    1977-01-01

    An electrical power system which uses a microprocessor for systems control and monitoring is described. The microprocessor controlled system permits real time modification of system parameters for optimizing a system configuration, especially in the event of an anomaly. By reducing the components count, the assembling and testing of the unit is simplified, and reliability is increased. A resuable modular power conversion system capable of satisfying a large percentage of space applications requirements is examined along with the programmable power processor. The PC global controller which handles systems control and external communication is analyzed, and a software description is given. A systems application summary is also included.

  4. Subtractive Structural Modification of Morpho Butterfly Wings.

    PubMed

    Shen, Qingchen; He, Jiaqing; Ni, Mengtian; Song, Chengyi; Zhou, Lingye; Hu, Hang; Zhang, Ruoxi; Luo, Zhen; Wang, Ge; Tao, Peng; Deng, Tao; Shang, Wen

    2015-11-11

    Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Combining pressure and temperature control in dynamics on energy landscapes

    NASA Astrophysics Data System (ADS)

    Hoffmann, Karl Heinz; Christian Schön, J.

    2017-05-01

    Complex systems from science, technology or mathematics usually appear to be very different in their specific dynamical evolution. However, the concept of an energy landscape with its basins corresponding to locally ergodic regions separated by energy barriers provides a unifying approach to the description of complex systems dynamics. In such systems one is often confronted with the task to control the dynamics such that a certain basin is reached with the highest possible probability. Typically one aims for the global minimum, e.g. when dealing with global optimization problems, but frequently other local minima such as the metastable compounds in materials science are of primary interest. Here we show how this task can be solved by applying control theory using magnesium fluoride as an example system, where different modifications of MgF2 are considered as targets. In particular, we generalize previous work restricted to temperature controls only and present controls which simultaneously adjust temperature and pressure in an optimal fashion.

  6. Tissue modification with feedback: the smart scalpel

    NASA Astrophysics Data System (ADS)

    Sebern, Elizabeth L.; Brenan, Colin J. H.; Anderson, R. Rox; Hunter, Ian W.

    1998-10-01

    While feedback control is widespread throughout many engineering fields, there are almost no examples of surgical instruments that utilize a real-time detection and intervention strategy. This concept of closed loop feedback can be applied to the development of autonomous or semi- autonomous minimally invasive robotic surgical systems for efficient excision or modification of diseased tissue. Spatially localized regions of the tissue are first probed to distinguish pathological from healthy tissue based on differences in histochemical and morphological properties. Energy is directed to only the diseased tissue, minimizing collateral damage by leaving the adjacent healthy tissue intact. Continuous monitoring determines treatment effectiveness and, if needed, enables real-time treatment modifications to produce optimal therapeutic outcomes. The present embodiment of this general concept is a microsurgical instrument we call the Smart Scalpel, designed to treat skin angiodysplasias such as port wine stains. Other potential Smart Scalpel applications include psoriasis treatment and early skin cancer detection and intervention.

  7. Printing-assisted surface modifications of patterned ultrafiltration membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem

    Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted inmore » all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.« less

  8. Printing-assisted surface modifications of patterned ultrafiltration membranes

    DOE PAGES

    Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem; ...

    2016-10-17

    Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted inmore » all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.« less

  9. Guidance control of small UAV with energy and maneuverability limitations for a search and coverage mission

    NASA Astrophysics Data System (ADS)

    Gramajo, German G.

    This thesis presents an algorithm for a search and coverage mission that has increased autonomy in generating an ideal trajectory while explicitly considering the available energy in the optimization. Further, current algorithms used to generate trajectories depend on the operator providing a discrete set of turning rate requirements to obtain an optimal solution. This work proposes an additional modification to the algorithm so that it optimizes the trajectory for a range of turning rates instead of a discrete set of turning rates. This thesis conducts an evaluation of the algorithm with variation in turn duration, entry-heading angle, and entry point. Comparative studies of the algorithm with existing method indicates improved autonomy in choosing the optimization parameters while producing trajectories with better coverage area and closer final distance to the desired terminal point.

  10. Emerging trends in vibration control of wind turbines: a focus on a dual control strategy.

    PubMed

    Staino, Andrea; Basu, Biswajit

    2015-02-28

    The paper discusses some of the recent developments in vibration control strategies for wind turbines, and in this context proposes a new dual control strategy based on the combination and modification of two recently proposed control schemes. Emerging trends in the vibration control of both onshore and offshore wind turbines are presented. Passive, active and semi-active structural vibration control algorithms have been reviewed. Of the existing controllers, two control schemes, active pitch control and active tendon control, have been discussed in detail. The proposed new control scheme is a merger of active tendon control with passive pitch control, and is designed using a Pareto-optimal problem formulation. This combination of controllers is the cornerstone of a dual strategy with the feature of decoupling vibration control from optimal power control as one of its main advantages, in addition to reducing the burden on the pitch demand. This dual control strategy will bring in major benefits to the design of modern wind turbines and is expected to play a significant role in the advancement of offshore wind turbine technologies. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. CAD-Based Aerodynamic Design of Complex Configurations using a Cartesian Method

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.

    2003-01-01

    A modular framework for aerodynamic optimization of complex geometries is developed. By working directly with a parametric CAD system, complex-geometry models are modified nnd tessellated in an automatic fashion. The use of a component-based Cartesian method significantly reduces the demands on the CAD system, and also provides for robust and efficient flowfield analysis. The optimization is controlled using either a genetic or quasi-Newton algorithm. Parallel efficiency of the framework is maintained even when subject to limited CAD resources by dynamically re-allocating the processors of the flow solver. Overall, the resulting framework can explore designs incorporating large shape modifications and changes in topology.

  12. Laser-Based Surface Modification of Microstructure for Carbon Fiber-Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Yang, Wenfeng; Sun, Ting; Cao, Yu; Li, Shaolong; Liu, Chang; Tang, Qingru

    2018-05-01

    Bonding repair is a powerful feature of carbon fiber-reinforced plastics (CFRP). Based on the theory of interface bonding, the interface adhesion strength and reliability of the CFRP structure will be directly affected by the microscopic features of the CFRP surface, including the microstructure, physical, and chemical characteristics. In this paper, laser-based surface modification was compared to Peel-ply, grinding, and polishing to comparatively evaluate the surface microstructure of CFRP. The surface microstructure, morphology, fiber damage, height and space parameters were investigated by scanning electron microscopy (SEM) and laser confocal microscopy (LCM). Relative to the conventional grinding process, laser modification of the CFRP surface can result in more uniform resin removal and better processing control and repeatability. This decreases the adverse impact of surface fiber fractures and secondary damage. The surface properties were significantly optimized, which has been reflected such things as the obvious improvement of surface roughness, microstructure uniformity, and actual area. The improved surface microstructure based on laser modification is more conducive to interface bonding of CFRP structure repair. This can enhance the interfacial adhesion strength and reliability of repair.

  13. Power system modeling and optimization methods vis-a-vis integrated resource planning (IRP)

    NASA Astrophysics Data System (ADS)

    Arsali, Mohammad H.

    1998-12-01

    The state-of-the-art restructuring of power industries is changing the fundamental nature of retail electricity business. As a result, the so-called Integrated Resource Planning (IRP) strategies implemented on electric utilities are also undergoing modifications. Such modifications evolve from the imminent considerations to minimize the revenue requirements and maximize electrical system reliability vis-a-vis capacity-additions (viewed as potential investments). IRP modifications also provide service-design bases to meet the customer needs towards profitability. The purpose of this research as deliberated in this dissertation is to propose procedures for optimal IRP intended to expand generation facilities of a power system over a stretched period of time. Relevant topics addressed in this research towards IRP optimization are as follows: (1) Historical prospective and evolutionary aspects of power system production-costing models and optimization techniques; (2) A survey of major U.S. electric utilities adopting IRP under changing socioeconomic environment; (3) A new technique designated as the Segmentation Method for production-costing via IRP optimization; (4) Construction of a fuzzy relational database of a typical electric power utility system for IRP purposes; (5) A genetic algorithm based approach for IRP optimization using the fuzzy relational database.

  14. Modifications of ORNL's computer programs MSF-21 and VTE-21 for the evaluation and rapid optimization of multistage flash and vertical tube evaporators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glueckstern, P.; Wilson, J.V.; Reed, S.A.

    1976-06-01

    Design and cost modifications were made to ORNL's Computer Programs MSF-21 and VTE-21 originally developed for the rapid calculation and design optimization of multistage flash (MSF) and multieffect vertical tube evaporator (VTE) desalination plants. The modifications include additional design options to make possible the evaluation of desalting plants based on current technology (the original programs were based on conceptual designs applying advanced and not yet proven technological developments and design features) and new materials and equipment costs updated to mid-1975.

  15. TRO-2D - A code for rational transonic aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Davis, W. H., Jr.

    1985-01-01

    Features and sample applications of the transonic rational optimization (TRO-2D) code are outlined. TRO-2D includes the airfoil analysis code FLO-36, the CONMIN optimization code and a rational approach to defining aero-function shapes for geometry modification. The program is part of an effort to develop an aerodynamically smart optimizer that will simplify and shorten the design process. The user has a selection of drag minimization and associated minimum lift, moment, and the pressure distribution, a choice among 14 resident aero-function shapes, and options on aerodynamic and geometric constraints. Design variables such as the angle of attack, leading edge radius and camber, shock strength and movement, supersonic pressure plateau control, etc., are discussed. The results of calculations of a reduced leading edge camber transonic airfoil and an airfoil with a natural laminar flow are provided, showing that only four design variables need be specified to obtain satisfactory results.

  16. Sustainable steric stabilization of colloidal titania nanoparticles

    NASA Astrophysics Data System (ADS)

    Elbasuney, Sherif

    2017-07-01

    A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180-240 °C to ensure DDSA ring opening and binding to titania nanoparticles. Organic-modified titania demonstrated complete change in surface properties from hydrophilic to hydrophobic and exhibited phase transfer from the aqueous phase to the organic phase. Exclusive surface modification in the reactor was found to be an effective approach; it demonstrated surfactant loading level 2.2 times that of post synthesis surface modification. Titania was also stabilized in aqueous media using poly acrylic acid (PAA) as polar polymeric dispersant. PAA-titania nanoparticles demonstrated a durable amorphous polymeric layer of 2 nm thickness. This manuscript revealed the state of the art for the real development of stable colloidal mono-dispersed particles with controlled surface properties.

  17. The pseudo-Boolean optimization approach to form the N-version software structure

    NASA Astrophysics Data System (ADS)

    Kovalev, I. V.; Kovalev, D. I.; Zelenkov, P. V.; Voroshilova, A. A.

    2015-10-01

    The problem of developing an optimal structure of N-version software system presents a kind of very complex optimization problem. This causes the use of deterministic optimization methods inappropriate for solving the stated problem. In this view, exploiting heuristic strategies looks more rational. In the field of pseudo-Boolean optimization theory, the so called method of varied probabilities (MVP) has been developed to solve problems with a large dimensionality. Some additional modifications of MVP have been made to solve the problem of N-version systems design. Those algorithms take into account the discovered specific features of the objective function. The practical experiments have shown the advantage of using these algorithm modifications because of reducing a search space.

  18. A reliable method for spectrophotometric determination of glycine betaine in cell suspension and other systems.

    PubMed

    Valadez-Bustos, Ma Guadalupe; Aguado-Santacruz, Gerardo Armando; Tiessen-Favier, Axel; Robledo-Paz, Alejandrina; Muñoz-Orozco, Abel; Rascón-Cruz, Quintin; Santacruz-Varela, Amalio

    2016-04-01

    Glycine betaine is a quaternary ammonium compound that accumulates in a large variety of species in response to different types of stress. Glycine betaine counteracts adverse effects caused by abiotic factors, preventing the denaturation and inactivation of proteins. Thus, its determination is important, particularly for scientists focused on relating structural, biochemical, physiological, and/or molecular responses to plant water status. In the current work, we optimized the periodide technique for the determination of glycine betaine levels. This modification permitted large numbers of samples taken from a chlorophyllic cell line of the grass Bouteloua gracilis to be analyzed. Growth kinetics were assessed using the chlorophyllic suspension to determine glycine betaine levels in control (no stress) cells and cells osmotically stressed with 14 or 21% polyethylene glycol 8000. After glycine extraction, different wavelengths and reading times were evaluated in a spectrophotometer to determine the optimal quantification conditions for this osmolyte. Optimal results were obtained when readings were taken at a wavelength of 290 nm at 48 h after dissolving glycine betaine crystals in dichloroethane. We expect this modification to provide a simple, rapid, reliable, and cheap method for glycine betaine determination in plant samples and cell suspension cultures. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. GELATIN CARRIERS FOR DRUG AND CELL DELIVERY IN TISSUE ENGINEERING

    PubMed Central

    Santoro, Marco; Tatara, Alexander M.; Mikos, Antonios G.

    2014-01-01

    The ability of gelatin to form complexes with different drugs has been investigated for controlled release applications. Gelatin parameters, such as crosslinking density and isoelectric point, have been tuned in order to optimize gelatin degradation and drug delivery kinetics. In recent years, focus has shifted away from the use of gelatin in isolation towards the modification of gelatin with functional groups and the fabrication of material composites with embedded gelatin carriers. In this review, we highlight some of the latest work being performed in these areas and comment on trends in the field. Specifically, we discuss gelatin modifications for immune system evasion, drug stabilization, and targeted delivery, as well as gelatin composite systems based on ceramics, naturally-occurring polymers, and synthetic polymers. PMID:24746627

  20. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.

    PubMed

    Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric

    2011-10-15

    Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for modification is easy to control and can be optimized and implemented for many carbon materials currently used in microbial fuel cells and other bioelectrochemical systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Optimization of Casting Design Parameters on Fabrication of Reliable Semi-Solid Aluminum Suspension Control Arm

    NASA Astrophysics Data System (ADS)

    Ragab, Kh. A.; Bouaicha, A.; Bouazara, M.

    2017-09-01

    The semi-solid casting process has the advantage of providing reliable mechanical aluminum parts that work continuously in dynamic as control arm of the suspension system in automotive vehicles. The quality performance of dynamic control arm is related to casting mold and gating system designs that affect the fluidity of semi-solid metal during filling the mold. Therefore, this study focuses on improvement in mechanical performance, depending on material characterization, and casting design optimization, of suspension control arms made of A357 aluminum semi-solid alloys. Mechanical and design analyses, applied on the suspension arm, showed the occurrence of mechanical failures at unexpected weak points. Metallurgical analysis showed that the main reason lies in the difficult flow of semi-solid paste through the thin thicknesses of a complex geometry. A design modification procedure is applied to the geometry of the suspension arm to avoid this problem and to improve its quality performance. The design modification of parts was carried out by using SolidWorks design software, evaluation of constraints with ABAQUS, and simulation of flow with ProCast software. The proposed designs showed that the modified suspension arm, without ribs and with a central canvas designed as Z, is considered as a perfect casting design showing an increase in the structural strength of the component. In this case, maximum von Mises stress is 199 MPa that is below the yield strength of the material. The modified casting mold design shows a high uniformity and minim turbulence of molten metal flow during semi-solid casting process.

  2. Computation of output feedback gains for linear stochastic systems using the Zangnill-Powell Method

    NASA Technical Reports Server (NTRS)

    Kaufman, H.

    1975-01-01

    Because conventional optimal linear regulator theory results in a controller which requires the capability of measuring and/or estimating the entire state vector, it is of interest to consider procedures for computing controls which are restricted to be linear feedback functions of a lower dimensional output vector and which take into account the presence of measurement noise and process uncertainty. To this effect a stochastic linear model has been developed that accounts for process parameter and initial uncertainty, measurement noise, and a restricted number of measurable outputs. Optimization with respect to the corresponding output feedback gains was then performed for both finite and infinite time performance indices without gradient computation by using Zangwill's modification of a procedure originally proposed by Powell. Results using a seventh order process show the proposed procedures to be very effective.

  3. Active control of transmission loss with smart foams.

    PubMed

    Kundu, Abhishek; Berry, Alain

    2011-02-01

    Smart foams combine the complimentary advantages of passive foam material and spatially distributed piezoelectric actuator embedded in it for active noise control applications. In this paper, the problem of improving the transmission loss of smart foams using active control strategies has been investigated both numerically and experimentally inside a waveguide under the condition of plane wave propagation. The finite element simulation of a coupled noise control system has been undertaken with three different smart foam designs and their effectiveness in cancelling the transmitted wave downstream of the smart foam have been studied. The simulation results provide insight into the physical phenomenon of active noise cancellation and explain the impact of the smart foam designs on the optimal active control results. Experimental studies aimed at implementing the real-time control for transmission loss optimization have been performed using the classical single input/single output filtered-reference least mean squares algorithm. The active control results with broadband and single frequency primary source inputs demonstrate a good improvement in the transmission loss of the smart foams. The study gives a comparative description of the transmission and absorption control problems in light of the modification of the vibration response of the piezoelectric actuator under active control.

  4. Automated Solid-Phase Protein Modification with Integrated Enzymatic Digest for Reaction Validation: Application of a Compartmented Microfluidic Reactor for Rapid Optimization and Analysis of Protein Biotinylation

    PubMed Central

    Fraas, Regina; Diehm, Juliane; Franzreb, Matthias

    2017-01-01

    Protein modification by covalent coupling of small ligands or markers is an important prerequisite for the use of proteins in many applications. Well-known examples are the use of proteins with fluorescent markers in many in vivo experiments or the binding of biotinylated antibodies via biotin–streptavidin coupling in the frame of numerous bioassays. Multiple protocols were established for the coupling of the respective molecules, e.g., via the C and N-terminus, or via cysteines and lysines exposed at the protein surface. Still, in most cases the conditions of these standard protocols are only an initial guess. Optimization of the coupling parameters like reagent concentrations, pH, or temperature may strongly increase coupling yield and the biological activity of the modified protein. In order to facilitate the process of optimizing coupling conditions, a method was developed which uses a compartmented microfluidic reactor for the rapid screening of different coupling conditions. In addition, the system allows for the integration of an enzymatic digest of the modified protein directly after modification. In combination with a subsequent MALDI-TOF analysis of the resulting fragments, this gives a fast and detailed picture not only of the number and extent of the generated modifications but also of their position within the protein sequence. The described process was demonstrated for biotinylation of green fluorescent protein. Different biotin-excesses and different pH-values were tested in order to elucidate the influence on the modification extent and pattern. In addition, the results of solid-phase based modifications within the microfluidic reactor were compared to modification patterns resulting from coupling trials with unbound protein. As expected, modification patterns of immobilized proteins showed clear differences to the ones of dissolved proteins. PMID:29181376

  5. Potential use of advanced process control for safety purposes during attack of a process plant.

    PubMed

    Whiteley, James R

    2006-03-17

    Many refineries and commodity chemical plants employ advanced process control (APC) systems to improve throughputs and yields. These APC systems utilize empirical process models for control purposes and enable operation closer to constraints than can be achieved with traditional PID regulatory feedback control. Substantial economic benefits are typically realized from the addition of APC systems. This paper considers leveraging the control capabilities of existing APC systems to minimize the potential impact of a terrorist attack on a process plant (e.g., petroleum refinery). Two potential uses of APC are described. The first is a conventional application of APC and involves automatically moving the process to a reduced operating rate when an attack first begins. The second is a non-conventional application and involves reconfiguring the APC system to optimize safety rather than economics. The underlying intent in both cases is to reduce the demands on the operator to allow focus on situation assessment and optimal response planning. An overview of APC is provided along with a brief description of the modifications required for the proposed new applications of the technology.

  6. Status and directions of modified tribological surfaces by ion processes

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1988-01-01

    An overview is presented of recent advances in modifying contacting surfaces in motion by the various ion assisted surface coating/modification processes to reduce and control tribological failures. The ion assisted coating processes and the surface modification processes offer the greatest potential to custom tailor and optimize the tribological performance. Hard, wear resistant and low shear coatings deposited by the ion assisted processes are discussed. Primarily the recent advances of sputtered MoS2 ion plated Au, Ag, Pb lubricating films and sputtered and ion plated hard, wear resistant TiN, HfN, TiC films are described in terms of structural property performance interrelationships which lead to improved adhesion, cohesion, nucleation, morphological growth, density, film thickness as determined by structural and chemical characterization and frictional and wear behavior. Also, the recent tribological advances using the surface modification processes such as ion implantation, ion beam mixing is discussed with emphasis on the development of lubricous high temperature ceramic surfaces.

  7. Low Conductive Thermal Barrier Coatings Produced by Ion Beam Assisted EB-PVD with Controlled Porosity, Microstructure Refinement and Alloying Additions for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Wolfe, Douglas E.; Singh, Jogender

    2005-01-01

    Various advanced Hafnia-based thermal barrier coatings (TBC) were applied on nickel-based superalloy coupons by electron beam physical vapor deposition. In addition, microstructural modifications to the coating material were made in an effort to reduce the thermal conductivity of the coating materials. Various processing parameters and coating system modifications were made in order to deposit the alloyed TBC with the desired microstructure and thus coating performance, some of which include applying coatings at substrate temperatures of 1150 C on both PtAl and CoNiCrAlY bond coated samples, as well as using 8YSZ as a bond layer. In addition, various characterization techniques including thermal cyclic tests, scanning electron microscopy, x-ray diffraction, thermal conductivity, and reflectivity measurements were performed. Although the coating microstructure was never fully optimized due to funding being cut short, significant reductions in thermal conductivity were accomplished through both chemistry changes (composition) and microstructural modifications.

  8. Influence of linear profile modification and loading conditions on the dynamic tooth load and stress of high contact ratio gears

    NASA Technical Reports Server (NTRS)

    Lee, Chinwai; Lin, Hsiang Hsi; Oswald, Fred B.; Townsend, Dennis P.

    1990-01-01

    A computer simulation for the dynamic response of high-contact-ratio spur gear transmissions is presented. High contact ratio gears have the potential to produce lower dynamic tooth loads and minimum root stress but they can be sensitive to tooth profile errors. The analysis presented examines various profile modifications under realistic loading conditions. The effect of these modifications on the dynamic load (force) between mating gear teeth and the dynamic root stress is presented. Since the contact stress is dependent on the dynamic load, minimizing dynamic loads will also minimize contact stresses. It is shown that the combination of profile modification and the applied load (torque) carried by a gear system has a significant influence on gear dynamics. The ideal modification at one value of applied load will not be the best solution for a different load. High-contact-ratio gears were found to require less modification than standard low-contact-ratio gears. High-contact-ratio gears are more adversely affected by excess modification than by under modification. In addition, the optimal profile modification required to minimize the dynamic load (hence the contact stress) on a gear tooth differs from the optimal modification required to minimize the dynamic root (bending) stress. Computer simulation can help find the design tradeoffs to determine the best profile modification to satisfy the conflicting constraints of minimizing both the load and root stress in gears which must operate over a range of applied loads.

  9. Statistical optimization of medium components for the production of Antrodia cinnamomea AC0623 in submerged cultures.

    PubMed

    Chang, Chien-Yu; Lee, Chun-Lin; Pan, Tzu-Ming

    2006-10-01

    The nutritional medium requirement for biomass and triterpenoid production by Antrodia cinnamomea AC0623 strain was optimized. Box-Behnken was applied to optimize biomass and triterpenoid production. According to response surface methodology (RSM), the optimum concentrations of N-source were determined. The results indicate that when a submerged culture in shake flasks was operated at 28 degrees C, initial pH 5.5, and rotation speed 105 rpm, the biomass and triterpenoid content in dry basis could be increased to 3.20% (w/w) and 31.8 mg/g, respectively. The experiments were further scaled up to 100- and 700-l fermentors. Higher content of triterpenoids (63.0 mg/g) was obtained in 700-l fermentations by means of the control of cultural conditions and the modification of medium composition based on the RSM.

  10. Controlling Hyperhydricity in Date Palm In Vitro Culture by Reduced Concentration of Nitrate Nutrients.

    PubMed

    El-Dawayati, Maiada M; Zayed, Zeinab E

    2017-01-01

    Hyperhydricity (or vitrification) is a fundamental physiological disorder in date palm micropropagation. Several factors have been ascribed as being responsible for hyperhydricity, which are related to the explant, medium, culture vessel, and environment. The optimization of inorganic nutrients in the culture medium improves in vitro growth and morphogenesis, in addition to controlling hyperhydricity. This chapter describes a protocol for controlling hyperhydricity during the embryogenic callus stage by optimizing the ratio of nitrogen salts of the Murashige and Skoog (MS) nutrient culture medium. The best results of differentiation from cured hyperhydric callus are obtained using modification at a ratio of NH 4+ /NO 3- at 10:15 (825:1425 mg/L) of the MS culture medium to remedy hyperhydric date palm callus and achieve the recovery of normal embryogenic callus and subsequent regeneration of plantlets. Based on the results of this study, nutrient medium composition has an important role in avoiding hyperhydricity problems during date palm micropropagation.

  11. ATTDES: An Expert System for Satellite Attitude Determination and Control. 2

    NASA Technical Reports Server (NTRS)

    Mackison, Donald L.; Gifford, Kevin

    1996-01-01

    The design, analysis, and flight operations of satellite attitude determintion and attitude control systems require extensive mathematical formulations, optimization studies, and computer simulation. This is best done by an analyst with extensive education and experience. The development of programs such as ATTDES permit the use of advanced techniques by those with less experience. Typical tasks include the mission analysis to select stabilization and damping schemes, attitude determination sensors and algorithms, and control system designs to meet program requirements. ATTDES is a system that includes all of these activities, including high fidelity orbit environment models that can be used for preliminary analysis, parameter selection, stabilization schemes, the development of estimators covariance analyses, and optimization, and can support ongoing orbit activities. The modification of existing simulations to model new configurations for these purposes can be an expensive, time consuming activity that becomes a pacing item in the development and operation of such new systems. The use of an integrated tool such as ATTDES significantly reduces the effort and time required for these tasks.

  12. Optimization of PCR for quantification of simian immunodeficiency virus (SIV) genomic RNA in plasma of rhesus macaques (Macaca mulatta) using armored RNA

    PubMed Central

    Monjure, C. J.; Tatum, C. D.; Panganiban, A. T.; Arainga, M.; Traina-Dorge, V.; Marx, P. A.; Didier, E. S.

    2014-01-01

    Introduction Quantification of plasma viral load (PVL) is used to monitor disease progression in SIV-infected macaques. This study was aimed at optimizing of performance characteristics of the quantitative PCR (qPCR) PVL assay. Methods The PVL quantification procedure was optimized by inclusion of an exogenous control Hepatitis C Virus armored RNA (aRNA), a plasma concentration step, extended digestion with proteinase K, and a second RNA elution step. Efficiency of viral RNA (vRNA) extraction was compared using several commercial vRNA extraction kits. Various parameters of qPCR targeting the gag region of SIVmac239, SIVsmE660 and the LTR region of SIVagmSAB were also optimized. Results Modifications of the SIV PVL qPCR procedure increased vRNA recovery, reduced inhibition and improved analytical sensitivity. The PVL values determined by this SIV PVL qPCR correlated with quantification results of SIV-RNA in the same samples using the “industry standard” method of branched-DNA (bDNA) signal amplification. Conclusions Quantification of SIV genomic RNA in plasma of rhesus macaques using this optimized SIV PVL qPCR is equivalent to the bDNA signal amplification method, less costly and more versatile. Use of heterologous aRNA as an internal control is useful for optimizing performance characteristics of PVL qPCRs. PMID:24266615

  13. Optimization of PCR for quantification of simian immunodeficiency virus genomic RNA in plasma of rhesus macaques (Macaca mulatta) using armored RNA.

    PubMed

    Monjure, C J; Tatum, C D; Panganiban, A T; Arainga, M; Traina-Dorge, V; Marx, P A; Didier, E S

    2014-02-01

    Quantification of plasma viral load (PVL) is used to monitor disease progression in SIV-infected macaques. This study was aimed at optimizing of performance characteristics of the quantitative PCR (qPCR) PVL assay. The PVL quantification procedure was optimized by inclusion of an exogenous control hepatitis C virus armored RNA (aRNA), a plasma concentration step, extended digestion with proteinase K, and a second RNA elution step. Efficiency of viral RNA (vRNA) extraction was compared using several commercial vRNA extraction kits. Various parameters of qPCR targeting the gag region of SIVmac239, SIVsmE660, and the LTR region of SIVagmSAB were also optimized. Modifications of the SIV PVL qPCR procedure increased vRNA recovery, reduced inhibition and improved analytical sensitivity. The PVL values determined by this SIV PVL qPCR correlated with quantification results of SIV RNA in the same samples using the 'industry standard' method of branched-DNA (bDNA) signal amplification. Quantification of SIV genomic RNA in plasma of rhesus macaques using this optimized SIV PVL qPCR is equivalent to the bDNA signal amplification method, less costly and more versatile. Use of heterologous aRNA as an internal control is useful for optimizing performance characteristics of PVL qPCRs. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Improving experimental phases for strong reflections prior to density modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uervirojnangkoorn, Monarin; University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck; Hilgenfeld, Rolf, E-mail: hilgenfeld@biochem.uni-luebeck.de

    A genetic algorithm has been developed to optimize the phases of the strongest reflections in SIR/SAD data. This is shown to facilitate density modification and model building in several test cases. Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the mapsmore » can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005 ▶), Acta Cryst. D61, 899–902], the impact of identifying optimized phases for a small number of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. A computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.« less

  15. Heritability of targeted gene modifications induced by plant-optimized CRISPR systems.

    PubMed

    Mao, Yanfei; Botella, Jose Ramon; Zhu, Jian-Kang

    2017-03-01

    The Streptococcus-derived CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR-associated protein 9) system has emerged as a very powerful tool for targeted gene modifications in many living organisms including plants. Since the first application of this system for plant gene modification in 2013, this RNA-guided DNA endonuclease system has been extensively engineered to meet the requirements of functional genomics and crop trait improvement in a number of plant species. Given its short history, the emphasis of many studies has been the optimization of the technology to improve its reliability and efficiency to generate heritable gene modifications in plants. Here we review and analyze the features of customized CRISPR/Cas9 systems developed for plant genetic studies and crop breeding. We focus on two essential aspects: the heritability of gene modifications induced by CRISPR/Cas9 and the factors affecting its efficiency, and we provide strategies for future design of systems with improved activity and heritability in plants.

  16. A Review of Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Jain, N. K.; Nangia, Uma; Jain, Jyoti

    2018-03-01

    This paper presents an overview of the research progress in Particle Swarm Optimization (PSO) during 1995-2017. Fifty two papers have been reviewed. They have been categorized into nine categories based on various aspects. This technique has attracted many researchers because of its simplicity which led to many improvements and modifications of the basic PSO. Some researchers carried out the hybridization of PSO with other evolutionary techniques. This paper discusses the progress of PSO, its improvements, modifications and applications.

  17. Drug loading optimization and extended drug delivery of corticoids from pHEMA based soft contact lenses hydrogels via chemical and microstructural modifications.

    PubMed

    García-Millán, Eva; Koprivnik, Sandra; Otero-Espinar, Francisco Javier

    2015-06-20

    This paper proposes an approach to improve drug loading capacity and release properties of poly(2-hydroxyethyl methacrylate) (p(HEMA)) soft contact lenses based on the optimization of the hydrogel composition and microstructural modifications using water during the polymerization process. P(HEMA) based soft contact lenses were prepared by thermal or photopolymerization of 2-hydroxyethyl methacrylate (HEMA) solutions containing ethylene glycol di-methacrylate as crosslinker and different proportions of N-vinyl-2-pyrrolidone (NVP) or methacrylic acid (MA) as co-monomers. Transmittance, water uptake, swelling, microstructure, drug absorption isotherms and in vitro release were characterized using triamcinolone acetonide (TA) as model drug. Best drug loading ratios were obtained with lenses containing the highest amount (200 mM) of MA. Incorporation of 40% V/V of water during the polymerization increases the hydrogel porosity giving a better drug loading capacity. In vitro TA release kinetics shows that MA hydrogels released the drug significantly faster than NVP-hydrogels. Drug release was found to be diffusion controlled and kinetics was shown to be reproducible after consecutive drug loading/release processes. Results of p(HEMA) based soft contact lenses copolymerized with ethylene glycol dimethacrylate (EGDMA) and different co-monomers could be a good alternative to optimize the loading and ocular drug delivery of this corticosteroid drug. Copyright © 2015. Published by Elsevier B.V.

  18. A High-Order, Time Invariant, Linearized Model for Application to HHCIAFCS Interaction Studies

    NASA Technical Reports Server (NTRS)

    Cheng, Rendy P.; Tischler, Mark B.; Celi, Roberto

    2003-01-01

    This paper describes a methodology for the extraction of a linear time invariant model from a nonlinear helicopter model, and followed by an examination of the interactions of the Higher Harmonic Control (HHC) and the Automatic Flight Control System (AFCS). This new method includes an embedded harmonic analyzer inside a linear time invariant model, which allows the periodicity of the helicopter response to be captured. The: coupled high-order model provides the needed level of dynamic fidelity to permit an analysis and optimization of the AFCS and HHC loops. Results of this study indicate that the closed-loop HHC system has little influence on the AFCS or on the vehicle handling qualities, which indicates that the AFCS does not need modification to work with the HHC system. The results also show that the vibration response to maneuvers must be considered during the HHC design process, which leads to much higher required HHC loop crossover frequencies. This research also demonstrates that the transient vibration response during maneuvers can be reduced by optimizing the closed-loop higher harmonic control laws using conventional control system analyses.

  19. Structure-based design of novel chemical modification of the 3'-overhang for optimization of short interfering RNA performance.

    PubMed

    Xu, Lexing; Wang, Xin; He, Hongwei; Zhou, Jinming; Li, Xiaoyu; Ma, Hongtao; Li, Zelin; Zeng, Yi; Shao, Rongguang; Cen, Shan; Wang, Yucheng

    2015-02-10

    Short interfering RNAs (siRNAs) are broadly used to manipulate gene expression in mammalian cells. Although chemical modification is useful for increasing the potency of siRNAs in vivo, rational optimization of siRNA performance through chemical modification is still a challenge. In this work, we designed and synthesized a set of siRNAs containing modified two-nucleotide 3'-overhangs with the aim of strengthening the interaction between the 3'-end of the siRNA strand and the PAZ domain of Ago2. Their efficiency of binding to the PAZ domain was calculated using a computer modeling program, followed by measurement of RNA-Ago2 interaction in a surface plasmon resonance biochemical assay. The results suggest that increasing the level of binding of the 3'-end of the guiding strand with the PAZ domain, and/or reducing the level of binding of the sense strand through modifying the two-nucleotide 3'-overhangs, affects preferential strand selection and improves siRNA activity, while we cannot exclude the possibility that the modifications at the 3'-end of the sense strand may also affect the recognition of the 5'-end of the guiding strand by the MID domain. Taken together, our work presents a strategy for optimizing siRNA performance through asymmetric chemical modification of 3'-overhangs and also helps to develop the computer modeling method for rational siRNA design.

  20. BBD Optimization of K-ZnO Catalyst Modification Process for Heterogeneous Transesterification of Rice Bran Oil to Biodiesel

    NASA Astrophysics Data System (ADS)

    Kabo, K. S.; Yacob, A. R.; Bakar, W. A. W. A.; Buang, N. A.; Bello, A. M.; Ruskam, A.

    2016-07-01

    Environmentally benign zinc oxide (ZnO) was modified with 0-15% (wt.) potassium through wet impregnation and used in transesterification of rice bran oil (RBO) to form biodiesel. The catalyst was characterized by X-Ray powder Diffraction (XRD), its basic sites determined by back titration and Response Surface Methodology (RSM) Box-Behnken Design (BBD) was used to optimize the modification process variables on the basic sites of the catalyst. The transesterification product, biodiesel was analyzed by Nuclear Magnetic Resonance (NMR) spectroscopy. The result reveals K-modified ZnO with highly increased basic sites. Quadratic model with high regression R2 = 0.9995 was obtained from the ANOVA of modification process, optimization at maximum basic sites criterion gave optimum modification conditions of K-loading = 8.5% (wt.), calcination temperature = 480 oC and time = 4 hours with response and basic sites = 8.14 mmol/g which is in close agreement with the experimental value of 7.64 mmol/g. The catalyst was used and a value of 95.53% biodiesel conversion was obtained and effect of potassium leaching was not significant in the process

  1. An experimental study of human pilot's scanning behavior

    NASA Technical Reports Server (NTRS)

    Washizu, K.; Tanaka, K.; Osawa, T.

    1982-01-01

    The scanning behavior and the control behavior of the pilot who manually controls the two-variable system, which is the most basic one of multi-variable systems are investigated. Two control tasks which simulate the actual airplane attitude and airspeed control were set up. In order to simulate the change of the situation where the pilot is placed, such as changes of flight phase, mission and others, the subject was requested to vary the weightings, as his control strategy, upon each task. Changes of human control dynamics and his canning properties caused by the modification of the situation were investigated. By making use of the experimental results, the optimal model of the control behavior and the scanning behavior of the pilot in the two-variable system is proposed from the standpoint of making the performance index minimal.

  2. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    DOEpatents

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  3. Implementing a bubble memory hierarchy system

    NASA Technical Reports Server (NTRS)

    Segura, R.; Nichols, C. D.

    1979-01-01

    This paper reports on implementation of a magnetic bubble memory in a two-level hierarchial system. The hierarchy used a major-minor loop device and RAM under microprocessor control. Dynamic memory addressing, dual bus primary memory, and hardware data modification detection are incorporated in the system to minimize access time. It is the objective of the system to incorporate the advantages of bipolar memory with that of bubble domain memory to provide a smart, optimal memory system which is easy to interface and independent of user's system.

  4. Nitric acid treated multi-walled carbon nanotubes optimized by Taguchi method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsuddin, Shahidah Arina; Hashim, Uda; Halim, Nur Hamidah Abdul

    Electron transfer rate (ETR) of CNTs can be enhanced by increasing the amounts of COOH groups to their wall and opened tips. With the aim to achieve the highest production amount of COOH, Taguchi robust design has been used for the first time to optimize the surface modification of MWCNTs by nitric acid oxidation. Three main oxidation parameters which are concentration of acid, treatment temperature and treatment time have been selected as the control factors that will be optimized. The amounts of COOH produced are measured by using FTIR spectroscopy through the absorbance intensity. From the analysis, we found thatmore » acid concentration and treatment time had the most important influence on the production of COOH. Meanwhile, the treatment temperature will only give intermediate effect. The optimum amount of COOH can be achieved with the treatment by 8.0 M concentration of nitric acid at 120 °C for 2 hour.« less

  5. Investigation of compaction and permeability during the out-of-autoclave and vacuum-bag-only manufacturing of a laminate composite with aligned carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Mann, Erin

    Both industry and commercial entities are in the process of using more lightweight composites. Fillers, such as fibers, nanofibers and other nanoconstituents in polymer matrix composites have been proven to enhance the properties of composites and are still being studied in order to optimize the benefits. Further optimization can be studied during the manufacturing process. The air permeability during the out-of-autoclave-vacuum-bag-only (OOA-VBO) cure method is an important property to understand during the optimization of manufacturing processes. Changes in the manufacturing process can improve or decrease composite quality depending on the ability of the composite to evacuate gases such as air and moisture during curing. Therefore, in this study, the axial permeability of a prepreg stack was experimentally studied. Three types of samples were studied: control (no carbon nanofiber (CNF) modification), unaligned CNF modified and aligned CNF modified samples.

  6. Topology-changing shape optimization with the genetic algorithm

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E., Jr.

    The goal is to take a traditional shape optimization problem statement and modify it slightly to allow for prescribed changes in topology. This modification enables greater flexibility in the choice of parameters for the topology optimization problem, while improving the direct physical relevance of the results. This modification involves changing the optimization problem statement from a nonlinear programming problem into a form of mixed-discrete nonlinear programing problem. The present work demonstrates one possible way of using the Genetic Algorithm (GA) to solve such a problem, including the use of "masking bits" and a new modification to the bit-string affinity (BSA) termination criterion specifically designed for problems with "masking bits." A simple ten-bar truss problem proves the utility of the modified BSA for this type of problem. A more complicated two dimensional bracket problem is solved using both the proposed approach and a more traditional topology optimization approach (Solid Isotropic Microstructure with Penalization or SIMP) to enable comparison. The proposed approach is able to solve problems with both local and global constraints, which is something traditional methods cannot do. The proposed approach has a significantly higher computational burden --- on the order of 100 times larger than SIMP, although the proposed approach is able to offset this with parallel computing.

  7. The benefits of adaptive parametrization in multi-objective Tabu Search optimization

    NASA Astrophysics Data System (ADS)

    Ghisu, Tiziano; Parks, Geoffrey T.; Jaeggi, Daniel M.; Jarrett, Jerome P.; Clarkson, P. John

    2010-10-01

    In real-world optimization problems, large design spaces and conflicting objectives are often combined with a large number of constraints, resulting in a highly multi-modal, challenging, fragmented landscape. The local search at the heart of Tabu Search, while being one of its strengths in highly constrained optimization problems, requires a large number of evaluations per optimization step. In this work, a modification of the pattern search algorithm is proposed: this modification, based on a Principal Components' Analysis of the approximation set, allows both a re-alignment of the search directions, thereby creating a more effective parametrization, and also an informed reduction of the size of the design space itself. These changes make the optimization process more computationally efficient and more effective - higher quality solutions are identified in fewer iterations. These advantages are demonstrated on a number of standard analytical test functions (from the ZDT and DTLZ families) and on a real-world problem (the optimization of an axial compressor preliminary design).

  8. Modeling learning in brain stem and cerebellar sites responsible for VOR plasticity

    NASA Technical Reports Server (NTRS)

    Quinn, K. J.; Didier, A. J.; Baker, J. F.; Peterson, B. W.

    1998-01-01

    A simple model of vestibuloocular reflex (VOR) function was used to analyze several hypotheses currently held concerning the characteristics of VOR plasticity. The network included a direct vestibular pathway and an indirect path via the cerebellum. An optimization analysis of this model suggests that regulation of brain stem sites is critical for the proper modification of VOR gain. A more physiologically plausible learning rule was also applied to this network. Analysis of these simulation results suggests that the preferred error correction signal controlling gain modification of the VOR is the direct output of the accessory optic system (AOS) to the vestibular nuclei vs. a signal relayed through the cerebellum via floccular Purkinje cells. The potential anatomical and physiological basis for this conclusion is discussed, in relation to our current understanding of the latency of the adapted VOR response.

  9. Optimized methods of chromatin immunoprecipitation for profiling histone modifications in industrial microalgae Nannochloropsis spp.

    PubMed

    Wei, Li; Xu, Jian

    2018-06-01

    Epigenetic factors such as histone modifications play integral roles in plant development and stress response, yet their implications in algae remain poorly understood. In the industrial oleaginous microalgae Nannochloropsis spp., the lack of an efficient methodology for chromatin immunoprecipitation (ChIP), which determines the specific genomic location of various histone modifications, has hindered probing the epigenetic basis of their photosynthetic carbon conversion and storage as oil. Here, a detailed ChIP protocol was developed for Nannochloropsis oceanica, which represents a reliable approach for the analysis of histone modifications, chromatin state, and transcription factor-binding sites at the epigenetic level. Using ChIP-qPCR, genes related to photosynthetic carbon fixation in this microalga were systematically assessed. Furthermore, a ChIP-Seq protocol was established and optimized, which generated a genome-wide profile of histone modification events, using histone mark H3K9Ac as an example. These results are the first step for appreciation of the chromatin landscape in industrial oleaginous microalgae and for epigenetics-based microalgal feedstock development. © 2018 Phycological Society of America.

  10. Precision of Sensitivity in the Design Optimization of Indeterminate Structures

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Pai, Shantaram S.; Hopkins, Dale A.

    2006-01-01

    Design sensitivity is central to most optimization methods. The analytical sensitivity expression for an indeterminate structural design optimization problem can be factored into a simple determinate term and a complicated indeterminate component. Sensitivity can be approximated by retaining only the determinate term and setting the indeterminate factor to zero. The optimum solution is reached with the approximate sensitivity. The central processing unit (CPU) time to solution is substantially reduced. The benefit that accrues from using the approximate sensitivity is quantified by solving a set of problems in a controlled environment. Each problem is solved twice: first using the closed-form sensitivity expression, then using the approximation. The problem solutions use the CometBoards testbed as the optimization tool with the integrated force method as the analyzer. The modification that may be required, to use the stiffener method as the analysis tool in optimization, is discussed. The design optimization problem of an indeterminate structure contains many dependent constraints because of the implicit relationship between stresses, as well as the relationship between the stresses and displacements. The design optimization process can become problematic because the implicit relationship reduces the rank of the sensitivity matrix. The proposed approximation restores the full rank and enhances the robustness of the design optimization method.

  11. Status of the ITER Cryodistribution

    NASA Astrophysics Data System (ADS)

    Chang, H.-S.; Vaghela, H.; Patel, P.; Rizzato, A.; Cursan, M.; Henry, D.; Forgeas, A.; Grillot, D.; Sarkar, B.; Muralidhara, S.; Das, J.; Shukla, V.; Adler, E.

    2017-12-01

    Since the conceptual design of the ITER Cryodistribution many modifications have been applied due to both system optimization and improved knowledge of the clients’ requirements. Process optimizations in the Cryoplant resulted in component simplifications whereas increased heat load in some of the superconducting magnet systems required more complicated process configuration but also the removal of a cold box was possible due to component arrangement standardization. Another cold box, planned for redundancy, has been removed due to the Tokamak in-Cryostat piping layout modification. In this proceeding we will summarize the present design status and component configuration of the ITER Cryodistribution with all changes implemented which aim at process optimization and simplification as well as operational reliability, stability and flexibility.

  12. Spacecraft flight control with the new phase space control law and optimal linear jet select

    NASA Technical Reports Server (NTRS)

    Bergmann, E. V.; Croopnick, S. R.; Turkovich, J. J.; Work, C. C.

    1977-01-01

    An autopilot designed for rotation and translation control of a rigid spacecraft is described. The autopilot uses reaction control jets as control effectors and incorporates a six-dimensional phase space control law as well as a linear programming algorithm for jet selection. The interaction of the control law and jet selection was investigated and a recommended configuration proposed. By means of a simulation procedure the new autopilot was compared with an existing system and was found to be superior in terms of core memory, central processing unit time, firings, and propellant consumption. But it is thought that the cycle time required to perform the jet selection computations might render the new autopilot unsuitable for existing flight computer applications, without modifications. The new autopilot is capable of maintaining attitude control in the presence of a large number of jet failures.

  13. Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates

    NASA Technical Reports Server (NTRS)

    Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-01-01

    Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell-lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a-Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two "control plates" are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (gladwater) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.

  14. Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates

    NASA Astrophysics Data System (ADS)

    Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-04-01

    Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a- Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two ''control plates'' are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (glass/water) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.

  15. Preconception optimization of glycaemic control in diabetes.

    PubMed

    Islam, Najmul

    2016-09-01

    The prevalence of Diabetes Mellitus is increasing worldwide. In developing countries 25% of adult females with diabetes are in the reproductive age. Thus in developing countries increased number of pregnancies are complicated by diabetes. Uncontrolled diabetes in pregnancy is associated with increased risk for both mother and foetus. These risks can be minimized by good control of diabetes before and during pregnancy. Management in the preconception period is discussed in this review article. Detailed management involves general advice of lifestyle modification followed by specific details of screening for complications of diabetes. Changes in the drugs for both glycaemic control and other co-morbid conditions are discussed. The recommended insulin regimen in the preconception period and monitoring of glycaemic control by self-monitoring of blood glucose (SMBG) and HbA1C has also been highlighted.

  16. Amine Landscaping to Maximize Protein-Dye Fluorescence and Ultrastable Protein-Ligand Interaction.

    PubMed

    Jacobsen, Michael T; Fairhead, Michael; Fogelstrand, Per; Howarth, Mark

    2017-08-17

    Chemical modification of proteins provides great opportunities to control and visualize living systems. The most common way to modify proteins is reaction of their abundant amines with N-hydroxysuccinimide (NHS) esters. Here we explore the impact of amine number and positioning on protein-conjugate behavior using streptavidin-biotin, a central research tool. Dye-NHS modification of streptavidin severely damaged ligand binding, necessitating development of a new streptavidin-retaining ultrastable binding after labeling. Exploring the ideal level of dye modification, we engineered a panel bearing 1-6 amines per subunit: "amine landscaping." Surprisingly, brightness increased as amine number decreased, revealing extensive quenching following conventional labeling. We ultimately selected Flavidin (fluorophore-friendly streptavidin), combining ultrastable ligand binding with increased brightness after conjugation. Flavidin enhanced fluorescent imaging, allowing more sensitive and specific cell labeling in tissues. Flavidin should have wide application in molecular detection, providing a general insight into how to optimize simultaneously the behavior of the biomolecule and the chemical probe. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Effects of Selenylation Modification on Immune-Enhancing Activity of Garlic Polysaccharide

    PubMed Central

    Qin, Tao; Hu, Yuanliang; Wang, Deyun; Fan, Qiang; Zhang, Cunshuai; Chen, Xingying; Chen, Xiaolan; Liu, Cui; Gao, Zhenzhen; Li, Xiuping

    2014-01-01

    The garlic polysaccharide was modified by HNO3-Na2SeO3 method according to orthogonal design L9(34) to obtain nine selenizing garlic polysaccharides, sGPS1-sGPS9. Their effects on chicken peripheral lymphocytes proliferation in vitro were compared by MTT assay. The results showed that sGPSs could significantly promote lymphocytes proliferation, sGPS3, sGPS5 and sGPS6 presented stronger efficacy. In vivo experiment, 14-day-old chickens were injected respectively with sGPS3, sGPS5 and sGPS6 when they were vaccinated with ND vaccine taking unmodified GPS as control. The results showed that three sGPSs could significantly promote lymphocyte proliferation, enhance serum antibody titer, IFN-γ and IL-2 contents. These results indicated that selenylation modification could significantly enhance the immune-enhancing activity of GPS, sGPS6 possessed the best efficacy and could be as a candidate drug of immunoenhancer. Its optimal modification conditions were 400 mg of sodium selenite for 500 mg of GPS, reaction temperature of 70°C and reaction time of 6 h. PMID:24497946

  18. Effects of selenylation modification on immune-enhancing activity of garlic polysaccharide.

    PubMed

    Qiu, Shulei; Chen, Jin; Qin, Tao; Hu, Yuanliang; Wang, Deyun; Fan, Qiang; Zhang, Cunshuai; Chen, Xingying; Chen, Xiaolan; Liu, Cui; Gao, Zhenzhen; Li, Xiuping

    2014-01-01

    The garlic polysaccharide was modified by HNO3-Na2SeO3 method according to orthogonal design L9(3(4)) to obtain nine selenizing garlic polysaccharides, sGPS1-sGPS9. Their effects on chicken peripheral lymphocytes proliferation in vitro were compared by MTT assay. The results showed that sGPSs could significantly promote lymphocytes proliferation, sGPS3, sGPS5 and sGPS6 presented stronger efficacy. In vivo experiment, 14-day-old chickens were injected respectively with sGPS3, sGPS5 and sGPS6 when they were vaccinated with ND vaccine taking unmodified GPS as control. The results showed that three sGPSs could significantly promote lymphocyte proliferation, enhance serum antibody titer, IFN-γ and IL-2 contents. These results indicated that selenylation modification could significantly enhance the immune-enhancing activity of GPS, sGPS6 possessed the best efficacy and could be as a candidate drug of immunoenhancer. Its optimal modification conditions were 400 mg of sodium selenite for 500 mg of GPS, reaction temperature of 70°C and reaction time of 6 h.

  19. Shape control of an adaptive wing for transonic drag reduction

    NASA Astrophysics Data System (ADS)

    Austin, Fred; Van Nostrand, William C.

    1995-05-01

    Theory and experiments to control the static shape of flexible structures by employing internal translational actuators are summarized and plants to extend the work to adaptive wings are presented. Significant reductions in the shock-induced drag are achievable during transonic- cruise by small adaptive modifications to the wing cross-sectional profile. Actuators are employed as truss elements of active ribs to deform the wing cross section. An adaptive-rib model was constructed, and experiments validated the shape-control theory. Plans for future development under an ARPA/AFWAL contract include payoff assessments of the method on an actual aircraft, the development of inchworm TERFENOL-D actuators, and the development of a method to optimize the wing cross-sectional shapes by direct-drag measurements.

  20. Crystallographic Characterization on Polycrystalline Ni-Mn-Ga Alloys with Strong Preferred Orientation.

    PubMed

    Li, Zongbin; Yang, Bo; Zou, Naifu; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zhao, Xiang; Zuo, Liang

    2017-04-27

    Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected to offer some guidelines for the microstructure modification and functional performance control of ferromagnetic shape memory alloys.

  1. Design of patient-specific gait modifications for knee osteoarthritis rehabilitation.

    PubMed

    Fregly, Benjamin J; Reinbolt, Jeffrey A; Rooney, Kelly L; Mitchell, Kim H; Chmielewski, Terese L

    2007-09-01

    Abstract-Gait modification is a nonsurgical approach for reducing the external knee adduction torque in patients with knee osteoarthritis (OA). The magnitude of the first adduction torque peak in particular is strongly associated with knee OA progression. While toeing out has been shown to reduce the second peak, no clinically realistic gait modifications have been identified that effectively reduce both peaks simultaneously. This study predicts novel patient-specific gait modifications that achieve this goal without changing the foot path. The modified gait motion was designed for a single patient with knee OA using dynamic optimization of a patient-specific, full-body gait model. The cost function minimized the knee adduction torque subject to constraints limiting how much the new gait motion could deviate from the patient's normal gait motion. The optimizations predicted a "medial-thrust" gait pattern that reduced the first adduction torque peak between 32% and 54% and the second peak between 34% and 56%. The new motion involved three synergistic kinematic changes: slightly decreased pelvis obliquity, slightly increased leg flexion, and slightly increased pelvis axial rotation. After gait retraining, the patient achieved adduction torque reductions of 39% to 50% in the first peak and 37% to 55% in the second one. These reductions are comparable to those reported after high tibial osteotomy surgery. The associated kinematic changes were consistent with the predictions except for pelvis obliquity, which showed little change. This study demonstrates that it is feasible to design novel patient-specific gait modifications with potential clinical benefit using dynamic optimization of patient-specific, full-body gait models. Further investigation is needed to assess the extent to which similar gait modifications may be effective for other patients with knee OA.

