Coordinated garbage collection for raid array of solid state disks
Dillow, David A; Ki, Youngjae; Oral, Hakki S; Shipman, Galen M; Wang, Feiyi
2014-04-29
An optimized redundant array of solid state devices may include an array of one or more optimized solid-state devices and a controller coupled to the solid-state devices for managing the solid-state devices. The controller may be configured to globally coordinate the garbage collection activities of each of said optimized solid-state devices, for instance, to minimize the degraded performance time and increase the optimal performance time of the entire array of devices.
Thermodynamic Analysis of TEG-TEC Device Including Influence of Thomson Effect
NASA Astrophysics Data System (ADS)
Feng, Yuanli; Chen, Lingen; Meng, Fankai; Sun, Fengrui
2018-01-01
A thermodynamic model of a thermoelectric cooler driven by thermoelectric generator (TEG-TEC) device is established considering Thomson effect. The performance is analyzed and optimized using numerical calculation based on non-equilibrium thermodynamic theory. The influence characteristics of Thomson effect on the optimal performance and variable selection are investigated by comparing the condition with and without Thomson effect. The results show that Thomson effect degrades the performance of TEG-TEC device, it decreases the cooling capacity by 27 %, decreases the coefficient of performance (COP) by 19 %, decreases the maximum cooling temperature difference by 11 % when the ratio of thermoelectric elements number is 0.6, the cold junction temperature of thermoelectric cooler (TEC) is 285 K and the hot junction temperature of thermoelectric generator (TEG) is 450 K. Thomson effect degrades the optimal performance of TEG-TEC device, it decreases the maximum cooling capacity by 28 % and decreases the maximum COP by 28 % under the same junction temperatures. Thomson effect narrows the optimal variable range and optimal working range. In the design of the devices, limited-number thermoelectric elements should be more allocated appropriately to TEG when consider Thomson effect. The results may provide some guidelines for the design of TEG-TEC devices.
Topology-optimized metasurfaces: impact of initial geometric layout.
Yang, Jianji; Fan, Jonathan A
2017-08-15
Topology optimization is a powerful iterative inverse design technique in metasurface engineering and can transform an initial layout into a high-performance device. With this method, devices are optimized within a local design phase space, making the identification of suitable initial geometries essential. In this Letter, we examine the impact of initial geometric layout on the performance of large-angle (75 deg) topology-optimized metagrating deflectors. We find that when conventional metasurface designs based on dielectric nanoposts are used as initial layouts for topology optimization, the final devices have efficiencies around 65%. In contrast, when random initial layouts are used, the final devices have ultra-high efficiencies that can reach 94%. Our numerical experiments suggest that device topologies based on conventional metasurface designs may not be suitable to produce ultra-high-efficiency, large-angle metasurfaces. Rather, initial geometric layouts with non-trivial topologies and shapes are required.
Noise tolerant illumination optimization applied to display devices
NASA Astrophysics Data System (ADS)
Cassarly, William J.; Irving, Bruce
2005-02-01
Display devices have historically been designed through an iterative process using numerous hardware prototypes. This process is effective but the number of iterations is limited by the time and cost to make the prototypes. In recent years, virtual prototyping using illumination software modeling tools has replaced many of the hardware prototypes. Typically, the designer specifies the design parameters, builds the software model, predicts the performance using a Monte Carlo simulation, and uses the performance results to repeat this process until an acceptable design is obtained. What is highly desired, and now possible, is to use illumination optimization to automate the design process. Illumination optimization provides the ability to explore a wider range of design options while also providing improved performance. Since Monte Carlo simulations are often used to calculate the system performance but those predictions have statistical uncertainty, the use of noise tolerant optimization algorithms is important. The use of noise tolerant illumination optimization is demonstrated by considering display device designs that extract light using 2D paint patterns as well as 3D textured surfaces. A hybrid optimization approach that combines a mesh feedback optimization with a classical optimizer is demonstrated. Displays with LED sources and cold cathode fluorescent lamps are considered.
Optimizing the Usability of Brain-Computer Interfaces.
Zhang, Yin; Chase, Steve M
2018-05-01
Brain-computer interfaces are in the process of moving from the laboratory to the clinic. These devices act by reading neural activity and using it to directly control a device, such as a cursor on a computer screen. An open question in the field is how to map neural activity to device movement in order to achieve the most proficient control. This question is complicated by the fact that learning, especially the long-term skill learning that accompanies weeks of practice, can allow subjects to improve performance over time. Typical approaches to this problem attempt to maximize the biomimetic properties of the device in order to limit the need for extensive training. However, it is unclear if this approach would ultimately be superior to performance that might be achieved with a nonbiomimetic device once the subject has engaged in extended practice and learned how to use it. Here we approach this problem using ideas from optimal control theory. Under the assumption that the brain acts as an optimal controller, we present a formal definition of the usability of a device and show that the optimal postlearning mapping can be written as the solution of a constrained optimization problem. We then derive the optimal mappings for particular cases common to most brain-computer interfaces. Our results suggest that the common approach of creating biomimetic interfaces may not be optimal when learning is taken into account. More broadly, our method provides a blueprint for optimal device design in general control-theoretic contexts.
NASA Astrophysics Data System (ADS)
Teves, André da Costa; Lima, Cícero Ribeiro de; Passaro, Angelo; Silva, Emílio Carlos Nelli
2017-03-01
Electrostatic or capacitive accelerometers are among the highest volume microelectromechanical systems (MEMS) products nowadays. The design of such devices is a complex task, since they depend on many performance requirements, which are often conflicting. Therefore, optimization techniques are often used in the design stage of these MEMS devices. Because of problems with reliability, the technology of MEMS is not yet well established. Thus, in this work, size optimization is combined with the reliability-based design optimization (RBDO) method to improve the performance of accelerometers. To account for uncertainties in the dimensions and material properties of these devices, the first order reliability method is applied to calculate the probabilities involved in the RBDO formulation. Practical examples of bulk-type capacitive accelerometer designs are presented and discussed to evaluate the potential of the implemented RBDO solver.
Optimization of Microelectronic Devices for Sensor Applications
NASA Technical Reports Server (NTRS)
Cwik, Tom; Klimeck, Gerhard
2000-01-01
The NASA/JPL goal to reduce payload in future space missions while increasing mission capability demands miniaturization of active and passive sensors, analytical instruments and communication systems among others. Currently, typical system requirements include the detection of particular spectral lines, associated data processing, and communication of the acquired data to other systems. Advances in lithography and deposition methods result in more advanced devices for space application, while the sub-micron resolution currently available opens a vast design space. Though an experimental exploration of this widening design space-searching for optimized performance by repeated fabrication efforts-is unfeasible, it does motivate the development of reliable software design tools. These tools necessitate models based on fundamental physics and mathematics of the device to accurately model effects such as diffraction and scattering in opto-electronic devices, or bandstructure and scattering in heterostructure devices. The software tools must have convenient turn-around times and interfaces that allow effective usage. The first issue is addressed by the application of high-performance computers and the second by the development of graphical user interfaces driven by properly developed data structures. These tools can then be integrated into an optimization environment, and with the available memory capacity and computational speed of high performance parallel platforms, simulation of optimized components can proceed. In this paper, specific applications of the electromagnetic modeling of infrared filtering, as well as heterostructure device design will be presented using genetic algorithm global optimization methods.
Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk
NASA Astrophysics Data System (ADS)
Long, C. C.; Marsden, A. L.; Bazilevs, Y.
2014-10-01
In this paper we perform shape optimization of a pediatric pulsatile ventricular assist device (PVAD). The device simulation is carried out using fluid-structure interaction (FSI) modeling techniques within a computational framework that combines FEM for fluid mechanics and isogeometric analysis for structural mechanics modeling. The PVAD FSI simulations are performed under realistic conditions (i.e., flow speeds, pressure levels, boundary conditions, etc.), and account for the interaction of air, blood, and a thin structural membrane separating the two fluid subdomains. The shape optimization study is designed to reduce thrombotic risk, a major clinical problem in PVADs. Thrombotic risk is quantified in terms of particle residence time in the device blood chamber. Methods to compute particle residence time in the context of moving spatial domains are presented in a companion paper published in the same issue (Comput Mech, doi: 10.1007/s00466-013-0931-y, 2013). The surrogate management framework, a derivative-free pattern search optimization method that relies on surrogates for increased efficiency, is employed in this work. For the optimization study shown here, particle residence time is used to define a suitable cost or objective function, while four adjustable design optimization parameters are used to define the device geometry. The FSI-based optimization framework is implemented in a parallel computing environment, and deployed with minimal user intervention. Using five SEARCH/ POLL steps the optimization scheme identifies a PVAD design with significantly better throughput efficiency than the original device.
Inverse design engineering of all-silicon polarization beam splitters
NASA Astrophysics Data System (ADS)
Frandsen, Lars H.; Sigmund, Ole
2016-03-01
Utilizing the inverse design engineering method of topology optimization, we have realized high-performing all-silicon ultra-compact polarization beam splitters. We show that the device footprint of the polarization beam splitter can be as compact as ~2 μm2 while performing experimentally with a polarization splitting loss lower than ~0.82 dB and an extinction ratio larger than ~15 dB in the C-band. We investigate the device performance as a function of the device length and find a lower length above which the performance only increases incrementally. Imposing a minimum feature size constraint in the optimization is shown to affect the performance negatively and reveals the necessity for light to scatter on a sub-wavelength scale to obtain functionalities in compact photonic devices.
Improving the Performance of PbS Quantum Dot Solar Cells by Optimizing ZnO Window Layer
NASA Astrophysics Data System (ADS)
Yang, Xiaokun; Hu, Long; Deng, Hui; Qiao, Keke; Hu, Chao; Liu, Zhiyong; Yuan, Shengjie; Khan, Jahangeer; Li, Dengbing; Tang, Jiang; Song, Haisheng; Cheng, Chun
2017-04-01
Comparing with hot researches in absorber layer, window layer has attracted less attention in PbS quantum dot solar cells (QD SCs). Actually, the window layer plays a key role in exciton separation, charge drifting, and so on. Herein, ZnO window layer was systematically investigated for its roles in QD SCs performance. The physical mechanism of improved performance was also explored. It was found that the optimized ZnO films with appropriate thickness and doping concentration can balance the optical and electrical properties, and its energy band align well with the absorber layer for efficient charge extraction. Further characterizations demonstrated that the window layer optimization can help to reduce the surface defects, improve the heterojunction quality, as well as extend the depletion width. Compared with the control devices, the optimized devices have obtained an efficiency of 6.7% with an enhanced V oc of 18%, J sc of 21%, FF of 10%, and power conversion efficiency of 58%. The present work suggests a useful strategy to improve the device performance by optimizing the window layer besides the absorber layer.
Time domain topology optimization of 3D nanophotonic devices
NASA Astrophysics Data System (ADS)
Elesin, Y.; Lazarov, B. S.; Jensen, J. S.; Sigmund, O.
2014-02-01
We present an efficient parallel topology optimization framework for design of large scale 3D nanophotonic devices. The code shows excellent scalability and is demonstrated for optimization of broadband frequency splitter, waveguide intersection, photonic crystal-based waveguide and nanowire-based waveguide. The obtained results are compared to simplified 2D studies and we demonstrate that 3D topology optimization may lead to significant performance improvements.
Device Management and Flow Optimization on Left Ventricular Assist Device Support.
Tchoukina, Inna; Smallfield, Melissa C; Shah, Keyur B
2018-07-01
The authors discuss principles of continuous flow left ventricular assist device (LVAD) operation, basic differences between the axial and centrifugal flow designs and hemodynamic performance, normal LVAD physiology, and device interaction with the heart. Systematic interpretation of LVAD parameters and recognition of abnormal patterns of flow and pulsatility on the device interrogation are necessary for clinical assessment of the patient. Optimization of pump flow using LVAD parameters and echocardiographic and hemodynamics guidance are reviewed. Copyright © 2018 Elsevier Inc. All rights reserved.
Full space device optimization for solar cells.
Baloch, Ahmer A B; Aly, Shahzada P; Hossain, Mohammad I; El-Mellouhi, Fedwa; Tabet, Nouar; Alharbi, Fahhad H
2017-09-20
Advances in computational materials have paved a way to design efficient solar cells by identifying the optimal properties of the device layers. Conventionally, the device optimization has been governed by single or double descriptors for an individual layer; mostly the absorbing layer. However, the performance of the device depends collectively on all the properties of the material and the geometry of each layer in the cell. To address this issue of multi-property optimization and to avoid the paradigm of reoccurring materials in the solar cell field, a full space material-independent optimization approach is developed and presented in this paper. The method is employed to obtain an optimized material data set for maximum efficiency and for targeted functionality for each layer. To ensure the robustness of the method, two cases are studied; namely perovskite solar cells device optimization and cadmium-free CIGS solar cell. The implementation determines the desirable optoelectronic properties of transport mediums and contacts that can maximize the efficiency for both cases. The resulted data sets of material properties can be matched with those in materials databases or by further microscopic material design. Moreover, the presented multi-property optimization framework can be extended to design any solid-state device.
Staircase Quantum Dots Configuration in Nanowires for Optimized Thermoelectric Power
Li, Lijie; Jiang, Jian-Hua
2016-01-01
The performance of thermoelectric energy harvesters can be improved by nanostructures that exploit inelastic transport processes. One prototype is the three-terminal hopping thermoelectric device where electron hopping between quantum-dots are driven by hot phonons. Such three-terminal hopping thermoelectric devices have potential in achieving high efficiency or power via inelastic transport and without relying on heavy-elements or toxic compounds. We show in this work how output power of the device can be optimized via tuning the number and energy configuration of the quantum-dots embedded in parallel nanowires. We find that the staircase energy configuration with constant energy-step can improve the power factor over a serial connection of a single pair of quantum-dots. Moreover, for a fixed energy-step, there is an optimal length for the nanowire. Similarly for a fixed number of quantum-dots there is an optimal energy-step for the output power. Our results are important for future developments of high-performance nanostructured thermoelectric devices. PMID:27550093
Numerical Device Modeling, Analysis, and Optimization of Extended-SWIR HgCdTe Infrared Detectors
NASA Astrophysics Data System (ADS)
Schuster, J.; DeWames, R. E.; DeCuir, E. A.; Bellotti, E.; Dhar, N.; Wijewarnasuriya, P. S.
2016-09-01
Imaging in the extended short-wavelength infrared (eSWIR) spectral band (1.7-3.0 μm) for astronomy applications is an area of significant interest. However, these applications require infrared detectors with extremely low dark current (less than 0.01 electrons per pixel per second for certain applications). In these detectors, sources of dark current that may limit the overall system performance are fundamental and/or defect-related mechanisms. Non-optimized growth/device processing may present material point defects within the HgCdTe bandgap leading to Shockley-Read-Hall dominated dark current. While realizing contributions to the dark current from only fundamental mechanisms should be the goal for attaining optimal device performance, it may not be readily feasible with current technology and/or resources. In this regard, the U.S. Army Research Laboratory performed physics-based, two- and three-dimensional numerical modeling of HgCdTe photovoltaic infrared detectors designed for operation in the eSWIR spectral band. The underlying impetus for this capability and study originates with a desire to reach fundamental performance limits via intelligent device design.
Case study on impact performance optimization of hydraulic breakers.
Noh, Dae-Kyung; Kang, Young-Ky; Cho, Jae-Sang; Jang, Joo-Sup
2016-01-01
In order to expand the range of activities of an excavator, attachments, such as hydraulic breakers have been developed to be applied to buckets. However, it is very difficult to predict the dynamic behavior of hydraulic impact devices such as breakers because of high non-linearity. Thus, the purpose of this study is to optimize the impact performance of hydraulic breakers. The ultimate goal of the optimization is to increase the impact energy and impact frequency and to reduce the pressure pulsation of the supply and return lines. The optimization results indicated that the four parameters used to optimize the impact performance of the breaker showed considerable improvement over the results reported in the literature. A test was also conducted and the results were compared with those obtained through optimization in order to verify the optimization results. The comparison showed an average relative error of 8.24 %, which seems to be in good agreement. The results of this study can be used to optimize the impact performance of hydraulic impact devices such as breakers, thus facilitating its application to excavators and increasing the range of activities of an excavator.
Design of optimal buffer layers for CuInGaSe2 thin-film solar cells(Conference Presentation)
NASA Astrophysics Data System (ADS)
Lordi, Vincenzo; Varley, Joel B.; He, Xiaoqing; Rockett, Angus A.; Bailey, Jeff; Zapalac, Geordie H.; Mackie, Neil; Poplavskyy, Dmitry; Bayman, Atiye
2016-09-01
Optimizing the buffer layer in manufactured thin-film PV is essential to maximize device efficiency. Here, we describe a combined synthesis, characterization, and theory effort to design optimal buffers based on the (Cd,Zn)(O,S) alloy system for CIGS devices. Optimization of buffer composition and absorber/buffer interface properties in light of several competing requirements for maximum device efficiency were performed, along with process variations to control the film and interface quality. The most relevant buffer properties controlling performance include band gap, conduction band offset with absorber, dopability, interface quality, and film crystallinity. Control of an all-PVD deposition process enabled variation of buffer composition, crystallinity, doping, and quality of the absorber/buffer interface. Analytical electron microscopy was used to characterize the film composition and morphology, while hybrid density functional theory was used to predict optimal compositions and growth parameters based on computed material properties. Process variations were developed to produce layers with controlled crystallinity, varying from amorphous to fully epitaxial, depending primarily on oxygen content. Elemental intermixing between buffer and absorber, particularly involving Cd and Cu, also is controlled and significantly affects device performance. Secondary phase formation at the interface is observed for some conditions and may be detrimental depending on the morphology. Theoretical calculations suggest optimal composition ranges for the buffer based on a suite of computed properties and drive process optimizations connected with observed film properties. Prepared by LLNL under Contract DE-AC52-07NA27344.
Optimal placement of FACTS devices using optimization techniques: A review
NASA Astrophysics Data System (ADS)
Gaur, Dipesh; Mathew, Lini
2018-03-01
Modern power system is dealt with overloading problem especially transmission network which works on their maximum limit. Today’s power system network tends to become unstable and prone to collapse due to disturbances. Flexible AC Transmission system (FACTS) provides solution to problems like line overloading, voltage stability, losses, power flow etc. FACTS can play important role in improving static and dynamic performance of power system. FACTS devices need high initial investment. Therefore, FACTS location, type and their rating are vital and should be optimized to place in the network for maximum benefit. In this paper, different optimization methods like Particle Swarm Optimization (PSO), Genetic Algorithm (GA) etc. are discussed and compared for optimal location, type and rating of devices. FACTS devices such as Thyristor Controlled Series Compensator (TCSC), Static Var Compensator (SVC) and Static Synchronous Compensator (STATCOM) are considered here. Mentioned FACTS controllers effects on different IEEE bus network parameters like generation cost, active power loss, voltage stability etc. have been analyzed and compared among the devices.
Virtually optimized insoles for offloading the diabetic foot: A randomized crossover study.
Telfer, S; Woodburn, J; Collier, A; Cavanagh, P R
2017-07-26
Integration of objective biomechanical measures of foot function into the design process for insoles has been shown to provide enhanced plantar tissue protection for individuals at-risk of plantar ulceration. The use of virtual simulations utilizing numerical modeling techniques offers a potential approach to further optimize these devices. In a patient population at-risk of foot ulceration, we aimed to compare the pressure offloading performance of insoles that were optimized via numerical simulation techniques against shape-based devices. Twenty participants with diabetes and at-risk feet were enrolled in this study. Three pairs of personalized insoles: one based on shape data and subsequently manufactured via direct milling; and two were based on a design derived from shape, pressure, and ultrasound data which underwent a finite element analysis-based virtual optimization procedure. For the latter set of insole designs, one pair was manufactured via direct milling, and a second pair was manufactured through 3D printing. The offloading performance of the insoles was analyzed for forefoot regions identified as having elevated plantar pressures. In 88% of the regions of interest, the use of virtually optimized insoles resulted in lower peak plantar pressures compared to the shape-based devices. Overall, the virtually optimized insoles significantly reduced peak pressures by a mean of 41.3kPa (p<0.001, 95% CI [31.1, 51.5]) for milled and 40.5kPa (p<0.001, 95% CI [26.4, 54.5]) for printed devices compared to shape-based insoles. The integration of virtual optimization into the insole design process resulted in improved offloading performance compared to standard, shape-based devices. ISRCTN19805071, www.ISRCTN.org. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ferhati, H.; Djeffal, F.
2017-12-01
In this paper, a new junctionless optical controlled field effect transistor (JL-OCFET) and its comprehensive theoretical model is proposed to achieve high optical performance and low cost fabrication process. Exhaustive study of the device characteristics and comparison between the proposed junctionless design and the conventional inversion mode structure (IM-OCFET) for similar dimensions are performed. Our investigation reveals that the proposed design exhibits an outstanding capability to be an alternative to the IM-OCFET due to the high performance and the weak signal detection benefit offered by this design. Moreover, the developed analytical expressions are exploited to formulate the objective functions to optimize the device performance using Genetic Algorithms (GAs) approach. The optimized JL-OCFET not only demonstrates good performance in terms of derived drain current and responsivity, but also exhibits superior signal to noise ratio, low power consumption, high-sensitivity, high ION/IOFF ratio and high-detectivity as compared to the conventional IM-OCFET counterpart. These characteristics make the optimized JL-OCFET potentially suitable for developing low cost and ultrasensitive photodetectors for high-performance and low cost inter-chips data communication applications.
Optimization Techniques for 3D Graphics Deployment on Mobile Devices
NASA Astrophysics Data System (ADS)
Koskela, Timo; Vatjus-Anttila, Jarkko
2015-03-01
3D Internet technologies are becoming essential enablers in many application areas including games, education, collaboration, navigation and social networking. The use of 3D Internet applications with mobile devices provides location-independent access and richer use context, but also performance issues. Therefore, one of the important challenges facing 3D Internet applications is the deployment of 3D graphics on mobile devices. In this article, we present an extensive survey on optimization techniques for 3D graphics deployment on mobile devices and qualitatively analyze the applicability of each technique from the standpoints of visual quality, performance and energy consumption. The analysis focuses on optimization techniques related to data-driven 3D graphics deployment, because it supports off-line use, multi-user interaction, user-created 3D graphics and creation of arbitrary 3D graphics. The outcome of the analysis facilitates the development and deployment of 3D Internet applications on mobile devices and provides guidelines for future research.
NASA Astrophysics Data System (ADS)
Ozbulut, Osman E.; Hurlebaus, Stefan
2011-11-01
This paper proposes a re-centering variable friction device (RVFD) for control of civil structures subjected to near-field earthquakes. The proposed hybrid device has two sub-components. The first sub-component of this hybrid device consists of shape memory alloy (SMA) wires that exhibit a unique hysteretic behavior and full recovery following post-transformation deformations. The second sub-component of the hybrid device consists of variable friction damper (VFD) that can be intelligently controlled for adaptive semi-active behavior via modulation of its voltage level. In general, installed SMA devices have the ability to re-center structures at the end of the motion and VFDs can increase the energy dissipation capacity of structures. The full realization of these devices into a singular, hybrid form which complements the performance of each device is investigated in this study. A neuro-fuzzy model is used to capture rate- and temperature-dependent nonlinear behavior of the SMA components of the hybrid device. An optimal fuzzy logic controller (FLC) is developed to modulate voltage level of VFDs for favorable performance in a RVFD hybrid application. To obtain optimal controllers for concurrent mitigation of displacement and acceleration responses, tuning of governing fuzzy rules is conducted by a multi-objective heuristic optimization. Then, numerical simulation of a multi-story building is conducted to evaluate the performance of the hybrid device. Results show that a re-centering variable friction device modulated with a fuzzy logic control strategy can effectively reduce structural deformations without increasing acceleration response during near-field earthquakes.
Photo-Detection on Narrow-Bandgap High-Mobility 2D Semiconductors
NASA Astrophysics Data System (ADS)
Charnas, Adam; Qiu, Gang; Deng, Yexin; Wang, Yixiu; Du, Yuchen; Yang, Lingming; Wu, Wenzhuo; Ye, Peide
Photo-detection and energy harvesting device concepts have been demonstrated widely in 2D materials such as graphene, TMDs, and black phosphorus. In this work, we demonstrate anisotropic photo-detection achieved using devices fabricated from hydrothermally grown narrow-bandgap high-mobility 2D semiconductor. Back-gated FETs were fabricated by transferring the 2D flakes onto a Si/SiO2 substrate and depositing various metal contacts across the flakes to optimize the access resistance for optoelectronic devices. Photo-responsivity was measured and mapped by slightly biasing the devices and shining a laser spot at different locations of the device to observe and map the resulting photo-generated current. Optimization of the Schottky barrier height for both n and p at the metal-2D interfaces using asymmetric contact engineering was performed to improve device performance.
NASA Astrophysics Data System (ADS)
Ferhati, H.; Djeffal, F.
2017-12-01
In this paper, a new MSM-UV-photodetector (PD) based on dual wide band-gap material (DM) engineering aspect is proposed to achieve high-performance self-powered device. Comprehensive analytical models for the proposed sensor photocurrent and the device properties are developed incorporating the impact of DM aspect on the device photoelectrical behavior. The obtained results are validated with the numerical data using commercial TCAD software. Our investigation demonstrates that the adopted design amendment modulates the electric field in the device, which provides the possibility to drive appropriate photo-generated carriers without an external applied voltage. This phenomenon suggests achieving the dual role of effective carriers' separation and an efficient reduce of the dark current. Moreover, a new hybrid approach based on analytical modeling and Particle Swarm Optimization (PSO) is proposed to achieve improved photoelectric behavior at zero bias that can ensure favorable self-powered MSM-based UV-PD. It is found that the proposed design methodology has succeeded in identifying the optimized design that offers a self-powered device with high-responsivity (98 mA/W) and superior ION/IOFF ratio (480 dB). These results make the optimized MSM-UV-DM-PD suitable for providing low cost self-powered devices for high-performance optical communication and monitoring applications.
Polymer taper bridge for silicon waveguide to single mode waveguide coupling
NASA Astrophysics Data System (ADS)
Kruse, Kevin; Middlebrook, Christopher T.
2016-03-01
Coupling of optical power from high-density silicon waveguides to silica optical fibers for signal routing can incur high losses and often requires complex end-face preparation/processing. Novel coupling device taper structures are proposed for low coupling loss between silicon photonic waveguides and single mode fibers are proposed and devices are fabricated and measured in terms of performance. Theoretical mode conversion models for waveguide tapers are derived for optimal device structure design and performance. Commercially viable vertical and multi-layer taper designs using polymer waveguide materials are proposed as innovative, cost-efficient, and mass-manufacturable optical coupling devices. The coupling efficiency for both designs is determined to evaluate optimal device dimensions and alignment tolerances with both silicon rib waveguides and silicon nanowire waveguides. Propagation loss as a function of waveguide roughness and metallic loss are determined and correlated to waveguide dimensions to obtain total insertion loss for the proposed taper designs. Multi-layer tapers on gold-sputtered substrates are fabricated through photolithography as proof-of-concept devices and evaluated for device loss optimization. Tapered waveguide coupling loss with Si WGs (2.74 dB) was experimentally measured with high correlation to theoretical results.
Sharafat Hossain, Md; Al-Dirini, Feras; Hossain, Faruque M.; Skafidas, Efstratios
2015-01-01
Thermoelectric properties of Graphene nano-ribbons (GNRs) with nanopores (NPs) are explored for a range of pore dimensions in order to achieve a high performance two-dimensional nano-scale thermoelectric device. We reduce thermal conductivity of GNRs by introducing pores in them in order to enhance their thermoelectric performance. The electrical properties (Seebeck coefficient and conductivity) of the device usually degrade with pore inclusion; however, we tune the pore to its optimal dimension in order to minimize this degradation, enhancing the overall thermoelectric performance (high ZT value) of our device. We observe that the side channel width plays an important role to achieve optimal performance while the effect of pore length is less pronounced. This result is consistent with the fact that electronic conduction in GNRs is dominated along its edges. Ballistic transport regime is assumed and a semi-empirical method using Huckel basis set is used to obtain the electrical properties, while the phononic system is characterized by Tersoff empirical potential model. The proposed device structure has potential applications as a nanoscale local cooler and as a thermoelectric power generator. PMID:26083450
Hossain, Md Sharafat; Al-Dirini, Feras; Hossain, Faruque M; Skafidas, Efstratios
2015-06-17
Thermoelectric properties of Graphene nano-ribbons (GNRs) with nanopores (NPs) are explored for a range of pore dimensions in order to achieve a high performance two-dimensional nano-scale thermoelectric device. We reduce thermal conductivity of GNRs by introducing pores in them in order to enhance their thermoelectric performance. The electrical properties (Seebeck coefficient and conductivity) of the device usually degrade with pore inclusion; however, we tune the pore to its optimal dimension in order to minimize this degradation, enhancing the overall thermoelectric performance (high ZT value) of our device. We observe that the side channel width plays an important role to achieve optimal performance while the effect of pore length is less pronounced. This result is consistent with the fact that electronic conduction in GNRs is dominated along its edges. Ballistic transport regime is assumed and a semi-empirical method using Huckel basis set is used to obtain the electrical properties, while the phononic system is characterized by Tersoff empirical potential model. The proposed device structure has potential applications as a nanoscale local cooler and as a thermoelectric power generator.
Modeling of organic solar cell using response surface methodology
NASA Astrophysics Data System (ADS)
Suliman, Rajab; Mitul, Abu Farzan; Mohammad, Lal; Djira, Gemechis; Pan, Yunpeng; Qiao, Qiquan
Polymer solar cells have drawn much attention during the past few decades due to their low manufacturing cost and incompatibility for flexible substrates. In solution-processed organic solar cells, the optimal thickness, annealing temperature, and morphology are key components to achieving high efficiency. In this work, response surface methodology (RSM) is used to find optimal fabrication conditions for polymer solar cells. In order to optimize cell efficiency, the central composite design (CCD) with three independent variables polymer concentration, polymer-fullerene ratio, and active layer spinning speed was used. Optimal device performance was achieved using 10.25 mg/ml polymer concentration, 0.42 polymer-fullerene ratio, and 1624 rpm of active layer spinning speed. The predicted response (the efficiency) at the optimum stationary point was found to be 5.23% for the Poly(diketopyrrolopyrrole-terthiophene) (PDPP3T)/PC60BM solar cells. Moreover, 97% of the variation in the device performance was explained by the best model. Finally, the experimental results are consistent with the CCD prediction, which proves that this is a promising and appropriate model for optimum device performance and fabrication conditions.
NASA Astrophysics Data System (ADS)
Peng, Wanli; Zhang, Yanchao; Yang, Zhimin; Chen, Jincan
2018-02-01
Three-terminal energy selective electron (ESE) devices consisting of three electronic reservoirs connected by two energy filters and an electronic conductor with negligible resistance may work as ESE refrigerators and amplifiers. They have three possible connective ways for the electronic conductor and six electronic transmission forms. The configuration of energy filters may be described by the different transmission functions such as the rectangular and Lorentz transmission functions. The ESE devices with three connective ways can be, respectively, regarded as three equivalent hybrid systems composed of an ESE heat engine and an ESE refrigerator/heat pump. With the help of the theory of the ESE devices operated between two electronic reservoirs, the coefficients of performance and cooling rates (heat-pumping rates) of hybrid systems are directly derived. The general performance characteristics of hybrid systems are revealed. The optimal regions of these devices are determined. The performances of the devices with three connective ways of the electronic conductor and two configurations of energy filters are compared in detail. The advantages and disadvantages of each of three-terminal ESE devices are expounded. The results obtained here may provide some guidance for the optimal design and operation of three-terminal ESE devices.
Dichroic beamsplitter for high energy laser diagnostics
LaFortune, Kai N [Livermore, CA; Hurd, Randall [Tracy, CA; Fochs, Scott N [Livermore, CA; Rotter, Mark D [San Ramon, CA; Hackel, Lloyd [Livermore, CA
2011-08-30
Wavefront control techniques are provided for the alignment and performance optimization of optical devices. A Shack-Hartmann wavefront sensor can be used to measure the wavefront distortion and a control system generates feedback error signal to optics inside the device to correct the wavefront. The system can be calibrated with a low-average-power probe laser. An optical element is provided to couple the optical device to a diagnostic/control package in a way that optimizes both the output power of the optical device and the coupling of the probe light into the diagnostics.
Video display engineering and optimization system
NASA Technical Reports Server (NTRS)
Larimer, James (Inventor)
1997-01-01
A video display engineering and optimization CAD simulation system for designing a LCD display integrates models of a display device circuit, electro-optics, surface geometry, and physiological optics to model the system performance of a display. This CAD system permits system performance and design trade-offs to be evaluated without constructing a physical prototype of the device. The systems includes a series of modules which permit analysis of design trade-offs in terms of their visual impact on a viewer looking at a display.
Power optimization of ultrasonic friction-modulation tactile interfaces.
Wiertlewski, Michael; Colgate, J Edward
2015-01-01
Ultrasonic friction-modulation devices provide rich tactile sensation on flat surfaces and have the potential to restore tangibility to touchscreens. To date, their adoption into consumer electronics has been in part limited by relatively high power consumption, incompatible with the requirements of battery-powered devices. This paper introduces a method that optimizes the energy efficiency and performance of this class of devices. It considers optimal energy transfer to the impedance provided by the finger interacting with the surface. Constitutive equations are determined from the mode shape of the interface and the piezoelectric coupling of the actuator. The optimization procedure employs a lumped parameter model to simplify the treatment of the problem. Examples and an experimental study show the evolution of the optimal design as a function of the impedance of the finger.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo
We analyze quantum algorithms for cloning of a quantum measurement. Our aim is to mimic two uses of a device performing an unknown von Neumann measurement with a single use of the device. When the unknown device has to be used before the bipartite state to be measured is available we talk about 1{yields}2 learning of the measurement, otherwise the task is called 1{yields}2 cloning of a measurement. We perform the optimization for both learning and cloning for arbitrary dimension d of the Hilbert space. For 1{yields}2 cloning we also propose a simple quantum network that achieves the optimal fidelity.more » The optimal fidelity for 1{yields}2 learning just slightly outperforms the estimate and prepare strategy in which one first estimates the unknown measurement and depending on the result suitably prepares the duplicate.« less
Shared prefetching to reduce execution skew in multi-threaded systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichenberger, Alexandre E; Gunnels, John A
Mechanisms are provided for optimizing code to perform prefetching of data into a shared memory of a computing device that is shared by a plurality of threads that execute on the computing device. A memory stream of a portion of code that is shared by the plurality of threads is identified. A set of prefetch instructions is distributed across the plurality of threads. Prefetch instructions are inserted into the instruction sequences of the plurality of threads such that each instruction sequence has a separate sub-portion of the set of prefetch instructions, thereby generating optimized code. Executable code is generated basedmore » on the optimized code and stored in a storage device. The executable code, when executed, performs the prefetches associated with the distributed set of prefetch instructions in a shared manner across the plurality of threads.« less
Modeling of defect-tolerant thin multi-junction solar cells for space application
NASA Astrophysics Data System (ADS)
Mehrotra, A.; Alemu, A.; Freundlich, A.
2012-02-01
Using drift-diffusion model and considering experimental III-V material parameters, AM0 efficiencies of lattice-matched multijunction solar cells have been calculated and the effects of dislocations and radiation damage have been analyzed. Ultrathin multi-junction devices perform better in presence of dislocations or/and radiation harsh environment compared to conventional thick multijunction devices. Our results show that device design optimization of Ga0.51In0.49P/GaAs multijunction devices leads to an improvement in EOL efficiency from 4.8%, for the conventional thick device design, to 12.7%, for the EOL optimized thin devices. In addition, an optimized defect free lattice matched Ga0.51In0.49P/GaAs solar cell under 1016cm-2 1Mev equivalent electron fluence is shown to give an EOL efficiency of 12.7%; while a Ga0.51In0.49P/GaAs solar cell with 108 cm-2 dislocation density under 1016cm-2 electron fluence gives an EOL efficiency of 12.3%. The results suggest that by optimizing the device design, we can obtain nearly the same EOL efficiencies for high dislocation metamorphic solar cells and defect filtered metamorphic multijunction solar cells. The findings relax the need for thick or graded buffer used for defect filtering in metamorphic devices. It is found that device design optimization allows highly dislocated devices to be nearly as efficient as defect free devices for space applications.
NASA Astrophysics Data System (ADS)
Fang, Bao-Long; Yang, Zhen; Ye, Liu
2009-05-01
We propose a scheme for implementing a partial general quantum cloning machine with superconducting quantum-interference devices coupled to a nonresonant cavity. By regulating the time parameters, our system can perform optimal symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, and optimal symmetric economical phase-covariant cloning. In the scheme the cavity is only virtually excited, thus, the cavity decay is suppressed during the cloning operations.
Carbon Nanotubes as FET Channel: Analog Design Optimization considering CNT Parameter Variability
NASA Astrophysics Data System (ADS)
Samar Ansari, Mohd.; Tripathi, S. K.
2017-08-01
Carbon nanotubes (CNTs), both single-walled as well as multi-walled, have been employed in a plethora of applications pertinent to semiconductor materials and devices including, but not limited to, biotechnology, material science, nanoelectronics and nano-electro mechanical systems (NEMS). The Carbon Nanotube Field Effect Transistor (CNFET) is one such electronic device which effectively utilizes CNTs to achieve a boost in the channel conduction thereby yielding superior performance over standard MOSFETs. This paper explores the effects of variability in CNT physical parameters viz. nanotube diameter, pitch, and number of CNT in the transistor channel, on the performance of a chosen analog circuit. It is further shown that from the analyses performed, an optimal design of the CNFETs can be derived for optimizing the performance of the analog circuit as per a given specification set.
Optimizing Aspect-Oriented Mechanisms for Embedded Applications
NASA Astrophysics Data System (ADS)
Hundt, Christine; Stöhr, Daniel; Glesner, Sabine
As applications for small embedded mobile devices are getting larger and more complex, it becomes inevitable to adopt more advanced software engineering methods from the field of desktop application development. Aspect-oriented programming (AOP) is a promising approach due to its advanced modularization capabilities. However, existing AOP languages tend to add a substantial overhead in both execution time and code size which restricts their practicality for small devices with limited resources. In this paper, we present optimizations for aspect-oriented mechanisms at the level of the virtual machine. Our experiments show that these optimizations yield a considerable performance gain along with a reduction of the code size. Thus, our optimizations establish the base for using advanced aspect-oriented modularization techniques for developing Java applications on small embedded devices.
NASA Astrophysics Data System (ADS)
Martowicz, Adam; Uhl, Tadeusz
2012-10-01
The paper discusses the applicability of a reliability- and performance-based multi-criteria robust design optimization technique for micro-electromechanical systems, considering their technological uncertainties. Nowadays, micro-devices are commonly applied systems, especially in the automotive industry, taking advantage of utilizing both the mechanical structure and electronic control circuit on one board. Their frequent use motivates the elaboration of virtual prototyping tools that can be applied in design optimization with the introduction of technological uncertainties and reliability. The authors present a procedure for the optimization of micro-devices, which is based on the theory of reliability-based robust design optimization. This takes into consideration the performance of a micro-device and its reliability assessed by means of uncertainty analysis. The procedure assumes that, for each checked design configuration, the assessment of uncertainty propagation is performed with the meta-modeling technique. The described procedure is illustrated with an example of the optimization carried out for a finite element model of a micro-mirror. The multi-physics approach allowed the introduction of several physical phenomena to correctly model the electrostatic actuation and the squeezing effect present between electrodes. The optimization was preceded by sensitivity analysis to establish the design and uncertain domains. The genetic algorithms fulfilled the defined optimization task effectively. The best discovered individuals are characterized by a minimized value of the multi-criteria objective function, simultaneously satisfying the constraint on material strength. The restriction of the maximum equivalent stresses was introduced with the conditionally formulated objective function with a penalty component. The yielded results were successfully verified with a global uniform search through the input design domain.
Behara, Srinivas R.B.; Farkas, Dale R.; Hindle, Michael; Longest, P. Worth
2013-01-01
Purpose The objective of this study was to explore the performance of a high efficiency dry powder inhaler (DPI) intended for excipient enhanced growth (EEG) aerosol delivery based on changes to the capsule orientation and surface modifications of the capsule and device. Methods DPIs were constructed by combining newly designed capsule chambers (CC) with a previously developed three-dimensional (3D) rod array for particle deagglomeration and a previously optimized EEG formulation. The new CCs oriented the capsule perpendicular to the incoming airflow and were analyzed for different air inlets at a constant pressure drop across the device. Modifications to the inhaler and capsule surfaces included use of metal dispersion rods and surface coatings. Aerosolization performance of the new DPIs was evaluated and compared with commercial devices. Results The proposed capsule orientation and motion pattern increased capsule vibrational frequency and reduced the aerosol MMAD compared with commercial/modified DPIs. The use of metal rods in the 3D array further improved inhaler performance. Coating the inhaler and capsule with PTFE significantly increased emitted dose (ED) from the optimized DPI. Conclusions High efficiency performance is achieved for EEG delivery with the optimized DPI device and formulation combination producing an aerosol with MMAD < 1.5 µm, FPF<5µm/ED > 90%, and ED > 80%. PMID:23949304
Human breath metabolomics using an optimized noninvasive exhaled breath condensate sampler
Zamuruyev, Konstantin O.; Aksenov, Alexander A.; Pasamontes, Alberto; Brown, Joshua F.; Pettit, Dayna R.; Foutouhi, Soraya; Weimer, Bart C.; Schivo, Michael; Kenyon, Nicholas J.; Delplanque, Jean-Pierre; Davis, Cristina E.
2017-01-01
Exhaled breath condensate (EBC) analysis is a developing field with tremendous promise to advance personalized, non-invasive health diagnostics as new analytical instrumentation platforms and detection methods are developed. Multiple commercially-available and researcher-built experimental samplers are reported in the literature. However, there is very limited information available to determine an effective breath sampling approach, especially regarding the dependence of breath sample metabolomic content on the collection device design and sampling methodology. This lack of an optimal standard procedure results in a range of reported results that are sometimes contradictory. Here, we present a design of a portable human EBC sampler optimized for collection and preservation of the rich metabolomic content of breath. The performance of the engineered device is compared to two commercially available breath collection devices: the RTube™ and TurboDECCS. A number of design and performance parameters are considered, including: condenser temperature stability during sampling, collection efficiency, condenser material choice, and saliva contamination in the collected breath samples. The significance of the biological content of breath samples, collected with each device, is evaluated with a set of mass spectrometry methods and was the primary factor for evaluating device performance. The design includes an adjustable mass-size threshold for aerodynamic filtering of saliva droplets from the breath flow. Engineering an inexpensive device that allows efficient collection of metalomic-rich breath samples is intended to aid further advancement in the field of breath analysis for non-invasive health diagnostic. EBC sampling from human volunteers was performed under UC Davis IRB protocol 63701-3 (09/30/2014-07/07/2017). PMID:28004639
Human breath metabolomics using an optimized non-invasive exhaled breath condensate sampler.