  2. Glycan modification of antigen alters its intracellular routing in dendritic cells, promoting priming of T cells

    PubMed Central

    Streng-Ouwehand, Ingeborg; Ho, Nataschja I; Litjens, Manja; Kalay, Hakan; Boks, Martine Annemarie; Cornelissen, Lenneke AM; Kaur Singh, Satwinder; Saeland, Eirikur; Garcia-Vallejo, Juan J; Ossendorp, Ferry A; Unger, Wendy WJ; van Kooyk, Yvette

    2016-01-01

    Antigen uptake by dendritic cells and intracellular routing of antigens to specific compartments is regulated by C-type lectin receptors that recognize glycan structures. We show that the modification of Ovalbumin (OVA) with the glycan-structure LewisX (LeX) re-directs OVA to the C-type lectin receptor MGL1. LeX-modification of OVA favored Th1 skewing of CD4+ T cells and enhanced cross-priming of CD8+ T cells. While cross-presentation of native OVA requires high antigen dose and TLR stimuli, LeX modification reduces the required amount 100-fold and obviates its dependence on TLR signaling. The OVA-LeX-induced enhancement of T cell cross-priming is MGL1-dependent as shown by reduced CD8+ effector T cell frequencies in MGL1-deficient mice. Moreover, MGL1-mediated cross-presentation of OVA-LeX neither required TAP-transporters nor Cathepsin-S and was still observed after prolonged intracellular storage of antigen in Rab11+LAMP1+ compartments. We conclude that controlled neo-glycosylation of antigens can crucially influence intracellular routing of antigens, the nature and strength of immune responses and should be considered for optimizing current vaccination strategies. DOI: http://dx.doi.org/10.7554/eLife.11765.001 PMID:26999763

  3. [Adaptation of humans to walking in semi-hard and flexible space suits under terrestrial gravity].

    PubMed

    Panfilov, V E

    2011-01-01

    The spacesuit donning-on procedure can be viewed as the combining of two kinematic circuits into a single human-spacesuit functional system (HSS) for implementation of extravehicular operations. Optimal human-spacesuit interaction hinges on controllability and coordination of HSS mobile components, and also spacesuit slaving to the central nervous system (CNS) mediated through the human locomotion apparatus. Analysis of walking patterns in semi-hard and flexible spacesuits elucidated the direct and feedback relations between the external (spacesuit) and external (locomotion apparatus and CNS) circuits Lack of regularity in the style of spacesuit design creates difficulties for the direct CNS control of locomotion. Consequently, it is necessary to modify the locomotion command program in order to resolve these difficulties and to add flexibility to CNS control The analysis also helped trace algorithm of program modifications with the ultimate result of induced (forced) walk optimization. Learning how to walk in spacesuit Berkut requires no more than 2500 single steps, whereas about 300 steps must be made to master walk skills in spacesuit SKV.

  4. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    NASA Astrophysics Data System (ADS)

    Chen, Congjin; Li, Xin; Tong, Zhangfa; Li, Yue; Li, Mingfei

    2014-10-01

    Granular fir-based activated carbon (GFAC) was modified with H2O2, and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N2 adsorption-desorption isotherms, Brunauer-Emmett-Teller (BET) equation, Barett-Joyner-Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25-0.85 mm was modified by 150.0 ml of aqueous H2O2 solution, the optimized conditions were found to be as follows: aqueous H2O2 solution concentration 1.0 mol·l-1, modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I-IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased in the modified GFAC.

  5. Marital status and optimism score among breast cancer survivors.

    PubMed

    Croft, Lindsay; Sorkin, John; Gallicchio, Lisa

    2014-11-01

    There are an increasing number of breast cancer survivors, but their psychosocial and supportive care needs are not well-understood. Recent work has found marital status, social support, and optimism to be associated with quality of life, but little research has been conducted to understand how these factors relate to one another. Survey data from 722 breast cancer survivors were analyzed to estimate the association between marital status and optimism score, as measured using the Life Orientation Test-Revised. Linear regression was used to estimate the relationship of marital status and optimism, controlling for potential confounding variables and assessing effect modification. The results showed that the association between marital status and optimism was modified by time since breast cancer diagnosis. Specifically, in those most recently diagnosed (within 5 years), married breast cancer survivors had a 1.50 higher mean optimism score than unmarried survivors (95 % confidence interval (CI) 0.37, 2.62; p = 0.009). The difference in optimism score by marital status was not present more than 5 years from breast cancer diagnosis. Findings suggest that among breast cancer survivors within 5 years since diagnosis, those who are married have higher optimism scores than their unmarried counterparts; this association was not observed among longer-term breast cancer survivors. Future research should examine whether the difference in optimism score among this subgroup of breast cancer survivors is clinically relevant.

  6. A new sol-gel processing routine without chelating agents for preparing highly transparent solutions and nanothin films: engineering the role of chemistry to design the process

    NASA Astrophysics Data System (ADS)

    Ashiri, Rouholah

    2015-01-01

    The great sensitivity of titanium alkoxides to hydrolysis makes their sol-gel transformation very fast and thus difficult to control. A method was proposed to alleviate this drawback. Preparation of highly transparent solutions and nanothin films is another objective of the present research. Employing nanoemulsion method and optimizing the processing conditions, a clear solution of well-dispersed nanosized particles was obtained. With the proposed process BaTiO3 precursor sols and nanothin films with enhanced optical transparency towards the visible were prepared. The optimal formulation of the sol consists of acetic acid, barium acetate, 2-propanol, TTIP and deionized water with 6:1:1:1:150 M ratios, respectively. It was found that the reduction of the temperature in the initial stage of mixing of precursors controls the size of the forming species and accordingly improves the stability and transparency of the sol. The results also showed that the applied modifications and optimizations significantly downsize the particles within the sol to the nanometric scale and accordingly result in a significant improvement in the optical response of the products.

  7. Optimizing real-time Web-based user interfaces for observatories

    NASA Astrophysics Data System (ADS)

    Gibson, J. Duane; Pickering, Timothy E.; Porter, Dallan; Schaller, Skip

    2008-08-01

    In using common HTML/Ajax approaches for web-based data presentation and telescope control user interfaces at the MMT Observatory (MMTO), we rapidly were confronted with web browser performance issues. Much of the operational data at the MMTO is highly dynamic and is constantly changing during normal operations. Status of telescope subsystems must be displayed with minimal latency to telescope operators and other users. A major motivation of migrating toward web-based applications at the MMTO is to provide easy access to current and past observatory subsystem data for a wide variety of users on their favorite operating system through a familiar interface, their web browser. Performance issues, especially for user interfaces that control telescope subsystems, led to investigations of more efficient use of HTML/Ajax and web server technologies as well as other web-based technologies, such as Java and Flash/Flex. The results presented here focus on techniques for optimizing HTML/Ajax web applications with near real-time data display. This study indicates that direct modification of the contents or "nodeValue" attribute of text nodes is the most efficient method of updating data values displayed on a web page. Other optimization techniques are discussed for web-based applications that display highly dynamic data.

  8. Immersion and dry scanner extensions for sub-10nm production nodes

    NASA Astrophysics Data System (ADS)

    Weichselbaum, Stefan; Bornebroek, Frank; de Kort, Toine; Droste, Richard; de Graaf, Roelof F.; van Ballegoij, Rob; Botter, Herman; McLaren, Matthew G.; de Boeij, Wim P.

    2015-03-01

    Progressing towards the 10nm and 7nm imaging node, pattern-placement and layer-to-layer overlay requirements keep on scaling down and drives system improvements in immersion (ArFi) and dry (ArF/KrF) scanners. A series of module enhancements in the NXT platform have been introduced; among others, the scanner is equipped with exposure stages with better dynamics and thermal control. Grid accuracy improvements with respect to calibration, setup, stability, and layout dependency tighten MMO performance and enable mix and match scanner operation. The same platform improvements also benefit focus control. Improvements in detectability and reproducibility of low contrast alignment marks enhance the alignment solution window for 10nm logic processes and beyond. The system's architecture allows dynamic use of high-order scanner optimization based on advanced actuators of projection lens and scanning stages. This enables a holistic optimization approach for the scanner, the mask, and the patterning process. Productivity scanner design modifications esp. stage speeds and optimization in metrology schemes provide lower layer costs for customers using immersion lithography as well as conventional dry technology. Imaging, overlay, focus, and productivity data is presented, that demonstrates 10nm and 7nm node litho-capability for both (immersion & dry) platforms.

  9. The Use of a Code-generating System for the Derivation of the Equations for Wind Turbine Dynamics

    NASA Astrophysics Data System (ADS)

    Ganander, Hans

    2003-10-01

    For many reasons the size of wind turbines on the rapidly growing wind energy market is increasing. Relations between aeroelastic properties of these new large turbines change. Modifications of turbine designs and control concepts are also influenced by growing size. All these trends require development of computer codes for design and certification. Moreover, there is a strong desire for design optimization procedures, which require fast codes. General codes, e.g. finite element codes, normally allow such modifications and improvements of existing wind turbine models. This is done relatively easy. However, the calculation times of such codes are unfavourably long, certainly for optimization use. The use of an automatic code generating system is an alternative for relevance of the two key issues, the code and the design optimization. This technique can be used for rapid generation of codes of particular wind turbine simulation models. These ideas have been followed in the development of new versions of the wind turbine simulation code VIDYN. The equations of the simulation model were derived according to the Lagrange equation and using Mathematica®, which was directed to output the results in Fortran code format. In this way the simulation code is automatically adapted to an actual turbine model, in terms of subroutines containing the equations of motion, definitions of parameters and degrees of freedom. Since the start in 1997, these methods, constituting a systematic way of working, have been used to develop specific efficient calculation codes. The experience with this technique has been very encouraging, inspiring the continued development of new versions of the simulation code as the need has arisen, and the interest for design optimization is growing.

  10. Development of an Interval Management Algorithm Using Ground Speed Feedback for Delayed Traffic

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Swieringa, Kurt A.; Underwood, Matthew C.; Abbott, Terence; Leonard, Robert D.

    2016-01-01

    One of the goals of NextGen is to enable frequent use of Optimized Profile Descents (OPD) for aircraft, even during periods of peak traffic demand. NASA is currently testing three new technologies that enable air traffic controllers to use speed adjustments to space aircraft during arrival and approach operations. This will allow an aircraft to remain close to their OPD. During the integration of these technologies, it was discovered that, due to a lack of accurate trajectory information for the leading aircraft, Interval Management aircraft were exhibiting poor behavior. NASA's Interval Management algorithm was modified to address the impact of inaccurate trajectory information and a series of studies were performed to assess the impact of this modification. These studies show that the modification provided some improvement when the Interval Management system lacked accurate trajectory information for the leading aircraft.

  11. Development of a solar powered residential air conditioner (General optimization)

    NASA Technical Reports Server (NTRS)

    Lowen, D. J.

    1976-01-01

    A commercially available 3-ton residential Lithium Bromide (LiBr) absorption air conditioner was modified for use with lower temperature solar heated water. The modification included removal of components such as the generator, concentration control chamber, liquid trap, and separator; and the addition of a Chrysler designed generator, an off-the-shelf LiBr-solution pump. The design goal of the modified unit was to operate with water as the heat-transfer fluid at a target temperature of 85 C (185 F), 29.4 C (85 F) cooling water inlet, producing 10.5 kW (3 tons) of cooling. Tests were performed on the system before and after modification to provide comparative data. At elevated temperatures (96 C, 205 F), the test results show that Lithium Bromide was carried into the condenser due to the extremely violent boiling and degraded the evaporator performance.

  12. Natural products in medicine: transformational outcome of synthetic chemistry.

    PubMed

    Szychowski, Janek; Truchon, Jean-François; Bennani, Youssef L

    2014-11-26

    This review brings to the forefront key synthetic modifications on natural products (NPs) that have yielded successful drugs. The emphasis is placed on the power of targeted chemical transformations in enhancing the therapeutic value of NPs through optimization of pharmacokinetics, stability, potency, and/or selectivity. Multiple classes of NPs such as macrolides, opioids, steroids, and β-lactams used to treat a variety of conditions such as cancers, infections, inflammation are exemplified. Molecular modeling or X-ray structures of NP/protein complexes supporting the observed boost in therapeutic value of the modified NPs are also discussed. Significant advancement in synthetic chemistry, in structure determination, and in the understanding of factors controlling pharmacokinetics can now better position drug discovery teams to undertake NPs as valuable leads. We hope that the beneficial NPs synthetic modifications outlined here will reignite medicinal chemists' interest in NPs and their derivatives.

  13. The role of nutrition and nutraceutical supplements in the treatment of hypertension

    PubMed Central

    Houston, Mark

    2014-01-01

    Vascular biology, endothelial and vascular smooth muscle and cardiac dysfunction play a primary role in the initiation and perpetuation of hypertension, cardiovascular disease and target organ damage. Nutrient-gene interactions and epigenetics are predominant factors in promoting beneficial or detrimental effects in cardiovascular health and hypertension. Macronutrients and micronutrients can prevent, control and treat hypertension through numerous mechanisms related to vascular biology. Oxidative stress, inflammation and autoimmune dysfunction initiate and propagate hypertension and cardiovascular disease. There is a role for the selected use of single and component nutraceutical supplements, vitamins, antioxidants and minerals in the treatment of hypertension based on scientifically controlled studies which complement optimal nutrition, coupled with other lifestyle modifications. PMID:24575172

  14. HILTOP supplement: Heliocentric interplanetary low thrust trajectory optimization program, supplement 1

    NASA Technical Reports Server (NTRS)

    Mann, F. I.; Horsewood, J. L.

    1974-01-01

    Modifications and improvements are described that were made to the HILTOP electric propulsion trajectory optimization computer program during calendar years 1973 and 1974. New program features include the simulation of power degradation, housekeeping power, launch asymptote declination optimization, and powered and unpowered ballistic multiple swingby missions with an optional deep space burn.

  15. Systematic Propulsion Optimization Tools (SPOT)

    NASA Technical Reports Server (NTRS)

    Bower, Mark; Celestian, John

    1992-01-01

    This paper describes a computer program written by senior-level Mechanical Engineering students at the University of Alabama in Huntsville which is capable of optimizing user-defined delivery systems for carrying payloads into orbit. The custom propulsion system is designed by the user through the input of configuration, payload, and orbital parameters. The primary advantages of the software, called Systematic Propulsion Optimization Tools (SPOT), are a user-friendly interface and a modular FORTRAN 77 code designed for ease of modification. The optimization of variables in an orbital delivery system is of critical concern in the propulsion environment. The mass of the overall system must be minimized within the maximum stress, force, and pressure constraints. SPOT utilizes the Design Optimization Tools (DOT) program for the optimization techniques. The SPOT program is divided into a main program and five modules: aerodynamic losses, orbital parameters, liquid engines, solid engines, and nozzles. The program is designed to be upgraded easily and expanded to meet specific user needs. A user's manual and a programmer's manual are currently being developed to facilitate implementation and modification.

  16. Improving the Dynamic Characteristics of Body-in-White Structure Using Structural Optimization

    PubMed Central

    Yahaya Rashid, Aizzat S.; Mohamed Haris, Sallehuddin; Alias, Anuar

    2014-01-01

    The dynamic behavior of a body-in-white (BIW) structure has significant influence on the noise, vibration, and harshness (NVH) and crashworthiness of a car. Therefore, by improving the dynamic characteristics of BIW, problems and failures associated with resonance and fatigue can be prevented. The design objectives attempt to improve the existing torsion and bending modes by using structural optimization subjected to dynamic load without compromising other factors such as mass and stiffness of the structure. The natural frequency of the design was modified by identifying and reinforcing the structure at critical locations. These crucial points are first identified by topology optimization using mass and natural frequencies as the design variables. The individual components obtained from the analysis go through a size optimization step to find their target thickness of the structure. The thickness of affected regions of the components will be modified according to the analysis. The results of both optimization steps suggest several design modifications to achieve the target vibration specifications without compromising the stiffness of the structure. A method of combining both optimization approaches is proposed to improve the design modification process. PMID:25101312

  17. Derived heuristics-based consistent optimization of material flow in a gold processing plant

    NASA Astrophysics Data System (ADS)

    Myburgh, Christie; Deb, Kalyanmoy

    2018-01-01

    Material flow in a chemical processing plant often follows complicated control laws and involves plant capacity constraints. Importantly, the process involves discrete scenarios which when modelled in a programming format involves if-then-else statements. Therefore, a formulation of an optimization problem of such processes becomes complicated with nonlinear and non-differentiable objective and constraint functions. In handling such problems using classical point-based approaches, users often have to resort to modifications and indirect ways of representing the problem to suit the restrictions associated with classical methods. In a particular gold processing plant optimization problem, these facts are demonstrated by showing results from MATLAB®'s well-known fmincon routine. Thereafter, a customized evolutionary optimization procedure which is capable of handling all complexities offered by the problem is developed. Although the evolutionary approach produced results with comparatively less variance over multiple runs, the performance has been enhanced by introducing derived heuristics associated with the problem. In this article, the development and usage of derived heuristics in a practical problem are presented and their importance in a quick convergence of the overall algorithm is demonstrated.

  18. The impact of lifestyle modifications, diet, and vitamin supplementation on natural fertility.

    PubMed

    Collins, Gretchen Garbe; Rossi, Brooke V

    2015-01-01

    Infertility is a relatively common condition. When patients are confronted with this diagnosis, there are medical, psychological, and financial sequelae. Patients often wonder if there is anything they can do to optimize their natural fertility or increase the effectiveness of infertility treatments. If there is a clear impact on fertility, such as with smoking and alcohol, cessation should be advised. Similarly, weight loss should be recommended if the BMI is in the overweight and obese category, and weight gain should be recommended for an underweight BMI. The evidence surrounding other lifestyle modifications is less clear. There are conflicting data regarding an optimal fertility diet and consumption of vitamins and supplements. Antioxidants seem to improve semen parameters in men, but the effect on female fertility is less clear. If conflicting evidence exists, such as with caffeine consumption or exercise, moderation should be emphasized. Finally, the diagnosis of infertility and subsequent fertility treatments are stressful for both partners. The psychological aspects should not be ignored and methods such as yoga and cognitive behavioral therapy may be beneficial. Continued research will determine the optimal lifestyle modifications to achieve pregnancy.

  19. An improved genetic algorithm for designing optimal temporal patterns of neural stimulation

    NASA Astrophysics Data System (ADS)

    Cassar, Isaac R.; Titus, Nathan D.; Grill, Warren M.

    2017-12-01

    Objective. Electrical neuromodulation therapies typically apply constant frequency stimulation, but non-regular temporal patterns of stimulation may be more effective and more efficient. However, the design space for temporal patterns is exceedingly large, and model-based optimization is required for pattern design. We designed and implemented a modified genetic algorithm (GA) intended for design optimal temporal patterns of electrical neuromodulation. Approach. We tested and modified standard GA methods for application to designing temporal patterns of neural stimulation. We evaluated each modification individually and all modifications collectively by comparing performance to the standard GA across three test functions and two biophysically-based models of neural stimulation. Main results. The proposed modifications of the GA significantly improved performance across the test functions and performed best when all were used collectively. The standard GA found patterns that outperformed fixed-frequency, clinically-standard patterns in biophysically-based models of neural stimulation, but the modified GA, in many fewer iterations, consistently converged to higher-scoring, non-regular patterns of stimulation. Significance. The proposed improvements to standard GA methodology reduced the number of iterations required for convergence and identified superior solutions.

  20. Optimization of Process Conditions for Enzymatic Modification of Alternan using Dextranase from Chaetomium erraticum

    USDA-ARS?s Scientific Manuscript database

    Alternan is a unique branched glucan with alternating a-(1 ' 6) and a-(1 ' 3) backbone linkages. We previously described the modification of alternan to a reduced molecular weight form using dextranase from Penicillium sp. The solution viscosity properties of this modified alternan resemble those ...

  1. Optimization design combined with coupled structural-electrostatic analysis for the electrostatically controlled deployable membrane reflector

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Yang, Guigeng; Zhang, Yiqun

    2015-01-01

    The electrostatically controlled deployable membrane reflector (ECDMR) is a promising scheme to construct large size and high precision space deployable reflector antennas. This paper presents a novel design method for the large size and small F/D ECDMR considering the coupled structure-electrostatic problem. First, the fully coupled structural-electrostatic system is described by a three field formulation, in which the structure and passive electrical field is modeled by finite element method, and the deformation of the electrostatic domain is predicted by a finite element formulation of a fictitious elastic structure. A residual formulation of the structural-electrostatic field finite element model is established and solved by Newton-Raphson method. The coupled structural-electrostatic analysis procedure is summarized. Then, with the aid of this coupled analysis procedure, an integrated optimization method of membrane shape accuracy and stress uniformity is proposed, which is divided into inner and outer iterative loops. The initial state of relatively high shape accuracy and uniform stress distribution is achieved by applying the uniform prestress on the membrane design shape and optimizing the voltages, in which the optimal voltage is computed by a sensitivity analysis. The shape accuracy is further improved by the iterative prestress modification using the reposition balance method. Finally, the results of the uncoupled and coupled methods are compared and the proposed optimization method is applied to design an ECDMR. The results validate the effectiveness of this proposed methods.

  2. An ICT and mobile health integrated approach to optimize patients' education on hypertension and its management by physicians: The Patients Optimal Strategy of Treatment(POST) pilot study.

    PubMed

    Albini, Fabio; Xiaoqiu Liu; Torlasco, Camilla; Soranna, Davide; Faini, Andrea; Ciminaghi, Renata; Celsi, Ada; Benedetti, Matteo; Zambon, Antonella; di Rienzo, Marco; Parati, Gianfranco

    2016-08-01

    Uncontrolled hypertension is largely attributed to unsatisfactory doctor's engagement in its optimal management and to poor patients' compliance to therapeutic interventions. ICT and mobile Health solutions might improve these conditions, being widely available and providing highly effective communication strategies. To evaluate whether ICT and mobile Health tools are able to improve hypertension control by improving doctors' engagement and by increasing patients' education and involvement, and their compliance to lifestyle modification and prescribed drug therapy. In a pilot study, we have included 690 treated hypertensive patients with uncontrolled office blood pressure (BP), consecutively recruited by 9 general practitioners over 3 months. Patients were alternatively assigned to routine management based on repeated office visits or to an integrated ICT-based Patients Optimal Strategy for Treatment (POST) system including Home BP monitoring teletransmission, a dedicated web-based platform for patients' management by physicians (Misuriamo platform), and a smartphone mobile application (Eurohypertension APP, E-APP), over a follow-up of 6 months. BP values, demographic and clinical data were collected at baseline and at all follow-up visits (at least two). BP control and cardiovascular risk level have been evaluated at the beginning and at the end of the study. 89 patients did not complete the follow-up, thus data analysis was carried out in 601 of them (303 patients in the POST group and 298 in the control group). Office BP control (<;149/90 mmHg) was 40.0% in control group, and 72.3% in POST group at 6 month follow-up. At the same time Home BP control (<;135/85 mmHg average of 6 days) in POST group was 87.5%. this pilot study suggests that ICT based tools might be effective in improving hypertension management, implementing positive patients' involvement with better adherence to treatment prescriptions and providing the physicians with dynamic control of patients' home BP measurements, resulting in lesser clinical inertia.

  3. Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Bo, Zheng; Li, Changwen; Yang, Huachao; Ostrikov, Kostya; Yan, Jianhua; Cen, Kefa

    2018-06-01

    Electric double-layer capacitors (EDLCs) are advanced electrochemical devices for energy storage and have attracted strong interest due to their outstanding properties. Rational optimization of electrode-electrolyte interactions is of vital importance to enhance device performance for practical applications. Molecular dynamics (MD) simulations could provide theoretical guidelines for the optimal design of electrodes and the improvement of capacitive performances, e.g., energy density and power density. Here we discuss recent MD simulation studies on energy storage performance of electrode materials containing porous to nanostructures. The energy storage properties are related to the electrode structures, including electrode geometry and electrode modifications. Altering electrode geometry, i.e., pore size and surface topography, can influence EDL capacitance. We critically examine different types of electrode modifications, such as altering the arrangement of carbon atoms, doping heteroatoms and defects, which can change the quantum capacitance. The enhancement of power density can be achieved by the intensified ion dynamics and shortened ion pathway. Rational control of the electrode morphology helps improve the ion dynamics by decreasing the ion diffusion pathway. Tuning the surface properties (e.g., the affinity between the electrode and the ions) can affect the ion-packing phenomena. Our critical analysis helps enhance the energy and power densities of EDLCs by modulating the corresponding electrode structures and surface properties.[Figure not available: see fulltext.

  4. Orienting the Microstructure Evolution of Copper Phthalocyanine as an Anode Interlayer in Inverted Polymer Solar Cells for High Performance.

    PubMed

    Li, Zhiqi; Liu, Chunyu; Zhang, Xinyuan; Li, Shujun; Zhang, Xulin; Guo, Jiaxin; Guo, Wenbin; Zhang, Liu; Ruan, Shengping

    2017-09-20

    Recent advances in the interfacial modification of inverted-type polymer solar cells (PSCs) have resulted from controlling the surface energy of the cathode-modified layer (TiO 2 or ZnO) to enhance the short-circuit current (J sc ) or optimizing the contact morphology of the cathode (indium tin oxide or fluorine-doped tin oxide) and active layer to increase the fill factor. Herein, we report that the performance enhancement of PSCs is achieved by incorporating a donor macromolecule copper phthalocyanine (CuPc) as an anode modification layer. Using the approach based on orienting the microstructure evolution, uniformly dispersed island-shaped CuPc spot accumulations are built on the top of PTB7:PC 71 BM blend film, leading to an efficient spectral absorption and photogenerated exciton splitting. The best power conversion efficiency of PSCs is increased up to 9.726%. In addition to the enhanced light absorption, the tailored anode energy level alignment and optimized boundary morphology by incorporating the CuPc interlayer boost charge extraction efficiency and suppress the interfacial molecular recombination. These results demonstrate that surface morphology induction through molecular deposition is an effective method to improve the performance of PSCs, which reveals the potential implications of the interlayer between the organic active layer and the electrode buffer layer.

  5. cChIP-seq: a robust small-scale method for investigation of histone modifications.

    PubMed

    Valensisi, Cristina; Liao, Jo Ling; Andrus, Colin; Battle, Stephanie L; Hawkins, R David

    2015-12-21

    ChIP-seq is highly utilized for mapping histone modifications that are informative about gene regulation and genome annotations. For example, applying ChIP-seq to histone modifications such as H3K4me1 has facilitated generating epigenomic maps of putative enhancers. This powerful technology, however, is limited in its application by the large number of cells required. ChIP-seq involves extensive manipulation of sample material and multiple reactions with limited quality control at each step, therefore, scaling down the number of cells required has proven challenging. Recently, several methods have been proposed to overcome this limit but most of these methods require extensive optimization to tailor the protocol to the specific antibody used or number of cells being profiled. Here we describe a robust, yet facile method, which we named carrier ChIP-seq (cChIP-seq), for use on limited cell amounts. cChIP-seq employs a DNA-free histone carrier in order to maintain the working ChIP reaction scale, removing the need to tailor reactions to specific amounts of cells or histone modifications to be assayed. We have applied our method to three different histone modifications, H3K4me3, H3K4me1 and H3K27me3 in the K562 cell line, and H3K4me1 in H1 hESCs. We successfully obtained epigenomic maps for these histone modifications starting with as few as 10,000 cells. We compared cChIP-seq data to data generated as part of the ENCODE project. ENCODE data are the reference standard in the field and have been generated starting from tens of million of cells. Our results show that cChIP-seq successfully recapitulates bulk data. Furthermore, we showed that the differences observed between small-scale ChIP-seq data and ENCODE data are largely to be due to lab-to-lab variability rather than operating on a reduced scale. Data generated using cChIP-seq are equivalent to reference epigenomic maps from three orders of magnitude more cells. Our method offers a robust and straightforward approach to scale down ChIP-seq to as low as 10,000 cells. The underlying principle of our strategy makes it suitable for being applied to a vast range of chromatin modifications without requiring expensive optimization. Furthermore, our strategy of a DNA-free carrier can be adapted to most ChIP-seq protocols.

  6. Crystallographic Characterization on Polycrystalline Ni-Mn-Ga Alloys with Strong Preferred Orientation

    PubMed Central

    Li, Zongbin; Yang, Bo; Zou, Naifu; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zhao, Xiang; Zuo, Liang

    2017-01-01

    Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected to offer some guidelines for the microstructure modification and functional performance control of ferromagnetic shape memory alloys. PMID:28772826

  7. Evaluation of R-22 alternatives for heat pumps. Report for September 1993-December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Y.; Judge, J.F.; Radermacher, R.

    1996-03-01

    The paper reports results of a study investigating three different possibilities for replacing refrigerant R-22 with R-407C in a heat pump. The first and simplest scenario was a retrofit without any hardware modifications. The second possibility was a modification that required altering the refrigerant path to attain a near-counterflow configuration in the indoor coil for the heating mode. The third and most complex possibility was soft optimization, consisting of maximizing the coefficients for performance (COPs) in the heating and cooling modes by optimizing the refrigerant charge and expansion devices.

  8. General strategy for the protection of organs at risk in IMRT therapy of a moving body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abolfath, Ramin M.; Papiez, Lech

    2009-07-15

    We investigated protection strategies of organs at risk (OARs) in intensity modulated radiation therapy (IMRT). These strategies apply to delivery of IMRT to moving body anatomies that show relative displacement of OAR in close proximity to a tumor target. We formulated an efficient genetic algorithm which makes it possible to search for global minima in a complex landscape of multiple irradiation strategies delivering a given, predetermined intensity map to a target. The optimal strategy was investigated with respect to minimizing the dose delivered to the OAR. The optimization procedure developed relies on variability of all parameters available for control ofmore » radiation delivery in modern linear accelerators, including adaptation of leaf trajectories and simultaneous modification of beam dose rate during irradiation. We showed that the optimization algorithms lead to a significant reduction in the dose delivered to OAR in cases where organs at risk move relative to a treatment target.« less

  9. Improving experimental phases for strong reflections prior to density modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.

    Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005), Acta Cryst. D 61, 899–902], the impact of identifying optimized phases for a small numbermore » of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. Lastly, a computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.« less

  10. Improving experimental phases for strong reflections prior to density modification

    DOE PAGES

    Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.; ...

    2013-09-20

    Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005), Acta Cryst. D 61, 899–902], the impact of identifying optimized phases for a small numbermore » of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. Lastly, a computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.« less

  11. Experimental optimization of a free vortex propeller runner for micro hydro application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Punit; Nestmann, Franz

    2009-09-15

    The turbine technology for low head application in the micro hydro range has been vastly neglected despite niche available in scattered regions of valley flows as well as in wastewater canals and other energy recovery schemes, where the available head does not exceed 2 meters. The goal of this study is to develop hydraulically optimized propeller turbines for the micro hydro range with a particular focus on ease of manufacture. This paper presents a wide range of geometrical optimization steps carried out on a propeller runner, whose blades have been designed using the free vortex theory, and operating with amore » gross head from 1.5 to 2 m and discharge of approximately 75 l/s. It further illustrates 3 stages of geometrical modifications carried out on the runner with an objective of optimizing the runner performance. These modifications comprised of changes to the tip angles (both at the runner inlet and exit) as well as the hub angles (at the runner inlet) of the runner blades. The paper also presents an interesting theoretical methodology to analyze the effects of each optimization stage. This method looks at the relative changes to shaft power and discharge at constant head and speed and gives wonderful insight as to how the internal parameters like Euler shaft work and runner hydraulic losses are behaving with respect to each optimization stage. It was found that the performance of the runner was very sensitive to changes to exit tip angle. At two levels of modification, the discharge increased in the range of 15-30%, while shaft power increased in the range of 12-45%, thus influencing the efficiency characteristics. The results of the runner inlet tip modification were very interesting in that a very significant rise of turbine efficiency was recorded from 55% to 74% at the best efficiency point, which was caused by a reduced discharge consumption as well as a higher power generation. It was also found that the optimization study on a propeller runner has reasonably validated the estimates of the free vortex theory despite small deviations. The final runner configuration demonstrated a maximum efficiency of 74% ({+-}1.8%), which is very encouraging from the perspectives of micro hydro application. The paper concludes with recommendations of a series of optimization steps to increase the efficiency of the runner. It also recommends the attempt of Computational Fluid Dynamics both as a validation and optimization tool for future research on propeller runners. (author)« less

  12. An optimal modification of a Kalman filter for time scales

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    2003-01-01

    The Kalman filter in question, which was implemented in the time scale algorithm TA(NIST), produces time scales with poor short-term stability. A simple modification of the error covariance matrix allows the filter to produce time scales with good stability at all averaging times, as verified by simulations of clock ensembles.

  13. Fas palmitoylation by the palmitoyl acyltransferase DHHC7 regulates Fas stability

    PubMed Central

    Rossin, A; Durivault, J; Chakhtoura-Feghali, T; Lounnas, N; Gagnoux-Palacios, L; Hueber, A-O

    2015-01-01

    The death receptor Fas undergoes a variety of post-translational modifications including S-palmitoylation. This protein acylation has been reported essential for an optimal cell death signaling by allowing both a proper Fas localization in cholesterol and sphingolipid-enriched membrane nanodomains, as well as Fas high-molecular weight complexes. In human, S-palmitoylation is controlled by 23 members of the DHHC family through their palmitoyl acyltransferase activity. In order to better understand the role of this post-translational modification in the regulation of the Fas-mediated apoptosis pathway, we performed a screen that allowed the identification of DHHC7 as a Fas-palmitoylating enzyme. Indeed, modifying DHHC7 expression by specific silencing or overexpression, respectively, reduces or enhances Fas palmitoylation and DHHC7 co-immunoprecipitates with Fas. At a functional level, DHHC7-mediated palmitoylation of Fas allows a proper Fas expression level by preventing its degradation through the lysosomes. Indeed, the decrease of Fas expression obtained upon loss of Fas palmitoylation can be restored by inhibiting the lysosomal degradation pathway. We describe the modification of Fas by palmitoylation as a novel mechanism for the regulation of Fas expression through its ability to circumvent its degradation by lysosomal proteolysis. PMID:25301068

  14. Evaluation and Optimization of Therapeutic Footwear for Neuropathic Diabetic Foot Patients Using In-Shoe Plantar Pressure Analysis

    PubMed Central

    Bus, Sicco A.; Haspels, Rob; Busch-Westbroek, Tessa E.

    2011-01-01

    OBJECTIVE Therapeutic footwear for diabetic foot patients aims to reduce the risk of ulceration by relieving mechanical pressure on the foot. However, footwear efficacy is generally not assessed in clinical practice. The purpose of this study was to assess the value of in-shoe plantar pressure analysis to evaluate and optimize the pressure-reducing effects of diabetic therapeutic footwear. RESEARCH DESIGN AND METHODS Dynamic in-shoe plantar pressure distribution was measured in 23 neuropathic diabetic foot patients wearing fully customized footwear. Regions of interest (with peak pressure >200 kPa) were selected and targeted for pressure optimization by modifying the shoe or insole. After each of a maximum of three rounds of modifications, the effect on in-shoe plantar pressure was measured. Successful optimization was achieved with a peak pressure reduction of >25% (criterion A) or below an absolute level of 200 kPa (criterion B). RESULTS In 35 defined regions, mean peak pressure was significantly reduced from 303 (SD 77) to 208 (46) kPa after an average 1.6 rounds of footwear modifications (P < 0.001). This result constitutes a 30.2% pressure relief (range 18–50% across regions). All regions were successfully optimized: 16 according to criterion A, 7 to criterion B, and 12 to criterion A and B. Footwear optimization lasted on average 53 min. CONCLUSIONS These findings suggest that in-shoe plantar pressure analysis is an effective and efficient tool to evaluate and guide footwear modifications that significantly reduce pressure in the neuropathic diabetic foot. This result provides an objective approach to instantly improve footwear quality, which should reduce the risk for pressure-related plantar foot ulcers. PMID:21610125

  15. Expanding integrated vector management to promote healthy environments

    PubMed Central

    Lizzi, Karina M.; Qualls, Whitney A.; Brown, Scott C.; Beier, John C.

    2014-01-01

    Integrated Vector Management (IVM) strategies are intended to protect communities from pathogen transmission by arthropods. These strategies target multiple vectors and different ecological and socioeconomic settings, but the aggregate benefits of IVM are limited by the narrow focus of its approach; IVM strategies only aim to control arthropod vectors. We argue that IVM should encompass environmental modifications at early stages, for instance, infrastructural development and sanitation services, to regulate not only vectors but also nuisance-biting arthropods. An additional focus on nuisance-biting arthropods will improve public health, quality of life, and minimize social disparity issues fostered by pests. Optimally, IVM could incorporate environmental awareness and promotion of control methods in order to proactively reduce threats of serious pest situations. PMID:25028090

  16. The management of gastro-oesophageal reflux disease.

    PubMed

    Keung, Charlotte; Hebbard, Geoffrey

    2016-02-01

    If there are no features of serious disease, suspected gastro-oesophageal reflux disease can be initially managed with a trial of a proton pump inhibitor for 4-8 weeks. This should be taken 30-60 minutes before food for optimal effect. Once symptoms are controlled, attempt to withdraw acid suppression therapy. If symptoms recur, use the minimum dose that controls symptoms. Patients who have severe erosive oesophagitis, scleroderma oesophagus or Barrett's oesophagus require long-term treatment with a proton pump inhibitor. Lifestyle modification strategies can help gastro-oesophageal reflux disease. Weight loss has the strongest evidence for efficacy. Further investigation and a specialist referral are required if there is no response to proton pump inhibitor therapy. Atypical symptoms or signs of serious disease also need investigation.

  17. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2014-05-15

    This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Zero-Propellant Maneuver[TM] Flight Results for 180 deg ISS Rotation

    NASA Technical Reports Server (NTRS)

    Bedrossian, Nazareth; Bhatt, Sagar; Lammers, Mike; Nguyen, Louis

    2007-01-01

    This paper presents results for the Zero Propellant Maneuver (ZPM) TradeMark attitude control concept flight demonstration. On March 3, 2007, a ZPM was used to reorient the International Space Station 180 degrees without using any propellant. The identical reorientation performed with thrusters would have burned 110lbs of propellant. The ZPM was a pre-planned trajectory used to command the CMG attitude hold controller to perform the maneuver between specified initial and final states while maintaining the CMGs within their operational limits. The trajectory was obtained from a PseudoSpectral solution to a new optimal attitude control problem. The flight test established the breakthrough capability to simultaneously perform a large angle attitude maneuver and momentum desaturation without the need to use thrusters. The flight implementation did not require any modifications to flight software. This approach is applicable to any spacecraft that are controlled by momentum storage devices.

  19. A Blocked Linear Method for Optimizing Large Parameter Sets in Variational Monte Carlo

    DOE PAGES

    Zhao, Luning; Neuscamman, Eric

    2017-05-17

    We present a modification to variational Monte Carlo’s linear method optimization scheme that addresses a critical memory bottleneck while maintaining compatibility with both the traditional ground state variational principle and our recently-introduced variational principle for excited states. For wave function ansatzes with tens of thousands of variables, our modification reduces the required memory per parallel process from tens of gigabytes to hundreds of megabytes, making the methodology a much better fit for modern supercomputer architectures in which data communication and per-process memory consumption are primary concerns. We verify the efficacy of the new optimization scheme in small molecule tests involvingmore » both the Hilbert space Jastrow antisymmetric geminal power ansatz and real space multi-Slater Jastrow expansions. Satisfied with its performance, we have added the optimizer to the QMCPACK software package, with which we demonstrate on a hydrogen ring a prototype approach for making systematically convergent, non-perturbative predictions of Mott-insulators’ optical band gaps.« less

  20. Modification Propagation in Complex Networks

    NASA Astrophysics Data System (ADS)

    Mouronte, Mary Luz; Vargas, María Luisa; Moyano, Luis Gregorio; Algarra, Francisco Javier García; Del Pozo, Luis Salvador

    To keep up with rapidly changing conditions, business systems and their associated networks are growing increasingly intricate as never before. By doing this, network management and operation costs not only rise, but are difficult even to measure. This fact must be regarded as a major constraint to system optimization initiatives, as well as a setback to derived economic benefits. In this work we introduce a simple model in order to estimate the relative cost associated to modification propagation in complex architectures. Our model can be used to anticipate costs caused by network evolution, as well as for planning and evaluating future architecture development while providing benefit optimization.

  1. Cell wall modifications of two Arabidopsis thaliana ecotypes, Col and Sha, in response to sub-optimal growth conditions: An integrative study.

    PubMed

    Duruflé, Harold; Hervé, Vincent; Ranocha, Philippe; Balliau, Thierry; Zivy, Michel; Chourré, Josiane; San Clemente, Hélène; Burlat, Vincent; Albenne, Cécile; Déjean, Sébastien; Jamet, Elisabeth; Dunand, Christophe

    2017-10-01

    With the global temperature change, plant adaptations are predicted, but little is known about the molecular mechanisms underlying them. Arabidopsis thaliana is a model plant adapted to various environmental conditions, in particular able to develop along an altitudinal gradient. Two ecotypes, Columbia (Col) growing at low altitude, and Shahdara (Sha) growing at 3400m, have been studied at optimal and sub-optimal growth temperature (22°C vs 15°C). Macro- and micro-phenotyping, cell wall monosaccharides analyses, cell wall proteomics, and transcriptomics have been performed in order to accomplish an integrative analysis. The analysis has been focused on cell walls (CWs) which are assumed to play roles in response to environmental changes. At 15°C, both ecotypes presented characteristic morphological traits of low temperature growth acclimation such as reduced rosette diameter, increased number of leaves, modifications of their CW composition and cuticle reinforcement. Altogether, the integrative analysis has allowed identifying several candidate genes/proteins possibly involved in the cell wall modifications observed during the temperature acclimation response. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Active flow control of subsonic flow in an adverse pressure gradient using synthetic jets and passive micro flow control devices

    NASA Astrophysics Data System (ADS)

    Denn, Michael E.

    Several recent studies have shown the advantages of active and/or passive flow control devices for boundary layer flow modification. Many current and future proposed air vehicles have very short or offset diffusers in order to save vehicle weight and create more optimal vehicle/engine integration. Such short coupled diffusers generally result in boundary layer separation and loss of pressure recovery which reduces engine performance and in some cases may cause engine stall. Deployment of flow control devices can alleviate this problem to a large extent; however, almost all active flow control devices have some energy penalty associated with their inclusion. One potential low penalty approach for enhancing the diffuser performance is to combine the passive flow control elements such as micro-ramps with active flow control devices such as synthetic jets to achieve higher control authority. The goal of this dissertation is twofold. The first objective is to assess the ability of CFD with URANS turbulence models to accurately capture the effects of the synthetic jets and micro-ramps on boundary layer flow. This is accomplished by performing numerical simulations replicating several experimental test cases conducted at Georgia Institute of Technology under the NASA funded Inlet Flow Control and Prediction Technologies Program, and comparing the simulation results with experimental data. The second objective is to run an expanded CFD matrix of numerical simulations by varying various geometric and other flow control parameters of micro-ramps and synthetic jets to determine how passive and active control devices interact with each other in increasing and/or decreasing the control authority and determine their influence on modification of boundary layer flow. The boundary layer shape factor is used as a figure of merit for determining the boundary layer flow quality/modification and its tendency towards separation. It is found by a large number of numerical experiments and the analysis of simulation data that a flow control device's influence on boundary layer quality is a function of three factors: (1) the strength of the longitudinal vortex emanating from the flow control device or devices, (2) the height of the vortex core above the surface and, when a synthetic jet is present, (3) the momentum added to the boundary layer flow.

  3. Note: Cryogenic heat switch with stepper motor actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melcher, B. S., E-mail: bsmelche@syr.edu; Timbie, P. T., E-mail: pttimbie@wisc.edu

    2015-12-15

    A mechanical cryogenic heat switch has been developed using a commercially available stepper motor and control electronics. The motor requires 4 leads, each carrying a maximum, pulsed current of 0.5 A. With slight modifications of the stepper motor, the switch functions reliably in vacuum at temperatures between 300 K and 4 K. The switch generates a clamping force of 262 N at room temperature. At 4 K it achieves an “on state” thermal conductance of 5.04 mW/K and no conductance in the “off state.” The switch is optimized for cycling an adiabatic demagnetization refrigerator.

  4. Active thermal control system evolution

    NASA Technical Reports Server (NTRS)

    Petete, Patricia A.; Ames, Brian E.

    1991-01-01

    The 'restructured' baseline of the Space Station Freedom (SSF) has eliminated many of the growth options for the Active Thermal Control System (ATCS). Modular addition of baseline technology to increase heat rejection will be extremely difficult. The system design and the available real estate no longer accommodate this type of growth. As the station matures during its thirty years of operation, a demand of up to 165 kW of heat rejection can be expected. The baseline configuration will be able to provide 82.5 kW at Eight Manned Crew Capability (EMCC). The growth paths necessary to reach 165 kW have been identified. Doubling the heat rejection capability of SSF will require either the modification of existing radiator wings or the attachment of growth structure to the baseline truss for growth radiator wing placement. Radiator performance can be improved by enlarging the surface area or by boosting the operating temperature with a heat pump. The optimal solution will require both modifications. The addition of growth structure would permit the addition of a parallel ATCS using baseline technology. This growth system would simplify integration. The feasibility of incorporating these growth options to improve the heat rejection capacity of SSF is under evaluation.

  5. Starch-based polyurethane/CuO nanocomposite foam: Antibacterial effects for infection control.

    PubMed

    Ashjari, Hamid Reza; Dorraji, Mir Saeed Seyed; Fakhrzadeh, Vahid; Eslami, Hosein; Rasoulifard, Mohammad Hossein; Rastgouy-Houjaghan, Mehrdad; Gholizadeh, Pourya; Kafil, Hossein Samadi

    2018-05-01

    In the present study, a new method for the synthesis of the open cell flexible polyurethane foams (PUFs) was developed by using starch powder and the modification of closed cell foam formulation. Starch is the second largest polymeric carbohydrate as a macromolecule on this planet with a large number of glucose units. Copper oxide nanoparticles (CuO NPs) were synthesized by thermal degradation method at different temperatures of 400, 600 and 800 °C as antimicrobial agents. The antimicrobial activity of CuO NPs and commercial CuO powder against the main causes of hospital infections were tested. CuO 600 was the most effective antimicrobial agent and enhanced polymer matrix tensile strength with starch powder as new polyurethane foams (PUFs) cell opener with high tensile strength. The effects of parameters on tensile strength were optimized using response surface methodology (RSM). CuO NPs and PUF had optimal conditions and were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Foam synthesized at the optimal conditions had an open cell structure with high tensile strength and efficient antimicrobial activity that made them suitable to be used as an antimicrobial hospital mattress to control hospital infections. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. "RCL-Pooling Assay": A Simplified Method for the Detection of Replication-Competent Lentiviruses in Vector Batches Using Sequential Pooling.

    PubMed

    Corre, Guillaume; Dessainte, Michel; Marteau, Jean-Brice; Dalle, Bruno; Fenard, David; Galy, Anne

    2016-02-01

    Nonreplicative recombinant HIV-1-derived lentiviral vectors (LV) are increasingly used in gene therapy of various genetic diseases, infectious diseases, and cancer. Before they are used in humans, preparations of LV must undergo extensive quality control testing. In particular, testing of LV must demonstrate the absence of replication-competent lentiviruses (RCL) with suitable methods, on representative fractions of vector batches. Current methods based on cell culture are challenging because high titers of vector batches translate into high volumes of cell culture to be tested in RCL assays. As vector batch size and titers are continuously increasing because of the improvement of production and purification methods, it became necessary for us to modify the current RCL assay based on the detection of p24 in cultures of indicator cells. Here, we propose a practical optimization of this method using a pairwise pooling strategy enabling easier testing of higher vector inoculum volumes. These modifications significantly decrease material handling and operator time, leading to a cost-effective method, while maintaining optimal sensibility of the RCL testing. This optimized "RCL-pooling assay" ameliorates the feasibility of the quality control of large-scale batches of clinical-grade LV while maintaining the same sensitivity.

  7. Automation of the electron-beam welding process

    NASA Astrophysics Data System (ADS)

    Koleva, E.; Dzharov, V.; Kardjiev, M.; Mladenov, G.

    2016-03-01

    In this work, the automatic control is considered of the vacuum and cooling systems of the located in the IE-BAS equipment for electron-beam welding, evaporation and surface modification. A project was elaborated for the control and management based on the development of an engineering support system using existing and additional technical means of automation. Optimization of the indicators, which are critical for the duration of reaching the working regime and stopping the operation of the installation, can be made using experimentally obtained transient characteristics. The automation of the available equipment aimed at improving its efficiency and the repeatability of the obtained results, as well as at stabilizing the process parameters, should be integrated in an Engineering Support System which, besides the operator supervision, consists of several subsystems for equipment control, data acquisition, information analysis, system management and decision-making support.

  8. Biologically plausible learning in neural networks: a lesson from bacterial chemotaxis.

    PubMed

    Shimansky, Yury P

    2009-12-01

    Learning processes in the brain are usually associated with plastic changes made to optimize the strength of connections between neurons. Although many details related to biophysical mechanisms of synaptic plasticity have been discovered, it is unclear how the concurrent performance of adaptive modifications in a huge number of spatial locations is organized to minimize a given objective function. Since direct experimental observation of even a relatively small subset of such changes is not feasible, computational modeling is an indispensable investigation tool for solving this problem. However, the conventional method of error back-propagation (EBP) employed for optimizing synaptic weights in artificial neural networks is not biologically plausible. This study based on computational experiments demonstrated that such optimization can be performed rather efficiently using the same general method that bacteria employ for moving closer to an attractant or away from a repellent. With regard to neural network optimization, this method consists of regulating the probability of an abrupt change in the direction of synaptic weight modification according to the temporal gradient of the objective function. Neural networks utilizing this method (regulation of modification probability, RMP) can be viewed as analogous to swimming in the multidimensional space of their parameters in the flow of biochemical agents carrying information about the optimality criterion. The efficiency of RMP is comparable to that of EBP, while RMP has several important advantages. Since the biological plausibility of RMP is beyond a reasonable doubt, the RMP concept provides a constructive framework for the experimental analysis of learning in natural neural networks.

  9. LQG/LTR optimal attitude control of small flexible spacecraft using free-free boundary conditions

    NASA Astrophysics Data System (ADS)

    Fulton, Joseph M.

    Due to the volume and power limitations of a small satellite, careful consideration must be taken while designing an attitude control system for 3-axis stabilization. Placing redundancy in the system proves difficult and utilizing power hungry, high accuracy, active actuators is not a viable option. Thus, it is customary to find dependable, passive actuators used in conjunction with small scale active control components. This document describes the application of Elastic Memory Composite materials in the construction of a flexible spacecraft appendage, such as a gravity gradient boom. Assumed modes methods are used with Finite Element Modeling information to obtain the equations of motion for the system while assuming free-free boundary conditions. A discussion is provided to illustrate how cantilever mode shapes are not always the best assumption when modeling small flexible spacecraft. A key point of interest is first resonant modes may be needed in the system design plant in spite of these modes being greater than one order of magnitude in frequency when compared to the crossover frequency of the controller. LQG/LTR optimal control techniques are implemented to compute attitude control gains while controller robustness considerations determine appropriate reduced order controllers and which flexible modes to include in the design model. Key satellite designer concerns in the areas of computer processor sizing, material uncertainty impacts on the system model, and system performance variations resulting from appendage length modifications are addressed.

  10. Linearization methods for optimizing the low thrust spacecraft trajectory: Theoretical aspects

    NASA Astrophysics Data System (ADS)

    Kazmerchuk, P. V.

    2016-12-01

    The theoretical aspects of the modified linearization method, which makes it possible to solve a wide class of nonlinear problems on optimizing low-thrust spacecraft trajectories (V. V. Efanov et al., 2009; V. V. Khartov et al., 2010) are examined. The main modifications of the linearization method are connected with its refinement for optimizing the main dynamic systems and design parameters of the spacecraft.

  11. Designing optimal food intake patterns to achieve nutritional goals for Japanese adults through the use of linear programming optimization models.

    PubMed

    Okubo, Hitomi; Sasaki, Satoshi; Murakami, Kentaro; Yokoyama, Tetsuji; Hirota, Naoko; Notsu, Akiko; Fukui, Mitsuru; Date, Chigusa

    2015-06-06

    Simultaneous dietary achievement of a full set of nutritional recommendations is difficult. Diet optimization model using linear programming is a useful mathematical means of translating nutrient-based recommendations into realistic nutritionally-optimal food combinations incorporating local and culture-specific foods. We used this approach to explore optimal food intake patterns that meet the nutrient recommendations of the Dietary Reference Intakes (DRIs) while incorporating typical Japanese food selections. As observed intake values, we used the food and nutrient intake data of 92 women aged 31-69 years and 82 men aged 32-69 years living in three regions of Japan. Dietary data were collected with semi-weighed dietary record on four non-consecutive days in each season of the year (16 days total). The linear programming models were constructed to minimize the differences between observed and optimized food intake patterns while also meeting the DRIs for a set of 28 nutrients, setting energy equal to estimated requirements, and not exceeding typical quantities of each food consumed by each age (30-49 or 50-69 years) and gender group. We successfully developed mathematically optimized food intake patterns that met the DRIs for all 28 nutrients studied in each sex and age group. Achieving nutritional goals required minor modifications of existing diets in older groups, particularly women, while major modifications were required to increase intake of fruit and vegetables in younger groups of both sexes. Across all sex and age groups, optimized food intake patterns demanded greatly increased intake of whole grains and reduced-fat dairy products in place of intake of refined grains and full-fat dairy products. Salt intake goals were the most difficult to achieve, requiring marked reduction of salt-containing seasoning (65-80%) in all sex and age groups. Using a linear programming model, we identified optimal food intake patterns providing practical food choices and meeting nutritional recommendations for Japanese populations. Dietary modifications from current eating habits required to fulfil nutritional goals differed by age: more marked increases in food volume were required in younger groups.

  12. Optimal diabatic dynamics of Majorana-based quantum gates

    NASA Astrophysics Data System (ADS)

    Rahmani, Armin; Seradjeh, Babak; Franz, Marcel

    2017-08-01

    In topological quantum computing, unitary operations on qubits are performed by adiabatic braiding of non-Abelian quasiparticles, such as Majorana zero modes, and are protected from local environmental perturbations. In the adiabatic regime, with timescales set by the inverse gap of the system, the errors can be made arbitrarily small by performing the process more slowly. To enhance the performance of quantum information processing with Majorana zero modes, we apply the theory of optimal control to the diabatic dynamics of Majorana-based qubits. While we sacrifice complete topological protection, we impose constraints on the optimal protocol to take advantage of the nonlocal nature of topological information and increase the robustness of our gates. By using the Pontryagin's maximum principle, we show that robust equivalent gates to perfect adiabatic braiding can be implemented in finite times through optimal pulses. In our implementation, modifications to the device Hamiltonian are avoided. Focusing on thermally isolated systems, we study the effects of calibration errors and external white and 1 /f (pink) noise on Majorana-based gates. While a noise-induced antiadiabatic behavior, where a slower process creates more diabatic excitations, prohibits indefinite enhancement of the robustness of the adiabatic scheme, our fast optimal protocols exhibit remarkable stability to noise and have the potential to significantly enhance the practical performance of Majorana-based information processing.

  13. An optimized immunohistochemistry protocol for detecting the guidance cue Netrin-1 in neural tissue.

    PubMed

    Salameh, Samer; Nouel, Dominique; Flores, Cecilia; Hoops, Daniel

    2018-01-01

    Netrin-1, an axon guidance protein, is difficult to detect using immunohistochemistry. We performed a multi-step, blinded, and controlled protocol optimization procedure to establish an efficient and effective fluorescent immunohistochemistry protocol for characterizing Netrin-1 expression. Coronal mouse brain sections were used to test numerous antigen retrieval methods and combinations thereof in order to optimize the stain quality of a commercially available Netrin-1 antibody. Stain quality was evaluated by experienced neuroanatomists for two criteria: signal intensity and signal-to-noise ratio. After five rounds of testing protocol variants, we established a modified immunohistochemistry protocol that produced a Netrin-1 signal with good signal intensity and a high signal-to-noise ratio. The key protocol modifications are as follows: •Use phosphate buffer (PB) as the blocking solution solvent.•Use 1% sodium dodecyl sulfate (SDS) treatment for antigen retrieval. The original protocol was optimized for use with the Netrin-1 antibody produced by Novus Biologicals. However, we subsequently further modified the protocol to work with the antibody produced by Abcam. The Abcam protocol uses PBS as the blocking solution solvent and adds a citrate buffer antigen retrieval step.

  14. Alternative indicators for monitoring the quality of a continuous intervention program on antibiotic prescribing during changing healthcare conditions.

    PubMed

    Bantar, C; Franco, D; Heft, C; Vesco, E; Arango, C; Izaguirre, M; Alcázar, G; Boleas, M; Oliva, M E

    2005-06-01

    We recently published on the impact of a four-phase hospital-wide intervention program designed to optimize the quality of antibiotic use, where a multidisciplinary team (MDT) could modify prescription at the last phase. Because health care quality was changing during the last 5 years (late 1999 to early 2004), we developed certain indicators to monitor the quality of our intervention over time. Different periods were defined as baseline (pre-intervention), initial intervention-active control, pre-crisis control, crisis control, post-crisis control and end of crisis control. Major indicators were rates of prescription modification by the MDT; prescription for an uncertain infection and a novel index formula (RIcarb) to estimate the rationale for carbapenem use. We assessed 2115 antimicrobial prescriptions. Modification of prescription rate was 30% at the beginning and decreased thereafter up to stable levels. Rate of prescriptions ordered for cases of both uncertain infection and unknown source of infection decreased significantly after intervention (i.e. from baseline to active control). In contrast, a doubling of culture-directed prescriptions was observed between these periods. RIcarb values lower and higher than 60% (modal, cut-off) were assumed as carbapenem overuse and underuse, respectively. Overuse was observed at the pre-intervention, while pronounced underuse was shown during the crisis (RIcarb, 45% and 87%, respectively). The present study demonstrates that certain indicators, other than the widely adopted impact outcomes, are a suitable tool for monitoring the quality of a continuous, long-term, active intervention on antimicrobial prescribing practice, especially when applied in a changing healthcare setting.

  15. Cognitive bias modification as an add-on treatment in clinical depression: Results from a placebo-controlled, single-blinded randomized control trial.

    PubMed

    Vrijsen, Janna N; Fischer, Verena S; Müller, Bernhard W; Scherbaum, Norbert; Becker, Eni S; Rinck, Mike; Tendolkar, Indira

    2018-06-06

    Only 60% of depressed patients respond sufficiently to treatment, so there is a dire need for novel approaches to improve treatment effects. Cognitive Bias Modification (CBM) may be an effective and easily implemented computerized add-on to treatment-as-usual. Therefore, we investigated the effects of a positivity-attention training and a positivity-approach training compared to control trainings. In a blinded randomized-controlled design, 139 depressed inpatients received either the CBM Attention Dot-Probe Training (DPT) or the CBM Approach-Avoidance Training (AAT), next to treatment as usual. N = 121 finished all four training sessions. Both trainings had an active and a control condition. In both active conditions, patients were trained to preferentially process generally positive pictures over neutral pictures. Depressive symptom severity was assessed before and after CBM, and positivity bias was measured at the start and end of each session. Clinician-rated depressive symptom severity decreased more in patients who received the active condition of the DPT or the AAT compared to patients in the control conditions. Significant change in positivity bias was found for the DPT (not the AAT), but did not mediate the effect of the training on depressive symptoms. The results suggest that both types of CBM (i.e., DPT and AAT) may provide a fitting add-on treatment option for clinical depression. The working mechanisms and optimal dose of CBM trainings, plus their possible combination, should be examined in more detail. Copyright © 2018. Published by Elsevier B.V.

  16. Modeling and parameter identification of the simultaneous saccharification-fermentation process for ethanol production.

    PubMed

    Ochoa, Silvia; Yoo, Ahrim; Repke, Jens-Uwe; Wozny, Günter; Yang, Dae Ryook

    2007-01-01

    Despite many environmental advantages of using alcohol as a fuel, there are still serious questions about its economical feasibility when compared with oil-based fuels. The bioethanol industry needs to be more competitive, and therefore, all stages of its production process must be simple, inexpensive, efficient, and "easy" to control. In recent years, there have been significant improvements in process design, such as in the purification technologies for ethanol dehydration (molecular sieves, pressure swing adsorption, pervaporation, etc.) and in genetic modifications of microbial strains. However, a lot of research effort is still required in optimization and control, where the first step is the development of suitable models of the process, which can be used as a simulated plant, as a soft sensor or as part of the control algorithm. Thus, toward developing good, reliable, and simple but highly predictive models that can be used in the future for optimization and process control applications, in this paper an unstructured and a cybernetic model are proposed and compared for the simultaneous saccharification-fermentation process (SSF) for the production of ethanol from starch by a recombinant Saccharomyces cerevisiae strain. The cybernetic model proposed is a new one that considers the degradation of starch not only into glucose but also into dextrins (reducing sugars) and takes into account the intracellular reactions occurring inside the cells, giving a more detailed description of the process. Furthermore, an identification procedure based on the Metropolis Monte Carlo optimization method coupled with a sensitivity analysis is proposed for the identification of the model's parameters, employing experimental data reported in the literature.

  17. Amides are excellent mimics of phosphate internucleoside linkages and are well tolerated in short interfering RNAs

    PubMed Central

    Mutisya, Daniel; Selvam, Chelliah; Lunstad, Benjamin D.; Pallan, Pradeep S.; Haas, Amanda; Leake, Devin; Egli, Martin; Rozners, Eriks

    2014-01-01

    RNA interference (RNAi) has become an important tool in functional genomics and has an intriguing therapeutic potential. However, the current design of short interfering RNAs (siRNAs) is not optimal for in vivo applications. Non-ionic phosphate backbone modifications may have the potential to improve the properties of siRNAs, but are little explored in RNAi technologies. Using X-ray crystallography and RNAi activity assays, the present study demonstrates that 3′-CH2-CO-NH-5′ amides are excellent replacements for phosphodiester internucleoside linkages in RNA. The crystal structure shows that amide-modified RNA forms a typical A-form duplex. The amide carbonyl group points into the major groove and assumes an orientation that is similar to the P–OP2 bond in the phosphate linkage. Amide linkages are well hydrated by tandem waters linking the carbonyl group and adjacent phosphate oxygens. Amides are tolerated at internal positions of both the guide and passenger strand of siRNAs and may increase the silencing activity when placed near the 5′-end of the passenger strand. As a result, an siRNA containing eight amide linkages is more active than the unmodified control. The results suggest that RNAi may tolerate even more extensive amide modification, which may be useful for optimization of siRNAs for in vivo applications. PMID:24813446

  18. Designing a pain management protocol for craniotomy: A narrative review and consideration of promising practices

    PubMed Central

    Vacas, Susana; Van de Wiele, Barbara

    2017-01-01

    Background: Craniotomy is a relatively common surgical procedure with a high incidence of postoperative pain. Development of standardized pain management and enhanced recovery after surgery (ERAS) protocols are necessary and crucial to optimize outcomes and patient satisfaction and reduce health care costs. Methods: This work is based upon a literature search of published manuscripts (between 1996 and 2017) from Pubmed, Cochrane Central Register, and Google Scholar. It seeks to both synthesize and review our current scientific understanding of postcraniotomy pain and its part in neurosurgical ERAS protocols. Results: Strategies to ameliorate craniotomy pain demand interventions during all phases of patient care: preoperative, intraoperative, and postoperative interventions. Pain management should begin in the perioperative period with risk assessment, patient education, and premedication. In the intraoperative period, modifications in anesthesia technique, choice of opioids, acetaminophen and nonsteroidal anti-inflammatory drugs (NSAIDs), regional techniques, dexmedetomidine, ketamine, lidocaine, corticosteroids, and interdisciplinary communication are all strategies to consider and possibly deploy. Opioids remain the mainstay for pain relief, but patient-controlled analgesia, NSAIDs, standardization of pain management, bio/behavioral interventions, modification of head dressings as well as patient-centric management are useful opportunities that potentially improve patient care. Conclusions: Future research on mechanisms, predictors, treatments, and pain management pathways will help define the combinations of interventions that optimize pain outcomes. PMID:29285407

  19. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid-polymer hybrid nanoparticles.

    PubMed

    Yang, Zhe; Luo, Xingen; Zhang, Xiaofang; Liu, Jie; Jiang, Qing

    2013-04-01

    Lipid-polymer hybrid nanoparticles (NPs) combining the positive attributes of both liposomes and polymeric NPs are increasingly being considered as promising candidates to carry therapeutic agents safely and efficiently into targeted sites. Herein, a modified emulsification technique was developed and optimized for the targeting lipid-polymer hybrid NPs fabrication; the surface properties and stability of the hybrid NPs were systematically investigated, which confirmed that the hybrid NPs consisted of a poly (lactide-co-glycolide) core with ∼90% surface coverage of the lipid monolayer and a ∼4.4 nm hydrated polyethylene glycol (PEG) shell. Optimization results showed that the lipid:polymer mass ratio and the lipid-PEG:lipid molar ratio could affect the size, lipid association efficiency and stability of hybrid NPs. Furthermore, a model chemotherapy drug, 10-hydroxycamptothecin, was encapsulated into hybrid NPs with a higher drug loading compared to PLGA NPs. Surface modification of the lipid layer and the PEG conjugated targeting ligand did not affect their drug release kinetics. Finally, the cytotoxicity and cellular uptake studies indicated that the lipid coverage and the c(RGDyk) conjugation of the hybrid NPs gained a significantly enhanced ability of cell killing and endocytosis. Our results suggested that lipid-polymer hybrid NPs prepared by the modified emulsion technique have great potential to be utilized as an engineered drug delivery system with precise control ability of surface targeting modification.

  20. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.

    PubMed

    Zhang, Nanlin; Neo, Darren C J; Tazawa, Yujiro; Li, Xiuting; Assender, Hazel E; Compton, Richard G; Watt, Andrew A R

    2016-08-24

    The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 ± 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation.

  1. [Fermentation production of microbial catalase and its application in textile industry].

    PubMed

    Zhang, Dongxu; Du, Guocheng; Chen, Jian

    2010-11-01

    Microbial catalase is an important industrial enzyme that catalyzes the decomposition of hydrogen peroxide to water and oxygen. This enzyme has great potential of application in food, textile and pharmaceutical industries. The production of microbial catalase has been significantly improved thanks to advances in bioprocess engineering and genetic engineering. In this paper, we review the progresses in fermentation production of microbial catalase and its application in textile industry. Among these progresses, we will highlight strain isolation, substrate and environment optimization, enzyme induction, construction of engineering strains and application process optimization. Meanwhile, we also address future research trends for microbial catalase production and its application in textile industry. Molecular modification (site-directed mutagenesis and directed revolution) will endue catalase with high pH and temperature stabilities. Improvement of catalase production, based on the understanding of induction mechanism and the process control of recombinant stain fermentation, will further accelerate the application of catalase in textile industry.

  2. Scanning laser ophthalmoscopy: optimized testing strategies for psychophysics

    NASA Astrophysics Data System (ADS)

    Van de Velde, Frans J.

    1996-12-01

    Retinal function can be evaluated with the scanning laser ophthalmoscope (SLO). the main advantage is a precise localization of the psychophysical stimulus on the retina. Four alternative forced choice (4AFC) and parameter estimation by sequential testing (PEST) are classic adaptive algorithms that have been optimized for use with the SLO, and combined with strategies to correct for small eye movements. Efficient calibration procedures are essential for quantitative microperimetry. These techniques measure precisely visual acuity and retinal sensitivity at distinct locations on the retina. A combined 632 nm and IR Maxwellian view illumination provides a maximal transmittance through the ocular media and has a animal interference with xanthophyll or hemoglobin. Future modifications of the instrument include the possibility of binocular evaluation, Maxwellian view control, fundus tracking using normalized gray-scale correlation, and microphotocoagulation. The techniques are useful in low vision rehabilitation and the application of laser to the retina.

  3. Nanoscale Imaging of Light-Matter Coupling Inside Metal-Coated Cavities with a Pulsed Electron Beam.

    PubMed

    Moerland, Robert J; Weppelman, I Gerward C; Scotuzzi, Marijke; Hoogenboom, Jacob P

    2018-05-02

    Many applications in (quantum) nanophotonics rely on controlling light-matter interaction through strong, nanoscale modification of the local density of states (LDOS). All-optical techniques probing emission dynamics in active media are commonly used to measure the LDOS and benchmark experimental performance against theoretical predictions. However, metal coatings needed to obtain strong LDOS modifications in, for instance, nanocavities, are incompatible with all-optical characterization. So far, no reliable method exists to validate theoretical predictions. Here, we use subnanosecond pulses of focused electrons to penetrate the metal and excite a buried active medium at precisely defined locations inside subwavelength resonant nanocavities. We reveal the spatial layout of the spontaneous-emission decay dynamics inside the cavities with deep-subwavelength detail, directly mapping the LDOS. We show that emission enhancement converts to inhibition despite an increased number of modes, emphasizing the critical role of optimal emitter location. Our approach yields fundamental insight in dynamics at deep-subwavelength scales for a wide range of nano-optical systems.

  4. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification

    DOE PAGES

    Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; ...

    2017-05-16

    Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the bandmore » edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. As a result, we expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.« less

  5. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.

    Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the bandmore » edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. As a result, we expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.« less

  6. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification

    PubMed Central

    Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; McNichols, Brett W.; Miller, Elisa M.; Gu, Jing; Nozik, Arthur J.; Sellinger, Alan; Galli, Giulia; Beard, Matthew C.

    2017-01-01

    Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications. PMID:28508866

  7. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification

    NASA Astrophysics Data System (ADS)

    Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; McNichols, Brett W.; Miller, Elisa M.; Gu, Jing; Nozik, Arthur J.; Sellinger, Alan; Galli, Giulia; Beard, Matthew C.

    2017-05-01

    Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.

  8. Muscle coordination is habitual rather than optimal.

    PubMed

    de Rugy, Aymar; Loeb, Gerald E; Carroll, Timothy J

    2012-05-23

    When sharing load among multiple muscles, humans appear to select an optimal pattern of activation that minimizes costs such as the effort or variability of movement. How the nervous system achieves this behavior, however, is unknown. Here we show that contrary to predictions from optimal control theory, habitual muscle activation patterns are surprisingly robust to changes in limb biomechanics. We first developed a method to simulate joint forces in real time from electromyographic recordings of the wrist muscles. When the model was altered to simulate the effects of paralyzing a muscle, the subjects simply increased the recruitment of all muscles to accomplish the task, rather than recruiting only the useful muscles. When the model was altered to make the force output of one muscle unusually noisy, the subjects again persisted in recruiting all muscles rather than eliminating the noisy one. Such habitual coordination patterns were also unaffected by real modifications of biomechanics produced by selectively damaging a muscle without affecting sensory feedback. Subjects naturally use different patterns of muscle contraction to produce the same forces in different pronation-supination postures, but when the simulation was based on a posture different from the actual posture, the recruitment patterns tended to agree with the actual rather than the simulated posture. The results appear inconsistent with computation of motor programs by an optimal controller in the brain. Rather, the brain may learn and recall command programs that result in muscle coordination patterns generated by lower sensorimotor circuitry that are functionally "good-enough."

  9. Optimizing latency in Xilinx FPGA implementations of the GBT

    NASA Astrophysics Data System (ADS)

    Muschter, S.; Baron, S.; Bohm, C.; Cachemiche, J.-P.; Soos, C.

    2010-12-01

    The GigaBit Transceiver (GBT) [1] system has been developed to replace the Timing, Trigger and Control (TTC) system [2], currently used by LHC, as well as to provide data transmission between on-detector and off-detector components in future sLHC detectors. A VHDL version of the GBT-SERDES, designed for FPGAs, was released in March 2010 as a GBT-FPGA Starter Kit for future GBT users and for off-detector GBT implementation [3]. This code was optimized for resource utilization [4], as the GBT protocol is very demanding. It was not, however, optimized for latency — which will be a critical parameter when used in the trigger path. The GBT-FPGA Starter Kit firmware was first analyzed in terms of latency by looking at the separate components of the VHDL version. Once the parts which contribute most to the latency were identified and modified, two possible optimizations were chosen, resulting in a latency reduced by a factor of three. The modifications were also analyzed in terms of logic utilization. The latency optimization results were compared with measurement results from a Virtex 6 ML605 development board [5] equipped with a XC6VLX240T with speedgrade-1 and the package FF1156. Bit error rate tests were also performed to ensure an error free operation. The two final optimizations were analyzed for utilization and compared with the original code, distributed in the Starter Kit.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Luning; Neuscamman, Eric

    We present a modification to variational Monte Carlo’s linear method optimization scheme that addresses a critical memory bottleneck while maintaining compatibility with both the traditional ground state variational principle and our recently-introduced variational principle for excited states. For wave function ansatzes with tens of thousands of variables, our modification reduces the required memory per parallel process from tens of gigabytes to hundreds of megabytes, making the methodology a much better fit for modern supercomputer architectures in which data communication and per-process memory consumption are primary concerns. We verify the efficacy of the new optimization scheme in small molecule tests involvingmore » both the Hilbert space Jastrow antisymmetric geminal power ansatz and real space multi-Slater Jastrow expansions. Satisfied with its performance, we have added the optimizer to the QMCPACK software package, with which we demonstrate on a hydrogen ring a prototype approach for making systematically convergent, non-perturbative predictions of Mott-insulators’ optical band gaps.« less

  11. The partitioning and copy number control systems of the selfish yeast plasmid: an optimized molecular design for stable persistence in host cells

    PubMed Central

    Yen-Ting-Liu; Sau, Saumitra; Ma, Chien-Hui; Kachroo, Aashiq H; Rowley, Paul A; Chang, Keng-Ming; Fan, Hsiu-Fang; Jayaram, Makkuni

    2014-01-01

    Summary The multi-copy 2 micron plasmid of Saccharomyces cerevisiae, a resident of the nucleus, is remarkable for its high chromosome-like stability. The plasmid does not appear to contribute to the fitness of the host, nor does it impose a significant metabolic burden on the host at its steady state copy number. The plasmid may be viewed as a highly optimized selfish DNA element whose genome design is devoted entirely towards efficient replication, equal segregation and copy number maintenance. A partitioning system comprised of two plasmid coded proteins, Rep1 and Rep2, and a partitioning locus STB is responsible for equal or nearly equal segregation of plasmid molecules to mother and daughter cells. Current evidence supports a model in which the Rep-STB system promotes the physical association of the plasmid with chromosomes and thus plasmid segregation by a hitchhiking mechanism. The Flp site-specific recombination system housed by the plasmid plays a critical role in maintaining steady state plasmid copy number. A decrease in plasmid population due to rare missegregation events is rectified by plasmid amplification via a recombination induced rolling circle replication mechanism. Appropriate plasmid amplification, without runaway increase in copy number, is ensured by positive and negative regulation of FLP gene expression by plasmid coded proteins and by the control of Flp level/activity through host mediated post-translational modification(s) of Flp. The Flp system has been successfully utilized to understand mechanisms of site-specific recombination, to bring about directed genetic alterations for addressing fundamental problems in biology, and as a tool in biotechnological applications. PMID:25541598

  12. The partitioning and copy number control systems of the selfish yeast plasmid: an optimized molecular design for stable persistence in host cells.

    PubMed

    Yen-Ting-Liu; Sau, Saumitra; Ma, Chien-Hui; Kachroo, Aashiq H; Rowley, Paul A; Chang, Keng-Ming; Fan, Hsiu-Fang; Jayaram, Makkuni

    2014-10-01

    The multi-copy 2 micron plasmid of Saccharomyces cerevisiae, a resident of the nucleus, is remarkable for its high chromosome-like stability. The plasmid does not appear to contribute to the fitness of the host, nor does it impose a significant metabolic burden on the host at its steady state copy number. The plasmid may be viewed as a highly optimized selfish DNA element whose genome design is devoted entirely towards efficient replication, equal segregation and copy number maintenance. A partitioning system comprised of two plasmid coded proteins, Rep1 and Rep2, and a partitioning locus STB is responsible for equal or nearly equal segregation of plasmid molecules to mother and daughter cells. Current evidence supports a model in which the Rep-STB system promotes the physical association of the plasmid with chromosomes and thus plasmid segregation by a hitchhiking mechanism. The Flp site-specific recombination system housed by the plasmid plays a critical role in maintaining steady state plasmid copy number. A decrease in plasmid population due to rare missegregation events is rectified by plasmid amplification via a recombination induced rolling circle replication mechanism. Appropriate plasmid amplification, without runaway increase in copy number, is ensured by positive and negative regulation of FLP gene expression by plasmid coded proteins and by the control of Flp level/activity through host mediated post-translational modification(s) of Flp. The Flp system has been successfully utilized to understand mechanisms of site-specific recombination, to bring about directed genetic alterations for addressing fundamental problems in biology, and as a tool in biotechnological applications.

  13. Prevalence and Management of Systemic Hypertension in Athletes.

    PubMed

    Caselli, Stefano; Vaquer Sequì, Antonia; Lemme, Erika; Quattrini, Filippo; Milan, Alberto; D'Ascenzi, Flavio; Spataro, Antonio; Pelliccia, Antonio

    2017-05-15

    The aim of the present study was to evaluate the prevalence, determinants, and clinical management of systemic hypertension in a large cohort of competitive athletes: 2,040 consecutive athletes (aged 25 ± 6 years, 64% men) underwent clinical evaluation including blood test, electrocardiogram, exercise test, echocardiography, and ophthalmic evaluation. Sixty-five athletes (3%) were identified with hypertension (men = 57; 87%) including 5 with a secondary cause (thyroid dysfunction in 3, renal artery stenosis in 1, and drug induced in 1). The hypertensive athletes had greater left ventricular hypertrophy and showed more often a concentric pattern than normotensive ones. Moreover, they showed a mildly reduced physical performance and were characterized by a higher cardiovascular risk profile compared with normotensive athletes. Multivariate logistic regression analysis showed that family hypertension history (odds ratio 2.05; 95% confidence interval 1.21 to 3.49; p = 0.008) and body mass index (odds ratio 1.32; 95% confidence interval 1.23 to 1.40; p <0.001) were the strongest predictors of hypertension. Therapeutic intervention included successful lifestyle modification in 57 and required additional pharmacologic treatment in 3 with essential hypertension. Secondary hypertension was treated according to the underlying disorder. After a mean follow-up of 18 ± 6 months, all hypertensive athletes had achieved and maintained optimal control of the blood pressure, without restriction to sport participation. In conclusion, the prevalence of hypertension in athletes is low (3%) and largely related to family history and overweight. In the vast majority of hypertensives, lifestyle modifications were sufficient to achieve an optimal control of blood pressure values. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. SYNCHRONIZATION OF HETEROGENEOUS OSCILLATORS UNDER NETWORK MODIFICATIONS: PERTURBATION AND OPTIMIZATION OF THE SYNCHRONY ALIGNMENT FUNCTION

    PubMed Central

    Taylor, Dane; Skardal, Per Sebastian; Sun, Jie

    2016-01-01

    Synchronization is central to many complex systems in engineering physics (e.g., the power-grid, Josephson junction circuits, and electro-chemical oscillators) and biology (e.g., neuronal, circadian, and cardiac rhythms). Despite these widespread applications—for which proper functionality depends sensitively on the extent of synchronization—there remains a lack of understanding for how systems can best evolve and adapt to enhance or inhibit synchronization. We study how network modifications affect the synchronization properties of network-coupled dynamical systems that have heterogeneous node dynamics (e.g., phase oscillators with non-identical frequencies), which is often the case for real-world systems. Our approach relies on a synchrony alignment function (SAF) that quantifies the interplay between heterogeneity of the network and of the oscillators and provides an objective measure for a system’s ability to synchronize. We conduct a spectral perturbation analysis of the SAF for structural network modifications including the addition and removal of edges, which subsequently ranks the edges according to their importance to synchronization. Based on this analysis, we develop gradient-descent algorithms to efficiently solve optimization problems that aim to maximize phase synchronization via network modifications. We support these and other results with numerical experiments. PMID:27872501

  15. Patient-related barriers to hypertension control in a Nigerian population

    PubMed Central

    Okwuonu, Chimezie Godswill; Ojimadu, Nnamdi Ezekiel; Okaka, Enajite Ibiene; Akemokwe, Fatai Momodu

    2014-01-01

    Background Hypertension control is a challenge globally. Barriers to optimal control exist at the patient, physician, and health system levels. Patient-related barriers in our environment are not clear. The aim of this study was to identify patient-related barriers to control of hypertension among adults with hypertension in a semiurban community in South-East Nigeria. Methods This was a cross-sectional descriptive study of patients with a diagnosis of hypertension and on antihypertensive medication. Results A total of 252 participants were included in the survey, and comprised 143 males (56.7%) and 109 females (43.3%). The mean age of the participants was 56.6±12.7 years, with a diagnosis of hypertension for a mean duration of 6.1±3.3 years. Among these patients, 32.9% had controlled blood pressure, while 39.3% and 27.8%, respectively, had stage 1 and stage 2 hypertension according to the Seventh Report of the Joint National Committee on Prevention, Detection and Evaluation of High Blood Pressure. Only 23.4% knew the consequences of poor blood pressure control and 64% were expecting a cure from treatment even when the cause of hypertension was not known. Furthermore, 68.7% showed low adherence to medication, the reported reasons for which included forgetfulness (61.2%), financial constraints (56.6%), high pill burden (22.5%), side effects of medication (17.3%), and low measured blood pressure (12.1%). Finally, knowledge and practice of the lifestyle modifications necessary for blood pressure control was inadequate among the participants. Conclusion Poor knowledge regarding hypertension, unrealistic expectations of treatment, poor adherence with medication, unawareness of lifestyle modification, and failure to apply these were identified as patient-related barriers to blood pressure control in this study. PMID:25061335

  16. Foraging on the potential energy surface: a swarm intelligence-based optimizer for molecular geometry.

    PubMed

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D; Sebastiani, Daniel

    2012-11-21

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.

  17. Foraging on the potential energy surface: A swarm intelligence-based optimizer for molecular geometry

    NASA Astrophysics Data System (ADS)

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D.; Sebastiani, Daniel

    2012-11-01

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.

  18. Optimization of sampling parameters for collection and preconcentration of alveolar air by needle traps.

    PubMed

    Filipiak, Wojciech; Filipiak, Anna; Ager, Clemens; Wiesenhofer, Helmut; Amann, Anton

    2012-06-01

    The approach for breath-VOCs' collection and preconcentration by applying needle traps was developed and optimized. The alveolar air was collected from only a few exhalations under visual control of expired CO(2) into a large gas-tight glass syringe and then warmed up to 45 °C for a short time to avoid condensation. Subsequently, a specially constructed sampling device equipped with Bronkhorst® electronic flow controllers was used for automated adsorption. This sampling device allows time-saving collection of expired/inspired air in parallel onto three different needle traps as well as improvement of sensitivity and reproducibility of NT-GC-MS analysis by collection of relatively large (up to 150 ml) volume of exhaled breath. It was shown that the collection of alveolar air derived from only a few exhalations into a large syringe followed by automated adsorption on needle traps yields better results than manual sorption by up/down cycles with a 1 ml syringe, mostly due to avoided condensation and electronically controlled stable sample flow rate. The optimal profile and composition of needle traps consists of 2 cm Carbopack X and 1 cm Carboxen 1000, allowing highly efficient VOCs' enrichment, while injection by a fast expansive flow technique requires no modifications in instrumentation and fully automated GC-MS analysis can be performed with a commercially available autosampler. This optimized analytical procedure considerably facilitates the collection and enrichment of alveolar air, and is therefore suitable for application at the bedside of critically ill patients in an intensive care unit. Due to its simplicity it can replace the time-consuming sampling of sufficient breath volume by numerous up/down cycles with a 1 ml syringe.

  19. Conceptual design study of a Harrier V/STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Bode, W. E.; Berger, R. L.; Elmore, G. A.; Lacey, T. R.

    1978-01-01

    MCAIR recently completed a conceptual design study to define modification approaches to, and derive planning prices for the conversion of a two place Harrier to a V/STOL control, display and guidance research aircraft. Control concepts such as rate damping, attitude stabilization, velocity command, and cockpit controllers are to be demonstrated. Display formats will also be investigated, and landing, navigation and guidance systems flight tested. The rear cockpit is modified such that it can be quickly adapted to faithfully simulate the controls, displays and handling qualities of a Type A or Type B V/STOL. The safety pilot always has take command capability. The modifications studied fall into two categories: basic modifications and optional modifications. Technical descriptions of the basic modifications and of the optional modifications are presented. The modification plan and schedule as well as the test plan and schedule are presented. The failure mode and effects analysis, aircraft performance, aircraft weight, and aircraft support are discussed.

  20. Unraveling atomic-level self-organization at the plasma-material interface

    NASA Astrophysics Data System (ADS)

    Allain, J. P.; Shetty, A.

    2017-07-01

    The intrinsic dynamic interactions at the plasma-material interface and critical role of irradiation-driven mechanisms at the atomic scale during exposure to energetic particles require a priori the use of in situ surface characterization techniques. Characterization of ‘active’ surfaces during modification at atomic-scale levels is becoming more important as advances in processing modalities are limited by an understanding of the behavior of these surfaces under realistic environmental conditions. Self-organization from exposure to non-equilibrium and thermalized plasmas enable dramatic control of surface morphology, topography, composition, chemistry and structure yielding the ability to tune material properties with an unprecedented level of control. Deciphering self-organization mechanisms of nanoscale morphology (e.g. nanodots, ripples) and composition on a variety of materials including: compound semiconductors, semiconductors, ceramics, polymers and polycrystalline metals via low-energy ion-beam assisted plasma irradiation are critical to manipulate functionality in nanostructured systems. By operating at ultra-low energies near the damage threshold, irradiation-driven defect engineering can be optimized and surface-driven mechanisms controlled. Tunability of optical, electronic, magnetic and bioactive properties is realized by reaching metastable phases controlled by atomic-scale irradiation-driven mechanisms elucidated by novel in situ diagnosis coupled to atomistic-level computational tools. Emphasis will be made on tailored surface modification from plasma-enhanced environments on particle-surface interactions and their subsequent modification of hard and soft matter interfaces. In this review, we examine current trends towards in situ and in operando surface and sub-surface characterization to unravel atomic-scale mechanisms at the plasma-material interface. This work will emphasize on recent advances in the field of plasma and ion-induced nanopatterning and nanostructuring as well as ultra-thin film deposition. Future outlook will examine the critical role of complementary surface-sensitive techniques and trends towards advances in both in situ and in operando tooling.

  1. Theory-based modifications of an advanced notification letter improves screening for bowel cancer in men: A randomised controlled trial.

    PubMed

    Zajac, Ian T; Duncan, Amy C; Flight, Ingrid; Wittert, Gary A; Cole, Stephen R; Young, Graeme P; Wilson, Carlene J; Turnbull, Deborah A

    2016-09-01

    Male participation in screening for bowel cancer is sub-optimal. Theory-based interventions provide a means of improving screening uptake. To test the efficacy of modifying consumer invitation material in line with continuum and stage theories of health behaviour on screening participation. N = 9216 Australian men aged 50-74 years were randomised to one of four trial arms in a 2 × 2 factorial design randomised controlled trial. Participants received either standard invitation material (control group), or combinations of modified advance-notification and invitation letters. A subsample completed baseline and endpoint behavioural surveys. Participants who received the modified advance notification letter were 12% more likely to screen than those who received the standard version (RR = 1.12, χ(2)(1) = 10.38, p = 0.001). The modified invitation letter did not impact screening uptake (RR = 0.97, χ(2)(1) = 0.63, p = 0.424). No significant changes in psychological variables due to the intervention were observed. Modifications to advance notification letters in line with health behaviour theories significantly improves screening uptake in men. Australian New Zealand Clinical Trials Registry: ACTRN12612001122842 https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=362688. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Following the clues to neuropathic pain. Distribution and other leads reveal the cause and the treatment approach.

    PubMed

    Belgrade, M J

    1999-11-01

    Neuropathic pain can seem enigmatic at first because it can last indefinitely and often a cause is not evident. However, heightened awareness of typical characteristics, such as the following, makes identification fairly easy: The presence of certain accompanying conditions (e.g., diabetes, HIV or herpes zoster infection, multiple sclerosis) Pain described as shooting, stabbing, lancinating, burning, or searing Pain worse at night Pain following anatomic nerve distribution Pain in a numb or insensate site The presence of allodynia Neuropathic pain responds poorly to standard pain therapies and usually requires specialized medications (e.g., anticonvulsants, tricyclic antidepressants, opioid analgesics) for optimal control. Successful pain control is enhanced with use of a systematic approach consisting of disease modification, local or regional measures, and systemic therapy.

  3. MIPs in Aqueous Environments.

    PubMed

    Wan, Ying-chun; Ma, Hui-ting; Lu, Bin

    2015-01-01

    When organic solvent-compatible molecularly imprinted polymers (MIPs) are used in aqueous environment, how to reduce nonspecific binding is a major challenge. By modifying the binding solvents and introducing appropriate washing and elution steps, even relatively hydrophobic MIPs can gain optimal rebinding selectivity in aqueous conditions. Furthermore, water-compatible MIPs that can be used to treat aqueous samples directly have been prepared. The use of hydrophilic co-monomers, the controlled surface modification through controlled radical polymerization, and the new interfacial molecular imprinting methods are different strategies to prepare water-compatible MIPs. By combining MIPs with other techniques, both organic solvent-compatible and water-compatible MIPs can display better functional performances in aqueous conditions. Intensive studies on MIPs in aqueous conditions can provide new MIPs with much-improved compatibilities that will lead to more interesting applications in biomedicine and biotechnology.

  4. The management of gastro-oesophageal reflux disease

    PubMed Central

    Keung, Charlotte; Hebbard, Geoffrey

    2016-01-01

    SUMMARY If there are no features of serious disease, suspected gastro-oesophageal reflux disease can be initially managed with a trial of a proton pump inhibitor for 4–8 weeks. This should be taken 30–60 minutes before food for optimal effect. Once symptoms are controlled, attempt to withdraw acid suppression therapy. If symptoms recur, use the minimum dose that controls symptoms. Patients who have severe erosive oesophagitis, scleroderma oesophagus or Barrett’s oesophagus require long-term treatment with a proton pump inhibitor. Lifestyle modification strategies can help gastro-oesophageal reflux disease. Weight loss has the strongest evidence for efficacy. Further investigation and a specialist referral are required if there is no response to proton pump inhibitor therapy. Atypical symptoms or signs of serious disease also need investigation. PMID:27041798

  5. Controversies in Alzheimer's disease drug development.

    PubMed

    Cummings, Jeffrey L

    2008-08-01

    Understanding of the pathophysiological basis of Alzheimer's disease (AD) is increasing rapidly and a variety of potential treatment modalities have emerged based on these improved mechanistic insights. The optimal way of proceeding with disease-modifying drug development remains to be clarified and controversies have emerged regarding the definition of Alzheimer's disease, the participation of mild cognitive impairment patients in clinical trials, the definition of disease modification, the potential impediments to satisfaction from patients receiving disease-modifying therapy, the importance of add-on therapy with symptomatic agents, the optimal clinical trial design to demonstrate disease modification, the best means of minimizing time spent in Phase II of drug development, the potential role of adaptive designs in clinical trials, the use of enrichment designs in clinical trials, the role of biomarkers in clinical trials, the treatment of advanced patients with disease-modifying agents, and distinctions between disease modification and disease prevention. The questions surrounding these issues must be resolved as disease-modifying therapies for AD are advanced. These controversies are framed and potential directions towards resolution described.

  6. Development of a High Efficiency Dry Powder Inhaler: Effects of Capsule Chamber Design and Inhaler Surface Modifications

    PubMed Central

    Behara, Srinivas R.B.; Farkas, Dale R.; Hindle, Michael; Longest, P. Worth

    2013-01-01

    Purpose The objective of this study was to explore the performance of a high efficiency dry powder inhaler (DPI) intended for excipient enhanced growth (EEG) aerosol delivery based on changes to the capsule orientation and surface modifications of the capsule and device. Methods DPIs were constructed by combining newly designed capsule chambers (CC) with a previously developed three-dimensional (3D) rod array for particle deagglomeration and a previously optimized EEG formulation. The new CCs oriented the capsule perpendicular to the incoming airflow and were analyzed for different air inlets at a constant pressure drop across the device. Modifications to the inhaler and capsule surfaces included use of metal dispersion rods and surface coatings. Aerosolization performance of the new DPIs was evaluated and compared with commercial devices. Results The proposed capsule orientation and motion pattern increased capsule vibrational frequency and reduced the aerosol MMAD compared with commercial/modified DPIs. The use of metal rods in the 3D array further improved inhaler performance. Coating the inhaler and capsule with PTFE significantly increased emitted dose (ED) from the optimized DPI. Conclusions High efficiency performance is achieved for EEG delivery with the optimized DPI device and formulation combination producing an aerosol with MMAD < 1.5 µm, FPF<5µm/ED > 90%, and ED > 80%. PMID:23949304

  7. TU-AB-303-01: A Feasibility Study for Dynamic Adaptive Therapy of Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M; Phillips, M

    2015-06-15

    Purpose: To compare plans for NSCLC optimized using Dynamic Adaptive Therapy (DAT) with conventional IMRT optimization. DAT adapts plans based on changes in the target volume by using dynamic programing techniques to consider expected changes into the optimization process. Information gathered during treatment, e.g. from CBCT, is incorporated into the optimization. Methods and materials: DAT is formulated using stochastic control formalism, which minimizes the total expected number of tumor cells at the end of a treatment course subject to uncertainty inherent in the tumor response and organs-at-risk (OAR) dose constraints. This formulation allows for non-stationary dose distribution as well asmore » non-stationary fractional dose as needed to achieve a series of optimal plans that are conformal to tumor over time. Sixteen phantom cases with various sizes and locations of tumors, and OAR geometries were generated. Each case was planned with DAT and conventional IMRT (60Gy/30fx). Tumor volume change over time was obtained by using, daily MVCT-based, two-level cell population model. Monte Carlo simulations have been performed for each treatment course to account for uncertainty in tumor response. Same OAR dose constraints were applied for both methods. The frequency of plan modification was varied to 1, 2, 5 (weekly), and 29 (daily). The final average tumor dose and OAR doses have been compared to quantify the potential benefit of DAT. Results: The average tumor max, min, mean, and D95 resulted from DAT were 124.0–125.2%, 102.1–114.7%, 113.7–123.4%, and 102.0–115.9% (range dependent on the frequency of plan modification) of those from conventional IMRT. Cord max, esophagus max, lung mean, heart mean, and unspecified tissue D05 resulted from AT were 84–102.4%, 99.8–106.9%, 66.9–85.6%, 58.2–78.8%, and 85.2–94.0% of those from conventional IMRT. Conclusions: Significant tumor dose increase and OAR dose reduction, especially with parallel OAR with mean or dose-volume constraints, can be achieved using DAT.« less

  8. Aggressive plaque modification with rotational atherectomy and cutting balloon for optimal stent expansion in calcified lesions

    PubMed Central

    Tang, Zhe; Bai, Jing; Su, Shao-Ping; Lee, Pui-Wai; Peng, Liang; Zhang, Tao; Sun, Ting; Nong, Jing-Guo; Li, Tian-De; Wang, Yu

    2016-01-01

    Objective To evaluate the factors affecting optimal stent expansion in calcified lesions treated by aggressive plaque modification with rotational atherectomy (RA) and a cutting balloon (CB). Methods From January 2014 to May 2015, 92 patients with moderate to severe coronary calcified lesions underwent rotational atherectomy and intravascular ultrasound imaging at Chinese PLA General Hospital (Beijing, China) were included in this study. They were divided into a rotational artherectomy combined with cutting balloon (RACB) group (46 patients treated with RA followed by CB angioplasty) and an RA group (46 patients treated with RA followed by plain balloon angioplasty). Another 40 patients with similar severity of their calcified lesions treated with plain old balloon angioplasty (POBA) were demographically matched to the other groups and defined as the POBA group. All patients received a drug-eluting stent after plaque preparation. Lumen diameter and lumen diameter stenosis (LDS) were measured by quantitative coronary angiography at baseline, after RA, after dilatation, and after stenting. Optimal stent expansion was defined as the final LDS < 10%. Results The initial and post-RA LDS values were similar among the three groups. However, after dilatation, the LDS significantly decreased in the RACB group (from 54.5% ± 8.9% to 36.1% ± 7.1%) but only moderately decreased (from 55.7% ± 7.8% to 46.9% ± 9.4%) in the RA group (time × group, P < 0.001). After stenting, there was a higher rate of optimal stent expansion in the RACB group (71.7% in the RACB group, 54.5% in the RA group, and 15% in the POBA group, P < 0.001), and the final LDS was significantly diminished in the RACB group compared to the other two groups (6.0% ± 2.3%, 10.8% ± 3.3%, 12.7% ± 2.1%, P < 0.001). Moreover, an LDS ≤ 40% after plaque preparation (OR = 2.994, 95% CI: 1.297–6.911) was associated with optimal stent expansion, which also had a positive correlation with the appearance of a calcified ring split (r = 0.581, P < 0.001). Conclusions Aggressive plaque modification with RA and CB achieve more optimal stent expansion. An LDS ≤ 40% after plaque modification was a predictive factor for optimal stent expansion in calcified lesions. This parameter was also associated with the presence of calcified ring split. PMID:28321242

  9. Use of information entropy measures of sitting postural sway to quantify developmental delay in infants

    PubMed Central

    Deffeyes, Joan E; Harbourne, Regina T; DeJong, Stacey L; Kyvelidou, Anastasia; Stuberg, Wayne A; Stergiou, Nicholas

    2009-01-01

    Background By quantifying the information entropy of postural sway data, the complexity of the postural movement of different populations can be assessed, giving insight into pathologic motor control functioning. Methods In this study, developmental delay of motor control function in infants was assessed by analysis of sitting postural sway data acquired from force plate center of pressure measurements. Two types of entropy measures were used: symbolic entropy, including a new asymmetric symbolic entropy measure, and approximate entropy, a more widely used entropy measure. For each method of analysis, parameters were adjusted to optimize the separation of the results from the infants with delayed development from infants with typical development. Results The method that gave the widest separation between the populations was the asymmetric symbolic entropy method, which we developed by modification of the symbolic entropy algorithm. The approximate entropy algorithm also performed well, using parameters optimized for the infant sitting data. The infants with delayed development were found to have less complex patterns of postural sway in the medial-lateral direction, and were found to have different left-right symmetry in their postural sway, as compared to typically developing infants. Conclusion The results of this study indicate that optimization of the entropy algorithm for infant sitting postural sway data can greatly improve the ability to separate the infants with developmental delay from typically developing infants. PMID:19671183

  10. Effects of wing modification on an aircraft's aerodynamic parameters as determined from flight data

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1986-01-01

    A study of the effects of four wing-leading-edge modifications on a general aviation aircraft's stability and control parameters is presented. Flight data from the basic aircraft configuration and configurations with wing modifications are analyzed to determine each wing geometry's stability and control parameters. The parameter estimates and aerodynamic model forms are obtained using the stepwise regression and maximum likelihood techniques. The resulting parameter estimates and aerodynamic models are verified using vortex-lattice theory and by analysis of each model's ability to predict aircraft behavior. Comparisons of the stability and control derivative estimates from the basic wing and the four leading-edge modifications are accomplished so that the effects of each modification on aircraft stability and control derivatives can be determined.

  11. Method and apparatus for controlling carrier envelope phase

    DOEpatents

    Chang, Zenghu [Manhattan, KS; Li, Chengquan [Sunnyvale, CA; Moon, Eric [Manhattan, KS

    2011-12-06

    A chirped pulse amplification laser system. The system generally comprises a laser source, a pulse modification apparatus including first and second pulse modification elements separated by a separation distance, a positioning element, a measurement device, and a feedback controller. The laser source is operable to generate a laser pulse and the pulse modification apparatus operable to modify at least a portion of the laser pulse. The positioning element is operable to reposition at least a portion of the pulse modification apparatus to vary the separation distance. The measurement device is operable to measure the carrier envelope phase of the generated laser pulse and the feedback controller is operable to control the positioning element based on the measured carrier envelope phase to vary the separation distance of the pulse modification elements and control the carrier envelope phase of laser pulses generated by the laser source.

  12. Modeling polyvinyl chloride Plasma Modification by Neural Networks

    NASA Astrophysics Data System (ADS)

    Wang, Changquan

    2018-03-01

    Neural networks model were constructed to analyze the connection between dielectric barrier discharge parameters and surface properties of material. The experiment data were generated from polyvinyl chloride plasma modification by using uniform design. Discharge voltage, discharge gas gap and treatment time were as neural network input layer parameters. The measured values of contact angle were as the output layer parameters. A nonlinear mathematical model of the surface modification for polyvinyl chloride was developed based upon the neural networks. The optimum model parameters were obtained by the simulation evaluation and error analysis. The results of the optimal model show that the predicted value is very close to the actual test value. The prediction model obtained here are useful for discharge plasma surface modification analysis.

  13. Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) program (update to automatic flight trajectory design, performance prediction, and vehicle sizing for support of Shuttle and Shuttle derived vehicles) engineering manual

    NASA Technical Reports Server (NTRS)

    Lyons, J. T.

    1993-01-01

    The Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) program and its predecessors, the ROBOT and the RAGMOP programs, have had a long history of supporting MSFC in the simulation of space boosters for the purpose of performance evaluation. The ROBOT program was used in the simulation of the Saturn 1B and Saturn 5 vehicles in the 1960's and provided the first utilization of the minimum Hamiltonian (or min-H) methodology and the steepest ascent technique to solve the optimum trajectory problem. The advent of the Space Shuttle in the 1970's and its complex airplane design required a redesign of the trajectory simulation code since aerodynamic flight and controllability were required for proper simulation. The RAGMOP program was the first attempt to incorporate the complex equations of the Space Shuttle into an optimization tool by using an optimization method based on steepest ascent techniques (but without the min-H methodology). Development of the complex partial derivatives associated with the Space Shuttle configuration and using techniques from the RAGMOP program, the ROBOT program was redesigned to incorporate these additional complexities. This redesign created the MASTRE program, which was referred to as the Minimum Hamiltonian Ascent Shuttle TRajectory Evaluation program at that time. Unique to this program were first-stage (or booster) nonlinear aerodynamics, upper-stage linear aerodynamics, engine control via moment balance, liquid and solid thrust forces, variable liquid throttling to maintain constant acceleration limits, and a total upgrade of the equations used in the forward and backward integration segments of the program. This modification of the MASTRE code has been used to simulate the new space vehicles associated with the National Launch Systems (NLS). Although not as complicated as the Space Shuttle, the simulation and analysis of the NLS vehicles required additional modifications to the MASTRE program in the areas of providing additional flexibility in the use of the program, allowing additional optimization options, and providing special options for the NLS configuration.

  14. Effect of gravity-like torque on goal-directed arm movements in microgravity.

    PubMed

    Bringoux, L; Blouin, J; Coyle, T; Ruget, H; Mouchnino, L

    2012-05-01

    Gravitational force level is well-known to influence arm motor control. Specifically, hyper- or microgravity environments drastically change pointing accuracy and kinematics, particularly during initial exposure. These modifications are thought to partly reflect impairment in arm position sense. Here we investigated whether applying normogravitational constraints at joint level during microgravity episodes of parabolic flights could restore movement accuracy equivalent to that observed on Earth. Subjects with eyes closed performed arm reaching movements toward predefined sagittal angular positions in four environment conditions: normogravity, hypergravity, microgravity, and microgravity with elastic bands attached to the arm to mimic gravity-like torque at the shoulder joint. We found that subjects overshot and undershot the target orientations in hypergravity and microgravity, respectively, relative to a normogravity baseline. Strikingly, adding gravity-like torque prior to and during movements performed in microgravity allowed subjects to be as accurate as in normogravity. In the former condition, arm movement kinematics, as notably illustrated by the relative time to peak velocity, were also unchanged relative to normogravity, whereas significant modifications were found in hyper- and microgravity. Overall, these results suggest that arm motor planning and control are tuned with respect to gravitational information issued from joint torque, which presumably enhances arm position sense and activates internal models optimally adapted to the gravitoinertial environment.

  15. HCV T Cell Receptor Chain Modifications to Enhance Expression, Pairing, and Antigen Recognition in T Cells for Adoptive Transfer.

    PubMed

    Foley, Kendra C; Spear, Timothy T; Murray, David C; Nagato, Kaoru; Garrett-Mayer, Elizabeth; Nishimura, Michael I

    2017-06-16

    T cell receptor (TCR)-gene-modified T cells for adoptive cell transfer can mediate objective clinical responses in melanoma and other malignancies. When introducing a second TCR, mispairing between the endogenous and introduced α and β TCR chains limits expression of the introduced TCR, which can result in impaired efficacy or off-target reactivity and autoimmunity. One approach to promote proper TCR chain pairing involves modifications of the introduced TCR genes: introducing a disulfide bridge, substituting murine for human constant regions, codon optimization, TCR chain leucine zipper fusions, and a single-chain TCR. We have introduced these modifications into our hepatitis C virus (HCV) reactive TCR and utilize a marker gene, CD34t, which allows us to directly compare transduction efficiency with TCR expression and T cell function. Our results reveal that of the TCRs tested, T cells expressing the murine Cβ2 TCR or leucine zipper TCR have the highest levels of expression and the highest percentage of lytic and interferon-γ (IFN-γ)-producing T cells. Our studies give us a better understanding of how TCR modifications impact TCR expression and T cell function that may allow for optimization of TCR-modified T cells for adoptive cell transfer to treat patients with malignancies.

  16. GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites.

    PubMed

    Xie, Yubin; Zheng, Yueyuan; Li, Hongyu; Luo, Xiaotong; He, Zhihao; Cao, Shuo; Shi, Yi; Zhao, Qi; Xue, Yu; Zuo, Zhixiang; Ren, Jian

    2016-06-16

    As one of the most common post-translational modifications in eukaryotic cells, lipid modification is an important mechanism for the regulation of variety aspects of protein function. Over the last decades, three classes of lipid modifications have been increasingly studied. The co-regulation of these different lipid modifications is beginning to be noticed. However, due to the lack of integrated bioinformatics resources, the studies of co-regulatory mechanisms are still very limited. In this work, we developed a tool called GPS-Lipid for the prediction of four classes of lipid modifications by integrating the Particle Swarm Optimization with an aging leader and challengers (ALC-PSO) algorithm. GPS-Lipid was proven to be evidently superior to other similar tools. To facilitate the research of lipid modification, we hosted a publicly available web server at http://lipid.biocuckoo.org with not only the implementation of GPS-Lipid, but also an integrative database and visualization tool. We performed a systematic analysis of the co-regulatory mechanism between different lipid modifications with GPS-Lipid. The results demonstrated that the proximal dual-lipid modifications among palmitoylation, myristoylation and prenylation are key mechanism for regulating various protein functions. In conclusion, GPS-lipid is expected to serve as useful resource for the research on lipid modifications, especially on their co-regulation.

  17. Adaptation of SUBSTOR for controlled-environment potato production with elevated carbon dioxide

    NASA Technical Reports Server (NTRS)

    Fleisher, D. H.; Cavazzoni, J.; Giacomelli, G. A.; Ting, K. C.; Janes, H. W. (Principal Investigator)

    2003-01-01

    The SUBSTOR crop growth model was adapted for controlled-environment hydroponic production of potato (Solanum tuberosum L. cv. Norland) under elevated atmospheric carbon dioxide concentration. Adaptations included adjustment of input files to account for cultural differences between the field and controlled environments, calibration of genetic coefficients, and adjustment of crop parameters including radiation use efficiency. Source code modifications were also performed to account for the absorption of light reflected from the surface below the crop canopy, an increased leaf senescence rate, a carbon (mass) balance to the model, and to modify the response of crop growth rate to elevated atmospheric carbon dioxide concentration. Adaptations were primarily based on growth and phenological data obtained from growth chamber experiments at Rutgers University (New Brunswick, N.J.) and from the modeling literature. Modified-SUBSTOR predictions were compared with data from Kennedy Space Center's Biomass Production Chamber for verification. Results show that, with further development, modified-SUBSTOR will be a useful tool for analysis and optimization of potato growth in controlled environments.

  18. Thermal modeling in an engine cooling system to control coolant flow for fuel consumption improvement

    NASA Astrophysics Data System (ADS)

    Park, Sangki; Woo, Seungchul; Kim, Minho; Lee, Kihyung

    2017-04-01

    The design and evaluation of engine cooling and lubrication systems is generally based on real vehicle tests. Our goal here was to establish an engine heat balance model based on mathematical and interpretive analysis of each element of a passenger diesel engine cooling system using a 1-D numerical model. The purpose of this model is to determine ways of optimizing the cooling and lubrication components of an engine and then to apply these methods to actual cooling and lubrication systems of engines that will be developed in the future. Our model was operated under the New European Driving Cycle (NEDC) mode conditions, which represent the fuel economy evaluation mode in Europe. The flow rate of the cooling system was controlled using a control valve. Our results showed that the fuel efficiency was improved by as much as 1.23 %, cooling loss by 1.35 %, and friction loss by 2.21 % throughout NEDC modes by modification of control conditions.

  19. Optimization by nonhierarchical asynchronous decomposition

    NASA Technical Reports Server (NTRS)

    Shankar, Jayashree; Ribbens, Calvin J.; Haftka, Raphael T.; Watson, Layne T.

    1992-01-01

    Large scale optimization problems are tractable only if they are somehow decomposed. Hierarchical decompositions are inappropriate for some types of problems and do not parallelize well. Sobieszczanski-Sobieski has proposed a nonhierarchical decomposition strategy for nonlinear constrained optimization that is naturally parallel. Despite some successes on engineering problems, the algorithm as originally proposed fails on simple two dimensional quadratic programs. The algorithm is carefully analyzed for quadratic programs, and a number of modifications are suggested to improve its robustness.

  20. Parameter optimization of an inerter-based isolator for passive vibration control of Michelangelo's Rondanini Pietà

    NASA Astrophysics Data System (ADS)

    Siami, A.; Karimi, H. R.; Cigada, A.; Zappa, E.; Sabbioni, E.