Zamuruyev, Konstantin O; Aksenov, Alexander A; Pasamontes, Alberto; Brown, Joshua F; Pettit, Dayna R; Foutouhi, Soraya; Weimer, Bart C; Schivo, Michael; Kenyon, Nicholas J; Delplanque, Jean-Pierre; Davis, Cristina E
2016-12-22
Exhaled breath condensate (EBC) analysis is a developing field with tremendous promise to advance personalized, non-invasive health diagnostics as new analytical instrumentation platforms and detection methods are developed. Multiple commercially-available and researcher-built experimental samplers are reported in the literature. However, there is very limited information available to determine an effective breath sampling approach, especially regarding the dependence of breath sample metabolomic content on the collection device design and sampling methodology. This lack of an optimal standard procedure results in a range of reported results that are sometimes contradictory. Here, we present a design of a portable human EBC sampler optimized for collection and preservation of the rich metabolomic content of breath. The performance of the engineered device is compared to two commercially available breath collection devices: the RTube ™ and TurboDECCS. A number of design and performance parameters are considered, including: condenser temperature stability during sampling, collection efficiency, condenser material choice, and saliva contamination in the collected breath samples. The significance of the biological content of breath samples, collected with each device, is evaluated with a set of mass spectrometry methods and was the primary factor for evaluating device performance. The design includes an adjustable mass-size threshold for aerodynamic filtering of saliva droplets from the breath flow. Engineering an inexpensive device that allows efficient collection of metalomic-rich breath samples is intended to aid further advancement in the field of breath analysis for non-invasive health diagnostic. EBC sampling from human volunteers was performed under UC Davis IRB protocol 63701-3 (09/30/2014-07/07/2017).
Tao, Ye; Xu, Lijia; Zhang, Zhen; Chen, Runfeng; Li, Huanhuan; Xu, Hui; Zheng, Chao; Huang, Wei
2016-08-03
Current static-state explorations of organic semiconductors for optimal material properties and device performance are hindered by limited insights into the dynamically changed molecular states and charge transport and energy transfer processes upon device operation. Here, we propose a simple yet successful strategy, resonance variation-based dynamic adaptation (RVDA), to realize optimized self-adaptive properties in donor-resonance-acceptor molecules by engineering the resonance variation for dynamic tuning of organic semiconductors. Organic light-emitting diodes hosted by these RVDA materials exhibit remarkably high performance, with external quantum efficiencies up to 21.7% and favorable device stability. Our approach, which supports simultaneous realization of dynamically adapted and selectively enhanced properties via resonance engineering, illustrates a feasible design map for the preparation of smart organic semiconductors capable of dynamic structure and property modulations, promoting the studies of organic electronics from static to dynamic.
Gate length scaling optimization of FinFETs
NASA Astrophysics Data System (ADS)
Chen, Shoumian; Shang, Enming; Hu, Shaojian
2018-06-01
This paper introduces a device performance optimization approach for the FinFET through optimization of the gate length. As a result of reducing the gate length, the leakage current (Ioff) increases, and consequently, the stress along the channel enhances which leads to an increase in the drive current (Isat) of the PMOS. In order to sustain Ioff, work function is adjusted to offset the effect of the increased stress. Changing the gate length of the transistor yields different drive currents when the leakage current is fixed by adjusting the work function. For a given device, an optimal gate length is found to provide the highest drive current. As an example, for a standard performance device with Ioff = 1 nA/um, the best performance Isat = 856 uA/um is at L = 34 nm for 14 nm FinFET and Isat = 1130 uA/um at L = 21 nm for 7 nm FinFET. A 7 nm FinFET will exhibit performance boost of 32% comparing with 14 nm FinFET. However, applying the same method to a 5 nm FinFET, the performance boosting is out of expectance comparing to the 7 nm FinFET, which is due to the severe short-channel-effect and the exhausted channel stress in the FinFET.
Osterloh, Frank E.
2017-01-18
Here, the chemical literature often does not differentiate between photocatalytic (PC) and photosynthetic (PS) processes (including artificial photosynthesis) even though these reactions differ in their thermodynamics. Photocatalytic processes are thermodynamically downhill (ΔG < 0) and are merely accelerated by the catalyst, whereas photosynthetic processes are thermodynamically unfavorable (ΔG > 0) and require photochemical energy input to occur. Here we apply this differentiation to analyze the basic functions of PC and PS devices and to formulate design criteria for improved performance. As will be shown, the corresponding devices exhibit distinctly different sensitivities to their functional parameters. For example, under conditions ofmore » optimal light absorption, carrier lifetimes, and electrochemical rates, the performance of PCs is limited only by their surface area, while type 1 PS devices are limited by their carrier mobility and mass transport, and type 2 PS devices are limited by electrochemical charge-transfer selectivity. Strategies for the optimization of type 1 and 2 photosynthetic devices and photocatalysts are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osterloh, Frank E.
Here, the chemical literature often does not differentiate between photocatalytic (PC) and photosynthetic (PS) processes (including artificial photosynthesis) even though these reactions differ in their thermodynamics. Photocatalytic processes are thermodynamically downhill (ΔG < 0) and are merely accelerated by the catalyst, whereas photosynthetic processes are thermodynamically unfavorable (ΔG > 0) and require photochemical energy input to occur. Here we apply this differentiation to analyze the basic functions of PC and PS devices and to formulate design criteria for improved performance. As will be shown, the corresponding devices exhibit distinctly different sensitivities to their functional parameters. For example, under conditions ofmore » optimal light absorption, carrier lifetimes, and electrochemical rates, the performance of PCs is limited only by their surface area, while type 1 PS devices are limited by their carrier mobility and mass transport, and type 2 PS devices are limited by electrochemical charge-transfer selectivity. Strategies for the optimization of type 1 and 2 photosynthetic devices and photocatalysts are also discussed.« less
Performance limitations of translationally symmetric nonimaging devices
NASA Astrophysics Data System (ADS)
Bortz, John C.; Shatz, Narkis E.; Winston, Roland
2001-11-01
The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quality, referred to herein as the translational skew invariant, is analogous to the conventional skew invariant, which is conserved in rotationally symmetric optical systems. The invariance of both of these quantities is a consequence of Noether's theorem. We show how performance limits for translationally symmetric nonimaging optical devices can be derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. Examples of computed performance limits are provided. In addition, we show that a numerically optimized non-tracking solar concentrator utilizing symmetry-breaking surface microstructure can overcome the performance limits associated with translational symmetry. The optimized design provides a 47.4% increase in efficiency and concentration relative to an ideal translationally symmetric concentrator.
Shape Optimization and Modular Discretization for the Development of a Morphing Wingtip
NASA Astrophysics Data System (ADS)
Morley, Joshua
Better knowledge in the areas of aerodynamics and optimization has allowed designers to develop efficient wingtip structures in recent years. However, the requirements faced by wingtip devices can be considerably different amongst an aircraft's flight regimes. Traditional static wingtip devices are then a compromise between conflicting requirements, resulting in less than optimal performance within each regime. Alternatively, a morphing wingtip can reconfigure leading to improved performance over a range of dissimilar flight conditions. Developed within this thesis, is a modular morphing wingtip concept that centers on the use of variable geometry truss mechanisms to permit morphing. A conceptual design framework is established to aid in the development of the concept. The framework uses a metaheuristic optimization procedure to determine optimal continuous wingtip configurations. The configurations are then discretized for the modular concept. The functionality of the framework is demonstrated through a design study on a hypothetical wing/winglet within the thesis.
Ong, Carmichael F; Hicks, Jennifer L; Delp, Scott L
2016-05-01
Technologies that augment human performance are the focus of intensive research and development, driven by advances in wearable robotic systems. Success has been limited by the challenge of understanding human-robot interaction. To address this challenge, we developed an optimization framework to synthesize a realistic human standing long jump and used the framework to explore how simulated wearable robotic devices might enhance jump performance. A planar, five-segment, seven-degree-of-freedom model with physiological torque actuators, which have variable torque capacity depending on joint position and velocity, was used to represent human musculoskeletal dynamics. An active augmentation device was modeled as a torque actuator that could apply a single pulse of up to 100 Nm of extension torque. A passive design was modeled as rotational springs about each lower limb joint. Dynamic optimization searched for physiological and device actuation patterns to maximize jump distance. Optimization of the nominal case yielded a 2.27 m jump that captured salient kinematic and kinetic features of human jumps. When the active device was added to the ankle, knee, or hip, jump distance increased to between 2.49 and 2.52 m. Active augmentation of all three joints increased the jump distance to 3.10 m. The passive design increased jump distance to 3.32 m by adding torques of 135, 365, and 297 Nm to the ankle, knee, and hip, respectively. Dynamic optimization can be used to simulate a standing long jump and investigate human-robot interaction. Simulation can aid in the design of performance-enhancing technologies.
I/O performance evaluation of a Linux-based network-attached storage device
NASA Astrophysics Data System (ADS)
Sun, Zhaoyan; Dong, Yonggui; Wu, Jinglian; Jia, Huibo; Feng, Guanping
2002-09-01
In a Local Area Network (LAN), clients are permitted to access the files on high-density optical disks via a network server. But the quality of read service offered by the conventional server is not satisfied because of the multiple functions on the server and the overmuch caller. This paper develops a Linux-based Network-Attached Storage (NAS) server. The Operation System (OS), composed of an optimized kernel and a miniaturized file system, is stored in a flash memory. After initialization, the NAS device is connected into the LAN. The administrator and users could configure the access the server through the web page respectively. In order to enhance the quality of access, the management of buffer cache in file system is optimized. Some benchmark programs are peformed to evaluate the I/O performance of the NAS device. Since data recorded in optical disks are usually for reading accesses, our attention is focused on the reading throughput of the device. The experimental results indicate that the I/O performance of our NAS device is excellent.
Optimal pressure regulation of the pneumatic ventricular assist device with bellows-type driver.
Lee, Jung Joo; Kim, Bum Soo; Choi, Jaesoon; Choi, Hyuk; Ahn, Chi Bum; Nam, Kyoung Won; Jeong, Gi Seok; Lim, Choon Hak; Son, Ho Sung; Sun, Kyung
2009-08-01
The bellows-type pneumatic ventricular assist device (VAD) generates pneumatic pressure with compression of bellows instead of using an air compressor. This VAD driver has a small volume that is suitable for portable devices. However, improper pneumatic pressure setup can not only cause a lack of adequate flow generation, but also cause durability problems. In this study, a pneumatic pressure regulation system for optimal operation of the bellows-type VAD has been developed. The optimal pneumatic pressure conditions according to various afterload conditions aiming for optimal flow rates were investigated, and an afterload estimation algorithm was developed. The developed regulation system, which consists of a pressure sensor and a two-way solenoid valve, estimates the current afterload and regulates the pneumatic pressure to the optimal point for the current afterload condition. Experiments were performed in a mock circulation system. The afterload estimation algorithm showed sufficient performance with the standard deviation of error, 8.8 mm Hg. The flow rate could be stably regulated with a developed system under various afterload conditions. The shortcoming of a bellows-type VAD could be handled with this simple pressure regulation system.
Optimizing the Entrainment Geometry of a Dry Powder Inhaler: Methodology and Preliminary Results.
Kopsch, Thomas; Murnane, Darragh; Symons, Digby
2016-11-01
For passive dry powder inhalers (DPIs) entrainment and emission of the aerosolized drug dose depends strongly on device geometry and the patient's inhalation manoeuvre. We propose a computational method for optimizing the entrainment part of a DPI. The approach assumes that the pulmonary delivery location of aerosol can be determined by the timing of dose emission into the tidal airstream. An optimization algorithm was used to iteratively perform computational fluid dynamic (CFD) simulations of the drug emission of a DPI. The algorithm seeks to improve performance by changing the device geometry. Objectives were to achieve drug emission that was: A) independent of inhalation manoeuvre; B) similar to a target profile. The simulations used complete inhalation flow-rate profiles generated dependent on the device resistance. The CFD solver was OpenFOAM with drug/air flow simulated by the Eulerian-Eulerian method. To demonstrate the method, a 2D geometry was optimized for inhalation independence (comparing two breath profiles) and an early-bolus delivery. Entrainment was both shear-driven and gas-assisted. Optimization for a delay in the bolus delivery was not possible with the chosen geometry. Computational optimization of a DPI geometry for most similar drug delivery has been accomplished for an example entrainment geometry.
Optimal Design of a Thermoelectric Cooling/Heating System for Car Seat Climate Control (CSCC)
NASA Astrophysics Data System (ADS)
Elarusi, Abdulmunaem; Attar, Alaa; Lee, Hosung
2017-04-01
In the present work, the optimum design of thermoelectric car seat climate control (CSCC) is studied analytically in an attempt to achieve high system efficiency. Optimal design of a thermoelectric device (element length, cross-section area and number of thermocouples) is carried out using our newly developed optimization method based on the ideal thermoelectric equations and dimensional analysis to improve the performance of the thermoelectric device in terms of the heating/cooling power and the coefficient of performance (COP). Then, a new innovative system design is introduced which also includes the optimum input current for the initial (transient) startup warming and cooling before the car heating ventilation and air conditioner (HVAC) is active in the cabin. The air-to-air heat exchanger's configuration was taken into account to investigate the optimal design of the CSCC.
Cowger, Jennifer; Romano, Matthew A; Stulak, John; Pagani, Francis D; Aaronson, Keith D
2011-03-01
This review summarizes management strategies to reduce morbidity and mortality in heart failure patients supported chronically with implantable left ventricular assist devices (LVADs). As the population of patients supported with long-term LVADs has grown, patient selection, operative technique, and patient management strategies have been refined, leading to improved outcomes. This review summarizes recent findings on LVAD candidate selection, and discusses outpatient strategies to optimize device performance and heart failure management. It also reviews important device complications that warrant close outpatient monitoring. Managing patients on chronic LVAD support requires regular patient follow-up, multidisciplinary care teams, and frequent laboratory and echocardiographic surveillance to ensure optimal outcomes.
Pilavaki, Evdokia; Demosthenous, Andreas
2017-11-20
Detection and control of infectious diseases is a major problem, especially in developing countries. Lateral flow immunoassays can be used with great success for the detection of infectious diseases. However, for the quantification of their results an electronic reader is required. This paper presents an optimized handheld electronic reader for developing countries. It features a potentially low-cost, low-power, battery-operated device with no added optical accessories. The operation of this proof of concept device is based on measuring the reflected light from the lateral flow immunoassay and translating it into the concentration of the specific analyte of interest. Characterization of the surface of the lateral flow immunoassay has been performed in order to accurately model its response to the incident light. Ray trace simulations have been performed to optimize the system and achieve maximum sensitivity by placing all the components in optimum positions. A microcontroller enables all the signal processing to be performed on the device and a Bluetooth module allows transmission of the results wirelessly to a mobile phone app. Its performance has been validated using lateral flow immunoassays with influenza A nucleoprotein in the concentration range of 0.5 ng/mL to 200 ng/mL.
Design optimization of beta- and photovoltaic conversion devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichner, R.; Blum, A.; Fischer-Colbrie, E.
1976-01-08
This report presents the theoretical and experimental results of an LLL Electronics Engineering research program aimed at optimizing the design and electronic-material parameters of beta- and photovoltaic p-n junction conversion devices. To meet this objective, a comprehensive computer code has been developed that can handle a broad range of practical conditions. The physical model upon which the code is based is described first. Then, an example is given of a set of optimization calculations along with the resulting optimized efficiencies for silicon (Si) and gallium-arsenide (GaAs) devices. The model we have developed, however, is not limited to these materials. Itmore » can handle any appropriate material--single or polycrystalline-- provided energy absorption and electron-transport data are available. To check code validity, the performance of experimental silicon p-n junction devices (produced in-house) were measured under various light intensities and spectra as well as under tritium beta irradiation. The results of these tests were then compared with predicted results based on the known or best estimated device parameters. The comparison showed very good agreement between the calculated and the measured results.« less
Agustini, Deonir; Bergamini, Márcio F; Marcolino-Junior, Luiz Humberto
2017-01-25
The micro flow injection analysis (μFIA) is a powerful technique that uses the principles of traditional flow analysis in a microfluidic device and brings a number of improvements related to the consumption of reagents and samples, speed of analysis and portability. However, the complexity and cost of manufacturing processes, difficulty in integrating micropumps and the limited performance of systems employing passive pumps are challenges that must be overcome. Here, we present the characterization and optimization of a low cost device based on cotton threads as microfluidic channel to perform μFIA based on passive pumps with good analytical performance in a simple, easy and inexpensive way. The transport of solutions is made through cotton threads by capillary force facilitated by gravity. After studying and optimizing several features related to the device, were obtained a flow rate of 2.2 ± 0.1 μL s -1 , an analytical frequency of 208 injections per hour, a sample injection volume of 2.0 μL and a waste volume of approximately 40 μL per analysis. For chronoamperometric determination of naproxen, a detection limit of 0.29 μmol L -1 was reached, with a relative standard deviation (RSD) of 1.69% between injections and a RSD of 3.79% with five different devices. Thus, based on the performance presented by proposed microfluidic device, it is possible to overcome some limitations of the μFIA systems based on passive pumps and allow expansion in the use of this technique. Copyright © 2016 Elsevier B.V. All rights reserved.
Pointing Device Performance in Steering Tasks.
Senanayake, Ransalu; Goonetilleke, Ravindra S
2016-06-01
Use of touch-screen-based interactions is growing rapidly. Hence, knowing the maneuvering efficacy of touch screens relative to other pointing devices is of great importance in the context of graphical user interfaces. Movement time, accuracy, and user preferences of four pointing device settings were evaluated on a computer with 14 participants aged 20.1 ± 3.13 years. It was found that, depending on the difficulty of the task, the optimal settings differ for ballistic and visual control tasks. With a touch screen, resting the arm increased movement time for steering tasks. When both performance and comfort are considered, whether to use a mouse or a touch screen for person-computer interaction depends on the steering difficulty. Hence, a input device should be chosen based on the application, and should be optimized to match the graphical user interface. © The Author(s) 2016.
Study of the properties of new SPM detectors
NASA Astrophysics Data System (ADS)
Stewart, A. G.; Greene-O'Sullivan, E.; Herbert, D. J.; Saveliev, V.; Quinlan, F.; Wall, L.; Hughes, P. J.; Mathewson, A.; Jackson, J. C.
2006-02-01
The operation and performance of multi-pixel, Geiger-mode APD structures referred to as Silicon Photomultiplier (SPM) are reported. The SPM is a solid state device that has emerged over the last decade as a promising alternative to vacuum PMTs. This is due to their comparable performance in addition to their lower bias operation and power consumption, insensitivity to magnetic fields and ambient light, smaller size and ruggedness. Applications for these detectors are numerous and include life sciences, nuclear medicine, particle physics, microscopy and general instrumentation. With SPM devices, many geometrical and device parameters can be adjusted to optimize their performance for a particular application. In this paper, Monte Carlo simulations and experimental results for 1mm2 SPM structures are reported. In addition, trade-offs involved in optimizing the SPM in terms of the number and size of pixels for a given light intensity, and its affect on the dynamic range are discussed.
Evaluation of advanced cooling therapy's esophageal cooling device for core temperature control.
Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Kulstad, Erik
2016-05-01
Managing core temperature is critical to patient outcomes in a wide range of clinical scenarios. Previous devices designed to perform temperature management required a trade-off between invasiveness and temperature modulation efficiency. The Esophageal Cooling Device, made by Advanced Cooling Therapy (Chicago, IL), was developed to optimize warming and cooling efficiency through an easy and low risk procedure that leverages heat transfer through convection and conduction. Clinical data from cardiac arrest, fever, and critical burn patients indicate that the Esophageal Cooling Device performs very well both in terms of temperature modulation (cooling rates of approximately 1.3°C/hour, warming of up to 0.5°C/hour) and maintaining temperature stability (variation around goal temperature ± 0.3°C). Physicians have reported that device performance is comparable to the performance of intravascular temperature management techniques and superior to the performance of surface devices, while avoiding the downsides associated with both.
Ong, Carmichael F.; Hicks, Jennifer L.; Delp, Scott L.
2017-01-01
Goal Technologies that augment human performance are the focus of intensive research and development, driven by advances in wearable robotic systems. Success has been limited by the challenge of understanding human–robot interaction. To address this challenge, we developed an optimization framework to synthesize a realistic human standing long jump and used the framework to explore how simulated wearable robotic devices might enhance jump performance. Methods A planar, five-segment, seven-degree-of-freedom model with physiological torque actuators, which have variable torque capacity depending on joint position and velocity, was used to represent human musculoskeletal dynamics. An active augmentation device was modeled as a torque actuator that could apply a single pulse of up to 100 Nm of extension torque. A passive design was modeled as rotational springs about each lower limb joint. Dynamic optimization searched for physiological and device actuation patterns to maximize jump distance. Results Optimization of the nominal case yielded a 2.27 m jump that captured salient kinematic and kinetic features of human jumps. When the active device was added to the ankle, knee, or hip, jump distance increased to between 2.49 and 2.52 m. Active augmentation of all three joints increased the jump distance to 3.10 m. The passive design increased jump distance to 3.32 m by adding torques of 135 Nm, 365 Nm, and 297 Nm to the ankle, knee, and hip, respectively. Conclusion Dynamic optimization can be used to simulate a standing long jump and investigate human-robot interaction. Significance Simulation can aid in the design of performance-enhancing technologies. PMID:26258930
New evaluation parameter for wearable thermoelectric generators
NASA Astrophysics Data System (ADS)
Wijethunge, Dimuthu; Kim, Woochul
2018-04-01
Wearable devices constitute a key application area for thermoelectric devices. However, owing to new constraints in wearable applications, a few conventional device optimization techniques are not appropriate and material evaluation parameters, such as figure of merit (zT) and power factor (PF), tend to be inadequate. We illustrated the incompleteness of zT and PF by performing simulations and considering different thermoelectric materials. The results indicate a weak correlation between device performance and zT and PF. In this study, we propose a new evaluation parameter, zTwearable, which is better suited for wearable applications compared to conventional zT. Owing to size restrictions, gap filler based device optimization is extremely critical in wearable devices. With respect to the occasions in which gap fillers are used, expressions for power, effective thermal conductivity (keff), and optimum load electrical ratio (mopt) are derived. According to the new parameters, the thermal conductivity of the material has become much more critical now. The proposed new evaluation parameter, namely, zTwearable, is extremely useful in the selection of an appropriate thermoelectric material among various candidates prior to the commencement of the actual design process.
Energy efficiency analysis and optimization for mobile platforms
NASA Astrophysics Data System (ADS)
Metri, Grace Camille
The introduction of mobile devices changed the landscape of computing. Gradually, these devices are replacing traditional personal computer (PCs) to become the devices of choice for entertainment, connectivity, and productivity. There are currently at least 45.5 million people in the United States who own a mobile device, and that number is expected to increase to 1.5 billion by 2015. Users of mobile devices expect and mandate that their mobile devices have maximized performance while consuming minimal possible power. However, due to the battery size constraints, the amount of energy stored in these devices is limited and is only growing by 5% annually. As a result, we focused in this dissertation on energy efficiency analysis and optimization for mobile platforms. We specifically developed SoftPowerMon, a tool that can power profile Android platforms in order to expose the power consumption behavior of the CPU. We also performed an extensive set of case studies in order to determine energy inefficiencies of mobile applications. Through our case studies, we were able to propose optimization techniques in order to increase the energy efficiency of mobile devices and proposed guidelines for energy-efficient application development. In addition, we developed BatteryExtender, an adaptive user-guided tool for power management of mobile devices. The tool enables users to extend battery life on demand for a specific duration until a particular task is completed. Moreover, we examined the power consumption of System-on-Chips (SoCs) and observed the impact on the energy efficiency in the event of offloading tasks from the CPU to the specialized custom engines. Based on our case studies, we were able to demonstrate that current software-based power profiling techniques for SoCs can have an error rate close to 12%, which needs to be addressed in order to be able to optimize the energy consumption of the SoC. Finally, we summarize our contributions and outline possible direction for future research in this field.
Effects of Contact-Induced Doping on the Behaviors of Organic Photovoltaic Devices
Wang, Jian; Xu, Liang; Lee, Yun -Ju; ...
2015-10-09
Substrates can significantly affect the electronic properties of organic semiconductors. In this paper, we report the effects of contact-induced doping, arising from charge transfer between a high work function hole extraction layer (HEL) and the organic active layer, on organic photovoltaic device performance. Employing a high work function HEL is found to increase doping in the active layer and decrease photocurrent. Combined experimental and modeling investigations reveal that higher doping increases polaron–exciton quenching and carrier recombination within the field-free region. Consequently, there exists an optimal HEL work function that enables a large built-in field while keeping the active layer dopingmore » low. This value is found to be ~0.4 eV larger than the pinning level of the active layer material. As a result, these understandings establish a criterion for optimal design of the HEL when adapting a new active layer system and can shed light on optimizing performance in other organic electronic devices.« less
Ultra-slim flexible glass for roll-to-roll electronic device fabrication
NASA Astrophysics Data System (ADS)
Garner, Sean; Glaesemann, Scott; Li, Xinghua
2014-08-01
As displays and electronics evolve to become lighter, thinner, and more flexible, the choice of substrate continues to be critical to their overall optimization. The substrate directly affects improvements in the designs, materials, fabrication processes, and performance of advanced electronics. With their inherent benefits such as surface quality, optical transmission, hermeticity, and thermal and dimensional stability, glass substrates enable high-quality and long-life devices. As substrate thicknesses are reduced below 200 μm, ultra-slim flexible glass continues to provide these inherent benefits to high-performance flexible electronics such as displays, touch sensors, photovoltaics, and lighting. In addition, the reduction in glass thickness also allows for new device designs and high-throughput, continuous manufacturing enabled by R2R processes. This paper provides an overview of ultra-slim flexible glass substrates and how they enable flexible electronic device optimization. Specific focus is put on flexible glass' mechanical reliability. For this, a combination of substrate design and process optimizations has been demonstrated that enables R2R device fabrication on flexible glass. Demonstrations of R2R flexible glass processes such as vacuum deposition, photolithography, laser patterning, screen printing, slot die coating, and lamination have been made. Compatibility with these key process steps has resulted in the first demonstration of a fully functional flexible glass device fabricated completely using R2R processes.
NASA Astrophysics Data System (ADS)
Munusami, Ravindiran; Yakkala, Bhaskar Rao; Prabhakar, Shankar
2013-12-01
Magnetic tunnel junction were made by inserting the magnetic materials between the source, channel and the drain of the High Electron Mobility Transistor (HEMT) to enhance the performance. Material studio software package was used to design the superlattice layers. Different cases were analyzed to optimize the performance of the device by placing the magnetic material at different positions of the device. Simulation results based on conductivity reveals that the device has a very good electron transport due to the magnetic materials and will amplify very low frequency signals.
Performance improvements of symmetry-breaking reflector structures in nonimaging devices
Winston, Roland
2004-01-13
A structure and method for providing a broken symmetry reflector structure for a solar concentrator device. The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quantity, referred to as the translational skew invariant, is conserved in rotationally symmetric optical systems. Performance limits for translationally symmetric nonimaging optical devices are derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. A numerically optimized non-tracking solar concentrator utilizing symmetry-breaking reflector structures can overcome the performance limits associated with translational symmetry.
Optimization of antireflection coating design for multijunction solar cells and concentrator systems
NASA Astrophysics Data System (ADS)
Valdivia, Christopher E.; Desfonds, Eric; Masson, Denis; Fafard, Simon; Carlson, Andrew; Cook, John; Hall, Trevor J.; Hinzer, Karin
2008-06-01
Photovoltaic solar cells are a route towards local, environmentally benign, sustainable and affordable energy solutions. Antireflection coatings are necessary to input a high percentage of available light for photovoltaic conversion, and therefore have been widely exploited for silicon solar cells. Multi-junction III-V semiconductor solar cells have achieved the highest efficiencies of any photovoltaic technology, yielding up to 40% in the laboratory and 37% in commercial devices under varying levels of concentrated light. These devices benefit from a wide absorption spectrum (300- 1800 nm), but this also introduces significant challenges for antireflection coating design. Each sub-cell junction is electrically connected in series, limiting the overall device photocurrent by the lowest current-producing junction. Therefore, antireflection coating optimization must maximize the current from the limiting sub-cells at the expense of the others. Solar concentration, necessary for economical terrestrial deployment of multi-junction solar cells, introduces an angular-dependent irradiance spectrum. Antireflection coatings are optimized for both direct normal incidence in air and angular incidence in an Opel Mk-I concentrator, resulting in as little as 1-2% loss in photocurrent as compared to an ideal zero-reflectance solar cell, showing a similar performance to antireflection coatings on silicon solar cells. A transparent conductive oxide layer has also been considered to replace the metallic-grid front electrode and for inclusion as part of a multi-layer antireflection coating. Optimization of the solar cell, antireflection coating, and concentrator system should be considered simultaneously to enable overall optimal device performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fong, Erika J.; Huang, Chao; Hamilton, Julie
Here, a major advantage of microfluidic devices is the ability to manipulate small sample volumes, thus reducing reagent waste and preserving precious sample. However, to achieve robust sample manipulation it is necessary to address device integration with the macroscale environment. To realize repeatable, sensitive particle separation with microfluidic devices, this protocol presents a complete automated and integrated microfluidic platform that enables precise processing of 0.15–1.5 ml samples using microfluidic devices. Important aspects of this system include modular device layout and robust fixtures resulting in reliable and flexible world to chip connections, and fully-automated fluid handling which accomplishes closed-loop sample collection,more » system cleaning and priming steps to ensure repeatable operation. Different microfluidic devices can be used interchangeably with this architecture. Here we incorporate an acoustofluidic device, detail its characterization, performance optimization, and demonstrate its use for size-separation of biological samples. By using real-time feedback during separation experiments, sample collection is optimized to conserve and concentrate sample. Although requiring the integration of multiple pieces of equipment, advantages of this architecture include the ability to process unknown samples with no additional system optimization, ease of device replacement, and precise, robust sample processing.« less
Potential of connected devices to optimize cattle reproduction.
Saint-Dizier, Marie; Chastant-Maillard, Sylvie
2018-05-01
Estrus and calving are two major events of reproduction that benefit from connected devices because of their crucial importance in herd economics and the amount of time required for their detection. The objectives of this review are to: 1) provide an update on performances reached by sensor systems to detect estrus and calving time; 2) discuss current economic issues related to connected devices for the management of cattle reproduction; 3) propose perspectives for these devices. The main physiological parameters monitored separately or in combination by connected devices are the cow activity, body temperature and rumination or eating behavior. The combination of several indicators in one sensor may maximize the performances of estrus and calving detection. An effort remains to be made for the prediction of calvings that will require human assistance (dystocia). The main reasons to invest in connected devices are to optimize herd reproductive performances and reduce labor on farm. The economic benefit was evaluated for estrus detection and depends on the initial herd performances, herd size, labor cost and price of the equipment. Major issues associated with the use of automated sensor systems are the weight of financial investment, the lack of economic analysis and limited skills of the users to manage associated technologies. In the near future, connected devices may allow a precise phenotyping of reproductive and health traits on animals and could help to improve animal welfare and public perception of animal production. Copyright © 2017 Elsevier Inc. All rights reserved.
van den Boer, Cindy; Vas Nunes, Jonathan H; Muller, Sara H; van der Noort, Vincent; van den Brekel, Michiel W M; Hilgers, Frans J M
2014-06-01
After total laryngectomy, patients suffer from pulmonary complaints due to the shortcut of the upper airways that results in decreased warming and humidification of inspired air. Laryngectomized patients are advised to use a heat and moisture exchanger (HME) to optimize the inspired air. According to manufacturers' guidelines, these medical devices should be replaced every 24 hours. The aim of this study is to determine whether HMEs still function after 24-hour tracheostoma application. Assessment of residual water uptake capacity of used HMEs by measuring the difference between wet and dry core weight. Tertiary comprehensive cancer center. Three hygroscopic HME types were tested after use by laryngectomized patients in long-term follow-up. Water uptake of 41 used devices (including 10 prematurely replaced devices) was compared with that of control (unused) devices of the same type and with a control device with a relatively low performance. After 24 hours, the mean water uptake of the 3 device types had decreased compared with that of the control devices. For only one type was this difference significant. None of the used HMEs had a water uptake lower than that of the low-performing control device. The water uptake capacity of hygroscopic HEMs is clinically acceptable although no longer optimal after 24-hour tracheostoma application. From a functional point of view, the guideline for daily device replacement is therefore justified. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.
The effect of nanoparticle packing on capacitive electrode performance.
Lee, Younghee; Noh, Seonmyeong; Kim, Min-Sik; Kong, Hye Jeong; Im, Kyungun; Kwon, Oh Seok; Kim, Sungmin; Yoon, Hyeonseok
2016-06-09
Nanoparticles pack together to form macro-scale electrodes in various types of devices, and thus, optimization of the nanoparticle packing is a prerequisite for the realization of a desirable device performance. In this work, we provide in-depth insight into the effect of nanoparticle packing on the performance of nanoparticle-based electrodes by combining experimental and computational findings. As a model system, polypyrrole nanospheres of three different diameters were used to construct pseudocapacitive electrodes, and the performance of the electrodes was examined at various nanosphere diameter ratios and mixed weight fractions. Two numerical algorithms are proposed to simulate the random packing of the nanospheres on the electrode. The binary nanospheres exhibited diverse, complicated packing behaviors compared with the monophasic packing of each nanosphere species. The packing of the two nanosphere species with lower diameter ratios at an optimized composition could lead to more dense packing of the nanospheres, which in turn could contribute to better device performance. The dense packing of the nanospheres would provide more efficient transport pathways for ions because of the reduced inter-nanosphere pore size and enlarged surface area for charge storage. Ultimately, it is anticipated that our approach can be widely used to define the concept of "the best nanoparticle packing" for desirable device performance.
McKenzie, Elizabeth M.; Balter, Peter A.; Stingo, Francesco C.; Jones, Jimmy; Followill, David S.; Kry, Stephen F.
2014-01-01
Purpose: The authors investigated the performance of several patient-specific intensity-modulated radiation therapy (IMRT) quality assurance (QA) dosimeters in terms of their ability to correctly identify dosimetrically acceptable and unacceptable IMRT patient plans, as determined by an in-house-designed multiple ion chamber phantom used as the gold standard. A further goal was to examine optimal threshold criteria that were consistent and based on the same criteria among the various dosimeters. Methods: The authors used receiver operating characteristic (ROC) curves to determine the sensitivity and specificity of (1) a 2D diode array undergoing anterior irradiation with field-by-field evaluation, (2) a 2D diode array undergoing anterior irradiation with composite evaluation, (3) a 2D diode array using planned irradiation angles with composite evaluation, (4) a helical diode array, (5) radiographic film, and (6) an ion chamber. This was done with a variety of evaluation criteria for a set of 15 dosimetrically unacceptable and 9 acceptable clinical IMRT patient plans, where acceptability was defined on the basis of multiple ion chamber measurements using independent ion chambers and a phantom. The area under the curve (AUC) on the ROC curves was used to compare dosimeter performance across all thresholds. Optimal threshold values were obtained from the ROC curves while incorporating considerations for cost and prevalence of unacceptable plans. Results: Using common clinical acceptance thresholds, most devices performed very poorly in terms of identifying unacceptable plans. Grouping the detector performance based on AUC showed two significantly different groups. The ion chamber, radiographic film, helical diode array, and anterior-delivered composite 2D diode array were in the better-performing group, whereas the anterior-delivered field-by-field and planned gantry angle delivery using the 2D diode array performed less well. Additionally, based on the AUCs, there was no significant difference in the performance of any device between gamma criteria of 2%/2 mm, 3%/3 mm, and 5%/3 mm. Finally, optimal cutoffs (e.g., percent of pixels passing gamma) were determined for each device and while clinical practice commonly uses a threshold of 90% of pixels passing for most cases, these results showed variability in the optimal cutoff among devices. Conclusions: IMRT QA devices have differences in their ability to accurately detect dosimetrically acceptable and unacceptable plans. Field-by-field analysis with a MapCheck device and use of the MapCheck with a MapPhan phantom while delivering at planned rotational gantry angles resulted in a significantly poorer ability to accurately sort acceptable and unacceptable plans compared with the other techniques examined. Patient-specific IMRT QA techniques in general should be thoroughly evaluated for their ability to correctly differentiate acceptable and unacceptable plans. Additionally, optimal agreement thresholds should be identified and used as common clinical thresholds typically worked very poorly to identify unacceptable plans. PMID:25471949
McKenzie, Elizabeth M; Balter, Peter A; Stingo, Francesco C; Jones, Jimmy; Followill, David S; Kry, Stephen F
2014-12-01
The authors investigated the performance of several patient-specific intensity-modulated radiation therapy (IMRT) quality assurance (QA) dosimeters in terms of their ability to correctly identify dosimetrically acceptable and unacceptable IMRT patient plans, as determined by an in-house-designed multiple ion chamber phantom used as the gold standard. A further goal was to examine optimal threshold criteria that were consistent and based on the same criteria among the various dosimeters. The authors used receiver operating characteristic (ROC) curves to determine the sensitivity and specificity of (1) a 2D diode array undergoing anterior irradiation with field-by-field evaluation, (2) a 2D diode array undergoing anterior irradiation with composite evaluation, (3) a 2D diode array using planned irradiation angles with composite evaluation, (4) a helical diode array, (5) radiographic film, and (6) an ion chamber. This was done with a variety of evaluation criteria for a set of 15 dosimetrically unacceptable and 9 acceptable clinical IMRT patient plans, where acceptability was defined on the basis of multiple ion chamber measurements using independent ion chambers and a phantom. The area under the curve (AUC) on the ROC curves was used to compare dosimeter performance across all thresholds. Optimal threshold values were obtained from the ROC curves while incorporating considerations for cost and prevalence of unacceptable plans. Using common clinical acceptance thresholds, most devices performed very poorly in terms of identifying unacceptable plans. Grouping the detector performance based on AUC showed two significantly different groups. The ion chamber, radiographic film, helical diode array, and anterior-delivered composite 2D diode array were in the better-performing group, whereas the anterior-delivered field-by-field and planned gantry angle delivery using the 2D diode array performed less well. Additionally, based on the AUCs, there was no significant difference in the performance of any device between gamma criteria of 2%/2 mm, 3%/3 mm, and 5%/3 mm. Finally, optimal cutoffs (e.g., percent of pixels passing gamma) were determined for each device and while clinical practice commonly uses a threshold of 90% of pixels passing for most cases, these results showed variability in the optimal cutoff among devices. IMRT QA devices have differences in their ability to accurately detect dosimetrically acceptable and unacceptable plans. Field-by-field analysis with a MapCheck device and use of the MapCheck with a MapPhan phantom while delivering at planned rotational gantry angles resulted in a significantly poorer ability to accurately sort acceptable and unacceptable plans compared with the other techniques examined. Patient-specific IMRT QA techniques in general should be thoroughly evaluated for their ability to correctly differentiate acceptable and unacceptable plans. Additionally, optimal agreement thresholds should be identified and used as common clinical thresholds typically worked very poorly to identify unacceptable plans.
Ge/IIIV fin field-effect transistor common gate process and numerical simulations
NASA Astrophysics Data System (ADS)
Chen, Bo-Yuan; Chen, Jiann-Lin; Chu, Chun-Lin; Luo, Guang-Li; Lee, Shyong; Chang, Edward Yi
2017-04-01
This study investigates the manufacturing process of thermal atomic layer deposition (ALD) and analyzes its thermal and physical mechanisms. Moreover, experimental observations and computational fluid dynamics (CFD) are both used to investigate the formation and deposition rate of a film for precisely controlling the thickness and structure of the deposited material. First, the design of the TALD system model is analyzed, and then CFD is used to simulate the optimal parameters, such as gas flow and the thermal, pressure, and concentration fields, in the manufacturing process to assist the fabrication of oxide-semiconductors and devices based on them, and to improve their characteristics. In addition, the experiment applies ALD to grow films on Ge and GaAs substrates with three-dimensional (3-D) transistors having high electric performance. The electrical analysis of dielectric properties, leakage current density, and trapped charges for the transistors is conducted by high- and low-frequency measurement instruments to determine the optimal conditions for 3-D device fabrication. It is anticipated that the competitive strength of such devices in the semiconductor industry will be enhanced by the reduction of cost and improvement of device performance through these optimizations.
A solution for exposure tool optimization at the 65-nm node and beyond
NASA Astrophysics Data System (ADS)
Itai, Daisuke
2007-03-01
As device geometries shrink, tolerances for critical dimension, focus, and overlay control decrease. For the stable manufacture of semiconductor devices at (and beyond) the 65nm node, both performance variability and drift in exposure tools are no longer negligible factors. With EES (Equipment Engineering System) as a guidepost, hopes of improving productivity of semiconductor manufacturing are growing. We are developing a system, EESP (Equipment Engineering Support Program), based on the concept of EES. The EESP system collects and stores large volumes of detailed data generated from Canon lithographic equipment while product is being manufactured. It uses that data to monitor both equipment characteristics and process characteristics, which cannot be examined without this system. The goal of EESP is to maximize equipment capabilities, by feeding the result back to APC/FDC and the equipment maintenance list. This was a collaborative study of the system's effectiveness at the device maker's factories. We analyzed the performance variability of exposure tools by using focus residual data. We also attempted to optimize tool performance using the analyzed results. The EESP system can make the optimum performance of exposure tools available to the device maker.
NASA Astrophysics Data System (ADS)
Kong, Weijing; Wan, Yuhang; Du, Kun; Zhao, Wenhui; Wang, Shuang; Zheng, Zheng
2016-11-01
The reflected intensity change of the Bloch-surface-wave (BSW) resonance influenced by the loss of a truncated onedimensional photonic crystal structure is numerically analyzed and studied in order to enhance the sensitivity of the Bloch-surface-wave-based sensors. The finite truncated one-dimensional photonic crystal structure is designed to be able to excite BSW mode for water (n=1.33) as the external medium and for p-polarized plane wave incident light. The intensity interrogation scheme which can be operated on a typical Kretschmann prism-coupling configuration by measuring the reflected intensity change of the resonance dip is investigated to optimize the sensitivity. A figure of merit (FOM) is introduced to measure the performance of the one-dimensional photonic crystal multilayer structure under the scheme. The detection sensitivities are calculated under different device parameters with a refractive index change corresponding to different solutions of glycerol in de-ionized (DI)-water. The results show that the intensity sensitivity curve varies similarly with the FOM curve and the sensitivity of the Bloch-surface-wave sensor is greatly affected by the device loss, where an optimized loss value can be got. For the low-loss BSW devices, the intensity interrogation sensing sensitivity may drop sharply from the optimal value. On the other hand, the performance of the detection scheme is less affected by the higher device loss. This observation is in accordance with BSW experimental sensing demonstrations as well. The results obtained could be useful for improving the performance of the Bloch-surface-wave sensors for the investigated sensing scheme.