    2018-01-01

    Preserving cultural heritage against earthquake and ambient vibrations can be an attractive topic in the field of vibration control. This paper proposes a passive vibration isolator methodology based on inerters for improving the performance of the isolation system of the famous statue of Michelangelo Buonarroti Pietà Rondanini. More specifically, a five-degree-of-freedom (5DOF) model of the statue and the anti-seismic and anti-vibration base is presented and experimentally validated. The parameters of this model are tuned according to the experimental tests performed on the assembly of the isolator and the structure. Then, the developed model is used to investigate the impact of actuation devices such as tuned mass-damper (TMD) and tuned mass-damper-inerter (TMDI) in vibration reduction of the structure. The effect of implementation of TMDI on the 5DOF model is shown based on physical limitations of the system parameters. Simulation results are provided to illustrate effectiveness of the passive element of TMDI in reduction of the vibration transmitted to the statue in vertical direction. Moreover, the optimal design parameters of the passive system such as frequency and damping coefficient will be calculated using two different performance indexes. The obtained optimal parameters have been evaluated by using two different optimization algorithms: the sequential quadratic programming method and the Firefly algorithm. The results prove significant reduction in the transmitted vibration to the structure in the presence of the proposed tuned TMDI, without imposing a large amount of mass or modification to the structure of the isolator.

  1. Stochastic gradient ascent outperforms gamers in the Quantum Moves game

    NASA Astrophysics Data System (ADS)

    Sels, Dries

    2018-04-01

    In a recent work on quantum state preparation, Sørensen and co-workers [Nature (London) 532, 210 (2016), 10.1038/nature17620] explore the possibility of using video games to help design quantum control protocols. The authors present a game called "Quantum Moves" (https://www.scienceathome.org/games/quantum-moves/) in which gamers have to move an atom from A to B by means of optical tweezers. They report that, "players succeed where purely numerical optimization fails." Moreover, by harnessing the player strategies, they can "outperform the most prominent established numerical methods." The aim of this Rapid Communication is to analyze the problem in detail and show that those claims are untenable. In fact, without any prior knowledge and starting from a random initial seed, a simple stochastic local optimization method finds near-optimal solutions which outperform all players. Counterdiabatic driving can even be used to generate protocols without resorting to numeric optimization. The analysis results in an accurate analytic estimate of the quantum speed limit which, apart from zero-point motion, is shown to be entirely classical in nature. The latter might explain why gamers are reasonably good at the game. A simple modification of the BringHomeWater challenge is proposed to test this hypothesis.

  2. Optimal condition for fabricating superhydrophobic Aluminum surfaces with controlled anodizing processes

    NASA Astrophysics Data System (ADS)

    Saffari, Hamid; Sohrabi, Beheshteh; Noori, Mohammad Reza; Bahrami, Hamid Reza Talesh

    2018-03-01

    A single step anodizing process is used to produce micro-nano structures on Aluminum (1050) substrates with sulfuric acid as electrolyte. Therefore, surface energy of the anodized layer is reduced using stearic acid modification. Undoubtedly, effects of different parameters including anodizing time, electrical current, and type and concentration of electrolyte on the final contact angle are systemically studied and optimized. Results show that anodizing current of 0.41 A, electrolyte (sulfuric acid) concentration of 15 wt.% and anodizing time of 90 min are optimal conditions which give contact angle as high as 159.2° and sliding angle lower than 5°. Moreover, the study reveals that adding oxalic acid to the sulfuric acid cannot enhance superhydrophobicity of the samples. Also, scanning electron microscopy images of samples show that irregular (bird's nest) structures present on the surface instead of high-ordered honeycomb structures expecting from normal anodizing process. Additionally, X-ray diffraction analysis of the samples shows that only amorphous structures present on the surface. The Brunauer-Emmett-Teller (BET) specific surface area of the anodized layer is 2.55 m2 g-1 in optimal condition. Ultimately, the surface keeps its hydrophobicity in air and deionized water (DIW) after one week and 12 weeks, respectively.

  3. An efficient approach for the assembly of mass and stiffness matrices of structures with modifications

    NASA Astrophysics Data System (ADS)

    Wagner, Andreas; Spelsberg-Korspeter, Gottfried

    2013-09-01

    The finite element method is one of the most common tools for the comprehensive analysis of structures with applications reaching from static, often nonlinear stress-strain, to transient dynamic analyses. For single calculations the expense to generate an appropriate mesh is often insignificant compared to the analysis time even for complex geometries and therefore negligible. However, this is not the case for certain other applications, most notably structural optimization procedures, where the (re-)meshing effort is very important with respect to the total runtime of the procedure. Thus it is desirable to find methods to efficiently generate mass and stiffness matrices allowing to reduce this effort, especially for structures with modifications of minor complexity, e.g. panels with cutouts. Therefore, a modeling approach referred to as Energy Modification Method is proposed in this paper. The underlying idea is to model and discretize the basis structure, e.g. a plate, and the modifications, e.g. holes, separately. The discretized energy expressions of the modifications are then subtracted from (or added to) the energy expressions of the basis structure and the coordinates are related to each other by kinematical constraints leading to the mass and stiffness matrices of the complete structure. This approach will be demonstrated by two simple examples, a rod with varying material properties and a rectangular plate with a rectangular or circular hole, using a finite element discretization as basis. Convergence studies of the method based on the latter example follow demonstrating the rapid convergence and efficiency of the method. Finally, the Energy Modification Method is successfully used in the structural optimization of a circular plate with holes, with the objective to split all its double eigenfrequencies.

  4. Porous NiTi for bone implants: a review.

    PubMed

    Bansiddhi, A; Sargeant, T D; Stupp, S I; Dunand, D C

    2008-07-01

    NiTi foams are unique among biocompatible porous metals because of their high recovery strain (due to the shape-memory or superelastic effects) and their low stiffness facilitating integration with bone structures. To optimize NiTi foams for bone implant applications, two key areas are under active study: synthesis of foams with optimal architectures, microstructure and mechanical properties; and tailoring of biological interactions through modifications of pore surfaces. This article reviews recent research on NiTi foams for bone replacement, focusing on three specific topics: (i) surface modifications designed to create bio-inert porous NiTi surfaces with low Ni release and corrosion, as well as bioactive surfaces to enhance and accelerate biological activity; (ii) in vitro and in vivo biocompatibility studies to confirm the long-term safety of porous NiTi implants; and (iii) biological evaluations for specific applications, such as in intervertebral fusion devices and bone tissue scaffolds. Possible future directions for bio-performance and processing studies are discussed that could lead to optimized porous NiTi implants.

  5. Porous NiTi for bone implants: A review

    PubMed Central

    Bansiddhi, A.; Sargeant, T.D.; Stupp, S.I.; Dunand, D.C.

    2011-01-01

    NiTi foams are unique among biocompatible porous metals because of their high recovery strain (due to the shape-memory or superelastic effects) and their low stiffness facilitating integration with bone structures. To optimize NiTi foams for bone implant applications, two key areas are under active study: synthesis of foams with optimal architectures, microstructure and mechanical properties; and tailoring of biological interactions through modifications of pore surfaces. This article reviews recent research on NiTi foams for bone replacement, focusing on three specific topics: (i) surface modifications designed to create bio-inert porous NiTi surfaces with low Ni release and corrosion, as well as bioactive surfaces to enhance and accelerate biological activity; (ii) In vitro and in vivo biocompatibility studies to confirm the long-term safety of porous NiTi implants; and (iii) biological evaluations for specific applications, such as in intervertebral fusion devices and bone tissue scaffolds. Possible future directions for bio-performance and processing studies are discussed that could lead to optimized porous NiTi implants. PMID:18348912

  6. A Multifeatures Fusion and Discrete Firefly Optimization Method for Prediction of Protein Tyrosine Sulfation Residues.

    PubMed

    Guo, Song; Liu, Chunhua; Zhou, Peng; Li, Yanling

    2016-01-01

    Tyrosine sulfation is one of the ubiquitous protein posttranslational modifications, where some sulfate groups are added to the tyrosine residues. It plays significant roles in various physiological processes in eukaryotic cells. To explore the molecular mechanism of tyrosine sulfation, one of the prerequisites is to correctly identify possible protein tyrosine sulfation residues. In this paper, a novel method was presented to predict protein tyrosine sulfation residues from primary sequences. By means of informative feature construction and elaborate feature selection and parameter optimization scheme, the proposed predictor achieved promising results and outperformed many other state-of-the-art predictors. Using the optimal features subset, the proposed method achieved mean MCC of 94.41% on the benchmark dataset, and a MCC of 90.09% on the independent dataset. The experimental performance indicated that our new proposed method could be effective in identifying the important protein posttranslational modifications and the feature selection scheme would be powerful in protein functional residues prediction research fields.

  7. A Multifeatures Fusion and Discrete Firefly Optimization Method for Prediction of Protein Tyrosine Sulfation Residues

    PubMed Central

    Liu, Chunhua; Zhou, Peng; Li, Yanling

    2016-01-01

    Tyrosine sulfation is one of the ubiquitous protein posttranslational modifications, where some sulfate groups are added to the tyrosine residues. It plays significant roles in various physiological processes in eukaryotic cells. To explore the molecular mechanism of tyrosine sulfation, one of the prerequisites is to correctly identify possible protein tyrosine sulfation residues. In this paper, a novel method was presented to predict protein tyrosine sulfation residues from primary sequences. By means of informative feature construction and elaborate feature selection and parameter optimization scheme, the proposed predictor achieved promising results and outperformed many other state-of-the-art predictors. Using the optimal features subset, the proposed method achieved mean MCC of 94.41% on the benchmark dataset, and a MCC of 90.09% on the independent dataset. The experimental performance indicated that our new proposed method could be effective in identifying the important protein posttranslational modifications and the feature selection scheme would be powerful in protein functional residues prediction research fields. PMID:27034949

  8. Computer-aided design analysis of 57-mm, angular-contact, cryogenic turbopump bearings

    NASA Technical Reports Server (NTRS)

    Armstrong, Elizabeth S.; Coe, Harold H.

    1988-01-01

    The Space Shuttle main engine high-pressure oxygen turbopumps have not experienced the sevice life required of them. This insufficiency has been due in part to the shortened life of the bearings. To improve the life of the existing turbopump bearings, an effort is under way to investigate bearing modifications that could be retrofitted into the present bearing cavity. Several bearing parameters were optimized using the computer program SHABERTH, which performs a thermomechanical simulation of a load support system. The computer analysis showed that improved bearing performance is feasible if low friction coefficients can be attained. Bearing geometries were optimized considering heat generation, equilibrium temperatures, and relative life. Thermal gradients through the bearings were found to be lower with liquid lubrication than with solid film lubrication, and a liquid oxygen coolant flowrate of approximately 4.0 kg/s was found to be optimal. This paper describes the analytical modeling used to determine these feasible modifications to improve bearing performance.

  9. Amides are excellent mimics of phosphate internucleoside linkages and are well tolerated in short interfering RNAs.

    PubMed

    Mutisya, Daniel; Selvam, Chelliah; Lunstad, Benjamin D; Pallan, Pradeep S; Haas, Amanda; Leake, Devin; Egli, Martin; Rozners, Eriks

    2014-06-01

    RNA interference (RNAi) has become an important tool in functional genomics and has an intriguing therapeutic potential. However, the current design of short interfering RNAs (siRNAs) is not optimal for in vivo applications. Non-ionic phosphate backbone modifications may have the potential to improve the properties of siRNAs, but are little explored in RNAi technologies. Using X-ray crystallography and RNAi activity assays, the present study demonstrates that 3'-CH2-CO-NH-5' amides are excellent replacements for phosphodiester internucleoside linkages in RNA. The crystal structure shows that amide-modified RNA forms a typical A-form duplex. The amide carbonyl group points into the major groove and assumes an orientation that is similar to the P-OP2 bond in the phosphate linkage. Amide linkages are well hydrated by tandem waters linking the carbonyl group and adjacent phosphate oxygens. Amides are tolerated at internal positions of both the guide and passenger strand of siRNAs and may increase the silencing activity when placed near the 5'-end of the passenger strand. As a result, an siRNA containing eight amide linkages is more active than the unmodified control. The results suggest that RNAi may tolerate even more extensive amide modification, which may be useful for optimization of siRNAs for in vivo applications. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. 76 FR 78732 - Petition for Waiver of Compliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... or modification of a signal system. FRA has assigned the petition Docket Number FRA-2011-0092. CSX seeks approval of the proposed modification of the bridge tender controlled signals to automatic signals..., Jacksonville Division. The modification consists of the conversion of bridge tender controlled signals to...

  11. Calibration and simulation of two large wastewater treatment plants operated for nutrient removal.

    PubMed

    Ferrer, J; Morenilla, J J; Bouzas, A; García-Usach, F

    2004-01-01

    Control and optimisation of plant processes has become a priority for WWTP managers. The calibration and verification of a mathematical model provides an important tool for the investigation of advanced control strategies that may assist in the design or optimization of WWTPs. This paper describes the calibration of the ASM2d model for two full scale biological nitrogen and phosphorus removal plants in order to characterize the biological process and to upgrade the plants' performance. Results from simulation showed a good correspondence with experimental data demonstrating that the model and the calibrated parameters were able to predict the behaviour of both WWTPs. Once the calibration and simulation process was finished, a study for each WWTP was done with the aim of improving its performance. Modifications focused on reactor configuration and operation strategies were proposed.

  12. Approximate analytical relationships for linear optimal aeroelastic flight control laws

    NASA Astrophysics Data System (ADS)

    Kassem, Ayman Hamdy

    1998-09-01

    This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.

  13. Periodic Application of Stochastic Cost Optimization Methodology to Achieve Remediation Objectives with Minimized Life Cycle Cost

    NASA Astrophysics Data System (ADS)

    Kim, U.; Parker, J.

    2016-12-01

    Many dense non-aqueous phase liquid (DNAPL) contaminated sites in the U.S. are reported as "remediation in progress" (RIP). However, the cost to complete (CTC) remediation at these sites is highly uncertain and in many cases, the current remediation plan may need to be modified or replaced to achieve remediation objectives. This study evaluates the effectiveness of iterative stochastic cost optimization that incorporates new field data for periodic parameter recalibration to incrementally reduce prediction uncertainty and implement remediation design modifications as needed to minimize the life cycle cost (i.e., CTC). This systematic approach, using the Stochastic Cost Optimization Toolkit (SCOToolkit), enables early identification and correction of problems to stay on track for completion while minimizing the expected (i.e., probability-weighted average) CTC. This study considers a hypothetical site involving multiple DNAPL sources in an unconfined aquifer using thermal treatment for source reduction and electron donor injection for dissolved plume control. The initial design is based on stochastic optimization using model parameters and their joint uncertainty based on calibration to site characterization data. The model is periodically recalibrated using new monitoring data and performance data for the operating remediation systems. Projected future performance using the current remediation plan is assessed and reoptimization of operational variables for the current system or consideration of alternative designs are considered depending on the assessment results. We compare remediation duration and cost for the stepwise re-optimization approach with single stage optimization as well as with a non-optimized design based on typical engineering practice.

  14. Implementation of an Adaptive Controller System from Concept to Flight Test

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.; Burken, John J.; Butler, Bradley S.; Yokum, Steve

    2009-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) is conducting ongoing flight research using adaptive controller algorithms. A highly modified McDonnell-Douglas NF-15B airplane called the F-15 Intelligent Flight Control System (IFCS) is used to test and develop these algorithms. Modifications to this airplane include adding canards and changing the flight control systems to interface a single-string research controller processor for neural network algorithms. Research goals include demonstration of revolutionary control approaches that can efficiently optimize aircraft performance in both normal and failure conditions and advancement of neural-network-based flight control technology for new aerospace system designs. This report presents an overview of the processes utilized to develop adaptive controller algorithms during a flight-test program, including a description of initial adaptive controller concepts and a discussion of modeling formulation and performance testing. Design finalization led to integration with the system interfaces, verification of the software, validation of the hardware to the requirements, design of failure detection, development of safety limiters to minimize the effect of erroneous neural network commands, and creation of flight test control room displays to maximize human situational awareness; these are also discussed.

  15. Proline substitution independently enhances H-2D(b) complex stabilization and TCR recognition of melanoma-associated peptides.

    PubMed

    Uchtenhagen, Hannes; Abualrous, Esam T; Stahl, Evi; Allerbring, Eva B; Sluijter, Marjolein; Zacharias, Martin; Sandalova, Tatyana; van Hall, Thorbald; Springer, Sebastian; Nygren, Per-Åke; Achour, Adnane

    2013-11-01

    The immunogenicity of H-2D(b) (D(b)) restricted epitopes can be significantly increased by substituting peptide position 3 to a proline (p3P). The p3P modification enhances MHC stability without altering the conformation of the modified epitope allowing for T-cell cross-reactivity with the native peptide. The present study reveals how specific interactions between p3P and the highly conserved MHC heavy chain residue Y159 increase the stability of D(b) in complex with an optimized version of the melanoma-associated epitope gp10025-33 . Furthermore, the p3P modification directly increased the affinity of the D(b)/gp10025-33 -specific T-cell receptor (TCR) pMel. Surprisingly, the enhanced TCR binding was independent from the observed increased stability of the optimized D(b)/gp10025-33 complex and from the interactions formed between p3P and Y159, indicating a direct effect of the p3P modification on TCR recognition. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Controversies in Alzheimer’s disease drug development

    PubMed Central

    Cummings, Jeffrey L.

    2010-01-01

    Understanding of the pathophysiological basis of Alzheimer’s disease (AD) is increasing rapidly and a variety of potential treatment modalities have emerged based on these improved mechanistic insights. The optimal way of proceeding with disease-modifying drug development remains to be clarified and controversies have emerged regarding the definition of Alzheimer’s disease, the participation of mild cognitive impairment patients in clinical trials, the definition of disease modification, the potential impediments to satisfaction from patients receiving disease-modifying therapy, the importance of add-on therapy with symptomatic agents, the optimal clinical trial design to demonstrate disease modification, the best means of minimizing time spent in Phase II of drug development, the potential role of adaptive designs in clinical trials, the use of enrichment designs in clinical trials, the role of biomarkers in clinical trials, the treatment of advanced patients with disease-modifying agents, and distinctions between disease modification and disease prevention. The questions surrounding these issues must be resolved as disease-modifying therapies for AD are advanced. These controversies are framed and potential directions towards resolution described. PMID:18925488

  17. Optimization of instantaneous solvent exchange/surface modification process for ambient synthesis of monolithic silica aerogels.

    PubMed

    Hwang, Sung-Woo; Kim, Tae-Youn; Hyun, Sang-Hoon

    2008-06-01

    The instantaneous solvent exchange/surface modification (ISE/SM) process for the ambient synthesis of crack-free silica aerogel monoliths with a high production yield was optimized. Monolithic forms of silica wet gels were obtained from aqueous colloidal silica sols prepared via the ion exchange of sodium silicate solutions. Crack-free silica aerogel monoliths were synthesized via an ISE/SM process using isopropyl alcohol/trimethylchlorosilane as a modification agent and n-hexane as a main solvent, followed by ambient drying. The optimum process conditions of the ISE/SM process were investigated by clarifying the reaction mechanism and phenomena. Most effective ranges of process variables on the ISE/SM stage were determined as 0.2500-0.3567 of TMCS/H2O (pore water) in molar ratio and 15-30 of n-hexane/TMCS in volumetric ratio, with a reaction temperature below 283 K. Crack-free silica aerogel monoliths synthesized via these conditions had a well-developed mesoporous structure and excellent properties (bulk density of 0.12-0.14 g/cm3, specific surface area of 724 m2/g), and a high yield (nearly 80%).

  18. Urine sampling and collection system optimization and testing

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.; Geating, J. A.; Koesterer, M. G.

    1975-01-01

    A Urine Sampling and Collection System (USCS) engineering model was developed to provide for the automatic collection, volume sensing and sampling of urine from each micturition. The purpose of the engineering model was to demonstrate verification of the system concept. The objective of the optimization and testing program was to update the engineering model, to provide additional performance features and to conduct system testing to determine operational problems. Optimization tasks were defined as modifications to minimize system fluid residual and addition of thermoelectric cooling.

  19. A test of ecological optimality for semiarid vegetation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Salvucci, Guido D.; Eagleson, Peter S.; Turner, Edmund K.

    1992-01-01

    Three ecological optimality hypotheses which have utility in parameter reduction and estimation in a climate-soil-vegetation water balance model are reviewed and tested. The first hypothesis involves short term optimization of vegetative canopy density through equilibrium soil moisture maximization. The second hypothesis involves vegetation type selection again through soil moisture maximization, and the third involves soil genesis through plant induced modification of soil hydraulic properties to values which result in a maximum rate of biomass productivity.

  20. Modification of the dingman mouth gag for better visibility and access in the management of cleft palate.

    PubMed

    Rao, Latha P; Peter, Sherry

    2015-03-01

    Palatal and pharyngeal surgeries often require wide visibility and access. Various mouth gags and retractors have been devised and many modifications suggested to optimize these surgeries. The Dingman mouth gag, one of the commonly used retractors, offers a lot of advantages in terms of good mouth opening, tongue retraction, self-retaining cheek retractors, and anchorage for sutures, but it has a main limitation in that it allows only limited visibility of the anterior palate and alveolus. Hence, a modification of the Dingman mouth gag is presented for better visibility of and accessibility to the anterior palate.

  1. Swarm intelligence applied to the risk evaluation for congenital heart surgery.

    PubMed

    Zapata-Impata, Brayan S; Ruiz-Fernandez, Daniel; Monsalve-Torra, Ana

    2015-01-01

    Particle Swarm Optimization is an optimization technique based on the positions of several particles created to find the best solution to a problem. In this work we analyze the accuracy of a modification of this algorithm to classify the levels of risk for a surgery, used as a treatment to correct children malformations that imply congenital heart diseases.

  2. Bearing optimization for SSME HPOTP application

    NASA Technical Reports Server (NTRS)

    Armstrong, Elizabeth S.; Coe, Harold H.

    1988-01-01

    The space shuttle main engine (SSME) high-pressure oxygen turbopumps (HPOTP) have not experienced the service life required of them. To improve the life of the existing turbopump bearings, modifications to the bearings that could be retrofitted into the present bearing cavity are being investigated. Several bearing parameters were optimized using the computer program SHABERTH, which performs a thermomechanical simulation of a load support system. The computer analysis showed that improved bearing performance is feasible if low friction coefficients can be attained. Bearing geometries were optimized considering heat generation, equilibrium temperatures, and relative life. Two sets of curvatures were selected from the optimization: an inner-raceway curvature of 0.54, an outer-raceway curvature of 0.52, and an inner-raceway curvature of 0.55, an outer-raceway curvature of 0.53. A contact angle of 16 deg was also selected. Thermal gradients through the bearings were found to be lower with liquid lubrication than with solid film lubrication. As the coolant flowrate through the bearing increased, the ball temperature decreased but at a continuously decreasing rate. The optimum flowrate was approximately 4 kg/s. The analytical modeling used to determine these feasible modifications to improve bearing performance is described.

  3. Tunable natural nano-arrays: controlling surface properties and light reflectance

    NASA Astrophysics Data System (ADS)

    Watson, Jolanta A.; Myhra, Sverre; Watson, Gregory S.

    2006-01-01

    The general principles of optical design based on the theories of reflection, refraction and diffraction have been rigorously developed and optimized over the last three centuries. Of increasing importance has been the ability to predict and devise new optical technologies designed for specific functions. A key design feature of many of today's optical materials is the control of reflection and light transmittance through the medium. A sudden transition or impedance mismatch from one optical medium to another can result in unwanted reflections from the surface plane. Modification of a surface by creation of a gradual change in refractive index over a significant portion of a wavelength range will result in a reduction in reflection. An alternative surface modification to the multi layered stack coating (gradient index coating) is to produce a surface with structures having a period and height shorter than the light wavelength. These structures act like a pseudo-gradient index coating and can be described by the effective medium theory. Bernhard and Miller some forty years ago were the first to observe such structures found on the surface of insects. These were found in the form of hexagonally close packed nanometre sized protrusions on the corneal surface of certain moths. In this study we report on similar structures which we have found on certain species of cicada wings demonstrating that the reflective/transmission properties of these natural nano-structures can be tuned by controlled removal of the structure height using Atomic Force Microscopy (AFM).

  4. Nanoscale Surface Modifications of Medical Implants for Cartilage Tissue Repair and Regeneration

    PubMed Central

    Griffin, MF; Szarko, M; Seifailan, A; Butler, PE

    2016-01-01

    Background: Natural cartilage regeneration is limited after trauma or degenerative processes. Due to the clinical challenge of reconstruction of articular cartilage, research into developing biomaterials to support cartilage regeneration have evolved. The structural architecture of composition of the cartilage extracellular matrix (ECM) is vital in guiding cell adhesion, migration and formation of cartilage. Current technologies have tried to mimic the cell’s nanoscale microenvironment to improve implants to improve cartilage tissue repair. Methods: This review evaluates nanoscale techniques used to modify the implant surface for cartilage regeneration. Results: The surface of biomaterial is a vital parameter to guide cell adhesion and consequently allow for the formation of ECM and allow for tissue repair. By providing nanosized cues on the surface in the form of a nanotopography or nanosized molecules, allows for better control of cell behaviour and regeneration of cartilage. Chemical, physical and lithography techniques have all been explored for modifying the nanoscale surface of implants to promote chondrocyte adhesion and ECM formation. Conclusion: Future studies are needed to further establish the optimal nanoscale modification of implants for cartilage tissue regeneration. PMID:28217208

  5. Surface Texture-Induced Enhancement of Optical and Photoelectrochemical Activity of Cu2ZnSnS4 Photocathodes

    NASA Astrophysics Data System (ADS)

    Sarswat, Prashant K.; Deka, Nipon; Jagan Mohan Rao, S.; Free, Michael L.; Kumar, Gagan

    2017-08-01

    The objective of this work is to understand and improve the photocatalytic activity of Cu2ZnSnS4 (CZTS) through postgrowth modification techniques to create surface textures. This objective can be achieved using a combination of solvents, etching agents, and anodization techniques. One of the most effective surface treatments for enhancing the surface properties of photovoltaic materials is formation of nanoscale flakes, although other surface modifications were also evaluated. The superior performance of textured films can be attributed to enhanced surface area of absorber material exposed to electrolyte, ZnS deficiency, and high catalytic activity due to reduced charge-transfer resistance. Fine-tuning of ion flux and electrolyte stoichiometry can be used to create a controlled growth algorithm for CZTS thin films. The resulting information can be utilized to optimize film properties. The utility of nanostructured or engineered surfaces was evaluated using photoelectrochemical measurements. Finite-difference time-domain (FDTD)-assisted simulations were conducted for selected texturing, revealing enhanced surface area of absorbing medium that ultimately resulted in greater power loss of light in the medium.

  6. Highly ordered, accessible and nanocrystalline mesoporous TiO₂ thin films on transparent conductive substrates.

    PubMed

    Violi, Ianina L; Perez, M Dolores; Fuertes, M Cecilia; Soler-Illia, Galo J A A

    2012-08-01

    Highly porous (V(mesopore) = 25-50%) and ordered mesoporous titania thin films (MTTF) were prepared on ITO (indium tin oxide)-covered glass by a fast two-step method. The effects of substrate surface modification and thermal treatment on pore order, accessibility and crystallinity of the MTTF were systematically studied for MTTF deposited onto bare and titania-modified ITO. MTTF exposed briefly to 550 °C resulted in highly ordered films with grid-like structures, enlarged pore size, and increased accessible pore volume when prepared onto the modified ITO substrate. Mesostructure collapse and no significant change in pore volume were observed for MTTF deposited on bare ITO substrates. Highly crystalline anatase was obtained for MTTF prepared on the modified-ITO treated at high temperatures, establishing the relationship between grid-like structures and titania crystallization. Photocatalytic activity was maximized for samples with increased crystallization and high accessible pore volume. In this manner, a simple way of designing materials with optimized characteristics for optoelectronic applications was achieved through the modification of the ITO surface and a controlled thermal treatment.

  7. A plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus.

    PubMed

    Grasso, Simone; Lico, Chiara; Imperatori, Francesca; Santi, Luca

    2013-06-01

    Structure, size, physicochemical properties and production strategies make many plant viruses ideal protein based nanoscaffolds, nanocontainers and nano-building blocks expected to deliver a multitude of applications in different fields such as biomedicine, pharmaceutical chemistry, separation science, catalytic chemistry, crop pest control and biomaterials science. Functionalization of viral nanoparticles through modification by design of their external and internal surfaces is essential to fully exploit the potentiality of these objects. In the present paper we describe the development of a plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus. We demonstrate the ability of this system to remarkably sustain genetic modifications and in vitro chemical derivatizations of its outer surface, which resulted in the successful display of large chimeric peptides fusions and small chemical molecules, respectively. Moreover, we have defined physicochemical conditions for viral swelling and reversible viral pore gating that we have successfully employed for foreign molecules loading and retention in the inner cavity of this plant virus nanoparticles system. Finally, a production and purification strategy from Nicotiana benthamiana plants has been addressed and optimized.

  8. Screen printing technology applied to silicon solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Thornhill, J. W.; Sipperly, W. E.

    1980-01-01

    The process for producing space qualified solar cells in both the conventional and wraparound configuration using screen printing techniques was investigated. Process modifications were chosen that could be easily automated or mechanized. Work was accomplished to optimize the tradeoffs associated with gridline spacing, gridline definition and junction depth. An extensive search for possible front contact metallization was completed. The back surface field structures along with the screen printed back contacts were optimized to produce open circuit voltages of at least an average of 600 millivolts. After all intended modifications on the process sequence were accomplished, the cells were exhaustively tested. Electrical tests at AMO and 28 C were made before and after boiling water immersion, thermal shock, and storage under conditions of high temperature and high humidity.

  9. Optimized aerodynamic design process for subsonic transport wing fitted with winglets. [wind tunnel model

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.

    1979-01-01

    The aerodynamic design of a wind-tunnel model of a wing representative of that of a subsonic jet transport aircraft, fitted with winglets, was performed using two recently developed optimal wing-design computer programs. Both potential flow codes use a vortex lattice representation of the near-field of the aerodynamic surfaces for determination of the required mean camber surfaces for minimum induced drag, and both codes use far-field induced drag minimization procedures to obtain the required spanloads. One code uses a discrete vortex wake model for this far-field drag computation, while the second uses a 2-D advanced panel wake model. Wing camber shapes for the two codes are very similar, but the resulting winglet camber shapes differ widely. Design techniques and considerations for these two wind-tunnel models are detailed, including a description of the necessary modifications of the design geometry to format it for use by a numerically controlled machine for the actual model construction.

  10. Useful oriented immobilization of antibodies on chimeric magnetic particles: direct correlation of biomacromolecule orientation with biological activity by AFM studies.

    PubMed

    Marciello, Marzia; Filice, Marco; Olea, David; Velez, Marisela; Guisan, José M; Mateo, Cesar

    2014-12-16

    The preparation and performance of a suitable chimeric biosensor based on antibodies (Abs) immobilized on lipase-coated magnetic particles by means of a standing orienting strategy are presented. This novel system is based on hydrophobic magnetic particles coated with modified lipase molecules able to orient and further immobilize different Abs in a covalent way without any previous site-selective chemical modification of biomacromolecules. Different key parameters attending the process were studied and optimized. The optimal preparation was performed using a controlled loading (1 nmol Ab g(-1) chimeric support) at pH 9 and a short reaction time to recover a biological activity of about 80%. AFM microscopy was used to study and confirm the Abs-oriented immobilization on lipase-coated magnetic particles and the final achievement of a highly active and recyclable chimeric immune sensor. This direct technique was demonstrated to be a powerful alternative to the indirect immunoactivity assay methods for the study of biomacromolecule-oriented immobilizations.

  11. PRay - A graphical user interface for interactive visualization and modification of rayinvr models

    NASA Astrophysics Data System (ADS)

    Fromm, T.

    2016-01-01

    PRay is a graphical user interface for interactive displaying and editing of velocity models for seismic refraction. It is optimized for editing rayinvr models but can also be used as a dynamic viewer for ray tracing results from other software. The main features are the graphical editing of nodes and fast adjusting of the display (stations and phases). It can be extended by user-defined shell scripts and links to phase picking software. PRay is open source software written in the scripting language Perl, runs on Unix-like operating systems including Mac OS X and provides a version controlled source code repository for community development (https://sourceforge.net/projects/pray-plot-rayinvr/).

  12. Systems and synthetic metabolic engineering for amino acid production - the heartbeat of industrial strain development.

    PubMed

    Becker, Judith; Wittmann, Christoph

    2012-10-01

    With a world market of more than four million tons per year, l-amino acids are among the most important products in industrial biotechnology. The recent years have seen a tremendous progress in the development of tailor-made strains for such products, intensively driven from systems metabolic engineering, which upgrades strain engineering into a concept of optimization on a global scale. This concept seems especially valuable for efficient amino acid production, demanding for a global modification of pathway fluxes - a challenge with regard to the high complexity of the underlying metabolism, superimposed by various layers of metabolic and transcriptional control. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Characterization of anthocyanin based dye-sensitized organic solar cells (DSSC) and modifications based on bio-inspired ion mobility improvements

    NASA Astrophysics Data System (ADS)

    Mawyin, Jose Amador

    The worldwide electrical energy consumption will increase from currently 10 terawatts to 30 terawatts by 2050. To decrease the current atmospheric CO2 would require our civilization to develop a 20 terawatts non-greenhouse emitting (renewable) electrical power generation capability. Solar photovoltaic electric power generation is thought to be a major component of proposed renewable energy-based economy. One approach to less costly, easily manufactured solar cells is the Dye-sensitized solar cells (DSSC) introduced by Greatzel and others. This dissertation describes the work focused on improving the performance of DSSC type solar cells. In particular parameters affecting dye-sensitized solar cells (DSSC) based on anthocyanin pigments extracted from California blackberries (Rubus ursinus) and bio-inspired modifications were analyzed and solar cell designs optimized. Using off-the-shelf materials DSSC were constructed and tested using a custom made solar spectrum simulator and photoelectric property characterization. This equipment facilitated the taking of automated I-V curve plots and the experimental determination of parameters such as open circuit voltage (V OC), short circuit current (JSC), fill factor (FF), etc. This equipment was used to probe the effect of various modifications such as changes in the annealing time and composition of the of the electrode counter-electrode. Solar cell optimization schemes included novel schemes such as solar spectrum manipulation to increase the percentage of the solar spectrum capable of generating power in the DSSC. Solar manipulation included light scattering and photon upconversion. Techniques examined here focused on affordable materials such as silica nanoparticles embedded inside a TiO2 matrix. Such materials were examined for controlled scattering of visible light and optimize light trapping within the matrix as well as a means to achieve photon up-energy-conversion using the Raman effect in silica nano-particles (due to a strong Raman anti-Stoke scattering probability). Finally, solutions to the mobility problem of organic photovoltaics were explored. The solutions examined here were based on the bio-inspired neural ionic conduction were nature has overcome the poor ionic mobility in solutions (D ˜ 10-5cm2/ s) to achieve amazingly fast ionic conduction using non-electric field energy gradients. Electric-permeability-graded layers with possibility to create an energy gradient that helps the diffusion DSSC electrolyte diffusion were explored in this work.

  14. An NMR-Guided Screening Method for Selective Fragment Docking and Synthesis of a Warhead Inhibitor.

    PubMed

    Khattri, Ram B; Morris, Daniel L; Davis, Caroline M; Bilinovich, Stephanie M; Caras, Andrew J; Panzner, Matthew J; Debord, Michael A; Leeper, Thomas C

    2016-07-16

    Selective hits for the glutaredoxin ortholog of Brucella melitensis are determined using STD NMR and verified by trNOE and (15)N-HSQC titration. The most promising hit, RK207, was docked into the target molecule using a scoring function to compare simulated poses to experimental data. After elucidating possible poses, the hit was further optimized into the lead compound by extension with an electrophilic acrylamide warhead. We believe that focusing on selectivity in this early stage of drug discovery will limit cross-reactivity that might occur with the human ortholog as the lead compound is optimized. Kinetics studies revealed that lead compound 5 modified with an ester group results in higher reactivity than an acrylamide control; however, after modification this compound shows little selectivity for bacterial protein versus the human ortholog. In contrast, hydrolysis of compound 5 to the acid form results in a decrease in the activity of the compound. Together these results suggest that more optimization is warranted for this simple chemical scaffold, and opens the door for discovery of drugs targeted against glutaredoxin proteins-a heretofore untapped reservoir for antibiotic agents.

  15. Optimal Sizing and Placement of Battery Energy Storage in Distribution System Based on Solar Size for Voltage Regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaripouya, Hamidreza; Wang, Yubo; Chu, Peter

    2016-07-26

    This paper proposes a new strategy to achieve voltage regulation in distributed power systems in the presence of solar energy sources and battery storage systems. The goal is to find the minimum size of battery storage and its corresponding location in the network based on the size and place of the integrated solar generation. The proposed method formulates the problem by employing the network impedance matrix to obtain an analytical solution instead of using a recursive algorithm such as power flow. The required modifications for modeling the slack and PV buses (generator buses) are utilized to increase the accuracy ofmore » the approach. The use of reactive power control to regulate the voltage regulation is not always an optimal solution as in distribution systems R/X is large. In this paper the minimum size and the best place of battery storage is achieved by optimizing the amount of both active and reactive power exchanged by battery storage and its gridtie inverter (GTI) based on the network topology and R/X ratios in the distribution system. Simulation results for the IEEE 14-bus system verify the effectiveness of the proposed approach.« less

  16. Physical activity and training in sarcoidosis: review and experience-based recommendations.

    PubMed

    Strookappe, Bert; Saketkoo, Lesley Ann; Elfferich, Marjon; Holland, Anne; De Vries, Jolanda; Knevel, Ton; Drent, Marjolein

    2016-10-01

    Sarcoidosis is a multisystemic inflammatory disorder with a great variety of symptoms, including fatigue, dyspnea, pain, reduced exercise tolerance and muscle strength. Physical training has the potential to improve exercise capacity and muscle strength, and reduce fatigue. The aim of this review and survey was to present information about the role of physical training in sarcoidosis and offer practical guidelines. A systematic literature review guided an international consensus effort among sarcoidosis experts to establish practice-basic recommendations for the implementation of exercise as treatment for patients with various manifestations of sarcoidosis. International sarcoidosis experts suggested considering physical training in symptomatic patients with sarcoidosis. Expert commentary: There is promising evidence of a positive effect of physical training. Recommendations were based on available data and expert consensus. However, the heterogeneity of these patients will require modification and program adjustment of the standard rehabilitation format for e.g. COPD or interstitial lung diseases. An optimal training program (types of exercise, intensities, frequency, duration) still needs to be defined to optimize training adjustments, especially reduction of fatigue. Further randomized controlled trials are needed to consolidate these findings and optimize the comprehensive care of sarcoidosis patients.

  17. Evaluation of exercise-respiratory system modifications and preliminary respiratory-circulatory system integration scheme

    NASA Technical Reports Server (NTRS)

    Gallagher, R. R.

    1974-01-01

    The respiratory control system, functioning as an independent system, is presented with modifications of the exercise subroutine. These modifications illustrate an improved control of ventilation rates and arterial and compartmental gas tensions. A very elementary approach to describing the interactions of the respiratory and circulatory system is presented.

  18. Toy Modification Note: Build It Yourself Battery Interrupter. Revised.

    ERIC Educational Resources Information Center

    Vanderheiden, Gregg C.; Brandenburg, S.

    This toy modification note presents illustrated instructions on how to build a battery interrupter that permits on/off control of battery-operated toys without modification of the toys themselves. The device allows for a separate control switch which can be custom designed to fit a handicapped user's needs. Information on the construction and use…

  19. 40 CFR 144.41 - Minor modifications of permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Minor modifications of permits. 144.41... (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Authorization by Permit § 144.41 Minor modifications of... part 124. Any permit modification not processed as a minor modification under this section must be made...

  20. Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities.

    PubMed

    Rueda, Nazzoly; Dos Santos, Jose C S; Ortiz, Claudia; Torres, Rodrigo; Barbosa, Oveimar; Rodrigues, Rafael C; Berenguer-Murcia, Ángel; Fernandez-Lafuente, Roberto

    2016-06-01

    Chemical modification of enzymes and immobilization used to be considered as separate ways to improve enzyme properties. This review shows how the coupled use of both tools may greatly improve the final biocatalyst performance. Chemical modification of a previously immobilized enzyme is far simpler and easier to control than the modification of the free enzyme. Moreover, if protein modification is performed to improve its immobilization (enriching the enzyme in reactive groups), the final features of the immobilized enzyme may be greatly improved. Chemical modification may be directed to improve enzyme stability, but also to improve selectivity, specificity, activity, and even cell penetrability. Coupling of immobilization and chemical modification with site-directed mutagenesis is a powerful instrument to obtain fully controlled modification. Some new ideas such as photoreceptive enzyme modifiers that change their physical properties under UV exposition are discussed. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Analysis and Prediction of Myristoylation Sites Using the mRMR Method, the IFS Method and an Extreme Learning Machine Algorithm.

    PubMed

    Wang, ShaoPeng; Zhang, Yu-Hang; Huang, GuoHua; Chen, Lei; Cai, Yu-Dong

    2017-01-01

    Myristoylation is an important hydrophobic post-translational modification that is covalently bound to the amino group of Gly residues on the N-terminus of proteins. The many diverse functions of myristoylation on proteins, such as membrane targeting, signal pathway regulation and apoptosis, are largely due to the lipid modification, whereas abnormal or irregular myristoylation on proteins can lead to several pathological changes in the cell. To better understand the function of myristoylated sites and to correctly identify them in protein sequences, this study conducted a novel computational investigation on identifying myristoylation sites in protein sequences. A training dataset with 196 positive and 84 negative peptide segments were obtained. Four types of features derived from the peptide segments following the myristoylation sites were used to specify myristoylatedand non-myristoylated sites. Then, feature selection methods including maximum relevance and minimum redundancy (mRMR), incremental feature selection (IFS), and a machine learning algorithm (extreme learning machine method) were adopted to extract optimal features for the algorithm to identify myristoylation sites in protein sequences, thereby building an optimal prediction model. As a result, 41 key features were extracted and used to build an optimal prediction model. The effectiveness of the optimal prediction model was further validated by its performance on a test dataset. Furthermore, detailed analyses were also performed on the extracted 41 features to gain insight into the mechanism of myristoylation modification. This study provided a new computational method for identifying myristoylation sites in protein sequences. We believe that it can be a useful tool to predict myristoylation sites from protein sequences. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Development of a Groundwater Transport Simulation Tool for Remedial Process Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivarson, Kristine A.; Hanson, James P.; Tonkin, M.

    2015-01-14

    The groundwater remedy for hexavalent chromium at the Hanford Site includes operation of five large pump-and-treat systems along the Columbia River. The systems at the 100-HR-3 and 100-KR-4 groundwater operable units treat a total of about 9,840 liters per minute (2,600 gallons per minute) of groundwater to remove hexavalent chromium, and cover an area of nearly 26 square kilometers (10 square miles). The pump-and-treat systems result in large scale manipulation of groundwater flow direction, velocities, and most importantly, the contaminant plumes. Tracking of the plumes and predicting needed system modifications is part of the remedial process optimization, and is amore » continual process with the goal of reducing costs and shortening the timeframe to achieve the cleanup goals. While most of the initial system evaluations are conducted by assessing performance (e.g., reduction in contaminant concentration in groundwater and changes in inferred plume size), changes to the well field are often recommended. To determine the placement for new wells, well realignments, and modifications to pumping rates, it is important to be able to predict resultant plume changes. In smaller systems, it may be effective to make small scale changes periodically and adjust modifications based on groundwater monitoring results. Due to the expansive nature of the remediation systems at Hanford, however, additional tools were needed to predict the plume reactions to system changes. A computer simulation tool was developed to support pumping rate recommendations for optimization of large pump-and-treat groundwater remedy systems. This tool, called the Pumping Optimization Model, or POM, is based on a 1-layer derivation of a multi-layer contaminant transport model using MODFLOW and MT3D.« less

  3. Action on diabetic macular oedema: achieving optimal patient management in treating visual impairment due to diabetic eye disease

    PubMed Central

    Gale, R; Scanlon, P H; Evans, M; Ghanchi, F; Yang, Y; Silvestri, G; Freeman, M; Maisey, A; Napier, J

    2017-01-01

    This paper identifies best practice recommendations for managing diabetes and sight-threatening diabetic eye disease. The authors provide an update for ophthalmologists and allied healthcare professionals on key aspects of diabetes management, supported by a review of the pertinent literature, and recommend practice principles for optimal patient management in treating visual impairment due to diabetic eye disease. In people with diabetes, early optimal glycaemic control reduces the long-term risk of both microvascular and macrovascular complications. The authors propose more can and should be done to maximise metabolic control, promote appropriate behavioural modifications and encourage timely treatment intensification when indicated to ameliorate diabetes-related complications. All people with diabetes should be screened for sight-threatening diabetic retinopathy promptly and regularly. It is shown that attitudes towards treatment adherence in diabetic macular oedema appear to mirror patients' views and health behaviours towards the management of their own diabetes. Awareness of diabetic macular oedema remains low among people with diabetes, who need access to education early in their disease about how to manage their diabetes to delay progression and possibly avoid eye-related complications. Ophthalmologists and allied healthcare professionals play a vital role in multidisciplinary diabetes management and establishment of dedicated diabetic macular oedema clinics is proposed. A broader understanding of the role of the diabetes specialist nurse may strengthen the case for comprehensive integrated care in ophthalmic practice. The recommendations are based on round table presentations and discussions held in London, UK, September 2016. PMID:28490797

  4. Action on diabetic macular oedema: achieving optimal patient management in treating visual impairment due to diabetic eye disease.

    PubMed

    Gale, R; Scanlon, P H; Evans, M; Ghanchi, F; Yang, Y; Silvestri, G; Freeman, M; Maisey, A; Napier, J

    2017-05-01

    This paper identifies best practice recommendations for managing diabetes and sight-threatening diabetic eye disease. The authors provide an update for ophthalmologists and allied healthcare professionals on key aspects of diabetes management, supported by a review of the pertinent literature, and recommend practice principles for optimal patient management in treating visual impairment due to diabetic eye disease. In people with diabetes, early optimal glycaemic control reduces the long-term risk of both microvascular and macrovascular complications. The authors propose more can and should be done to maximise metabolic control, promote appropriate behavioural modifications and encourage timely treatment intensification when indicated to ameliorate diabetes-related complications. All people with diabetes should be screened for sight-threatening diabetic retinopathy promptly and regularly. It is shown that attitudes towards treatment adherence in diabetic macular oedema appear to mirror patients' views and health behaviours towards the management of their own diabetes. Awareness of diabetic macular oedema remains low among people with diabetes, who need access to education early in their disease about how to manage their diabetes to delay progression and possibly avoid eye-related complications. Ophthalmologists and allied healthcare professionals play a vital role in multidisciplinary diabetes management and establishment of dedicated diabetic macular oedema clinics is proposed. A broader understanding of the role of the diabetes specialist nurse may strengthen the case for comprehensive integrated care in ophthalmic practice. The recommendations are based on round table presentations and discussions held in London, UK, September 2016.

  5. Performance Optimization of a Rotor Alone Nacelle for Acoustic Fan Testing

    NASA Technical Reports Server (NTRS)

    Cunningham, C. C.; Thompson, W. K.; Hughes, C. E.

    2000-01-01

    This paper describes the techniques, equipment, and results from the optimization of a two-axis traverse actuation system used to maintain concentricity between a sting-mounted fan and a wall-mounted nacelle in the 9 x 15 (9 Foot by 15 Foot Test Section) Low Speed Wind Tunnel (LSWT) at the NASA Glenn Research Center (GRC). The Rotor Alone Nacelle (RAN) system, developed at GRC by the Engineering Design and Analysis Division (EDAD) and the Acoustics Branch, used nacelle-mounted lasers and an automated control system to maintain concentricity as thermal and thrust operating loads displace the fan relative to the nacelle. This effort was critical to ensuring rig/facility safety and experimental consistency of the acoustic data from a statorless, externally supported nacelle configuration. Although the tip clearances were originally predicted to be about 0.020 in. at maximum rotor (fan) operating speed, proximity probe measurements showed that the nominal clearance was less than 0.004 in. As a result, the system was optimized through control-loop modifications, active laser cooling, data filtering and averaging, and the development of strict operational procedures. The resultant concentricity error of RAN was reduced to +/- 0.0031 in. in the Y-direction (horizontal) and +0.0035 in./-0.001 3 in. in the Z-direction (vertical), as determined by error analysis and experimental results. Based on the success of this project, the RAN system will be transitioned to other wind tunnel research programs at NASA GRC.

  6. Techniques for shuttle trajectory optimization

    NASA Technical Reports Server (NTRS)

    Edge, E. R.; Shieh, C. J.; Powers, W. F.

    1973-01-01

    The application of recently developed function-space Davidon-type techniques to the shuttle ascent trajectory optimization problem is discussed along with an investigation of the recently developed PRAXIS algorithm for parameter optimization. At the outset of this analysis, the major deficiency of the function-space algorithms was their potential storage problems. Since most previous analyses of the methods were with relatively low-dimension problems, no storage problems were encountered. However, in shuttle trajectory optimization, storage is a problem, and this problem was handled efficiently. Topics discussed include: the shuttle ascent model and the development of the particular optimization equations; the function-space algorithms; the operation of the algorithm and typical simulations; variable final-time problem considerations; and a modification of Powell's algorithm.

  7. Surgical Management of the Thick-Skinned Nose.

    PubMed

    Davis, Richard E; Hrisomalos, Emily N

    2018-02-01

    When executed properly, open structure rhinoplasty can dramatically improve the consistency, durability, and quality of the cosmetic surgical outcome. Moreover, in expert hands, dramatic transformations in skeletal architecture can be accomplished with minimal risk and unparalleled control, all while preserving nasal airway function. While skeletal enhancements have become increasingly more controlled and precise, the outer skin-soft tissue envelope (SSTE) often presents a formidable obstacle to a satisfactory cosmetic result. In noses with unusually thick skin, excessive skin volume and characteristically hostile healing responses frequently combine to obscure or sometimes even negate cosmetic skeletal modifications and taint the surgical outcome. For this challenging patient subgroup, care must be taken to optimize the SSTE using a graduated treatment strategy directed at minimizing skin thickness and controlling unfavorable healing responses. When appropriate efforts are implemented to manage thick nasal skin, cosmetic outcomes are often substantially improved, sometimes even negating the ill-effects of thick skin altogether. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. Surface Navigation Using Optimized Waypoints and Particle Swarm Optimization

    NASA Technical Reports Server (NTRS)

    Birge, Brian

    2013-01-01

    The design priority for manned space exploration missions is almost always placed on human safety. Proposed manned surface exploration tasks (lunar, asteroid sample returns, Mars) have the possibility of astronauts traveling several kilometers away from a home base. Deviations from preplanned paths are expected while exploring. In a time-critical emergency situation, there is a need to develop an optimal home base return path. The return path may or may not be similar to the outbound path, and what defines optimal may change with, and even within, each mission. A novel path planning algorithm and prototype program was developed using biologically inspired particle swarm optimization (PSO) that generates an optimal path of traversal while avoiding obstacles. Applications include emergency path planning on lunar, Martian, and/or asteroid surfaces, generating multiple scenarios for outbound missions, Earth-based search and rescue, as well as human manual traversal and/or path integration into robotic control systems. The strategy allows for a changing environment, and can be re-tasked at will and run in real-time situations. Given a random extraterrestrial planetary or small body surface position, the goal was to find the fastest (or shortest) path to an arbitrary position such as a safe zone or geographic objective, subject to possibly varying constraints. The problem requires a workable solution 100% of the time, though it does not require the absolute theoretical optimum. Obstacles should be avoided, but if they cannot be, then the algorithm needs to be smart enough to recognize this and deal with it. With some modifications, it works with non-stationary error topologies as well.

  9. Quantifying fenbendazole and its metabolites in self-medicating wild red grouse Lagopus lagopus scoticus using an HPLC-MS-MS approach.

    PubMed

    Adam, Aileen; Webster, Lucy M I; Mullen, William; Keller, Lukas F; Johnson, Paul C D

    2011-05-11

    On red grouse estates in the UK the nematode parasite Trichostrongylus tenuis is often controlled by application of grit medicated with the anthelmintic fenbendazole (FBZ). To date, assessment of the efficacy has been inhibited by the inability to quantify uptake of FBZ by the birds. We have developed a simple and sensitive HPLC-MS-MS method for detecting and quantifying FBZ and its metabolites from a 300 mg sample of red grouse liver. This method could be used to improve the efficacy of medicated grit treatment by allowing the identification of conditions and application methods that optimize the uptake of FBZ. With the necessary modifications, our method will also be applicable to other wildlife species where self-medication is used for parasite control. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors.

    PubMed

    Mannan, Ahmad A; Liu, Di; Zhang, Fuzhong; Oyarzún, Diego A

    2017-10-20

    Metabolite biosensors are central to current efforts toward precision engineering of metabolism. Although most research has focused on building new biosensors, their tunability remains poorly understood and is fundamental for their broad applicability. Here we asked how genetic modifications shape the dose-response curve of biosensors based on metabolite-responsive transcription factors. Using the lac system in Escherichia coli as a model system, we built promoter libraries with variable operator sites that reveal interdependencies between biosensor dynamic range and response threshold. We developed a phenomenological theory to quantify such design constraints in biosensors with various architectures and tunable parameters. Our theory reveals a maximal achievable dynamic range and exposes tunable parameters for orthogonal control of dynamic range and response threshold. Our work sheds light on fundamental limits of synthetic biology designs and provides quantitative guidelines for biosensor design in applications such as dynamic pathway control, strain optimization, and real-time monitoring of metabolism.

  11. A review of the design and modification of lactoferricins and their derivatives.

    PubMed

    Hao, Ya; Yang, Na; Teng, Da; Wang, Xiumin; Mao, Ruoyu; Wang, Jianhua

    2018-06-01

    Lactoferricin (Lfcin), a multifunction short peptide with a length of 25 residues, is derived from the whey protein lactoferrin by acidic pepsin hydrolysis. It has potent nutritional enhancement, antimicrobial, anticancer, antiviral, antiparasitic, and anti-inflammatory activities. This review describes the research advantages of the above biological functions, with attention to the molecular design and modification of Lfcin. In this examination of design and modification studies, research on the identification of Lfcin active derivatives and crucial amino acid residues is also reviewed. Many strategies for Lfcin optimization have been studied in recent decades, but we mainly introduce chemical modification, cyclization, chimera and polymerization of this peptide. Modifications such as incorporation of D-amino acids, acetylation and/or amidation could effectively improve the activity and stability of these compounds. Due to their wide array of bio-functions and applications, Lfcins have great potential to be developed as biological agents with multiple functions involved with nutritional enhancement, as well as disease preventive and therapeutic effects.

  12. Langley's Computational Efforts in Sonic-Boom Softening of the Boeing HSCT

    NASA Technical Reports Server (NTRS)

    Fouladi, Kamran

    1999-01-01

    NASA Langley's computational efforts in the sonic-boom softening of the Boeing high-speed civil transport are discussed in this paper. In these efforts, an optimization process using a higher order Euler method for analysis was employed to reduce the sonic boom of a baseline configuration through fuselage camber and wing dihedral modifications. Fuselage modifications did not provide any improvements, but the dihedral modifications were shown to be an important tool for the softening process. The study also included aerodynamic and sonic-boom analyses of the baseline and some of the proposed "softened" configurations. Comparisons of two Euler methodologies and two propagation programs for sonic-boom predictions are also discussed in the present paper.

  13. Lightness modification of color image for protanopia and deuteranopia

    NASA Astrophysics Data System (ADS)

    Tanaka, Go; Suetake, Noriaki; Uchino, Eiji

    2010-01-01

    In multimedia content, colors play important roles in conveying visual information. However, color information cannot always be perceived uniformly by all people. People with a color vision deficiency, such as dichromacy, cannot recognize and distinguish certain color combinations. In this paper, an effective lightness modification method, which enables barrier-free color vision for people with dichromacy, especially protanopia or deuteranopia, while preserving the color information in the original image for people with standard color vision, is proposed. In the proposed method, an optimization problem concerning lightness components is first defined by considering color differences in an input image. Then a perceptible and comprehensible color image for both protanopes and viewers with no color vision deficiency or both deuteranopes and viewers with no color vision deficiency is obtained by solving the optimization problem. Through experiments, the effectiveness of the proposed method is illustrated.

  14. Bringing Control System User Interfaces to the Web

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xihui; Kasemir, Kay

    With the evolution of web based technologies, especially HTML5 [1], it becomes possible to create web-based control system user interfaces (UI) that are cross-browser and cross-device compatible. This article describes two technologies that facilitate this goal. The first one is the WebOPI [2], which can seamlessly display CSS BOY [3] Operator Interfaces (OPI) in web browsers without modification to the original OPI file. The WebOPI leverages the powerful graphical editing capabilities of BOY and provides the convenience of re-using existing OPI files. On the other hand, it uses generic JavaScript and a generic communication mechanism between the web browser andmore » web server. It is not optimized for a control system, which results in unnecessary network traffic and resource usage. Our second technology is the WebSocket-based Process Data Access (WebPDA) [4]. It is a protocol that provides efficient control system data communication using WebSocket [5], so that users can create web-based control system UIs using standard web page technologies such as HTML, CSS and JavaScript. WebPDA is control system independent, potentially supporting any type of control system.« less

  15. The hospital incident command system: modified model for hospitals in iran.

    PubMed

    Djalali, Ahmadreza; Hosseinijenab, Vahid; Peyravi, Mahmoudreza; Nekoei-Moghadam, Mahmood; Hosseini, Bashir; Schoenthal, Lisa; Koenig, Kristi L

    2015-03-27

    Effectiveness of hospital management of disasters requires a well-defined and rehearsed system. The Hospital Incident Command System (HICS), as a standardized method for command and control, was established in Iranian hospitals, but it has performed fairly during disaster exercises. This paper describes the process for, and modifications to HICS undertaken to optimize disaster management in hospitals in Iran. In 2013, a group of 11 subject matter experts participated in an expert consensus modified Delphi to develop modifications to the 2006 version of HICS. The following changes were recommended by the expert panel and subsequently implemented: 1) A Quality Control Officer was added to the Command group; 2) Security was defined as a new section; 3) Infrastructure and Business Continuity Branches were moved from the Operations Section to the Logistics and the Administration Sections, respectively; and 4) the Planning Section was merged within the Finance/Administration Section. An expert consensus group developed a modified HICS that is more feasible to implement given the managerial organization of hospitals in Iran. This new model may enhance hospital performance in managing disasters. Additional studies are needed to test the feasibility and efficacy of the modified HICS in Iran, both during simulations and actual disasters. This process may be a useful model for other countries desiring to improve disaster incident management systems for their hospitals.

  16. Personal Computer Based Controller For Switched Reluctance Motor Drives

    NASA Astrophysics Data System (ADS)

    Mang, X.; Krishnan, R.; Adkar, S.; Chandramouli, G.

    1987-10-01

    Th9, switched reluctance motor (SRM) has recently gained considerable attention in the variable speed drive market. Two important factors that have contributed to this are, the simplicity of construction and the possibility of developing low cost con-trollers with minimum number of switching devices in the drive circuits. This is mainly due to the state-of-art of the present digital circuits technology and the low cost of switching devices. The control of this motor drive is under research. Optimized performance of the SRM motor drive is very dependent on the integration of the controller, converter and the motor. This research on system integration involves considerable changes in the control algorithms and their implementation. A Personal computer (PC) based controller is very appropriate for this purpose. Accordingly, the present paper is concerned with the design of a PC based controller for a SRM. The PC allows for real-time microprocessor control with the possibility of on-line system parameter modifications. Software reconfiguration of this controller is easier than a hardware based controller. User friendliness is a natural consequence of such a system. Considering the low cost of PCs, this controller will offer an excellent cost-effective means of studying the control strategies for the SRM drive intop greater detail than in the past.

  17. Program document for Energy Systems Optimization Program 2 (ESOP2). Volume 1: Engineering manual

    NASA Technical Reports Server (NTRS)

    Hamil, R. G.; Ferden, S. L.

    1977-01-01

    The Energy Systems Optimization Program, which is used to provide analyses of Modular Integrated Utility Systems (MIUS), is discussed. Modifications to the input format to allow modular inputs in specified blocks of data are described. An optimization feature which enables the program to search automatically for the minimum value of one parameter while varying the value of other parameters is reported. New program option flags for prime mover analyses and solar energy for space heating and domestic hot water are also covered.

  18. R Factor-Controlled Restriction and Modification of Deoxyribonucleic Acid: Restriction Mutants

    PubMed Central

    Yoshimori, Robert; Roulland-Dussoix, Daisy; Boyer, Herbert W.

    1972-01-01

    Restriction mutants of two different R factor-controlled host specificities (RI and RII) were isolated. All of the restriction mutants examined had a normal modification phenotype. No complementation was observed between the RI and RII host specificities. It is concluded that for each host specificity no protein subunit is shared by the restriction endonuclease and modification methylase. PMID:4565538

  19. Using of material-technological modelling for designing production of closed die forgings

    NASA Astrophysics Data System (ADS)

    Ibrahim, K.; Vorel, I.; Jeníček, Š.; Káňa, J.; Aišman, D.; Kotěšovec, V.

    2017-02-01

    Production of forgings is a complex and demanding process which consists of a number of forging operations and, in many cases, includes post-forge heat treatment. An optimized manufacturing line is a prerequisite for obtaining prime-quality products which in turn are essential to profitable operation of a forging company. Problems may, however, arise from modifications to the manufacturing route due to changing customer needs. As a result, the production may have to be suspended temporarily to enable changeover and optimization. Using material-technological modelling, the required modifications can be tested and optimized under laboratory conditions outside the plant without disrupting the production. Thanks to material-technological modelling, the process parameters can be varied rapidly in response to changes in market requirements. Outcomes of the modelling runs include optimum parameters for the forging part’s manufacturing route, values of mechanical properties, and results of microstructure analysis. This article describes the use of material-technological modelling for exploring the impact of the amount of deformation and the rate of cooling of a particular forged part from the finish-forging temperature on its microstructure and related mechanical properties.

  20. Nonlinear Motion Cueing Algorithm: Filtering at Pilot Station and Development of the Nonlinear Optimal Filters for Pitch and Roll

    NASA Technical Reports Server (NTRS)

    Zaychik, Kirill B.; Cardullo, Frank M.

    2012-01-01

    Telban and Cardullo have developed and successfully implemented the non-linear optimal motion cueing algorithm at the Visual Motion Simulator (VMS) at the NASA Langley Research Center in 2005. The latest version of the non-linear algorithm performed filtering of motion cues in all degrees-of-freedom except for pitch and roll. This manuscript describes the development and implementation of the non-linear optimal motion cueing algorithm for the pitch and roll degrees of freedom. Presented results indicate improved cues in the specified channels as compared to the original design. To further advance motion cueing in general, this manuscript describes modifications to the existing algorithm, which allow for filtering at the location of the pilot's head as opposed to the centroid of the motion platform. The rational for such modification to the cueing algorithms is that the location of the pilot's vestibular system must be taken into account as opposed to the off-set of the centroid of the cockpit relative to the center of rotation alone. Results provided in this report suggest improved performance of the motion cueing algorithm.

  1. OPS laser EPI design for different wavelengths

    NASA Astrophysics Data System (ADS)

    Moloney, J. V.; Hader, J.; Li, H.; Kaneda, Y.; Wang, T. S.; Yarborough, M.; Koch, S. W.; Stolz, W.; Kunert, B.; Bueckers, C.; Chaterjee, S.; Hardesty, G.

    2009-02-01

    Design of optimized semiconductor optically-pumped semiconductor lasers (OPSLs) depends on many ingredients starting from the quantum wells, barrier and cladding layers all the way through to the resonant-periodic gain (RPG) and high reflectivity Bragg mirror (DBR) making up the OPSL active mirror. Accurate growth of the individual layers making up the RPG region is critical if performance degradation due to cavity misalignment is to be avoided. Optimization of the RPG+DBR structure requires knowledge of the heat generation and heating sinking of the active mirror. Nonlinear Control Strategies SimuLaseTM software, based on rigorous many-body calculations of the semiconductor optical response, allows for quantum well and barrier optimization by correlating low intensity photoluminescence spectra computed for the design, with direct experimentally measured wafer-level edge and surface PL spectra. Consequently, an OPSL device optimization procedure ideally requires a direct iterative interaction between designer and grower. In this article, we discuss the application of the many-body microscopic approach to OPSL devices lasing at 850nm, 1040nm and 2μm. The latter device involves and application of the many-body approach to mid-IR OPSLs based on antimonide materials. Finally we will present results on based on structural modifications of the epitaxial structure and/or novel material combinations that offer the potential to extend OPSL technology to new wavelength ranges.

  2. A cost-analysis of complex workplace nutrition education and environmental dietary modification interventions.

    PubMed

    Fitzgerald, Sarah; Kirby, Ann; Murphy, Aileen; Geaney, Fiona; Perry, Ivan J

    2017-01-09

    The workplace has been identified as a priority setting to positively influence individuals' dietary behaviours. However, a dearth of evidence exists regarding the costs of implementing and delivering workplace dietary interventions. This study aimed to conduct a cost-analysis of workplace nutrition education and environmental dietary modification interventions from an employer's perspective. Cost data were obtained from a workplace dietary intervention trial, the Food Choice at Work Study. Micro-costing methods estimated costs associated with implementing and delivering the interventions for 1 year in four multinational manufacturing workplaces in Cork, Ireland. The workplaces were allocated to one of the following groups: control, nutrition education alone, environmental dietary modification alone and nutrition education and environmental dietary modification combined. A total of 850 employees were recruited across the four workplaces. For comparison purposes, total costs were standardised for 500 employees per workplace. The combined intervention reported the highest total costs of €31,108. The nutrition education intervention reported total costs of €28,529. Total costs for the environmental dietary modification intervention were €3689. Total costs for the control workplace were zero. The average annual cost per employee was; combined intervention: €62, nutrition education: €57, environmental modification: €7 and control: €0. Nutritionist's time was the main cost contributor across all interventions, (ranging from 53 to 75% of total costs). Within multi-component interventions, the relative cost of implementing and delivering nutrition education elements is high compared to environmental modification strategies. A workplace environmental modification strategy added marginal additional cost, relative to the control. Findings will inform employers and public health policy-makers regarding the economic feasibility of implementing and scaling dietary interventions. Current Controlled Trials: ISRCTN35108237 . Date of registration: The trial was retrospectively registered on 02/07/2013.

  3. Surface modification of biomaterials based on high-molecular polylactic acid and their effect on inflammatory reactions of primary human monocyte-derived macrophages: perspective for personalized therapy.

    PubMed

    Stankevich, Ksenia S; Gudima, Alexandru; Filimonov, Victor D; Klüter, Harald; Mamontova, Evgeniya M; Tverdokhlebov, Sergei I; Kzhyshkowska, Julia

    2015-06-01

    Polylactic acid (PLA) based implants can cause inflammatory complications. Macrophages are key innate immune cells that control inflammation. To provide higher biocompatibility of PLA-based implants with local innate immune cells their surface properties have to be improved. In our study surface modification technique for high-molecular PLA (MW=1,646,600g/mol) based biomaterials was originally developed and successfully applied. Optimal modification conditions were determined. Treatment of PLA films with toluene/ethanol=3/7 mixture for 10min with subsequent exposure in 0.001M brilliant green dye (BGD) solution allows to entrap approximately 10(-9)mol/cm(2) model biomolecules. The modified PLA film surface was characterized by optical microscopy, SERS, FT-IR, UV and TG/DTA/DSC analysis. Tensile strain of modified films was determined as well. The effect of PLA films modified with BGD on the inflammatory reactions of primary human monocyte-derived macrophages was investigated. We developed in vitro test-system by differentiating primary monocyte-derived macrophages on a coating material. Type 1 and type 2 inflammatory cytokines (TNFα, CCL18) secretion and histological biomarkers (CD206, stabilin-1) expression were analyzed by ELISA and confocal microscopy respectively. BGD-modified materials have improved thermal stability and good mechanical properties. However, BGD modifications induced additional donor-specific inflammatory reactions and suppressed tolerogenic phenotype of macrophages. Therefore, our test-system successfully demonstrated specific immunomodulatory effects of original and modified PLA-based biomaterials, and can be further applied for the examination of improved coatings for implants and identification of patient-specific reactions to implants. Copyright © 2015. Published by Elsevier B.V.

  4. Deconflicting Wind-Optimal Aircraft Trajectories in North Atlantic Oceanic Airspace

    NASA Technical Reports Server (NTRS)

    Rodionova, Olga; Delahaye, Daniel; Sridhar, Banavar; Ng, Hok K.

    2016-01-01

    North Atlantic oceanic airspace accommodates more than 1000 flights daily, and is subjected to very strong winds. Flying wind-optimal trajectories yields time and fuel savings for each individual flight. However, when taken together, these trajectories induce a large amount of potential en-route conflicts. This paper analyses the detected conflicts, figuring out conflict distribution in time and space. It further describes an optimization algorithm aimed at reducing the number of conflicts for a daily set of flights on strategic level. Several trajectory modification strategies are discussed, followed with simulation results. Finally, an algorithm improvement is presented aiming at better preserving the trajectory optimality.

  5. Control of equipment isolation system using wavelet-based hybrid sliding mode control

    NASA Astrophysics Data System (ADS)

    Huang, Shieh-Kung; Loh, Chin-Hsiung

    2017-04-01

    Critical non-structural equipment, including life-saving equipment in hospitals, circuit breakers, computers, high technology instrumentations, etc., is vulnerable to strong earthquakes, and on top of that, the failure of the vibration-sensitive equipment will cause severe economic loss. In order to protect vibration-sensitive equipment or machinery against strong earthquakes, various innovative control algorithms are developed to compensate the internal forces that to be applied. These new or improved control strategies, such as the control algorithms based on optimal control theory and sliding mode control (SMC), are also developed for structures engineering as a key element in smart structure technology. The optimal control theory, one of the most common methodologies in feedback control, finds control forces through achieving a certain optimal criterion by minimizing a cost function. For example, the linear-quadratic regulator (LQR) was the most popular control algorithm over the past three decades, and a number of modifications have been proposed to increase the efficiency of classical LQR algorithm. However, except to the advantage of simplicity and ease of implementation, LQR are susceptible to parameter uncertainty and modeling error due to complex nature of civil structures. Different from LQR control, a robust and easy to be implemented control algorithm, SMC has also been studied. SMC is a nonlinear control methodology that forces the structural system to slide along surfaces or boundaries; hence this control algorithm is naturally robust with respect to parametric uncertainties of a structure. Early attempts at protecting vibration-sensitive equipment were based on the use of existing control algorithms as described above. However, in recent years, researchers have tried to renew the existing control algorithms or developing a new control algorithm to adapt the complex nature of civil structures which include the control of both structures and non-structural components. The aim of this paper is to develop a hybrid control algorithm on the control of both structures and equipments simultaneously to overcome the limitations of classical feedback control through combining the advantage of classic LQR and SMC. To suppress vibrations with the frequency contents of strong earthquakes differing from the natural frequencies of civil structures, the hybrid control algorithms integrated with the wavelet-base vibration control algorithm is developed. The performance of classical, hybrid, and wavelet-based hybrid control algorithms as well as the responses of structure and non-structural components are evaluated and discussed through numerical simulation in this study.

  6. Interactive Dose Shaping - efficient strategies for CPU-based real-time treatment planning

    NASA Astrophysics Data System (ADS)

    Ziegenhein, P.; Kamerling, C. P.; Oelfke, U.

    2014-03-01

    Conventional intensity modulated radiation therapy (IMRT) treatment planning is based on the traditional concept of iterative optimization using an objective function specified by dose volume histogram constraints for pre-segmented VOIs. This indirect approach suffers from unavoidable shortcomings: i) The control of local dose features is limited to segmented VOIs. ii) Any objective function is a mathematical measure of the plan quality, i.e., is not able to define the clinically optimal treatment plan. iii) Adapting an existing plan to changed patient anatomy as detected by IGRT procedures is difficult. To overcome these shortcomings, we introduce the method of Interactive Dose Shaping (IDS) as a new paradigm for IMRT treatment planning. IDS allows for a direct and interactive manipulation of local dose features in real-time. The key element driving the IDS process is a two-step Dose Modification and Recovery (DMR) strategy: A local dose modification is initiated by the user which translates into modified fluence patterns. This also affects existing desired dose features elsewhere which is compensated by a heuristic recovery process. The IDS paradigm was implemented together with a CPU-based ultra-fast dose calculation and a 3D GUI for dose manipulation and visualization. A local dose feature can be implemented via the DMR strategy within 1-2 seconds. By imposing a series of local dose features, equal plan qualities could be achieved compared to conventional planning for prostate and head and neck cases within 1-2 minutes. The idea of Interactive Dose Shaping for treatment planning has been introduced and first applications of this concept have been realized.

  7. Hydrodynamics automatic optimization of runner blades for reaction hydraulic turbines

    NASA Astrophysics Data System (ADS)

    Balint, D.; Câmpian, V.; Nedelcu, D.; Megheles, O.

    2012-11-01

    The aim of this paper is to optimize the hydrodynamics of the runner blades of hydraulic turbines. The runner presented is an axial Kaplan one, but the methodology is common also to Francis runners. The whole methodology is implemented in the in-house software QTurbo3D. The effect of the runner blades geometry modification upon its hydrodynamics is shown both from energetic and cavitation points of view.

  8. An Interactive Design Space Supporting Development of Vehicle Architecture Concept Models

    DTIC Science & Technology

    2011-01-01

    Denver, Colorado, USA IMECE2011-64510 AN INTERACTIVE DESIGN SPACE SUPPORTING DEVELOPMENT OF VEHICLE ARCHITECTURE CONCEPT MODELS Gary Osborne...early in the development cycle. Optimization taking place later in the cycle usually occurs at the detail design level, and tends to result in...architecture changes may be imposed, but such modifications are equivalent to a huge optimization cycle covering almost the entire design process, and

  9. Homogeneous screening assay for human tankyrase.

    PubMed

    Narwal, Mohit; Fallarero, Adyary; Vuorela, Pia; Lehtiö, Lari

    2012-06-01

    Tankyrase, a member of human PARP protein superfamily, catalyzes a covalent post-translational modification of substrate proteins. This modification, poly(ADP-ribos)ylation, leads to changes in protein interactions and modifies downstream signaling events. Tankyrase 1 is a potential drug target due to its functions in telomere homeostasis and in Wnt signaling. We describe here optimization and application of an activity-based homogenous assay for tankyrase inhibitors in a high-throughput screening format. The method measures the consumption of substrate by the chemical conversion of the remaining NAD(+) into a stable fluorescent condensation product. Conditions were optimized to measure the enzymatic auto-modification of a recombinant catalytic fragment of tankyrase 1. The fluorescence assay is inexpensive, operationally easy and performs well according to the statistical analysis (Z'= 0.7). A validatory screen with a natural product library confirmed suitability of the assay for finding new tankyrase inhibitors. Flavone was the most potent (IC(50)=325 nM) hit from the natural compounds. A flavone derivative, apigenin, and isopropyl gallate showed potency on the micromolar range, but displayed over 30-fold selectivity for tankyrase over the studied isoenzymes PARP1 and PARP2. The assay is robust and will be useful for screening new tankyrase inhibitors.

  10. Undermining and Strengthening Social Networks through Network Modification

    PubMed Central

    Mellon, Jonathan; Yoder, Jordan; Evans, Daniel

    2016-01-01

    Social networks have well documented effects at the individual and aggregate level. Consequently it is often useful to understand how an attempt to influence a network will change its structure and consequently achieve other goals. We develop a framework for network modification that allows for arbitrary objective functions, types of modification (e.g. edge weight addition, edge weight removal, node removal, and covariate value change), and recovery mechanisms (i.e. how a network responds to interventions). The framework outlined in this paper helps both to situate the existing work on network interventions but also opens up many new possibilities for intervening in networks. In particular use two case studies to highlight the potential impact of empirically calibrating the objective function and network recovery mechanisms as well as showing how interventions beyond node removal can be optimised. First, we simulate an optimal removal of nodes from the Noordin terrorist network in order to reduce the expected number of attacks (based on empirically predicting the terrorist collaboration network from multiple types of network ties). Second, we simulate optimally strengthening ties within entrepreneurial ecosystems in six developing countries. In both cases we estimate ERGM models to simulate how a network will endogenously evolve after intervention. PMID:27703198

  11. Detection of RNA nucleoside modifications with the uridine-specific ribonuclease MC1 from Momordica charantia

    PubMed Central

    Addepalli, Balasubrahmanym; Lesner, Nicholas P.; Limbach, Patrick A.

    2015-01-01

    A codon-optimized recombinant ribonuclease, MC1 is characterized for its uridine-specific cleavage ability to map nucleoside modifications in RNA. The published MC1 amino acid sequence, as noted in a previous study, was used as a template to construct a synthetic gene with a natural codon bias favoring expression in Escherichia coli. Following optimization of various expression conditions, the active recombinant ribonuclease was successfully purified as a C-terminal His-tag fusion protein from E. coli [Rosetta 2(DE3)] cells. The isolated protein was tested for its ribonuclease activity against oligoribonucleotides and commercially available E. coli tRNATyr I. Analysis of MC1 digestion products by ion-pairing reverse phase liquid-chromatography coupled with mass spectrometry (IP-RP-LC-MS) revealed enzymatic cleavage of RNA at the 5′-termini of uridine and pseudouridine, but cleavage was absent if the uridine was chemically modified or preceded by a nucleoside with a bulky modification. Furthermore, the utility of this enzyme to generate complementary digestion products to other common endonucleases, such as RNase T1, which enables the unambiguous mapping of modified residues in RNA is demonstrated. PMID:26221047

  12. Undermining and Strengthening Social Networks through Network Modification.

    PubMed

    Mellon, Jonathan; Yoder, Jordan; Evans, Daniel

    2016-10-05

    Social networks have well documented effects at the individual and aggregate level. Consequently it is often useful to understand how an attempt to influence a network will change its structure and consequently achieve other goals. We develop a framework for network modification that allows for arbitrary objective functions, types of modification (e.g. edge weight addition, edge weight removal, node removal, and covariate value change), and recovery mechanisms (i.e. how a network responds to interventions). The framework outlined in this paper helps both to situate the existing work on network interventions but also opens up many new possibilities for intervening in networks. In particular use two case studies to highlight the potential impact of empirically calibrating the objective function and network recovery mechanisms as well as showing how interventions beyond node removal can be optimised. First, we simulate an optimal removal of nodes from the Noordin terrorist network in order to reduce the expected number of attacks (based on empirically predicting the terrorist collaboration network from multiple types of network ties). Second, we simulate optimally strengthening ties within entrepreneurial ecosystems in six developing countries. In both cases we estimate ERGM models to simulate how a network will endogenously evolve after intervention.

  13. Undermining and Strengthening Social Networks through Network Modification

    NASA Astrophysics Data System (ADS)

    Mellon, Jonathan; Yoder, Jordan; Evans, Daniel

    2016-10-01

    Social networks have well documented effects at the individual and aggregate level. Consequently it is often useful to understand how an attempt to influence a network will change its structure and consequently achieve other goals. We develop a framework for network modification that allows for arbitrary objective functions, types of modification (e.g. edge weight addition, edge weight removal, node removal, and covariate value change), and recovery mechanisms (i.e. how a network responds to interventions). The framework outlined in this paper helps both to situate the existing work on network interventions but also opens up many new possibilities for intervening in networks. In particular use two case studies to highlight the potential impact of empirically calibrating the objective function and network recovery mechanisms as well as showing how interventions beyond node removal can be optimised. First, we simulate an optimal removal of nodes from the Noordin terrorist network in order to reduce the expected number of attacks (based on empirically predicting the terrorist collaboration network from multiple types of network ties). Second, we simulate optimally strengthening ties within entrepreneurial ecosystems in six developing countries. In both cases we estimate ERGM models to simulate how a network will endogenously evolve after intervention.

  14. Analyzing Genome-Wide Association Studies with an FDR Controlling Modification of the Bayesian Information Criterion

    PubMed Central

    Dolejsi, Erich; Bodenstorfer, Bernhard; Frommlet, Florian

    2014-01-01

    The prevailing method of analyzing GWAS data is still to test each marker individually, although from a statistical point of view it is quite obvious that in case of complex traits such single marker tests are not ideal. Recently several model selection approaches for GWAS have been suggested, most of them based on LASSO-type procedures. Here we will discuss an alternative model selection approach which is based on a modification of the Bayesian Information Criterion (mBIC2) which was previously shown to have certain asymptotic optimality properties in terms of minimizing the misclassification error. Heuristic search strategies are introduced which attempt to find the model which minimizes mBIC2, and which are efficient enough to allow the analysis of GWAS data. Our approach is implemented in a software package called MOSGWA. Its performance in case control GWAS is compared with the two algorithms HLASSO and d-GWASelect, as well as with single marker tests, where we performed a simulation study based on real SNP data from the POPRES sample. Our results show that MOSGWA performs slightly better than HLASSO, where specifically for more complex models MOSGWA is more powerful with only a slight increase in Type I error. On the other hand according to our simulations GWASelect does not at all control the type I error when used to automatically determine the number of important SNPs. We also reanalyze the GWAS data from the Wellcome Trust Case-Control Consortium and compare the findings of the different procedures, where MOSGWA detects for complex diseases a number of interesting SNPs which are not found by other methods. PMID:25061809

  15. Maximum type 1 error rate inflation in multiarmed clinical trials with adaptive interim sample size modifications.

    PubMed

    Graf, Alexandra C; Bauer, Peter; Glimm, Ekkehard; Koenig, Franz

    2014-07-01

    Sample size modifications in the interim analyses of an adaptive design can inflate the type 1 error rate, if test statistics and critical boundaries are used in the final analysis as if no modification had been made. While this is already true for designs with an overall change of the sample size in a balanced treatment-control comparison, the inflation can be much larger if in addition a modification of allocation ratios is allowed as well. In this paper, we investigate adaptive designs with several treatment arms compared to a single common control group. Regarding modifications, we consider treatment arm selection as well as modifications of overall sample size and allocation ratios. The inflation is quantified for two approaches: a naive procedure that ignores not only all modifications, but also the multiplicity issue arising from the many-to-one comparison, and a Dunnett procedure that ignores modifications, but adjusts for the initially started multiple treatments. The maximum inflation of the type 1 error rate for such types of design can be calculated by searching for the "worst case" scenarios, that are sample size adaptation rules in the interim analysis that lead to the largest conditional type 1 error rate in any point of the sample space. To show the most extreme inflation, we initially assume unconstrained second stage sample size modifications leading to a large inflation of the type 1 error rate. Furthermore, we investigate the inflation when putting constraints on the second stage sample sizes. It turns out that, for example fixing the sample size of the control group, leads to designs controlling the type 1 error rate. © 2014 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Simultaneous Aerodynamic and Structural Design Optimization (SASDO) for a 3-D Wing

    NASA Technical Reports Server (NTRS)

    Gumbert, Clyde R.; Hou, Gene J.-W.; Newman, Perry A.

    2001-01-01

    The formulation and implementation of an optimization method called Simultaneous Aerodynamic and Structural Design Optimization (SASDO) is shown as an extension of the Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) method. It is extended by the inclusion of structure element sizing parameters as design variables and Finite Element Method (FEM) analysis responses as constraints. The method aims to reduce the computational expense. incurred in performing shape and sizing optimization using state-of-the-art Computational Fluid Dynamics (CFD) flow analysis, FEM structural analysis and sensitivity analysis tools. SASDO is applied to a simple. isolated, 3-D wing in inviscid flow. Results show that the method finds the saine local optimum as a conventional optimization method with some reduction in the computational cost and without significant modifications; to the analysis tools.

  17. Investigation of Active Flow Control to Improve Aerodynamic Performance of Oscillating Wings

    NASA Technical Reports Server (NTRS)

    Narducci, Robert P.; Bowersox, Rodney; Bussom, Richard; McVeigh, Michael; Raghu, Surya; White, Edward

    2014-01-01

    The objective of this effort is to design a promising active flow control concept on an oscillating airfoil for on-blade alleviation of dynamic stall. The concept must be designed for a range of representative Mach numbers (0.2 to 0.5) and representative reduced frequency characteristics of a full-scale rotorcraft. Specifications for a sweeping-jet actuator to mitigate the detrimental effects of retreating blade stall experienced by edgewise rotors in forward flight has been performed. Wind tunnel modifications have been designed to accommodate a 5x6 test section in the Oran W. Nicks Low Speed Wind Tunnel at Texas A&M University that will allow the tunnel to achieve Mach 0.5. The flow control design is for a two-dimensional oscillating VR-7 blade section with a 15- inch chord at rotor-relevant flow conditions covering the range of reduced frequencies from 0.0 to 0.15 and Mach numbers from 0.2 to 0.5. A Computational Fluid Dynamics (CFD) analysis has been performed to influence the placement of the flow control devices for optimal effectiveness.

  18. Robust controller design for flexible structures using normalized coprime factor plant descriptions

    NASA Technical Reports Server (NTRS)

    Armstrong, Ernest S.

    1993-01-01

    Stabilization is a fundamental requirement in the design of feedback compensators for flexible structures. The search for the largest neighborhood around a given design plant for which a single controller produces closed-loop stability can be formulated as an H(sub infinity) control problem. The use of normalized coprime factor plant descriptions, in which the plant perturbations are defined as additive modifications to the coprime factors, leads to a closed-form expression for the maximum neighborhood boundary allowing optimal and suboptimal H(sub infinity) compensators to be computed directly without the usual gamma iteration. A summary of the theory on robust stabilization using normalized coprime factor plant descriptions is presented, and the application of the theory to the computation of robustly stable compensators for the phase version of the Control-Structures Interaction (CSI) Evolutionary Model is described. Results from the application indicate that the suboptimal version of the theory has the potential of providing the bases for the computation of low-authority compensators that are robustly stable to expected variations in design model parameters and additive unmodeled dynamics.

  19. Highly defined 3D printed chitosan scaffolds featuring improved cell growth.

    PubMed

    Elviri, Lisa; Foresti, Ruben; Bergonzi, Carlo; Zimetti, Francesca; Marchi, Cinzia; Bianchera, Annalisa; Bernini, Franco; Silvestri, Marco; Bettini, Ruggero

    2017-07-12

    The augmented demand for medical devices devoted to tissue regeneration and possessing a controlled micro-architecture means there is a need for industrial scale-up in the production of hydrogels. A new 3D printing technique was applied to the automation of a freeze-gelation method for the preparation of chitosan scaffolds with controlled porosity. For this aim, a dedicated 3D printer was built in-house: a preliminary effort has been necessary to explore the printing parameter space to optimize the printing results in terms of geometry, tolerances and mechanical properties of the product. Analysed parameters included viscosity of the starting chitosan solution, which was measured with a Brookfield viscometer, and temperature of deposition, which was determined by filming the process with a cryocooled sensor thermal camera. Optimized parameters were applied to the production of scaffolds from solutions of chitosan alone or with the addition of raffinose as a viscosity modifier. Resulting hydrogels were characterized in terms of morphology and porosity. In vitro cell culture studies comparing 3D printed scaffolds with their homologous produced by solution casting evidenced an improvement in biocompatibility deriving from the production technique as well as from the solid state modification of chitosan stemming from the addition of the viscosity modifier.

  20. Tools for phospho- and glycoproteomics of plasma membranes.

    PubMed

    Wiśniewski, Jacek R

    2011-07-01

    Analysis of plasma membrane proteins and their posttranslational modifications is considered as important for identification of disease markers and targets for drug treatment. Due to their insolubility in water, studying of plasma membrane proteins using mass spectrometry has been difficult for a long time. Recent technological developments in sample preparation together with important improvements in mass spectrometric analysis have facilitated analysis of these proteins and their posttranslational modifications. Now, large scale proteomic analyses allow identification of thousands of membrane proteins from minute amounts of sample. Optimized protocols for affinity enrichment of phosphorylated and glycosylated peptides have set new dimensions in the depth of characterization of these posttranslational modifications of plasma membrane proteins. Here, I summarize recent advances in proteomic technology for the characterization of the cell surface proteins and their modifications. In the focus are approaches allowing large scale mapping rather than analytical methods suitable for studying individual proteins or non-complex mixtures.

  1. Covalent modification of graphene and graphite using diazonium chemistry: tunable grafting and nanomanipulation.

    PubMed

    Greenwood, John; Phan, Thanh Hai; Fujita, Yasuhiko; Li, Zhi; Ivasenko, Oleksandr; Vanderlinden, Willem; Van Gorp, Hans; Frederickx, Wout; Lu, Gang; Tahara, Kazukuni; Tobe, Yoshito; Uji-I, Hiroshi; Mertens, Stijn F L; De Feyter, Steven

    2015-05-26

    We shine light on the covalent modification of graphite and graphene substrates using diazonium chemistry under ambient conditions. We report on the nature of the chemical modification of these graphitic substrates, the relation between molecular structure and film morphology, and the impact of the covalent modification on the properties of the substrates, as revealed by local microscopy and spectroscopy techniques and electrochemistry. By careful selection of the reagents and optimizing reaction conditions, a high density of covalently grafted molecules is obtained, a result that is demonstrated in an unprecedented way by scanning tunneling microscopy (STM) under ambient conditions. With nanomanipulation, i.e., nanoshaving using STM, surface structuring and functionalization at the nanoscale is achieved. This manipulation leads to the removal of the covalently anchored molecules, regenerating pristine sp(2) hybridized graphene or graphite patches, as proven by space-resolved Raman microscopy and molecular self-assembly studies.

  2. Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control

    NASA Technical Reports Server (NTRS)

    Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan

    2003-01-01

    An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.

  3. Improving Control in a Joule-Thomson Refrigerator

    NASA Technical Reports Server (NTRS)

    Borders, James; Pearson, David; Prina, Mauro

    2005-01-01

    A report discusses a modified design of a Joule-Thomson (JT) refrigerator under development to be incorporated into scientific instrumentation aboard a spacecraft. In most other JT refrigerators (including common household refrigerators), the temperature of the evaporator (the cold stage) is kept within a desired narrow range by turning a compressor on and off as needed. This mode of control is inadequate for the present refrigerator because a JT-refrigerator compressor performs poorly when the flow from its evaporator varies substantially, and this refrigerator is required to maintain adequate cooling power. The proposed design modifications include changes in the arrangement of heat exchangers, addition of a clamp that would afford a controlled heat leak from a warmer to a cooler stage to smooth out temperature fluctuations in the cooler stage, and incorporation of a proportional + integral + derivative (PID) control system that would regulate the heat leak to maintain the temperature of the evaporator within a desired narrow range while keeping the amount of liquid in the evaporator within a very narrow range in order to optimize the performance of the compressor. Novelty lies in combining the temperature- and cooling-power-regulating controls into a single control system.

  4. Optimal boarding method for airline passengers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steffen, Jason H.; /Fermilab

    2008-02-01

    Using a Markov Chain Monte Carlo optimization algorithm and a computer simulation, I find the passenger ordering which minimizes the time required to board the passengers onto an airplane. The model that I employ assumes that the time that a passenger requires to load his or her luggage is the dominant contribution to the time needed to completely fill the aircraft. The optimal boarding strategy may reduce the time required to board and airplane by over a factor of four and possibly more depending upon the dimensions of the aircraft. I explore some features of the optimal boarding method andmore » discuss practical modifications to the optimal. Finally, I mention some of the benefits that could come from implementing an improved passenger boarding scheme.« less

  5. Modification and optimization of the united-residue (UNRES) potential-energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins

    PubMed Central

    Liwo, Adam; Khalili, Mey; Czaplewski, Cezary; Kalinowski, Sebastian; Ołdziej, Stanisław; Wachucik, Katarzyna; Scheraga, Harold A.

    2011-01-01

    We report the modification and parameterization of the united-residue (UNRES) force field for energy-based protein-structure prediction and protein-folding simulations. We tested the approach on three training proteins separately: 1E0L (β), 1GAB (α), and 1E0G (α + β). Heretofore, the UNRES force field had been designed and parameterized to locate native-like structures of proteins as global minima of their effective potential-energy surfaces, which largely neglected the conformational entropy because decoys composed of only lowest-energy conformations were used to optimize the force field. Recently, we developed a mesoscopic dynamics procedure for UNRES, and applied it with success to simulate protein folding pathways. How ever, the force field turned out to be largely biased towards α-helical structures in canonical simulations because the conformational entropy had been neglected in the parameterization. We applied the hierarchical optimization method developed in our earlier work to optimize the force field, in which the conformational space of a training protein is divided into levels each corresponding to a certain degree of native-likeness. The levels are ordered according to increasing native-likeness; level 0 corresponds to structures with no native-like elements and the highest level corresponds to the fully native-like structures. The aim of optimization is to achieve the order of the free energies of levels, decreasing as their native-likeness increases. The procedure is iterative, and decoys of the training protein(s) generated with the energy-function parameters of the preceding iteration are used to optimize the force field in a current iteration. We applied the multiplexing replica exchange molecular dynamics (MREMD) method, recently implemented in UNRES, to generate decoys; with this modification, conformational entropy is taken into account. Moreover, we optimized the free-energy gaps between levels at temperatures corresponding to a predominance of folded or unfolded structures, as well as to structures at the putative folding-transition temperature, changing the sign of the gaps at the transition temperature. This enabled us to obtain force fields characterized by a single peak in the heat capacity at the transition temperature. Furthermore, we introduced temperature dependence to the UNRES force field; this is consistent with the fact that it is a free-energy and not a potential-energy function. PMID:17201450

  6. Nanodiscs in Membrane Biochemistry and Biophysics.

    PubMed

    Denisov, Ilia G; Sligar, Stephen G

    2017-03-22

    Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on the molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system that provides control over size, composition, and specific functional modifications on the nanometer scale. In this review we attempted to combine a comprehensive list of various applications of nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by nanodiscs for structural and mechanistic studies of membrane proteins.

  7. Condensation phenomenon detection through surface plasmon resonance.

    PubMed

    Ibrahim, Joyce; Al Masri, Mostafa; Veillas, Colette; Celle, Frédéric; Cioulachtjian, Serge; Verrier, Isabelle; Lefèvre, Frédéric; Parriaux, Olivier; Jourlin, Yves

    2017-10-02

    The aim of this work is to optically detect the condensation of acetone vapor on an aluminum plate cooled down in a two-phase environment (liquid/vapor). Sub-micron period aluminum based diffraction gratings with appropriate properties, exhibiting a highly sensitive plasmonic response, were successfully used for condensation experiments. A shift in the plasmonic wavelength resonance has been measured when acetone condensation on the aluminum surface takes place due to a change of the surrounding medium close to the surface, demonstrating that the surface modification occurs at the very beginning of the condensation phenomenon. This paper presents important steps in comprehending the incipience of condensate droplet and frost nucleation (since both mechanisms are similar) and thus to control the phenomenon by using an optimized engineered surface.

  8. Adiabatic Soliton Laser

    NASA Astrophysics Data System (ADS)

    Bednyakova, Anastasia; Turitsyn, Sergei K.

    2015-03-01

    The key to generating stable optical pulses is mastery of nonlinear light dynamics in laser resonators. Modern techniques to control the buildup of laser pulses are based on nonlinear science and include classical solitons, dissipative solitons, parabolic pulses (similaritons) and various modifications and blending of these methods. Fiber lasers offer remarkable opportunities to apply one-dimensional nonlinear science models for the design and optimization of very practical laser systems. Here, we propose a new concept of a laser based on the adiabatic amplification of a soliton pulse in the cavity—the adiabatic soliton laser. The adiabatic change of the soliton parameters during evolution in the resonator relaxes the restriction on the pulse energy inherent in traditional soliton lasers. Theoretical analysis is confirmed by extensive numerical modeling.

  9. Systemic administration of a PEGylated adenovirus vector with a cancer-specific promoter is effective in a mouse model of metastasis.

    PubMed

    Yao, X; Yoshioka, Y; Morishige, T; Eto, Y; Watanabe, H; Okada, Y; Mizuguchi, H; Mukai, Y; Okada, N; Nakagawa, S

    2009-12-01

    Cancer gene therapy by adenovirus vectors (Advs) for metastatic cancer is limited because systemic administration of Adv produces low therapeutic effect and severe side effects. In this study, we generated a dual cancer-specific targeting vector system by using PEGylation and the telomere reverse transcriptase (TERT) promoter and attempted to treat experimental metastases through systemic administration of the vectors. We first optimized the molecular size of PEG and modification ratios used to create PEG-Ads. Systemic administration of PEG-Ad with 20-kDa PEG at a 45% modification ratio (PEG[20K/45%]-Ad) resulted in higher tumor-selective transgene expression than unmodified Adv. Next, we examined the effectiveness against metastases and side effects of a TERT promoter-driven PEG[20K/45%]-Ad containing the herpes simplex virus thymidine kinase (HSVtk) gene (PEG-Ad-TERT/HSVtk). Systemic administration of PEG-Ad-TERT/HSVtk showed superior antitumor effects against metastases with negligible side effects. A cytomegalovirus (CMV) promoter-driven PEG[20K/45%]-Ad also produced antimetastatic effects, but these were accompanied by side effects. Combining PEG-Ad-TERT/HSVtk with etoposide or 5-fluorouracil enhanced the therapeutic effects with negligible side effects. These results suggest that modification with 20-kDa PEG at a 45% modification ratio is the optimal condition for PEGylation of Adv, and PEG-Ad-TERT/HSVtk is a prototype Adv for systemic cancer gene therapy against metastases.

  10. 77 FR 1726 - Investigations: Terminations, Modifications and Rulings: Certain Video Game Systems and Controllers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-743] Investigations: Terminations, Modifications and Rulings: Certain Video Game Systems and Controllers AGENCY: U.S. International Trade... video game systems and controllers by reason of infringement of claims 16, 27-32, 44, 57, 68, 81, and 84...

  11. Effects of preparation relief and flow channels on seating full coverage castings during cementation.

    PubMed

    Webb, E L; Murray, H V; Holland, G A; Taylor, D F

    1983-06-01

    Machined steel dies were used to study the effects of three die modifications on seating full coverage castings during cementation. The die modifications consisted of occlusal channels, occlusal surface relief, and axial channels. Fourteen specimens having one or more forms of die modification were compared with two control specimens having no die modifications. Statistical analysis of the data revealed that the addition of four axial channels to the simulated preparation on the steel die produced a significant reduction in the mean marginal discrepancy during cementation. Occlusal modifications alone failed to produce significant reductions in marginal discrepancies when compared with the control specimens. Occlusal modifications in conjunction with axial channels failed to produce further significant reductions in marginal discrepancies when compared with those reductions observed in specimens having only axial channels.

  12. Selectively starving cancer cells through dietary manipulation: methods and clinical implications.

    PubMed

    Simone, Brittany A; Champ, Colin E; Rosenberg, Anne L; Berger, Adam C; Monti, Daniel A; Dicker, Adam P; Simone, Nicole L

    2013-07-01

    As the link between obesity and metabolic syndrome and cancer becomes clearer, the need to determine the optimal way to incorporate dietary manipulation in the treatment of cancer patients becomes increasingly important. Metabolic-based therapies, such as caloric restriction, intermittent fasting and a ketogenic diet, have the ability to decrease the incidence of spontaneous tumors and slow the growth of primary tumors, and may have an effect on distant metastases in animal models. Despite the abundance of preclinical data demonstrating the benefit of dietary modification for cancer, to date there are few clinical trials targeting diet as an intervention for cancer patients. We hypothesize that this may be due, in part, to the fact that several different types of diet modification exist with no clear recommendations regarding the optimal method. This article will delineate three commonly used methods of dietary manipulation to assess the potential of each as a regimen for cancer therapy.

  13. Alien Genetic Algorithm for Exploration of Search Space

    NASA Astrophysics Data System (ADS)

    Patel, Narendra; Padhiyar, Nitin

    2010-10-01

    Genetic Algorithm (GA) is a widely accepted population based stochastic optimization technique used for single and multi objective optimization problems. Various versions of modifications in GA have been proposed in last three decades mainly addressing two issues, namely increasing convergence rate and increasing probability of global minima. While both these. While addressing the first issue, GA tends to converge to a local optima and addressing the second issue corresponds the large computational efforts. Thus, to reduce the contradictory effects of these two aspects, we propose a modification in GA by adding an alien member in the population at every generation. Addition of an Alien member in the current population at every generation increases the probability of obtaining global minima at the same time maintaining higher convergence rate. With two test cases, we have demonstrated the efficacy of the proposed GA by comparing with the conventional GA.

  14. A Novel Computer-Aided Approach for Parametric Investigation of Custom Design of Fracture Fixation Plates.

    PubMed

    Chen, Xiaozhong; He, Kunjin; Chen, Zhengming

    2017-01-01

    The present study proposes an integrated computer-aided approach combining femur surface modeling, fracture evidence recover plate creation, and plate modification in order to conduct a parametric investigation of the design of custom plate for a specific patient. The study allows for improving the design efficiency of specific plates on the patients' femur parameters and the fracture information. Furthermore, the present approach will lead to exploration of plate modification and optimization. The three-dimensional (3D) surface model of a detailed femur and the corresponding fixation plate were represented with high-level feature parameters, and the shape of the specific plate was recursively modified in order to obtain the optimal plate for a specific patient. The proposed approach was tested and verified on a case study, and it could be helpful for orthopedic surgeons to design and modify the plate in order to fit the specific femur anatomy and the fracture information.

  15. Early emergence of Yersinia pestis as a severe respiratory pathogen

    PubMed Central

    Zimbler, Daniel L.; Schroeder, Jay A.; Eddy, Justin L.; Lathem, Wyndham W.

    2015-01-01

    Yersinia pestis causes the fatal respiratory disease pneumonic plague. Y. pestis recently evolved from the gastrointestinal pathogen Y. pseudotuberculosis; however, it is not known at what point Y. pestis gained the ability to induce a fulminant pneumonia. Here we show that the acquisition of a single gene encoding the protease Pla was sufficient for the most ancestral, deeply rooted strains of Y. pestis to cause pneumonic plague, indicating that Y. pestis was primed to infect the lungs at a very early stage in its evolution. As Y. pestis further evolved, modern strains acquired a single amino-acid modification within Pla that optimizes protease activity. While this modification is unnecessary to cause pneumonic plague, the substitution is instead needed to efficiently induce the invasive infection associated with bubonic plague. These findings indicate that Y. pestis was capable of causing pneumonic plague before it evolved to optimally cause invasive infections in mammals. PMID:26123398

  16. Early emergence of Yersinia pestis as a severe respiratory pathogen.

    PubMed

    Zimbler, Daniel L; Schroeder, Jay A; Eddy, Justin L; Lathem, Wyndham W

    2015-06-30

    Yersinia pestis causes the fatal respiratory disease pneumonic plague. Y. pestis recently evolved from the gastrointestinal pathogen Y. pseudotuberculosis; however, it is not known at what point Y. pestis gained the ability to induce a fulminant pneumonia. Here we show that the acquisition of a single gene encoding the protease Pla was sufficient for the most ancestral, deeply rooted strains of Y. pestis to cause pneumonic plague, indicating that Y. pestis was primed to infect the lungs at a very early stage in its evolution. As Y. pestis further evolved, modern strains acquired a single amino-acid modification within Pla that optimizes protease activity. While this modification is unnecessary to cause pneumonic plague, the substitution is instead needed to efficiently induce the invasive infection associated with bubonic plague. These findings indicate that Y. pestis was capable of causing pneumonic plague before it evolved to optimally cause invasive infections in mammals.

  17. Application of electroless deposition for surface modification of the multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kurkowska, M.; Awietjan, S.; Kozera, R.; Jezierska, E.; Boczkowska, A.

    2018-06-01

    The paper describes modification of carbon nanotubes surface by attaching the grains of Ni-P, Ni-B, Co-B and Fe-B. The modification was obtained by electroless metallization using sodium hypophosphite (NaH2PO2). We have investigated the parameters of electroless metallization process of CNTs. The uniformity of the coating on the carbon nanotubes was related to proper surface activation. While optimizing the electroless deposition, a range of catalyst concentrations from 0.1 to 1.0 gPd/l were tested. Deposition was used to improve the electrical properties of the later composite materials CNT-Ni-P/epoxy. The best results of electroless deposition were obtained for Ni-P and Ni-B coatings.

  18. Act-and-wait time-delayed feedback control of autonomous systems

    NASA Astrophysics Data System (ADS)

    Pyragas, Viktoras; Pyragas, Kestutis

    2018-02-01

    Recently an act-and-wait modification of time-delayed feedback control has been proposed for the stabilization of unstable periodic orbits in nonautonomous dynamical systems (Pyragas and Pyragas, 2016 [30]). The modification implies a periodic switching of the feedback gain and makes the closed-loop system finite-dimensional. Here we extend this modification to autonomous systems. In order to keep constant the phase difference between the controlled orbit and the act-and-wait switching function an additional small-amplitude periodic perturbation is introduced. The algorithm can stabilize periodic orbits with an odd number of real unstable Floquet exponents using a simple single-input single-output constraint control.

  19. Apolipoprotein A-I mutant proteins having cysteine substitutions and polynucleotides encoding same

    DOEpatents

    Oda, Michael N [Benicia, CA; Forte, Trudy M [Berkeley, CA

    2007-05-29

    Functional Apolipoprotein A-I mutant proteins, having one or more cysteine substitutions and polynucleotides encoding same, can be used to modulate paraoxonase's arylesterase activity. These ApoA-I mutant proteins can be used as therapeutic agents to combat cardiovascular disease, atherosclerosis, acute phase response and other inflammatory related diseases. The invention also includes modifications and optimizations of the ApoA-I nucleotide sequence for purposes of increasing protein expression and optimization.

  20. Optimizing a liquid propellant rocket engine with an automated combustor design code (AUTOCOM)

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Reichel, R. H.; Jones, R. T.; Glatt, C. R.

    1972-01-01

    A procedure for automatically designing a liquid propellant rocket engine combustion chamber in an optimal fashion is outlined. The procedure is contained in a digital computer code, AUTOCOM. The code is applied to an existing engine, and design modifications are generated which provide a substantial potential payload improvement over the existing design. Computer time requirements for this payload improvement were small, approximately four minutes in the CDC 6600 computer.

  1. Multimodal gain control at the hippocampal Schaffer collateral-CA1 synapse.

    PubMed

    Lange-Asschenfeldt, Christian; Schipke, Carola G; Riepe, Matthias W

    2007-04-06

    Information processing at central nervous system synapses is shaped by long-lasting modifications, such as long-term potentiation and short-lived and putatively synapse-specific modifications by various forms of short-term plasticity, such as facilitation, potentiation, and depression. Using an extracellular paired-pulse facilitation (PPF) protocol at the Schaffer collateral-CA1 (SC) connection in acute hippocampal slices in mice, we extend previous reports of optimal signal gain at intermediate interpulse intervals obtained at single SC synapses to the network level. Moreover, maximum signal gain changed when the input intensity was altered. We found further that facilitation decreased with increasing stimulus amplitude and duration in an exact exponential fashion when varied at a fixed interpulse interval. Variation of these intensity parameters accounted for significant changes in PPF adding a spatial dimension to time-based synaptic filter characteristics. Thus, this synapse functions as an amplitude window discriminator with a low-level aperture in combination with a band-pass frequency filter. By providing mathematical functions for the characteristic presynaptic parameters frequency, stimulus amplitude, and pulse duration at the network level our results lay ground for future studies on pharmacologically, genetically, or otherwise altered animal models.

  2. Monster potential meets potential monster: pros and cons of deploying genetically modified microalgae for biofuels production.

    PubMed

    Flynn, K J; Mitra, A; Greenwell, H C; Sui, J

    2013-02-06

    Biofuels production from microalgae attracts much attention but remains an unproven technology. We explore routes to enhance production through modifications to a range of generic microalgal physiological characteristics. Our analysis shows that biofuels production may be enhanced ca fivefold through genetic modification (GM) of factors affecting growth rate, respiration, photoacclimation, photosynthesis efficiency and the minimum cell quotas for nitrogen and phosphorous (N : C and P : C). However, simulations indicate that the ideal GM microalgae for commercial deployment could, on escape to the environment, become a harmful algal bloom species par excellence, with attendant risks to ecosystems and livelihoods. In large measure, this is because an organism able to produce carbohydrate and/or lipid at high rates, providing stock metabolites for biofuels production, will also be able to attain a stoichiometric composition that will be far from optimal as food for the support of zooplankton growth. This composition could suppress or even halt the grazing activity that would otherwise control the microalgal growth in nature. In consequence, we recommend that the genetic manipulation of microalgae, with inherent consequences on a scale comparable to geoengineering, should be considered under strict international regulation.

  3. Monster potential meets potential monster: pros and cons of deploying genetically modified microalgae for biofuels production

    PubMed Central

    Flynn, K. J.; Mitra, A.; Greenwell, H. C.; Sui, J.

    2013-01-01

    Biofuels production from microalgae attracts much attention but remains an unproven technology. We explore routes to enhance production through modifications to a range of generic microalgal physiological characteristics. Our analysis shows that biofuels production may be enhanced ca fivefold through genetic modification (GM) of factors affecting growth rate, respiration, photoacclimation, photosynthesis efficiency and the minimum cell quotas for nitrogen and phosphorous (N : C and P : C). However, simulations indicate that the ideal GM microalgae for commercial deployment could, on escape to the environment, become a harmful algal bloom species par excellence, with attendant risks to ecosystems and livelihoods. In large measure, this is because an organism able to produce carbohydrate and/or lipid at high rates, providing stock metabolites for biofuels production, will also be able to attain a stoichiometric composition that will be far from optimal as food for the support of zooplankton growth. This composition could suppress or even halt the grazing activity that would otherwise control the microalgal growth in nature. In consequence, we recommend that the genetic manipulation of microalgae, with inherent consequences on a scale comparable to geoengineering, should be considered under strict international regulation. PMID:24427510

  4. Combinations of various CpG motifs cloned into plasmid backbone modulate and enhance protective immunity of viral replicon DNA anthrax vaccines.