Midfield wireless powering of subwavelength autonomous devices.
Kim, Sanghoek; Ho, John S; Poon, Ada S Y
2013-05-17
We obtain an analytical bound on the efficiency of wireless power transfer to a weakly coupled device. The optimal source is solved for a multilayer geometry in terms of a representation based on the field equivalence principle. The theory reveals that optimal power transfer exploits the properties of the midfield to achieve efficiencies far greater than conventional coil-based designs. As a physical realization of the source, we present a slot array structure whose performance closely approaches the theoretical bound.
NASA Astrophysics Data System (ADS)
Xia, Minggang; Liang, Chunping; Hu, Ruixue; Cheng, Zhaofang; Liu, Shiru; Zhang, Shengli
2018-05-01
It is imperative and highly desirable to buffer the stress in flexible electronic devices. In this study, we designed and fabricated lamellate poly(dimethylsiloxane) (PDMS) samples with gradient elastic moduli, motivated by the protection of the pomelo pulp by its skin, followed by the measurements of their elastic moduli. We demonstrated that the electrical and fatigue performances of a Ag-nanowire thin film device on the PDMS substrate with a gradient elastic modulus are significantly better than those of a device on a substrate with a monolayer PDMS. This study provides a robust scheme to effectively protect flexible electronic devices.
High-accuracy direct ZT and intrinsic properties measurement of thermoelectric couple devices.
Kraemer, D; Chen, G
2014-04-01
Advances in thermoelectric materials in recent years have led to significant improvements in thermoelectric device performance and thus, give rise to many new potential applications. In order to optimize a thermoelectric device for specific applications and to accurately predict its performance ideally the material's figure of merit ZT as well as the individual intrinsic properties (Seebeck coefficient, electrical resistivity, and thermal conductivity) should be known with high accuracy. For that matter, we developed two experimental methods in which the first directly obtains the ZT and the second directly measures the individual intrinsic leg properties of the same p/n-type thermoelectric couple device. This has the advantage that all material properties are measured in the same sample direction after the thermoelectric legs have been mounted in the final device. Therefore, possible effects from crystal anisotropy and from the device fabrication process are accounted for. The Seebeck coefficients, electrical resistivities, and thermal conductivities are measured with differential methods to minimize measurement uncertainties to below 3%. The thermoelectric couple ZT is directly measured with a differential Harman method which is in excellent agreement with the calculated ZT from the individual leg properties. The errors in both the directly measured and calculated thermoelectric couple ZT are below 5% which is significantly lower than typical uncertainties using commercial methods. Thus, the developed technique is ideal for characterizing assembled couple devices and individual thermoelectric materials and enables accurate device optimization and performance predictions. We demonstrate the methods by measuring a p/n-type thermoelectric couple device assembled from commercial bulk thermoelectric Bi2Te3 elements in the temperature range of 30 °C-150 °C and discuss the performance of the couple thermoelectric generator in terms of its efficiency and materials' self-compatibility.
Histological evaluation and optimization of surgical vessel sealing systems
NASA Astrophysics Data System (ADS)
Lathrop, Robert; Ryan, Thomas; Gaspredes, Jonathan; Woloszko, Jean; Coad, James E.
2017-02-01
Surgical vessel sealing systems are widely used to achieve hemostasis and dissection in open surgery and minimally invasive, laparoscopic surgery. This enabling technology was developed about 17 years ago and continues to evolve with new devices and systems achieving improved outcomes. Histopathological assessment of thermally sealed tissues is a valuable tool for refining and comparing performance among surgical vessel sealing systems. Early work in this field typically assessed seal time, burst rate, and failure rate (in-situ). Later work compared histological staining methods with birefringence to assess the extent of thermal damage to tissues adjacent to the device. Understanding the microscopic architecture of a sealed vessel is crucial to optimizing the performance of power delivery algorithms and device design parameters. Manufacturers rely on these techniques to develop new products. A system for histopathological evaluation of vessels and sealing performance was established, to enable the direct assessment of a treatment's tissue effects. The parameters included the commonly used seal time, pressure burst rate and failure rate, as well as extensions of the assessment to include its likelihood to form steam vacuoles, adjacent thermal effect near the device, and extent of thermally affected tissue extruded back into the vessel lumen. This comprehensive assessment method provides an improved means of assessing the quality of a sealed vessel and understanding the exact mechanisms which create an optimally sealed vessel.
Design, analysis, and testing of a flexure-based vibration-assisted polishing device
NASA Astrophysics Data System (ADS)
Gu, Yan; Zhou, Yan; Lin, Jieqiong; Lu, Mingming; Zhang, Chenglong; Chen, Xiuyuan
2018-05-01
A vibration-assisted polishing device (VAPD) composed of leaf-spring and right-circular flexure hinges is proposed with the aim of realizing vibration-assisted machining along elliptical trajectories. To design the structure, energy methods and the finite-element method are used to calculate the performance of the proposed VAPD. An improved bacterial foraging optimization algorithm is used to optimize the structural parameters. In addition, the performance of the VAPD is tested experimentally. The experimental results indicate that the maximum strokes of the two directional mechanisms operating along the Z1 and Z2 directions are 29.5 μm and 29.3 μm, respectively, and the maximum motion resolutions are 10.05 nm and 10.01 nm, respectively. The maximum working bandwidth is 1,879 Hz, and the device has a good step response.
Factors influencing the genesis of neurosurgical technology.
Bergman, William C; Schulz, Raymond A; Davis, Deanna S
2009-09-01
For any new technology to gain acceptance, it must not only adequately fill a true need, but must also function optimally within the confines of coexisting technology and concurrently available support systems. As an example, over the first decades of the 20th century, a number of drill designs used to perform cranial bone cuts appeared, fell out of favor, and later reappeared as certain supportive technologies emerged. Ultimately, it was the power source that caused one device to prevail. In contrast, a brilliant imaging device, designed to demonstrate an axial view of the lumbar spine, was never allowed to gain acceptance because it was immediately superseded by another device of no greater innovation, but one that performed optimally with popular support technology. The authors discuss the factors that have bearing on the evolution of neurosurgical technology.
Degree of bioresorbable vascular scaffold expansion modulates loss of essential function.
Ferdous, Jahid; Kolachalama, Vijaya B; Kolandaivelu, Kumaran; Shazly, Tarek
2015-10-01
Drug-eluting bioresorbable vascular scaffolds (BVSs) have the potential to restore lumen patency, enable recovery of the native vascular environment, and circumvent late complications associated with permanent endovascular devices. To ensure therapeutic effects persist for sufficient times prior to scaffold resorption and resultant functional loss, many factors dictating BVS performance must be identified, characterized and optimized. While some factors relate to BVS design and manufacturing, others depend on device deployment and intrinsic vascular properties. Importantly, these factors interact and cannot be considered in isolation. The objective of this study is to quantify the extent to which degree of radial expansion modulates BVS performance, specifically in the context of modifying device erosion kinetics and evolution of structural mechanics and local drug elution. We systematically varied degree of radial expansion in model BVS constructs composed of poly dl-lactide-glycolide and generated in vitro metrics of device microstructure, degradation, erosion, mechanics and drug release. Experimental data permitted development of computational models that predicted transient concentrations of scaffold-derived soluble species and drug in the arterial wall, thus enabling speculation on the short- and long-term effects of differential expansion. We demonstrate that degree of expansion significantly affects scaffold properties critical to functionality, underscoring its relevance in BVS design and optimization. Bioresorbable vascular scaffold (BVS) therapy is beginning to transform the treatment of obstructive artery disease, owing to effective treatment of short term vessel closure while avoiding long term consequences such as in situ, late stent thrombosis - a fatal event associated with permanent implants such as drug-eluting stents. As device scaffolding and drug elution are temporary for BVS, the notion of using this therapy in lieu of existing, clinically approved devices seems attractive. However, there is still a limited understanding regarding the optimal lifetime and performance characteristics of erodible endovascular implants. Several engineering criteria must be met and clinical endpoints confirmed to ensure these devices are both safe and effective. In this manuscript, we sought to establish general principles for the design and deployment of erodible, drug-eluting endovascular scaffolds, with focus on how differential expansion can modulate device performance. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
A Computational Model for Thrombus Formation in Response to Cardiovascular Implantable Devices
NASA Astrophysics Data System (ADS)
Horn, John; Ortega, Jason; Maitland, Duncan
2014-11-01
Cardiovascular implantable devices elicit complex physiological responses within blood. Notably, alterations in blood flow dynamics and interactions between blood proteins and biomaterial surface chemistry may lead to the formation of thrombus. For some devices, such as stents and heart valves, this is an adverse outcome. For other devices, such as embolic aneurysm treatments, efficient blood clot formation is desired. Thus a method to study how biomedical devices induce thrombosis is paramount to device development and optimization. A multiscale, multiphysics computational model is developed to predict thrombus formation within the vasculature. The model consists of a set of convection-diffusion-reaction partial differential equations for blood protein constituents involved in the progression of the clotting cascades. This model is used to study thrombus production from endovascular devices with the goal of optimizing the device design to generate the desired clotting response. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Machine learning techniques for energy optimization in mobile embedded systems
NASA Astrophysics Data System (ADS)
Donohoo, Brad Kyoshi
Mobile smartphones and other portable battery operated embedded systems (PDAs, tablets) are pervasive computing devices that have emerged in recent years as essential instruments for communication, business, and social interactions. While performance, capabilities, and design are all important considerations when purchasing a mobile device, a long battery lifetime is one of the most desirable attributes. Battery technology and capacity has improved over the years, but it still cannot keep pace with the power consumption demands of today's mobile devices. This key limiter has led to a strong research emphasis on extending battery lifetime by minimizing energy consumption, primarily using software optimizations. This thesis presents two strategies that attempt to optimize mobile device energy consumption with negligible impact on user perception and quality of service (QoS). The first strategy proposes an application and user interaction aware middleware framework that takes advantage of user idle time between interaction events of the foreground application to optimize CPU and screen backlight energy consumption. The framework dynamically classifies mobile device applications based on their received interaction patterns, then invokes a number of different power management algorithms to adjust processor frequency and screen backlight levels accordingly. The second strategy proposes the usage of machine learning techniques to learn a user's mobile device usage pattern pertaining to spatiotemporal and device contexts, and then predict energy-optimal data and location interface configurations. By learning where and when a mobile device user uses certain power-hungry interfaces (3G, WiFi, and GPS), the techniques, which include variants of linear discriminant analysis, linear logistic regression, non-linear logistic regression, and k-nearest neighbor, are able to dynamically turn off unnecessary interfaces at runtime in order to save energy.
Klute, G K; Tasch, U; Geselowitz, D B
1992-04-01
This paper addresses the development and testing of an optimal position feedback controller for the Penn State electric ventricular-assist device (EVAD). The control law is designed to minimize the expected value of the EVAD's power consumption for a targeted patient population. The closed-loop control law is implemented on an Intel 8096 microprocessor and in vitro test runs show that this controller improves the EVAD's efficiency by 15-21%, when compared with the performance of the currently used feedforward control scheme.
R&D issues in scale-up and manufacturing of amorphous silicon tandem modules
NASA Astrophysics Data System (ADS)
Arya, R. R.; Carlson, D. E.; Chen, L. F.; Ganguly, G.; He, M.; Lin, G.; Middya, R.; Wood, G.; Newton, J.; Bennett, M.; Jackson, F.; Willing, F.
1999-03-01
R & D on amorphous silicon based tandem junction devices has improved the throughtput, the material utilization, and the performance of devices on commercial tin oxide coated glass. The tandem junction technology has been scaled-up to produce 8.6 Ft2 monolithically integrated modules in manufacturing at the TF1 plant. Optimization of performance and stability of these modules is ongoing.
High-performance organic light-emitting diodes comprising ultrastable glass layers
Rodríguez-Viejo, Javier
2018-01-01
Organic light-emitting diodes (OLEDs) are one of the key solid-state light sources for various applications including small and large displays, automotive lighting, solid-state lighting, and signage. For any given commercial application, OLEDs need to perform at their best, which is judged by their device efficiency and operational stability. We present OLEDs that comprise functional layers fabricated as ultrastable glasses, which represent the thermodynamically most favorable and, thus, stable molecular conformation achievable nowadays in disordered solids. For both external quantum efficiencies and LT70 lifetimes, OLEDs with four different phosphorescent emitters show >15% enhancements over their respective reference devices. The only difference to the latter is the growth condition used for ultrastable glass layers that is optimal at about 85% of the materials’ glass transition temperature. These improvements are achieved through neither material refinements nor device architecture optimization, suggesting a general applicability of this concept to maximize the OLED performance, no matter which specific materials are used. PMID:29806029
Metal oxide resistive random access memory based synaptic devices for brain-inspired computing
NASA Astrophysics Data System (ADS)
Gao, Bin; Kang, Jinfeng; Zhou, Zheng; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan
2016-04-01
The traditional Boolean computing paradigm based on the von Neumann architecture is facing great challenges for future information technology applications such as big data, the Internet of Things (IoT), and wearable devices, due to the limited processing capability issues such as binary data storage and computing, non-parallel data processing, and the buses requirement between memory units and logic units. The brain-inspired neuromorphic computing paradigm is believed to be one of the promising solutions for realizing more complex functions with a lower cost. To perform such brain-inspired computing with a low cost and low power consumption, novel devices for use as electronic synapses are needed. Metal oxide resistive random access memory (ReRAM) devices have emerged as the leading candidate for electronic synapses. This paper comprehensively addresses the recent work on the design and optimization of metal oxide ReRAM-based synaptic devices. A performance enhancement methodology and optimized operation scheme to achieve analog resistive switching and low-energy training behavior are provided. A three-dimensional vertical synapse network architecture is proposed for high-density integration and low-cost fabrication. The impacts of the ReRAM synaptic device features on the performances of neuromorphic systems are also discussed on the basis of a constructed neuromorphic visual system with a pattern recognition function. Possible solutions to achieve the high recognition accuracy and efficiency of neuromorphic systems are presented.
Development and testing of tip devices for horizontal axis wind turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyatt, G.W.; Lissaman, P.B.S.
1985-05-01
A theoretical and field experimental program has been carried out to investigate the use of tip devices on horizontal axis wind turbine rotors. Objective was to improve performance by the reduction of tip losses. A vortex lattice computer model was used to optimize three basic tip configuration types for a 25 kW stall limited commercial wind turbines. The types were a change in tip planform, and a single-element and double-element nonplannar tip extension (winglets). Approximately 270 h of performance data were collected over a three-month period. The sampling interval was 2.4 s; thus over 400,000 raw data points were logged.more » Results for each of the three new tip devices, compared with the original tip, showed a small decrease (of the order of 1 kW) in power output over the measured range of wind speeds from cut-in at about 4 m/s to over 20 m/s, well into the stall limiting region. For aircraft wing tip devices, favorable tip shapes have been reported and it is likely that the tip devices tested in this program did not improve rotor performance because they were not optimally adjusted. The computer model used does not have adequate lifting surface resolution or accuracy to design these small winglet extensions.« less
Chen, Zhe; Rau, Pei-Luen Patrick
2017-03-01
This study presented two experiments on Chinese handwriting performance (time, accuracy, the number of protruding strokes and number of rewritings) and subjective ratings (mental workload, satisfaction, and preference) on mobile devices. Experiment 1 evaluated the effects of size of the input box, input method and display size on Chinese handwriting performance and preference. It was indicated that the optimal input sizes were 30.8 × 30.8 mm, 46.6 × 46.6 mm, 58.9 × 58.9 mm and 84.6 × 84.6 mm for devices with 3.5-inch, 5.5-inch, 7.0-inch and 9.7-inch display sizes, respectively. Experiment 2 proved the significant effects of location of the input box, input method and display size on Chinese handwriting performance and subjective ratings. It was suggested that the optimal location was central regardless of display size and input method. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multijunction Solar Cell Technology for Mars Surface Applications
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris
2006-01-01
Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.
Qiao, Wei; Venayagamoorthy, Ganesh K; Harley, Ronald G
2008-01-01
Wide-area coordinating control is becoming an important issue and a challenging problem in the power industry. This paper proposes a novel optimal wide-area coordinating neurocontrol (WACNC), based on wide-area measurements, for a power system with power system stabilizers, a large wind farm and multiple flexible ac transmission system (FACTS) devices. An optimal wide-area monitor (OWAM), which is a radial basis function neural network (RBFNN), is designed to identify the input-output dynamics of the nonlinear power system. Its parameters are optimized through particle swarm optimization (PSO). Based on the OWAM, the WACNC is then designed by using the dual heuristic programming (DHP) method and RBFNNs, while considering the effect of signal transmission delays. The WACNC operates at a global level to coordinate the actions of local power system controllers. Each local controller communicates with the WACNC, receives remote control signals from the WACNC to enhance its dynamic performance and therefore helps improve system-wide dynamic and transient performance. The proposed control is verified by simulation studies on a multimachine power system.
Optimal Time-Resource Allocation for Energy-Efficient Physical Activity Detection
Thatte, Gautam; Li, Ming; Lee, Sangwon; Emken, B. Adar; Annavaram, Murali; Narayanan, Shrikanth; Spruijt-Metz, Donna; Mitra, Urbashi
2011-01-01
The optimal allocation of samples for physical activity detection in a wireless body area network for health-monitoring is considered. The number of biometric samples collected at the mobile device fusion center, from both device-internal and external Bluetooth heterogeneous sensors, is optimized to minimize the transmission power for a fixed number of samples, and to meet a performance requirement defined using the probability of misclassification between multiple hypotheses. A filter-based feature selection method determines an optimal feature set for classification, and a correlated Gaussian model is considered. Using experimental data from overweight adolescent subjects, it is found that allocating a greater proportion of samples to sensors which better discriminate between certain activity levels can result in either a lower probability of error or energy-savings ranging from 18% to 22%, in comparison to equal allocation of samples. The current activity of the subjects and the performance requirements do not significantly affect the optimal allocation, but employing personalized models results in improved energy-efficiency. As the number of samples is an integer, an exhaustive search to determine the optimal allocation is typical, but computationally expensive. To this end, an alternate, continuous-valued vector optimization is derived which yields approximately optimal allocations and can be implemented on the mobile fusion center due to its significantly lower complexity. PMID:21796237
Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit.
Xu, Chenglin; Hong, Xiaobin; Huang, Wei-Ping
2006-05-29
Design optimization of a novel integrated bi-directional (BiDi) triplexer filter based on planar lightwave circuit (PLC) for fiber-to-the premise (FTTP) applications is described. A multi-mode interference (MMI) device is used to filter the up-stream 1310nm signal from the down-stream 1490nm and 1555nm signals. An array waveguide grating (AWG) device performs the dense WDM function by further separating the two down-stream signals. The MMI and AWG are built on the same substrate with monolithic integration. The design is validated by simulation, which shows excellent performance in terms of filter spectral characteristics (e.g., bandwidth, cross-talk, etc.) as well as insertion loss.
Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit
NASA Astrophysics Data System (ADS)
Xu, Chenglin; Hong, Xiaobin; Huang, Wei-Ping
2006-05-01
Design optimization of a novel integrated bi-directional (BiDi) triplexer filter based on planar lightwave circuit (PLC) for fiber-to-the premise (FTTP) applications is described. A multi-mode interference (MMI) device is used to filter the up-stream 1310nm signal from the down-stream 1490nm and 1555nm signals. An array waveguide grating (AWG) device performs the dense WDM function by further separating the two down-stream signals. The MMI and AWG are built on the same substrate with monolithic integration. The design is validated by simulation, which shows excellent performance in terms of filter spectral characteristics (e.g., bandwidth, cross-talk, etc.) as well as insertion loss.
A simplified design of the staggered herringbone micromixer for practical applications
Du, Yan; Zhang, Zhiyi; Yim, ChaeHo; Lin, Min; Cao, Xudong
2010-01-01
We demonstrated a simple method for the device design of a staggered herringbone micromixer (SHM) using numerical simulation. By correlating the simulated concentrations with channel length, we obtained a series of concentration versus channel length profiles, and used mixing completion length Lm as the only parameter to evaluate the performance of device structure on mixing. Fluorescence quenching experiments were subsequently conducted to verify the optimized SHM structure for a specific application. Good agreement was found between the optimization and the experimental data. Since Lm is straightforward, easily defined and calculated parameter for characterization of mixing performance, this method for designing micromixers is simple and effective for practical applications. PMID:20697584
A simplified design of the staggered herringbone micromixer for practical applications.
Du, Yan; Zhang, Zhiyi; Yim, Chaeho; Lin, Min; Cao, Xudong
2010-05-07
We demonstrated a simple method for the device design of a staggered herringbone micromixer (SHM) using numerical simulation. By correlating the simulated concentrations with channel length, we obtained a series of concentration versus channel length profiles, and used mixing completion length L(m) as the only parameter to evaluate the performance of device structure on mixing. Fluorescence quenching experiments were subsequently conducted to verify the optimized SHM structure for a specific application. Good agreement was found between the optimization and the experimental data. Since L(m) is straightforward, easily defined and calculated parameter for characterization of mixing performance, this method for designing micromixers is simple and effective for practical applications.
Computer modeling of a two-junction, monolithic cascade solar cell
NASA Technical Reports Server (NTRS)
Lamorte, M. F.; Abbott, D.
1979-01-01
The theory and design criteria for monolithic, two-junction cascade solar cells are described. The departure from the conventional solar cell analytical method and the reasons for using the integral form of the continuity equations are briefly discussed. The results of design optimization are presented. The energy conversion efficiency that is predicted for the optimized structure is greater than 30% at 300 K, AMO and one sun. The analytical method predicts device performance characteristics as a function of temperature. The range is restricted to 300 to 600 K. While the analysis is capable of determining most of the physical processes occurring in each of the individual layers, only the more significant device performance characteristics are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradshaw, Nathan P.; Severt, Sean Y.; Wang, Zhaoying
Biocompatible materials capable of controlled actuation under biologically relevant conditions are in high demand for use in a number of biomedical applications. Recently, we demonstrated that a composite material composed of silk biopolymer and the conducting polymer poly(pyrrole) can bend under an applied voltage using a simple bilayer device. Here we present further characterization of these bilayer actuators using time of flight secondary ion mass spectrometry, and provide clarification on the mechanism of actuation and factors affecting device performance and stability. We will discuss the results of this study in the context of strategies for optimization of device performance.
Magnetic manipulation device for the optimization of cell processing conditions.
Ito, Hiroshi; Kato, Ryuji; Ino, Kosuke; Honda, Hiroyuki
2010-02-01
Variability in human cell phenotypes make it's advancements in optimized cell processing necessary for personalized cell therapy. Here we propose a strategy of palm-top sized device to assist physically manipulating cells for optimizing cell preparations. For the design of such a device, we combined two conventional approaches: multi-well plate formatting and magnetic cell handling using magnetite cationic liposomes (MCLs). From our previous works, we showed the labeling applications of MCL on adhesive cells for various tissue engineering approaches. To feasibly transfer cells in multi-well plate, we here evaluated the magnetic response of MCL-labeled suspension type cells. The cell handling performance of Jurkat cells proved to be faster and more robust compared to MACS (Magnetic Cell Sorting) bead methods. To further confirm our strategy, prototype palm-top sized device "magnetic manipulation device (MMD)" was designed. In the device, the actual cell transportation efficacy of Jurkat cells was satisfying. Moreover, as a model of the most distributed clinical cell processing, primary peripheral blood mononuclear cells (PBMCs) from different volunteers were evaluated. By MMD, individual PBMCs indicated to have optimum Interleukin-2 (IL-2) concentrations for the expansion. Such huge differences of individual cells indicated that MMD, our proposing efficient and self-contained support tool, could assist the feasible and cost-effective optimization of cell processing in clinical facilities. Copyright (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang Baolong; Department of Mathematics and Physics, Hefei University, Hefei 230022; Yang Zhen
We propose a scheme for implementing a partial general quantum cloning machine with superconducting quantum-interference devices coupled to a nonresonant cavity. By regulating the time parameters, our system can perform optimal symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, and optimal symmetric economical phase-covariant cloning. In the scheme the cavity is only virtually excited, thus, the cavity decay is suppressed during the cloning operations.
NASA Astrophysics Data System (ADS)
Vogt, William C.; Zhou, Xuewen; Andriani, Rudy; Wear, Keith A.; Garra, Brian S.; Pfefer, Joshua
2018-02-01
Photoacoustic Imaging (PAI) is an emerging technology with strong potential for broad clinical applications from breast cancer detection to cerebral monitoring due to its ability to compute maps of blood oxygen saturation (SO2) distribution in deep tissues using multispectral imaging. However, no well-validated consensus test methods currently exist for evaluating oximetry-specific performance characteristics of PAI devices. We have developed a phantombased flow system capable of rapid SO2 adjustment to serve as a test bed for elucidation of factors impacting SO2 measurement and quantitative characterization of device performance. The flow system is comprised of a peristaltic pump, membrane oxygenator, oxygen and nitrogen gas, and in-line oxygen, pH, and temperature sensors that enable real-time estimation of SO2 reference values. Bovine blood was delivered through breast-relevant tissue phantoms containing vessel-mimicking fluid channels, which were imaged using a custom multispectral PAI system. Blood was periodically drawn for SO2 measurement in a clinical-grade CO-oximeter. We used this flow phantom system to evaluate the impact of device parameters (e.g.,wavelength-dependent fluence corrections) and tissue parameters (e.g. fluid channel depth, blood SO2, spectral coloring artifacts) on oximetry measurement accuracy. Results elucidated key challenges in PAI oximetry and device design trade-offs, which subsequently allowed for optimization of system performance. This approach provides a robust benchtop test platform that can support PAI oximetry device optimization, performance validation, and clinical translation, and may inform future development of consensus test methods for performance assessment of photoacoustic oximetry imaging systems.
2014-11-24
aptamers to enhance specificity. Additionally, pre-concentration was coupled to various detection paradigms to achieve high-sensitivity biomarker... Aptamers , Biomarkers, Nanofluidics, Pre-concentration Devices, Sensing 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER...devices and optimized electrokinetic pre-concentration conditions for key neurological biomarkers of interest, by using nanoparticles and aptamers to
Finite-Time Performance of Local Search Algorithms: Theory and Application
2010-06-10
security devices deployed at airport security checkpoints are used to detect prohibited items (e.g., guns, knives, explosives). Each security device...security devices are deployed, the practical issue of determining how to optimally use them can be difficult. For an airport security system design...checked baggage), explosive detection systems (designed to detect explosives in checked baggage), and detailed hand search by an airport security official
Crystal growth of device quality GaAs in space
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Lagowski, J.
1979-01-01
The optimization of space processing of GaAs is described. The detailed compositional, structural, and electronic characterization of GaAs on a macro- and microscale and the relationships between growth parameters and the properties of GaAs are among the factors discussed. The key parameters limiting device performance are assessed.
NASA Astrophysics Data System (ADS)
Enescu (Balaş, M. L.; Alexandru, C.
2016-08-01
The paper deals with the optimal design of the control system for a 6-DOF robot used in thin layers deposition. The optimization is based on parametric technique, by modelling the design objective as a numerical function, and then establishing the optimal values of the design variables so that to minimize the objective function. The robotic system is a mechatronic product, which integrates the mechanical device and the controlled operating device.The mechanical device of the robot was designed in the CAD (Computer Aided Design) software CATIA, the 3D-model being then transferred to the MBS (Multi-Body Systems) environment ADAMS/View. The control system was developed in the concurrent engineering concept, through the integration with the MBS mechanical model, by using the DFC (Design for Control) software solution EASY5. The necessary angular motions in the six joints of the robot, in order to obtain the imposed trajectory of the end-effector, have been established by performing the inverse kinematic analysis. The positioning error in each joint of the robot is used as design objective, the optimization goal being to minimize the root mean square during simulation, which is a measure of the magnitude of the positioning error varying quantity.
Optimum Design of Anti-Siphon Device used to Prevent Cerebrospinal Fluid from Overdraining
NASA Astrophysics Data System (ADS)
Jang, Jong Yun; Lee, Chong Sun; Suh, Chang Min
The present study investigated design parameters of an anti-siphon device used with shunt valves to treat patients with hydrocephalus. Structural analyses were performed to understand roles of design variables and optimize performance of the diaphragm-type anti-siphon device (hereafter referred to as the ASD). Experiments were performed on the lab-made product and showed good agreements with the numerical simulations. Using the simulations, we were able to design a more physiological ASD which gave equal opening pressures in both supine and upright postures. Tissue encapsulization phenomenon was also simulated and the results indicated underdrainage of CSF in the upright position of the patient.
Fabrication of paper-based analytical devices optimized by central composite design.
Hamedpour, Vahid; Leardi, Riccardo; Suzuki, Koji; Citterio, Daniel
2018-04-30
In this work, an application of a design of experiments approach for the optimization of an isoniazid assay on a single-area inkjet-printed paper-based analytical device (PAD) is described. For this purpose, a central composite design was used for evaluation of the effect of device geometry and amount of assay reagents on the efficiency of the proposed device. The factors of interest were printed length, width, and sampling volume as factors related to device geometry, and amounts of the assay reagents polyvinyl alcohol (PVA), NH4OH, and AgNO3. Deposition of the assay reagents was performed by a thermal inkjet printer. The colorimetric assay mechanism of this device is based on the chemical interaction of isoniazid, ammonium hydroxide, and PVA with silver ions to induce the formation of yellow silver nanoparticles (AgNPs). The in situ-formed AgNPs can be easily detected by the naked eye or with a simple flat-bed scanner. Under optimal conditions, the calibration curve was linear in the isoniazid concentration range 0.03-10 mmol L-1 with a relative standard deviation of 3.4% (n = 5 for determination of 1.0 mmol L-1). Finally, the application of the proposed device for isoniazid determination in pharmaceutical preparations produced satisfactory results.
Manycore Performance-Portability: Kokkos Multidimensional Array Library
Edwards, H. Carter; Sunderland, Daniel; Porter, Vicki; ...
2012-01-01
Large, complex scientific and engineering application code have a significant investment in computational kernels to implement their mathematical models. Porting these computational kernels to the collection of modern manycore accelerator devices is a major challenge in that these devices have diverse programming models, application programming interfaces (APIs), and performance requirements. The Kokkos Array programming model provides library-based approach to implement computational kernels that are performance-portable to CPU-multicore and GPGPU accelerator devices. This programming model is based upon three fundamental concepts: (1) manycore compute devices each with its own memory space, (2) data parallel kernels and (3) multidimensional arrays. Kernel executionmore » performance is, especially for NVIDIA® devices, extremely dependent on data access patterns. Optimal data access pattern can be different for different manycore devices – potentially leading to different implementations of computational kernels specialized for different devices. The Kokkos Array programming model supports performance-portable kernels by (1) separating data access patterns from computational kernels through a multidimensional array API and (2) introduce device-specific data access mappings when a kernel is compiled. An implementation of Kokkos Array is available through Trilinos [Trilinos website, http://trilinos.sandia.gov/, August 2011].« less
Impact of Lateral Straggle on the Analog/RF Performance of Asymmetric Gate Stack Double Gate MOSFET
NASA Astrophysics Data System (ADS)
Sivaram, Gollamudi Sai; Chakraborty, Shramana; Das, Rahul; Dasgupta, Arpan; Kundu, Atanu; Sarkar, Chandan K.
2016-09-01
This paper presents a systematic comparative study of Analog and RF performances of an underlapped double gate (U-DG) NMOSFET with Gate Stack (GS) for varying straggle lengths. Asymmetric underlap devices (A-U-DG) have been proposed as one of the remedies for reducing Short Channel Effects (SCE's) with the underlap being present towards the source for sub 20 nm devices. However, the Source to Drain (S/D) implant lateral diffusion leads to a variation in the effective underlap length. This paper investigates the impact of variation of straggle length on the Analog and RF parameters of the device. The RF performance is analyzed by considering the intrinsic capacitances (Cgd, Cgs), intrinsic resistances (Rgd, Rgs), transport delay (τm), inductance (Lsd), cutoff frequency (fT), and the maximum frequency of oscillations (fmax). The circuit performance of the devices are also studied. It is seen that the Analog and RF performances of the devices are improved by optimizing the S/D lateral straggle.
Unified theory for inhomogeneous thermoelectric generators and coolers including multistage devices.
Gerstenmaier, York Christian; Wachutka, Gerhard
2012-11-01
A novel generalized Lagrange multiplier method for functional optimization with inclusion of subsidiary conditions is presented and applied to the optimization of material distributions in thermoelectric converters. Multistaged devices are considered within the same formalism by inclusion of position-dependent electric current in the legs leading to a modified thermoelectric equation. Previous analytical solutions for maximized efficiencies for generators and coolers obtained by Sherman [J. Appl. Phys. 31, 1 (1960)], Snyder [Phys. Rev. B 86, 045202 (2012)], and Seifert et al. [Phys. Status Solidi A 207, 760 (2010)] by a method of local optimization of reduced efficiencies are recovered by independent proof. The outstanding maximization problems for generated electric power and cooling power can be solved swiftly numerically by solution of a differential equation-system obtained within the new formalism. As far as suitable materials are available, the inhomogeneous TE converters can have increased performance by use of purely temperature-dependent material properties in the thermoelectric legs or by use of purely spatial variation of material properties or by a combination of both. It turns out that the optimization domain is larger for the second kind of device which can, thus, outperform the first kind of device.
Wu, Xiaohan; Chu, Yingli; Liu, Rui; Katz, Howard E; Huang, Jia
2017-12-01
Polymer dielectrics in organic field-effect transistors (OFETs) are essential to provide the devices with overall flexibility, stretchability, and printability and simultaneously introduce charge interaction on the interface with organic semiconductors (OSCs). The interfacial effect between various polymer dielectrics and OSCs significantly and intricately influences device performance. However, understanding of this effect is limited because the interface is buried and the interfacial charge interaction is difficult to stimulate and characterize. Here, this challenge is overcome by utilizing illumination to stimulate the interfacial effect in various OFETs and to characterize the responses of the effect by measuring photoinduced changes of the OFETs performances. This systemic investigation reveals the mechanism of the intricate interfacial effect in detail, and mathematically explains how the photosensitive OFETs characteristics are determined by parameters including polar group of the polymer dielectric and the OSC side chain. By utilizing this mechanism, performance of organic electronics can be precisely controlled and optimized. OFETs with strong interfacial effect can also show a signal additivity caused by repeated light pulses, which is applicable for photostimulated synapse emulator. Therefore, this work enlightens a detailed understanding on the interface effect and provides novel strategies for optimizing OFET photosensory performances.
Using Differential Evolution to Optimize Learning from Signals and Enhance Network Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmer, Paul K; Temple, Michael A; Buckner, Mark A
2011-01-01
Computer and communication network attacks are commonly orchestrated through Wireless Access Points (WAPs). This paper summarizes proof-of-concept research activity aimed at developing a physical layer Radio Frequency (RF) air monitoring capability to limit unauthorizedWAP access and mprove network security. This is done using Differential Evolution (DE) to optimize the performance of a Learning from Signals (LFS) classifier implemented with RF Distinct Native Attribute (RF-DNA) fingerprints. Performance of the resultant DE-optimized LFS classifier is demonstrated using 802.11a WiFi devices under the most challenging conditions of intra-manufacturer classification, i.e., using emissions of like-model devices that only differ in serial number. Using identicalmore » classifier input features, performance of the DE-optimized LFS classifier is assessed relative to a Multiple Discriminant Analysis / Maximum Likelihood (MDA/ML) classifier that has been used for previous demonstrations. The comparative assessment is made using both Time Domain (TD) and Spectral Domain (SD) fingerprint features. For all combinations of classifier type, feature type, and signal-to-noise ratio considered, results show that the DEoptimized LFS classifier with TD features is uperior and provides up to 20% improvement in classification accuracy with proper selection of DE parameters.« less
LDRD Report: Topological Design Optimization of Convolutes in Next Generation Pulsed Power Devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cyr, Eric C.; von Winckel, Gregory John; Kouri, Drew Philip
This LDRD project was developed around the ambitious goal of applying PDE-constrained opti- mization approaches to design Z-machine components whose performance is governed by elec- tromagnetic and plasma models. This report documents the results of this LDRD project. Our differentiating approach was to use topology optimization methods developed for structural design and extend them for application to electromagnetic systems pertinent to the Z-machine. To achieve this objective a suite of optimization algorithms were implemented in the ROL library part of the Trilinos framework. These methods were applied to standalone demonstration problems and the Drekar multi-physics research application. Out of thismore » exploration a new augmented Lagrangian approach to structural design problems was developed. We demonstrate that this approach has favorable mesh-independent performance. Both the final design and the algorithmic performance were independent of the size of the mesh. In addition, topology optimization formulations for the design of conducting networks were developed and demonstrated. Of note, this formulation was used to develop a design for the inner magnetically insulated transmission line on the Z-machine. The resulting electromagnetic device is compared with theoretically postulated designs.« less
MC ray-tracing optimization of lobster-eye focusing devices with RESTRAX
NASA Astrophysics Data System (ADS)
Šaroun, Jan; Kulda, Jiří
2006-11-01
The enhanced functionalities of the latest version of the RESTRAX software, providing a high-speed Monte Carlo (MC) ray-tracing code to represent a virtual three-axis neutron spectrometer, include representation of parabolic and elliptic guide profiles and facilities for numerical optimization of parameter values, characterizing the instrument components. As examples, we present simulations of a doubly focusing monochromator in combination with cold neutron guides and lobster-eye supermirror devices, concentrating a monochromatic beam to small sample volumes. A Levenberg-Marquardt minimization algorithm is used to optimize simultaneously several parameters of the monochromator and lobster-eye guides. We compare the performance of optimized configurations in terms of monochromatic neutron flux and energy spread and demonstrate the effect of lobster-eye optics on beam transformations in real and momentum subspaces.
Progress and Design Concerns of Nanostructured Solar Energy Harvesting Devices.
Leung, Siu-Fung; Zhang, Qianpeng; Tavakoli, Mohammad Mahdi; He, Jin; Mo, Xiaoliang; Fan, Zhiyong
2016-05-01
Integrating devices with nanostructures is considered a promising strategy to improve the performance of solar energy harvesting devices such as photovoltaic (PV) devices and photo-electrochemical (PEC) solar water splitting devices. Extensive efforts have been exerted to improve the power conversion efficiencies (PCE) of such devices by utilizing novel nanostructures to revolutionize device structural designs. The thicknesses of light absorber and material consumption can be substantially reduced because of light trapping with nanostructures. Meanwhile, the utilization of nanostructures can also result in more effective carrier collection by shortening the photogenerated carrier collection path length. Nevertheless, performance optimization of nanostructured solar energy harvesting devices requires a rational design of various aspects of the nanostructures, such as their shape, aspect ratio, periodicity, etc. Without this, the utilization of nanostructures can lead to compromised device performance as the incorporation of these structures can result in defects and additional carrier recombination. The design guidelines of solar energy harvesting devices are summarized, including thin film non-uniformity on nanostructures, surface recombination, parasitic absorption, and the importance of uniform distribution of photo-generated carriers. A systematic view of the design concerns will assist better understanding of device physics and benefit the fabrication of high performance devices in the future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fong, Erika J.; Huang, Chao; Hamilton, Julie; ...
2015-11-23
Here, a major advantage of microfluidic devices is the ability to manipulate small sample volumes, thus reducing reagent waste and preserving precious sample. However, to achieve robust sample manipulation it is necessary to address device integration with the macroscale environment. To realize repeatable, sensitive particle separation with microfluidic devices, this protocol presents a complete automated and integrated microfluidic platform that enables precise processing of 0.15–1.5 ml samples using microfluidic devices. Important aspects of this system include modular device layout and robust fixtures resulting in reliable and flexible world to chip connections, and fully-automated fluid handling which accomplishes closed-loop sample collection,more » system cleaning and priming steps to ensure repeatable operation. Different microfluidic devices can be used interchangeably with this architecture. Here we incorporate an acoustofluidic device, detail its characterization, performance optimization, and demonstrate its use for size-separation of biological samples. By using real-time feedback during separation experiments, sample collection is optimized to conserve and concentrate sample. Although requiring the integration of multiple pieces of equipment, advantages of this architecture include the ability to process unknown samples with no additional system optimization, ease of device replacement, and precise, robust sample processing.« less
Deng, Dan; Zhang, Yajie; Zhang, Jianqi; Wang, Zaiyu; Zhu, Lingyun; Fang, Jin; Xia, Benzheng; Wang, Zhen; Lu, Kun; Ma, Wei; Wei, Zhixiang
2016-01-01
Solution-processable small molecules for organic solar cells have attracted intense attention for their advantages of definite molecular structures compared with their polymer counterparts. However, the device efficiencies based on small molecules are still lower than those of polymers, especially for inverted devices, the highest efficiency of which is <9%. Here we report three novel solution-processable small molecules, which contain π-bridges with gradient-decreased electron density and end acceptors substituted with various fluorine atoms (0F, 1F and 2F, respectively). Fluorination leads to an optimal active layer morphology, including an enhanced domain purity, the formation of hierarchical domain size and a directional vertical phase gradation. The optimal morphology balances charge separation and transfer, and facilitates charge collection. As a consequence, fluorinated molecules exhibit excellent inverted device performance, and an average power conversion efficiency of 11.08% is achieved for a two-fluorine atom substituted molecule. PMID:27991486
Niño, Maria C; Pauwels, Andres; Raffan, Fernando; Arango, Enrique; Romero, David J; Benitez, Daniel
2017-04-01
Mask ventilation is routinely performed during anesthesia. Under some circumstances, it might be difficult to perform, such as in edentulous patients, due to inadequate mask seal. We developed a new device called NIPARA and studied its use For ventilation optimization in edentulous patients. This randomized controlled trial included edentulous adults who had no other predictors of difficult airway, scheduled to undergo general anesthesia. Patients were assigned either to the NIPARA device group or to the control group (oral airway only). The primary outcomes were peak inspiratory pressure and tidal volume values of the first 14 breaths. The secondary outcome was the incidence of complications. Data from 37 patients were collected during a one-year period (twenty in the NIPARA device group and 17 in the control group). The difference in mean PIP was not statistically significant. The tidal volume was 1.5 times greater in the NIPARA group than in the control group. One patient from the intervention group had minimal oral trauma. In the administration of face mask ventilation, NIPARA is an effective device that significantly improves the tidal volume administered in edentulous patients.