    PubMed

    Yu, Yun-Zhou; Ma, Yao; Xu, Wen-Hui; Wang, Shuang; Sun, Zhi-Wei

    2015-08-01

    DNA vaccines are generally weak stimulators of the immune system. Fortunately, their efficacy can be improved using a viral replicon vector or by the addition of immunostimulatory CpG motifs, although the design of these engineered DNA vectors requires optimization. Our results clearly suggest that multiple copies of three types of CpG motifs or combinations of various types of CpG motifs cloned into a viral replicon vector backbone with strong immunostimulatory activities on human PBMC are efficient adjuvants for these DNA vaccines to modulate and enhance protective immunity against anthrax, although modifications with these different CpG forms in vivo elicited inconsistent immune response profiles. Modification with more copies of CpG motifs elicited more potent adjuvant effects leading to the generation of enhanced immunity, which indicated a CpG motif dose-dependent enhancement of antigen-specific immune responses. Notably, the enhanced and/or synchronous adjuvant effects were observed in modification with combinations of two different types of CpG motifs, which provides not only a contribution to the knowledge base on the adjuvant activities of CpG motifs combinations but also implications for the rational design of optimal DNA vaccines with combinations of CpG motifs as "built-in" adjuvants. We describe an efficient strategy to design and optimize DNA vaccines by the addition of combined immunostimulatory CpG motifs in a viral replicon DNA plasmid to produce strong immune responses, which indicates that the CpG-modified viral replicon DNA plasmid may be desirable for use as vector of DNA vaccines.

  5. Residential Modifications and Decline in Physical Function among Community-Dwelling Older Adults

    ERIC Educational Resources Information Center

    Liu, Sze Y.; Lapane, Kate L.

    2009-01-01

    Purpose: The purpose of this study is to quantify the effect of residential modification on decreasing risk of physical function decline in 2 years. Design: Cohort study using propensity scores method to control for baseline differences between individuals with residential modifications and those without residential modifications. Participants:…

  6. Experimental design to optimize an Haemophilus influenzae type b conjugate vaccine made with hydrazide-derivatized tetanus toxoid.

    PubMed

    Laferriere, Craig; Ravenscroft, Neil; Wilson, Seanette; Combrink, Jill; Gordon, Lizelle; Petre, Jean

    2011-10-01

    The introduction of type b Haemophilus influenzae conjugate vaccines into routine vaccination schedules has significantly reduced the burden of this disease; however, widespread use in developing countries is constrained by vaccine costs, and there is a need for a simple and high-yielding manufacturing process. The vaccine is composed of purified capsular polysaccharide conjugated to an immunogenic carrier protein. To improve the yield and rate of the reductive amination conjugation reaction used to make this vaccine, some of the carboxyl groups of the carrier protein, tetanus toxoid, were modified to hydrazides, which are more reactive than the ε -amine of lysine. Other reaction parameters, including the ratio of the reactants, the size of the polysaccharide, the temperature and the salt concentration, were also investigated. Experimental design was used to minimize the number of experiments required to optimize all these parameters to obtain conjugate in high yield with target characteristics. It was found that increasing the reactant ratio and decreasing the size of the polysaccharide increased the polysaccharide:protein mass ratio in the product. Temperature and salt concentration did not improve this ratio. These results are consistent with a diffusion controlled rate limiting step in the conjugation reaction. Excessive modification of tetanus toxoid with hydrazide was correlated with reduced yield and lower free polysaccharide. This was attributed to a greater tendency for precipitation, possibly due to changes in the isoelectric point. Experimental design and multiple regression helped identify key parameters to control and thereby optimize this conjugation reaction.

  7. 33 CFR 332.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following terms are defined: Adaptive management means the development of a management strategy that... guides modification of those projects to optimize performance. It includes the selection of appropriate... monitoring results to identify potential problems of a compensatory mitigation project and the identification...

  8. Effect of mold designs on molten metal behaviour in high-pressure die casting

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. D.; Rahman, M. R. A.; Khan, A. A.; Mohamad, M. R.; Suffian, M. S. Z. M.; Yunos, Y. S.; Wong, L. K.; Mohtar, M. Z.

    2017-04-01

    This paper presents a research study conducted in a local automotive component manufacturer that produces aluminium alloy steering housing local and global markets. This study is to investigate the effect of design modification of mold in die casting as to improve the production rate. Design modification is carried out on the casting shot of the mold. Computer flow simulation was carried out to study the flow of molten metal in the mold with respect to the mold design modification. The design parameters of injection speed, die temperature and clamping force has been included in the study. The result of the simulation showed that modifications of casting shot give significant impact towards the molten flow behaviour in casting process. The capabilities and limitations of die casting process simulation to conduct defect analysis had been optimized. This research will enhance the efficiency of the mass production of the industry of die casting with the understanding of defect analysis, which lies on the modification of the mold design, a way early in its stages of production.

  9. Description, validation, and modification of the Guyton model for space-flight applications. Part A. Guyton model of circulatory, fluid and electrolyte control. Part B. Modification of the Guyton model for circulatory, fluid and electrolyte control

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1985-01-01

    The mathematical model that has been a cornerstone for the systems analysis of space-flight physiological studies is the Guyton model describing circulatory, fluid and electrolyte regulation. The model and the modifications that are made to permit simulation and analysis of the stress of weightlessness are described.

  10. A Designed Peptide Targets Two Types of Modifications of p53 with Anti-cancer Activity.

    PubMed

    Liang, Lunxi; Wang, Huanbin; Shi, Hubing; Li, Zhaoli; Yao, Han; Bu, Zhigao; Song, Ningning; Li, Chushu; Xiang, Dabin; Zhang, Yao; Wang, Jilin; Hu, Ye; Xu, Qi; Ma, Yanlei; Cheng, Zhongyi; Wang, Yingchao; Zhao, Shuliang; Qian, Jin; Chen, Yingxuan; Fang, Jing-Yuan; Xu, Jie

    2018-06-21

    Many cancer-related proteins are controlled by composite post-translational modifications (PTMs), but prevalent strategies only target one type of modification. Here we describe a designed peptide that controls two types of modifications of the p53 tumor suppressor, based on the discovery of a protein complex that suppresses p53 (suppresome). We found that Morn3, a cancer-testis antigen, recruits different PTM enzymes, such as sirtuin deacetylase and ubiquitin ligase, to confer composite modifications on p53. The molecular functions of Morn3 were validated through in vivo assays and chemico-biological intervention. A rationally designed Morn3-targeting peptide (Morncide) successfully activated p53 and suppressed tumor growth. These findings shed light on the regulation of protein PTMs and present a strategy for targeting two modifications with one molecule. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Spatial and temporal control of the diazonium modification of sp2 carbon surfaces.

    PubMed

    Kirkman, Paul M; Güell, Aleix G; Cuharuc, Anatolii S; Unwin, Patrick R

    2014-01-08

    Interest in the controlled chemical functionalization of sp(2) carbon materials using diazonium compounds has been recently reignited, particularly as a means to generate a band gap in graphene. We demonstrate local diazonium modification of pristine sp(2) carbon surfaces, with high control, at the micrometer scale through the use of scanning electrochemical cell microscopy (SECCM). Electrochemically driven diazonium patterning is investigated at a range of driving forces, coupled with surface analysis using atomic force microscopy (AFM) and Raman spectroscopy. We highlight how the film density, level of sp(2)/sp(3) rehybridization and the extent of multilayer formation can be controlled, paving the way for the use of localized electrochemistry as a route to controlled diazonium modification.

  12. Multidimensional biochemical information processing of dynamical patterns

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  13. Computationally guided discovery of thermoelectric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorai, Prashun; Stevanović, Vladan; Toberer, Eric S.

    The potential for advances in thermoelectric materials, and thus solid-state refrigeration and power generation, is immense. Progress so far has been limited by both the breadth and diversity of the chemical space and the serial nature of experimental work. In this Review, we discuss how recent computational advances are revolutionizing our ability to predict electron and phonon transport and scattering, as well as materials dopability, and we examine efficient approaches to calculating critical transport properties across large chemical spaces. When coupled with experimental feedback, these high-throughput approaches can stimulate the discovery of new classes of thermoelectric materials. Within smaller materialsmore » subsets, computations can guide the optimal chemical and structural tailoring to enhance materials performance and provide insight into the underlying transport physics. Beyond perfect materials, computations can be used for the rational design of structural and chemical modifications (such as defects, interfaces, dopants and alloys) to provide additional control on transport properties to optimize performance. Through computational predictions for both materials searches and design, a new paradigm in thermoelectric materials discovery is emerging.« less

  14. Computationally guided discovery of thermoelectric materials

    DOE PAGES

    Gorai, Prashun; Stevanović, Vladan; Toberer, Eric S.

    2017-08-22

    The potential for advances in thermoelectric materials, and thus solid-state refrigeration and power generation, is immense. Progress so far has been limited by both the breadth and diversity of the chemical space and the serial nature of experimental work. In this Review, we discuss how recent computational advances are revolutionizing our ability to predict electron and phonon transport and scattering, as well as materials dopability, and we examine efficient approaches to calculating critical transport properties across large chemical spaces. When coupled with experimental feedback, these high-throughput approaches can stimulate the discovery of new classes of thermoelectric materials. Within smaller materialsmore » subsets, computations can guide the optimal chemical and structural tailoring to enhance materials performance and provide insight into the underlying transport physics. Beyond perfect materials, computations can be used for the rational design of structural and chemical modifications (such as defects, interfaces, dopants and alloys) to provide additional control on transport properties to optimize performance. Through computational predictions for both materials searches and design, a new paradigm in thermoelectric materials discovery is emerging.« less

  15. Aminolysis of polyethylene terephthalate surface along with in situ synthesis and stabilizing ZnO nanoparticles using triethanolamine optimized with response surface methodology.

    PubMed

    Poortavasoly, Hajar; Montazer, Majid; Harifi, Tina

    2016-01-01

    This research concerned the simultaneous polyester surface modification and synthesis of zinc oxide nano-reactors to develop durable photo-bio-active fabric with variable hydrophobicity/hydrophilicity under sunlight. For this purpose, triethanolamine (TEA) was applied as a stabilizer and pH adjusting chemical for the aminolysis of polyester surface and enhancing the surface reactivity along with synthesis and deposition of ZnO nanoparticles on the fabric. Therefore, TEA played a crucial role in providing the alkaline condition for the preparation of zinc oxide nanoparticles and acting as stabilizer controlling the size of the prepared nanoparticles. The stain-photodegradability regarded as self-cleaning efficiency, wettability and weight change under the process was optimized based on zinc acetate and TEA concentrations, using central composite design (CCD). Findings also suggested the potential of the prepared fabric in inhibiting Staphylococcus aureus and Escherichia coli bacteria growth with greater than 99.99% antibacterial efficiency. Besides, the proposed treatment had no detrimental effect on tensile strength and hand feeling of the polyester fabric. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Multidimensional biochemical information processing of dynamical patterns.

    PubMed

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  17. Toward the optimization of control of unsteady separation

    NASA Technical Reports Server (NTRS)

    Shen, S. F.; Xiao, Zheng-Hua

    1992-01-01

    Regardless of our understanding of the complicated physical process, means can always be found to alter the occurrence and development of unsteady separation. To be able to optimize the control of separation, however, requires the identification of the critical aspects to which the intervention may be focused and achieve the desired result with minimum waste of effort. The Lagrangian analysis of unsteady boundary-layer traces the trajectories of individual fluid particles and reveals the 'bad seeds' that, through extreme deformation in the direction normal to the wall, eventually develop into a virtual barrier and cause the ejection of boundary-layer material into the main stream. It follows logically that separation can be triggered or delayed most effectively by targeting these 'bad seeds.' Since they are normally interior points of the boundary layer, attempts to influence them through the boundary conditions are necessarily indirect. Furthermore, as the strategy has to be the modification of the growing process of the 'bad seeds,' whatever may be the intervention scheme, it needs to be strong enough and early enough. In Shen and Wu, examples of how acceleration/deceleration of the two dimensional body, as well as the moving wall of a rotating cylinder, may affect the development of the bad seed toward separation are shown. In fact it was mentioned therein that the results might be the first step for a feasibility study of the control of unsteady separation. Presented are additional results of applying suction to an impulsively started circular cylinder.

  18. Two-step design method for highly compact three-dimensional freeform optical system for LED surface light source.

    PubMed

    Mao, Xianglong; Li, Hongtao; Han, Yanjun; Luo, Yi

    2014-10-20

    Designing an illumination system for a surface light source with a strict compactness requirement is quite challenging, especially for the general three-dimensional (3D) case. In accordance with the two key features of an expected illumination distribution, i.e., a well-controlled boundary and a precise illumination pattern, a two-step design method is proposed in this paper for highly compact 3D freeform illumination systems. In the first step, a target shape scaling strategy is combined with an iterative feedback modification algorithm to generate an optimized freeform optical system with a well-controlled boundary of the target distribution. In the second step, a set of selected radii of the system obtained in the first step are optimized to further improve the illuminating quality within the target region. The method is quite flexible and effective to design highly compact optical systems with almost no restriction on the shape of the desired target field. As examples, three highly compact freeform lenses with ratio of center height h of the lens and the maximum dimension D of the source ≤ 2.5:1 are designed for LED surface light sources to form a uniform illumination distribution on a rectangular, a cross-shaped and a complex cross pierced target plane respectively. High light control efficiency of η > 0.7 as well as low relative standard illumination deviation of RSD < 0.07 is obtained simultaneously for all the three design examples.

  19. Drag reduction strategies

    NASA Technical Reports Server (NTRS)

    Hill, D. Christopher

    1994-01-01

    previously a description was given of an active control scheme using wall transpiration that leads to a 15% reduction in surface skin friction beneath a turbulent boundary layer, according to direct numerical simulation. In this research brief further details of that scheme and its variants are given together with some suggestions as to how sensor/actuator arrays could be configured to reduce surface drag. The research which is summarized here was performed during the first half of 1994. This research is motivated by the need to understand better how the dynamics of near-wall turbulent flow can be modified so that skin friction is reduced. The reduction of turbulent skin friction is highly desirable in many engineering applications. Experiments and direct numerical simulations have led to an increased understanding of the cycle of turbulence production and transport in the boundary layer and raised awareness of the possibility of disrupting the process with a subsequent reduction in turbulent skin friction. The implementation of active feedback control in a computational setting is a viable approach for the investigation of the modifications to the flow physics that can be achieved. Bewley et al. and Hill describe how ideas from optimal control theory are employed to give 'sub-optimal' drag reduction schemes. The objectives of the work reported here is to investigate in greater detail the assumptions implicit within such schemes and their limitations. It is also our objective to describe how an array of sensors and actuators could be arranged and interconnected to form a 'smart' surface which has low skin friction.

  20. A Combinatorial Platform for the Optimization of Peptidomimetic Methyl-Lysine Reader Antagonists

    NASA Astrophysics Data System (ADS)

    Barnash, Kimberly D.

    Post-translational modification of histone N-terminal tails mediates chromatin compaction and, consequently, DNA replication, transcription, and repair. While numerous post-translational modifications decorate histone tails, lysine methylation is an abundant mark important for both gene activation and repression. Methyl-lysine (Kme) readers function through binding mono-, di-, or trimethyl-lysine. Chemical intervention of Kme readers faces numerous challenges due to the broad surface-groove interactions between readers and their cognate histone peptides; yet, the increasing interest in understanding chromatin-modifying complexes suggests tractable lead compounds for Kme readers are critical for elucidating the mechanisms of chromatin dysregulation in disease states and validating the druggability of these domains and complexes. The successful discovery of a peptide-derived chemical probe, UNC3866, for the Polycomb repressive complex 1 (PRC1) chromodomain Kme readers has proven the potential for selective peptidomimetic inhibition of reader function. Unfortunately, the systematic modification of peptides-to-peptidomimetics is a costly and inefficient strategy for target-class hit discovery against Kme readers. Through the exploration of biased chemical space via combinatorial on-bead libraries, we have developed two concurrent methodologies for Kme reader chemical probe discovery. We employ biased peptide combinatorial libraries as a hit discovery strategy with subsequent optimization via iterative targeted libraries. Peptide-to-peptidomimetic optimization through targeted library design was applied based on structure-guided library design around the interaction of the endogenous peptide ligand with three target Kme readers. Efforts targeting the WD40 reader EED led to the discovery of the 3-mer peptidomimetic ligand UNC5115 while combinatorial repurposing of UNC3866 for off-target chromodomains resulted in the discovery of UNC4991, a CDYL/2-selective ligand, and UNC4848, a MPP8 and CDYL/2 ligand. Ultimately, our efforts demonstrate the generalizability of a peptidomimetic combinatorial platform for the optimization of Kme reader ligands in a target class manner.

  1. On the Teaching of a Self-Modification Course

    ERIC Educational Resources Information Center

    Tasto, Donald L.

    1976-01-01

    Discusses teaching techniques, course content, strategies, and problems of teaching a behavior modification course to university students. Course target areas include subjects such as anxiety control, fear elimination, weight control, smoking reduction, interpersonal interaction, assertiveness, and exercise maintenance. (Author/DB)

  2. Accessing conjugated polymers with precisely controlled heterobisfunctional chain ends via post-polymerization modification of the OTf group and controlled Pd(0)/t-Bu 3P-catalyzed Suzuki cross-coupling polymerization

    DOE PAGES

    Hu, Qiao -Sheng; Hong, Kunlun; Zhang, Hong -Hai

    2015-08-12

    In this study, a general strategy toward the synthesis of well-defined conjugated polymers with controlled heterobisfunctional chain ends via combination of controlled Pd(0)/t-Bu 3P Suzuki cross-coupling polymerization with the post-polymerization modification of the triflate (OTf) group was disclosed.

  3. Accessing conjugated polymers with precisely controlled heterobisfunctional chain ends via post-polymerization modification of the OTf group and controlled Pd(0)/t-Bu 3P-catalyzed Suzuki cross-coupling polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Qiao -Sheng; Hong, Kunlun; Zhang, Hong -Hai

    In this study, a general strategy toward the synthesis of well-defined conjugated polymers with controlled heterobisfunctional chain ends via combination of controlled Pd(0)/t-Bu 3P Suzuki cross-coupling polymerization with the post-polymerization modification of the triflate (OTf) group was disclosed.

  4. Post-SELEX optimization of aptamers.

    PubMed

    Gao, Shunxiang; Zheng, Xin; Jiao, Binghua; Wang, Lianghua

    2016-07-01

    Aptamers are functional single-stranded DNA or RNA oligonucleotides, selected in vitro by SELEX (Systematic Evolution of Ligands by Exponential Enrichment), which can fold into stable unique three-dimensional structures that bind their target ligands with high affinity and specificity. Although aptamers show a number of favorable advantages such as better stability and easier modification when compared with the properties of antibodies, only a handful of aptamers have entered clinical trials and only one, pegaptanib, has received US Food and Drug Administration approval for clinical use. The main reasons that limit the practical application of aptamers are insufficient nuclease stability, bioavailability, thermal stability, or even affinity. Some aptamers obtained from modified libraries show better properties; however, polymerase amplification of nucleic acids containing non-natural bases is currently a primary drawback of the SELEX process. This review focuses on several post-SELEX optimization strategies of aptamers identified in recent years. We describe four common methods in detail: truncation, chemical modification, bivalent or multivalent aptamer construction, and mutagenesis. We believe that these optimization strategies should improve one or more specific properties of aptamers, and the type of feature(s) selected for improvement will be dependent on the application purpose.

  5. 75 FR 6252 - Notice of Application for Approval of Discontinuance or Modification of a Railroad Signal System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... Discontinuance or Modification of a Railroad Signal System or Relief From the Requirements of Title 49 Code of... approval for the discontinuance or modification of the signal system or relief from the requirements of 49... Transportation, Inc. seeks approval of the proposed modification of the bridge tender controlled signals to...

  6. Modifications to Improve Data Acquisition and Analysis for Camouflage Design

    DTIC Science & Technology

    1983-01-01

    terrains into facsimiles of the original scenes in 3, 4# or 5 colors in CIELAB notation. Tasks that were addressed included optimization of the...a histogram algorithm (HIST) was used as a first step In the clustering of the CIELAB values of the scene pixels. This algorithm Is highly efficient...however, an optimal process and the CIELAB coordinates of the final color domains can be Influenced by the color coordinate Increments used In the

  7. An optimized expression vector for improving the yield of dengue virus-like particles from transfected insect cells.

    PubMed

    Charoensri, Nicha; Suphatrakul, Amporn; Sriburi, Rungtawan; Yasanga, Thippawan; Junjhon, Jiraphan; Keelapang, Poonsook; Utaipat, Utaiwan; Puttikhunt, Chunya; Kasinrerk, Watchara; Malasit, Prida; Sittisombut, Nopporn

    2014-09-01

    Recombinant virus-like particles (rVLPs) of flaviviruses are non-infectious particles released from cells expressing the envelope glycoproteins prM and E. Dengue virus rVLPs are recognized as a potential vaccine candidate, but large scale production of these particles is hindered by low yields and the occurrence of cytopathic effects. In an approach to improve the yield of rVLPs from transfected insect cells, several components of a dengue serotype 2 virus prM+E expression cassette were modified and the effect of these modifications was assessed during transient expression. Enhancement of extracellular rVLP levels by simultaneous substitutions of the prM signal peptide and the stem-anchor region of E with homologous cellular and viral counterparts, respectively, was further augmented by codon optimization. Extensive formation of multinucleated cells following transfection with the codon-optimized expression cassette was abrogated by introducing an E fusion loop mutation. This mutation also helped restore the extracellular E levels affected negatively by alteration of a charged residue at the pr-M junction, which was intended to promote maturation of rVLPs during export. Optimized expression cassettes generated in this multiple add-on modification approach should be useful in the generation of stably expressing clones and production of dengue virus rVLPs for immunogenicity studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Automatic braking system modification for the Advanced Transport Operating Systems (ATOPS) Transportation Systems Research Vehicle (TSRV)

    NASA Technical Reports Server (NTRS)

    Coogan, J. J.

    1986-01-01

    Modifications were designed for the B-737-100 Research Aircraft autobrake system hardware of the Advanced Transport Operating Systems (ATOPS) Program at Langley Research Center. These modifications will allow the on-board flight control computer to control the aircraft deceleration after landing to a continuously variable level for the purpose of executing automatic high speed turn-offs from the runway. A bread board version of the proposed modifications was built and tested in simulated stopping conditions. Test results, for various aircraft weights, turnoff speed, winds, and runway conditions show that the turnoff speeds are achieved generally with errors less than 1 ft/sec.

  9. Sex determination strategies in 2012: towards a common regulatory model?

    PubMed Central

    2012-01-01

    Sex determination is a complicated process involving large-scale modifications in gene expression affecting virtually every tissue in the body. Although the evolutionary origin of sex remains controversial, there is little doubt that it has developed as a process of optimizing metabolic control, as well as developmental and reproductive functions within a given setting of limited resources and environmental pressure. Evidence from various model organisms supports the view that sex determination may occur as a result of direct environmental induction or genetic regulation. The first process has been well documented in reptiles and fish, while the second is the classic case for avian species and mammals. Both of the latter have developed a variety of sex-specific/sex-related genes, which ultimately form a complete chromosome pair (sex chromosomes/gonosomes). Interestingly, combinations of environmental and genetic mechanisms have been described among different classes of animals, thus rendering the possibility of a unidirectional continuous evolutionary process from the one type of mechanism to the other unlikely. On the other hand, common elements appear throughout the animal kingdom, with regard to a) conserved key genes and b) a central role of sex steroid control as a prerequisite for ultimately normal sex differentiation. Studies in invertebrates also indicate a role of epigenetic chromatin modification, particularly with regard to alternative splicing options. This review summarizes current evidence from research in this hot field and signifies the need for further study of both normal hormonal regulators of sexual phenotype and patterns of environmental disruption. PMID:22357269

  10. Can cardiovascular magnetic resonance prompt early cardiovascular/rheumatic treatment in autoimmune rheumatic diseases? Current practice and future perspectives.

    PubMed

    Mavrogeni, Sophie I; Sfikakis, Petros P; Dimitroulas, Theodoros; Koutsogeorgopoulou, Loukia; Katsifis, Gikas; Markousis-Mavrogenis, George; Kolovou, Genovefa; Kitas, George D

    2018-06-01

    Life expectancy in autoimmune rheumatic diseases (ARDs) remains lower compared to the general population, due to various comoborbidities. Cardiovascular disease (CVD) represents the main contributor to premature mortality. Conventional and biologic disease-modifying antirheumatic drugs (DMARDs) have considerably improved long-term outcomes in ARDs not only by suppressing systemic inflammation but also by lowering CVD burden. Regarding atherosclerotic disease prevention, EULAR has recommended tight disease control accompanied by regular assessment of traditional CVD risk factors and lifestyle changes. However, this approach, although rational and evidence-based, does not account for important issues such as myocardial inflammation and the long asymptomatic period that usually proceeds clinical manifestations of CVD disease in ARDs before or after the diagnosis of systemic disease. Cardiovascular magnetic resonance (CMR) can offer reliable, reproducible and operator independent information regarding myocardial inflammation, ischemia and fibrosis. Some studies suggest a role for CMR in the risk stratification of ARDs and demonstrate that oedema/fibrosis visualisation with CMR may have the potential to inform cardiac and rheumatic treatment modification in ARDs with or without abnormal routine cardiac evaluation. In this review, we discuss how CMR findings could influence anti-rheumatic treatment decisions targeting optimal control of both systemic and myocardial inflammation irrespective of clinical manifestations of cardiac disease. CMR can provide a different approach that is very promising for risk stratification and treatment modification; however, further studies are needed before the inclusion of CMR in the routine evaluation and treatment of patients with ARDs.

  11. Modification of Existing Prestressed Girder Cross-Sections for the Optimal Structural Use of Ultra-High Performance Concrete

    DOT National Transportation Integrated Search

    2008-10-22

    Ultra High Performance Concrete (UHPC) is a class of cementitious materials that share similar characteristics including very large compressive strengths, tensile strength greater than conventional concrete and high durability. The material consists ...

  12. Radar Performance Improvement. Angle Tracking Modification to Fire Control Radar System for Space Shuttle Rendezvous

    NASA Technical Reports Server (NTRS)

    Little, G. R.

    1976-01-01

    The AN/APQ-153 fire control radar modified to provide angle tracking was evaluated for improved performance. The frequency agile modifications are discussed along with the range-rate improvement modifications, and the radar to computer interface. A parametric design and comparison of noncoherent and coherent radar systems are presented. It is shown that the shuttle rendezvous range and range-rate requirements can be made by a Ku-Band noncoherent pulse radar.

  13. Optimization of Ferroelectric Ceramics by Design at the Microstructure Level

    NASA Astrophysics Data System (ADS)

    Jayachandran, K. P.; Guedes, J. M.; Rodrigues, H. C.

    2010-05-01

    Ferroelectric materials show remarkable physical behaviors that make them essential for many devices and have been extensively studied for their applications of nonvolatile random access memory (NvRAM) and high-speed random access memories. Although ferroelectric ceramics (polycrystals) present ease in manufacture and in compositional modifications and represent the widest application area of materials, computational and theoretical studies are sparse owing to many reasons including the large number of constituent atoms. Macroscopic properties of ferroelectric polycrystals are dominated by the inhomogeneities at the crystallographic domain/grain level. Orientation of grains/domains is critical to the electromechanical response of the single crystalline and polycrystalline materials. Polycrystalline materials have the potential of exhibiting better performance at a macroscopic scale by design of the domain/grain configuration at the domain-size scale. This suggests that piezoelectric properties can be optimized by a proper choice of the parameters which control the distribution of grain orientations. Nevertheless, this choice is complicated and it is impossible to analyze all possible combinations of the distribution parameters or the angles themselves. Hence we have implemented the stochastic optimization technique of simulated annealing combined with the homogenization for the optimization problem. The mathematical homogenization theory of a piezoelectric medium is implemented in the finite element method (FEM) by solving the coupled equilibrium electrical and mechanical fields. This implementation enables the study of the dependence of the macroscopic electromechanical properties of a typical crystalline and polycrystalline ferroelectric ceramic on the grain orientation.

  14. An Efficient Electroporation Protocol for the Genetic Modification of Mammalian Cells

    PubMed Central

    Chicaybam, Leonardo; Barcelos, Camila; Peixoto, Barbara; Carneiro, Mayra; Limia, Cintia Gomez; Redondo, Patrícia; Lira, Carla; Paraguassú-Braga, Flávio; Vasconcelos, Zilton Farias Meira De; Barros, Luciana; Bonamino, Martin Hernán

    2017-01-01

    Genetic modification of cell lines and primary cells is an expensive and cumbersome approach, often involving the use of viral vectors. Electroporation using square-wave generating devices, like Lonza’s Nucleofector, is a widely used option, but the costs associated with the acquisition of electroporation kits and the transient transgene expression might hamper the utility of this methodology. In the present work, we show that our in-house developed buffers, termed Chicabuffers, can be efficiently used to electroporate cell lines and primary cells from murine and human origin. Using the Nucleofector II device, we electroporated 14 different cell lines and also primary cells, like mesenchymal stem cells and cord blood CD34+, providing optimized protocols for each of them. Moreover, when combined with sleeping beauty-based transposon system, long-term transgene expression could be achieved in all types of cells tested. Transgene expression was stable and did not interfere with CD34+ differentiation to committed progenitors. We also show that these buffers can be used in CRISPR-mediated editing of PDCD1 gene locus in 293T and human peripheral blood mononuclear cells. The optimized protocols reported in this study provide a suitable and cost-effective platform for the genetic modification of cells, facilitating the widespread adoption of this technology. PMID:28168187

  15. POLLUTANT CONTROL TECHNIQUES FOR PACKAGE BOILERS: HARDWARE MODIFICATIONS AND ALTERNATE FUELS

    EPA Science Inventory

    The report gives results of investigations of four ways to control nitrogen oxide (NOx) emissions from package boilers (both field operating boilers and boiler simulators): (1) variations in combustor operating procedure; (2) combustion modification (flue gas recirculation and st...

  16. LED Lighting – Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity

    PubMed Central

    Monostori, István; Heilmann, Márk; Kocsy, Gábor; Rakszegi, Marianna; Ahres, Mohamed; Altenbach, Susan B.; Szalai, Gabriella; Pál, Magda; Toldi, Dávid; Simon-Sarkadi, Livia; Harnos, Noémi; Galiba, Gábor; Darko, Éva

    2018-01-01

    The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL) regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity. PMID:29780400

  17. LED Lighting - Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity.

    PubMed

    Monostori, István; Heilmann, Márk; Kocsy, Gábor; Rakszegi, Marianna; Ahres, Mohamed; Altenbach, Susan B; Szalai, Gabriella; Pál, Magda; Toldi, Dávid; Simon-Sarkadi, Livia; Harnos, Noémi; Galiba, Gábor; Darko, Éva

    2018-01-01

    The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL) regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity.

  18. Space flight and neurovestibular adaptation

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Bloomberg, J. J.; Harm, D. L.; Paloski, W. H.

    1994-01-01

    Space flight represents a form of sensory stimulus rearrangement requiring modification of established terrestrial response patterns through central reinterpretation. Evidence of sensory reinterpretation is manifested as postflight modifications of eye/head coordination, locomotor patterns, postural control strategies, and illusory perceptions of self or surround motion in conjunction with head movements. Under normal preflight conditions, the head is stabilized during locomotion, but immediately postflight reduced head stability, coupled with inappropriate eye/head coordination, results in modifications of gait. Postflight postural control exhibits increased dependence on vision which compensates for inappropriate interpretation of otolith and proprioceptive inputs. Eye movements compensatory for perceived self motion, rather than actual head movements have been observed postflight. Overall, the in-flight adaptive modification of head stabilization strategies, changes in head/eye coordination, illusionary motion, and postural control are maladaptive for a return to the terrestrial environment.

  19. Study of adaptation to altered gravity through systems analysis of motor control.

    PubMed

    Fox, R A; Daunton, N G; Corcoran, M L

    1998-01-01

    Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals.

  20. [Motivation to quit smoking among ex-smoker university workers and students].

    PubMed

    Behn, V; Sotomayor, H; Cruz, M; Naveas, R

    2001-05-01

    In Chile, 10% of deaths in adults are directly attributed to smoking. To identify intrinsic and extrinsic motivations to quit smoking among a group of subjects that quitted without external help. The motivations to quit smoking were measured using the 20 items Reasons for Quitting Scale (RFQ), in 145 ex smokers (80 students and 65 workers at The University of Conception). The scale identifies intrinsic motivations in the categories health and self control and extrinsic motivations in the categories immediate reinforcement and social pressure. Factorial analysis with orthogonal rotation of the 20 items of the scale, suggested an optimal solution with five factors, that had a maximal impact of 0.43 and explained the motivations in up to a 66% of workers and 65% of students. The factors with the greater impact were the items of immediate reinforcement, social pressure and self control. The category health had only a 6% influence in the modification of smoking habits. The most important motivations to quit smoking in this sample were an immediate reinforcement, social pressure and self control. The analysis of motivations will help to orient smoking cessation programs.

  1. Study of adaptation to altered gravity through systems analysis of motor control

    NASA Astrophysics Data System (ADS)

    Fox, R. A.; Daunton, N. G.; Corcoran, M. L.

    Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals.

  2. Controllable nanoscale inverted pyramids for highly efficient quasi-omnidirectional crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Haiyuan, Xu; Sihua, Zhong; Yufeng, Zhuang; Wenzhong, Shen

    2018-01-01

    Nanoscale inverted pyramid structures (NIPs) have always been regarded as one of the paramount light management schemes to achieve extraordinary performance in various devices, especially in solar cells, due to their outstanding antireflection ability with relative lower surface enhancement ratio. However, current approaches to fabricating NIPs are complicated and not cost-effective for massive cell production in the photovoltaic industry. Here, controllable NIPs are fabricated on crystalline silicon (c-Si) wafers by Ag-catalyzed chemical etching and alkaline modification, which is a preferable all-solution-processed method. Through applying the NIPs to c-Si solar cells and optimizing the cell design, we have successfully achieved highly efficient textured solar cells with NIPs of a champion efficiency of 20.5%. Significantly, these NIPs are further demonstrated to possess a quasi-omnidirectional property over broad sunlight incident angles of approximately 0°-60°. Moreover, NIPs are theoretically revealed to offer light trapping advantages for ultrathin c-Si solar cells. Hence, NIPs formed by a controllable method exhibit great potential to be used in the future photovoltaic industry as surface texture.

  3. Servo Controlled Variable Pressure Modification to Space Shuttle Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Kouns, H. H.

    1983-01-01

    Engineering drawings show modifications made to the constant pressure control of the model AP27V-7 hydraulic pump to an electrically controlled variable pressure setting compensator. A hanger position indicator was included for continuously monitoring hanger angle. A simplex servo driver was furnished for controlling the pressure setting servovalve. Calibration of the rotary variable displacement transducer is described as well as pump performance and response characteristics.

  4. Nuclear Electric Vehicle Optimization Toolset (NEVOT)

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.; Steincamp, James W.; Stewart, Eric T.; Patton, Bruce W.; Pannell, William P.; Newby, Ronald L.; Coffman, Mark E.; Kos, Larry D.; Qualls, A. Lou; Greene, Sherrell

    2004-01-01

    The Nuclear Electric Vehicle Optimization Toolset (NEVOT) optimizes the design of all major nuclear electric propulsion (NEP) vehicle subsystems for a defined mission within constraints and optimization parameters chosen by a user. The tool uses a genetic algorithm (GA) search technique to combine subsystem designs and evaluate the fitness of the integrated design to fulfill a mission. The fitness of an individual is used within the GA to determine its probability of survival through successive generations in which the designs with low fitness are eliminated and replaced with combinations or mutations of designs with higher fitness. The program can find optimal solutions for different sets of fitness metrics without modification and can create and evaluate vehicle designs that might never be considered through traditional design techniques. It is anticipated that the flexible optimization methodology will expand present knowledge of the design trade-offs inherent in designing nuclear powered space vehicles and lead to improved NEP designs.

  5. 75 FR 6251 - Notice of Application for Approval of Discontinuance or Modification of a Railroad Signal System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... Discontinuance or Modification of a Railroad Signal System or Relief From the Requirements of Title 49 Code of... approval for the discontinuance or modification of the signal system or relief from the requirements of 49... Company (BNSF) seeks approval of the proposed modification to the traffic control signal system over the...

  6. Microscopic mechanism of amino silicone oil modification and modification effect with different amino group contents based on molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    He, Liping; Li, Wenjun; Chen, Dachuan; Yuan, Jianmin; Lu, Gang; Zhou, Dianwu

    2018-05-01

    The microscopic mechanism of amino silicone oil (ASO) modification of natural fiber was investigated for the first time using molecular dynamics (MD) simulation at the atomic and molecular levels. The MD simulation results indicated that the ASO molecular interacted with the cellulose molecular within the natural fiber, mainly by intermolecular forces of Nsbnd Hsbnd O and Osbnd Hsbnd N hydrogen bonds and the molecular chain of ASO absorbed onto the natural fiber in a selective orientation, i.e., the hydrophobic alkyl groups (sbnd CnH2n+1) project outward and the polar amino groups (sbnd NH2) point to the surface of natural fiber. Consequently, the ASO modification changed the surface characteristic of natural fiber from hydrophilic to hydrophobic. Furthermore, the modification effects of the ASO modification layer with different amino group contents (m:n ratio) were also evaluated in this study by calculating the binding energy between the ASO modifier and natural fiber, and the cohesive energy density and free volume of the ASO modification layer. The results showed that the binding energy reached a maximum when the m:n ratio of ASO was of 8:4, suggesting that a good bonding strength was achieved at this m:n ratio. It was also found that the cohesive energy density enhanced with the increase in the amino group content, and the higher the cohesive energy density, the easier the formation of the ASO modification layer. However, the fraction free volume decreased with the increase in the amino group content. This is good for improving the water-proof property of natural fiber. The present work can provide an effective method for predicting the modification effects and designing the optimized m:n ratio of ASO modification.

  7. Scorpion: Close Air Support (CAS) aircraft

    NASA Technical Reports Server (NTRS)

    Allen, Chris; Cheng, Rendy; Koehler, Grant; Lyon, Sean; Paguio, Cecilia

    1991-01-01

    The objective is to outline the results of the preliminary design of the Scorpion, a proposed close air support aircraft. The results obtained include complete preliminary analysis of the aircraft in the areas of aerodynamics, structures, avionics and electronics, stability and control, weight and balance, propulsion systems, and costs. A conventional wing, twin jet, twin-tail aircraft was chosen to maximize the desirable characteristics. The Scorpion will feature low speed maneuverability, high survivability, low cost, and low maintenance. The life cycle cost per aircraft will be 17.5 million dollars. The maximum takeoff weight will be 52,760 pounds. Wing loading will be 90 psf. The thrust to weight will be 0.6 lbs/lb. This aircraft meets the specified mission requirements. Some modifications have been suggested to further optimize the design.

  8. Enhanced viability of corneal epithelial cells for efficient transport/storage using a structurally modified calcium alginate hydrogel.

    PubMed

    Wright, Bernice; Cave, Richard A; Cook, Joseph P; Khutoryanskiy, Vitaliy V; Mi, Shengli; Chen, Bo; Leyland, Martin; Connon, Che J

    2012-05-01

    Therapeutic limbal epithelial stem cells could be managed more efficiently if clinically validated batches were transported for 'on-demand' use. In this study, corneal epithelial cell viability in calcium alginate hydrogels was examined under cell culture, ambient and chilled conditions for up to 7 days. Cell viability improved as gel internal pore size increased, and was further enhanced with modification of the gel from a mass to a thin disc. Ambient storage conditions were optimal for supporting cell viability in gel discs. Cell viability in gel discs was significantly enhanced with increases in pore size mediated by hydroxyethyl cellulose. Our novel methodology of controlling alginate gel shape and pore size together provides a more practical and economical alternative to established corneal tissue/cell storage methods.

  9. Conceptual/preliminary design study of subsonic v/stol and stovl aircraft derivatives of the S-3A

    NASA Technical Reports Server (NTRS)

    Kidwell, G. H., Jr.

    1981-01-01

    A computerized aircraft synthesis program was used to examine the feasibility and capability of a V/STOL aircraft based on the Navy S-3A aircraft. Two major airframe modifications are considered: replacement of the wing, and substitution of deflected thrust turbofan engines similar to the Pegasus engine. Three planform configurations for the all composite wing were investigated: an unconstrained span design, a design with the span constrained to 64 feet, and an unconstrained span oblique wing design. Each design was optimized using the same design variables, and performance and control analyses were performed. The oblique wing configuration was found to have the greatest potential in this application. The mission performance of these V/STOL aircraft compares favorably with that of the CTOL S-3A.

  10. Sumoylation promotes optimal APC/C Activation and Timely Anaphase.

    PubMed

    Lee, Christine C; Li, Bing; Yu, Hongtao; Matunis, Michael J

    2018-03-08

    The Anaphase Promoting Complex/Cyclosome (APC/C) is a ubiquitin E3 ligase that functions as the gatekeeper to mitotic exit. APC/C activity is controlled by an interplay of multiple pathways during mitosis, including the spindle assembly checkpoint (SAC), that are not yet fully understood. Here, we show that sumoylation of the APC4 subunit of the APC/C peaks during mitosis and is critical for timely APC/C activation and anaphase onset. We have also identified a functionally important SUMO interacting motif in the cullin-homology domain of APC2 located near the APC4 sumoylation sites and APC/C catalytic core. Our findings provide evidence of an important regulatory role for SUMO modification and binding in affecting APC/C activation and mitotic exit. © 2018, Lee et al.

  11. Shuttle program. MCC Level C formulation requirements: Entry guidance and entry autopilot

    NASA Technical Reports Server (NTRS)

    Harpold, J. C.; Hill, O.

    1980-01-01

    A set of preliminary entry guidance and autopilot software formulations is presented for use in the Mission Control Center (MCC) entry processor. These software formulations meet all level B requirements. Revision 2 incorporates the modifications required to functionally simulate optimal TAEM targeting capability (OTT). Implementation of this logic in the MCC must be coordinated with flight software OTT implementation and MCC TAEM guidance OTT. The entry guidance logic is based on the Orbiter avionics entry guidance software. This MCC requirements document contains a definition of coordinate systems, a list of parameter definitions for the software formulations, a description of the entry guidance detailed formulation requirements, a description of the detailed autopilot formulation requirements, a description of the targeting routine, and a set of formulation flow charts.

  12. Office worker response to an automated venetian blind and electric lighting system: A pilot study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vine, E.; Lee, E.; Clear, R.

    1998-03-01

    A prototype integrated, dynamic building envelope and lighting system designed to optimize daylight admission and solar heat gain rejection on a real-time basis in a commercial office building is evaluated. Office worker response to the system and occupant-based modifications to the control system are investigated to determine if the design and operation of the prototype system can be improved. Key findings from the study are: (1) the prototype integrated envelope and lighting system is ready for field testing, (2) most office workers (N=14) were satisfied with the system, and (3) there were few complaints. Additional studies are needed to explainmore » how illuminance distribution, lighting quality, and room design can affect workplans illuminance preferences.« less

  13. Plasma control by modification of helicon wave propagation in low magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafleur, T.; Charles, C.; Boswell, R. W.

    2010-07-15

    By making use of nonuniform magnetic fields, it is shown experimentally that control of helicon wave propagation can be achieved in a low pressure (0.08 Pa) expanding plasma. The m=1 helicon waves are formed during a direct capacitive to wave mode transition that occurs in a low diverging magnetic field (B{sub 0}<3 mT). In this initial configuration, waves are prevented from reaching the downstream region, but slight modifications to the magnetic field allows the axial distance over which waves can propagate to be controlled. By changing the effective propagation distance in this way, significant modification of the density and plasmamore » potential profiles can be achieved, showing that the rf power deposition can be spatially controlled as well. Critical to the modification of the wave propagation behavior is the magnetic field strength (and geometry) near the exit of the plasma source region, which gives electron cyclotron frequencies close to the wave frequency of 13.56 MHz.« less

  14. Using High Resolution Design Spaces for Aerodynamic Shape Optimization Under Uncertainty

    NASA Technical Reports Server (NTRS)

    Li, Wu; Padula, Sharon

    2004-01-01

    This paper explains why high resolution design spaces encourage traditional airfoil optimization algorithms to generate noisy shape modifications, which lead to inaccurate linear predictions of aerodynamic coefficients and potential failure of descent methods. By using auxiliary drag constraints for a simultaneous drag reduction at all design points and the least shape distortion to achieve the targeted drag reduction, an improved algorithm generates relatively smooth optimal airfoils with no severe off-design performance degradation over a range of flight conditions, in high resolution design spaces parameterized by cubic B-spline functions. Simulation results using FUN2D in Euler flows are included to show the capability of the robust aerodynamic shape optimization method over a range of flight conditions.

  15. Wave drag as the objective function in transonic fighter wing optimization

    NASA Technical Reports Server (NTRS)

    Phillips, P. S.

    1984-01-01

    The original computational method for determining wave drag in a three dimensional transonic analysis method was replaced by a wave drag formula based on the loss in momentum across an isentropic shock. This formula was used as the objective function in a numerical optimization procedure to reduce the wave drag of a fighter wing at transonic maneuver conditions. The optimization procedure minimized wave drag through modifications to the wing section contours defined by a wing profile shape function. A significant reduction in wave drag was achieved while maintaining a high lift coefficient. Comparisons of the pressure distributions for the initial and optimized wing geometries showed significant reductions in the leading-edge peaks and shock strength across the span.

  16. Controlled levels of protein modification through a chromatography-mediated bioconjugation

    DOE PAGES

    Kwant, Richard L.; Jaffe, Jake; Palmere, Peter J.; ...

    2015-02-27

    Synthetically modified proteins are increasingly finding applications as well-defined scaffolds for materials. In practice it remains difficult to construct bioconjugates with precise levels of modification because of the limited number of repeated functional groups on proteins. This article describes a method to control the level of protein modification in cases where there exist multiple potential modification sites. A protein is first tagged with a handle using any of a variety of modification chemistries. This handle is used to isolate proteins with a particular number of modifications via affinity chromatography, and then the handle is elaborated with a desired moiety usingmore » an oxidative coupling reaction. This method results in a sample of protein with a well-defined number of modifications, and we find it particularly applicable to systems like protein homomultimers in which there is no way to discern between chemically identical subunits. We demonstrate the use of this method in the construction of a protein-templated light-harvesting mimic, a type of system which has historically been difficult to make in a well-defined manner.« less

  17. Mycotoxin Management Studies by USDA-ARS, NCAUR in 2009

    USDA-ARS?s Scientific Manuscript database

    Studies again included several popcorn fields in 2009 in order to continue gathering data for modification of the previously developed management strategies for mycotoxins in field corn (including the mycotoxin predictive computer program). Without an attempt for optimization, the field corn model ...

  18. Structural modifications of graphyne layers consisting of carbon atoms in the sp- and sp{sup 2}-hybridized states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belenkov, E. A., E-mail: belenkov@csu.ru; Mavrinskii, V. V.; Belenkova, T. E.

    2015-05-15

    A model scheme is proposed for obtaining layered compounds consisting of carbon atoms in the sp- and (vnsp){sup 2}-hybridized states. This model is used to find the possibility of existing the following seven basic structural modifications of graphyne: α-, β1-, β2-, β3-, γ1-, γ2-, and γ3-graphyne. Polymorphic modifications β3 graphyne and γ3 graphyne are described. The basic structural modifications of graphyne contain diatomic polyyne chains and consist only of carbon atoms in two different crystallographically equivalent states. Other nonbasic structural modifications of graphyne can be formed via the elongation of the carbyne chains that connect three-coordinated carbon atoms and viamore » the formation of graphyne layers with a mixed structure consisting of basic layer fragments, such as α-β-graphyne, α-γ-graphyne, and β-γ-graphyne. The semiempirical quantum-mechanical MNDO, AM1, and PM3 methods and ab initio STO6-31G basis calculations are used to find geometrically optimized structures of the basic graphyne layers, their structural parameters, and energies of their sublimation. The energy of sublimation is found to be maximal for γ2-graphyne, which should be the most stable structural modification of graphyne.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia; Johnson, Grant E.; Prabhakaran, Venkateshkumar

    Immobilization of complex molecules and clusters on supports plays an important role in a variety of disciplines including materials science, catalysis and biochemistry. In particular, deposition of clusters on surfaces has attracted considerable attention due to their non-scalable, highly size-dependent properties. The ability to precisely control the composition and morphology of clusters and small nanoparticles on surfaces is crucial for the development of next generation materials with rationally tailored properties. Soft- and reactive landing of ions onto solid or liquid surfaces introduces unprecedented selectivity into surface modification by completely eliminating the effect of solvent and sample contamination on the qualitymore » of the film. The ability to select the mass-to-charge ratio of the precursor ion, its kinetic energy and charge state along with precise control of the size, shape and position of the ion beam on the deposition target makes soft-landing an attractive approach for surface modification. High-purity uniform thin films on surfaces generated using mass-selected ion deposition facilitate understanding of critical interfacial phenomena relevant to catalysis, energy generation and storage, and materials science. Our efforts have been directed toward understanding charge retention by soft-landed metal and metal-oxide cluster ions, which may affect both their structure and reactivity. Specifically, we have examined the effect of the surface on charge retention by both positively and negatively charged cluster ions. We found that the electronic properties of the surface play an important role in charge retention by cluster cations. Meanwhile, the electron binding energy is a key factor determining charge retention by cluster anions. These findings provide the scientific foundation for the rational design of interfaces for advanced catalysts and energy storage devices. Further optimization of electrode-electrolyte interfaces for applications in energy storage and electrocatalysis may be achieved by understanding and controlling the properties of soft-landed cluster ions.« less

  20. [INVITED] Control of femtosecond pulsed laser ablation and deposition by temporal pulse shaping

    NASA Astrophysics Data System (ADS)

    Garrelie, Florence; Bourquard, Florent; Loir, Anne--Sophie; Donnet, Christophe; Colombier, Jean-Philippe

    2016-04-01

    This study explores the effects of temporal laser pulse shaping on femtosecond pulsed laser deposition (PLD). The potential of laser pulses temporally tailored on ultrafast time scales is used to control the expansion and the excitation degree of ablation products including atomic species and nanoparticles. The ablation plume generated by temporally shaped femtosecond pulsed laser ablation of aluminum and graphite targets is studied by in situ optical diagnostic methods. Taking advantage of automated pulse shaping techniques, an adaptive procedure based on spectroscopic feedback regulates the irradiance for the enhancement of typical plasma features. Thin films elaborated by unshaped femtosecond laser pulses and by optimized sequence indicate that the nanoparticles generation efficiency is strongly influenced by the temporal shaping of the laser irradiation. The ablation processes leading either to the generation of the nanoparticles either to the formation of plasma can be favored by using a temporal shaping of the laser pulse. Insights are given on the possibility to control the quantity of the nanoparticles. The temporal laser pulse shaping is shown also to strongly modify the laser-induced plasma contents and kinetics for graphite ablation. Temporal pulse shaping proves its capability to reduce the number of slow radicals while increasing the proportion of monomers, with the addition of ionized species in front of the plume. This modification of the composition and kinetics of plumes in graphite ablation using temporal laser pulse shaping is discussed in terms of modification of the structural properties of deposited Diamond-Like Carbon films (DLC). This gives rise to a better understanding of the growth processes involved in femtosecond-PLD and picosecond-PLD of DLC suggesting the importance of neutral C atoms, which are responsible for the subplantation process.

  1. A parallel Jacobson-Oksman optimization algorithm. [parallel processing (computers)

    NASA Technical Reports Server (NTRS)

    Straeter, T. A.; Markos, A. T.

    1975-01-01

    A gradient-dependent optimization technique which exploits the vector-streaming or parallel-computing capabilities of some modern computers is presented. The algorithm, derived by assuming that the function to be minimized is homogeneous, is a modification of the Jacobson-Oksman serial minimization method. In addition to describing the algorithm, conditions insuring the convergence of the iterates of the algorithm and the results of numerical experiments on a group of sample test functions are presented. The results of these experiments indicate that this algorithm will solve optimization problems in less computing time than conventional serial methods on machines having vector-streaming or parallel-computing capabilities.

  2. A hybrid framework for coupling arbitrary summation-by-parts schemes on general meshes

    NASA Astrophysics Data System (ADS)

    Lundquist, Tomas; Malan, Arnaud; Nordström, Jan

    2018-06-01

    We develop a general interface procedure to couple both structured and unstructured parts of a hybrid mesh in a non-collocated, multi-block fashion. The target is to gain optimal computational efficiency in fluid dynamics simulations involving complex geometries. While guaranteeing stability, the proposed procedure is optimized for accuracy and requires minimal algorithmic modifications to already existing schemes. Initial numerical investigations confirm considerable efficiency gains compared to non-hybrid calculations of up to an order of magnitude.

  3. Inference of Stochastic Nonlinear Oscillators with Applications to Physiological Problems

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadim N.; Luchinsky, Dmitry G.

    2004-01-01

    A new method of inferencing of coupled stochastic nonlinear oscillators is described. The technique does not require extensive global optimization, provides optimal compensation for noise-induced errors and is robust in a broad range of dynamical models. We illustrate the main ideas of the technique by inferencing a model of five globally and locally coupled noisy oscillators. Specific modifications of the technique for inferencing hidden degrees of freedom of coupled nonlinear oscillators is discussed in the context of physiological applications.

  4. A ranking algorithm for spacelab crew and experiment scheduling

    NASA Technical Reports Server (NTRS)

    Grone, R. D.; Mathis, F. H.

    1980-01-01

    The problem of obtaining an optimal or near optimal schedule for scientific experiments to be performed on Spacelab missions is addressed. The current capabilities in this regard are examined and a method of ranking experiments in order of difficulty is developed to support the existing software. Experimental data is obtained from applying this method to the sets of experiments corresponding to Spacelab mission 1, 2, and 3. Finally, suggestions are made concerning desirable modifications and features of second generation software being developed for this problem.

  5. Optimization of 31P magnetic resonance spectroscopy in vivo

    NASA Astrophysics Data System (ADS)

    Manzhurtsev, A. V.; Akhadov, T. A.; Semenova, N. A.

    2018-01-01

    The main problem of magnetic resonance spectroscopy on phosphorus nuclei (31P MRS) is low signal-to-noise ratio (SNR) of spectra acquired on clinical (3T) scanners. This makes quantitative processing of spectra difficult. The optimization of method on a single-voxel model reported in current work implicates an impact of the spin-lattice (T1) relaxation on SNR, and also evaluates the effectiveness of Image Selected InVivo Spectroscopy (ISIS) pulse sequence modification for the increase of SNR.

  6. Thermal bistability-based method for real-time optimization of ultralow-threshold whispering gallery mode microlasers.

    PubMed

    Lin, Guoping; Candela, Y; Tillement, O; Cai, Zhiping; Lefèvre-Seguin, V; Hare, J

    2012-12-15

    A method based on thermal bistability for ultralow-threshold microlaser optimization is demonstrated. When sweeping the pump laser frequency across a pump resonance, the dynamic thermal bistability slows down the power variation. The resulting line shape modification enables a real-time monitoring of the laser characteristic. We demonstrate this method for a functionalized microsphere exhibiting a submicrowatt laser threshold. This approach is confirmed by comparing the results with a step-by-step recording in quasi-static thermal conditions.