NASA Astrophysics Data System (ADS)
Fathololoumi, S.; Dupont, E.; Wasilewski, Z. R.; Chan, C. W. I.; Razavipour, S. G.; Laframboise, S. R.; Huang, Shengxi; Hu, Q.; Ban, D.; Liu, H. C.
2013-03-01
We experimentally investigated the effect of oscillator strength (radiative transition diagonality) on the performance of resonant phonon-based terahertz quantum cascade lasers that have been optimized using a simplified density matrix formalism. Our results show that the maximum lasing temperature (Tmax) is roughly independent of laser transition diagonality within the lasing frequency range of the devices under test (3.2-3.7 THz) when cavity loss is kept low. Furthermore, the threshold current can be lowered by employing more diagonal transition designs, which can effectively suppress parasitic leakage caused by intermediate resonance between the injection and the downstream extraction levels. Nevertheless, the current carrying capacity through the designed lasing channel in more diagonal designs may sacrifice even more, leading to electrical instability and, potentially, complete inhibition of the device's lasing operation. We propose a hypothesis based on electric-field domain formation and competition/switching of different current-carrying channels to explain observed electrical instability in devices with lower oscillator strengths. The study indicates that not only should designers maximize Tmax during device optimization but also they should always consider the risk of electrical instability in device operation.
Interacting with notebook input devices: an analysis of motor performance and users' expertise.
Sutter, Christine; Ziefle, Martina
2005-01-01
In the present study the usability of two different types of notebook input devices was examined. The independent variables were input device (touchpad vs. mini-joystick) and user expertise (expert vs. novice state). There were 30 participants, of whom 15 were touchpad experts and the other 15 were mini-joystick experts. The experimental tasks were a point-click task (Experiment 1) and a point-drag-drop task (Experiment 2). Dependent variables were the time and accuracy of cursor control. To assess carryover effects, we had the participants complete both experiments, using not only the input device for which they were experts but also the device for which they were novices. Results showed the touchpad performance to be clearly superior to mini-joystick performance. Overall, experts showed better performance than did novices. The significant interaction of input device and expertise showed that the use of an unknown device is difficult, but only for touchpad experts, who were remarkably slower and less accurate when using a mini-joystick. Actual and potential applications of this research include an evaluation of current notebook input devices. The outcomes allow ergonomic guidelines to be derived for optimized usage and design of the mini-joystick and touchpad devices.
R&D issues in scale-up and manufacturing of amorphous silicon tandem modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arya, R.R.; Carlson, D.E.; Chen, L.F.
1999-03-01
R & D on amorphous silicon based tandem junction devices has improved the throughtput, the material utilization, and the performance of devices on commercial tin oxide coated glass. The tandem junction technology has been scaled-up to produce 8.6&hthinsp;Ft{sup 2} monolithically integrated modules in manufacturing at the TF1 plant. Optimization of performance and stability of these modules is ongoing. {copyright} {ital 1999 American Institute of Physics.}
NASA Technical Reports Server (NTRS)
Besser, P. J.
1976-01-01
Bubble domain materials and devices are discussed. One of the materials development goals was a materials system suitable for operation of 16 micrometer period bubble domain devices at 150 kHz over the temperature range -10 C to +60 C. Several material compositions and hard bubble suppression techniques were characterized and the most promising candidates were evaluated in device structures. The technique of pulsed laser stroboscopic microscopy was used to characterize bubble dynamic properties and device performance at 150 kHz. Techniques for large area LPE film growth were developed as a separate task. Device studies included detector optimization, passive replicator design and test and on-chip bridge evaluation. As a technology demonstration an 8 chip memory cell was designed, tested and delivered. The memory elements used in the cell were 10 kilobit serial registers.
NASA Astrophysics Data System (ADS)
Liu, Yuxin; Huang, Zhitong; Li, Wei; Ji, Yuefeng
2016-03-01
Various patterns of device-to-device (D2D) communication, from Bluetooth to Wi-Fi Direct, are emerging due to the increasing requirements of information sharing between mobile terminals. This paper presents an innovative pattern named device-to-device visible light communication (D2D-VLC) to alleviate the growing traffic problem. However, the occlusion problem is a difficulty in D2D-VLC. This paper proposes a game theory-based solution in which the best-response dynamics and best-response strategies are used to realize a mode-cooperative selection mechanism. This mechanism uses system capacity as the utility function to optimize system performance and selects the optimal communication mode for each active user from three candidate modes. Moreover, the simulation and experimental results show that the mechanism can attain a significant improvement in terms of effectiveness and energy saving compared with the cases where the users communicate via only the fixed transceivers (light-emitting diode and photo diode) or via only D2D.
Lee, Eunha; Benayad, Anass; Shin, Taeho; Lee, HyungIk; Ko, Dong-Su; Kim, Tae Sang; Son, Kyoung Seok; Ryu, Myungkwan; Jeon, Sanghun; Park, Gyeong-Su
2014-01-01
Interest in oxide semiconductors stems from benefits, primarily their ease of process, relatively high mobility (0.3–10 cm2/vs), and wide-bandgap. However, for practical future electronic devices, the channel mobility should be further increased over 50 cm2/vs and wide-bandgap is not suitable for photo/image sensor applications. The incorporation of nitrogen into ZnO semiconductor can be tailored to increase channel mobility, enhance the optical absorption for whole visible light and form uniform micro-structure, satisfying the desirable attributes essential for high performance transistor and visible light photo-sensors on large area platform. Here, we present electronic, optical and microstructural properties of ZnON, a composite of Zn3N2 and ZnO. Well-optimized ZnON material presents high mobility exceeding 100 cm2V−1s−1, the band-gap of 1.3 eV and nanocrystalline structure with multiphase. We found that mobility, microstructure, electronic structure, band-gap and trap properties of ZnON are varied with nitrogen concentration in ZnO. Accordingly, the performance of ZnON-based device can be adjustable to meet the requisite of both switch device and image-sensor potentials. These results demonstrate how device and material attributes of ZnON can be optimized for new device strategies in display technology and we expect the ZnON will be applicable to a wide range of imaging/display devices. PMID:24824778
Design of SOI wavelength filter based on multiple MMIs structures
NASA Astrophysics Data System (ADS)
Hu, Youfang; Gardes, Frédéric Y.; Jenkins, Richard M.; Finlayson, Ewan D.; Mashanovich, Goran Z.; Reed, Graham T.
2011-01-01
SOI based MMIs prove to be versatile photonic structures for optical power splitting/combining, directional coupling, wavelength multiplexing/demultiplexing, etc. Such a structure benefits from relative ease of fabrication, low sensitivity to fabrication error and low temperature dependence. Whilst the majority of previous designs and optimizations investigated single MMIs, there is significant potential to combine MMIs within a single device for the realization of improved device performance. We have designed and simulated a wavelength filter device consisting of a series of MMIs with different lengths. The bandwidth, free spectral range, and extinction ratio can be controlled by changing the MMI's width and length. We have optimized our design to achieve a -3dB bandwidth of 5nm, a free spectral range of 60nm, an extinction ratio of >30dB, and a side peak suppression ratio of >22dB. Such a device can be used for high performance coarse wavelength filtering. The whole structure can fit into a 70μm×300μm area. Temperature sensitivity of the designed structures was also investigated.
Vacuum-integrated electrospray deposition for highly reliable polymer thin film.
Park, Soohyung; Lee, Younjoo; Yi, Yeonjin
2012-10-01
Vacuum electrospray deposition (ESD) equipment was designed to prepare polymer thin films. The polymer solution can be injected directly into vacuum system through multi-stage pumping line, so that the solvent residues and ambient contaminants are highly reduced. To test the performance of ESD system, we fabricated organic photovoltaic cells (OPVCs) by injecting polymer solution directly onto the substrate inside a high vacuum chamber. The OPVC fabricated has the structure of Al∕P3HT:PCBM∕PEDOT:PSS∕ITO and was optimized by varying the speed of solution injection and concentration of the solution. The power conversion efficiency (PCE) of the optimized OPVC is 3.14% under AM 1.5G irradiation without any buffer layer at the cathode side. To test the advantages of the vacuum ESD, we exposed the device to atmosphere between the deposition steps of the active layer and cathode. This showed that the PCE of the vacuum processed device is 24% higher than that of the air exposed device and confirms the advantages of the vacuum prepared polymer film for high performance devices.
Ke, Chih-Kun; Lin, Zheng-Hua
2015-09-01
The progress of information and communication technologies (ICT) has promoted the development of healthcare which has enabled the exchange of resources and services between organizations. Organizations want to integrate mobile devices into their hospital information systems (HIS) due to the convenience to employees who are then able to perform specific healthcare processes from any location. The collection and merage of healthcare data from discrete mobile devices are worth exploring possible ways for further use, especially in remote districts without public data network (PDN) to connect the HIS. In this study, we propose an optimal mobile service which automatically synchronizes the telecare file resources among discrete mobile devices. The proposed service enforces some technical methods. The role-based access control model defines the telecare file resources accessing mechanism; the symmetric data encryption method protects telecare file resources transmitted over a mobile peer-to-peer network. The multi-criteria decision analysis method, ELECTRE (Elimination Et Choice Translating Reality), evaluates multiple criteria of the candidates' mobile devices to determine a ranking order. This optimizes the synchronization of telecare file resources among discrete mobile devices. A prototype system is implemented to examine the proposed mobile service. The results of the experiment show that the proposed mobile service can automatically and effectively synchronize telecare file resources among discrete mobile devices. The contribution of this experiment is to provide an optimal mobile service that enhances the security of telecare file resource synchronization and strengthens an organization's mobility.
Takahashi, Hidekazu; Haraguchi, Naotsugu; Nishimura, Junichi; Hata, Taishi; Matsuda, Chu; Yamamoto, Hirofumi; Mizushima, Tsunekazu; Mori, Masaki; Doki, Yuichiro; Nakajima, Kiyokazu
2018-06-01
Modern electrosurgical tools have a specific coagulation mode called "soft coagulation". However, soft coagulation has not been widely accepted for surgical operations. To optimize the soft coagulation environment, we developed a novel suction device integrated with an electrosurgical probe, called the "Suction ball coagulator" (SBC). In this study, we aimed to optimize the SBC design with a prototyping process involving a bench test and preclinical study; then, we aimed to demonstrate the feasibility, safety, and potential effectiveness of the SBC for laparoscopic surgery in clinical settings. SBC prototyping was performed with a bench test. Device optimization was performed in a preclinical study with a domestic swine bleeding model. Then, SBC was tested in a clinical setting during 17 clinical laparoscopic colorectal surgeries. In the bench tests, two tip hole sizes and patterns showed a good suction capacity. The preclinical study indicated the best tip shape for accuracy. In clinical use, no device-related adverse event was observed. Moreover, the SBC was feasible for prompt hemostasis and blunt dissections. In addition, SBC could evacuate vapors generated by tissue ablation using electroprobe during laparoscopic surgery. We successfully developed a novel, integrated suction/coagulation probe for hemostasis and commercialized it.
Callewaert, Francois; Butun, Serkan; Li, Zhongyang; Aydin, Koray
2016-01-01
The objective-first inverse-design algorithm is used to design an ultra-compact optical diode. Based on silicon and air only, this optical diode relies on asymmetric spatial mode conversion between the left and right ports. The first even mode incident from the left port is transmitted to the right port after being converted into an odd mode. On the other hand, same mode incident from the right port is reflected back by the optical diode dielectric structure. The convergence and performance of the algorithm are studied, along with a transform method that converts continuous permittivity medium into a binary material design. The optimal device is studied with full-wave electromagnetic simulations to compare its behavior under right and left incidences, in 2D and 3D settings as well. A parametric study is designed to understand the impact of the design space size and initial conditions on the optimized devices performance. A broadband optical diode behavior is observed after optimization, with a large rejection ratio between the two transmission directions. This illustrates the potential of the objective-first inverse-design method to design ultra-compact broadband photonic devices. PMID:27586852
NASA Astrophysics Data System (ADS)
Wang, Zi Shuai; Sha, Wei E. I.; Choy, Wallace C. H.
2016-12-01
Modeling the charge-generation process is highly important to understand device physics and optimize power conversion efficiency of bulk-heterojunction organic solar cells (OSCs). Free carriers are generated by both ultrafast exciton delocalization and slow exciton diffusion and dissociation at the heterojunction interface. In this work, we developed a systematic numerical simulation to describe the charge-generation process by a modified drift-diffusion model. The transport, recombination, and collection of free carriers are incorporated to fully capture the device response. The theoretical results match well with the state-of-the-art high-performance organic solar cells. It is demonstrated that the increase of exciton delocalization ratio reduces the energy loss in the exciton diffusion-dissociation process, and thus, significantly improves the device efficiency, especially for the short-circuit current. By changing the exciton delocalization ratio, OSC performances are comprehensively investigated under the conditions of short-circuit and open-circuit. Particularly, bulk recombination dependent fill factor saturation is unveiled and understood. As a fundamental electrical analysis of the delocalization mechanism, our work is important to understand and optimize the high-performance OSCs.
Restorative effect of oxygen annealing on device performance in HfIZO thin-film transistors
NASA Astrophysics Data System (ADS)
Ha, Tae-Jun
2015-03-01
Metal-oxide based thin-film transistors (oxide-TFTs) are very promising for use in next generation electronics such as transparent displays requiring high switching and driving performance. In this study, we demonstrate an optimized process to secure excellent device performance with a favorable shift of the threshold voltage toward 0V in amorphous hafnium-indium-zinc-oxide (a-HfIZO) TFTs by using post-treatment with oxygen annealing. This enhancement results from the improved interfacial characteristics between gate dielectric and semiconductor layers due to the reduction in the density of interfacial states related to oxygen vacancies afforded by oxygen annealing. The device statistics confirm the improvement in the device-to-device and run-to-run uniformity. We also report on the photo-induced stability in such oxide-TFTs against long-term UV irradiation, which is significant for transparent displays.
NASA Astrophysics Data System (ADS)
Zeng, Baoping; Liu, Jipeng; Zhang, Yu; Gong, Yajun; Hu, Sanbao
2017-12-01
Deepwater robots are important devices for human to explore the sea, which is being under development towards intellectualization, multitasking, long-endurance and large depth along with the development of science and technology. As far as a deep-water robot is concerned, its mechanical systems is an important subsystem because not only it influences the instrument measuring precision and shorten the service life of cabin devices but also its overlarge vibration and noise lead to disadvantageous effects to marine life within the operational area. Therefore, vibration characteristics shall be key factor for the deep-water robot system design. The sample collection and recycling system of some certain deepwater robot in a mechanism for opening the underwater cabin door for external operation and recycling test equipment is focused in this study. For improving vibration characteristics of locations of the cabin door during opening processes, a vibration model was established to the opening system; and the structural optimization design was carried out to its important structures by utilizing the multi-objective shape optimization and topology optimization method based on analysis of the system vibration. Analysis of characteristics of exciting forces causing vibration was first carried out, which include characteristics of dynamic loads within the hinge clearances and due to friction effects and the fluid dynamic exciting forces during processes of opening the cabin door. Moreover, vibration acceleration responses for a few important locations of the devices for opening the cabin cover were deduced by utilizing the modal synthesis method so that its rigidity and modal frequency may be one primary factor influencing the system vibration performances based on analysis of weighted acceleration responses. Thus, optimization design was carried out to the cabin cover by utilizing the multi-objective topology optimization method to perform reduction of weighted accelerations of key structure locations.
A magnetorheological haptic cue accelerator for manual transmission vehicles
NASA Astrophysics Data System (ADS)
Han, Young-Min; Noh, Kyung-Wook; Lee, Yang-Sub; Choi, Seung-Bok
2010-07-01
This paper proposes a new haptic cue function for manual transmission vehicles to achieve optimal gear shifting. This function is implemented on the accelerator pedal by utilizing a magnetorheological (MR) brake mechanism. By combining the haptic cue function with the accelerator pedal, the proposed haptic cue device can transmit the optimal moment of gear shifting for manual transmission to a driver without requiring the driver's visual attention. As a first step to achieve this goal, a MR fluid-based haptic device is devised to enable rotary motion of the accelerator pedal. Taking into account spatial limitations, the design parameters are optimally determined using finite element analysis to maximize the relative control torque. The proposed haptic cue device is then manufactured and its field-dependent torque and time response are experimentally evaluated. Then the manufactured MR haptic cue device is integrated with the accelerator pedal. A simple virtual vehicle emulating the operation of the engine of a passenger vehicle is constructed and put into communication with the haptic cue device. A feed-forward torque control algorithm for the haptic cue is formulated and control performances are experimentally evaluated and presented in the time domain.
Light-emitting diodes based on colloidal silicon quantum dots
NASA Astrophysics Data System (ADS)
Zhao, Shuangyi; Liu, Xiangkai; Pi, Xiaodong; Yang, Deren
2018-06-01
Colloidal silicon quantum dots (Si QDs) hold great promise for the development of printed Si electronics. Given their novel electronic and optical properties, colloidal Si QDs have been intensively investigated for optoelectronic applications. Among all kinds of optoelectronic devices based on colloidal Si QDs, QD light-emitting diodes (LEDs) play an important role. It is encouraging that the performance of LEDs based on colloidal Si QDs has been significantly increasing in the past decade. In this review, we discuss the effects of the QD size, QD surface and device structure on the performance of colloidal Si-QD LEDs. The outlook on the further optimization of the device performance is presented at the end.
NASA Astrophysics Data System (ADS)
Kuenzig, Thomas; Dehé, Alfons; Krumbein, Ulrich; Schrag, Gabriele
2018-05-01
Maxing out the technological limits in order to satisfy the customers’ demands and obtain the best performance of micro-devices and-systems is a challenge of today’s manufacturers. Dedicated system simulation is key to investigate the potential of device and system concepts in order to identify the best design w.r.t. the given requirements. We present a tailored, physics-based system-level modeling approach combining lumped with distributed models that provides detailed insight into the device and system operation at low computational expense. The resulting transparent, scalable (i.e. reusable) and modularly composed models explicitly contain the physical dependency on all relevant parameters, thus being well suited for dedicated investigation and optimization of MEMS devices and systems. This is demonstrated for an industrial capacitive silicon microphone. The performance of such microphones is determined by distributed effects like viscous damping and inhomogeneous capacitance variation across the membrane as well as by system-level phenomena like package-induced acoustic effects and the impact of the electronic circuitry for biasing and read-out. The here presented model covers all relevant figures of merit and, thus, enables to evaluate the optimization potential of silicon microphones towards high fidelity applications. This work was carried out at the Technical University of Munich, Chair for Physics of Electrotechnology. Thomas Kuenzig is now with Infineon Technologies AG, Neubiberg.
NASA Astrophysics Data System (ADS)
Wang, Wenyan; Cui, Yanxia; Fung, Kin Hung; Zhang, Ye; Ji, Ting; Hao, Yuying
2017-09-01
Both the nanohole- and nanopillar-type patterned metallic electrodes (PMEs) have been introduced in organic solar cells (OSCs) for improving device performances experimentally, but there is few work addressing the similarities and differences between them. In this theoretical work, we systematically compare the impact of the nanohole- and nanopillar-type PMEs on the performance of an OSC based on hybridized cavity resonances. By optimizing the geometrical parameters of each PME, we obtained an interesting result that the integrated absorption efficiencies in the active layer with different optimized PMEs are almost the same (both are equal to 82.4%), outperforming that of the planar control by 9.9%. Though the absorption enhancement spectra of the two different optimal devices are similar as well, the mechanisms of light trapping at the corresponding enhancement peaks are distinct from each other. In a comprehensive view, the nanopillar-type PME is suggested to be applied in the present system, since its optimal design has a moderate filling ratio, which is much easier to fabricate than its counterpart. This work could contribute to the development of high-efficiency OSCs.
Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers
NASA Astrophysics Data System (ADS)
Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan
2018-02-01
The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm2 was demonstrated.
Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers.
Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan
2018-02-21
The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm 2 was demonstrated.
Optical design applications for enhanced illumination performance
NASA Astrophysics Data System (ADS)
Gilray, Carl; Lewin, Ian
1995-08-01
Nonimaging optical design techniques have been applied in the illumination industry for many years. Recently however, powerful software has been developed which allows accurate simulation and optimization of illumination devices. Wide experience has been obtained in using such design techniques for practical situations. These include automotive lighting where safety is of greatest importance, commercial lighting systems designed for energy efficiency, and numerous specialized applications. This presentation will discuss the performance requirements of a variety of illumination devices. It will further cover design methodology and present a variety of examples of practical applications for enhanced system performance.
Portable oxygen subsystem. [design analysis and performance tests
NASA Technical Reports Server (NTRS)
1975-01-01
The concept and design of a portable oxygen device for use in the space shuttle orbiter is presented. Hardware fabrication and acceptance tests (i.e., breadboard models) are outlined and discussed. Optimization of the system (for weight, volume, safety, costs) is discussed. The device is of the rebreather type, and provides a revitalized breathing gas supply to a crewman for denitrogenization and emergency activities. Engineering drawings and photographs of the device are shown.
Seena, V; Fernandes, Avil; Pant, Prita; Mukherji, Soumyo; Rao, V Ramgopal
2011-07-22
This paper reports an optimized and highly sensitive piezoresistive SU-8 nanocomposite microcantilever sensor and its application for detection of explosives in vapour phase. The optimization has been in improving its electrical, mechanical and transduction characteristics. We have achieved a better dispersion of carbon black (CB) in the SU-8/CB nanocomposite piezoresistor and arrived at an optimal range of 8-9 vol% CB concentration by performing a systematic mechanical and electrical characterization of polymer nanocomposites. Mechanical characterization of SU-8/CB nanocomposite thin films was performed using the nanoindentation technique with an appropriate substrate effect analysis. Piezoresistive microcantilevers having an optimum carbon black concentration were fabricated using a design aimed at surface stress measurements with reduced fabrication process complexity. The optimal range of 8-9 vol% CB concentration has resulted in an improved sensitivity, low device variability and low noise level. The resonant frequency and spring constant of the microcantilever were found to be 22 kHz and 0.4 N m(-1) respectively. The devices exhibited a surface stress sensitivity of 7.6 ppm (mN m(-1))(-1) and the noise characterization results support their suitability for biochemical sensing applications. This paper also reports the ability of the sensor in detecting TNT vapour concentration down to less than six parts per billion with a sensitivity of 1 mV/ppb.
Österholm, Anna M; Shen, D Eric; Dyer, Aubrey L; Reynolds, John R
2013-12-26
We report on the optimization of the capacitive behavior of poly(3,4-ethylenedioxythiophene) (PEDOT) films as polymeric electrodes in flexible, Type I electrochemical supercapacitors (ESCs) utilizing ionic liquid (IL) and organic gel electrolytes. The device performance was assessed based on figures of merit that are critical to evaluating the practical utility of electroactive polymer ESCs. PEDOT/IL devices were found to be highly stable over hundreds of thousands of cycles and could be reversibly charged/discharged at scan rates between 500 mV/s and 2 V/s depending on the polymer loading. Furthermore, these devices exhibit leakage currents and self-discharge rates that are comparable to state of the art electrochemical double-layer ESCs. Using an IL as device electrolyte allowed an extension of the voltage window of Type I ESCs by 60%, resulting in a 2.5-fold increase in the energy density obtained. The efficacies of tjese PEDOT ESCs were assessed by using them as a power source for a high-contrast and fast-switching electrochromic device, demonstrating their applicability in small organic electronic-based devices.
Device Centric Throughput and QoS Optimization for IoTsin a Smart Building Using CRN-Techniques
Aslam, Saleem; Hasan, Najam Ul; Shahid, Adnan; Jang, Ju Wook; Lee, Kyung-Geun
2016-01-01
The Internet of Things (IoT) has gained an incredible importance in the communication and networking industry due to its innovative solutions and advantages in diverse domains. The IoT’ network is a network of smart physical objects: devices, vehicles, buildings, etc. The IoT has a number of applications ranging from smart home, smart surveillance to smart healthcare systems. Since IoT consists of various heterogeneous devices that exhibit different traffic patterns and expect different quality of service (QoS) in terms of data rate, bit error rate and the stability index of the channel, therefore, in this paper, we formulated an optimization problem to assign channels to heterogeneous IoT devices within a smart building for the provisioning of their desired QoS. To solve this problem, a novel particle swarm optimization-based algorithm is proposed. Then, exhaustive simulations are carried out to evaluate the performance of the proposed algorithm. Simulation results demonstrate the supremacy of our proposed algorithm over the existing ones in terms of throughput, bit error rate and the stability index of the channel. PMID:27782057
NASA Astrophysics Data System (ADS)
Jacobs, K. J. P.; Stevens, B. J.; Baba, R.; Wada, O.; Mukai, T.; Hogg, R. A.
2017-10-01
We report valley current characterisation of high current density InGaAs/AlAs/InP resonant tunnelling diodes (RTDs) grown by metal-organic vapour phase epitaxy (MOVPE) for THz emission, with a view to investigate the origin of the valley current and optimize device performance. By applying a dual-pass fabrication technique, we are able to measure the RTD I-V characteristic for different perimeter/area ratios, which uniquely allows us to investigate the contribution of leakage current to the valley current and its effect on the PVCR from a single device. Temperature dependent (20 - 300 K) characteristics for a device are critically analysed and the effect of temperature on the maximum extractable power (PMAX) and the negative differential conductance (NDC) of the device is investigated. By performing theoretical modelling, we are able to explore the effect of typical variations in structural composition during the growth process on the tunnelling properties of the device, and hence the device performance.
Numerical Investigations of an Optimized Airfoil with a Rotary Cylinder
NASA Astrophysics Data System (ADS)
Gada, Komal; Rahai, Hamid
2015-11-01
Numerical Investigations of an optimized thin airfoil with a rotary cylinder as a control device for reducing separation and improving lift to drag ratio have been performed. Our previous investigations have used geometrical optimization for development of an optimized airfoil with increased torque for applications in a vertical axis wind turbine. The improved performance was due to contributions of lift to torque at low angles of attack. The current investigations have been focused on using the optimized airfoil for micro-uav applications with an active flow control device, a rotary cylinder, to further control flow separation, especially during wind gust conditions. The airfoil has a chord length of 19.66 cm and a width of 25 cm with 0.254 cm thickness. Previous investigations have shown flow separation at approximately 85% chord length at moderate angles of attack. Thus the rotary cylinder with a 0.254 cm diameter was placed slightly downstream of the location of flow separation. The free stream mean velocity was 10 m/sec. and investigations have been performed at different cylinder's rotations with corresponding tangential velocities higher than, equal to and less than the free stream velocity. Results have shown more than 10% improvement in lift to drag ratio when the tangential velocity is near the free stream mean velocity. Graduate Assistant, Center for Energy and Environmental Research and Services (CEERS), College of Engineering, California State University, Long Beach.
Simulation study on single event burnout in linear doping buffer layer engineered power VDMOSFET
NASA Astrophysics Data System (ADS)
Yunpeng, Jia; Hongyuan, Su; Rui, Jin; Dongqing, Hu; Yu, Wu
2016-02-01
The addition of a buffer layer can improve the device's secondary breakdown voltage, thus, improving the single event burnout (SEB) threshold voltage. In this paper, an N type linear doping buffer layer is proposed. According to quasi-stationary avalanche simulation and heavy ion beam simulation, the results show that an optimized linear doping buffer layer is critical. As SEB is induced by heavy ions impacting, the electric field of an optimized linear doping buffer device is much lower than that with an optimized constant doping buffer layer at a given buffer layer thickness and the same biasing voltages. Secondary breakdown voltage and the parasitic bipolar turn-on current are much higher than those with the optimized constant doping buffer layer. So the linear buffer layer is more advantageous to improving the device's SEB performance. Project supported by the National Natural Science Foundation of China (No. 61176071), the Doctoral Fund of Ministry of Education of China (No. 20111103120016), and the Science and Technology Program of State Grid Corporation of China (No. SGRI-WD-71-13-006).
Review of electronic transport models for thermoelectric materials
NASA Astrophysics Data System (ADS)
Bulusu, A.; Walker, D. G.
2008-07-01
Thermoelectric devices have gained importance in recent years as viable solutions for applications such as spot cooling of electronic components, remote power generation in space stations and satellites etc. These solid-state devices have long been known for their reliability rather than their efficiency; they contain no moving parts, and their performance relies primarily on material selection, which has not generated many excellent candidates. Research in recent years has been focused on developing both thermoelectric structures and materials that have high efficiency. In general, thermoelectric research is two-pronged with (1) experiments focused on finding new materials and structures with enhanced thermoelectric performance and (2) analytical models that predict thermoelectric behavior to enable better design and optimization of materials and structures. While numerous reviews have discussed the importance of and dependence on materials for thermoelectric performance, an overview of how to predict the performance of various materials and structures based on fundamental quantities is lacking. In this paper we present a review of the theoretical models that were developed since thermoelectricity was first observed in 1821 by Seebeck and how these models have guided experimental material search for improved thermoelectric devices. A new quantum model is also presented, which provides opportunities for the optimization of nanoscale materials to enhance thermoelectric performance.
NASA Astrophysics Data System (ADS)
Zhu, Banghe; Rasmussen, John C.; Litorja, Maritoni; Sevick-Muraca, Eva M.
2017-03-01
All medical devices for Food and Drug market approval require specifications of performance based upon International System of Units (SI) or units derived from SI for reasons of traceability. Recently, near-infrared fluorescence (NIRF) imaging devices of a variety of designs have emerged on the market and in investigational clinical studies. Yet the design of devices used in the clinical studies vary widely, suggesting variable device performance. Device performance depends upon optimal excitation of NIRF imaging agents, rejection of backscattered excitation and ambient light, and selective collection of fluorescence emanating from the fluorophore. There remains no traceable working standards with SI units of radiance to enable prediction that a given molecular imaging agent can be detected in humans by a given NIRF imaging device. Furthermore, as technologies evolve and as NIRF imaging device components change, there remains no standardized means to track device improvements over time and establish clinical performance without involving clinical trials, often costly. In this study, we deployed a methodology to calibrate luminescent radiance of a stable, solid phantom in SI units of mW/cm2/sr for characterizing the measurement performance of ICCD and IsCMOS camera based NIRF imaging devices, such as signal-to-noise ratio (SNR) and contrast. The methodology allowed determination of superior SNR of the ICCD over the IsCMOS system; comparable contrast of ICCD and IsCMOS depending upon binning strategies.
Optimization of bottom-hinged flap-type wave energy converter for a specific wave rose
NASA Astrophysics Data System (ADS)
Behzad, Hamed; Panahi, Roozbeh
2017-06-01
In this paper, we conducted a numerical analysis on the bottom-hinged flap-type Wave Energy Convertor (WEC). The basic model, implemented through the study using ANSYS-AQWA, has been validated by a three-dimensional physical model of a pitching vertical cylinder. Then, a systematic parametric assessment has been performed on stiffness, damping, and WEC direction against an incoming wave rose, resulting in an optimized flap-type WEC for a specific spot in the Persian Gulf. Here, stiffness is tuned to have a near-resonance condition considering the wave rose, while damping is modified to capture the highest energy for each device direction. Moreover, such sets of specifications have been checked at different directions to present the best combination of stiffness, damping, and device heading. It has been shown that for a real condition, including different wave heights, periods, and directions, it is very important to implement the methodology introduced here to guarantee device performance.
NASA Astrophysics Data System (ADS)
Zang, Yue; Gao, Xiumin; Xin, Qing; Lin, Jun; Zhao, Jufeng
2017-06-01
A highly efficient donor polymer, PTB7-Th, combined with acceptor fullerene PC71BM was introduced as the subcell in the series-connected tandem devices to achieve high-performance polymer tandem solar cells. Design of the device architecture was investigated using modeling and simulation methods to identify the optimal structure and to predict performance of the tandem cells. To address the challenge of current matching between the constituent subcells, the effect of active layer thickness, different device structure, and use of ultrathin Ag film were analyzed. It was found that the distribution of optical intensity in the tandem structure can be optimized through the optical spacer effect of interfacial layers and micro-cavity effect derived from the embedded ultrathin Ag film. Our results indicate that the efficient light utilization with appropriate subcells can allow achievement of power conversion efficiency of 12%, which can be 25% higher than that of a single cell of PTB7-Th.
NASA Astrophysics Data System (ADS)
Iyyappan, I.; Ponmurugan, M.
2017-09-01
We study the performance of a three-terminal thermoelectric device such as heat engine and refrigerator with broken time-reversal symmetry by applying the unified trade-off figure of merit (\\dotΩ criterion) which accounts for both useful energy and losses. For the heat engine, we find that a thermoelectric device working under the maximum \\dotΩ criterion gives a significantly better performance than a device working at maximum power output. Within the framework of linear irreversible thermodynamics such a direct comparison is not possible for refrigerators, however, our study indicates that, for refrigerator, the maximum cooling load gives a better performance than the maximum \\dotΩ criterion for a larger asymmetry. Our results can be useful to choose a suitable optimization criterion for operating a real thermoelectric device with broken time-reversal symmetry.
Maktabi, Marianne; Neumuth, Thomas
2017-12-22
The complexity of surgical interventions and the number of technologies involved are constantly rising. Hospital staff has to learn how to handle new medical devices efficiently. However, if medical device-related incidents occur, the patient treatment is delayed. Patient safety could therefore be supported by an optimized assistance system that helps improve the management of technical equipment by nonmedical hospital staff. We developed a system for the optimal monitoring of networked medical device activity and maintenance requirements, which works in conjunction with a vendor-independent integrated operating room and an accurate surgical intervention Time And Resource Management System. An integrated situation-dependent risk assessment system gives the medical engineers optimal awareness of the medical devices in the operating room. A qualitative and quantitative survey among ten medical engineers from three different hospitals was performed to evaluate the approach. A series of 25 questions was used to evaluate various aspects of our system as well as the system currently used. Moreover, the respondents were asked to perform five tasks related to system supervision and incident handling. Our system received a very positive feedback. The evaluation studies showed that the integration of information, the structured presentation of information, and the assistance modules provide valuable support to medical engineers. An automated operating room monitoring system with an integrated risk assessment and Time And Resource Management System module is a new way to assist the staff being outside of a vendor-independent integrated operating room, who are nevertheless involved in processes in the operating room.
Domańska, Barbara; Stumpp, Oliver; Poon, Steven; Oray, Serkan; Mountian, Irina; Pichon, Clovis
2018-01-01
We incorporated patient feedback from human factors studies (HFS) in the patient-centric design and validation of ava ® , an electromechanical device (e-Device) for self-injecting the anti-tumor necrosis factor certolizumab pegol (CZP). Healthcare professionals, caregivers, healthy volunteers, and patients with rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, or Crohn's disease participated in 11 formative HFS to optimize the e-Device design through intended user feedback; nine studies involved simulated injections. Formative participant questionnaire feedback was collected following e-Device prototype handling. Validation HFS (one EU study and one US study) assessed the safe and effective setup and use of the e-Device using 22 predefined critical tasks. Task outcomes were categorized as "failures" if participants did not succeed within three attempts. Two hundred eighty-three participants entered formative (163) and validation (120) HFS; 260 participants performed one or more simulated e-Device self-injections. Design changes following formative HFS included alterations to buttons and the graphical user interface screen. All validation HFS participants completed critical tasks necessary for CZP dose delivery, with minimal critical task failures (12 of 572 critical tasks, 2.1%, in the EU study, and 2 of 5310 critical tasks, less than 0.1%, in the US study). CZP e-Device development was guided by intended user feedback through HFS, ensuring the final design addressed patients' needs. In both validation studies, participants successfully performed all critical tasks, demonstrating safe and effective e-Device self-injections. UCB Pharma. Plain language summary available on the journal website.
Optimization Model for Web Based Multimodal Interactive Simulations.
Halic, Tansel; Ahn, Woojin; De, Suvranu
2015-07-15
This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update . In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach.
Optimization Model for Web Based Multimodal Interactive Simulations
Halic, Tansel; Ahn, Woojin; De, Suvranu
2015-01-01
This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update. In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach. PMID:26085713
NASA Astrophysics Data System (ADS)
Yazdani, Armin; Chen, Renyu; Dunham, Scott T.
2017-03-01
This work models competitive gettering of metals (Cu, Ni, Fe, Mo, and W) by boron, phosphorus, and dislocation loops, and connects those results directly to device performance. Density functional theory calculations were first performed to determine the binding energies of metals to the gettering sites, and based on that, continuum models were developed to model the redistribution and trapping of the metals. Our models found that Fe is most strongly trapped by the dislocation loops while Cu and Ni are most strongly trapped by the P4V clusters formed in high phosphorus concentrations. In addition, it is found that none of the mentioned gettering sites are effective in gettering Mo and W. The calculated metal redistribution along with the associated capture cross sections and trap energy levels are passed to device simulation via the recombination models to calculate carrier lifetime and the resulting device performance. Thereby, a comprehensive and predictive TCAD framework is developed to optimize the processing conditions to maximize performance of lifetime sensitive devices.
Optimization of power and energy densities in supercapacitors
NASA Astrophysics Data System (ADS)
Robinson, David B.
Supercapacitors use nanoporous electrodes to store large amounts of charge on their high surface areas, and use the ions in electrolytes to carry charge into the pores. Their high power density makes them a potentially useful complement to batteries. However, ion transport through long, narrow channels still limits power and efficiency in these devices. Proper design can mitigate this. Current collector geometry must also be considered once this is done. Here, De Levie's model for porous electrodes is applied to quantitatively predict device performance and to propose optimal device designs for given specifications. Effects unique to nanoscale pores are considered, including that pores may not have enough salt to fully charge. Supercapacitors are of value for electric vehicles, portable electronics, and power conditioning in electrical grids with distributed renewable sources, and that value will increase as new device fabrication methods are developed and proper design accommodates those improvements. Example design outlines for vehicle applications are proposed and compared.
III-V HEMTs: low-noise devices for high-frequency applications
NASA Astrophysics Data System (ADS)
Mateos, Javier
2003-05-01
With the recent development of broadband and satellite communications, one of the main engines for the advance of modern Microelectronics is the fabrication of devices with increasing cutoff frequency and lowest possible level of noise. Even if heterojunction bipolar devices (HBTs) have reached a good frequency performance, the top end of high frequency low-noise applications is monopolized by unipolar devices, mainly HEMTs (High Electron Mobility Transistors). In particular, within the vast family of heterojunction devices, the best results ever reported in the W-band have been obtained with InP based HEMTs using the AlInAs/InGaAs material system, improving those of usual GaAs based pseudomorphic HEMTs. In field effect devices, the reduction of the gate length (Lg) up to the technological limit is the main way to achieve the maximum performances. But the design of the devices is not so simple, when reducing the gate length it is convenient to keep constant the aspect ratio (gate length over gate-to-channel distance) in order to limit short channel effects. This operation can lead to the appearance of other unwanted effects, like the depletion of the channel due to the surface potential or the tunneling of electrons from the channel to the gate. Therefore, in order to optimize the high frequency or the low-noise behavior of the devices (that usually can not be reached together) not only the gate-to-channel distance must be chosen carefully, but also many other technological parameters (both geometrical and electrical): composition of materials, width of the device, length, depth and position of the recess, thickness and doping of the different layers, etc. Historically, these parameters have been optimized by classical simulation techniques or, when such simulations are not physically applicable, by the expensive 'test and error' procedure. With the use of computer simulation, the design optimization can be made in a short time and with no money spent. However, classical modelling of electronic devices meets important difficulties when dealing with advanced transistors, mainly due to their small size, and the Monte Carlo technique appears as the only possible choice
Design and optimization analysis of dual material gate on DG-IMOS
NASA Astrophysics Data System (ADS)
Singh, Sarabdeep; Raman, Ashish; Kumar, Naveen
2017-12-01
An impact ionization MOSFET (IMOS) is evolved for overcoming the constraint of less than 60 mV/decade sub-threshold slope (SS) of conventional MOSFET at room temperature. In this work, first, the device performance of the p-type double gate impact ionization MOSFET (DG-IMOS) is optimized by adjusting the device design parameters. The adjusted parameters are ratio of gate and intrinsic length, gate dielectric thickness and gate work function. Secondly, the DMG (dual material gate) DG-IMOS is proposed and investigated. This DMG DG-IMOS is further optimized to obtain the best possible performance parameters. Simulation results reveal that DMG DG-IMOS when compared to DG-IMOS, shows better I ON, I ON/I OFF ratio, and RF parameters. Results show that by properly tuning the lengths of two materials at a ratio of 1.5 in DMG DG-IMOS, optimized performance is achieved including I ON/I OFF ratio of 2.87 × 109 A/μm with I ON as 11.87 × 10-4 A/μm and transconductance of 1.06 × 10-3 S/μm. It is analyzed that length of drain side material should be greater than the length of source side material to attain the higher transconductance in DMG DG-IMOS.
Integrated micro thermoelectric cooler: Theory, fabrication and characterization
NASA Astrophysics Data System (ADS)
da Silva, Luciana Wasnievski
The flows of heat and electricity in a column-type micro thermoelectric (TE) cooler that uses telluride compounds for the n- and p-type elements, are analyzed by modeling the various interfacial resistances. Electron (barrier tunneling) and phonon (diffuse mismatch) boundary resistances at the TE/metal interface, and thermal non-equilibrium between electrons and phonons adjacent to this interface (cooling length), increase the thermal conduction resistance and decrease the Seebeck coefficient of the TE elements. These in turn reduce the device cooling performance, which is also affected by the thermal and electrical contact resistances at the TE/metal and the metal/electrical-insulator interfaces. From the device optimization, it is predicted (for an available voltage of 3 V) that a micro TE cooler with 50 TE pairs (Bi2Te3 and Sb2Te3 high performance TE films), column thickness of 4 mum (limited by the current fabrication process), and column cross-section area of 7 mum x 7 mum, should produce a temperature drop of 10 K with a cooling load of 10 mW. This device will operate with a current of 11 mA and will require a power of 34 mW. The coefficient of performance is 0.3. Co-evaporated Bi-Te and Sb-Te films were fabricated at various deposition conditions (evaporation rate of individual species and substrate temperature), and their TE properties (Seebeck coefficient, electrical resistivity, and carrier concentration) were measured, in search of optimal TE performance. The deposition rates were controlled such that the tellurium atomic composition changed from 48 to 74%, and the substrate temperature ranged from 130 to 300°C. The chemical composition and crystal structure of the films were recorded (using a microprobe and a X-ray diffractomer, respectively), analyzed, and compared with standard Bi2Te3 and Sb2Te 3 single crystal samples. High performance TE films had a tellurium atomic concentration around 60% and were deposited at a substrate temperature between 260 and 270°C. Due to degradation of the photoresist used for patterning the TE films, in the first-generation device, they were deposited with a maximum substrate temperature of 130°C. The TE columns were connected using Cr/Au/Ti/Pt layers at the hot junctions, and Cr/Au layers at the cold junctions. A device with 60 TE pairs and column width of 40 mum (finer device structures had limited yield) was tested using infrared thermometry. The average cooling achieved was about 1 K, which was close to the predicted value. A future-generation device is proposed, where high performance TE films can be patterned with optimized geometries (high density micro TE coolers), allowing these devices to fulfill the requirements for a wireless environmental monitor application.
A compact inflow control device for simulating flight fan noise
NASA Technical Reports Server (NTRS)
Homyak, L.; Mcardle, J. G.; Heidelberg, L. J.
1983-01-01
Inflow control device (ICD's) of various shapes and sizes have been used to simulate inflight fan tone noise during ground static tests. A small, simple inexpensive ICD design was optimized from previous design and fabrication techniques. This compact two-fan-diameter ICD exhibits satisfactory acoustic performance characteristics without causing noise attenuation or redirection. In addition, it generates no important new noise sources. Design and construction details of the compact ICD are discussed and acoustic performance test results are presented.
Seyfried, Timo F; Gruber, Michael; Streithoff, Fabian; Mandle, Robert J; Pawlik, Michael T; Busse, Hendrik; Hansen, Ernil
2017-03-01
Cell salvage is an essential element in the concept of blood management. Modern devices provide different bowl sizes and sensor-directed programs to optimally adjust to varying clinical situations. In an experimental performance study, the discontinuous autotransfusion device XTRA (LivaNova/Sorin) was evaluated using fresh donor blood anticoagulated with heparin 5 U/mL and adjusted to a hematocrit of 10% or 25%, representing orthopedic or cardiac surgery. Test blood was processed with the autotransfusion device XTRA in four different bowls (55 mL, 125 mL, 175 mL, and 225 mL) and in three different program modes (a standard program, an optimized program, and an emergency program). Processing speed increased with bowl size and with the emergency program (range, 6.4-29.8 mL red blood cells [RBCs]/min). The RBC recovery rate exceeded 90% for all bowls and programs except the 55-mL bowl with the emergency program. Plasma elimination exceeded 95% for all bowls and programs except the 225-mL bowl with the emergency and standard programs. Maximal RBC recovery (range, 94.7%-97.6%) and plasma elimination (range, 98.7%-99.5%) were obtained with the medium-sized bowls (125 mL and 175 mL) and the optimized program. Elimination rates for potassium or plasma free hemoglobin were consistently lower than for protein or albumin and were highest for heparin. Increased hematocrit and RBC recovery rates are obtained with the optimized program Popt with the discontinuous autotransfusion device. The emergency program Pem speeds up the process but leads to RBC loss and reduced plasma elimination rates; therefore, it should be restricted to emergency situations. All four different sized bowls have high performance. Plasma elimination is represented best by protein or albumin elimination rates. © 2017 AABB.
Issues in vibration energy harvesting
NASA Astrophysics Data System (ADS)
Zhang, Hui; Corr, Lawrence R.; Ma, Tianwei
2018-05-01
In this study, fundamental issues related to bandwidth and nonlinear resonance in vibrational energy harvesting devices are investigated. The results show that using bandwidth as a criterion to measure device performance can be misleading. For a linear device, an enlarged bandwidth is achieved at the cost of sacrificing device performance near resonance, and thus widening the bandwidth may offer benefits only when the natural frequency of the linear device cannot match the dominant excitation frequency. For a nonlinear device, since the principle of superposition does not apply, the ''broadband" performance improvements achieved for single-frequency excitations may not be achievable for multi-frequency excitations. It is also shown that a large-amplitude response based on the traditional ''nonlinear resonance" does not always result in the optimal performance for a nonlinear device because of the negative work done by the excitation, which indicates energy is returned back to the excitation. Such undesired negative work is eliminated at global resonance, a generalized resonant condition for both linear and nonlinear systems. While the linear resonance is a special case of global resonance for a single-frequency excitation, the maximum potential of nonlinear energy harvesting can be reached for multi-frequency excitations by using global resonance to simultaneously harvest energy distributed over multiple frequencies.
Hybrid Power Management Program Continued
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2002-01-01
Hybrid Power Management (HPM) is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors and photovoltaics. HPM has extremely wide potential with applications including power-generation, transportation, biotechnology, and space power systems. It may significantly alleviate global energy concerns, improve the environment, and stimulate the economy.
Li, Ning; Cao, Chao; Wang, Cong
2017-06-15
Supporting simultaneous access of machine-type devices is a critical challenge in machine-to-machine (M2M) communications. In this paper, we propose an optimal scheme to dynamically adjust the Access Class Barring (ACB) factor and the number of random access channel (RACH) resources for clustered machine-to-machine (M2M) communications, in which Delay-Sensitive (DS) devices coexist with Delay-Tolerant (DT) ones. In M2M communications, since delay-sensitive devices share random access resources with delay-tolerant devices, reducing the resources consumed by delay-sensitive devices means that there will be more resources available to delay-tolerant ones. Our goal is to optimize the random access scheme, which can not only satisfy the requirements of delay-sensitive devices, but also take the communication quality of delay-tolerant ones into consideration. We discuss this problem from the perspective of delay-sensitive services by adjusting the resource allocation and ACB scheme for these devices dynamically. Simulation results show that our proposed scheme realizes good performance in satisfying the delay-sensitive services as well as increasing the utilization rate of the random access resources allocated to them.
Recent Progress on Flexible and Wearable Supercapacitors.
Xue, Qi; Sun, Jinfeng; Huang, Yan; Zhu, Minshen; Pei, Zengxia; Li, Hongfei; Wang, Yukun; Li, Na; Zhang, Haiyan; Zhi, Chunyi
2017-12-01
Recently, wearable electronic devices including electrical sensors, flexible displays, and health monitors have received considerable attention and experienced rapid progress. Wearable supercapacitors attract tremendous attention mainly due to their high stability, low cost, fast charging/discharging, and high efficiency; properties that render them value for developing fully flexible devices. In this Concept, the recent achievements and advances made in flexible and wearable supercapacitors are presented, especially highlighting the promising performances of yarn/fiber-shaped and planar supercapacitors. On the basis of their working mechanism, electrode materials including carbon-based materials, metal oxide-based materials, and conductive polymers with an emphasis on the performance-optimization method are introduced. The latest representative techniques and active materials of recently developed supercapacitors with superior performance are summarized. Furthermore, the designs of 1D and 2D electrodes are discussed according to their electrically conductive supporting materials. Finally, conclusions, challenges, and perspective in optimizing and developing the electrochemical performance and function of wearable supercapacitors for their practical utility are addressed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In Vitro Evaluation of a Novel Hemodynamically Optimized Trileaflet Polymeric Prosthetic Heart Valve
Claiborne, Thomas E.; Sheriff, Jawaad; Kuetting, Maximilian; Steinseifer, Ulrich; Slepian, Marvin J.; Bluestein, Danny
2013-01-01
Calcific aortic valve disease is the most common and life threatening form of valvular heart disease, characterized by stenosis and regurgitation, which is currently treated at the symptomatic end-stages via open-heart surgical replacement of the diseased valve with, typically, either a xenograft tissue valve or a pyrolytic carbon mechanical heart valve. These options offer the clinician a choice between structural valve deterioration and chronic anticoagulant therapy, respectively, effectively replacing one disease with another. Polymeric prosthetic heart valves (PHV) offer the promise of reducing or eliminating these complications, and they may be better suited for the new transcatheter aortic valve replacement (TAVR) procedure, which currently utilizes tissue valves. New evidence indicates that the latter may incur damage during implantation. Polymer PHVs may also be incorporated into pulsatile circulatory support devices such as total artificial heart and ventricular assist devices that currently employ mechanical PHVs. Development of polymer PHVs, however, has been slow due to the lack of sufficiently durable and biocompatible polymers. We have designed a new trileaflet polymer PHV for surgical implantation employing a novel polymer—xSIBS—that offers superior bio-stability and durability. The design of this polymer PHV was optimized for reduced stresses, improved hemodynamic performance, and reduced thrombogenicity using our device thrombogenicity emulation (DTE) methodology, the results of which have been published separately. Here we present our new design, prototype fabrication methods, hydrodynamics performance testing, and platelet activation measurements performed in the optimized valve prototype and compare it to the performance of a gold standard tissue valve. The hydrodynamic performance of the two valves was comparable in all measures, with a certain advantage to our valve during regurgitation. There was no significant difference between the platelet activation rates of our polymer valve and the tissue valve, indicating that similar to the latter, its recipients may not require anticoagulation. This work proves the feasibility of our optimized polymer PHV design and brings polymeric valves closer to clinical viability. PMID:23445066
Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes
NASA Astrophysics Data System (ADS)
Brotons-Gisbert, Mauro; Martínez-Pastor, Juan P.; Ballesteros, Guillem C.; Gerardot, Brian D.; Sánchez-Royo, Juan F.
2018-01-01
Two-dimensional (2D) materials have promising applications in optoelectronics, photonics, and quantum technologies. However, their intrinsically low light absorption limits their performance, and potential devices must be accurately engineered for optimal operation. Here, we apply a transfer matrix-based source-term method to optimize light absorption and emission in 2D materials and related devices in weak and strong coupling regimes. The implemented analytical model accurately accounts for experimental results reported for representative 2D materials such as graphene and MoS2. The model has been extended to propose structures to optimize light emission by exciton recombination in MoS2 single layers, light extraction from arbitrarily oriented dipole monolayers, and single-photon emission in 2D materials. Also, it has been successfully applied to retrieve exciton-cavity interaction parameters from MoS2 microcavity experiments. The present model appears as a powerful and versatile tool for the design of new optoelectronic devices based on 2D semiconductors such as quantum light sources and polariton lasers.
2013-01-01
The monitoring of the cardiac output (CO) and other hemodynamic parameters, traditionally performed with the thermodilution method via a pulmonary artery catheter (PAC), is now increasingly done with the aid of less invasive and much easier to use devices. When used within the context of a hemodynamic optimization protocol, they can positively influence the outcome in both surgical and non-surgical patient populations. While these monitoring tools have simplified the hemodynamic calculations, they are subject to limitations and can lead to erroneous results if not used properly. In this article we will review the commercially available minimally invasive CO monitoring devices, explore their technical characteristics and describe the limitations that should be taken into consideration when clinical decisions are made. PMID:24472443
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Chun Chia; Zhao, Rong, E-mail: zhao-rong@sutd.edu.sg; Chong, Tow Chong
2014-10-13
Nitrogen-doped titanium-tungsten (N-TiW) was proposed as a tunable heater in Phase Change Random Access Memory (PCRAM). By tuning N-TiW's material properties through doping, the heater can be tailored to optimize the access speed and programming current of PCRAM. Experiments reveal that N-TiW's resistivity increases and thermal conductivity decreases with increasing nitrogen-doping ratio, and N-TiW devices displayed (∼33% to ∼55%) reduced programming currents. However, there is a tradeoff between the current and speed for heater-based PCRAM. Analysis of devices with different N-TiW heaters shows that N-TiW doping levels could be optimized to enable low RESET currents and fast access speeds.
NASA Astrophysics Data System (ADS)
Amigo, R. C. R.; Vatanabe, S. L.; Silva, E. C. N.
2013-03-01
Previous works have been shown several advantages in using Functionally Graded Materials (FGMs) for the performance of flextensional devices, such as reduction of stress concentrations and gains in reliability. In this work, the FGM concept is explored in the design of graded devices by using the Topology Optimization Method (TOM), in order to determine optimal topologies and gradations of the coupled structures of piezoactuators. The graded pieces are manufactured by using the Spark Plasma Sintering (SPS) technique and are bonded to piezoelectric ceramics. The graded actuators are then tested by using a modular vibrometer system for measuring output displacements, in order to validate the numerical simulations. The technological path developed here represents the initial step toward the manufacturing of an integral piezoelectric device, constituted by piezoelectric and non-piezoelectric materials without bonding layers.
NASA Astrophysics Data System (ADS)
Burdette, David A., Jr.
Adaptive morphing trailing edge technology offers the potential to decrease the fuel burn of transonic commercial transport aircraft by allowing wings to dynamically adjust to changing flight conditions. Current configurations allow flap and aileron droop; however, this approach provides limited degrees of freedom and increased drag produced by gaps in the wing's surface. Leading members in the aeronautics community including NASA, AFRL, Boeing, and a number of academic institutions have extensively researched morphing technology for its potential to improve aircraft efficiency. With modern computational tools it is possible to accurately and efficiently model aircraft configurations in order to quantify the efficiency improvements offered by mor- phing technology. Coupled high-fidelity aerodynamic and structural solvers provide the capability to model and thoroughly understand the nuanced trade-offs involved in aircraft design. This capability is important for a detailed study of the capabilities of morphing trailing edge technology. Gradient-based multidisciplinary design opti- mization provides the ability to efficiently traverse design spaces and optimize the trade-offs associated with the design. This thesis presents a number of optimization studies comparing optimized config- urations with and without morphing trailing edge devices. The baseline configuration used throughout this work is the NASA Common Research Model. The first opti- mization comparison considers the optimal fuel burn predicted by the Breguet range equation at a single cruise point. This initial singlepoint optimization comparison demonstrated a limited fuel burn savings of less than 1%. Given the effectiveness of the passive aeroelastic tailoring in the optimized non-morphing wing, the singlepoint optimization offered limited potential for morphing technology to provide any bene- fit. To provide a more appropriate comparison, a number of multipoint optimizations were performed. With a 3-point stencil, the morphing wing burned 2.53% less fuel than its optimized non-morphing counterpart. Expanding further to a 7-point stencil, the morphing wing used 5.04% less fuel. Additional studies demonstrate that the size of the morphing device can be reduced without sizable performance reductions, and that as aircraft wings' aspect ratios increase, the effectiveness of morphing trailing edge devices increases. The final set of studies in this thesis consider mission analy- sis, including climb, multi-altitude cruise, and descent. These mission analyses were performed with a number of surrogate models, trained with O(100) optimizations. These optimizations demonstrated fuel burn reductions as large as 5% at off-design conditions. The fuel burn predicted by the mission analysis was up to 2.7% lower for the morphing wing compared to the conventional configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Guiding
Accurate measurement of the edge electron density profile is essential to optimizing antenna coupling and assessment of impurity contamination in studying long-pulse plasma heating and current drive in fusion devices. Measurement of the edge density profile has been demonstrated on the US fusion devices such as C-Mod, DIII-D, and TFTR amongst many devices, and has been used for RF loading and impurity modeling calculations for many years. University of Science and Technology of China (USTC) has recently installed a density profile reflectometer system on the EAST fusion device at the Institute of Plasma Physics, Chinese Academy of Sciences in Chinamore » based on the University of California Los Angeles (UCLA)-designed reflectometer system on the DIII-D fusion device at General Atomics Company in San Diego, California. UCLA has been working with USTC to optimize the existing microwave antenna, waveguide system, microwave electronics, and data analysis to produce reliable edge density profiles. During the past budget year, progress has been made in all three major areas: effort to achieve reliable system operations under various EAST operational conditions, effort to optimize system performance, and effort to provide quality density profiles into EAST’s database routinely.« less
Superlattice design for optimal thermoelectric generator performance
NASA Astrophysics Data System (ADS)
Priyadarshi, Pankaj; Sharma, Abhishek; Mukherjee, Swarnadip; Muralidharan, Bhaskaran
2018-05-01
We consider the design of an optimal superlattice thermoelectric generator via the energy bandpass filter approach. Various configurations of superlattice structures are explored to obtain a bandpass transmission spectrum that approaches the ideal ‘boxcar’ form, which is now well known to manifest the largest efficiency at a given output power in the ballistic limit. Using the coherent non-equilibrium Green’s function formalism coupled self-consistently with the Poisson’s equation, we identify such an ideal structure and also demonstrate that it is almost immune to the deleterious effect of self-consistent charging and device variability. Analyzing various superlattice designs, we conclude that superlattice with a Gaussian distribution of the barrier thickness offers the best thermoelectric efficiency at maximum power. It is observed that the best operating regime of this device design provides a maximum power in the range of 0.32–0.46 MW/m 2 at efficiencies between 54%–43% of Carnot efficiency. We also analyze our device designs with the conventional figure of merit approach to counter support the results so obtained. We note a high zT el = 6 value in the case of Gaussian distribution of the barrier thickness. With the existing advanced thin-film growth technology, the suggested superlattice structures can be achieved, and such optimized thermoelectric performances can be realized.
Method of Optimizing the Construction of Machining, Assembly and Control Devices
NASA Astrophysics Data System (ADS)
Iordache, D. M.; Costea, A.; Niţu, E. L.; Rizea, A. D.; Babă, A.
2017-10-01
Industry dynamics, driven by economic and social requirements, must generate more interest in technological optimization, capable of ensuring a steady development of advanced technical means to equip machining processes. For these reasons, the development of tools, devices, work equipment and control, as well as the modernization of machine tools, is the certain solution to modernize production systems that require considerable time and effort. This type of approach is also related to our theoretical, experimental and industrial applications of recent years, presented in this paper, which have as main objectives the elaboration and use of mathematical models, new calculation methods, optimization algorithms, new processing and control methods, as well as some structures for the construction and configuration of technological equipment with a high level of performance and substantially reduced costs..
Extended Analytic Device Optimization Employing Asymptotic Expansion
NASA Technical Reports Server (NTRS)
Mackey, Jonathan; Sehirlioglu, Alp; Dynsys, Fred
2013-01-01
Analytic optimization of a thermoelectric junction often introduces several simplifying assumptionsincluding constant material properties, fixed known hot and cold shoe temperatures, and thermallyinsulated leg sides. In fact all of these simplifications will have an effect on device performance,ranging from negligible to significant depending on conditions. Numerical methods, such as FiniteElement Analysis or iterative techniques, are often used to perform more detailed analysis andaccount for these simplifications. While numerical methods may stand as a suitable solution scheme,they are weak in gaining physical understanding and only serve to optimize through iterativesearching techniques. Analytic and asymptotic expansion techniques can be used to solve thegoverning system of thermoelectric differential equations with fewer or less severe assumptionsthan the classic case. Analytic methods can provide meaningful closed form solutions and generatebetter physical understanding of the conditions for when simplifying assumptions may be valid.In obtaining the analytic solutions a set of dimensionless parameters, which characterize allthermoelectric couples, is formulated and provide the limiting cases for validating assumptions.Presentation includes optimization of both classic rectangular couples as well as practically andtheoretically interesting cylindrical couples using optimization parameters physically meaningful toa cylindrical couple. Solutions incorporate the physical behavior for i) thermal resistance of hot andcold shoes, ii) variable material properties with temperature, and iii) lateral heat transfer through legsides.
NASA Astrophysics Data System (ADS)
Nielsen, Christian
2016-11-01
The organic electrochemical transistor (OECT), capable of amplifying small electrical signals in an aqueous environment, is an ideal device to utilize in organic bioelectronic applications involving for example neural interfacing and diagnostics. Currently, most OECTs are fabricated with commercially available conducting poly(3,4-ethylenedioxythiophene)-based suspensions such as PEDOT:PSS and are therefore operated in depletion mode giving rise to devices that are permanently on with non-optimal operational voltage. With the aim to develop and utilize efficient accumulation mode OECT devices, we discuss here our recent results regarding the design, synthesis and performance of novel intrinsic semiconducting polymers. Covering key aspects such as ion and charge transport in the bulk semiconductor and operational voltage and stability of the materials and devices, we have elucidated important structure-property relationships. We illustrate the improvements this approach has afforded in the development of high performance accumulation mode OECT materials.
Dip-Coating Process Engineering and Performance Optimization for Three-State Electrochromic Devices
NASA Astrophysics Data System (ADS)
Wu, Lu; Yang, Dejiang; Fei, Lixun; Huang, Yue; Wu, Fang; Sun, Yiling; Shi, Jiayuan; Xiang, Yong
2017-06-01
Titanium dioxide (TiO2) nanoparticles were modified onto fluorine-doped tin oxide (FTO) via dip-coating technique with different nanoparticle sizes, lifting speeds, precursor concentrations, and dipping numbers. Electrodeposition-based electrochromic device with reversible three-state optical transformation (transparent, mirror, and black) was fabricated subsequently by sandwiching a suitable amount of gel electrolyte between modified FTO electrode and flat FTO electrode. Correlation between dip-coating process engineering, morphological features of TiO2 thin films, i.e., thickness and roughness, as well as performance of electrochromic devices, i.e., optical contrast, switching time, and cycling stability, were investigated. The modified device exhibits high optical contrast of 57%, the short coloration/bleaching switching time of 6 and 20 s, and excellent cycling stability after 1500 cycles of only 27% decrement rate by adjusting dip-coating processes engineering. The results in this study will provide valuable guidance for rational design of the electrochromic device with satisfactory performance.
Design Optimization Tool for Synthetic Jet Actuators Using Lumped Element Modeling
NASA Technical Reports Server (NTRS)
Gallas, Quentin; Sheplak, Mark; Cattafesta, Louis N., III; Gorton, Susan A. (Technical Monitor)
2005-01-01
The performance specifications of any actuator are quantified in terms of an exhaustive list of parameters such as bandwidth, output control authority, etc. Flow-control applications benefit from a known actuator frequency response function that relates the input voltage to the output property of interest (e.g., maximum velocity, volumetric flow rate, momentum flux, etc.). Clearly, the required performance metrics are application specific, and methods are needed to achieve the optimal design of these devices. Design and optimization studies have been conducted for piezoelectric cantilever-type flow control actuators, but the modeling issues are simpler compared to synthetic jets. Here, lumped element modeling (LEM) is combined with equivalent circuit representations to estimate the nonlinear dynamic response of a synthetic jet as a function of device dimensions, material properties, and external flow conditions. These models provide reasonable agreement between predicted and measured frequency response functions and thus are suitable for use as design tools. In this work, we have developed a Matlab-based design optimization tool for piezoelectric synthetic jet actuators based on the lumped element models mentioned above. Significant improvements were achieved by optimizing the piezoceramic diaphragm dimensions. Synthetic-jet actuators were fabricated and benchtop tested to fully document their behavior and validate a companion optimization effort. It is hoped that the tool developed from this investigation will assist in the design and deployment of these actuators.
NASA Astrophysics Data System (ADS)
Johnson, Erik A.; Elhaddad, Wael M.; Wojtkiewicz, Steven F.
2016-04-01
A variety of strategies have been developed over the past few decades to determine controllable damping device forces to mitigate the response of structures and mechanical systems to natural hazards and other excitations. These "smart" damping devices produce forces through passive means but have properties that can be controlled in real time, based on sensor measurements of response across the structure, to dramatically reduce structural motion by exploiting more than the local "information" that is available to purely passive devices. A common strategy is to design optimal damping forces using active control approaches and then try to reproduce those forces with the smart damper. However, these design forces, for some structures and performance objectives, may achieve high performance by selectively adding energy, which cannot be replicated by a controllable damping device, causing the smart damper performance to fall far short of what an active system would provide. The authors have recently demonstrated that a model predictive control strategy using hybrid system models, which utilize both continuous and binary states (the latter to capture the switching behavior between dissipative and non-dissipative forces), can provide reductions in structural response on the order of 50% relative to the conventional clipped-optimal design strategy. This paper explores the robustness of this newly proposed control strategy through evaluating controllable damper performance when the structure model differs from the nominal one used to design the damping strategy. Results from the application to a two-degree-of-freedom structure model confirms the robustness of the proposed strategy.
NASA Astrophysics Data System (ADS)
Mallick, Rajnish; Ganguli, Ranjan; Kumar, Ravi
2017-05-01
The optimized design of a smart post-buckled beam actuator (PBA) is performed in this study. A smart material based piezoceramic stack actuator is used as a prime-mover to drive the buckled beam actuator. Piezoceramic actuators are high force, small displacement devices; they possess high energy density and have high bandwidth. In this study, bench top experiments are conducted to investigate the angular tip deflections due to the PBA. A new design of a linear-to-linear motion amplification device (LX-4) is developed to circumvent the small displacement handicap of piezoceramic stack actuators. LX-4 enhances the piezoceramic actuator mechanical leverage by a factor of four. The PBA model is based on dynamic elastic stability and is analyzed using the Mathieu-Hill equation. A formal optimization is carried out using a newly developed meta-heuristic nature inspired algorithm, named as the bat algorithm (BA). The BA utilizes the echolocation capability of bats. An optimized PBA in conjunction with LX-4 generates end rotations of the order of 15° at the output end. The optimized PBA design incurs less weight and induces large end rotations, which will be useful in development of various mechanical and aerospace devices, such as helicopter trailing edge flaps, micro and nano aerial vehicles and other robotic systems.
Optimal energy harvesting from vortex-induced vibrations of cables.
Antoine, G O; de Langre, E; Michelin, S
2016-11-01
Vortex-induced vibrations (VIV) of flexible cables are an example of flow-induced vibrations that can act as energy harvesting systems by converting energy associated with the spontaneous cable motion into electricity. This work investigates the optimal positioning of the harvesting devices along the cable, using numerical simulations with a wake oscillator model to describe the unsteady flow forcing. Using classical gradient-based optimization, the optimal harvesting strategy is determined for the generic configuration of a flexible cable fixed at both ends, including the effect of flow forces and gravity on the cable's geometry. The optimal strategy is found to consist systematically in a concentration of the harvesting devices at one of the cable's ends, relying on deformation waves along the cable to carry the energy towards this harvesting site. Furthermore, we show that the performance of systems based on VIV of flexible cables is significantly more robust to flow velocity variations, in comparison with a rigid cylinder device. This results from two passive control mechanisms inherent to the cable geometry: (i) the adaptability to the flow velocity of the fundamental frequencies of cables through the flow-induced tension and (ii) the selection of successive vibration modes by the flow velocity for cables with gravity-induced tension.
Optimal energy harvesting from vortex-induced vibrations of cables
de Langre, E.; Michelin, S.
2016-01-01
Vortex-induced vibrations (VIV) of flexible cables are an example of flow-induced vibrations that can act as energy harvesting systems by converting energy associated with the spontaneous cable motion into electricity. This work investigates the optimal positioning of the harvesting devices along the cable, using numerical simulations with a wake oscillator model to describe the unsteady flow forcing. Using classical gradient-based optimization, the optimal harvesting strategy is determined for the generic configuration of a flexible cable fixed at both ends, including the effect of flow forces and gravity on the cable’s geometry. The optimal strategy is found to consist systematically in a concentration of the harvesting devices at one of the cable’s ends, relying on deformation waves along the cable to carry the energy towards this harvesting site. Furthermore, we show that the performance of systems based on VIV of flexible cables is significantly more robust to flow velocity variations, in comparison with a rigid cylinder device. This results from two passive control mechanisms inherent to the cable geometry: (i) the adaptability to the flow velocity of the fundamental frequencies of cables through the flow-induced tension and (ii) the selection of successive vibration modes by the flow velocity for cables with gravity-induced tension. PMID:27956880
Optimal energy harvesting from vortex-induced vibrations of cables
NASA Astrophysics Data System (ADS)
Antoine, G. O.; de Langre, E.; Michelin, S.
2016-11-01
Vortex-induced vibrations (VIV) of flexible cables are an example of flow-induced vibrations that can act as energy harvesting systems by converting energy associated with the spontaneous cable motion into electricity. This work investigates the optimal positioning of the harvesting devices along the cable, using numerical simulations with a wake oscillator model to describe the unsteady flow forcing. Using classical gradient-based optimization, the optimal harvesting strategy is determined for the generic configuration of a flexible cable fixed at both ends, including the effect of flow forces and gravity on the cable's geometry. The optimal strategy is found to consist systematically in a concentration of the harvesting devices at one of the cable's ends, relying on deformation waves along the cable to carry the energy towards this harvesting site. Furthermore, we show that the performance of systems based on VIV of flexible cables is significantly more robust to flow velocity variations, in comparison with a rigid cylinder device. This results from two passive control mechanisms inherent to the cable geometry: (i) the adaptability to the flow velocity of the fundamental frequencies of cables through the flow-induced tension and (ii) the selection of successive vibration modes by the flow velocity for cables with gravity-induced tension.
NASA Astrophysics Data System (ADS)
Seema; Chauhan, Sudakar Singh
2018-05-01
In this paper, we demonstrate the double gate vertical tunnel field-effect transistor using homo/hetero dielectric buried oxide (HDB) to obtain the optimized device characteristics. In this concern, the existence of double gate, HDB and electrode work-function engineering enhances DC performance and Analog/RF performance. The use of electrostatic doping helps to achieve higher on-current owing to occurrence of higher tunneling generation rate of charge carriers at the source/epitaxial interface. Further, lightly doped drain region and high- k dielectric below channel and drain region are responsible to suppress the ambipolar current. Simulated results clarifies that proposed device have achieved the tremendous performance in terms of driving current capability, steeper subthreshold slope (SS), drain induced barrier lowering (DIBL), hot carrier effects (HCEs) and high frequency parameters for better device reliability.
Energy Dissipation and Transport in Carbon Nanotube Devices
NASA Astrophysics Data System (ADS)
Pop, Eric
2011-03-01
Power consumption is a significant challenge in electronics, often limiting the performance of integrated circuits from mobile devices to massive data centers. Carbon nanotubes have emerged as potentially energy-efficient future devices and interconnects, with both large mobility and thermal conductivity. This talk will focus on understanding and controlling energy dissipation [1-3] and transport [4-6] in carbon nanotubes, with applications to low-energy devices, interconnects, heat sinks, and memory elements. Experiments have been used to gain new insight into the fundamental behavior of such devices, and to better inform practical device models. The results suggest much room for energy optimization in nanoelectronics through the design of geometry, interfaces, and materials..
Helbich, T H; Rudas, M; Böhm, G; Huber, S; Wagner, T; Taucher, S; Wolf, G; Mostbeck, G H
1999-01-01
In an experimental study (in vitro and in vivo) we evaluated the efficacy of various biopsy needles/devices for breast biopsy. In vitro, biopsies of five human cadaveric breast specimens were performed using 33 different needles/devices ranging from 14 to 20-gauge. Of these 33 needles/devices, 22 optimally performing needles were selected for the in vivo study. In the clinical part of the study, 44 breast lesions were randomly biopsied with each of the 22 needles/devices under stereotactic guidance. Tissue specimens were analysed quantitatively and qualitatively. Several automatic long-throw guns (Acecut, Asap, Biopty, Magnum) obtained greater tissue areas and had a better histopathologic score than the conventional type of a side-notch needle like Trucut, an aspiration needle like Surecut, or an end-cut needle like Autovac. The automatic long-throw guns performed better than the short-throw Monopty gun. Regardless of needle size (14-20-gauge), breast biopsies should be routinely performed with automated long-throw side-notch guns (Acecut, Asap, Biopty, Magnum).
A high performance pMOSFET with two-step recessed SiGe-S/D structure for 32 nm node and beyond
NASA Astrophysics Data System (ADS)
Yasutake, Nobuaki; Azuma, Atsushi; Ishida, Tatsuya; Ohuchi, Kazuya; Aoki, Nobutoshi; Kusunoki, Naoki; Mori, Shinji; Mizushima, Ichiro; Morooka, Tetsu; Kawanaka, Shigeru; Toyoshima, Yoshiaki
2007-11-01
A novel SiGe-S/D structure for high performance pMOSFET called two-step recessed SiGe-source/drain (S/D) is developed with careful optimization of recessed SiGe-S/D structure. With this method, hole mobility, short channel effect and S/D resistance in pMOSFET are improved compared with conventional recessed SiGe-S/D structure. To enhance device performance such as drain current drivability, SiGe region has to be closer to channel region. Then, conventional deep SiGe-S/D region with carefully optimized shallow SiGe SDE region showed additional device performance improvement without SCE degradation. As a result, high performance 24 nm gate length pMOSFET was demonstrated with drive current of 451 μA/μm at ∣ Vdd∣ of 0.9 V and Ioff of 100 nA/μm (552 μA/μm at ∣ Vdd∣ of 1.0 V). Furthermore, by combining with Vdd scaling, we indicate the extendability of two-step recessed SiGe-S/D structure down to 15 nm node generation.
Computational design and in vitro characterization of an integrated maglev pump-oxygenator.
Zhang, Juntao; Taskin, M Ertan; Koert, Andrew; Zhang, Tao; Gellman, Barry; Dasse, Kurt A; Gilbert, Richard J; Griffith, Bartley P; Wu, Zhongjun J
2009-10-01
For the need for respiratory support for patients with acute or chronic lung diseases to be addressed, a novel integrated maglev pump-oxygenator (IMPO) is being developed as a respiratory assist device. IMPO was conceptualized to combine a magnetically levitated pump/rotor with uniquely configured hollow fiber membranes to create an assembly-free, ultracompact system. IMPO is a self-contained blood pump and oxygenator assembly to enable rapid deployment for patients requiring respiratory support or circulatory support. In this study, computational fluid dynamics (CFD) and computer-aided design were conducted to design and optimize the hemodynamics, gas transfer, and hemocompatibility performances of this novel device. In parallel, in vitro experiments including hydrodynamic, gas transfer, and hemolysis measurements were conducted to evaluate the performance of IMPO. Computational results from CFD analysis were compared with experimental data collected from in vitro evaluation of the IMPO. The CFD simulation demonstrated a well-behaved and streamlined flow field in the main components of this device. The results of hydrodynamic performance, oxygen transfer, and hemolysis predicted by computational simulation, along with the in vitro experimental data, indicate that this pump-lung device can provide the total respiratory need of an adult with lung failure, with a low hemolysis rate at the targeted operating condition. These detailed CFD designs and analyses can provide valuable guidance for further optimization of this IMPO for long-term use.
Gagliardi, Anna R; Ducey, Ariel; Lehoux, Pascale; Turgeon, Thomas; Kolbunik, Jeremy; Ross, Sue; Trbovich, Patricia; Easty, Anthony; Bell, Chaim; Urbach, David R
2017-12-22
Little research has examined how physicians choose medical devices for treating individual patients to reveal if interventions are needed to support decision-making and reduce device-associated morbidity and mortality. This study explored factors that influence choice of implantable device from among available options. A descriptive qualitative approach was used. Physicians who implant orthopedic and cardiovascular devices were identified in publicly available directories and web sites. They were asked how they decided what device to use in a given patient, sources of information they consulted, and how patients were engaged in decision-making. Sampling was concurrent with data collection and analysis to achieve thematic saturation. Data were analyzed using constant comparative technique by all members of the research team. Twenty-two physicians from five Canadian provinces (10 cardiovascular, 12 orthopedic; 8, 10 and 4 early, mid and late career, respectively) were interviewed. Responses did not differ by specialty, geographic region or career stage. Five major categories of themes emerged that all influence decision-making about a range of devices, and often compromise choice of the most suitable device for a given patient, potentially leading to sub-optimal clinical outcomes: lack of evidence on device performance, patient factors, physician factors, organizational and health system factors, and device and device market factors. In the absence of evidence from research or device registries, tacit knowledge from trusted colleagues and less-trusted industry representatives informed device choice. Patients were rarely engaged in decision-making. Physician preference for particular devices was a barrier to acquiring competency in devices potentially more suitable for patients. Access to suitable devices was further limited to the number of comparable devices on the market, local inventory and purchasing contract specifications. This study revealed that decision-making about devices is complex, cognitively challenging and constrained by several factors limiting access to and use of devices that could optimize patient outcomes. Further research is needed to assess the impact of these constraints on clinical outcomes, and develop interventions that optimize decision-making about device choice for treating given patients.
Computer-oriented synthesis of wide-band non-uniform negative resistance amplifiers
NASA Technical Reports Server (NTRS)
Branner, G. R.; Chan, S.-P.
1975-01-01
This paper presents a synthesis procedure which provides design values for broad-band amplifiers using non-uniform negative resistance devices. Employing a weighted least squares optimization scheme, the technique, based on an extension of procedures for uniform negative resistance devices, is capable of providing designs for a variety of matching network topologies. It also provides, for the first time, quantitative results for predicting the effects of parameter element variations on overall amplifier performance. The technique is also unique in that it employs exact partial derivatives for optimization and sensitivity computation. In comparison with conventional procedures, significantly improved broad-band designs are shown to result.
Temperature Effects in Varactors and Multipliers
NASA Technical Reports Server (NTRS)
East, J.; Mehdi, Imran
2001-01-01
Varactor diode multipliers are a critical part of many THz measurement systems. The power and efficiencies of these devices limit the available power for THz sources. Varactor operation is determined by the physics of the varactor device and a careful doping profile design is needed to optimize the performance. Higher doped devices are limited by junction breakdown and lower doped structures are limited by current saturation. Higher doped structures typically have higher efficiencies and lower doped structures typically have higher powers at the same operating frequency and impedance level. However, the device material properties are also a function of the operating temperature. Recent experimental evidence has shown that the power output of a multiplier can be improved by cooling the device. We have used a particle Monte Carlo simulation to investigate the temperature dependent velocity vs. electric field in GaAs. This information was then included in a nonlinear device circuit simulator to predict multiplier performance for various temperatures and device designs. This paper will describe the results of this analysis of temperature dependent multiplier operation.
Electrical gain in interband cascade infrared photodetectors
NASA Astrophysics Data System (ADS)
Huang, Wenxiang; Li, Lu; Lei, Lin; Massengale, Jeremy A.; Yang, Rui Q.; Mishima, Tetsuya D.; Santos, Michael B.
2018-03-01
In order to achieve improved understanding and gain insights into the device operation of interband cascade infrared photodetectors (ICIPs) and ultimately to optimize the design, we present a comparative study of five long-wavelength (LW) ICIPs based on a type-II InAs/GaSb superlattice. This study shows how the device responsivity is affected by the individual absorber thicknesses and the number of cascade stages, through the impact of light attenuation. Additionally, this study further validates that the electrical gain universally exists in non-current-matched ICIPs. With multiple cascade stages to suppress noise, these LW ICIPs achieved superior device performance at high temperatures, in terms of Johnson-noise limited detectivities, compared to commercial MCT detectors. Furthermore, a theory is developed to quantitatively describe the electrical gain in ICIPs and our calculations are in good agreement with the experimental results. Based on the theory, the optimal number of stages for maximizing the device detectivity D* is identified with inclusion of the electrical gain. Our calculation shows that this optimal number of stages is relatively large in the presence of the gain and the maximized D* has a relatively weak dependence on the absorber thickness when it is sufficiently thin.
Design optimization of PVDF-based piezoelectric energy harvesters.
Song, Jundong; Zhao, Guanxing; Li, Bo; Wang, Jin
2017-09-01
Energy harvesting is a promising technology that powers the electronic devices via scavenging the ambient energy. Piezoelectric energy harvesters have attracted considerable interest for their high conversion efficiency and easy fabrication in minimized sensors and transducers. To improve the output capability of energy harvesters, properties of piezoelectric materials is an influential factor, but the potential of the material is less likely to be fully exploited without an optimized configuration. In this paper, an optimization strategy for PVDF-based cantilever-type energy harvesters is proposed to achieve the highest output power density with the given frequency and acceleration of the vibration source. It is shown that the maximum power output density only depends on the maximum allowable stress of the beam and the working frequency of the device, and these two factors can be obtained by adjusting the geometry of piezoelectric layers. The strategy is validated by coupled finite-element-circuit simulation and a practical device. The fabricated device within a volume of 13.1 mm 3 shows an output power of 112.8 μW which is comparable to that of the best-performing piezoceramic-based energy harvesters within the similar volume reported so far.
He, Zhicai; Wu, Hongbin; Cao, Yong
2014-02-01
This Progress Report highlights recent advances in polymer solar cells with special attention focused on the recent rapid-growing progress in methods that use a thin layer of alcohol/water-soluble conjugated polymers as key component to obtain optimized device performance, but also discusses novel materials and device architectures made by major prestigious institutions in this field. We anticipate that due to drastic improvements in efficiency and easy utilization, this method opens up new opportunities for PSCs from various material systems to improve towards 10% efficiency, and many novel device structures will emerge as suitable architectures for developing the ideal roll-to-roll type processing of polymer-based solar cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Emily L.; Deceglie, Michael G.; Stradins, Paul
Three-terminal (3T) tandem cells fabricated by combining an interdigitated back contact (IBC) Si device with a wider bandgap top cell have the potential to provide a robust operating mechanism to efficiently capture the solar spectrum without the need to current match sub-cells or fabricate complicated metal interconnects between cells. Here we develop a two dimensional device physics model to study the behavior of IBC Si solar cells operated in a 3T configuration. We investigate how different cell designs impact device performance and discuss the analysis protocol used to understand and optimize power produced from a single junction, 3T device.
Empty-bladder (hysterographic) view on US for evaluation of intrauterine devices. Work in progress.
Carroll, R; Gombergh, R
1987-06-01
Ultrasound scanning of the pelvis with an empty bladder permits a true frontal view of the uterus to be easily obtained. This view is comparable to the en face view seen at hysterography performed with contrast material. Good definition both of the endometrium and the uterine wall makes this the optimal method for the evaluation of an intrauterine contraceptive device.
Transparent conductors based on microscale/nanoscale materials for high performance devices
NASA Astrophysics Data System (ADS)
Gao, Tongchuan
Transparent conductors are important as the top electrode for a variety of optoelectronic devices, including solar cells, light-emitting diodes (LEDs), at panel displays, and touch screens. Doped indium tin oxide (ITO) thin films are the predominant transparent conductor material. However, ITO thin films are brittle, making them unsuitable for the emerging flexible devices, and suffer from high material and processing cost. In my thesis, we developed a variety of transparent conductors toward a performance comparable with or superior to ITO thin films, with lower cost and potential for scalable manufacturing. Metal nanomesh (NM), hierarchical graphene/metal microgrid (MG), and hierarchical metal NM/MG materials were investigated. Simulation methods were used as a powerful tool to predict the transparency and sheet resistance of the transparent conductors by solving Maxwell's equations and Poisson's equation. Affordable and scalable fabrication processes were developed thereafter. Transparent conductors with over 90% transparency and less than 10 O/square sheet resistance were successfully fabricated on both rigid and flexible substrates. Durability tests, such as bending, heating and tape tests, were carried out to evaluate the robustness of the samples. Haze factor, which characterizes how blurry a transparent conductor appears, was also studied in-depth using analytical calculation and numerical simulation. We demonstrated a tunable haze factor for metal NM transparent conductors and analyzed the principle for tuning the haze factor. Plasmonic effects, excited by some transparent conductors, can lead to enhanced performance in photovoltaic devices. We systematically studied the effect of incorporating metal NM into ultrathin film silicon solar cells using numerical simulation, with the aid of optimization algorithms to reduce the optimization time. Mechanisms contributing to the enhanced performance were then identified and analyzed. Over 72% enhancement in short-circuit current-density was demonstrated by the optimal solar cell compared with 300-nm-thick Si solar cell with antireflection coating and silver back reflector.