  7. High capacity reversible watermarking for audio by histogram shifting and predicted error expansion.

    PubMed

    Wang, Fei; Xie, Zhaoxin; Chen, Zuo

    2014-01-01

    Being reversible, the watermarking information embedded in audio signals can be extracted while the original audio data can achieve lossless recovery. Currently, the few reversible audio watermarking algorithms are confronted with following problems: relatively low SNR (signal-to-noise) of embedded audio; a large amount of auxiliary embedded location information; and the absence of accurate capacity control capability. In this paper, we present a novel reversible audio watermarking scheme based on improved prediction error expansion and histogram shifting. First, we use differential evolution algorithm to optimize prediction coefficients and then apply prediction error expansion to output stego data. Second, in order to reduce location map bits length, we introduced histogram shifting scheme. Meanwhile, the prediction error modification threshold according to a given embedding capacity can be computed by our proposed scheme. Experiments show that this algorithm improves the SNR of embedded audio signals and embedding capacity, drastically reduces location map bits length, and enhances capacity control capability.

  8. The AdaptiSPECT Imaging Aperture

    PubMed Central

    Chaix, Cécile; Moore, Jared W.; Van Holen, Roel; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    In this paper, we present the imaging aperture of an adaptive SPECT imaging system being developed at the Center for Gamma Ray Imaging (AdaptiSPECT). AdaptiSPECT is designed to automatically change its configuration in response to preliminary data, in order to improve image quality for a particular task. In a traditional pinhole SPECT imaging system, the characteristics (magnification, resolution, field of view) are set by the geometry of the system, and any modification can be accomplished only by manually changing the collimator and the distance of the detector to the center of the field of view. Optimization of the imaging system for a specific task on a specific individual is therefore difficult. In an adaptive SPECT imaging system, on the other hand, the configuration can be conveniently changed under computer control. A key component of an adaptive SPECT system is its aperture. In this paper, we present the design, specifications, and fabrication of the adaptive pinhole aperture that will be used for AdaptiSPECT, as well as the controls that enable autonomous adaptation. PMID:27019577

  9. Dynamics of the line-start reluctance motor with rotor made of SMC material

    NASA Astrophysics Data System (ADS)

    Smółka, Krzysztof; Gmyrek, Zbigniew

    2017-12-01

    Design and control of electric motors in such a way as to ensure the expected motor dynamics, are the problems studied for many years. Many researchers tried to solve this problem, for example by the design optimization or by the use of special control algorithms in electronic systems. In the case of low-power and fractional power motors, the manufacture cost of the final product is many times less than cost of electronic system powering them. The authors of this paper attempt to improve the dynamic of 120 W line-start synchronous reluctance motor, energized by 50 Hz mains (without any electronic systems). The authors seek a road enabling improvement of dynamics of the analyzed motor, by changing the shape and material of the rotor, in such a way to minimize the modification cost of the tools necessary for the motor production. After the initial selection, the analysis of four rotors having different tooth shapes, was conducted.

  10. Substitution of modified starch with hydrogen peroxide-modified rice bran in salad dressing formulation: physicochemical, texture, rheological and sensory properties.

    PubMed

    Maani, Bahareh; Alimi, Mazdak; Shokoohi, Shirin; Fazeli, Fatemeh

    2017-06-01

    Rice bran samples were treated under different conditions including hydrogen peroxide content (1, 4, and 7 wt%) and media pH (10.5, 11.5, and 12.5). Water holding capacity and color measurement results showed acceptable improvements compared with the untreated native bran confirmed by Fourier transform infrared analysis. Optimization of modification conditions upon characterization results suggested the introduction of 7% hydrogen peroxide at pH = 12.5. Accordingly, 1, 2 and 3 wt% of the rice bran treated under the optimized conditions, was used in salad dressing formulation; as for .3 wt% of modified starch in the formulation of blank sample, 1 wt% of treated rice bran dietary fiber was substituted. Biopolymer swelling and formation of a stable viscous gel network promoted by the chemical treatment of lignocellulosic rice bran restrict the mobility of oil droplets dispersed in the continuous phase which would consequently retard the emulsion instability phenomena. This effect was also confirmed by flow behavior and viscoelastic characterization results. Salad dressing samples containing 1 and 2 wt% treated rice bran showed acceptable physicochemical, rheological and organoleptic properties besides superior nutritional characteristics compared with the commercial modified starch traditionally used in salad dressing formulations. Despite recommended consumption of dietary fibers, addition of unprocessed lignocellulosic materials to food products usually raise negative effects in sensory, color, and texture quality. This study investigates the modification of rice bran, the byproduct of brown rice milling, to substitute modified starch traditionally used in salad dressing formulations to achieve optimum properties desirable for the final product. Optimization of modification conditions upon characterization of the formulated samples in this study would suggest new improved formulation for the commercial product. © 2016 Wiley Periodicals, Inc.

  11. Integer programming model for optimizing bus timetable using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wihartiko, F. D.; Buono, A.; Silalahi, B. P.

    2017-01-01

    Bus timetable gave an information for passengers to ensure the availability of bus services. Timetable optimal condition happened when bus trips frequency could adapt and suit with passenger demand. In the peak time, the number of bus trips would be larger than the off-peak time. If the number of bus trips were more frequent than the optimal condition, it would make a high operating cost for bus operator. Conversely, if the number of trip was less than optimal condition, it would make a bad quality service for passengers. In this paper, the bus timetabling problem would be solved by integer programming model with modified genetic algorithm. Modification was placed in the chromosomes design, initial population recovery technique, chromosomes reconstruction and chromosomes extermination on specific generation. The result of this model gave the optimal solution with accuracy 99.1%.

  12. Design of Quiet Rotorcraft Approach Trajectories: Verification Phase

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.

    2010-01-01

    Flight testing that is planned for October 2010 will provide an opportunity to evaluate rotorcraft trajectory optimization techniques. The flight test will involve a fully instrumented MD-902 helicopter, which will be flown over an array of microphones. In this work, the helicopter approach trajectory is optimized via a multiobjective genetic algorithm to improve community noise, passenger comfort, and pilot acceptance. Previously developed optimization strategies are modified to accommodate new helicopter data and to increase pilot acceptance. This paper describes the MD-902 trajectory optimization plus general optimization strategies and modifications that are needed to reduce the uncertainty in noise predictions. The constraints that are imposed by the flight test conditions and characteristics of the MD-902 helicopter limit the testing possibilities. However, the insights that will be gained through this research will prove highly valuable.

  13. Treating Retentive Encopresis: Dietary Modification and Behavioral Techniques.

    ERIC Educational Resources Information Center

    Nabors, Laura; Morgan, Sam B.

    1995-01-01

    A home-based contingency management program, consisting of diet modification, laxatives, correction for soiling accidents, stimulus control training, and positive reinforcement, was implemented for treatment of a 4-year-old encopretic male. The findings provide evidence supporting the effectiveness of dietary modification combined with behavior…

  14. Genetic Control of the Secondary Modification of Deoxyribonucleic Acid in Escherichia coli1

    PubMed Central

    Mamelak, Linda; Boyer, Herbert W.

    1970-01-01

    The wild-type restriction and modification alleles of Escherichia coli K-12 and B were found to have no measurable effect on the patterns of methylated bases in the deoxyribonucleic acid (DNA) of these strains. The genetic region controlling the methylation of cytosine in E. coli K-12 was mapped close to his, and the presence or absence of this gene in E. coli B or E. coli K had no effect on the restriction and modification properties of these strains. Thus, only a few of the methylated bases in the DNA of these strains are involved in host modification, and the biological role of the remainder remains obscure. PMID:4919756

  15. Optimizing care for Canadians with diabetic nephropathy in 2015.

    PubMed

    Lloyd, Alissa; Komenda, Paul

    2015-06-01

    Diabetic chronic kidney disease (CKD) is the cause of kidney failure in approximately 35% of Canadian patients requiring dialysis. Traditionally, only a minority of patients with type 2 diabetes and CKD progress to kidney failure because they die of a cardiovascular event first. However, with contemporary therapies for diabetes and cardiovascular disease, this may no longer be true. The classic description of diabetic CKD is the development of albuminuria followed by progressive kidney dysfunction in a patient with longstanding diabetes. Many exciting candidate agents are under study to halt the progression of diabetic CKD; current therapies center on optimizing glycemic control, renin angiotensin system inhibition, blood pressure control and lipid management. Lifestyle modifications, such as salt and protein restriction as well as smoking cessation, may also be of benefit. Unfortunately, these accepted therapies do not entirely halt the progression of diabetic CKD. Also unfortunately, the presence of CKD in general is under-recognized by primary care providers, which can lead to late referral, missed opportunities for preventive care and inadvertent administration of potentially harmful interventions. Not all patients require referral to nephrology for diagnosis and management, but modern risk-prediction algorithms, such as the kidney failure risk equation, may help to guide referral appropriateness and dialysis modality planning in subspecialty nephrology multidisciplinary care clinics. Copyright © 2015 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  16. Photoperiodic Control of Carbon Distribution during the Floral Transition in Arabidopsis[C][W][OPEN

    PubMed Central

    Ortiz-Marchena, M. Isabel; Albi, Tomás; Lucas-Reina, Eva; Said, Fatima E.; Romero-Campero, Francisco J.; Cano, Beatriz; Ruiz, M. Teresa; Romero, José M.; Valverde, Federico

    2014-01-01

    Flowering is a crucial process that demands substantial resources. Carbon metabolism must be coordinated with development through a control mechanism that optimizes fitness for any physiological need and growth stage of the plant. However, how sugar allocation is controlled during the floral transition is unknown. Recently, the role of a CONSTANS (CO) ortholog (Cr-CO) in the control of the photoperiod response in the green alga Chlamydomonas reinhardtii and its influence on starch metabolism was demonstrated. In this work, we show that transitory starch accumulation and glycan composition during the floral transition in Arabidopsis thaliana are regulated by photoperiod. Employing a multidisciplinary approach, we demonstrate a role for CO in regulating the level and timing of expression of the GRANULE BOUND STARCH SYNTHASE (GBSS) gene. Furthermore, we provide a detailed characterization of a GBSS mutant involved in transitory starch synthesis and analyze its flowering time phenotype in relation to its altered capacity to synthesize amylose and to modify the plant free sugar content. Photoperiod modification of starch homeostasis by CO may be crucial for increasing the sugar mobilization demanded by the floral transition. This finding contributes to our understanding of the flowering process. PMID:24563199

  17. Update in the methodology of the chronic stress paradigm: internal control matters

    PubMed Central

    2011-01-01

    To date, the reliability of induction of a depressive-like state using chronic stress models is confronted by many methodological limitations. We believe that the modifications to the stress paradigm in mice proposed herein allow some of these limitations to be overcome. Here, we discuss a variant of the standard stress paradigm, which results in anhedonia. This anhedonic state was defined by a decrease in sucrose preference that was not exhibited by all animals. As such, we propose the use of non-anhedonic, stressed mice as an internal control in experimental mouse models of depression. The application of an internal control for the effects of stress, along with optimized behavioural testing, can enable the analysis of biological correlates of stress-induced anhedonia versus the consequences of stress alone in a chronic-stress depression model. This is illustrated, for instance, by distinct physiological and molecular profiles in anhedonic and non-anhedonic groups subjected to stress. These results argue for the use of a subgroup of individuals who are negative for the induction of a depressive phenotype during experimental paradigms of depression as an internal control, for more refined modeling of this disorder in animals. PMID:21524310

  18. Update in the methodology of the chronic stress paradigm: internal control matters.

    PubMed

    Strekalova, Tatyana; Couch, Yvonne; Kholod, Natalia; Boyks, Marco; Malin, Dmitry; Leprince, Pierre; Steinbusch, Harry Mw

    2011-04-27

    To date, the reliability of induction of a depressive-like state using chronic stress models is confronted by many methodological limitations. We believe that the modifications to the stress paradigm in mice proposed herein allow some of these limitations to be overcome. Here, we discuss a variant of the standard stress paradigm, which results in anhedonia. This anhedonic state was defined by a decrease in sucrose preference that was not exhibited by all animals. As such, we propose the use of non-anhedonic, stressed mice as an internal control in experimental mouse models of depression. The application of an internal control for the effects of stress, along with optimized behavioural testing, can enable the analysis of biological correlates of stress-induced anhedonia versus the consequences of stress alone in a chronic-stress depression model. This is illustrated, for instance, by distinct physiological and molecular profiles in anhedonic and non-anhedonic groups subjected to stress. These results argue for the use of a subgroup of individuals who are negative for the induction of a depressive phenotype during experimental paradigms of depression as an internal control, for more refined modeling of this disorder in animals.

  19. Perspectives on the History of Bovine TB and the Role of Tuberculin in Bovine TB Eradication

    PubMed Central

    Good, Margaret; Duignan, Anthony

    2011-01-01

    Tuberculosis remains a significant disease of animals and humans worldwide. Bovine tuberculosis is caused by Mycobacteria with an extremely wide host range and serious, although currently probably underdiagnosed, zoonotic potential. Where bovine tuberculosis controls are effective, human zoonotic TB, due to Mycobacterium bovis or M. caprae, is uncommon and clinical cases are infrequent in cattle. Therefore, the control and ultimate eradication of bovine tuberculosis is desirable. Tuberculin tests are the primary screening tool used in bovine eradication. The choice of tuberculin test is dependent on the environment in which it is to be used. Tuberculin potency is critical to test performance, and the accurate determination of potency is therefore particularly important. The design of a control or eradication programme should take into consideration the fundamental scientific knowledge, the epidemiological profile of disease, the experience of other eradication programmes, and the presence, in the same ecosystem, of maintenance hosts, in which infection is self-sustaining and which are capable of transmitting infection. A control or eradication programme will necessarily require modification as it progresses and must be under constant review to identify the optimal desirable goals, the efficacy of policy, and constraints to progress. PMID:21547209

  20. Targeting Cancer using Polymeric Nanoparticle mediated Combination Chemotherapy

    PubMed Central

    Gad, Aniket; Kydd, Janel; Piel, Brandon; Rai, Prakash

    2016-01-01

    Cancer forms exhibiting poor prognosis have been extensively researched for therapeutic solutions. One of the conventional modes of treatment, chemotherapy shows inadequacy in its methodology due to imminent side-effects and acquired drug-resistance by cancer cells. However, advancements in nanotechnology have opened new frontiers to significantly alleviate collateral damage caused by current treatments via innovative delivery techniques, eliminating pitfalls encountered in conventional treatments. Properties like reduced drug-clearance and increased dose efficacy by the enhanced permeability and retention effect deem nanoparticles suitable for this application. Optimization of size, surface charge and surface modifications have provided nanoparticles with stealth properties capable of evading immune responses, thus deeming them as excellent carriers of chemotherapeutic agents. Biocompatible and biodegradable forms of polymers enhance the bioavailability of chemotherapeutic agents, and permit a sustained and time-dependent release of drugs which is a characteristic of their composition, thereby providing a controlled therapeutic approach. Studies conducted in vitro and animal models have also demonstrated a synergism in cytotoxicity given the mechanism of action of anticancer drugs when administered in combination providing promising results. Combination therapy has also shown implications in overcoming multiple-drug resistance, which can however be subdued by the adaptable nature of tumor microenvironment. Surface modifications with targeting moieties can therefore feasibly increase nanoparticle uptake by specific receptor-ligand interactions, increasing dose efficacy which can seemingly overcome drug-resistance. This article reviews recent trends and investigations in employing polymeric nanoparticles for effectively delivering combination chemotherapy, and modifications in delivery parameters enhancing dose efficacy, thus validating the potential in this approach for anticancer treatment. PMID:28042613

  1. Space flight and changes in spatial orientation

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Bloomberg, Jacob J.; Harm, Deborah L.; Paloski, William H.

    1992-01-01

    From a sensory point of view, space flight represents a form of stimulus rearrangement requiring modification of established terrestrial response patterns through central reinterpretation. Evidence of sensory reinterpretation is manifested as postflight modifications of eye/head coordination, locomotor patterns, postural control strategies, and illusory perceptions of self or surround motion in conjunction with head movements. Under normal preflight conditions, the head is stabilized during locomotion, but immediately postflight reduced head stability, coupled with inappropriate eye/head coordination, results in modifications of gait. Postflight postural control exhibits increased dependence on vision which compensates for inappropriate interpretation of otolith and proprioceptive inputs. Eye movements compensatory for perceived self motion, rather than actual head movements have been observed postflight. Overall, the in-flight adaptive modification of head stabilization strategies, changes in head/eye coordination, illusionary motion, and postural control are maladaptive for a return to the terrestrial environment. Appropriate countermeasures for long-duration flights will rely on preflight adaptation and in-flight training.

  2. Nutrition Interventions for Obesity.

    PubMed

    Ard, Jamy D; Miller, Gary; Kahan, Scott

    2016-11-01

    Obesity is a common disorder with complex causes. The epidemic has spurred significant advances in the understanding of nutritional approaches to treating obesity. Although the primary challenge is to introduce a dietary intake that creates an energy deficit, clinicians should also consider targeted risk factor modification with manipulation of the nutrient profile of the weight-reducing diet. These strategies produce significant weight loss and improvements in cardiometabolic risk factors. Future research is needed to better understand how to personalize nutrient prescriptions further to promote optimal risk modification and maintenance of long-term energy balance in the weight-reduced state. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The modification at CSNS ion source

    NASA Astrophysics Data System (ADS)

    Liu, S.; Ouyang, H.; Huang, T.; Xiao, Y.; Cao, X.; Lv, Y.; Xue, K.; Chen, W.

    2017-08-01

    The commissioning of CSNS front end has been finished. Above 15 mA beam intensity is obtained at the end of RFQ. For CSNS ion source, it is a type of penning surface plasma ion source, similar to ISIS ion source. To improve the operation stability and reduce spark rate, some modifications have been performed, including Penning field, extraction optics and post acceleration. PBGUNS is applied to optimize beam extraction. The co-extraction electrons are considered at PBGUNS simulation and various extracted structure are simulated aiming to make the beam through the extracted electrode without loss. The stability of ion source is improved further.

  4. The effect of complex workplace dietary interventions on employees' dietary intakes, nutrition knowledge and health status: a cluster controlled trial.

    PubMed

    Geaney, Fiona; Kelly, Clare; Di Marrazzo, Jessica Scotto; Harrington, Janas M; Fitzgerald, Anthony P; Greiner, Birgit A; Perry, Ivan J

    2016-08-01

    Evidence on effective workplace dietary interventions is limited. The comparative effectiveness of a workplace environmental dietary modification and an educational intervention both alone and in combination was assessed versus a control workplace on employees' dietary intakes, nutrition knowledge and health status. In the Food Choice at Work cluster controlled trial, four large, purposively selected manufacturing workplaces in Ireland were allocated to control (N=111), nutrition education (Education) (N=226), environmental dietary modification (Environment) (N=113) and nutrition education and environmental dietary modification (Combined) (N=400) in 2013. Nutrition education included group presentations, individual consultations and detailed nutrition information. Environmental dietary modification included menu modification, fruit price discounts, strategic positioning of healthier alternatives and portion size control. Data on dietary intakes, nutrition knowledge and health status were obtained at baseline and follow-up at 7-9months. Multivariate analysis of covariance compared changes across the four groups with adjustment for age, gender, educational status and other baseline characteristics. Follow-up data at 7-9months were obtained for 541 employees (64% of 850 recruited) aged 18-64years: control: 70 (63%), Education: 113 (50%), 74 (65%) and Combined: 284 (71%). There were significant positive changes in intakes of saturated fat (p=0.013), salt (p=0.010) and nutrition knowledge (p=0.034) between baseline and follow-up in the combined intervention versus the control. Small but significant changes in BMI (-1.2kg/m(2) (95% CI -2.385, -0.018, p=0.047) were observed in the combined intervention. Effects in the education and environment alone workplaces were smaller and generally non-significant. Combining nutrition education and environmental dietary modification may be an effective approach for promoting a healthy diet and weight loss at work. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. 76 FR 75911 - Certain Video Game Systems and Controllers; Investigations: Terminations, Modifications and Rulings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-743] Certain Video Game Systems and Controllers; Investigations: Terminations, Modifications and Rulings AGENCY: U.S. International Trade Commission. ACTION: Notice. Section 337 of the Tariff Act of 1930 provides that if the Commission finds a...

  6. 33 CFR 203.47 - Modifications to non-Federal flood control works.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Federal construction cost of rehabilitation to preflood level of protection, or $100,000, whichever is... only in cash. In-kind services are not permitted for modification work. (b) Protection of additional...

  7. 33 CFR 203.47 - Modifications to non-Federal flood control works.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Federal construction cost of rehabilitation to preflood level of protection, or $100,000, whichever is... only in cash. In-kind services are not permitted for modification work. (b) Protection of additional...

  8. 33 CFR 203.47 - Modifications to non-Federal flood control works.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Federal construction cost of rehabilitation to preflood level of protection, or $100,000, whichever is... only in cash. In-kind services are not permitted for modification work. (b) Protection of additional...

  9. 33 CFR 203.47 - Modifications to non-Federal flood control works.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Federal construction cost of rehabilitation to preflood level of protection, or $100,000, whichever is... only in cash. In-kind services are not permitted for modification work. (b) Protection of additional...

  10. 33 CFR 203.47 - Modifications to non-Federal flood control works.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Federal construction cost of rehabilitation to preflood level of protection, or $100,000, whichever is... only in cash. In-kind services are not permitted for modification work. (b) Protection of additional...

  11. 28 CFR 36.302 - Modifications in policies, practices, or procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... mobility impairments to make all their purchases at that aisle. (e)(1) Reservations made by places of... the public accommodation can demonstrate that making the modifications would fundamentally alter the...'s control (e.g., voice control, signals, or other effective means). (5) Care or supervision. A...

  12. 28 CFR 36.302 - Modifications in policies, practices, or procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... mobility impairments to make all their purchases at that aisle. (e)(1) Reservations made by places of... the public accommodation can demonstrate that making the modifications would fundamentally alter the...'s control (e.g., voice control, signals, or other effective means). (5) Care or supervision. A...

  13. 28 CFR 36.302 - Modifications in policies, practices, or procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... mobility impairments to make all their purchases at that aisle. (e)(1) Reservations made by places of... the public accommodation can demonstrate that making the modifications would fundamentally alter the...'s control (e.g., voice control, signals, or other effective means). (5) Care or supervision. A...

  14. 78 FR 65208 - Modification of Class D and E Airspace; Kenai, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...-1174; Airspace Docket No. 12-AAL-12] Modification of Class D and E Airspace; Kenai, AK AGENCY: Federal... airspace at Kenai Municipal Airport, Kenai, AK. Controlled airspace is necessary to accommodate aircraft... (NPRM) to modify controlled airspace at Kenai Municipal Airport, Kenai, AK (78 FR 34609). Interested...

  15. 40 CFR 230.92 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... modification of those projects to optimize performance. It includes the selection of appropriate measures that... fee program that are available for sale prior to being fulfilled in accordance with an approved mitigation project plan. Advance credit sales require an approved in-lieu fee program instrument that meets...

  16. 33 CFR 332.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... guides modification of those projects to optimize performance. It includes the selection of appropriate... approved in-lieu fee program that are available for sale prior to being fulfilled in accordance with an approved mitigation project plan. Advance credit sales require an approved in-lieu fee program instrument...

  17. Bridge-in-a-Backpack(TM). Task 2 : reduction of costs through design modifications and optimization.

    DOT National Transportation Integrated Search

    2011-09-01

    The cost effective use of FRP composites in infrastructure requires the efficient use of the : composite materials in the design. Previous work during the development phase and : demonstration phase illustrated the need to refine the design methods f...

  18. Synaptic Transmission Optimization Predicts Expression Loci of Long-Term Plasticity.

    PubMed

    Costa, Rui Ponte; Padamsey, Zahid; D'Amour, James A; Emptage, Nigel J; Froemke, Robert C; Vogels, Tim P

    2017-09-27

    Long-term modifications of neuronal connections are critical for reliable memory storage in the brain. However, their locus of expression-pre- or postsynaptic-is highly variable. Here we introduce a theoretical framework in which long-term plasticity performs an optimization of the postsynaptic response statistics toward a given mean with minimal variance. Consequently, the state of the synapse at the time of plasticity induction determines the ratio of pre- and postsynaptic modifications. Our theory explains the experimentally observed expression loci of the hippocampal and neocortical synaptic potentiation studies we examined. Moreover, the theory predicts presynaptic expression of long-term depression, consistent with experimental observations. At inhibitory synapses, the theory suggests a statistically efficient excitatory-inhibitory balance in which changes in inhibitory postsynaptic response statistics specifically target the mean excitation. Our results provide a unifying theory for understanding the expression mechanisms and functions of long-term synaptic transmission plasticity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Optimized methods for total nucleic acid extraction and quantification of the bat white-nose syndrome fungus, Pseudogymnoascus destructans, from swab and environmental samples.

    PubMed

    Verant, Michelle L; Bohuski, Elizabeth A; Lorch, Jeffery M; Blehert, David S

    2016-03-01

    The continued spread of white-nose syndrome and its impacts on hibernating bat populations across North America has prompted nationwide surveillance efforts and the need for high-throughput, noninvasive diagnostic tools. Quantitative real-time polymerase chain reaction (qPCR) analysis has been increasingly used for detection of the causative fungus, Pseudogymnoascus destructans, in both bat- and environment-associated samples and provides a tool for quantification of fungal DNA useful for research and monitoring purposes. However, precise quantification of nucleic acid from P. destructans is dependent on effective and standardized methods for extracting nucleic acid from various relevant sample types. We describe optimized methodologies for extracting fungal nucleic acids from sediment, guano, and swab-based samples using commercial kits together with a combination of chemical, enzymatic, and mechanical modifications. Additionally, we define modifications to a previously published intergenic spacer-based qPCR test for P. destructans to refine quantification capabilities of this assay. © 2016 The Author(s).

  20. Expectancies as core features of mental disorders.

    PubMed

    Rief, Winfried; Glombiewski, Julia A; Gollwitzer, Mario; Schubö, Anna; Schwarting, Rainer; Thorwart, Anna

    2015-09-01

    Expectancies are core features of mental disorders, and change in expectations is therefore one of the core mechanisms of treatment in psychiatry. We aim to improve our understanding of expectancies by summarizing factors that contribute to their development, persistence, and modification. We pay particular attention to the issue of persistence of expectancies despite experiences that contradict them. Based on recent research findings, we propose a new model for expectation persistence and expectation change. When expectations are established, effects are evident in neural and other biological systems, for example, via anticipatory reactions, different biological reactions to expected versus unexpected stimuli, etc. Psychological 'immunization' and 'assimilation', implicit self-confirming processes, and stability of biological processes help us to better understand why expectancies persist even in the presence of expectation violations. Learning theory, attentional processes, social influences, and biological determinants contribute to the development, persistence, and modification of expectancies. Psychological interventions should focus on optimizing expectation violation to achieve optimal treatment outcome and to avoid treatment failures.

  1. Optimized methods for total nucleic acid extraction and quantification of the bat white-nose syndrome fungus, Pseudogymnoascus destructans, from swab and environmental samples

    USGS Publications Warehouse

    Verant, Michelle; Bohuski, Elizabeth A.; Lorch, Jeffrey M.; Blehert, David

    2016-01-01

    The continued spread of white-nose syndrome and its impacts on hibernating bat populations across North America has prompted nationwide surveillance efforts and the need for high-throughput, noninvasive diagnostic tools. Quantitative real-time polymerase chain reaction (qPCR) analysis has been increasingly used for detection of the causative fungus, Pseudogymnoascus destructans, in both bat- and environment-associated samples and provides a tool for quantification of fungal DNA useful for research and monitoring purposes. However, precise quantification of nucleic acid fromP. destructans is dependent on effective and standardized methods for extracting nucleic acid from various relevant sample types. We describe optimized methodologies for extracting fungal nucleic acids from sediment, guano, and swab-based samples using commercial kits together with a combination of chemical, enzymatic, and mechanical modifications. Additionally, we define modifications to a previously published intergenic spacer–based qPCR test for P. destructans to refine quantification capabilities of this assay.

  2. Strategie de commande optimale de la production electrique dans un site isole

    NASA Astrophysics Data System (ADS)

    Barris, Nicolas

    Hydro-Quebec manages more than 20 isolated power grids all over the province. The grids are located in small villages where the electricity demand is rather small. Those villages being far away from each other and from the main electricity production facilities, energy is produced locally using diesel generators. Electricity production costs at the isolated power grids are very important due to elevated diesel prices and transportation costs. However, the price of electricity is the same for the entire province, with no regards to the production costs of the electricity consumed. These two factors combined result in yearly exploitation losses for Hydro-Quebec. For any given village, several diesel generators are required to satisfy the demand. When the load increases, it becomes necessary to increase the capacity either by adding a generator to the production or by switching to a more powerful generator. The same thing happens when the load decreases. Every decision regarding changes in the production is included in the control strategy, which is based on predetermined parameters. These parameters were specified according to empirical studies and the knowledge base of the engineers managing the isolated power grids, but without any optimisation approach. The objective of the presented work is to minimize the diesel consumption by optimizing the parameters included in the control strategy. Its impact would be to limit the exploitation losses generated by the isolated power grids and the CO2 equivalent emissions without adding new equipment or completely changing the nature of the strategy. To satisfy this objective, the isolated power grid simulator OPERA is used along with the optimization library NOMAD and the data of three villages in northern Quebec. The preliminary optimization instance for the first village showed that some modifications to the existing control strategy must be done to better achieve the minimization objective. The main optimization processes consist of three different optimization approaches: the optimization of one set of parameters for all the villages, the optimization of one set of parameters per village, and the optimization of one set of parameters per diesel generator configuration per village. In the first scenario, the optimization of one set of parameters for all the villages leads to compromises for all three villages without allowing a full potential reduction for any village. Therefore, it is proven that applying one set of parameters to all the villages is not suitable for finding an optimal solution. In the second scenario, the optimization of one set of parameters per village allows an improvement over the previous results. At this point, it is shown that it is crucial to remove from the production the less efficient configurations when they are next to more efficient configurations. In the third scenario, the optimization of one set of parameters per configuration per village requires a very large number of function evaluations but does not result in any satisfying solution. In order to improve the performance of the optimization, it has been decided that the problem structure would be used. Two different approaches are considered: optimizing one set of parameters at a time and optimizing different rules included in the control strategy one at a time. In both cases, results are similar but calculation costs differ, the second method being much more cost efficient. The optimal values of the ultimate rules parameters can be directly linked to the efficient transition points that favor an efficient operation of the isolated power grids. Indeed, these transition points are defined in such a way that the high efficiency zone of every configuration is used. Therefore, it seems possible to directly identify on the graphs these optimal transition points and define the parameters in the control strategy without even having to run any optimization process. The diesel consumption reduction for all three villages is about 1.9%. Considering elevated diesel costs and the existence of about 20 other isolated power grids, the use of the developed methods together with a calibration of OPERA would allow a substantial reduction of Hydro-Quebec's annual deficit. Also, since one of the developed methods is very cost effective and produces equivalent results, it could be possible to use it during other processes; for example, when buying new equipment for the grid it could be possible to assess its full potential, under an optimized control strategy, and improve the net present value.

  3. Application of Plackett-Burman and Doehlert designs for optimization of selenium analysis in plasma with electrothermal atomic absorption spectrometry.

    PubMed

    El Ati-Hellal, Myriam; Hellal, Fayçal; Hedhili, Abderrazek

    2014-10-01

    The aim of this study was the optimization of selenium determination in plasma samples with electrothermal atomic absorption spectrometry using experimental design methodology. 11 variables being able to influence selenium analysis in human blood plasma by electrothermal atomic absorption spectrometry (ETAAS) were evaluated with Plackett-Burman experimental design. These factors were selected from sample preparation, furnace program and chemical modification steps. Both absorbance and background signals were chosen as responses in the screening approach. Doehlert design was used for method optimization. Results showed that only ashing temperature has a statistically significant effect on the selected responses. Optimization with Doehlert design allowed the development of a reliable method for selenium analysis with ETAAS. Samples were diluted 1/10 with 0.05% (v/v) TritonX-100+2.5% (v/v) HNO3 solution. Optimized ashing and atomization temperatures for nickel modifier were 1070°C and 2270°C, respectively. A detection limit of 2.1μgL(-1) Se was obtained. Accuracy of the method was checked by the analysis of selenium in Seronorm™ Trace element quality control serum level 1. The developed procedure was applied for the analysis of total selenium in fifteen plasma samples with standard addition method. Concentrations ranged between 24.4 and 64.6μgL(-1), with a mean of 42.6±4.9μgL(-1). The use of experimental designs allowed the development of a cheap and accurate method for selenium analysis in plasma that could be applied routinely in clinical laboratories. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  4. Swarm intelligence application for optimization of CO2 diffusivity in polystyrene-b-polybutadiene-b-polystyrene (SEBS) foaming

    NASA Astrophysics Data System (ADS)

    Sharudin, Rahida Wati; Ajib, Norshawalina Muhamad; Yusoff, Marina; Ahmad, Mohd Aizad

    2017-12-01

    Thermoplastic elastomer SEBS foams were prepared by using carbon dioxide (CO2) as a blowing agent and the process is classified as physical foaming method. During the foaming process, the diffusivity of CO2 need to be controlled since it is one of the parameter that will affect the final cellular structure of the foam. Conventionally, the rate of CO2 diffusion was measured experimentally by using a highly sensitive device called magnetic suspension balance (MSB). Besides, this expensive MSB machine is not easily available and measurement of CO2 diffusivity is quite complicated as well as time consuming process. Thus, to overcome these limitations, a computational method was introduced. Particle Swarm Optimization (PSO) is a part of Swarm Intelligence system which acts as a beneficial optimization tool where it can solve most of nonlinear complications. PSO model was developed for predicting the optimum foaming temperature and CO2 diffusion rate in SEBS foam. Results obtained by PSO model are compared with experimental results for CO2 diffusivity at various foaming temperature. It is shown that predicted optimum foaming temperature at 154.6 °C was not represented the best temperature for foaming as the cellular structure of SEBS foamed at corresponding temperature consisted pores with unstable dimension and the structure was not visibly perceived due to foam shrinkage. The predictions were not agreed well with experimental result when single parameter of CO2 diffusivity is considered in PSO model because it is not the only factor that affected the controllability of foam shrinkage. The modification on the PSO model by considering CO2 solubility and rigidity of SEBS as additional parameters needs to be done for obtaining the optimum temperature for SEBS foaming. Hence stable SEBS foam could be prepared.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahder, G.; Bopp, L.A.; Eager, G.S.

    This report covers the continuation of the work to develop technology to manufacture chemically crosslinked polyethylene insulated power cables in the ac voltage range of 138 kV to 345 kV having insulation thicknesses approximately equal to that of oil impregnated paper insulated cables. It also incorporates the development of field molded splices and terminations for new high voltage stress 138 kV cables. After reviewing the main equipment elements, incorporated in the pilot extrusion line, the special features of this system are noted and a step-by-step description of the cable extrusion process is given. Optimization of the process and introduction ofmore » modifications in the equipment culminated with the production of 138 kV cables. Results of laboratory tests to demonstrate the high quality of the cables are given. The development of molded splices and molded stress control cones was initiated with the work on model cables and followed by the making of splices and terminations on 138 kV cables. The molded components are made with the same purified insulating compound as used in the manufacture of the cables. Both the molded splices and the molded stress control cones have been fully tested in the laboratory. Following the completion of the development of the 138 kV cable a high stress 230 kV crosslinked polyethylene cable was developed and optimized. A full evaluation program similar to the one utilized on the 138 kV cable was carried out. Subsequently, work to develop a 345 kV high voltage stress cable, having insulation thickness of 1.02'' was undertaken. 345 kV cables were successfully manufactured and tested. However, additional work is required to further optimize the quality of this cable.« less

  6. Influence of the Formulation Parameters on the Particle Size and Encapsulation Efficiency of Resveratrol in PLA and PLA-PEG Blend Nanoparticles: A Factorial Design.

    PubMed

    Lindner, Gabriela da Rocha; Dalmolin, Luciana Facco; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2015-12-01

    Polymeric nanoparticles are colloidal systems that promote protection and modification of physicochemical characteristics of a drug and that also ensure controlled and extended drug release. This paper reports a 2(3) factorial design study to optimize poly(lactide) (PLA) and poly(lactide)-polyethylene glycol (PLA-PEG) blend nanoparticles containing resveratrol (RVT) for prolonged release. The independent variables analyzed were solvent composition, surfactant concentration and ratio of aqueous to organic phase (two levels each factor). Mean particle size and RVT encapsulation efficiency were set as the dependent variables. The selected optimized parameters were set as organic phase comprised of a mixture of dichloromethane and ethyl acetate, 1% of surfactant polyvinyl alcohol and a 3:1 ratio of aqueous to organic phase, for both PLA and PLA-PEG blend nanoparticles. This formulation originated nanoparticles with size of 228 ± 10 nm and 185 ± 70 nm and RVT encapsulation efficiency of 82 ± 10% and 76 ± 7% for PLA and PLA-PEG blend nanoparticles, respectively. The in vitro release study showed a biphasic pattern with prolonged RVT release and PEG did not influence the RVT release. The in vitro release data were in favor of Higuchi-diffusion kinetics for both nanoformulations and the Kossmeyer-Peppas coefficient indicated that anomalous transport was the main release mechanism of RVT. PLA and PLA-PEG blend nanoparticles produced with single emulsion-solvent evaporation technology were found to be a promising approach for the incorporation of RVT and promoted its controlled release. The factorial design is a tool of great value in choosing formulations with optimized parameters.

  7. Development of Training Programs to Optimize Planetary Ambulation

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Miller, C. A.; Brady, R.; Warren, L. E.; Rutley, T. M.; Kozlovskaya, I. B.

    2007-01-01

    Astronauts experience disturbances in functional mobility following their return to Earth due to adaptive responses that occur during exposure to the microgravity conditions of space flight. Despite significant time spent performing in-flight exercise routines, these training programs have not been able to mitigate postflight alterations in postural and locomotor function. Therefore, the goal of our two inter-related projects (NSBRI-ground based and ISS flight study, "Mobility") is to develop and test gait training programs that will serve to optimize functional mobility during the adaptation period immediately following space flight, thereby improving the safety and efficiency of planetary ambulation. The gait training program entails manipulating the sensory conditions of treadmill exercise to systematically challenge the balance and gait control system. This enhances the overall adaptability of locomotor function enabling rapid reorganization of gait control to respond to ambulation in different gravitational environments. To develop the training program, we are conducting a series of ground-based studies evaluating the training efficacy associated with variation in visual flow, body loading, and support surface stability during treadmill walking. We will also determine the optimal method to present training stimuli within and across training sessions to maximize both the efficacy and efficiency of the training procedure. Results indicate that variations in both visual flow and body unloading during treadmill walking leads to modification in locomotor control and can be used as effective training modalities. Additionally, the composition and timing of sensory challenges experienced during each training session has significant impact on the ability to rapidly reorganize locomotor function when exposed to a novel sensory environment. We have developed the capability of producing support surface variation during gait training by mounting a treadmill on a six-degree-of-freedom motion device. This hardware development will allow us to evaluate the efficacy of this type of training in conjunction with variation in visual flow and body unloading.

  8. Optimizing fiducial visibility on periodically acquired megavoltage and kilovoltage image pairs during prostate volumetric modulated arc therapy

    PubMed Central

    Zhang, Pengpeng; Happersett, Laura; Ravindranath, Bosky; Zelefsky, Michael; Mageras, Gig; Hunt, Margie

    2016-01-01

    Purpose: Robust detection of implanted fiducials is essential for monitoring intrafractional motion during hypofractionated treatment. The authors developed a plan optimization strategy to ensure clear visibility of implanted fiducials and facilitate 3D localization during volumetric modulated arc therapy (VMAT). Methods: Periodic kilovoltage (kV) images were acquired at 20° gantry intervals and paired with simultaneously acquired 4.4° short arc megavoltage digital tomosynthesis (MV-DTS) to localize three fiducials during VMAT delivery for hypofractionated prostate cancer treatment. Beginning with the original optimized plan, control point segments where fiducials were consistently blocked by multileaf collimator (MLC) within each 4.4° MV-DTS interval were first identified. For each segment, MLC apertures were edited to expose the fiducial that led to the least increase in the cost function. Subsequently, MLC apertures of all control points not involved with fiducial visualization were reoptimized to compensate for plan quality losses and match the original dose–volume histogram. MV dose for each MV-DTS was also kept above 0.4 MU to ensure acceptable image quality. Different imaging (gantry) intervals and visibility margins around fiducials were also evaluated. Results: Fiducials were consistently blocked by the MLC for, on average, 36% of the imaging control points for five hypofractionated prostate VMAT plans but properly exposed after reoptimization. Reoptimization resulted in negligible dosimetric differences compared with original plans and outperformed simple aperture editing: on average, PTV D98 recovered from 87% to 94% of prescription, and PTV dose homogeneity improved from 9% to 7%. Without violating plan objectives and compromising delivery efficiency, the highest imaging frequency and largest margin that can be achieved are a 10° gantry interval, and 15 mm, respectively. Conclusions: VMAT plans can be made to accommodate MV-kV imaging of fiducials. Fiducial visualization rate and workflow efficiency are significantly improved with an automatic modification and reoptimization approach. PMID:27147314

  9. Study report on modification of the long term circulatory model for the simulation of bed rest

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.; Grounds, D. J.

    1977-01-01

    Modifications were made of the circulatory, fluid, and electrolyte control model which was based on the model of Guyton. The modifications included separate leg compartments and the addition of gravity dependency. It was found that these modifications allowed for more accurate bed rest simulation by simulating changes in the orthostatic gradient and simulating the response to the fluid shifts associated with bed rest.

  10. Interactive Inverse Design Optimization of Fuselage Shape for Low-Boom Supersonic Concepts

    NASA Technical Reports Server (NTRS)

    Li, Wu; Shields, Elwood; Le, Daniel

    2008-01-01

    This paper introduces a tool called BOSS (Boom Optimization using Smoothest Shape modifications). BOSS utilizes interactive inverse design optimization to develop a fuselage shape that yields a low-boom aircraft configuration. A fundamental reason for developing BOSS is the need to generate feasible low-boom conceptual designs that are appropriate for further refinement using computational fluid dynamics (CFD) based preliminary design methods. BOSS was not developed to provide a numerical solution to the inverse design problem. Instead, BOSS was intended to help designers find the right configuration among an infinite number of possible configurations that are equally good using any numerical figure of merit. BOSS uses the smoothest shape modification strategy for modifying the fuselage radius distribution at 100 or more longitudinal locations to find a smooth fuselage shape that reduces the discrepancies between the design and target equivalent area distributions over any specified range of effective distance. For any given supersonic concept (with wing, fuselage, nacelles, tails, and/or canards), a designer can examine the differences between the design and target equivalent areas, decide which part of the design equivalent area curve needs to be modified, choose a desirable rate for the reduction of the discrepancies over the specified range, and select a parameter for smoothness control of the fuselage shape. BOSS will then generate a fuselage shape based on the designer's inputs in a matter of seconds. Using BOSS, within a few hours, a designer can either generate a realistic fuselage shape that yields a supersonic configuration with a low-boom ground signature or quickly eliminate any configuration that cannot achieve low-boom characteristics with fuselage shaping alone. A conceptual design case study is documented to demonstrate how BOSS can be used to develop a low-boom supersonic concept from a low-drag supersonic concept. The paper also contains a study on how perturbations in the equivalent area distribution affect the ground signature shape and how new target area distributions for low-boom signatures can be constructed using superposition of equivalent area distributions derived from the Seebass-George-Darden (SGD) theory.

  11. Predictive Multiscale Modeling of Nanocellulose Based Materials and Systems

    NASA Astrophysics Data System (ADS)

    Kovalenko, Andriy

    2014-08-01

    Cellulose Nanocrysals (CNC) is a renewable biodegradable biopolymer with outstanding mechanical properties made from highly abundant natural source, and therefore is very attractive as reinforcing additive to replace petroleum-based plastics in biocomposite materials, foams, and gels. Large-scale applications of CNC are currently limited due to its low solubility in non-polar organic solvents used in existing polymerization technologies. The solvation properties of CNC can be improved by chemical modification of its surface. Development of effective surface modifications has been rather slow because extensive chemical modifications destabilize the hydrogen bonding network of cellulose and deteriorate the mechanical properties of CNC. We employ predictive multiscale theory, modeling, and simulation to gain a fundamental insight into the effect of CNC surface modifications on hydrogen bonding, CNC crystallinity, solvation thermodynamics, and CNC compatibilization with the existing polymerization technologies, so as to rationally design green nanomaterials with improved solubility in non-polar solvents, controlled liquid crystal ordering and optimized extrusion properties. An essential part of this multiscale modeling approach is the statistical- mechanical 3D-RISM-KH molecular theory of solvation, coupled with quantum mechanics, molecular mechanics, and multistep molecular dynamics simulation. The 3D-RISM-KH theory provides predictive modeling of both polar and non-polar solvents, solvent mixtures, and electrolyte solutions in a wide range of concentrations and thermodynamic states. It properly accounts for effective interactions in solution such as steric effects, hydrophobicity and hydrophilicity, hydrogen bonding, salt bridges, buffer, co-solvent, and successfully predicts solvation effects and processes in bulk liquids, solvation layers at solid surface, and in pockets and other inner spaces of macromolecules and supramolecular assemblies. This methodology enables rational design of CNC-based bionanocomposite materials and systems. Furthermore, the 3D-RISM-KH based multiscale modeling addresses the effect of hemicellulose and lignin composition on nanoscale forces that control cell wall strength towards overcoming plant biomass recalcitrance. It reveals molecular forces maintaining the cell wall structure and provides directions for genetic modulation of plants and pretreatment design to render biomass more amenable to processing. We envision integrated biomass valorization based on extracting and decomposing the non-cellulosic components to low molecular weight chemicals and utilizing the cellulose microfibrils to make CNC. This is an important alternative to approaches of full conversion of lignocellulose to biofuels that face challenges arising from the deleterious impact of cellulose crystallinity on enzymatic processing.

  12. Using economic instruments to develop effective management of invasive species: insights from a bioeconomic model.

    PubMed

    McDermott, Shana M; Irwin, Rebecca E; Taylor, Brad W

    2013-07-01

    Economic growth is recognized as an important factor associated with species invasions. Consequently, there is increasing need to develop solutions that combine economics and ecology to inform invasive species management. We developed a model combining economic, ecological, and sociological factors to assess the degree to which economic policies can be used to control invasive plants. Because invasive plants often spread across numerous properties, we explored whether property owners should manage invaders cooperatively as a group by incorporating the negative effects of invader spread in management decisions (collective management) or independently, whereby the negative effects of invasive plant spread are ignored (independent management). Our modeling approach used a dynamic optimization framework, and we applied the model to invader spread using Linaria vulgaris. Model simulations allowed us to determine the optimal management strategy based on net benefits for a range of invader densities. We found that optimal management strategies varied as a function of initial plant densities. At low densities, net benefits were high for both collective and independent management to eradicate the invader, suggesting the importance of early detection and eradication. At moderate densities, collective management led to faster and more frequent invader eradication compared to independent management. When we used a financial penalty to ensure that independent properties were managed collectively, we found that the penalty would be most feasible when levied on a property's perimeter boundary to control spread among properties. At the highest densities, the optimal management strategy was "do nothing" because the economic costs of removal were too high relative to the benefits of removal. Spatial variation in L. vulgaris densities resulted in different optimal management strategies for neighboring properties, making a formal economic policy to encourage invasive species removal critical. To accomplish the management and enforcement of these economic policies, we discuss modification of existing agencies and infrastructure. Finally, a sensitivity analysis revealed that lowering the economic cost of invader removal would strongly increase the probability of invader eradication. Taken together, our results provide quantitative insight into management decisions and economic policy instruments that can encourage invasive species removal across a social landscape.

  13. Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5

    NASA Technical Reports Server (NTRS)

    Anderson, P. J.; Nussbaum, P.; Gustafson, G.

    1984-01-01

    Research concerning the development of pressure instrumentation for the space shuttle main engine is reported. The following specific topics were addressed: (1) transducer design and materials, (2) silicon piezoresistor characterization at cryogenic temperatures, (3) chip mounting characterization, and (4) frequency response optimization.

  14. Base modification strategies to modulate immune stimulation by an siRNA.

    PubMed

    Valenzuela, Rachel Anne P; Suter, Scott R; Ball-Jones, Alexi A; Ibarra-Soza, José M; Zheng, Yuxuan; Beal, Peter A

    2015-01-19

    Immune stimulation triggered by siRNAs is one of the major challenges in the development of safe RNAi-based therapeutics. Within an immunostimulatory siRNA sequence, this hurdle is commonly addressed by using ribose modifications (e.g., 2'-OMe or 2'-F), which results in decreased cytokine production. However, as immune stimulation by siRNAs is a sequence-dependent phenomenon, recognition of the nucleobases by the trigger receptor(s) is also likely. Here, we use the recently published crystal structures of Toll-like receptor 8 (TLR8) bound to small-molecule agonists to generate computational models for ribonucleotide binding by this immune receptor. Our modeling suggested that modification of either the Watson-Crick or Hoogsteen face of adenosine would disrupt nucleotide/TLR8 interactions. We employed chemical synthesis to alter either the Watson-Crick or Hoogsteen face of adenosine and evaluated the effect of these modifications in an siRNA guide strand by measuring the immunostimulatory and RNA interference properties. For the siRNA guide strand tested, we found that modifying the Watson-Crick face is generally more effective at blocking TNFα production in human peripheral blood mononuclear cells (PBMCs) than modification at the Hoogsteen edge. We also observed that modifications near the 5'-end were more effective at blocking cytokine production than those placed at the 3'-end. This work advances our understanding of how chemical modifications can be used to optimize siRNA performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements

    PubMed Central

    2007-01-01

    Several modifications that have been made to the NDDO core-core interaction term and to the method of parameter optimization are described. These changes have resulted in a more complete parameter optimization, called PM6, which has, in turn, allowed 70 elements to be parameterized. The average unsigned error (AUE) between calculated and reference heats of formation for 4,492 species was 8.0 kcal mol−1. For the subset of 1,373 compounds involving only the elements H, C, N, O, F, P, S, Cl, and Br, the PM6 AUE was 4.4 kcal mol−1. The equivalent AUE for other methods were: RM1: 5.0, B3LYP 6–31G*: 5.2, PM5: 5.7, PM3: 6.3, HF 6–31G*: 7.4, and AM1: 10.0 kcal mol−1. Several long-standing faults in AM1 and PM3 have been corrected and significant improvements have been made in the prediction of geometries. Figure Calculated structure of the complex ion [Ta6Cl12]2+ (footnote): Reference value in parenthesis Electronic supplementary material The online version of this article (doi:10.1007/s00894-007-0233-4) contains supplementary material, which is available to authorized users. PMID:17828561

  16. Histone acetyltransferase general control non-repressed protein 5 (GCN5) affects the fatty acid composition of Arabidopsis thaliana seeds by acetylating fatty acid desaturase3 (FAD3).

    PubMed

    Wang, Tianya; Xing, Jiewen; Liu, Xinye; Liu, Zhenshan; Yao, Yingyin; Hu, Zhaorong; Peng, Huiru; Xin, Mingming; Zhou, Dao-Xiu; Zhang, Yirong; Ni, Zhongfu

    2016-12-01

    Seed oils are important natural resources used in the processing and preparation of food. Histone modifications represent key epigenetic mechanisms that regulate gene expression, plant growth and development. However, histone modification events during fatty acid (FA) biosynthesis are not well understood. Here, we demonstrate that a mutation of the histone acetyltransferase GCN5 can decrease the ratio of α-linolenic acid (ALA) to linoleic acid (LA) in seed oil. Using RNA-Seq and ChIP assays, we identified FAD3, LACS2, LPP3 and PLAIIIβ as the targets of GCN5. Notably, the GCN5-dependent H3K9/14 acetylation of FAD3 determined the expression levels of FAD3 in Arabidopsis thaliana seeds, and the ratio of ALA/LA in the gcn5 mutant was rescued to the wild-type levels through the overexpression of FAD3. The results of this study indicated that GCN5 modulated FA biosynthesis by affecting the acetylation levels of FAD3. We provide evidence that histone acetylation is involved in FA biosynthesis in Arabidopsis seeds and might contribute to the optimization of the nutritional structure of edible oils through epigenetic engineering. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  17. Chitosan Nanoparticles Prepared by Ionotropic Gelation: An Overview of Recent Advances.

    PubMed

    Desai, Kashappa Goud

    2016-01-01

    The objective of this review is to summarize recent advances in chitosan nanoparticles prepared by ionotropic gelation. Significant progress has occurred in this area since the method was first reported. The gelation technique has been improved through a number of creative methodological modifications. Ionotropic gelation via electrospraying and spinning disc processing produces nanoparticles with a more uniform size distribution. Large-scale manufacturing of the nanoparticles can be achieved with the latter approach. Hydrophobic and hydrophilic drugs can be simultaneously encapsulated with high efficiency by emulsification followed by ionic gelation. The turbulent mixing approach facilitates nanoparticle formation at a relatively high polymer concentration (5 mg/mL). The technique can be easily tuned to achieve the desired polymer/surface modifications (e.g., blending, coating, and surface conjugation). Using factorial-design-based approaches, optimal conditions for nanoparticle formation can be determined with a minimum number of experiments. New insights have been gained into the mechanism of chitosan-tripolyphosphate nanoparticle formation. Chitosan nanoparticles prepared by ionotropic gelation tend to aggregate/agglomerate in unfavorable environments. Factors influencing this phenomenon and strategies that can be adopted to minimize the instability are discussed. Ionically cross-linked nanoparticles based on native chitosan and modified chitosan have shown excellent efficacy for controlled and targeted drug-delivery applications.

  18. Development of Functional Surfaces on High-Density Polyethylene (HDPE) via Gas-Assisted Etching (GAE) Using Focused Ion Beams.

    PubMed

    Sezen, Meltem; Bakan, Feray

    2015-12-01

    Irradiation damage, caused by the use of beams in electron and ion microscopes, leads to undesired physical/chemical material property changes or uncontrollable modification of structures. Particularly, soft matter such as polymers or biological materials is highly susceptible and very much prone to react on electron/ion beam irradiation. Nevertheless, it is possible to turn degradation-dependent physical/chemical changes from negative to positive use when materials are intentionally exposed to beams. Especially, controllable surface modification allows tuning of surface properties for targeted purposes and thus provides the use of ultimate materials and their systems at the micro/nanoscale for creating functional surfaces. In this work, XeF2 and I2 gases were used in the focused ion beam scanning electron microscope instrument in combination with gallium ion etching of high-density polyethylene surfaces with different beam currents and accordingly different gas exposure times resulting at the same ion dose to optimize and develop new polymer surface properties and to create functional polymer surfaces. Alterations in the surface morphologies and surface chemistry due to gas-assisted etching-based nanostructuring with various processing parameters were tracked using high-resolution SEM imaging, complementary energy-dispersive spectroscopic analyses, and atomic force microscopic investigations.

  19. 40 CFR 455.46 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... listed in Table 8 to this part 455 (or received a modification by Best Engineering Judgement for modifications not listed in Table 8 to this part 455); (2) The discharger will notify its local Control... its local Control Authority a periodic certification statement as described in § 455.41(b) during the...

  20. Behavior Modification Project: Reducing and Controlling Calling Out Behaviors.

    ERIC Educational Resources Information Center

    James, Deborah Anne

    The purpose of this study was to determine which behavior modification procedures were the most effective in reducing and controlling the inappropriate calling out behavior of a fifth-grade socially and emotionally disturbed student. Three phases of interventions were involved. As the study began, the resource room instructor was using a behavior…

  1. Environmental assessment of combustion modification controls for stationary internal combustion engines. Final report Sep 78-Jul 79

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lips, H.I.; Gotterba, J.A.; Lim, K.J.

    1981-07-01

    The report gives results of an environmental assessment of combustion modification techniques for stationary internal combustion engines, with respect to NOx control reduction effectiveness, operational impact, thermal efficiency impact, capital and annualized operating costs, and effects on emissions of pollutants other than NOx.

  2. Amide linkages mimic phosphates in RNA interactions with proteins and are well tolerated in the guide strand of short interfering RNAs

    PubMed Central

    Mutisya, Daniel; Hardcastle, Travis; Cheruiyot, Samwel K.; Pallan, Pradeep S.; Kennedy, Scott D.; Egli, Martin; Kelley, Melissa L.; Smith, Anja van Brabant

    2017-01-01

    Abstract While the use of RNA interference (RNAi) in molecular biology and functional genomics is a well-established technology, in vivo applications of synthetic short interfering RNAs (siRNAs) require chemical modifications. We recently found that amides as non-ionic replacements for phosphodiesters may be useful modifications for optimization of siRNAs. Herein, we report a comprehensive study of systematic replacement of a single phosphate with an amide linkage throughout the guide strand of siRNAs. The results show that amides are surprisingly well tolerated in the seed and central regions of the guide strand and increase the silencing activity when placed between nucleosides 10 and 12, at the catalytic site of Argonaute. A potential explanation is provided by the first crystal structure of an amide-modified RNA–DNA with Bacillus halodurans RNase H1. The structure reveals how small changes in both RNA and protein conformation allow the amide to establish hydrogen bonding interactions with the protein. Molecular dynamics simulations suggest that these alternative binding modes may compensate for interactions lost due to the absence of a phosphodiester moiety. Our results suggest that an amide can mimic important hydrogen bonding interactions with proteins required for RNAi activity and may be a promising modification for optimization of biological properties of siRNAs. PMID:28854734

  3. Amide linkages mimic phosphates in RNA interactions with proteins and are well tolerated in the guide strand of short interfering RNAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutisya, Daniel; Hardcastle, Travis; Cheruiyot, Samwel K.

    While the use of RNA interference (RNAi) in molecular biology and functional genomics is a well-established technology, in vivo applications of synthetic short interfering RNAs (siRNAs) require chemical modifications. We recently found that amides as non-ionic replacements for phosphodiesters may be useful modifications for optimization of siRNAs. Herein, we report a comprehensive study of systematic replacement of a single phosphate with an amide linkage throughout the guide strand of siRNAs. The results show that amides are surprisingly well tolerated in the seed and central regions of the guide strand and increase the silencing activity when placed between nucleosides 10 andmore » 12, at the catalytic site of Argonaute. A potential explanation is provided by the first crystal structure of an amide-modified RNA–DNA with Bacillus halodurans RNase H1. The structure reveals how small changes in both RNA and protein conformation allow the amide to establish hydrogen bonding interactions with the protein. Molecular dynamics simulations suggest that these alternative binding modes may compensate for interactions lost due to the absence of a phosphodiester moiety. Our results suggest that an amide can mimic important hydrogen bonding interactions with proteins required for RNAi activity and may be a promising modification for optimization of biological properties of siRNAs.« less

  4. Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China

    NASA Astrophysics Data System (ADS)

    Wu, Chong; Liu, Liping; Wei, Ming; Xi, Baozhu; Yu, Minghui

    2018-03-01

    A modified hydrometeor classification algorithm (HCA) is developed in this study for Chinese polarimetric radars. This algorithm is based on the U.S. operational HCA. Meanwhile, the methodology of statistics-based optimization is proposed including calibration checking, datasets selection, membership functions modification, computation thresholds modification, and effect verification. Zhuhai radar, the first operational polarimetric radar in South China, applies these procedures. The systematic bias of calibration is corrected, the reliability of radar measurements deteriorates when the signal-to-noise ratio is low, and correlation coefficient within the melting layer is usually lower than that of the U.S. WSR-88D radar. Through modification based on statistical analysis of polarimetric variables, the localized HCA especially for Zhuhai is obtained, and it performs well over a one-month test through comparison with sounding and surface observations. The algorithm is then utilized for analysis of a squall line process on 11 May 2014 and is found to provide reasonable details with respect to horizontal and vertical structures, and the HCA results—especially in the mixed rain-hail region—can reflect the life cycle of the squall line. In addition, the kinematic and microphysical processes of cloud evolution and the differences between radar-detected hail and surface observations are also analyzed. The results of this study provide evidence for the improvement of this HCA developed specifically for China.

  5. Optimizing anti-coking abilities of zeolites by ethylene diamine tetraacetie acid modification on catalytic fast pyrolysis of corn stalk

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhong, Zhaoping; Song, Zuwei; Ding, Kuan; Chen, Paul; Ruan, Roger

    2015-12-01

    In order to minimize coke yield during biomass catalytic fast pyrolysis (CFP) process, ethylene diamine tetraacetie acid (EDTA) chemical modification method is carried out to selectively remove the external framework aluminum of HZSM-5 catalyst. X-ray diffraction (XRD), nitrogen (N2)-adsorption and ammonia-temperature programmed desorption (NH3-TPD) techniques are employed to investigate the porosity and acidity characteristics of original and modified HZSM-5 samples. Py-GC/MS and thermo-gravimetric analyzer (TGA) experiments are further conducted to explore the catalytic effect of modified HZSM-5 samples on biomass CFP and to verify the positive effect on coke reduction. Results show that EDTA treatment does not damage the crystal structure of HZSM-5 zeolites, but leads to a slight increase of pore volume and pore size. Meanwhile, the elimination of the strong acid peak indicates the dealumination of outer surface of HZSM-5 zeolites. Treatment time of 2 h (labeled EDTA-2H) is optimal for acid removal and hydrocarbon formation. Among all modified catalysts, EDTA-2H performs the best for deacidification and can obviously increase the yields of positive chemical compositions in pyrolysis products. Besides, EDTA modification can improve the anti-coking properties of HZSM-5 zeolites, and EDTA-2H gives rise to the lowest coke yield.

  6. Optimization and validation of Folin-Ciocalteu method for the determination of total polyphenol content of Pu-erh tea.

    PubMed

    Musci, Marilena; Yao, Shicong

    2017-12-01

    Pu-erh tea is a post-fermented tea that has recently gained popularity worldwide, due to potential health benefits related to the antioxidant activity resulting from its high polyphenolic content. The Folin-Ciocalteu method is a simple, rapid, and inexpensive assay widely applied for the determination of total polyphenol content. Over the past years, it has been subjected to many modifications, often without any systematic optimization or validation. In our study, we sought to optimize the Folin-Ciocalteu method, evaluate quality parameters including linearity, precision and stability, and then apply the optimized model to determine the total polyphenol content of 57 Chinese teas, including green tea, aged and ripened Pu-erh tea. Our optimized Folin-Ciocalteu method reduced analysis time, allowed for the analysis of a large number of samples, to discriminate among the different teas, and to assess the effect of the post-fermentation process on polyphenol content.

  7. Research on design method of the full form ship with minimum thrust deduction factor

    NASA Astrophysics Data System (ADS)

    Zhang, Bao-ji; Miao, Ai-qin; Zhang, Zhu-xin

    2015-04-01

    In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust deduction factor has been developed, which combined the potential flow theory and boundary layer theory with the optimization technique. In the optimization process, the Sequential Unconstrained Minimization Technique (SUMT) interior point method of Nonlinear Programming (NLP) was proposed with the minimum thrust deduction factor as the objective function. An appropriate displacement is a basic constraint condition, and the boundary layer separation is an additional one. The parameters of the hull form modification function are used as design variables. At last, the numerical optimization example for lines of after-body of 50000 DWT product oil tanker was provided, which indicated that the propulsion efficiency was improved distinctly by this optimal design method.

  8. Evaluation and management of the patient with difficult-to-control or resistant hypertension.

    PubMed

    Viera, Anthony J; Hinderliter, Alan L

    2009-05-15

    High blood pressure is often difficult to control. Resistant hypertension is blood pressure above goal despite adherence to a combination of at least three antihypertensive medications of different classes, optimally dosed and usually including a diuretic. The approach to blood pressure that is apparently difficult to control begins with an assessment of the patient's adherence to the management plan, including lifestyle modifications and medications. White-coat hypertension may need to be ruled out. Suboptimal therapy is the most common reason for failure to reach the blood pressure goal. Once-daily fixed-dose combination pills may improve control through the synergism of antihypertensive agents from different classes and improved adherence. Truly drug-resistant hypertension is commonly caused by chronic kidney disease, obstructive sleep apnea, or hyperaldosteronism, all of which can lead to fluid retention. Higher doses of diuretics (or a change to a loop diuretic) are usually needed. Other strategies include adding an alpha blocker, alpha-beta blocker, clonidine, or an aldosterone antagonist (e.g., spironolactone). Particularly in patients with diabetes or renal disease, combining a long-acting nondihydropyridine with a dihydropyridine calcium channel . blocker can also be considered. Obesity, heavy alcohol intake, high levels of dietary sodium, and interfering substances (especially nonsteroidal anti-inflammatory drugs) contribute to hypertension that is resistant or difficult to control.

  9. Effects of ionospheric modification on system performance

    NASA Astrophysics Data System (ADS)

    Ganguly, Suman

    1989-12-01

    Controlled ionospheric modification can be used for disrupting as well as facilitating communication and radar systems. After briefly describing the results achieved with the present day ionospheric modification facilities, a scenario is presented for the generation of strong and significant ionospheric modification. A few schemes are presented for the development of modern high power facilities using the state of the art technology and then the impact of such facilities on the system performance is described.

  10. Nonlinear optimization simplified by hypersurface deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillinger, F.H.; Weber, T.A.

    1988-09-01

    A general strategy is advanced for simplifying nonlinear optimization problems, the ant-lion method. This approach exploits shape modifications of the cost-function hypersurface which distend basins surrounding low-lying minima (including global minima). By intertwining hypersurface deformations with steepest-descent displacements, the search is concentrated on a small relevant subset of all minima. Specific calculations demonstrating the value of this method are reported for the partitioning of two classes of irregular but nonrandom graphs, the prime-factor graphs and the pi graphs. We also indicate how this approach can be applied to the traveling salesman problem and to design layout optimization, and that itmore » may be useful in combination with simulated annealing strategies.« less

  11. A hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentation.

    PubMed

    Wang, Rui; Zhou, Yongquan; Zhao, Chengyan; Wu, Haizhou

    2015-01-01

    Multi-threshold image segmentation is a powerful image processing technique that is used for the preprocessing of pattern recognition and computer vision. However, traditional multilevel thresholding methods are computationally expensive because they involve exhaustively searching the optimal thresholds to optimize the objective functions. To overcome this drawback, this paper proposes a flower pollination algorithm with a randomized location modification. The proposed algorithm is used to find optimal threshold values for maximizing Otsu's objective functions with regard to eight medical grayscale images. When benchmarked against other state-of-the-art evolutionary algorithms, the new algorithm proves itself to be robust and effective through numerical experimental results including Otsu's objective values and standard deviations.

  12. 77 FR 9296 - Notice of Application for Approval of Discontinuance or Modification of a Railroad Signal System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... of Application for Approval of Discontinuance or Modification of a Railroad Signal System In... or modification of a signal system. FRA assigned the petition Docket Number FRA-2012-0012. UP seeks approval of the proposed discontinuance of the automatic block signal (ABS) system between Control Point...

  13. Controllable Change of Photoluminescence Spectra of Silicone Rubber Modified by 193 nm ArF Excimer Laser

    NASA Astrophysics Data System (ADS)

    Okoshi, Masayuki; Iyono, Minako; Inoue, Narumi

    2009-12-01

    Photoluminescence spectra of silicone rubber ([SiO(CH3)2]n) photochemically modified by a 193 nm ArF excimer laser was found to be controllable. Compared with the modification in air, the photoluminescence spectra could be blueshifted by the modification in vacuum or the additional irradiation of ArF excimer laser in vacuum after the modification in air. To redshift, on the other hand, the additional irradiation of a 157 nm F2 laser in air after the modification in air, the modification in oxygen gas, or the postannealing after the modification in oxygen gas was effective. The blue and redshifts of the photoluminescence were essentially due to the acceleration of reduction and oxidation reactions of silicone rubber, respectively, because the photoluminescence derives its origin from oxygen deficiency centers and peroxy centers of the silica structure in the modified silicone rubber. On the basis of the spectra changes, colorful light-guiding sheets made of silicone rubber under illumination of a 375 nm light-emitting diode were successfully fabricated for cellular phone use.

  14. Sex determination strategies in 2012: towards a common regulatory model?

    PubMed

    Angelopoulou, Roxani; Lavranos, Giagkos; Manolakou, Panagiota

    2012-02-22

    Sex determination is a complicated process involving large-scale modifications in gene expression affecting virtually every tissue in the body. Although the evolutionary origin of sex remains controversial, there is little doubt that it has developed as a process of optimizing metabolic control, as well as developmental and reproductive functions within a given setting of limited resources and environmental pressure. Evidence from various model organisms supports the view that sex determination may occur as a result of direct environmental induction or genetic regulation. The first process has been well documented in reptiles and fish, while the second is the classic case for avian species and mammals. Both of the latter have developed a variety of sex-specific/sex-related genes, which ultimately form a complete chromosome pair (sex chromosomes/gonosomes). Interestingly, combinations of environmental and genetic mechanisms have been described among different classes of animals, thus rendering the possibility of a unidirectional continuous evolutionary process from the one type of mechanism to the other unlikely. On the other hand, common elements appear throughout the animal kingdom, with regard to a) conserved key genes and b) a central role of sex steroid control as a prerequisite for ultimately normal sex differentiation. Studies in invertebrates also indicate a role of epigenetic chromatin modification, particularly with regard to alternative splicing options. This review summarizes current evidence from research in this hot field and signifies the need for further study of both normal hormonal regulators of sexual phenotype and patterns of environmental disruption. © 2012 Angelopoulou et al; licensee BioMed Central Ltd.

  15. Formation of blood clot on biomaterial implants influences bone healing.

    PubMed

    Shiu, Hoi Ting; Goss, Ben; Lutton, Cameron; Crawford, Ross; Xiao, Yin

    2014-12-01

    The first step in bone healing is forming a blood clot at injured bones. During bone implantation, biomaterials unavoidably come into direct contact with blood, leading to a blood clot formation on its surface prior to bone regeneration. Despite both situations being similar in forming a blood clot at the defect site, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Dental implantology has long demonstrated that the fibrin structure and cellular content of a peri-implant clot can greatly affect osteoconduction and de novo bone formation on implant surfaces. This article reviews the formation of a blood clot during bone healing in relation to the use of platelet-rich plasma (PRP) gels. It is implicated that PRP gels are dramatically altered from a normal clot in healing, resulting in conflicting effect on bone regeneration. These results indicate that the effect of clots on bone regeneration depends on how the clots are formed. Factors that influence blood clot structure and properties in relation to bone healing are also highlighted. Such knowledge is essential for developing strategies to optimally control blood clot formation, which ultimately alter the healing microenvironment of bone. Of particular interest are modification of surface chemistry of biomaterials, which displays functional groups at varied composition for the purpose of tailoring blood coagulation activation, resultant clot fibrin architecture, rigidity, susceptibility to lysis, and growth factor release. This opens new scope of in situ blood clot modification as a promising approach in accelerating and controlling bone regeneration.

  16. Redesigning metabolism based on orthogonality principles

    PubMed Central

    Pandit, Aditya Vikram; Srinivasan, Shyam; Mahadevan, Radhakrishnan

    2017-01-01

    Modifications made during metabolic engineering for overproduction of chemicals have network-wide effects on cellular function due to ubiquitous metabolic interactions. These interactions, that make metabolic network structures robust and optimized for cell growth, act to constrain the capability of the cell factory. To overcome these challenges, we explore the idea of an orthogonal network structure that is designed to operate with minimal interaction between chemical production pathways and the components of the network that produce biomass. We show that this orthogonal pathway design approach has significant advantages over contemporary growth-coupled approaches using a case study on succinate production. We find that natural pathways, fundamentally linked to biomass synthesis, are less orthogonal in comparison to synthetic pathways. We suggest that the use of such orthogonal pathways can be highly amenable for dynamic control of metabolism and have other implications for metabolic engineering. PMID:28555623

  17. Evaluation of two disinfection/sterilization methods on silicon rubber-based composite finishing instruments.

    PubMed

    Lacerda, Vánia A; Pereira, Leandro O; Hirata JUNIOR, Raphael; Perez, Cesar R

    2015-12-01

    To evaluate the effectiveness of disinfection/sterilization methods and their effects on polishing capacity, micomorphology, and composition of two different composite fiishing and polishing instruments. Two brands of finishing and polishing instruments (Jiffy and Optimize), were analyzed. For the antimicrobial test, 60 points (30 of each brand) were used for polishing composite restorations and submitted to three different groups of disinfection/sterilization methods: none (control), autoclaving, and immersion in peracetic acid for 60 minutes. The in vitro tests were performed to evaluate the polishing performance on resin composite disks (Amelogen) using a 3D scanner (Talyscan) and to evaluate the effects on the points' surface composition (XRF) and micromorphology (MEV) after completing a polishing and sterilizing routine five times. Both sterilization/disinfection methods were efficient against oral cultivable organisms and no deleterious modification was observed to point surface.

  18. Micro-battery Development for Juvenile Salmon Acoustic Telemetry System Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Honghao; Cartmell, Samuel S.; Wang, Qiang

    2014-01-21

    The Juvenile Salmon Acoustic Telemetry System (JSATS) project supported by the U.S. Army Corps of Engineers, Portland District, has yielded the smallest acoustic fish tag transmitter commercially available to date. In order to study even smaller fish populations and make the transmitter injectable by needles, the JSATS acoustic micro transmitter needs to be further downsized. This study focuses on the optimization of microbattery design based on Li/CFx chemistry. Through appropriate modifications, a steady high-rate pulse current with desirable life time has been achieved while the weight and volume of the battery is largely reduced. The impedance variation in as-designed microbatteriesmore » is systematically compared with that of currently used watch batteries in JSATS with an attempt to understand the intrinsic factors that control the performances of microbatteries under the real testing environments.« less

  19. How to track protists in three dimensions

    NASA Astrophysics Data System (ADS)

    Drescher, Knut; Leptos, Kyriacos C.; Goldstein, Raymond E.

    2009-01-01

    We present an apparatus optimized for tracking swimming micro-organisms in the size range of 10-1000 μm, in three dimensions (3Ds), far from surfaces, and with negligible background convective fluid motion. Charge coupled device cameras attached to two long working distance microscopes synchronously image the sample from two perpendicular directions, with narrow band dark-field or bright-field illumination chosen to avoid triggering a phototactic response. The images from the two cameras can be combined to yield 3D tracks of the organism. Using additional, highly directional broad-spectrum illumination with millisecond timing control the phototactic trajectories in 3D of organisms ranging from Chlamydomonas to Volvox can be studied in detail. Surface-mediated hydrodynamic interactions can also be investigated without convective interference. Minimal modifications to the apparatus allow for studies of chemotaxis and other taxes.

  20. Triacetic acid lactone production from Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    Triacetic acid lactone (TAL) is a potential platform chemical produced from acetyl-CoA and malonyl-CoA by the Gerbera hybrida 2-pyrone synthase (2PS) gene. Studies are ongoing to optimize production, purification, and chemical modification of TAL, which can be used to create the commercial chemicals...

  1. Breaking Boundaries: Optimizing Reconsolidation-Based Interventions for Strong and Old Memories

    ERIC Educational Resources Information Center

    Elsey, James W. B.; Kindt, Merel

    2017-01-01

    Recent research has demonstrated that consolidated memories can enter a temporary labile state after reactivation, requiring restabilization in order to persist. This process, known as reconsolidation, potentially allows for the modification and disruption of memory. Much interest in reconsolidation stems from the possibility that maladaptive…

  2. Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 6

    NASA Technical Reports Server (NTRS)

    Anderson, P. J.; Johnson, R. L.

    1984-01-01

    Research concerning the utilization of silicon piezoresistive strain sensing technology for space shuttle main engine applications is reported. The following specific topics were addressed: (1) transducer design and materials, (2) silicon piezoresistor characterization at cryogenic temperatures, (3) chip mounting characterization, and (4) frequency response optimization.

  3. Geomagnetic field modeling by optimal recursive filtering

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Data sets selected for mini-batches and the software modifications required for processing these sets are described. Initial analysis was performed on minibatch field model recovery. Studies are being performed to examine the convergence of the solutions and the maximum expansion order the data will support in the constant and secular terms.

  4. Competency: The Language of the Behavioral Objectives Movement.

    ERIC Educational Resources Information Center

    Craig, Samuel B., Jr.

    Several external and internal factors combine to hinder optimal communication in "Competency," the language of behavior modification. As a language, Competency a) is spoken with varying degrees of fluency and facility, b) is difficult to translate into English because the common vocabulary is used descriptively in English while it is…

  5. Enhancing water quality in hydropower system operations

    NASA Astrophysics Data System (ADS)

    Hayes, Donald F.; Labadie, John W.; Sanders, Thomas G.; Brown, Jackson K.

    1998-03-01

    The quality of impounded waters often degrades over time because of thermal stratification, sediment oxygen demands, and accumulation of pollutants. Consequently, reservoir releases impact water quality in tailwaters, channels, and other downstream water bodies. Low dissolved oxygen (DO) concentrations in the Cumberland River below Old Hickory dam result from stratification of upstream reservoirs and seasonally low release rates. Operational changes in upstream hydropower reservoirs may be one method to increase DO levels without substantially impacting existing project purposes. A water quality model of the upper Cumberland basin is integrated into an optimal control algorithm to evaluate water quality improvement opportunities through operational modifications. The integrated water quantity/quality model maximizes hydropower revenues, subject to various flow and headwater operational restrictions for satisfying multiple project purposes, as well as maintenance of water quality targets. Optimal daily reservoir release policies are determined for the summer drawdown period which increase DO concentrations under stratification conditions with minimal impact on hydropower production and other project purposes. Appendixes A-D available with entire article on microfiche. Order by mail from AGU, 2000 Florida Ave., N.W., Washington, DC 20009 or by phone at 800-966-2481; $2.50. Document W97-003. Payment must accompany order.

  6. Scar modification. Techniques for revision and camouflage.

    PubMed

    Horswell, B B

    1998-09-01

    The surgery and management of scars is a protracted and staged process that includes preparation of the skin through hygienic measures, scar softening (if indicated) with steroids, massage and pressure dressings, skilled execution of the surgical plan, and thorough postoperative wound care. This process generally covers a 1-year period for the various stages mentioned. Many general host and local skin factors will directly affect the final revision result. The two most important indirect factors that the surgeon must endeavor to control are optimal patient preparation and cutaneous health, and patient compliance with, and an ability to carry out, those wound care measures that the surgeon prescribes. Keloid and burn contracture scars represent two entities that are complicated and challenging to treat owing to their abnormal morphophysiologic features. Management of these scars is prolonged, and the patient must understand that the ultimate result will usually be a compromise. New grafting techniques, such as cultured autodermal grafts, offer improved initial management of burn wounds that may subsequently optimize scar revision in these patients. Keloids, and to a lesser extent hypertrophic scars, require steroid injections, pressure treatment, careful surgery, and protracted wound support and pressure treatment (exceeding 6 months) after surgery.

  7. Laser micropolishing of AISI 304 stainless steel surfaces for cleanability and bacteria removal capability

    NASA Astrophysics Data System (ADS)

    De Giorgi, Chiara; Furlan, Valentina; Demir, Ali Gökhan; Tallarita, Elena; Candiani, Gabriele; Previtali, Barbara

    2017-06-01

    In this work, laser micropolishing (LμP) was employed to reduce the surface roughness and waviness of cold-rolled AISI 304 stainless steel sheets. A pulsed fibre laser operating in the ns regime was used and the influence of laser parameters in a N2-controlled atmospheres was evaluated. In the optimal conditions, the surface remelting induced by the process allowed to reduce the surface roughness by closing cracks and defects formed during the rolling process. Other conditions that did not improve the surface quality were analysed for defect typology. Moreover, laser treatments allowed the production of more hydrophobic surfaces, and no surface chemistry modification was identified. Surface cleanability was investigated with Escherichia coli (E. coli), evaluating the number of residual bacteria adhering to the substrate after a washing procedure. These results showed that LμP is a suitable way to lower the average surface roughness by about 58% and average surface waviness by approximately 38%. The LμP process proved to be effective on the bacteria cleanability as approximately five times fewer bacteria remained on the surfaces treated with the optimized LμP parameters compared to the untreated surfaces.

  8. Guidelines for internal optics optimization of the ITER EC H and CD upper launcher

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moro, A.; Bruschi, A.; Figini, L.

    2014-02-12

    The importance of localized injection of Electron Cyclotron waves to control Magneto-HydroDynamic instability is well assessed in tokamak physics and the set of four Electron Cyclotron (EC) Upper Launchers (UL) in ITER is mainly designed for this purpose. Each of the 4 ULs uses quasi-optical mirrors (shaping and planes, fixed and steerable) to redirect and focus 8 beams (in two rows, with power close to 1 MW per beam coming from the EC transmission lines) in the plasma region where the instability appears. Small beam dimensions and maximum beam superposition guarantee the necessary localization of the driven current. To achievemore » the goal of MHD stabilization with minimum EC power to preserve the energy confinement in the outer half of the plasma cross section, optimization of the quasi-optical design is required and a guideline of a strategy is presented. As a result of this process and following the guidelines indicated, modifications of the design (new mirrors positions, rotation axes and/or focal properties) will be proposed for the next step of an iterative process, including the mandatory compatibility check with the mechanical constraints.« less

  9. Modeling for the optimal biodegradation of toxic wastewater in a discontinuous reactor.

    PubMed

    Betancur, Manuel J; Moreno-Andrade, Iván; Moreno, Jaime A; Buitrón, Germán; Dochain, Denis

    2008-06-01

    The degradation of toxic compounds in Sequencing Batch Reactors (SBRs) poses inhibition problems. Time Optimal Control (TOC) methods may be used to avoid such inhibition thus exploiting the maximum capabilities of this class of reactors. Biomass and substrate online measurements, however, are usually unavailable for wastewater applications, so TOC must use only related variables as dissolved oxygen and volume. Although the standard mathematical model to describe the reaction phase of SBRs is good enough for explaining its general behavior in uncontrolled batch mode, better details are needed to model its dynamics when the reactor operates near the maximum degradation rate zone, as when TOC is used. In this paper two improvements to the model are suggested: to include the sensor delay effects and to modify the classical Haldane curve in a piecewise manner. These modifications offer a good solution for a reasonable complexification tradeoff. Additionally, a new way to look at the Haldane K-parameters (micro(o),K(I),K(S)) is described, the S-parameters (micro*,S*,S(m)). These parameters do have a clear physical meaning and, unlike the K-parameters, allow for the statistical treatment to find a single model to fit data from multiple experiments.

  10. Assay Development Process | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Typical steps involved in the development of a  mass spectrometry-based targeted assay include: (1) selection of surrogate or signature peptides corresponding to the targeted protein or modification of interest; (2) iterative optimization of instrument and method parameters for optimal detection of the selected peptide; (3) method development for protein extraction from biological matrices such as tissue, whole cell lysates, or blood plasma/serum and proteolytic digestion of proteins (usually with trypsin); (4) evaluation of the assay in the intended biological matrix to determine if e

  11. Hormesis and the salk polio vaccine.

    PubMed

    Calabrese, Edward J

    2012-01-01

    The production of the Salk vaccine polio virus by monkey kidney cells was generated using the synthetic tissue culture medium, Mixture 199. In this paper's retrospective assessment of this process, it was discovered that Mixture 199 was modified by the addition of ethanol to optimize animal cell survival based on experimentation that revealed a hormetic-like biphasic response relationship. This hormesis-based optimization procedure was then applied to all uses of Mixture 199 and modifications of it, including its application to the Salk polio vaccine during preliminary testing and in its subsequent major societal treatment programs.

  12. Selectivity optimization in green chromatography by gradient stationary phase optimized selectivity liquid chromatography.

    PubMed

    Chen, Kai; Lynen, Frédéric; De Beer, Maarten; Hitzel, Laure; Ferguson, Paul; Hanna-Brown, Melissa; Sandra, Pat

    2010-11-12

    Stationary phase optimized selectivity liquid chromatography (SOSLC) is a promising technique to optimize the selectivity of a given separation by using a combination of different stationary phases. Previous work has shown that SOSLC offers excellent possibilities for method development, especially after the recent modification towards linear gradient SOSLC. The present work is aimed at developing and extending the SOSLC approach towards selectivity optimization and method development for green chromatography. Contrary to current LC practices, a green mobile phase (water/ethanol/formic acid) is hereby preselected and the composition of the stationary phase is optimized under a given gradient profile to obtain baseline resolution of all target solutes in the shortest possible analysis time. With the algorithm adapted to the high viscosity property of ethanol, the principle is illustrated with a fast, full baseline resolution for a randomly selected mixture composed of sulphonamides, xanthine alkaloids and steroids. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Nuclear Electric Vehicle Optimization Toolset (NEVOT): Integrated System Design Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.; Steincamp, James W.; Stewart, Eric T.; Patton, Bruce W.; Pannell, William P.; Newby, Ronald L.; Coffman, Mark E.; Qualls, A. L.; Bancroft, S.; Molvik, Greg

    2003-01-01

    The Nuclear Electric Vehicle Optimization Toolset (NEVOT) optimizes the design of all major Nuclear Electric Propulsion (NEP) vehicle subsystems for a defined mission within constraints and optimization parameters chosen by a user. The tool uses a Genetic Algorithm (GA) search technique to combine subsystem designs and evaluate the fitness of the integrated design to fulfill a mission. The fitness of an individual is used within the GA to determine its probability of survival through successive generations in which the designs with low fitness are eliminated and replaced with combinations or mutations of designs with higher fitness. The program can find optimal solutions for different sets of fitness metrics without modification and can create and evaluate vehicle designs that might never be conceived of through traditional design techniques. It is anticipated that the flexible optimization methodology will expand present knowledge of the design trade-offs inherent in designing nuclear powered space vehicles and lead to improved NEP designs.

  14. Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints

    NASA Astrophysics Data System (ADS)

    Kmet', Tibor; Kmet'ová, Mária

    2009-09-01

    A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  15. Metal-organic framework tethering PNIPAM for ON-OFF controlled release in solution.

    PubMed

    Nagata, Shunjiro; Kokado, Kenta; Sada, Kazuki

    2015-05-21

    A smart metal-organic framework (MOF) exhibiting controlled release was achieved by modification with a thermoresponsive polymer (PNIPAM) via a surface-selective post-synthetic modification technique. Simple temperature variation readily switches "open" (lower temperature) and "closed" (higher temperature) states of the polymer-modified MOF through conformational change of PNIPAM grafted onto the MOF, resulting in controlled release of the included guest molecules such as resorufin, caffeine, and procainamide.

  16. Genetic modification of Anopheles stephensi for resistance to multiple Plasmodium falciparum strains does not influence susceptibility to o'nyong'nyong virus or insecticides, or Wolbachia-mediated resistance to the malaria parasite.

    PubMed

    Pike, Andrew; Dimopoulos, George

    2018-01-01

    Mosquitoes that have been genetically engineered for resistance to human pathogens are a potential new tool for controlling vector-borne disease. However, genetic modification may have unintended off-target effects that could affect the mosquitoes' utility for disease control. We measured the resistance of five genetically modified Plasmodium-suppressing Anopheles stephensi lines to o'nyong'nyong virus, four classes of insecticides, and diverse Plasmodium falciparum field isolates and characterized the interactions between our genetic modifications and infection with the bacterium Wolbachia. The genetic modifications did not alter the mosquitoes' resistance to either o'nyong'nyong virus or insecticides, and the mosquitoes were equally resistant to all tested P. falciparum strains, regardless of Wolbachia infection status. These results indicate that mosquitoes can be genetically modified for resistance to malaria parasite infection and remain compatible with other vector-control measures without becoming better vectors for other pathogens.

  17. Post isolation modification of exosomes for nanomedicine applications.

    PubMed

    Hood, Joshua L

    2016-07-01

    Exosomes are extracellular nanovesicles. They innately possess ideal structural and biocompatible nanocarrier properties. Exosome components can be engineered at the cellular level. Alternatively, when exosome source cells are unavailable for customized exosome production, exosomes derived from a variety of biological origins can be modified post isolation which is the focus of this article. Modification of exosome surface structures allows for exosome imaging and tracking in vivo. Exosome membranes can be loaded with hydrophobic therapeutics to increase drug stability and efficacy. Hydrophilic therapeutics such as RNA can be encapsulated in exosomes to improve cellular delivery. Despite advances in post isolation exosome modification strategies, many challenges to effectively harnessing their therapeutic potential remain. Future topics of exploration include: matching exosome subtypes with nanomedicine applications, optimizing exosomal nanocarrier formulation and investigating how modified exosomes interface with the immune system. Research into these areas will greatly facilitate personalized exosome-based nanomedicine endeavors.

  18. Post isolation modification of exosomes for nanomedicine applications

    PubMed Central

    Hood, Joshua L

    2016-01-01

    Exosomes are extracellular nanovesicles. They innately possess ideal structural and biocompatible nanocarrier properties. Exosome components can be engineered at the cellular level. Alternatively, when exosome source cells are unavailable for customized exosome production, exosomes derived from a variety of biological origins can be modified post isolation which is the focus of this article. Modification of exosome surface structures allows for exosome imaging and tracking in vivo. Exosome membranes can be loaded with hydrophobic therapeutics to increase drug stability and efficacy. Hydrophilic therapeutics such as RNA can be encapsulated in exosomes to improve cellular delivery. Despite advances in post isolation exosome modification strategies, many challenges to effectively harnessing their therapeutic potential remain. Future topics of exploration include: matching exosome subtypes with nanomedicine applications, optimizing exosomal nanocarrier formulation and investigating how modified exosomes interface with the immune system. Research into these areas will greatly facilitate personalized exosome-based nanomedicine endeavors. PMID:27348448

  19. Using Virtual Reality to Dynamically Setting an Electrical Wheelchair

    NASA Astrophysics Data System (ADS)

    Dir, S.; Habert, O.; Pruski, A.

    2008-06-01

    This work uses virtual reality to find or refine in a recurring way the best adequacy between a person with physically disability and his electrical wheelchair. A system architecture based on "Experiment→Analyze and decision-making→Modification of the wheelchair" cycles is proposed. This architecture uses a decision-making module based on a fuzzy inference system which has to be parameterized so that the system converges quickly towards the optimal solution. The first challenge consists in computing criteria which must represent as well as possible particular situations that the user meets during each navigation experiment. The second challenge consists in transforming these criteria into relevant modifications about the active or non active functionalities or into adjustment of intrinsic setting of the wheelchair. These modifications must remain most stable as possible during the successive experiments. Objectives are to find the best wheelchair to give a beginning of mobility to a given person with physically disability.

  20. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard.

    PubMed

    Terwilliger, Thomas C; Grosse-Kunstleve, Ralf W; Afonine, Pavel V; Moriarty, Nigel W; Zwart, Peter H; Hung, Li Wei; Read, Randy J; Adams, Paul D

    2008-01-01

    The PHENIX AutoBuild wizard is a highly automated tool for iterative model building, structure refinement and density modification using RESOLVE model building, RESOLVE statistical density modification and phenix.refine structure refinement. Recent advances in the AutoBuild wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model-completion algorithms and automated solvent-molecule picking. Model-completion algorithms in the AutoBuild wizard include loop building, crossovers between chains in different models of a structure and side-chain optimization. The AutoBuild wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 to 3.2 A, resulting in a mean R factor of 0.24 and a mean free R factor of 0.29. The R factor of the final model is dependent on the quality of the starting electron density and is relatively independent of resolution.

  1. Maleic anhydride-g-low density polyethylene: Modification of LDPE molecular structure by γ-irradiation

    NASA Astrophysics Data System (ADS)

    Sheeja, Manaf, O.; Sujith, A.

    2017-06-01

    Polymer modification by radiation grafting of monomers onto polymers has received much attention recently. In the current study, γ-irradiation technique was used to achieve graft copolymerization of maleic anhydride (MA) onto low-density polyethylene (LDPE). To optimize, the process was performed at different γ-irradiation doses and MA concentration. The microstructure of grafted polymer film has been characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, field emission-scanning electron microscopy, and atomic force microscopy. The studies performed made possible the selection of experimental protocols adequate for the production of new copolymeric materials with high grafting yield.

  2. Nutrition Interventions in Chronic Kidney Disease.

    PubMed

    Anderson, Cheryl A M; Nguyen, Hoang Anh; Rifkin, Dena E

    2016-11-01

    Dietary modification is recommended in the management of chronic kidney disease (CKD). Individuals with CKD often have multiple comorbidities, such as high blood pressure, diabetes, obesity, and cardiovascular disease, for which dietary modification is also recommended. As CKD progresses, nutrition plays an important role in mitigating risk for cardiovascular disease and decline in kidney function. The objectives of nutrition interventions in CKD include management of risk factors, ensuring optimal nutritional status throughout all stages of CKD, preventing buildup of toxic metabolic products, and avoiding complications of CKD. Recommended dietary changes should be feasible, sustainable, and suited for patients' food preferences and clinical needs. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Mars Geoscience Orbiter and Lunar Geoscience Orbiter

    NASA Technical Reports Server (NTRS)

    Fuldner, W. V.; Kaskiewicz, P. F.

    1983-01-01

    The feasibility of using the AE/DE Earth orbiting spacecraft design for the LGO and/or MGO missions was determined. Configurations were developed and subsystems analysis was carried out to optimize the suitability of the spacecraft to the missions. The primary conclusion is that the basic AE/DE spacecraft can readily be applied to the LGO mission with relatively minor, low risk modifications. The MGO mission poses a somewhat more complex problem, primarily due to the overall maneuvering hydrazine budget and power requirements of the sensors and their desired duty cycle. These considerations dictate a modification (scaling up) of the structure to support mission requirements.

  4. Real-time in situ study of femtosecond-laser-induced periodic structures on metals by linear and nonlinear optics.

    PubMed

    Zhang, Jihua; He, Yizhuo; Lam, Billy; Guo, Chunlei

    2017-08-21

    Femtosecond-laser surface structuring on metals is investigated in real time by both fundamental and second harmonic generation (SHG) signals. The onset of surface modification and its progress can be monitored by both the fundamental and SHG probes. However, the dynamics of femtosecond-laser-induced periodic surface structures (FLIPSSs) formation can only be revealed by SHG but not fundamental because of the higher sensitivity of SHG to structural geometry on metal. Our technique provides a simple and effective way to monitor the surface modification and FLIPSS formation thresholds and allows us to obtain the optimal FLIPSS for SHG enhancement.

  5. Derated ion thruster design issues

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Rawlin, Vincent K.

    1991-01-01

    Preliminary activities to develop and refine a lightweight 30 cm engineering model ion thruster are discussed. The approach is to develop a 'derated' ion thruster capable of performing both auxiliary and primary propulsion roles over an input power range of at least 0.5 to 5.0 kilo-W. Design modifications to a baseline thruster to reduce mass and volume are discussed. Performance data over an order of magnitude input power range are presented, with emphasis on the performance impact of engine throttling. Thruster design modifications to optimize performance over specific power envelopes are discussed. Additionally, lifetime estimates based on wear test measurements are made for the operation envelope of the engine.

  6. Chromatin Proteomics Reveals Variable Histone Modifications during the Life Cycle of Trypanosoma cruzi.

    PubMed

    de Jesus, Teresa Cristina Leandro; Nunes, Vinícius Santana; Lopes, Mariana de Camargo; Martil, Daiana Evelin; Iwai, Leo Kei; Moretti, Nilmar Silvio; Machado, Fabrício Castro; de Lima-Stein, Mariana L; Thiemann, Otavio Henrique; Elias, Maria Carolina; Janzen, Christian; Schenkman, Sergio; da Cunha, Julia Pinheiro Chagas

    2016-06-03

    Histones are well-conserved proteins that form the basic structure of chromatin in eukaryotes and undergo several post-translational modifications, which are important for the control of transcription, replication, DNA damage repair, and chromosome condensation. In early branched organisms, histones are less conserved and appear to contain alternative sites for modifications, which could reveal evolutionary unique functions of histone modifications in gene expression and other chromatin-based processes. Here, by using high-resolution mass spectrometry, we identified and quantified histone post-translational modifications in two life cycle stages of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. We detected 44 new modifications, namely: 18 acetylations, seven monomethylations, seven dimethylations, seven trimethylations, and four phosphorylations. We found that replicative (epimastigote stage) contains more histone modifications than nonreplicative and infective parasites (trypomastigote stage). Acetylations of lysines at the C-terminus of histone H2A and methylations of lysine 23 of histone H3 were found to be enriched in trypomastigotes. In contrast, phosphorylation in serine 23 of H2B and methylations of lysine 76 of histone H3 predominates in proliferative states. The presence of one or two methylations in the lysine 76 was found in cells undergoing mitosis and cytokinesis, typical of proliferating parasites. Our findings provide new insights into the role of histone modifications related to the control of gene expression and cell-cycle regulation in an early divergent organism.

  7. Modifications to the Langley 8-foot transonic pressure tunnel for the laminar flow control experiment

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Brooks, Cuyler W., Jr.

    1988-01-01

    Modifications to the NASA Langley 8 Foot Transonic Pressure Tunnel in support of the Lamina Flow Control (LFC) Experiment included the installation of a honeymoon and five screens in the settling chamber upstream of the test section 41-long test section liner that extended from the upstream end of the test section contraction region, through the best section, and into the diffuser. The honeycomb and screens were installed as permanent additions to the facility, and the liner was a temporary addition to be removed at the conclusion of the LFC Experiment. These modifications are briefly described.

  8. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications

    PubMed Central

    Xu, Liang; Wang, Wei; Chong, Jenny; Shin, Ji Hyun; Xu, Jun; Wang, Dong

    2016-01-01

    Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress towards understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation. PMID:26392149

  9. A Closed-Loop Proportional-Integral (PI) Control Software for Fully Mechanically Controlled Automated Electron Microscopic Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    REN, GANG; LIU, JINXIN; LI, HONGCHANG

    A closed-loop proportional-integral (PI) control software is provided for fully mechanically controlled automated electron microscopic tomography. The software is developed based on Gatan DigitalMicrograph, and is compatible with Zeiss LIBRA 120 transmission electron microscope. However, it can be expanded to other TEM instrument with modification. The software consists of a graphical user interface, a digital PI controller, an image analyzing unit, and other drive units (i.e.: image acquire unit and goniometer drive unit). During a tomography data collection process, the image analyzing unit analyzes both the accumulated shift and defocus value of the latest acquired image, and provides the resultsmore » to the digital PI controller. The digital PI control compares the results with the preset values and determines the optimum adjustments of the goniometer. The goniometer drive unit adjusts the spatial position of the specimen according to the instructions given by the digital PI controller for the next tilt angle and image acquisition. The goniometer drive unit achieves high precision positioning by using a backlash elimination method. The major benefits of the software are: 1) the goniometer drive unit keeps pre-aligned/optimized beam conditions unchanged and achieves position tracking solely through mechanical control; 2) the image analyzing unit relies on only historical data and therefore does not require additional images/exposures; 3) the PI controller enables the system to dynamically track the imaging target with extremely low system error.« less

  10. Research flight-control system development for the F-18 high alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Pahle, Joseph W.; Powers, Bruce; Regenie, Victoria; Chacon, Vince; Degroote, Steve; Murnyak, Steven

    1991-01-01

    The F-18 high alpha research vehicle was recently modified by adding a thrust vectoring control system. A key element in the modification was the development of a research flight control system integrated with the basic F-18 flight control system. Discussed here are design requirements, system development, and research utility of the resulting configuration as an embedded system for flight research in the high angle of attack regime. Particular emphasis is given to control system modifications and control law features required for high angle of attack flight. Simulation results are used to illustrate some of the thrust vectoring control system capabilities and predicted maneuvering improvements.

  11. Hospitalization Drug Regimen Changes in Geriatric Patients and Adherence to Modifications by General Practitioners in Primary Care.

    PubMed

    Rouch, L; Farbos, F; Cool, C; McCambridge, C; Hein, C; Elmalem, S; Rolland, Y; Vellas, B; Cestac, P

    2018-01-01

    To evaluate the overall rate of adherence by general practitioners (GPs) to treatment modifications suggested at discharge from hospital and to assess the way communication between secondary and primary care could be improved. Observational prospective cohort study. Patients hospitalized from the emergency department to the acute geriatric care unit of a university hospital. 206 subjects with a mean age of 85 years. Changes in drug regimen undertaken during hospitalization were collected with the associated justifications. Adherence at one month by GPs to treatment modifications was assessed as well as modifications implemented in primary care with their rationale in case of non-adherence. Community pharmacists' and GPs' opinions about quality of communication and information transfer at hospital-general practice interface were investigated. 5.5 ± 2.8 drug regimen changes were done per patient during hospitalization. The rate of adherence by GPs to treatment modifications suggested at discharge from hospital was 83%. In most cases, non-adherence by GPs to treatment modifications done during hospitalization was due to dosage adjustments, symptoms resolution but also worsening of symptoms. The last of which was particularly true for psychotropic drugs. All GPs received their patients' discharge letters but the timely dissemination still needs to be improved. Only 6.6% of community pharmacists were informed of treatment modifications done during their patients' hospitalization. Our findings showed a successful rate of adherence by GPs to treatment modifications suggested at discharge from hospital, due to the fact that optimization was done in a collaborative way between geriatricians and hospital pharmacists and that justifications for drug regimen changes were systematically provided in discharge letters. Communication processes at the interface between secondary and primary care, particularly with community pharmacists, must be strengthened to improve seamless care.

  12. 77 FR 31429 - Notice of Application for Approval of Discontinuance or Modification of a Railroad Signal System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... of Application for Approval of Discontinuance or Modification of a Railroad Signal System In... discontinuance or modification of a signal system. FRA assigned the petition Docket Number FRA-2012-0046... discontinuance of an automatic block signal (ABS) system and a traffic control signal (TCS) system on the...

  13. Rapid End-Group Modification of Polysaccharides for Biomaterial Applications in Regenerative Medicine.

    PubMed

    Bondalapati, Somasekhar; Ruvinov, Emil; Kryukov, Olga; Cohen, Smadar; Brik, Ashraf

    2014-09-15

    Polysaccharides have emerged as important functional materials because of their unique properties such as biocompatibility, biodegradability, and availability of reactive sites for chemical modifications to optimize their properties. The overwhelming majority of the methods to modify polysaccharides employ random chemical modifications, which often improve certain properties while compromising others. On the other hand, the employed methods for selective modifications often require excess of coupling partners, long reaction times and are limited in their scope and wide applicability. To circumvent these drawbacks, aniline-catalyzed oxime formation is developed for selective modification of a variety of polysaccharides through their reducing end. Notably, it is found that for efficient oxime formation, different conditions are required depending on the composition of the specific polysaccharide. It is also shown how our strategy can be applied to improve the physical and functional properties of alginate hydrogels, which are widely used in tissue engineering and regenerative medicine applications. While the randomly and selectively modified alginate exhibits similar viscoelastic properties, the latter forms significantly more stable hydrogel and superior cell adhesive and functional properties. Our results show that the developed conjugation reaction is robust and should open new opportunities for preparing polysaccharide-based functional materials with unique properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Posttranscriptional modification of tRNA in thermophilic archaea (Archaebacteria).

    PubMed Central

    Edmonds, C G; Crain, P F; Gupta, R; Hashizume, T; Hocart, C H; Kowalak, J A; Pomerantz, S C; Stetter, K O; McCloskey, J A

    1991-01-01

    Nucleoside modification has been studied in unfractionated tRNA from 11 thermophilic archaea (archaebacteria), including phylogenetically diverse representatives of thermophilic methanogens and sulfur-metabolizing hyperthermophiles which grow optimally in the temperature range of 56 (Thermoplasma acidophilum) to 105 degrees C (Pyrodictium occultum), and for comparison from the most thermophilic bacterium (eubacterium) known, Thermotoga maritima (80 degrees C). Nine nucleosides are found to be unique to the archaea, six of which are structurally novel in being modified both in the base and by methylation in ribose and occur primarily in tRNA from the extreme thermophiles in the Crenarchaeota of the archaeal phylogenetic tree. 2-Thiothymine occurs in tRNA from Thermococcus sp., and constitutes the only known occurrence of the thymine moiety in archaeal RNA, in contrast to its near-ubiquitous presence in tRNA from bacteria and eukarya. A total of 33 modified nucleosides are rigorously characterized in archaeal tRNA in the present study, demonstrating that the structural range of posttranscriptional modifications in archaeal tRNA is more extensive than previously known. From a phylogenetic standpoint, certain tRNA modifications occur in the archaea which are otherwise unique to either the bacterial or eukaryal domain, although the overall patterns of modification are more typical of eukaryotes than bacteria. PMID:1708763

  15. Prediction of Protein Modification Sites of Pyrrolidone Carboxylic Acid Using mRMR Feature Selection and Analysis

    PubMed Central

    Zheng, Lu-Lu; Niu, Shen; Hao, Pei; Feng, KaiYan; Cai, Yu-Dong; Li, Yixue

    2011-01-01

    Pyrrolidone carboxylic acid (PCA) is formed during a common post-translational modification (PTM) of extracellular and multi-pass membrane proteins. In this study, we developed a new predictor to predict the modification sites of PCA based on maximum relevance minimum redundancy (mRMR) and incremental feature selection (IFS). We incorporated 727 features that belonged to 7 kinds of protein properties to predict the modification sites, including sequence conservation, residual disorder, amino acid factor, secondary structure and solvent accessibility, gain/loss of amino acid during evolution, propensity of amino acid to be conserved at protein-protein interface and protein surface, and deviation of side chain carbon atom number. Among these 727 features, 244 features were selected by mRMR and IFS as the optimized features for the prediction, with which the prediction model achieved a maximum of MCC of 0.7812. Feature analysis showed that all feature types contributed to the modification process. Further site-specific feature analysis showed that the features derived from PCA's surrounding sites contributed more to the determination of PCA sites than other sites. The detailed feature analysis in this paper might provide important clues for understanding the mechanism of the PCA formation and guide relevant experimental validations. PMID:22174779

  16. A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems

    DOE PAGES

    Molzahn, Daniel K.; Dorfler, Florian K.; Sandberg, Henrik; ...

    2017-07-25

    Historically, centrally computed algorithms have been the primary means of power system optimization and control. With increasing penetrations of distributed energy resources requiring optimization and control of power systems with many controllable devices, distributed algorithms have been the subject of significant research interest. Here, this paper surveys the literature of distributed algorithms with applications to optimization and control of power systems. In particular, this paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.

  17. A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molzahn, Daniel K.; Dorfler, Florian K.; Sandberg, Henrik

    Historically, centrally computed algorithms have been the primary means of power system optimization and control. With increasing penetrations of distributed energy resources requiring optimization and control of power systems with many controllable devices, distributed algorithms have been the subject of significant research interest. Here, this paper surveys the literature of distributed algorithms with applications to optimization and control of power systems. In particular, this paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.

  18. Energy conservation and analysis and evaluation. [specifically at Slidell Computer Complex

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The survey assembled and made recommendations directed at conserving utilities and reducing the use of energy at the Slidell Computer Complex. Specific items included were: (1) scheduling and controlling the use of gas and electricity, (2) building modifications to reduce energy, (3) replacement of old, inefficient equipment, (4) modifications to control systems, (5) evaluations of economizer cycles in HVAC systems, and (6) corrective settings for thermostats, ductstats, and other temperature and pressure control devices.

  19. An Attempt to Target Anxiety Sensitivity via Cognitive Bias Modification

    PubMed Central

    Clerkin, Elise M.; Beard, Courtney; Fisher, Christopher R.; Schofield, Casey A

    2015-01-01

    Our goals in the present study were to test an adaptation of a Cognitive Bias Modification program to reduce anxiety sensitivity, and to evaluate the causal relationships between interpretation bias of physiological cues, anxiety sensitivity, and anxiety and avoidance associated with interoceptive exposures. Participants with elevated anxiety sensitivity who endorsed having a panic attack or limited symptom attack were randomly assigned to either an Interpretation Modification Program (IMP; n = 33) or a Control (n = 32) condition. During interpretation modification training (via the Word Sentence Association Paradigm), participants read short sentences describing ambiguous panic-relevant physiological and cognitive symptoms and were trained to endorse benign interpretations and reject threatening interpretations associated with these cues. Compared to the Control condition, IMP training successfully increased endorsements of benign interpretations and decreased endorsements of threatening interpretations at visit 2. Although self-reported anxiety sensitivity decreased from pre-selection to visit 1 and from visit 1 to visit 2, the reduction was not larger for the experimental versus control condition. Further, participants in IMP (vs. Control) training did not experience less anxiety and avoidance associated with interoceptive exposures. In fact, there was some evidence that those in the Control condition experienced less avoidance following training. Potential explanations for the null findings, including problems with the benign panic-relevant stimuli and limitations with the control condition, are discussed. PMID:25692491

  20. An attempt to target anxiety sensitivity via cognitive bias modification.

    PubMed

    Clerkin, Elise M; Beard, Courtney; Fisher, Christopher R; Schofield, Casey A

    2015-01-01

    Our goals in the present study were to test an adaptation of a Cognitive Bias Modification program to reduce anxiety sensitivity, and to evaluate the causal relationships between interpretation bias of physiological cues, anxiety sensitivity, and anxiety and avoidance associated with interoceptive exposures. Participants with elevated anxiety sensitivity who endorsed having a panic attack or limited symptom attack were randomly assigned to either an Interpretation Modification Program (IMP; n = 33) or a Control (n = 32) condition. During interpretation modification training (via the Word Sentence Association Paradigm), participants read short sentences describing ambiguous panic-relevant physiological and cognitive symptoms and were trained to endorse benign interpretations and reject threatening interpretations associated with these cues. Compared to the Control condition, IMP training successfully increased endorsements of benign interpretations and decreased endorsements of threatening interpretations at visit 2. Although self-reported anxiety sensitivity decreased from pre-selection to visit 1 and from visit 1 to visit 2, the reduction was not larger for the experimental versus control condition. Further, participants in IMP (vs. Control) training did not experience less anxiety and avoidance associated with interoceptive exposures. In fact, there was some evidence that those in the Control condition experienced less avoidance following training. Potential explanations for the null findings, including problems with the benign panic-relevant stimuli and limitations with the control condition, are discussed.

Top