Correlating Microstructure and Optoelectronic Performance of Carbon-Based Nanomaterials
NASA Astrophysics Data System (ADS)
Rochford, Caitlin
There is a great deal of interest in carbon nanostructures such as graphene and various forms of carbon nanotubes due to their exceptional physical, electronic, and optical properties. Many technological applications have been proposed for these nanostructures, but despite the promise many carbon nanostructure-based optoelectronic devices fail to compete with their conventional counterparts. This is often due in large part to a non-optimized material or device microstructure. Factors such as crystallinity, contact quality, defect structure, and device configuration can critically affect device performance due to the high sensitivity and extreme surface to volume ratio of carbon nanostructures. In order for the exceptional intrinsic properties of the nanostructures to be exploited, a clear understanding of the microstructure and its correlation with device-relevant optoelectronic properties is needed. This dissertation presents four projects which demonstrate this principle. First, a TiO 2-coated carbon nanofiber is studied in order to optimize its structure for use in a novel dye-sensitized solar cell. Second, the electrode configuration of an individual multiwall carbon nanotube infrared sensor is investigated in order to surpass the limitations of disordered nanotube film-based infrared sensors. Third, the properties of defect structures in large area transferred graphene films grown by chemical vapor deposition are correlated with carrier diffusion in order to understand the film's low mobility compared to exfoliated graphene. Fourth, the effect of deposition conditions on graphene-metal contact was studied with the goal of achieving sufficiently transparent contacts for investigation of the superconducting proximity effect. All four projects highlight the unique properties of carbon nanostructures as well as the need to correlate their optoelectronic properties with microstructural details in order to achieve the desired device performance.
Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates
NASA Astrophysics Data System (ADS)
Dhillon, Navdeep Singh
The modern world is run by semiconductor-based electronic systems. Due to continuous improvements in semiconductor device fabrication, there is a clear trend in the market towards the development of electronic devices and components that not only deliver enhanced computing power, but are also more compact. Thermal management has emerged as the primary challenge in this scenario where heat flux dissipation of electronic chips is increasing exponentially, but conventional cooling solutions such as conduction and convection are no longer feasible. To keep device junction temperatures within the safe operating limit, there is an urgent requirement for ultra-high-conductivity thermal substrates that not only absorb and transport large heat fluxes, but can also provide localized cooling to thermal hotspots. This dissertation describes the design, modeling, and fabrication of a phase change-based, planar, ultra-thin, passive thermal transport system that is inspired by the concept of loop heat pipes and capillary pumped loops. Fabricated on silicon and Pyrex wafers using microfabrication techniques, the micro-columnated loop heat pipe (muCLHP) can be integrated directly with densely packed or multiply-stacked electronic substrates, to provide localized high-heat-flux thermal management. The muCLHP employs a dual-scale coherent porous silicon(CPS)-based micro-columnated wicking structure, where the primary CPS wick provides large capillary forces for fluid transport, while a secondary surface-wick maximizes the rate of thin-film evaporation. To overcome the wick thickness limitation encountered in conventional loop heat pipes, strategies based on MEMS surface micromachining techniques were developed to reduce parasitic heat flow from the evaporator to the compensation chamber of the device. Finite element analysis was used to confirm this reduction in a planar evaporator design, thus enabling the generation of a large motive temperature head for continuous device operation. To predict the overall heat carrying capacity of the muCLHP in the capillary pumping limit, an analytical model was developed to account for a steady state pressure balance in the device flow loop. Based on this model, a design optimization study, employing monotonicity analysis and numerical optimization techniques, was undertaken. It was found that an optimized muCLHP device can absorb heat fluxes as large as 1293 W/cm2 when water is used as a working fluid. A finite volume method-based numerical model was also developed to compute the rates of thin-film evaporation from the patterned surface of the secondary wick. The numerical results indicated that, by properly optimizing the dual-scale wick topology, allowable evaporative heat fluxes can be made commensurate with the heat flux performance predicted by the capillary pumping limit. The latter part of the dissertation deals with the fabrication, packaging, and experimental testing of several in-plane-wicking micro loop heat pipe (muLHP) prototypes. These devices were fabricated on silicon and Pyrex substrates and closely resemble the muCLHP design philosophy, with the exception that the CPS wick is substituted with an easier to fabricate in-plane wick. A novel thermal-flux method was developed for the degassing and fluid charging of the muLHP prototypes. Experiments were conducted to study the process of evaporation and dynamics of the liquid and vapor phases in the device flow loop. Using these results, the overall device and individual component topologies critical to the operation of the two-phase flow loop were identified. A continuous two-phase device flow loop was demonstrated for applied evaporator heat fluxes as high as 41 W/cm2. The performance of these devices, currently found to be limited by the motive temperature head requirement, can be significantly improved by implementing the parasitic heat flow-reduction strategies developed in this work. The 3-D thin-film evaporation model, when integrated into the overall device modeling framework, will enable a design optimization of the micro-columnated wick for further device performance enhancements.
MOEMS optical delay line for optical coherence tomography
NASA Astrophysics Data System (ADS)
Choudhary, Om P.; Chouksey, S.; Sen, P. K.; Sen, P.; Solanki, J.; Andrews, J. T.
2014-09-01
Micro-Opto-Electro-Mechanical optical coherence tomography, a lab-on-chip for biomedical applications is designed, studied, fabricated and characterized. To fabricate the device standard PolyMUMPS processes is adopted. We report the utilization of electro-optic modulator for a fast scanning optical delay line for time domain optical coherence tomography. Design optimization are performed using Tanner EDA while simulations are performed using COMSOL. The paper summarizes various results and fabrication methodology adopted. The success of the device promises a future hand-held or endoscopic optical coherence tomography for biomedical applications.
Taguchi optimization of bismuth-telluride based thermoelectric cooler
NASA Astrophysics Data System (ADS)
Anant Kishore, Ravi; Kumar, Prashant; Sanghadasa, Mohan; Priya, Shashank
2017-07-01
In the last few decades, considerable effort has been made to enhance the figure-of-merit (ZT) of thermoelectric (TE) materials. However, the performance of commercial TE devices still remains low due to the fact that the module figure-of-merit not only depends on the material ZT, but also on the operating conditions and configuration of TE modules. This study takes into account comprehensive set of parameters to conduct the numerical performance analysis of the thermoelectric cooler (TEC) using a Taguchi optimization method. The Taguchi method is a statistical tool that predicts the optimal performance with a far less number of experimental runs than the conventional experimental techniques. Taguchi results are also compared with the optimized parameters obtained by a full factorial optimization method, which reveals that the Taguchi method provides optimum or near-optimum TEC configuration using only 25 experiments against 3125 experiments needed by the conventional optimization method. This study also shows that the environmental factors such as ambient temperature and cooling coefficient do not significantly affect the optimum geometry and optimum operating temperature of TECs. The optimum TEC configuration for simultaneous optimization of cooling capacity and coefficient of performance is also provided.
NASA Astrophysics Data System (ADS)
Zakaria, N. F.; Kasjoo, S. R.; Zailan, Z.; Isa, M. M.; Taking, S.; Arshad, M. K. M.
2017-12-01
Characterization on an InGaAs-based self-switching diode (SSD) using technology computer aided design (TCAD) aimed for optimizing the electrical rectification performance of the device is reported. The rectifying performance is mainly contributed by a parameter known as the curvature coefficient which is derived from the current-voltage (I-V) behavior of the device. As such, the curvature coefficient of SSD was analyzed in this work, not only by varying the device's geometrical structure, but also by implementing different dielectric relative permittivity of the device's trenches, ranging from 1.0 to 10. Furthermore, the simulations were performed under temperature range of 300-600 K. The results showed that increased temperature degraded the SSD's rectifying performance due to increased reverse current which can deteriorate the nonlinearity of the device's I-V characteristic. Moreover, an improved curvature coefficient can be achieved using silicon dioxide (∼3.9) as the SSD trenches. The cut-off frequency of SSD with zero-bias curvature coefficient of ∼30 V-1 attained in this work was approximately 80 GHz, operating at unbiased condition. The results obtained can assist the design of SSD to efficiently operate as rectifiers at microwave and terahertz frequencies.
NASA Astrophysics Data System (ADS)
Chen, Guo; Si, Changfeng; Zhang, Pengpeng; Guo, Kunping; Pan, Saihu; Zhu, Wenqing; Wei, Bin
2017-09-01
We have improved the photovoltaic performance of 2,4-bis[4-(N,Ndiisobutylamino)- 2,6-dihydroxyphenyl] squaraine:[6,6]-phenyl C71-butyric acid methyl ester (DIBSQ:PC71BM) organic photovoltaic (OPV) cells via incorporating Liq-doped Bphen (Bphen-Liq) as a cathode buffer layer (CBL). Based on the Bphen-Liq CBL, a DIBSQ:PC71BM OPV cell possessed an optimal power conversion efficiency of 4.90%, which was 13% and 60% higher than those of the devices with neat Bphen as CBL and without CBL, respectively. The enhancement of the device performance could be attributed to the enhanced electron mobility and improved electrode/active layer contact and thus the improved photocurrent extraction by incorporating the Bphen-Liq CBL. Light-intensity dependent device performance analysis indicates that the incorporating of the Bphen-Liq CBL can remarkably improve the charge transport of the DIBSQ:PC71BM OPV cell and thus decrease the recombination losses of the device, resulting in enhanced device performance. Our finding indicates that the doped Bphen-Liq CBL has great potential for high-performance solution-processed small-molecule OPVs.
Silva, R; Dow, P; Dubay, R; Lissandrello, C; Holder, J; Densmore, D; Fiering, J
2017-09-01
Acoustic manipulation has emerged as a versatile method for microfluidic separation and concentration of particles and cells. Most recent demonstrations of the technology use piezoelectric actuators to excite resonant modes in silicon or glass microchannels. Here, we focus on acoustic manipulation in disposable, plastic microchannels in order to enable a low-cost processing tool for point-of-care diagnostics. Unfortunately, the performance of resonant acoustofluidic devices in plastic is hampered by a lack of a predictive model. In this paper, we build and test a plastic blood-bacteria separation device informed by a design of experiments approach, parametric rapid prototyping, and screening by image-processing. We demonstrate that the new device geometry can separate bacteria from blood while operating at 275% greater flow rate as well as reduce the power requirement by 82%, while maintaining equivalent separation performance and resolution when compared to the previously published plastic acoustofluidic separation device.
Noise of a superconducting magnetic flux sensor based on a proximity Josephson junction.
Jabdaraghi, R N; Golubev, D S; Pekola, J P; Peltonen, J T
2017-08-14
We demonstrate simultaneous measurements of DC transport properties and flux noise of a hybrid superconducting magnetometer based on the proximity effect (superconducting quantum interference proximity transistor, SQUIPT). The noise is probed by a cryogenic amplifier operating in the frequency range of a few MHz. In our non-optimized device, we achieve minimum flux noise ~4 μΦ 0 /Hz 1/2 , set by the shot noise of the probe tunnel junction. The flux noise performance can be improved by further optimization of the SQUIPT parameters, primarily minimization of the proximity junction length and cross section. Furthermore, the experiment demonstrates that the setup can be used to investigate shot noise in other nonlinear devices with high impedance. This technique opens the opportunity to measure sensitive magnetometers including SQUIPT devices with very low dissipation.
Zeng, Wenjin; Liu, Xingming; Guo, Xiangru; Niu, Qiaoli; Yi, Jianpeng; Xia, Ruidong; Min, Yong
2017-03-24
This review presents an overall discussion on the morphology analysis and optimization for perovskite (PVSK) solar cells. Surface morphology and energy alignment have been proven to play a dominant role in determining the device performance. The effect of the key parameters such as solution condition and preparation atmosphere on the crystallization of PVSK, the characterization of surface morphology and interface distribution in the perovskite layer is discussed in detail. Furthermore, the analysis of interface energy level alignment by using X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy is presented to reveals the correlation between morphology and charge generation and collection within the perovskite layer, and its influence on the device performance. The techniques including architecture modification, solvent annealing, etc. were reviewed as an efficient approach to improve the morphology of PVSK. It is expected that further progress will be achieved with more efforts devoted to the insight of the mechanism of surface engineering in the field of PVSK solar cells.
Bias sputtered NbN and superconducting nanowire devices
NASA Astrophysics Data System (ADS)
Dane, Andrew E.; McCaughan, Adam N.; Zhu, Di; Zhao, Qingyuan; Kim, Chung-Soo; Calandri, Niccolo; Agarwal, Akshay; Bellei, Francesco; Berggren, Karl K.
2017-09-01
Superconducting nanowire single photon detectors (SNSPDs) promise to combine near-unity quantum efficiency with >100 megacounts per second rates, picosecond timing jitter, and sensitivity ranging from x-ray to mid-infrared wavelengths. However, this promise is not yet fulfilled, as superior performance in all metrics is yet to be combined into one device. The highest single-pixel detection efficiency and the widest bias windows for saturated quantum efficiency have been achieved in SNSPDs based on amorphous materials, while the lowest timing jitter and highest counting rates were demonstrated in devices made from polycrystalline materials. Broadly speaking, the amorphous superconductors that have been used to make SNSPDs have higher resistivities and lower critical temperature (Tc) values than typical polycrystalline materials. Here, we demonstrate a method of preparing niobium nitride (NbN) that has lower-than-typical superconducting transition temperature and higher-than-typical resistivity. As we will show, NbN deposited onto unheated SiO2 has a low Tc and high resistivity but is too rough for fabricating unconstricted nanowires, and Tc is too low to yield SNSPDs that can operate well at liquid helium temperatures. By adding a 50 W RF bias to the substrate holder during sputtering, the Tc of the unheated NbN films was increased by up to 73%, and the roughness was substantially reduced. After optimizing the deposition for nitrogen flow rates, we obtained 5 nm thick NbN films with a Tc of 7.8 K and a resistivity of 253 μΩ cm. We used this bias sputtered room temperature NbN to fabricate SNSPDs. Measurements were performed at 2.5 K using 1550 nm light. Photon count rates appeared to saturate at bias currents approaching the critical current, indicating that the device's quantum efficiency was approaching unity. We measured a single-ended timing jitter of 38 ps. The optical coupling to these devices was not optimized; however, integration with front-side optical structures to improve absorption should be straightforward. This material preparation was further used to fabricate nanocryotrons and a large-area imager device, reported elsewhere. The simplicity of the preparation and promising device performance should enable future high-performance devices.
Zou, Han; Jiang, Hao; Luo, Yiwen; Zhu, Jianjie; Lu, Xiaoxuan; Xie, Lihua
2016-01-01
The location and contextual status (indoor or outdoor) is fundamental and critical information for upper-layer applications, such as activity recognition and location-based services (LBS) for individuals. In addition, optimizations of building management systems (BMS), such as the pre-cooling or heating process of the air-conditioning system according to the human traffic entering or exiting a building, can utilize the information, as well. The emerging mobile devices, which are equipped with various sensors, become a feasible and flexible platform to perform indoor-outdoor (IO) detection. However, power-hungry sensors, such as GPS and WiFi, should be used with caution due to the constrained battery storage on mobile device. We propose BlueDetect: an accurate, fast response and energy-efficient scheme for IO detection and seamless LBS running on the mobile device based on the emerging low-power iBeacon technology. By leveraging the on-broad Bluetooth module and our proposed algorithms, BlueDetect provides a precise IO detection service that can turn on/off on-board power-hungry sensors smartly and automatically, optimize their performances and reduce the power consumption of mobile devices simultaneously. Moreover, seamless positioning and navigation services can be realized by it, especially in a semi-outdoor environment, which cannot be achieved by GPS or an indoor positioning system (IPS) easily. We prototype BlueDetect on Android mobile devices and evaluate its performance comprehensively. The experimental results have validated the superiority of BlueDetect in terms of IO detection accuracy, localization accuracy and energy consumption. PMID:26907295
NASA Astrophysics Data System (ADS)
Xiao, Yuanhua; Cao, Yongbo; Gong, Yuyin; Zhang, Aiqin; Zhao, Jihong; Fang, Shaoming; Jia, Dianzeng; Li, Feng
2014-01-01
Nanocomposites of Mn3O4 nanoparticles and graphene (GR) nanosheets - Mn3O4@GR can be made by growing Mn3O4 nanoparticles directly on the surfaces of GR in solvothermal reactions. The asymmetric supercapacitors constructed with Mn3O4@GR as positive and activated carbon (AC) as negative electrodes, respectively, show highly enhanced performances in energy storage. It was found that the electrolytes employed in constructing electrodes of the devices can influence the performances of Mn3O4@GR supercapacitors dramatically. Compared to their energy density in KOH electrolyte, the devices exhibit improved charge storage performances in Na2SO4 electrolyte. Furthermore, the charge storage abilities of the devices are closely related to the amount of Mn3O4 nanoparticles loaded onto the surface of GR nanosheets. The performances of Mn3O4@GR//AC asymmetric supercapacitors can be optimized by carefully tailoring the composition of electrode materials and adjusting the electrolytes for making the devices.
Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan
2018-06-18
Two-dimensional (2D) van der Waals heterostructures (vdWHs) have shown multiple functionalities with great potential in electronics and photovoltaics. Here, we show their potential for solid-state thermionic energy conversion and demonstrate a designing strategy towards high-performance devices. We propose two promising thermionic devices, namely, the p-type Pt-G-WSe 2 -G-Pt and n-type Sc-WSe 2 -MoSe 2 -WSe 2 -Sc. We characterize the thermionic energy conversion performance of the latter using first-principles GW calculations combined with real space Green's function (GF) formalism. The optimal barrier height and high thermal resistance lead to an excellent performance. The proposed device is found to have a room temperature equivalent figure of merit of 1.2 which increases to 3 above 600 K. A high performance with cooling efficiency over 30% of the Carnot efficiency above 450 K is achieved. Our designing and characterization method can be used to pursue other potential thermionic devices based on vdWHs.
General purpose graphic processing unit implementation of adaptive pulse compression algorithms
NASA Astrophysics Data System (ADS)
Cai, Jingxiao; Zhang, Yan
2017-07-01
This study introduces a practical approach to implement real-time signal processing algorithms for general surveillance radar based on NVIDIA graphical processing units (GPUs). The pulse compression algorithms are implemented using compute unified device architecture (CUDA) libraries such as CUDA basic linear algebra subroutines and CUDA fast Fourier transform library, which are adopted from open source libraries and optimized for the NVIDIA GPUs. For more advanced, adaptive processing algorithms such as adaptive pulse compression, customized kernel optimization is needed and investigated. A statistical optimization approach is developed for this purpose without needing much knowledge of the physical configurations of the kernels. It was found that the kernel optimization approach can significantly improve the performance. Benchmark performance is compared with the CPU performance in terms of processing accelerations. The proposed implementation framework can be used in various radar systems including ground-based phased array radar, airborne sense and avoid radar, and aerospace surveillance radar.
Song, Shang; Roy, Shuvo
2018-01-01
Macroencapsulation technology has been an attractive topic in the field of treatment for Type 1 diabetes due to mechanical stability, versatility, and retrievability of the macrocapsule design. Macro-capsules can be categorized into extravascular and intravascular devices, in which solute transport relies either on diffusion or convection, respectively. Failure of macroencapsulation strategies can be due to limited regenerative capacity of the encased insulin-producing cells, sub-optimal performance of encapsulation biomaterials, insufficient immunoisolation, excessive blood thrombosis for vascular perfusion devices, and inadequate modes of mass transfer to support cell viability and function. However, significant technical advancements have been achieved in macroencapsulation technology, namely reducing diffusion distance for oxygen and nutrients, using pro-angiogenic factors to increase vascularization for islet engraftment, and optimizing membrane permeability and selectivity to prevent immune attacks from host’s body. This review presents an overview of existing macroencapsulation devices and discusses the advances based on tissue-engineering approaches that will stimulate future research and development of macroencapsulation technology. PMID:26615050
CCD charge collection efficiency and the photon transfer technique
NASA Technical Reports Server (NTRS)
Janesick, J.; Klaasen, K.; Elliott, T.
1985-01-01
The charge-coupled device (CCD) has shown unprecendented performance as a photon detector in the areas of spectral response, charge transfer, and readout noise. Recent experience indicates, however, that the full potential for the CCD's charge collection efficiency (CCE) lies well beyond that which is realized in currently available devices. A definition of CCE performance is presented and a standard test tool (the photon transfer technique) for measuring and optimizing this important CCD parameter is introduced. CCE characteristics for different types of CCDs are compared; the primary limitations in achieving high CCE performance are discussed, and the prospects for future improvement are outlined.
The Mechanical Design Optimization of a High Field HTS Solenoid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalitha, SL; Gupta, RC
2015-06-01
This paper describes the conceptual design optimization of a large aperture, high field (24 T at 4 K) solenoid for a 1.7 MJ superconducting magnetic energy storage device. The magnet is designed to be built entirely of second generation (2G) high temperature superconductor tape with excellent electrical and mechanical properties at the cryogenic temperatures. The critical parameters that govern the magnet performance are examined in detail through a multiphysics approach using ANSYS software. The analysis results formed the basis for the performance specification as well as the construction of the magnet.
Printing Fabrication of Bulk Heterojunction Solar Cells and In Situ Morphology Characterization.
Liu, Feng; Ferdous, Sunzida; Wan, Xianjian; Zhu, Chenhui; Schaible, Eric; Hexemer, Alexander; Wang, Cheng; Russell, Thomas P
2017-01-29
Polymer-based materials hold promise as low-cost, flexible efficient photovoltaic devices. Most laboratory efforts to achieve high performance devices have used devices prepared by spin coating, a process that is not amenable to large-scale fabrication. This mismatch in device fabrication makes it difficult to translate quantitative results obtained in the laboratory to the commercial level, making optimization difficult. Using a mini-slot die coater, this mismatch can be resolved by translating the commercial process to the laboratory and characterizing the structure formation in the active layer of the device in real time and in situ as films are coated onto a substrate. The evolution of the morphology was characterized under different conditions, allowing us to propose a mechanism by which the structures form and grow. This mini-slot die coater offers a simple, convenient, material efficient route by which the morphology in the active layer can be optimized under industrially relevant conditions. The goal of this protocol is to show experimental details of how a solar cell device is fabricated using a mini-slot die coater and technical details of running in situ structure characterization using the mini-slot die coater.
Lee, Sang Myeon; Park, Kwang Hyun; Jung, Seungon; Park, Hyesung; Yang, Changduk
2018-05-14
For a given π-conjugated polymer, the batch-to-batch variations in molecular weight (M w ) and polydispersity index (Ð) can lead to inconsistent process-dependent material properties and consequent performance variations in the device application. Using a stepwise-heating protocol in the Stille polycondensation in conjunction with optimized processing, we obtained an ultrahigh-quality PTB7 polymer having high M w and very narrow Ð. The resulting ultrahigh-quality polymer-based solar cells demonstrate up to 9.97% power conversion efficiencies (PCEs), which is over 24% enhancement from the control devices fabricated with commercially available PTB7. Moreover, we observe almost negligible batch-to-batch variations in the overall PCE values from ultrahigh-quality polymer-based devices. The proposed stepwise polymerization demonstrates a facile and effective strategy for synthesizing high-quality semiconducting polymers that can significantly improve device yield in polymer-based solar cells, an important factor for the commercialization of organic solar cells, by mitigating device-to-device variations.
Optimizing the Combination of Acoustic and Electric Hearing in the Implanted Ear
Karsten, Sue A.; Turner, Christopher W.; Brown, Carolyn J.; Jeon, Eun Kyung; Abbas, Paul J.; Gantz, Bruce J.
2016-01-01
Objectives The aim of this study was to determine an optimal approach to program combined acoustic plus electric (A+E) hearing devices in the same ear to maximize speech-recognition performance. Design Ten participants with at least 1 year of experience using Nucleus Hybrid (short electrode) A+E devices were evaluated across three different fitting conditions that varied in the frequency ranges assigned to the acoustically and electrically presented portions of the spectrum. Real-ear measurements were used to optimize the acoustic component for each participant, and the acoustic stimulation was then held constant across conditions. The lower boundary of the electric frequency range was systematically varied to create three conditions with respect to the upper boundary of the acoustic spectrum: Meet, Overlap, and Gap programming. Consonant recognition in quiet and speech recognition in competing-talker babble were evaluated after participants were given the opportunity to adapt by using the experimental programs in their typical everyday listening situations. Participants provided subjective ratings and evaluations for each fitting condition. Results There were no significant differences in performance between conditions (Meet, Overlap, Gap) for consonant recognition in quiet. A significant decrement in performance was measured for the Overlap fitting condition for speech recognition in babble. Subjective ratings indicated a significant preference for the Meet fitting regimen. Conclusions Participants using the Hybrid ipsilateral A+E device generally performed better when the acoustic and electric spectra were programmed to meet at a single frequency region, as opposed to a gap or overlap. Although there is no particular advantage for the Meet fitting strategy for recognition of consonants in quiet, the advantage becomes evident for speech recognition in competing-talker babble and in patient preferences. PMID:23059851
Gas transfer model to design a ventilator for neonatal total liquid ventilation.
Bonfanti, Mirko; Cammi, Antonio; Bagnoli, Paola
2015-12-01
The study was aimed to optimize the gas transfer in an innovative ventilator for neonatal Total Liquid Ventilation (TLV) that integrates the pumping and oxygenation functions in a non-volumetric pulsatile device made of parallel flat silicone membranes. A computational approach was adopted to evaluate oxygen (O2) and carbon dioxide (CO2) exchanges between the liquid perfluorocarbon (PFC) and the oxygenating gas, as a function of the geometrical parameter of the device. A 2D semi-empirical model was implemented to this purpose using Comsol Multiphysics to study both the fluid dynamics and the gas exchange in the ventilator. Experimental gas exchanges measured with a preliminary prototype were compared to the simulation outcomes to prove the model reliability. Different device configurations were modeled to identify the optimal design able to guarantee the desired gas transfer. Good agreement between experimental and simulation outcomes was obtained, validating the model. The optimal configuration, able to achieve the desired gas exchange (ΔpCO2 = 16.5 mmHg and ΔpO2 = 69 mmHg), is a device comprising 40 modules, 300 mm in length (total exchange area = 2.28 m(2)). With this configuration gas transfer performance is satisfactory for all the simulated settings, proving good adaptability of the device. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Tiazkis, Robertas; Paek, Sanghyun; Daskeviciene, Maryte; Malinauskas, Tadas; Saliba, Michael; Nekrasovas, Jonas; Jankauskas, Vygintas; Ahmad, Shahzada; Getautis, Vytautas; Khaja Nazeeruddin, Mohammad
2017-03-10
The molecular structure of the hole transporting material (HTM) play an important role in hole extraction in a perovskite solar cells. It has a significant influence on the molecular planarity, energy level, and charge transport properties. Understanding the relationship between the chemical structure of the HTM's and perovskite solar cells (PSCs) performance is crucial for the continued development of the efficient organic charge transporting materials. Using molecular engineering approach we have constructed a series of the hole transporting materials with strategically placed aliphatic substituents to investigate the relationship between the chemical structure of the HTMs and the photovoltaic performance. PSCs employing the investigated HTMs demonstrate power conversion efficiency values in the range of 9% to 16.8% highlighting the importance of the optimal molecular structure. An inappropriately placed side group could compromise the device performance. Due to the ease of synthesis and moieties employed in its construction, it offers a wide range of possible structural modifications. This class of molecules has a great potential for structural optimization in order to realize simple and efficient small molecule based HTMs for perovskite solar cells application.
Wearable Performance Devices in Sports Medicine.
Li, Ryan T; Kling, Scott R; Salata, Michael J; Cupp, Sean A; Sheehan, Joseph; Voos, James E
2016-01-01
Wearable performance devices and sensors are becoming more readily available to the general population and athletic teams. Advances in technology have allowed individual endurance athletes, sports teams, and physicians to monitor functional movements, workloads, and biometric markers to maximize performance and minimize injury. Movement sensors include pedometers, accelerometers/gyroscopes, and global positioning satellite (GPS) devices. Physiologic sensors include heart rate monitors, sleep monitors, temperature sensors, and integrated sensors. The purpose of this review is to familiarize health care professionals and team physicians with the various available types of wearable sensors, discuss their current utilization, and present future applications in sports medicine. Data were obtained from peer-reviewed literature through a search of the PubMed database. Included studies searched development, outcomes, and validation of wearable performance devices such as GPS, accelerometers, and physiologic monitors in sports. Clinical review. Level 4. Wearable sensors provide a method of monitoring real-time physiologic and movement parameters during training and competitive sports. These parameters can be used to detect position-specific patterns in movement, design more efficient sports-specific training programs for performance optimization, and screen for potential causes of injury. More recent advances in movement sensors have improved accuracy in detecting high-acceleration movements during competitive sports. Wearable devices are valuable instruments for the improvement of sports performance. Evidence for use of these devices in professional sports is still limited. Future developments are needed to establish training protocols using data from wearable devices. © 2015 The Author(s).
Wearable Performance Devices in Sports Medicine
Li, Ryan T.; Kling, Scott R.; Salata, Michael J.; Cupp, Sean A.; Sheehan, Joseph; Voos, James E.
2016-01-01
Context: Wearable performance devices and sensors are becoming more readily available to the general population and athletic teams. Advances in technology have allowed individual endurance athletes, sports teams, and physicians to monitor functional movements, workloads, and biometric markers to maximize performance and minimize injury. Movement sensors include pedometers, accelerometers/gyroscopes, and global positioning satellite (GPS) devices. Physiologic sensors include heart rate monitors, sleep monitors, temperature sensors, and integrated sensors. The purpose of this review is to familiarize health care professionals and team physicians with the various available types of wearable sensors, discuss their current utilization, and present future applications in sports medicine. Evidence Acquisition: Data were obtained from peer-reviewed literature through a search of the PubMed database. Included studies searched development, outcomes, and validation of wearable performance devices such as GPS, accelerometers, and physiologic monitors in sports. Study Design: Clinical review. Level of Evidence: Level 4. Results: Wearable sensors provide a method of monitoring real-time physiologic and movement parameters during training and competitive sports. These parameters can be used to detect position-specific patterns in movement, design more efficient sports-specific training programs for performance optimization, and screen for potential causes of injury. More recent advances in movement sensors have improved accuracy in detecting high-acceleration movements during competitive sports. Conclusion: Wearable devices are valuable instruments for the improvement of sports performance. Evidence for use of these devices in professional sports is still limited. Future developments are needed to establish training protocols using data from wearable devices. PMID:26733594
The Next Breakthrough for Organic Photovoltaics?
Jackson, Nicholas E; Savoie, Brett M; Marks, Tobin J; Chen, Lin X; Ratner, Mark A
2015-01-02
While the intense focus on energy level tuning in organic photovoltaic materials has afforded large gains in device performance, we argue here that strategies based on microstructural/morphological control are at least as promising in any rational design strategy. In this work, a meta-analysis of ∼150 bulk heterojunction devices fabricated with different materials combinations is performed and reveals strong correlations between power conversion efficiency and morphology-dominated properties (short-circuit current, fill factor) and surprisingly weak correlations between efficiency and energy level positioning (open-circuit voltage, enthalpic offset at the interface, optical gap). While energy level positioning should in principle provide the theoretical maximum efficiency, the optimization landscape that must be navigated to reach this maximum is unforgiving. Thus, research aimed at developing understanding-based strategies for more efficient optimization of an active layer microstructure and morphology are likely to be at least as fruitful.
Creating single-copy genetic circuits
Lee, Jeong Wook; Gyorgy, Andras; Cameron, D. Ewen; Pyenson, Nora; Choi, Kyeong Rok; Way, Jeffrey C.; Silver, Pamela A.; Del Vecchio, Domitilla; Collins, James J.
2017-01-01
SUMMARY Synthetic biology is increasingly used to develop sophisticated living devices for basic and applied research. Many of these genetic devices are engineered using multi-copy plasmids, but as the field progresses from proof-of-principle demonstrations to practical applications, it is important to develop single-copy synthetic modules that minimize consumption of cellular resources and can be stably maintained as genomic integrants. Here we use empirical design, mathematical modeling and iterative construction and testing to build single-copy, bistable toggle switches with improved performance and reduced metabolic load that can be stably integrated into the host genome. Deterministic and stochastic models led us to focus on basal transcription to optimize circuit performance and helped to explain the resulting circuit robustness across a large range of component expression levels. The design parameters developed here provide important guidance for future efforts to convert functional multi-copy gene circuits into optimized single-copy circuits for practical, real-world use. PMID:27425413
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jaekwang; Huang, Jingsong; Sumpter, Bobby G.
Compared with their bulk counterparts, 2D materials can sustain much higher elastic strain at which optical quantities such as bandgaps and absorption spectra governing optoelectronic device performance can be modified with relative ease. Using first-principles density functional theory and quasiparticle GW calculations, we demonstrate how uniaxial tensile strain can be utilized to optimize the electronic and optical properties of transition metal dichalcogenide lateral (in-plane) heterostructures such as MoX 2/WX 2 (X = S, Se, Te). We find that these lateral-type heterostructures may facilitate efficient electron–hole separation for light detection/harvesting and preserve their type II characteristic up to 12% of uniaxialmore » strain. Based on the strain-dependent bandgap and band offset, we show that uniaxial tensile strain can significantly increase the power conversion efficiency of these lateral heterostructures. Our results suggest that these strain-engineered lateral heterostructures are promising for optimizing optoelectronic device performance by selectively tuning the energetics of the bandgap.« less
A novel framework for virtual prototyping of rehabilitation exoskeletons.
Agarwal, Priyanshu; Kuo, Pei-Hsin; Neptune, Richard R; Deshpande, Ashish D
2013-06-01
Human-worn rehabilitation exoskeletons have the potential to make therapeutic exercises increasingly accessible to disabled individuals while reducing the cost and labor involved in rehabilitation therapy. In this work, we propose a novel human-model-in-the-loop framework for virtual prototyping (design, control and experimentation) of rehabilitation exoskeletons by merging computational musculoskeletal analysis with simulation-based design techniques. The framework allows to iteratively optimize design and control algorithm of an exoskeleton using simulation. We introduce biomechanical, morphological, and controller measures to quantify the performance of the device for optimization study. Furthermore, the framework allows one to carry out virtual experiments for testing specific "what-if" scenarios to quantify device performance and recovery progress. To illustrate the application of the framework, we present a case study wherein the design and analysis of an index-finger exoskeleton is carried out using the proposed framework.
High performance small molecule photodetector with broad spectral response range from 200 to 900 nm
NASA Astrophysics Data System (ADS)
Wu, Shuang-hong; Li, Wen-lian; Chu, Bei; Su, Zi-sheng; Zhang, Feng; Lee, C. S.
2011-07-01
We demonstrate a photodetector (PD) with broad spectral response by taking the advantages of more flexible device design in using small molecule materials. The optimized device shows an external quantum efficiency of over 20% from 200 to 900 nm. The high performance is achieved by jointing two donor (D)/acceptor (A) hetero-junctions [m-MTDATA(D)/TiOPc(A) and TiOPc(D)/F16CuPc: PTCDI-C8(A)] such that photoresponses over the deep-ultraviolet (UV) and visible-near infrared regions can be independently optimized. By choosing D- and A-materials with matched energy level alignment, high carrier mobility, and balanced carrier transporting properties, the present PD shows a fast response of 56 ns. The high speed and deep-UV sensitivity might lead to potential military applications such as missile tracking in addition to optical communications, chemical/biological sensing etc.
E-Pad: a comfortable electrocutaneous-based tactile feedback display
NASA Astrophysics Data System (ADS)
Wang, Jiabin; Zhao, Lu; Liu, Yue; Wang, Yongtian; Cai, Yi
2018-01-01
The devices with touchscreen are becoming more popular recently; however, most of them suffer from the crucial drawbacks of lacking accurate tactile feedback. A novel electrocutaneous-based tactile device with the name of E-pad is proposed to provide a dynamic and static low-voltage feedback for touchscreen. We optimize the key parameters of the output voltage and design custom-made hardwares to guarantee a comfortable user experience. Users could move their fingers freely across the touchscreen of the proposed device to really feel virtual objects. Two preliminary experiments are conducted to evaluate the interactive performance of the proposed device and the experimental results show that the proposed device can provide a comfortable and distinct tactile feedback.
Thermal Analysis of a Disposable, Instrument-Free DNA Amplification Lab-on-a-Chip Platform.
Pardy, Tamás; Rang, Toomas; Tulp, Indrek
2018-06-04
Novel second-generation rapid diagnostics based on nucleic acid amplification tests (NAAT) offer performance metrics on par with clinical laboratories in detecting infectious diseases at the point of care. The diagnostic assay is typically performed within a Lab-on-a-Chip (LoC) component with integrated temperature regulation. However, constraints on device dimensions, cost and power supply inherent with the device format apply to temperature regulation as well. Thermal analysis on simplified thermal models for the device can help overcome these barriers by speeding up thermal optimization. In this work, we perform experimental thermal analysis on the simplified thermal model for our instrument-free, single-use LoC NAAT platform. The system is evaluated further by finite element modelling. Steady-state as well as transient thermal analysis are performed to evaluate the performance of a self-regulating polymer resin heating element in the proposed device geometry. Reaction volumes in the target temperature range of the amplification reaction are estimated in the simulated model to assess compliance with assay requirements. Using the proposed methodology, we demonstrated our NAAT device concept capable of performing loop-mediated isothermal amplification in the 20⁻25 °C ambient temperature range with 32 min total assay time.
A 5-μm pitch charge-coupled device optimized for resonant inelastic soft X-ray scattering
NASA Astrophysics Data System (ADS)
Andresen, N. C.; Denes, P.; Goldschmidt, A.; Joseph, J.; Karcher, A.; Tindall, C. S.
2017-08-01
We have developed a charge-coupled device (CCD) with 5 μm × 45 μm pixels on high-resistivity silicon. The fully depleted 200 μm-thick silicon detector is back-illuminated through a 10 nm-thick in situ doped polysilicon window and is thus highly efficient for soft through >8 keV hard X-rays. The device described here is a 1.5 megapixel CCD with 2496 × 620 pixels. The pixel and camera geometry was optimized for Resonant Inelastic X-ray Scattering (RIXS) and is particularly advantageous for spectrometers with limited arm lengths. In this article, we describe the device architecture, construction and operation, and its performance during tests at the Advance Light Source (ALS) 8.0.1 RIXS beamline. The improved spectroscopic performance, when compared with a current standard commercial camera, is demonstrated with a ˜280 eV (CK) X-ray beam on a graphite sample. Readout noise is typically 3-6 electrons and the point spread function for soft CK X-rays in the 5 μm direction is 4.0 μm ± 0.2 μm. The measured quantum efficiency of the CCD is greater than 75% in the range from 200 eV to 1 keV.
A 5-μm pitch charge-coupled device optimized for resonant inelastic soft X-ray scattering.
Andresen, N C; Denes, P; Goldschmidt, A; Joseph, J; Karcher, A; Tindall, C S
2017-08-01
We have developed a charge-coupled device (CCD) with 5 μm × 45 μm pixels on high-resistivity silicon. The fully depleted 200 μm-thick silicon detector is back-illuminated through a 10 nm-thick in situ doped polysilicon window and is thus highly efficient for soft through >8 keV hard X-rays. The device described here is a 1.5 megapixel CCD with 2496 × 620 pixels. The pixel and camera geometry was optimized for Resonant Inelastic X-ray Scattering (RIXS) and is particularly advantageous for spectrometers with limited arm lengths. In this article, we describe the device architecture, construction and operation, and its performance during tests at the Advance Light Source (ALS) 8.0.1 RIXS beamline. The improved spectroscopic performance, when compared with a current standard commercial camera, is demonstrated with a ∼280 eV (C K ) X-ray beam on a graphite sample. Readout noise is typically 3-6 electrons and the point spread function for soft C K X-rays in the 5 μm direction is 4.0 μm ± 0.2 μm. The measured quantum efficiency of the CCD is greater than 75% in the range from 200 eV to 1 keV.
Hybrid Power Management (HPM) Program Resulted in Several New Applications
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2003-01-01
Hybrid Power Management (HPM) is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors, fuel cells, and photovoltaics. HPM has extremely wide potential with applications from nanowatts to megawatts. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy.
Technology-design-manufacturing co-optimization for advanced mobile SoCs
NASA Astrophysics Data System (ADS)
Yang, Da; Gan, Chock; Chidambaram, P. R.; Nallapadi, Giri; Zhu, John; Song, S. C.; Xu, Jeff; Yeap, Geoffrey
2014-03-01
How to maintain the Moore's Law scaling beyond the 193 immersion resolution limit is the key question semiconductor industry needs to answer in the near future. Process complexity will undoubtfully increase for 14nm node and beyond, which brings both challenges and opportunities for technology development. A vertically integrated design-technologymanufacturing co-optimization flow is desired to better address the complicated issues new process changes bring. In recent years smart mobile wireless devices have been the fastest growing consumer electronics market. Advanced mobile devices such as smartphones are complex systems with the overriding objective of providing the best userexperience value by harnessing all the technology innovations. Most critical system drivers are better system performance/power efficiency, cost effectiveness, and smaller form factors, which, in turns, drive the need of system design and solution with More-than-Moore innovations. Mobile system-on-chips (SoCs) has become the leading driver for semiconductor technology definition and manufacturing. Here we highlight how the co-optimization strategy influenced architecture, device/circuit, process technology and package, in the face of growing process cost/complexity and variability as well as design rule restrictions.
Venturini, Joseph M; Retzer, Elizabeth M; Estrada, J Raider; Mediratta, Anuj; Friant, Janet; Nathan, Sandeep; Paul, Jonathan D; Blair, John; Lang, Roberto M; Shah, Atman P
2016-10-01
Patent foramen ovale (PFO) has been linked to cryptogenic stroke, and closure has been reported to improve clinical outcomes. However, there are no clear guidelines to direct device sizing. This study sought to use patient characteristics and echocardiographic findings to create a prediction score for device sizing. This was a retrospective review of patients undergoing percutaneous PFO closure at our institution between July 2010 and December 2014. Demographic and clinical characteristics were recorded, and all pre- and intraprocedural echocardiography results were evaluated. Thirty-six patients underwent percutaneous PFO closure during the study period. All procedures were performed using an Amplatzer Septal Occluder "Cribriform" (ASOC) device in one of three disc diameters: 25, 30, or 35 mm. Closure was indicated for cryptogenic stroke/transient ischemic attack in 75% of cases. Every case (100%) was successful with durable shunt correction at the 6-month follow-up without complications of erosion or device embolization. The presence of atrial septal aneurysm (ASA) ( p = 0.027) and PFO tunnel length >10 mm ( p = 0.038) were independently associated with increased device size. A scoring system of 1 point for male sex, 1 point for ASA, and 1 point for PFO tunnel >10 mm long was associated with the size of closure device implanted ( p = 0.006). A simple scoring system may be used to select an optimally sized device for percutaneous PFO closure using the ASOC device.
A Framework for Optimizing the Placement of Tidal Turbines
NASA Astrophysics Data System (ADS)
Nelson, K. S.; Roberts, J.; Jones, C.; James, S. C.
2013-12-01
Power generation with marine hydrokinetic (MHK) current energy converters (CECs), often in the form of underwater turbines, is receiving growing global interest. Because of reasonable investment, maintenance, reliability, and environmental friendliness, this technology can contribute to national (and global) energy markets and is worthy of research investment. Furthermore, in remote areas, small-scale MHK energy from river, tidal, or ocean currents can provide a local power supply. However, little is known about the potential environmental effects of CEC operation in coastal embayments, estuaries, or rivers, or of the cumulative impacts of these devices on aquatic ecosystems over years or decades of operation. There is an urgent need for practical, accessible tools and peer-reviewed publications to help industry and regulators evaluate environmental impacts and mitigation measures, while establishing best sitting and design practices. Sandia National Laboratories (SNL) and Sea Engineering, Inc. (SEI) have investigated the potential environmental impacts and performance of individual tidal energy converters (TECs) in Cobscook Bay, ME; TECs are a subset of CECs that are specifically deployed in tidal channels. Cobscook Bay is the first deployment location of Ocean Renewable Power Company's (ORPC) TidGenTM unit. One unit is currently in place with four more to follow. Together, SNL and SEI built a coarse-grid, regional-scale model that included Cobscook Bay and all other landward embayments using the modeling platform SNL-EFDC. Within SNL-EFDC tidal turbines are represented using a unique set of momentum extraction, turbulence generation, and turbulence dissipation equations at TEC locations. The global model was then coupled to a local-scale model that was centered on the proposed TEC deployment locations. An optimization frame work was developed that used the refined model to determine optimal device placement locations that maximized array performance. Within the framework, environmental effects are considered to minimize the possibility of altering flows to an extent that would affect fish-swimming behavior and sediment-transport trends. Simulation results were compared between model runs with the optimized array configuration, and the originally purposed deployment locations; the optimized array showed a 17% increase in power generation. The developed framework can provide regulators and developers with a tool for assessing environmental impacts and device-performance parameters for the deployment of MHK devices. The more thoroughly understood this promising technology, the more likely it will become a viable source of alternative energy.
NASA Astrophysics Data System (ADS)
Huang, Chien-Yao; Lee, Wen-Chin; Lin, Albert
2016-09-01
Co-optimization of the gallium and sulfur profiles in penternary Cu(In,Ga)(Se,S)2 thin film solar cell and its impacts on device performance and variability are investigated in this work. An absorber formation method to modulate the gallium profiling under low sulfur-incorporation is disclosed, which solves the problem of Ga-segregation in selenization. Flatter Ga-profiles, which lack of experimental investigations to date, are explored and an optimal Ga-profile achieving 17.1% conversion efficiency on a 30 cm × 30 cm sub-module without anti-reflection coating is presented. Flatter Ga-profile gives rise to the higher Voc × Jsc by improved bandgap matching to solar spectrum, which is hard to be achieved by the case of Ga-accumulation. However, voltage-induced carrier collection loss is found, as evident from the measured voltage-dependent photocurrent characteristics based on a small-signal circuit model. The simulation results reveal that the loss is attributed to the synergistic effect of the detrimental gallium and sulfur gradients, which can deteriorate the carrier collection especially in quasi-neutral region (QNR). Furthermore, the underlying physics is presented, and it provides a clear physical picture to the empirical trends of device performance, I-V characteristics, and voltage-dependent photocurrent, which cannot be explained by the standard solar circuit model. The parameter "FGa" and front sulfur-gradient are found to play critical roles on the trade-off between space charge region (SCR) recombination and QNR carrier collection. The co-optimized gallium and sulfur gradients are investigated, and the corresponding process modification for further efficiency-enhancement is proposed. In addition, the performance impact of sulfur-gradient variation is studied, and a gallium design for suppressing the sulfur-induced variability is proposed. Device performances of varied Ga-profiles with front sulfur-gradients are simulated based on a compact device model. Finally, an exploratory path toward 20% high-efficiency Ga-profile with robustness against sulfur-induced performance variability is presented.
Optimal throughput for cognitive radio with energy harvesting in fading wireless channel.
Vu-Van, Hiep; Koo, Insoo
2014-01-01
Energy resource management is a crucial problem of a device with a finite capacity battery. In this paper, cognitive radio is considered to be a device with an energy harvester that can harvest energy from a non-RF energy resource while performing other actions of cognitive radio. Harvested energy will be stored in a finite capacity battery. At the start of the time slot of cognitive radio, the radio needs to determine if it should remain silent or carry out spectrum sensing based on the idle probability of the primary user and the remaining energy in order to maximize the throughput of the cognitive radio system. In addition, optimal sensing energy and adaptive transmission power control are also investigated in this paper to effectively utilize the limited energy of cognitive radio. Finding an optimal approach is formulated as a partially observable Markov decision process. The simulation results show that the proposed optimal decision scheme outperforms the myopic scheme in which current throughput is only considered when making a decision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Dong; Song, Jiakun; Yu, Hailong
2016-03-14
High-index dielectric and semiconductor nanostructures with characteristics of low absorption loss and artificially controlled scattering properties have grasped an increasing attention for improving the performance of thin-film photovoltaic devices. In this work, combined optical and electrical simulations were performed for thin-film InP/In{sub 0.53}Ga{sub 0.47}As/InP hetero-junction photodetector with periodically arranged InP nano-cylinders in the in-coupling configuration. It is found that the carefully designed InP nano-cylinders possess strongly substrate-coupled Mie resonances and can effectively couple incident light into the guided mode, both of which significantly increase optical absorption. Further study from the electrical aspects shows that enhancement of external quantum efficiency ismore » as high as 82% and 83% in the configurations with the optimized nano-cylinders and the optimized period, respectively. Moreover, we demonstrate that the integration of InP nano-cylinders does not degrade the electrical performance, since the surface recombination is effectively suppressed by separating the absorber layer where carriers generate and the air/semiconductor interface. The comprehensive modeling including optical and electrical perspectives provides a more practical description for device performance than the optical-only simulation and is expected to advance the design of thin-film absorber layer based optoelectronic devices for fast response and high efficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, M.-H., E-mail: mhliaoa@ntu.edu.tw; Chen, P.-G.
The capping stressed SiN film is one of the most important process steps for the dislocation stress memorization technique (D-SMT), which has been used widely in the current industry, for the electron mobility booster in the n-type transistor beyond the 32/28 nm technology node. In this work, we found that the different stress-level SiN capping films influence the crystal re-growth velocities along different directions including [100] and [110] directions in Ge a lot. It can be further used to optimize the dislocation angle in the transistor during the D-SMT process and then results in the largest channel stress distribution to boostmore » the device performance in the Ge n-FinFETs. Based on the theoretical calculation and experimental demonstration, it shows that the Ge three dimensional (3D) n-FinFETs device performance is improved ∼55% with the usage of +3 GPa tensile stressed SiN capping film. The channel stress and dislocation angle is ∼2.5 GPa and 30°, measured by the atomic force microscope-Raman technique and transmission electron microscopy, respectively.« less
Evidence of soft bound behaviour in analogue memristive devices for neuromorphic computing.
Frascaroli, Jacopo; Brivio, Stefano; Covi, Erika; Spiga, Sabina
2018-05-08
The development of devices that can modulate their conductance under the application of electrical stimuli constitutes a fundamental step towards the realization of synaptic connectivity in neural networks. Optimization of synaptic functionality requires the understanding of the analogue conductance update under different programming conditions. Moreover, properties of physical devices such as bounded conductance values and state-dependent modulation should be considered as they affect storage capacity and performance of the network. This work provides a study of the conductance dynamics produced by identical pulses as a function of the programming parameters in an HfO 2 memristive device. The application of a phenomenological model that considers a soft approach to the conductance boundaries allows the identification of different operation regimes and to quantify conductance modulation in the analogue region. Device non-linear switching kinetics is recognized as the physical origin of the transition between different dynamics and motivates the crucial trade-off between degree of analog modulation and memory window. Different kinetics for the processes of conductance increase and decrease account for device programming asymmetry. The identification of programming trade-off together with an evaluation of device variations provide a guideline for the optimization of the analogue programming in view of hardware implementation of neural networks.
Moore, J A; Nemat-Gorgani, M; Madison, A C; Sandahl, M A; Punnamaraju, S; Eckhardt, A E; Pollack, M G; Vigneault, F; Church, G M; Fair, R B; Horowitz, M A; Griffin, P B
2017-01-01
This paper reports on the use of a digital microfluidic platform to perform multiplex automated genetic engineering (MAGE) cycles on droplets containing Escherichia coli cells. Bioactivated magnetic beads were employed for cell binding, washing, and media exchange in the preparation of electrocompetent cells in the electrowetting-on-dieletric (EWoD) platform. On-cartridge electroporation was used to deliver oligonucleotides into the cells. In addition to the optimization of a magnetic bead-based benchtop protocol for generating and transforming electrocompetent E. coli cells, we report on the implementation of this protocol in a fully automated digital microfluidic platform. Bead-based media exchange and electroporation pulse conditions were optimized on benchtop for transformation frequency to provide initial parameters for microfluidic device trials. Benchtop experiments comparing electrotransformation of free and bead-bound cells are presented. Our results suggest that dielectric shielding intrinsic to bead-bound cells significantly reduces electroporation field exposure efficiency. However, high transformation frequency can be maintained in the presence of magnetic beads through the application of more intense electroporation pulses. As a proof of concept, MAGE cycles were successfully performed on a commercial EWoD cartridge using variations of the optimal magnetic bead-based preparation procedure and pulse conditions determined by the benchtop results. Transformation frequencies up to 22% were achieved on benchtop; this frequency was matched within 1% (21%) by MAGE cycles on the microfluidic device. However, typical frequencies on the device remain lower, averaging 9% with a standard deviation of 9%. The presented results demonstrate the potential of digital microfluidics to perform complex and automated genetic engineering protocols.
Moore, J. A.; Nemat-Gorgani, M.; Madison, A. C.; Punnamaraju, S.; Eckhardt, A. E.; Pollack, M. G.; Church, G. M.; Fair, R. B.; Horowitz, M. A.; Griffin, P. B.
2017-01-01
This paper reports on the use of a digital microfluidic platform to perform multiplex automated genetic engineering (MAGE) cycles on droplets containing Escherichia coli cells. Bioactivated magnetic beads were employed for cell binding, washing, and media exchange in the preparation of electrocompetent cells in the electrowetting-on-dieletric (EWoD) platform. On-cartridge electroporation was used to deliver oligonucleotides into the cells. In addition to the optimization of a magnetic bead-based benchtop protocol for generating and transforming electrocompetent E. coli cells, we report on the implementation of this protocol in a fully automated digital microfluidic platform. Bead-based media exchange and electroporation pulse conditions were optimized on benchtop for transformation frequency to provide initial parameters for microfluidic device trials. Benchtop experiments comparing electrotransformation of free and bead-bound cells are presented. Our results suggest that dielectric shielding intrinsic to bead-bound cells significantly reduces electroporation field exposure efficiency. However, high transformation frequency can be maintained in the presence of magnetic beads through the application of more intense electroporation pulses. As a proof of concept, MAGE cycles were successfully performed on a commercial EWoD cartridge using variations of the optimal magnetic bead-based preparation procedure and pulse conditions determined by the benchtop results. Transformation frequencies up to 22% were achieved on benchtop; this frequency was matched within 1% (21%) by MAGE cycles on the microfluidic device. However, typical frequencies on the device remain lower, averaging 9% with a standard deviation of 9%. The presented results demonstrate the potential of digital microfluidics to perform complex and automated genetic engineering protocols. PMID:28191268
Nasim, Sajid; Maharaj, Chrisen H; Butt, Ihsan; Malik, Muhammad A; O' Donnell, John; Higgins, Brendan D; Harte, Brian H; Laffey, John G
2009-01-01
Background Paramedics are frequently required to perform tracheal intubation, a potentially life-saving manoeuvre in severely ill patients, in the prehospital setting. However, direct laryngoscopy is often more difficult in this environment, and failed tracheal intubation constitutes an important cause of morbidity. Novel indirect laryngoscopes, such as the Airtraq® and Truview® laryngoscopes may reduce this risk. Methods We compared the efficacy of these devices to the Macintosh laryngoscope when used by 21 Paramedics proficient in direct laryngoscopy, in a randomized, controlled, manikin study. Following brief didactic instruction with the Airtraq® and Truview® laryngoscopes, each participant took turns performing laryngoscopy and intubation with each device, in an easy intubation scenario and following placement of a hard cervical collar, in a SimMan® manikin. Results The Airtraq® reduced the number of optimization manoeuvres and reduced the potential for dental trauma when compared to the Macintosh, in both the normal and simulated difficult intubation scenarios. In contrast, the Truview® increased the duration of intubation attempts, and required a greater number of optimization manoeuvres, compared to both the Macintosh and Airtraq® devices. Conclusion The Airtraq® laryngoscope performed more favourably than the Macintosh and Truview® devices when used by Paramedics in this manikin study. Further studies are required to extend these findings to the clinical setting. PMID:19216776
Analysis and Optimization of Thin Film Ferroelectric Phase Shifters
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.; VanKeuls, Fred W.; Warner, Joseph D.; Mueller, Carl H.; Alterovitz, Samuel A.; Miranda, Felix A.; Qureshi, A. Haq; Romanofsky, Robert R. (Technical Monitor)
2000-01-01
Microwave phase shifters have been fabricated from (YBa2Cu3O(7-delta) or Au)/SrTiO3 and Au/Ba(x)Sr(1-x)TiO3 films on LaAlO3 and MgO substrates. These coupled microstrip devices rival the performance of their semiconductor counter-parts parts at Ku- and K-band frequencies. Typical insertion loss for room temperature ferroelectric phase shifters at K-band is approximately equal 5 dB. An experimental and theoretical investigation of these novel devices explains the role of the ferroelectric film in overall device performance. A roadmap to the development of a 3 dB insertion loss phase shifter that would enable a new type of phased array antenna is discussed.
Performance Enhancement of Small Molecular Solar Cells by Bilayer Cathode Buffer.
Sun, Qinjun; Zhao, Huanbin; Zhou, Miao; Gao, Liyan; Hao, Yuying
2016-04-01
An effective composite bilayer cathode buffer structure is proposed for use in small molecular solar cells. CsF was doped in Alq3 to form the first cathode buffer, leading to small serial resistances. BCP was used as the second cathode buffer to block the holes to the electrode. The optimized bilayer cathode buffer significantly increased the short circuit and fill factor of devices. By integrating this bilayer cathode buffer, the CuPc/C60 small molecular heterojunction cell exhibited a power conversion efficiency of up to 0.8%, which was an improvement of 56% compared to a device with only the Alq3 cathode buffer. Meanwhile, the bilayer cathode buffer still has a good protective effect on the performance of the device.
Object tracking on mobile devices using binary descriptors
NASA Astrophysics Data System (ADS)
Savakis, Andreas; Quraishi, Mohammad Faiz; Minnehan, Breton
2015-03-01
With the growing ubiquity of mobile devices, advanced applications are relying on computer vision techniques to provide novel experiences for users. Currently, few tracking approaches take into consideration the resource constraints on mobile devices. Designing efficient tracking algorithms and optimizing performance for mobile devices can result in better and more efficient tracking for applications, such as augmented reality. In this paper, we use binary descriptors, including Fast Retina Keypoint (FREAK), Oriented FAST and Rotated BRIEF (ORB), Binary Robust Independent Features (BRIEF), and Binary Robust Invariant Scalable Keypoints (BRISK) to obtain real time tracking performance on mobile devices. We consider both Google's Android and Apple's iOS operating systems to implement our tracking approach. The Android implementation is done using Android's Native Development Kit (NDK), which gives the performance benefits of using native code as well as access to legacy libraries. The iOS implementation was created using both the native Objective-C and the C++ programing languages. We also introduce simplified versions of the BRIEF and BRISK descriptors that improve processing speed without compromising tracking accuracy.
Guo, Changhe; Lee, Youngmin; Lin, Yen -Hao; ...
2016-06-15
The electronic properties of organic semiconductors are strongly influenced by intermolecular packing. When cast as thin films, crystalline π-conjugated molecules are strongly textured, potentially leading to anisotropic charge transport. Consequently, it is hypothesized that the orientation of crystallites in the active layer plays an important role in charge extraction and organic photovoltaic device performance. Here we demonstrate orientation control of molecular packing from mostly face-on to edge-on configurations in the active layer of P3HT- b-PFTBT block copolymer photovoltaics using 1-chloronaphthalene as a solvent additive. The effect of molecular orientations in P3HT crystals on charge transport and solar cell performance ismore » examined. We find that optimized photovoltaic device performance is independent of the crystalline texture of P3HT. Our observations provide further insights into the molecular organization required for efficient charge transport and overall device efficiencies. That is, the dominant crystal orientation, whether face-on or edge-on, is not critical to organic solar cells. Furthermore, a broad distribution of crystallite orientations ensures pathways for charge transport in any direction and enables efficient charge extraction in photovoltaic devices.« less
Prakash, Punit; Salgaonkar, Vasant A.; Diederich, Chris J.
2014-01-01
Endoluminal and catheter-based ultrasound applicators are currently under development and are in clinical use for minimally invasive hyperthermia and thermal ablation of various tissue targets. Computational models play a critical role in in device design and optimization, assessment of therapeutic feasibility and safety, devising treatment monitoring and feedback control strategies, and performing patient-specific treatment planning with this technology. The critical aspects of theoretical modeling, applied specifically to endoluminal and interstitial ultrasound thermotherapy, are reviewed. Principles and practical techniques for modeling acoustic energy deposition, bioheat transfer, thermal tissue damage, and dynamic changes in the physical and physiological state of tissue are reviewed. The integration of these models and applications of simulation techniques in identification of device design parameters, development of real time feedback-control platforms, assessing the quality and safety of treatment delivery strategies, and optimization of inverse treatment plans are presented. PMID:23738697
Current switching ratio optimization using dual pocket doping engineering
NASA Astrophysics Data System (ADS)
Dash, Sidhartha; Sahoo, Girija Shankar; Mishra, Guru Prasad
2018-01-01
This paper presents a smart idea to maximize current switching ratio of cylindrical gate tunnel FET (CGT) by growing pocket layers in both source and channel region. The pocket layers positioned in the source and channel of the device provides significant improvement in ON-state and OFF-state current respectively. The dual pocket doped cylindrical gate TFET (DP-CGT) exhibits much superior performance in term of drain current, transconductance and current ratio as compared to conventional CGT, channel pocket doped CGT (CP-CGT) and source pocket doped CGT (SP-CGT). Further, the current ratio has been optimized w.r.t. width and instantaneous position both the pocket layers. The much improved current ratio and low power consumption makes the proposed device suitable for low-power and high speed application. The simulation work of DP-CGT is done using 3D Sentaurus TCAD device simulator from Synopsys.
Collection of low-grade waste heat for enhanced energy harvesting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dede, Ercan M., E-mail: eric.dede@tema.toyota.com; Schmalenberg, Paul; Wang, Chi-Ming
Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device withmore » optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.« less
NASA Astrophysics Data System (ADS)
Estrada, Sarah M.
This dissertation describes the n-AlGaAs/p-GaAs/n-GaN heterojunction bipolar transistor (HBT), the first transistor formed via wafer fusion. The fusion process was developed as a way to combine lattice-mismatched materials for high-performance electronic devices, not obtainable via conventional all-epitaxial formation methods. Despite the many challenges of wafer fusion, successful transistors were demonstrated and improved, via the optimization of material structure and fusion process conditions. Thus, this project demonstrated the integration of disparate device materials, chosen for their optimal electronic properties, unrestricted by the conventional (and very limiting) requirement of lattice-matching. By combining an AlGaAs-GaAs emitter-base with a GaN collector, the HBT benefited from the high breakdown voltage of GaN, and from the high emitter injection efficiency and low base transit time of AlGaAs-GaAs. Because the GaAs-GaN lattice mismatch precluded an all-epitaxial formation of the HBT, the GaAs-GaN heterostructure was formed via fusion. This project began with the development of a fusion process that formed mechanically robust and electrically active GaAs-GaN heterojunctions. During the correlation of device electrical performance with a systematic variation of fusion conditions over a wide range (500--750°C, 0.5--2hours), a mid-range fusion temperature was found to induce optimal HBT electrical performance. Transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) were used to assess possible reasons for the variations observed in device electrical performance. Fusion process conditions were correlated with electrical (I-V), structural (TEM), and chemical (SIMS) analyses of the resulting heterojunctions, in order to investigate the trade-off between increased interfacial disorder (TEM) with low fusion temperature and increased diffusion (SIMS) with high fusion temperature. The best do device results (IC ˜ 2.9 kA/cm2 and beta ˜ 3.5, at VCE = 20V and IB = 10mA) were obtained with an HBT formed via fusion at 600°C for 1 hour, with an optimized base-collector design. This was quite an improvement, as compared to an HBT with a simpler base-collector structure, also fused at 600°C for 1 hour (IC ˜ 0.83 kA/cm2 and beta ˜ 0.89, at VCE = 20V and IB = 10mA). Fused AlGaAs-GaAs-GaAs HBTs were compared to fused AlGaAs-GaAs-GaN HBTs, demonstrating that the use of a wider bandgap collector (Eg,GaN > Eg,GaAs) did indeed improve HBT performance at high applied voltages, as desired for high-power applications.
Development of high-performance printed organic field-effect transistors and integrated circuits.
Xu, Yong; Liu, Chuan; Khim, Dongyoon; Noh, Yong-Young
2015-10-28
Organic electronics is regarded as an important branch of future microelectronics especially suited for large-area, flexible, transparent, and green devices, with their low cost being a key benefit. Organic field-effect transistors (OFETs), the primary building blocks of numerous expected applications, have been intensively studied, and considerable progress has recently been made. However, there are still a number of challenges to the realization of high-performance OFETs and integrated circuits (ICs) using printing technologies. Therefore, in this perspective article, we investigate the main issues concerning developing high-performance printed OFETs and ICs and seek strategies for further improvement. Unlike many other studies in the literature that deal with organic semiconductors (OSCs), printing technology, and device physics, our study commences with a detailed examination of OFET performance parameters (e.g., carrier mobility, threshold voltage, and contact resistance) by which the related challenges and potential solutions to performance development are inspected. While keeping this complete understanding of device performance in mind, we check the printed OFETs' components one by one and explore the possibility of performance improvement regarding device physics, material engineering, processing procedure, and printing technology. Finally, we analyze the performance of various organic ICs and discuss ways to optimize OFET characteristics and thus develop high-performance printed ICs for broad practical applications.
NASA Astrophysics Data System (ADS)
Raad, Bhagwan Ram; Nigam, Kaushal; Sharma, Dheeraj; Kondekar, P. N.
2016-06-01
This script features a study of bandgap, gate material work function and gate dielectric engineering for enhancement of DC and Analog/RF performance, reduction in the hot carriers effect (HCEs) and drain induced barrier lowering (DIBL) for better device reliability. In this concern, the use of band gap and gate material work function engineering improves the device performance in terms of the ON-state current and suppressed ambipolar behaviour with maintaining the low OFF-state current. With these advantages, the use of gate material work function engineering imposes restriction on the high frequency performance due to increment in the parasitic capacitances and also introduces the hot carrier effects. Hence, the gate dielectric engineering with bandgap and gate material work function engineering are used in this paper to overcome the cons of the gate material work function engineering by obtaining a superior performance in terms of the current driving capability, ambipolar conduction, HCEs, DIBL and high frequency parameters of the device for ultra-low power applications. Finally, the optimization of length for different work function is performed to get the best out of this.
Dupré, Olivier; Niesen, Bjoern; De Wolf, Stefaan; Ballif, Christophe
2018-01-18
Multijunction cells may offer a cost-effective route to boost the efficiency of industrial photovoltaics. For any technology to be deployed in the field, its performance under actual operating conditions is extremely important. In this perspective, we evaluate the impact of spectrum, light intensity, and module temperature variations on the efficiency of tandem devices with crystalline silicon bottom cells with a particular focus on perovskite top cells. We consider devices with different efficiencies and calculate their energy yields using field data from Denver. We find that annual losses due to differences between operating conditions and standard test conditions are similar for single-junction and four-terminal tandem devices. The additional loss for the two-terminal tandem configuration caused by current mismatch reduces its performance ratio by only 1.7% when an optimal top cell bandgap is used. Additionally, the unusual bandgap temperature dependence of perovskites is shown to have a positive, compensating effect on current mismatch.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Avik; Mallik, Abhijit; Omura, Yasuhisa
2015-06-01
A gate-on-germanium source (GoGeS) tunnel field-effect transistor (TFET) shows great promise for low-power (sub-0.5 V) applications. A detailed investigation, with the help of a numerical device simulator, on the effects of variation in different structural parameters of a GoGeS TFET on its electrical performance is reported in this paper. Structural parameters such as κ-value of the gate dielectric, length and κ-value of the spacer, and doping concentrations of both the substrate and source are considered. A low-κ symmetric spacer and a high-κ gate dielectric are found to yield better device performance. The substrate doping influences only the p-i-n leakage floor. The source doping is found to significantly affect performance parameters such as OFF-state current, ON-state current and subthreshold swing, in addition to a threshold voltage shift. Results of the investigation on the gate length scaling of such devices are also reported in this paper.
Optimal design of leak-proof SRAM cell using MCDM method
NASA Astrophysics Data System (ADS)
Wang, Qi; Kang, Sung-Mo
2003-04-01
As deep-submicron CMOS technology advances, on-chip cache has become a bottleneck on microprocessor's performance. Meanwhile, it also occupies a big percentage of processor area and consumes large power. Speed, power and area of SRAM are mutually contradicting, and not easy to be met simultaneously. Many existent leakage suppression techniques have been proposed, but they limit the circuit's performance. We apply a Multi-Criteria Decision Making strategy to perform a minimum delay-power-area optimization on SRAM circuit under some certain constraints. Based on an integrated device and circuit-level approach, we search for a process that yields a targeted composite performance. In consideration of the huge amount of simulation workload involved in the optimal design-seeking process, most of this process is automated to facilitate our goal-pursuant. With varying emphasis put on delay, power or area, different optimal SRAM designs are derived and a gate-oxide thickness scaling limit is projected. The result seems to indicate that a better composite performance could be achieved under a thinner oxide thickness. Under the derived optimal oxide thickness, the static leakage power consumption contributes less than 1% in the total power dissipation.
Subramanian, Alagesan; Pan, Zhenghui; Zhang, Zhenbo; Ahmad, Imtiaz; Chen, Jing; Liu, Meinan; Cheng, Shuang; Xu, Yijun; Wu, Jun; Lei, Wei; Khan, Qasim; Zhang, Yuegang
2018-04-18
All-inorganic perovskite light-emitting diode (PeLED) has a high stability in ambient atmosphere, but it is a big challenge to achieve high performance of the device. Basically, device design, control of energy-level alignment, and reducing the energy barrier between adjacent layers in the architecture of PeLED are important factors to achieve high efficiency. In this study, we report a CsPbBr 3 -based PeLED with an inverted architecture using lithium-doped TiO 2 nanoparticles as the electron transport layer (ETL). The optimal lithium doping balances the charge carrier injection between the hole transport layer and ETL, leading to superior device performance. The device exhibits a current efficiency of 3 cd A -1 , a luminance efficiency of 2210 cd m -2 , and a low turn-on voltage of 2.3 V. The turn-on voltage is one of the lowest values among reported CsPbBr 3 -based PeLEDs. A 7-fold increase in device efficiencies has been obtained for lithium-doped TiO 2 compared to that for undoped TiO 2 -based devices.
Shape Optimization of Bone-Bonding Subperiosteal Devices with Finite Element Analysis.
Ogasawara, Takeshi; Uezono, Masayoshi; Takakuda, Kazuo; Kikuchi, Masanori; Suzuki, Shoichi; Moriyama, Keiji
2017-01-01
Subperiosteal bone-bonding devices have been proposed for less invasive treatments in orthodontics. The device is osseointegrated onto a bone surface without fixation screws and is expected to rapidly attain a bone-bonding strength that successfully meets clinical performance. Hence, the device's optimum shape for rapid and strong bone bonding was examined in this study by finite element analyses. First, a stress analysis was performed for a circular rod device with an orthodontic force parallel to the bone surface, and the estimate of the bone-bonding strength based on the bone fracture criterion was verified with the results of an animal experiment. In total, four cross-sectional rod geometries were investigated: circular (Cr), elliptical (El), semicircular (Sc), and rectangular (Rc). By changing the height of the newly formed bone to mimic the progression of new bone formation, the estimation of the bone-bonding strength was repeated for each geometry. The rod with the Rc cross section exhibited the best performance, followed by those with the Sc, El, and Cr cross sections, from the aspects of the rapid acquisition of strength and the strength itself. Thus, the rectangular cross section is the best for rod-like subperiosteal devices for rapid bone bonding.
NASA Astrophysics Data System (ADS)
Kursakov, I. A.; Kazhan, E. V.; Lysenkov, A. V.; Savelyev, A. A.
2016-10-01
Paper describes the optimization procedure for low cruise drag inlet of high-bypass ratio turbofan engine (HBRE). The critical cross-flow velocity when the flow separation on the lee side of the inlet channel occurs is determined. The effciency of different flow control devices used to improve the flow parameters at inlet section cross flow regime is analyzed. Boundary layer suction, bypass slot and vortex generators are considered. It is shown that flow control devices enlarge the stability range of inlet performance at cross flow regimes.
Nanometer-Scale Electrical Potential Profiling Across Perovskite Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Chuanxiao; Jiang, Chun-Sheng; Ke, Weijun
2016-11-21
We used Kelvin probe force microscopy to study the potential distribution on cross-section of perovskite solar cells with different types of electron-transporting layers (ETLs). Our results explain the low open-circuit voltage and fill factor in ETL-free cells, and support the fact that intrinsic SnO2 as an alternative ETL material can make high-performance devices. Furthermore, the potential-profiling results indicate a reduction in junction-interface recombination by the optimized SnO2 layer and adding a fullerene layer, which is consistent with the improved device performance and current-voltage hysteresis.
NASA Astrophysics Data System (ADS)
Arab Bafrani, Hamidreza; Ebrahimi, Mahdi; Bagheri Shouraki, Saeed; Moshfegh, Alireza Z.
2018-01-01
Memristor devices have attracted tremendous interest due to different applications ranging from nonvolatile data storage to neuromorphic computing units. Exploring the role of surface roughness of the bottom electrode (BE)/active layer interface provides useful guidelines for the optimization of the memristor switching performance. This study focuses on the effect of surface roughness of the BE electrode on the switching characteristics of Au/TiO2/Au three-layer memristor devices. An optimized wet-etching treatment condition was found to modify the surface roughness of the Au BE where the measurement results indicate that the roughness of the Au BE is affected by both duration time and solution concentrations of the wet-etching process. Then we fabricated arrays of TiO2-based nanostructured memristors sandwiched between two sets of cross-bar Au electrode lines (junction area 900 μm2). The results revealed a reduction in the working voltages in current-voltage characteristic of the device performance when increasing the surface roughness at the Au(BE)/TiO2 active layer interface. The set voltage of the device (Vset) significantly decreased from 2.26-1.93 V when we increased the interface roughness from 4.2-13.1 nm. The present work provides information for better understanding the switching mechanism of titanium-dioxide-based devices, and it can be inferred that enhancing the roughness of the Au BE/TiO2 active layer interface leads to a localized non-uniform electric field distribution that plays a vital role in reducing the energy consumption of the device.
NASA Astrophysics Data System (ADS)
Desai, A. B.; Desai, K. P.; Naik, H. B.; Atrey, M. D.
2017-02-01
Thermoacoustic engines (TAEs) are devices which convert heat energy into useful acoustic work whereas thermoacoustic refrigerators (TARs) convert acoustic work into temperature gradient. These devices work without any moving component. Study presented here comprises of a combination system i.e. thermoacoustic engine driven thermoacoustic refrigerator (TADTAR). This system has no moving component and hence it is easy to fabricate but at the same time it is very challenging to design and construct optimized system with comparable performance. The work presented here aims to apply optimization technique to TADTAR in the form of response surface methodology (RSM). Significance of stack position and stack length for engine stack, stack position and stack length for refrigerator stack are investigated in current work. Results from RSM are compared with results from simulations using Design Environment for Low-amplitude Thermoacoustic Energy conversion (DeltaEC) for compliance.
NASA Astrophysics Data System (ADS)
Houin, G.; Duez, F.; Garcia, L.; Cantatore, E.; Torricelli, F.; Hirsch, L.; Belot, D.; Pellet, C.; Abbas, M.
2016-09-01
The high performance air stable organic semiconductor small molecule dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) was chosen as active layer for field effect transistors built to realize flexible amplifier circuits. Initial device on rigid Si/SiO2 substrate showed appreciable performance with hysteresis-free characteristics. A number of approaches were applied to simplify the process, improve device performance and decrease the operating voltage: they include an oxide interfacial layer to decrease contact resistance; a polymer passivation layer to optimize semiconductor/dielectric interface and an anodized high-k oxide as dielectric layer for low voltage operation. The devices fabricated on plastic substrate yielded excellent electrical characteristics, showing mobility of 1.6 cm2/Vs, lack of hysteresis, operation below 5 V and on/off current ratio above 105. An OFET model based on variable ranging hopping theory was used to extract the relevant parameters from the transfer and output characteristics, which enabled us to simulate our devices achieving reasonable agreement with the measurements
NASA Astrophysics Data System (ADS)
Sun, S. S.; Yildirim, T.; Wu, Jichu; Yang, J.; Du, H.; Zhang, S. W.; Li, W. H.
2017-09-01
In this work, a hybrid nonlinear magnetorheological elastomer (MRE) vibration absorber has been designed, theoretically investigated and experimentally verified. The proposed nonlinear MRE absorber has the dual advantages of a nonlinear force-displacement relationship and variable stiffness technology; the purpose for coupling these two technologies is to achieve a large broadband vibration absorber with controllable capability. To achieve a nonlinear stiffness in the device, two pairs of magnets move at a rotary angle against each other, and the theoretical nonlinear force-displacement relationship has been theoretically calculated. For the experimental investigation, the effects of base excitation, variable currents applied to the device (i.e. variable stiffness of the MRE) and semi-active control have been conducted to determine the enhanced broadband performance of the designed device. It was observed the device was able to change resonance frequency with the applied current; moreover, the hybrid nonlinear MRE absorber displayed a softening-type nonlinear response with clear discontinuous bifurcations observed. Furthermore, the performance of the device under a semi-active control algorithm displayed the optimal performance in attenuating the vibration from a primary system to the absorber over a large frequency bandwidth from 4 to 12 Hz. By coupling nonlinear stiffness attributes with variable stiffness MRE technology, the performance of a vibration absorber is substantially improved.
Rationalizing context-dependent performance of dynamic RNA regulatory devices.
Kent, Ross; Halliwell, Samantha; Young, Kate; Swainston, Neil; Dixon, Neil
2018-06-21
The ability of RNA to sense, regulate and store information is an attractive attribute for a variety of functional applications including the development of regulatory control devices for synthetic biology. RNA folding and function is known to be highly context sensitive, which limits the modularity and reuse of RNA regulatory devices to control different heterologous sequences and genes. We explored the cause and effect of sequence context sensitivity for translational ON riboswitches located in the 5' UTR, by constructing and screening a library of N-terminal synonymous codon variants. By altering the N-terminal codon usage we were able to obtain RNA devices with a broad range of functional performance properties (ON, OFF, fold-change). Linear regression and calculated metrics were used to rationalize the major determining features leading to optimal riboswitch performance, and to identify multiple interactions between the explanatory metrics. Finally, partial least squared (PLS) analysis was employed in order to understand the metrics and their respective effect on performance. This PLS model was shown to provide good explanation of our library. This study provides a novel multi-variant analysis framework by which to rationalize the codon context performance of allosteric RNA-devices. The framework will also serve as a platform for future riboswitch context engineering endeavors.
NASA Astrophysics Data System (ADS)
Kale, Sumit; Kondekar, Pravin N.
2018-01-01
This paper reports a novel device structure for charge plasma based Schottky Barrier (SB) MOSFET on ultrathin SOI to suppress the ambipolar leakage current and improvement of the radio frequency (RF) performance. In the proposed device, we employ dual material for the source and drain formation. Therefore, source/drain is divided into two parts as main source/drain and source/drain extension. Erbium silicide (ErSi1.7) is used as main source/drain material and Hafnium metal is used as source/drain extension material. The source extension induces the electron plasma in the ultrathin SOI body resulting reduction of SB width at the source side. Similarly, drain extension also induces the electron plasma at the drain side. This significantly increases the SB width due to increased depletion at the drain end. As a result, the ambipolar leakage current can be suppressed. In addition, drain extension also reduces the parasitic capacitances of the proposed device to improve the RF performance. The optimization of length and work function of metal used in the drain extension is performed to achieve improvement in device performance. Moreover, the proposed device makes fabrication simpler, requires low thermal budget and free from random dopant fluctuations.
Xu, Ke; Butlin, Mark; Avolio, Alberto P
2012-01-01
Timing of biventricular pacing devices employed in cardiac resynchronization therapy (CRT) is a critical determinant of efficacy of the procedure. Optimization is done by maximizing function in terms of arterial pressure (BP) or cardiac output (CO). However, BP and CO are also determined by the hemodynamic load of the pulmonary and systemic vasculature. This study aims to use a lumped parameter circulatory model to assess the influence of the arterial load on the atrio-ventricular (AV) and inter-ventricular (VV) delay for optimal CRT performance.
NASA Astrophysics Data System (ADS)
Wilkins, Matthew M.; Gupta, James; Jaouad, Abdelatif; Bouzazi, Boussairi; Fafard, Simon; Boucherif, Abderraouf; Valdivia, Christopher E.; Arès, Richard; Aimez, Vincent; Schriemer, Henry P.; Hinzer, Karin
2017-04-01
Four-junction solar cells for space and terrestrial applications require a junction with a band gap of ˜1 eV for optimal performance. InGaAsN or InGaAsN(Sb) dilute nitride junctions have been demonstrated for this purpose, but in achieving the 14 mA/cm2 short-circuit current needed to match typical GaInP and GaAs junctions, the open-circuit voltage (VOC) and fill factor of these junctions are compromised. In multijunction devices incorporating materials with short diffusion lengths, we study the use of thin junctions to minimize sensitivity to varying material quality and ensure adequate transmission into lower junctions. An n-i-p device with 0.65-μm absorber thickness has sufficient short-circuit current, however, it relies less heavily on field-aided collection than a device with a 1-μm absorber. Our standard cell fabrication process, which includes a rapid thermal anneal of the contacts, yields a significant improvement in diffusion length and device performance. By optimizing a four-junction cell around a smaller 1-sun short-circuit current of 12.5 mA/cm2, we produced an InGaAsN(Sb) junction with open-circuit voltage of 0.44 V at 1000 suns (1 sun=100 mW/cm2), diode ideality factor of 1.4, and sufficient light transmission to allow >12.5 mA/cm2 in all four subcells.
NASA Technical Reports Server (NTRS)
Jagodnik, K. M.; Thompson, W. K.; Gallo, C. A.; Crentsil, L.; Funk, J. H.; Funk, N. W.; Perusek, G. P.; Sheehan, C. C.; Lewandowski, B. E.
2016-01-01
Extended spaceflight typically results in the loss of muscular strength and bone density due to exposure to microgravity. Resistive exercise countermeasures have been developed to maintain musculoskeletal health during spaceflight. The Advanced Resistive Exercise Device (ARED) is the "gold standard" of available devices; however, its footprint and volume are too large for use in space capsules employed in exploration missions. The Hybrid Ultimate Lifting Kit (HULK) device, with its smaller footprint, is a prototype exercise device for exploration missions. This work models the deadlift exercise being performed on the HULK device using biomechanical simulation, with the long-term goal to improve and optimize astronauts' exercise prescriptions, to maximize the benefit of exercise while minimizing time and effort invested.
Jiménez-Solano, Alberto; Galisteo-López, Juan F; Míguez, Hernán
2018-04-19
Tailoring the interaction of electromagnetic radiation with matter is central to the development of optoelectronic devices. This becomes particularly relevant for a new generation of devices offering the possibility of solution processing with competitive efficiencies as well as new functionalities. These devices, containing novel materials such as inorganic colloidal quantum dots or hybrid organic-inorganic lead halide perovskites, commonly demand thin (tens of nanometers) active layers in order to perform optimally and thus maximizing the way electromagnetic radiation interacts with these layers is essential. In this Perspective, we discuss the relevance of tailoring the optical environment of the active layer in an optoelectronic device and illustrate it with two real-world systems comprising photovoltaic cells and light emitting devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Nam-Gyu; Grätzel, Michael; Miyasaka, Tsutomu
Solar cells employing a halide perovskite with an organic cation now show power conversion efficiency of up to 22%. But, these cells are facing issues towards commercialization, such as the need to achieve long-term stability and the development of a manufacturing method for the reproducible fabrication of high-performance devices. We propose a strategy to obtain stable and commercially viable perovskite solar cells. A reproducible manufacturing method is suggested, as well as routes to manage grain boundaries and interfacial charge transport. Electroluminescence is regarded as a metric to gauge theoretical efficiency. We highlight how optimizing the design of device architectures ismore » important not only for achieving high efficiency but also for hysteresis-free and stable performance. Here, we argue that reliable device characterization is needed to ensure the advance of this technology towards practical applications. We believe that perovskite-based devices can be competitive with silicon solar modules, and discuss issues related to the safe management of toxic material.« less
Thompson-Bean, E; Das, R; McDaid, A
2016-10-31
We present a novel methodology for the design and manufacture of complex biologically inspired soft robotic fluidic actuators. The methodology is applied to the design and manufacture of a prosthetic for the hand. Real human hands are scanned to produce a 3D model of a finger, and pneumatic networks are implemented within it to produce a biomimetic bending motion. The finger is then partitioned into material sections, and a genetic algorithm based optimization, using finite element analysis, is employed to discover the optimal material for each section. This is based on two biomimetic performance criteria. Two sets of optimizations using two material sets are performed. Promising optimized material arrangements are fabricated using two techniques to validate the optimization routine, and the fabricated and simulated results are compared. We find that the optimization is successful in producing biomimetic soft robotic fingers and that fabrication of the fingers is possible. Limitations and paths for development are discussed. This methodology can be applied for other fluidic soft robotic devices.
Kim, Kang Lib; Lee, Wonho; Hwang, Sun Kak; Joo, Se Hun; Cho, Suk Man; Song, Giyoung; Cho, Sung Hwan; Jeong, Beomjin; Hwang, Ihn; Ahn, Jong-Hyun; Yu, Young-Jun; Shin, Tae Joo; Kwak, Sang Kyu; Kang, Seok Ju; Park, Cheolmin
2016-01-13
Enhancing the device performance of organic memory devices while providing high optical transparency and mechanical flexibility requires an optimized combination of functional materials and smart device architecture design. However, it remains a great challenge to realize fully functional transparent and mechanically durable nonvolatile memory because of the limitations of conventional rigid, opaque metal electrodes. Here, we demonstrate ferroelectric nonvolatile memory devices that use graphene electrodes as the epitaxial growth substrate for crystalline poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) polymer. The strong crystallographic interaction between PVDF-TrFE and graphene results in the orientation of the crystals with distinct symmetry, which is favorable for polarization switching upon the electric field. The epitaxial growth of PVDF-TrFE on a graphene layer thus provides excellent ferroelectric performance with high remnant polarization in metal/ferroelectric polymer/metal devices. Furthermore, a fully transparent and flexible array of ferroelectric field effect transistors was successfully realized by adopting transparent poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] semiconducting polymer.
Room temperature triplet state spectroscopy of organic semiconductors.
Reineke, Sebastian; Baldo, Marc A
2014-01-21
Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is 'dark' with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.
Dual Transition Edge Sensor Bolometer for Enhanced Dynamic Range
NASA Technical Reports Server (NTRS)
Chervenak, J. A.; Benford, D. J.; Moseley, S. H.; Irwin, K. D.
2004-01-01
Broadband surveys at the millimeter and submillimeter wavelengths will require bolometers that can reach new limits of sensitivity and also operate under high background conditions. To address this need, we present results on a dual transition edge sensor (TES) device with two operating modes: one for low background, ultrasensitive detection and one for high background, enhanced dynamic range detection. The device consists of a detector element with two transition temperatures (T(sub c)) of 0.25 and 0.51 K located on the same micromachined, thermally isolated membrane structure. It can be biased on either transition, and features phonon-limited noise performance at the lower T(sub c). We measure noise performance on the lower transition 7 x 10(exp -18) W/rt(Hz) and the bias power on the upper transition of 12.5 pW, giving a factor of 10 enhancement of the dynamic range for the device. We discuss the biasable range of this type of device and present a design concept to optimize utility of the device.
Design issues for optimum solar cell configuration
NASA Astrophysics Data System (ADS)
Kumar, Atul; Thakur, Ajay D.
2018-05-01
A computer based simulation of solar cell structure is performed to study the optimization of pn junction configuration for photovoltaic action. The fundamental aspects of photovoltaic action viz, absorption, separation collection, and their dependence on material properties and deatails of device structures is discussed. Using SCAPS 1D we have simulated the ideal pn junction and shown the effect of band offset and carrier densities on solar cell performance. The optimum configuration can be achieved by optimizing transport of carriers in pn junction under effect of field dependent recombination (tunneling) and density dependent recombination (SRH, Auger) mechanisms.
A monogamy-of-entanglement game with applications to device-independent quantum cryptography
NASA Astrophysics Data System (ADS)
Tomamichel, Marco; Fehr, Serge; Kaniewski, Jędrzej; Wehner, Stephanie
2013-10-01
We consider a game in which two separate laboratories collaborate to prepare a quantum system and are then asked to guess the outcome of a measurement performed by a third party in a random basis on that system. Intuitively, by the uncertainty principle and the monogamy of entanglement, the probability that both players simultaneously succeed in guessing the outcome correctly is bounded. We are interested in the question of how the success probability scales when many such games are performed in parallel. We show that any strategy that maximizes the probability to win every game individually is also optimal for the parallel repetition of the game. Our result implies that the optimal guessing probability can be achieved without the use of entanglement. We explore several applications of this result. Firstly, we show that it implies security for standard BB84 quantum key distribution when the receiving party uses fully untrusted measurement devices, i.e. we show that BB84 is one-sided device independent. Secondly, we show how our result can be used to prove security of a one-round position-verification scheme. Finally, we generalize a well-known uncertainty relation for the guessing probability to quantum side information.
Optimization of chiral structures for microscale propulsion.
Keaveny, Eric E; Walker, Shawn W; Shelley, Michael J
2013-02-13
Recent advances in micro- and nanoscale fabrication techniques allow for the construction of rigid, helically shaped microswimmers that can be actuated using applied magnetic fields. These swimmers represent the first steps toward the development of microrobots for targeted drug delivery and minimally invasive surgical procedures. To assess the performance of these devices and improve on their design, we perform shape optimization computations to determine swimmer geometries that maximize speed in the direction of a given applied magnetic torque. We directly assess aspects of swimmer shapes that have been developed in previous experimental studies, including helical propellers with elongated cross sections and attached payloads. From these optimizations, we identify key improvements to existing designs that result in swimming speeds that are 70-470% of their original values.
Optimized optical devices for edge-coupling-enabled silicon photonics platform
NASA Astrophysics Data System (ADS)
Png, Ching Eng; Ang, Thomas Y. L.; Ong, Jun Rong; Lim, Soon Thor; Sahin, Ezgi; Chen, G. F. R.; Tan, D. T. H.; Guo, Tina X.; Wang, Hong
2018-02-01
We present a library of high-performance passive and active silicon photonic devices at the C-band that is specifically designed and optimized for edge-coupling-enabled silicon photonics platform. These devices meet the broadband (100 nm), low-loss (< 2dB per device), high speed (>= 25 Gb/s), and polarization diversity requirements (TE and TM polarization extinction ratio <= 25 dB) for optical communication applications. Ultra-low loss edge couplers, broadband directional couplers, high-extinction ratio polarization beam splitters (PBSs), and high-speed modulators are some of the devices within our library. In particular, we have designed and fabricated inverse taper fiber-to-waveguide edge couplers of tip widths ranging from 120 nm to 200 nm, and we obtained a low coupling loss of 1.80+/-0.28 dB for 160 nm tip width. To achieve polarization diversity operation for inverse tapers, we have experimentally realized different designs of polarization beam splitters (PBS). Our optimized PBS has a measured extinction ratio of <= 25 dB for both the quasiTE modes, and quasi-TM modes. Additionally, a broadband (100 nm) directional coupler with a 50/50 power splitting ratio was experimentally realized on a small footprint of 20×3 μm2 . Last but not least, high-speed silicon modulators with a range of carrier doping concentrations and offset of the PN junction can be used to optimise the modulation efficiency, and insertion losses for operation at 25 GHz.
NASA Astrophysics Data System (ADS)
Raring, James W.
The proliferation of the internet has fueled the explosive growth of telecommunications over the past three decades. As a result, the demand for communication systems providing increased bandwidth and flexibility at lower cost continues to rise. Lightwave communication systems meet these demands. The integration of multiple optoelectronic components onto a single chip could revolutionize the photonics industry. Photonic integrated circuits (PIC) provide the potential for cost reduction, decreased loss, decreased power consumption, and drastic space savings over conventional fiber optic communication systems comprised of discrete components. For optimal performance, each component within the PIC may require a unique epitaxial layer structure, band-gap energy, and/or waveguide architecture. Conventional integration methods facilitating such flexibility are increasingly complex and often result in decreased device yield, driving fabrication costs upward. It is this trade-off between performance and device yield that has hindered the scaling of photonic circuits. This dissertation presents high-functionality PICs operating at 10 and 40 Gb/s fabricated using novel integration technologies based on a robust quantum-well-intermixing (QWI) method and metal organic chemical vapor deposition (MOCVD) regrowth. We optimize the QWI process for the integration of high-performance quantum well electroabsorption modulators (QW-EAM) with sampled-grating (SG) DBR lasers to demonstrate the first widely-tunable negative chirp 10 and 40 Gb/s EAM based transmitters. Alone, QWI does not afford the integration of high-performance semiconductor optical amplifiers (SOA) and photodetectors with the transmitters. To overcome this limitation, we have developed a novel high-flexibility integration scheme combining MOCVD regrowth with QWI to merge low optical confinement factor SOAs and 40 Gb/s uni-traveling carrier (UTC) photodiodes on the same chip as the QW-EAM based transmitters. These high-saturation power receiver structures represent the state-of-the-art technologies for even discrete components. Using the novel integration technology, we present the first widely-tunable single-chip device capable of transmit and receive functionality at 40 Gb/s. This device monolithically integrates tunable lasers, EAMs, SOAs, and photodetectors with performance that rivals optimized discrete components. The high-flexibility integration scheme requires only simple blanket regrowth steps and thus breaks the performance versus yield trade-off plaguing conventional fabrication techniques employed for high-functionality PICs.
Carlos, Emanuel; Kiazadeh, Asal; Deuermeier, Jonas; Branquinho, Rita; Martins, Rodrigo; Fortunato, Elvira
2018-08-24
Lately, resistive switching memories (ReRAM) have been attracting a lot of attention due to their possibilities of fast operation, lower power consumption and simple fabrication process and they can also be scaled to very small dimensions. However, most of these ReRAM are produced by physical methods and nowadays the industry demands more simplicity, typically associated with low cost manufacturing. As such, ReRAMs in this work are developed from a solution-based aluminum oxide (Al 2 O 3 ) using a simple combustion synthesis process. The device performance is optimized by two-stage deposition of the Al 2 O 3 film. The resistive switching properties of the bilayer devices are reproducible with a yield of 100%. The ReRAM devices show unipolar resistive switching behavior with good endurance and retention time up to 10 5 s at 85 °C. The devices can be programmed in a multi-level cell operation mode by application of different reset voltages. Temperature analysis of various resistance states reveals a filamentary nature based on the oxygen vacancies. The optimized film was stacked between ITO and indium zinc oxide, targeting a fully transparent device for applications on transparent system-on-panel technology.
Genetically Engineered Microelectronic Infrared Filters
NASA Technical Reports Server (NTRS)
Cwik, Tom; Klimeck, Gerhard
1998-01-01
A genetic algorithm is used for design of infrared filters and in the understanding of the material structure of a resonant tunneling diode. These two components are examples of microdevices and nanodevices that can be numerically simulated using fundamental mathematical and physical models. Because the number of parameters that can be used in the design of one of these devices is large, and because experimental exploration of the design space is unfeasible, reliable software models integrated with global optimization methods are examined The genetic algorithm and engineering design codes have been implemented on massively parallel computers to exploit their high performance. Design results are presented for the infrared filter showing new and optimized device design. Results for nanodevices are presented in a companion paper at this workshop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, Yunzi; Nishio, Kazuyuki; Saitow, Ken-ichi, E-mail: saitow@hiroshima-u.ac.jp
A silicon (Si) quantum dot (QD)-based hybrid inorganic/organic light-emitting diode (LED) was fabricated via solution processing. This device exhibited white-blue electroluminescence at a low applied voltage of 6 V, with 78% of the effective emission obtained from the Si QDs. This hybrid LED produced current and optical power densities 280 and 350 times greater than those previously reported for such device. The superior performance of this hybrid device was obtained by both the prepared Si QDs and the optimized layer structure and thereby improving carrier migration through the hybrid LED and carrier recombination in the homogeneous Si QD layer.
High-sensitivity silicon nanowire phototransistors
NASA Astrophysics Data System (ADS)
Tan, Siew Li; Zhao, Xingyan; Dan, Yaping
2014-08-01
Silicon nanowires (SiNWs) have emerged as a promising material for high-sensitivity photodetection in the UV, visible and near-infrared spectral ranges. In this work, we demonstrate novel planar SiNW phototransistors on silicon-oninsulator (SOI) substrate using CMOS-compatible processes. The device consists of a bipolar transistor structure with an optically-injected base region. The electronic and optical properties of the SiNW phototransistors are investigated. Preliminary simulation and experimental results show that nanowire geometry, doping densities and surface states have considerable effects on the device performance, and that a device with optimized parameters can potentially outperform conventional Si photodetectors.
Real-time localization of mobile device by filtering method for sensor fusion
NASA Astrophysics Data System (ADS)
Fuse, Takashi; Nagara, Keita
2017-06-01
Most of the applications with mobile devices require self-localization of the devices. GPS cannot be used in indoor environment, the positions of mobile devices are estimated autonomously by using IMU. Since the self-localization is based on IMU of low accuracy, and then the self-localization in indoor environment is still challenging. The selflocalization method using images have been developed, and the accuracy of the method is increasing. This paper develops the self-localization method without GPS in indoor environment by integrating sensors, such as IMU and cameras, on mobile devices simultaneously. The proposed method consists of observations, forecasting and filtering. The position and velocity of the mobile device are defined as a state vector. In the self-localization, observations correspond to observation data from IMU and camera (observation vector), forecasting to mobile device moving model (system model) and filtering to tracking method by inertial surveying and coplanarity condition and inverse depth model (observation model). Positions of a mobile device being tracked are estimated by system model (forecasting step), which are assumed as linearly moving model. Then estimated positions are optimized referring to the new observation data based on likelihood (filtering step). The optimization at filtering step corresponds to estimation of the maximum a posterior probability. Particle filter are utilized for the calculation through forecasting and filtering steps. The proposed method is applied to data acquired by mobile devices in indoor environment. Through the experiments, the high performance of the method is confirmed.
Liu, Zhike; Lau, Shu Ping; Yan, Feng
2015-08-07
Graphene is the thinnest two-dimensional (2D) carbon material and has many advantages including high carrier mobilities and conductivity, high optical transparency, excellent mechanical flexibility and chemical stability, which make graphene an ideal material for various optoelectronic devices. The major applications of graphene in photovoltaic devices are for transparent electrodes and charge transport layers. Several other 2D materials have also shown advantages in charge transport and light absorption over traditional semiconductor materials used in photovoltaic devices. Great achievements in the applications of 2D materials in photovoltaic devices have been reported, yet numerous challenges still remain. For practical applications, the device performance should be further improved by optimizing the 2D material synthesis, film transfer, surface functionalization and chemical/physical doping processes. In this review, we will focus on the recent advances in the applications of graphene and other 2D materials in various photovoltaic devices, including organic solar cells, Schottky junction solar cells, dye-sensitized solar cells, quantum dot-sensitized solar cells, other inorganic solar cells, and perovskite solar cells, in terms of the functionalization techniques of the materials, the device design and the device performance. Finally, conclusions and an outlook for the future development of this field will be addressed.
Layout optimization of GGISCR structure for on-chip system level ESD protection applications
NASA Astrophysics Data System (ADS)
Zeng, Jie; Dong, Shurong; Wong, Hei; Hu, Tao; Li, Xiang
2016-12-01
To improve the holding voltage, area efficiency and robustness, a comparative study on single finger, 4-finger and round shape layout of gate-grounded-nMOS incorporated SCR (GGISCR) devices are conducted. The devices were fabricated with a commercial 0.35 μm HV-CMOS process without any additional mask or process modification. To have a fair comparison, we develop a new Figure-of-Merit (FOM) modeling for the performance evaluation of these devices. We found that the ring type device which has an It2 value of 18.9 A is area efficient and has smaller effective capacitance. The different characteristics were explained with the different effective ESD currents in these layout structures.
Optimization and evaluation of the human fall detection system
NASA Astrophysics Data System (ADS)
Alzoubi, Hadeel; Ramzan, Naeem; Shahriar, Hasan; Alzubi, Raid; Gibson, Ryan; Amira, Abbes
2016-10-01
Falls are the most critical health problem for elderly people, which are often, cause significant injuries. To tackle a serious risk that made by the fall, we develop an automatic wearable fall detection system utilizing two devices (mobile phone and wireless sensor) based on three axes accelerometer signals. The goal of this study is to find an effective machine learning method that distinguish falls from activities of daily living (ADL) using only a single triaxial accelerometer. In addition, comparing the performance results for wearable sensor and mobile device data .The proposed model detects the fall by using seven different classifiers and the significant performance is demonstrated using accuracy, recall, precision and F-measure. Our model obtained accuracy over 99% on wearable device data and over 97% on mobile phone data.
Mid-infrared refractive index sensing using optimized slotted photonic crystal waveguides
NASA Astrophysics Data System (ADS)
Kassa-Baghdouche, Lazhar; Cassan, Eric
2018-02-01
Slotted photonic crystal waveguides (SPCWs) were designed to act as refractive index sensing devices at mid-infrared (IR) wavelengths around λ = 3.6 μm. In particular, effort was made to engineer the input and output slot waveguide interfaces in order to increase the effective sensitivity through resonant tapering. A slotted PhC waveguide immersed in air and liquid cladding layers was considered. To determine the performance of the sensor, the sensitivity of the device was estimated by calculating the shift in the upper band edge of the output transmission spectrum. The results showed that the sensitivity of a conventionally designed SPCW followed by modifications in the structure parameter yielded a 510 nm shift in the wavelength position of the upper band edge, indicating a sensitivity of more than 1150 nm per refractive index unit (RIU) with an insertion loss level of -0.3 dB. This work demonstrates the viability of photonic crystal waveguide high sensitivity devices in the Mid-IR, following a transposition of the concepts inherited from the telecom band and an optimization of the design, in particular a minimization of photonic device insertion losses.
Seismic isolation device having charging function by a transducer
NASA Astrophysics Data System (ADS)
Yamaguchi, Takashi; Miura, Nanako; Takahashi, Masaki
2016-04-01
In late years, many base isolated structures are planned as the seismic design, because they suppress vibration response significantly against large earthquake. To achieve greater safety, semi-active or active vibration control system is installed in the structures as earthquake countermeasures. Semi-active and active vibration control systems are more effective than passive vibration control system to large earthquake in terms of vibration reduction. However semi-active and active vibration control system cannot operate as required when external power supply is cut off. To solve the problem of energy consumption, we propose a self-powered active seismic isolation floor which achieve active control system using regenerated vibration energy. This device doesn't require external energy to produce control force. The purpose of this study is to propose the seismic isolation device having charging function and to optimize the control system and passive elements such as spring coefficients and damping coefficients using genetic algorithm. As a result, optimized model shows better performance in terms of vibration reduction and electric power regeneration than the previous model. At the end of this paper, the experimental specimen of the proposed isolation device is shown.
Payne, Christopher J; Wamala, Isaac; Abah, Colette; Thalhofer, Thomas; Saeed, Mossab; Bautista-Salinas, Daniel; Horvath, Markus A; Vasilyev, Nikolay V; Roche, Ellen T; Pigula, Frank A; Walsh, Conor J
2017-09-01
Soft robotic devices have significant potential for medical device applications that warrant safe synergistic interaction with humans. This article describes the optimization of an implantable soft robotic system for heart failure whereby soft actuators wrapped around the ventricles are programmed to contract and relax in synchrony with the beating heart. Elastic elements integrated into the soft actuators provide recoiling function so as to aid refilling during the diastolic phase of the cardiac cycle. Improved synchronization with the biological system is achieved by incorporating the native ventricular pressure into the control system to trigger assistance and synchronize the device with the heart. A three-state electro-pneumatic valve configuration allows the actuators to contract at different rates to vary contraction patterns. An in vivo study was performed to test three hypotheses relating to mechanical coupling and temporal synchronization of the actuators and heart. First, that adhesion of the actuators to the ventricles improves cardiac output. Second, that there is a contraction-relaxation ratio of the actuators which generates optimal cardiac output. Third, that the rate of actuator contraction is a factor in cardiac output.
Gardiner, James; Bari, Abu Zeeshan; Kenney, Laurence; Twiste, Martin; Moser, David; Zahedi, Saeed; Howard, David
2017-12-01
Current energy storage and return prosthetic feet only marginally reduce the cost of amputee locomotion compared with basic solid ankle cushioned heel feet, possibly due to their lack of push-off at the end of stance. To the best of our knowledge, a prosthetic ankle that utilizes a hydraulic variable displacement actuator (VDA) to improve push-off performance has not previously been proposed. Therefore, here we report a design optimization and simulation feasibility study for a VDA-based prosthetic ankle. The proposed device stores the eccentric ankle work done from heel strike to maximum dorsiflexion in a hydraulic accumulator and then returns the stored energy to power push-off. Optimization was used to establish the best spring characteristic and gear ratio between ankle and VDA. The corresponding simulations show that, in level walking, normal push-off is achieved and, per gait cycle, the energy stored in the accumulator increases by 22% of the requirements for normal push-off. Although the results are promising, there are many unanswered questions and, for this approach to be a success, a new miniature, low-losses, and lightweight VDA would be required that is half the size of the smallest commercially available device.
Enhancing the versatility of wireless biopotential acquisition for myoelectric prosthetic control.
Bercich, Rebecca A; Wang, Zhi; Mei, Henry; Hammer, Lauren H; Seburn, Kevin L; Hargrove, Levi J; Irazoqui, Pedro P
2016-08-01
A significant challenge in rehabilitating upper-limb amputees with sophisticated, electric-powered prostheses is sourcing reliable and independent channels of motor control information sufficient to precisely direct multiple degrees of freedom simultaneously. In response to the expressed needs of clinicians, we have developed a miniature, batteryless recording device that utilizes emerging integrated circuit technology and optimal impedance matching for magnetic resonantly coupled (MRC) wireless power transfer to improve the performance and versatility of wireless electrode interfaces with muscle. In this work we describe the fabrication and performance of a fully wireless and batteryless EMG recording system and use of this system to direct virtual and electric-powered limbs in real-time. The advantage of using MRC to optimize power transfer to a network of wireless devices is exhibited by EMG collected from an array of eight devices placed circumferentially around a human subject's forearm. This is a comprehensive, low-cost, and non-proprietary solution that provides unprecedented versatility of configuration to direct myoelectric prostheses without wired connections to the body. The amenability of MRC to varied coil geometries and arrangements has the potential to improve the efficiency and robustness of wireless power transfer links at all levels of upper-limb amputation. Additionally, the wireless recording device's programmable flash memory and selectable features will grant clinicians the unique ability to adapt and personalize the recording system's functional protocol for patient- or algorithm-specific needs.
Improving acute care through use of medical device data.
Kennelly, R J
1998-02-01
The Medical Information Bus (MIB) is a data communications standard for bedside patient connected medical devices. It is formally titled IEEE 1073 Standard for Medical Device Communications. MIB defines a complete seven layer communications stack for devices in acute care settings. All of the design trade-offs in writing the standard were taken to optimize performance in acute care settings. The key clinician based constraints on network performance are: (1) the network must be able to withstand multiple daily reconfigurations due to patient movement and condition changes; (2) the network must be 'plug-and-play' to allow clinicians to set up the network by simply plugging in a connector, taking no other actions; (3) the network must allow for unambiguous associations of devices with specific patients. A network of this type will be used by clinicians, thus giving complete, accurate, real time data from patient connected devices. This capability leads to many possible improvements in patient care and hospital cost reduction. The possible uses for comprehensive automatic data capture are only limited by imagination and creativity of clinicians adapting to the new hospital business paradigm.
Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U
NASA Astrophysics Data System (ADS)
Lopez, N. A.; Poli, F. M.
2018-06-01
Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 52 083015) show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modeling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here, we extend a previous optimization of O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97% of the absorbed EBW power.
Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Nicolas; Poli, Francesca M.
Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) [Menard J et al 2012 Nucl. Fusion 52 083015] show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modelling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here in this paper, we extend a previous optimization ofmore » O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97\\% of the absorbed EBW power.« less
Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U
Lopez, Nicolas; Poli, Francesca M.
2018-03-29
Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) [Menard J et al 2012 Nucl. Fusion 52 083015] show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modelling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here in this paper, we extend a previous optimization ofmore » O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97\\% of the absorbed EBW power.« less
Fog computing job scheduling optimization based on bees swarm
NASA Astrophysics Data System (ADS)
Bitam, Salim; Zeadally, Sherali; Mellouk, Abdelhamid
2018-04-01
Fog computing is a new computing architecture, composed of a set of near-user edge devices called fog nodes, which collaborate together in order to perform computational services such as running applications, storing an important amount of data, and transmitting messages. Fog computing extends cloud computing by deploying digital resources at the premise of mobile users. In this new paradigm, management and operating functions, such as job scheduling aim at providing high-performance, cost-effective services requested by mobile users and executed by fog nodes. We propose a new bio-inspired optimization approach called Bees Life Algorithm (BLA) aimed at addressing the job scheduling problem in the fog computing environment. Our proposed approach is based on the optimized distribution of a set of tasks among all the fog computing nodes. The objective is to find an optimal tradeoff between CPU execution time and allocated memory required by fog computing services established by mobile users. Our empirical performance evaluation results demonstrate that the proposal outperforms the traditional particle swarm optimization and genetic algorithm in terms of CPU execution time and allocated memory.
Development and testing of tip devices for horizontal axis wind turbines
NASA Technical Reports Server (NTRS)
Gyatt, G. W.; Lissaman, P. B. S.
1985-01-01
A theoretical and field experimental program has been carried out to investigate the use of tip devices on horizontal axis wind turbine rotors. The objective was to improve performance by the reduction of tip losses. While power output can always be increased by a simple radial tip extension, such a modification also results in an increased gale load both because of the extra projected area and longer moment arm. Tip devices have the potential to increase power output without such a structural penalty. A vortex lattice computer model was used to optimize three basic tip configuration types for a 25 kW stall limited commercial wind turbine. The types were a change in tip planform, and a single-element and double-element nonplanar tip extension (winglets). A complete data acquisition system was developed which recorded three wind speed components, ambient pressure, temperature, and turbine output. The system operated unattended and could perform real-time processing of the data, displaying the measured power curve as data accumulated in either a bin sort mode or polynomial curve fit. Approximately 270 hr of perormance data were collected over a three-month period. The sampling interval was 2.4 sec; thrus over 400,000 raw data points were logged. Results for each of the three new tip devices, compared with the original tip, showed a small decrease (of the order of 1 kW) in power output over the measured range of wind speeds from cut-in at about 4 m/s to over 20 m/s, well into the stall limiting region. Changes in orientation and angle-of-attack of the winglets were not made. For aircraft wing tip devices, favorable tip shapes have been reported and it is likely that the tip devices tested in this program did not improve rotor performance because they were not optimally adjusted.
NASA Astrophysics Data System (ADS)
Zhao, Yijia; Zhang, Yichen; Xu, Bingjie; Yu, Song; Guo, Hong
2018-04-01
The method of improving the performance of continuous-variable quantum key distribution protocols by postselection has been recently proposed and verified. In continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocols, the measurement results are obtained from untrusted third party Charlie. There is still not an effective method of improving CV-MDI QKD by the postselection with untrusted measurement. We propose a method to improve the performance of coherent-state CV-MDI QKD protocol by virtual photon subtraction via non-Gaussian postselection. The non-Gaussian postselection of transmitted data is equivalent to an ideal photon subtraction on the two-mode squeezed vacuum state, which is favorable to enhance the performance of CV-MDI QKD. In CV-MDI QKD protocol with non-Gaussian postselection, two users select their own data independently. We demonstrate that the optimal performance of the renovated CV-MDI QKD protocol is obtained with the transmitted data only selected by Alice. By setting appropriate parameters of the virtual photon subtraction, the secret key rate and tolerable excess noise are both improved at long transmission distance. The method provides an effective optimization scheme for the application of CV-MDI QKD protocols.
NASA Astrophysics Data System (ADS)
Umar, Akrajas Ali; Al-She'irey, Altaf Yahya Ahmed; Rahman, Mohd Yusri Abd; Salleh, Muhamad Mat; Oyama, Munetaka
2018-05-01
The structure and crystallinity of the photoactive materials in solar cell determines the exciton formation, carrier's recombination, life-time and transportation in the devices. Here, we report that enhanced charge transportation, internal quantum efficiency and the carrier life-time can be achieved by modifying the structure, morphology of the organic perovskite thin film, enabling the improvement of the solar cell performance. The thin film structure modification was achieved via a thermal annealing in vacuum. In typical procedure, the power conversion efficiency of the PSC device can be upgraded from 0.5 to 2.9%, which is approximately 6 times increment, when the surface structure disorders are limited in the organic perovskite thin film. By optimizing the organic perovskite loading on the Ga-TiO2 diatom-like nanostructures photoanode and combining with a fine control of organic perovskite thin film structure, power conversion efficiency as high as 6.58% can be generated from the device. Electrochemical impedance spectroscopy and current-voltage analysis in the dark indicated that this process has effectively augmented the carrier life-time and limited the carrier recombination, enhancing the overall performance of the solar cell device. The preparation process and mechanism of the device performance improvement will be discussed.
Empirically based device modeling of bulk heterojunction organic photovoltaics
NASA Astrophysics Data System (ADS)
Pierre, Adrien; Lu, Shaofeng; Howard, Ian A.; Facchetti, Antonio; Arias, Ana Claudia
2013-10-01
An empirically based, open source, optoelectronic model is constructed to accurately simulate organic photovoltaic (OPV) devices. Bulk heterojunction OPV devices based on a new low band gap dithienothiophene- diketopyrrolopyrrole donor polymer (P(TBT-DPP)) are blended with PC70BM and processed under various conditions, with efficiencies up to 4.7%. The mobilities of electrons and holes, bimolecular recombination coefficients, exciton quenching efficiencies in donor and acceptor domains and optical constants of these devices are measured and input into the simulator to yield photocurrent with less than 7% error. The results from this model not only show carrier activity in the active layer but also elucidate new routes of device optimization by varying donor-acceptor composition as a function of position. Sets of high and low performance devices are investigated and compared side-by-side.
Programming and Tuning a Quantum Annealing Device to Solve Real World Problems
NASA Astrophysics Data System (ADS)
Perdomo-Ortiz, Alejandro; O'Gorman, Bryan; Fluegemann, Joseph; Smelyanskiy, Vadim
2015-03-01
Solving real-world applications with quantum algorithms requires overcoming several challenges, ranging from translating the computational problem at hand to the quantum-machine language to tuning parameters of the quantum algorithm that have a significant impact on the performance of the device. In this talk, we discuss these challenges, strategies developed to enhance performance, and also a more efficient implementation of several applications. Although we will focus on applications of interest to NASA's Quantum Artificial Intelligence Laboratory, the methods and concepts presented here apply to a broader family of hard discrete optimization problems, including those that occur in many machine-learning algorithms.
Park, Jong Kang; Rowlands, Christopher J; So, Peter T C
2017-01-01
Temporal focusing multiphoton microscopy is a technique for performing highly parallelized multiphoton microscopy while still maintaining depth discrimination. While the conventional wide-field configuration for temporal focusing suffers from sub-optimal axial resolution, line scanning temporal focusing, implemented here using a digital micromirror device (DMD), can provide substantial improvement. The DMD-based line scanning temporal focusing technique dynamically trades off the degree of parallelization, and hence imaging speed, for axial resolution, allowing performance parameters to be adapted to the experimental requirements. We demonstrate this new instrument in calibration specimens and in biological specimens, including a mouse kidney slice.
Park, Jong Kang; Rowlands, Christopher J.; So, Peter T. C.
2017-01-01
Temporal focusing multiphoton microscopy is a technique for performing highly parallelized multiphoton microscopy while still maintaining depth discrimination. While the conventional wide-field configuration for temporal focusing suffers from sub-optimal axial resolution, line scanning temporal focusing, implemented here using a digital micromirror device (DMD), can provide substantial improvement. The DMD-based line scanning temporal focusing technique dynamically trades off the degree of parallelization, and hence imaging speed, for axial resolution, allowing performance parameters to be adapted to the experimental requirements. We demonstrate this new instrument in calibration specimens and in biological specimens, including a mouse kidney slice. PMID:29387484
NASA Astrophysics Data System (ADS)
Pozzi, Paolo; Wilding, Dean; Soloviev, Oleg; Vdovin, Gleb; Verhaegen, Michel
2018-02-01
In this work, we present a new confocal laser scanning microscope capable to perform sensorless wavefront optimization in real time. The device is a parallelized laser scanning microscope in which the excitation light is structured in a lattice of spots by a spatial light modulator, while a deformable mirror provides aberration correction and scanning. A binary DMD is positioned in an image plane of the detection optical path, acting as a dynamic array of reflective confocal pinholes, images by a high performance cmos camera. A second camera detects images of the light rejected by the pinholes for sensorless aberration correction.
Ab Initio Assessment of the Thermoelectric Performance of Ruthenium-Doped Gadolinium Orthotantalate
NASA Technical Reports Server (NTRS)
Goldsby, Jon
2016-01-01
Solid state energy harvesting using waste heat available in gas turbine engine, offers potential for power generation to meet growing power needs of aircraft. Thermoelectric material advances offer new opportunities. Weight-optimized integrated turbine engine structure incorporating energy conversion devices.
Simultaneous Calibration: A Joint Optimization Approach for Multiple Kinect and External Cameras.
Liao, Yajie; Sun, Ying; Li, Gongfa; Kong, Jianyi; Jiang, Guozhang; Jiang, Du; Cai, Haibin; Ju, Zhaojie; Yu, Hui; Liu, Honghai
2017-06-24
Camera calibration is a crucial problem in many applications, such as 3D reconstruction, structure from motion, object tracking and face alignment. Numerous methods have been proposed to solve the above problem with good performance in the last few decades. However, few methods are targeted at joint calibration of multi-sensors (more than four devices), which normally is a practical issue in the real-time systems. In this paper, we propose a novel method and a corresponding workflow framework to simultaneously calibrate relative poses of a Kinect and three external cameras. By optimizing the final cost function and adding corresponding weights to the external cameras in different locations, an effective joint calibration of multiple devices is constructed. Furthermore, the method is tested in a practical platform, and experiment results show that the proposed joint calibration method can achieve a satisfactory performance in a project real-time system and its accuracy is higher than the manufacturer's calibration.
Simultaneous Calibration: A Joint Optimization Approach for Multiple Kinect and External Cameras
Liao, Yajie; Sun, Ying; Li, Gongfa; Kong, Jianyi; Jiang, Guozhang; Jiang, Du; Cai, Haibin; Ju, Zhaojie; Yu, Hui; Liu, Honghai
2017-01-01
Camera calibration is a crucial problem in many applications, such as 3D reconstruction, structure from motion, object tracking and face alignment. Numerous methods have been proposed to solve the above problem with good performance in the last few decades. However, few methods are targeted at joint calibration of multi-sensors (more than four devices), which normally is a practical issue in the real-time systems. In this paper, we propose a novel method and a corresponding workflow framework to simultaneously calibrate relative poses of a Kinect and three external cameras. By optimizing the final cost function and adding corresponding weights to the external cameras in different locations, an effective joint calibration of multiple devices is constructed. Furthermore, the method is tested in a practical platform, and experiment results show that the proposed joint calibration method can achieve a satisfactory performance in a project real-time system and its accuracy is higher than the manufacturer’s calibration. PMID:28672823
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamaluy, Denis; Gao, Xujiao; Tierney, Brian David
We created a highly efficient, universal 3D quant um transport simulator. We demonstrated that the simulator scales linearly - both with the problem size (N) and number of CPUs, which presents an important break-through in the field of computational nanoelectronics. It allowed us, for the first time, to accurately simulate and optim ize a large number of realistic nanodevices in a much shorter time, when compared to other methods/codes such as RGF[%7EN 2.333 ]/KNIT, KWANT, and QTBM[%7EN 3 ]/NEMO5. In order to determine the best-in-class for different beyond-CMOS paradigms, we performed rigorous device optimization for high-performance logic devices at 6-,more » 5- and 4-nm gate lengths. We have discovered that there exists a fundamental down-scaling limit for CMOS technology and other Field-Effect Transistors (FETs). We have found that, at room temperatures, all FETs, irre spective of their channel material, will start experiencing unacceptable level of thermally induced errors around 5-nm gate lengths.« less
NASA Astrophysics Data System (ADS)
Ko, Heasin; Lim, Kyongchun; Oh, Junsang; Rhee, June-Koo Kevin
2016-10-01
Quantum channel loopholes due to imperfect implementations of practical devices expose quantum key distribution (QKD) systems to potential eavesdropping attacks. Even though QKD systems are implemented with optical devices that are highly selective on spectral characteristics, information theory-based analysis about a pertinent attack strategy built with a reasonable framework exploiting it has never been clarified. This paper proposes a new type of trojan horse attack called hidden pulse attack that can be applied in a plug-and-play QKD system, using general and optimal attack strategies that can extract quantum information from phase-disturbed quantum states of eavesdropper's hidden pulses. It exploits spectral characteristics of a photodiode used in a plug-and-play QKD system in order to probe modulation states of photon qubits. We analyze the security performance of the decoy-state BB84 QKD system under the optimal hidden pulse attack model that shows enormous performance degradation in terms of both secret key rate and transmission distance.
Lee, Jaekwang; Huang, Jingsong; Sumpter, Bobby G.; ...
2017-02-17
Compared with their bulk counterparts, 2D materials can sustain much higher elastic strain at which optical quantities such as bandgaps and absorption spectra governing optoelectronic device performance can be modified with relative ease. Using first-principles density functional theory and quasiparticle GW calculations, we demonstrate how uniaxial tensile strain can be utilized to optimize the electronic and optical properties of transition metal dichalcogenide lateral (in-plane) heterostructures such as MoX 2/WX 2 (X = S, Se, Te). We find that these lateral-type heterostructures may facilitate efficient electron–hole separation for light detection/harvesting and preserve their type II characteristic up to 12% of uniaxialmore » strain. Based on the strain-dependent bandgap and band offset, we show that uniaxial tensile strain can significantly increase the power conversion efficiency of these lateral heterostructures. Our results suggest that these strain-engineered lateral heterostructures are promising for optimizing optoelectronic device performance by selectively tuning the energetics of the bandgap.« less
1D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization
Li, Xing; Sun, Mei; Wei, Xianlong; Shan, Chongxin
2018-01-01
Due to the enhanced piezoelectric properties, excellent mechanical properties and tunable electric properties, one-dimensional (1D) piezoelectric materials have shown their promising applications in nanogenerators (NG), sensors, actuators, electronic devices etc. To present a clear view about 1D piezoelectric materials, this review mainly focuses on the characterization and optimization of the piezoelectric properties of 1D nanomaterials, including semiconducting nanowires (NWs) with wurtzite and/or zinc blend phases, perovskite NWs and 1D polymers. Specifically, the piezoelectric coefficients, performance of single NW-based NG and structure-dependent electromechanical properties of 1D nanostructured materials can be respectively investigated through piezoresponse force microscopy, atomic force microscopy and the in-situ scanning/transmission electron microcopy. Along with the introduction of the mechanism and piezoelectric properties of 1D semiconductor, perovskite materials and polymers, their performance improvement strategies are summarized from the view of microstructures, including size-effect, crystal structure, orientation and defects. Finally, the extension of 1D piezoelectric materials in field effect transistors and optoelectronic devices are simply introduced. PMID:29570639
Pictures and text in instructions for medical devices: effects on recall and actual performance.
Kools, Marieke; van de Wiel, Margaretha W J; Ruiter, Robert A C; Kok, Gerjo
2006-12-01
The present study aimed to contribute to the design of effective health education information. Based on cognitive-psychological theory, pictures were expected to improve understanding of two existing textual instructions for using asthma devices (inhaler chamber and peak flow meter). From an analysis of the affordances and constraints of both devices this effect was expected to be stronger with the inhaler chamber than with the peak flow meter. To test this, both instructions were systematically illustrated with seven line-drawings visualizing the actions. In two separate randomized controlled trials with in total 99 participants from the general public, the original text-only versions were compared to the text-picture versions of the same instruction. Dependent variables were participants' recall of the instructions and the quality of their performance with the instruction observed from video-recordings. Conform expectations, the results showed significant positive effects of pictures on recall and performance in both instructions, especially with the inhaler chamber. Thus, pictures may contribute to a better comprehension and use of medical devices that are inherently less clear. Health educators may optimize instruction design by careful analysis of the device with instruction and observational testing with potential users.
Performance analysis of resistive switching devices based on BaTiO3 thin films
NASA Astrophysics Data System (ADS)
Samardzic, Natasa; Kojic, Tijana; Vukmirovic, Jelena; Tripkovic, Djordjije; Bajac, Branimir; Srdic, Vladimir; Stojanovic, Goran
2016-03-01
Resitive switching devices, memristors, have recenty attracted much attention due to promising performances and potential applications in the field of logic and memory devices. Here, we present thin film BaTiO3 based memristor fabricated using ink-jet printing technique. Active material is a single layer barium titanate film with thickness of ̴100 nm, sandwitched between metal electodes. Printing parameters were optimized aiming to achieve stable drop flow and uniform printed layer. Current-voltage characteristics show typical memristive behavior with pinched hysteresis loop crossed at the origin, with marked differences between High Resistive State (HRS) and Low Resistive State (LRS). Obtained resistive states are stable during numerous switching processes. The device also shows unipolar switching effect for negative voltage impulses. Variable voltage impulse amplitudes leads to the shifting of the energy levels of electode contacts resulting in changing of the overall current through the device. Structural charcterization have been performed using XRD analysis and SEM micrography. High-temperature current-voltage measurements combined with transport parameter analysis using Hall efect measurement system (HMS 3000) and Impedance Analyzer AC measurements allows deeper insigth into conduction mechanism of ferroelectric memristors.
Optimization of a miniature Maglev ventricular assist device for pediatric circulatory support.
Zhang, Juntao; Koert, Andrew; Gellman, Barry; Gempp, Thomas M; Dasse, Kurt A; Gilbert, Richard J; Griffith, Bartley P; Wu, Zhongjun J
2007-01-01
A miniature Maglev blood pump based on magnetically levitated bearingless technology is being developed and optimized for pediatric patients. We performed impeller optimization by characterizing the hemodynamic and hemocompatibility performances using a combined computational and experimental approach. Both three-dimensional flow features and hemolytic characteristics were analyzed using computational fluid dynamics (CFD) modeling. Hydraulic pump performances and hemolysis levels of three different impeller designs were quantified and compared numerically. Two pump prototypes were constructed from the two impeller designs and experimentally tested. Comparison of CFD predictions with experimental results showed good agreement. The optimized impeller remarkably increased overall pump hydraulic output by more than 50% over the initial design. The CFD simulation demonstrated a clean and streamlined flow field in the main flow path. The numerical results by hemolysis model indicated no significant high shear stress regions. Through the use of CFD analysis and bench-top testing, the small pediatric pump was optimized to achieve a low level of blood damage and improved hydraulic performance and efficiency. The Maglev pediatric blood pump is innovative due to its small size, very low priming volume, excellent hemodynamic and hematologic performance, and elimination of seal-related and bearing-related failures due to adoption of magnetically levitated bearingless motor technology, making it ideal for pediatric applications.
Computational design optimization for microfluidic magnetophoresis
Plouffe, Brian D.; Lewis, Laura H.; Murthy, Shashi K.
2011-01-01
Current macro- and microfluidic approaches for the isolation of mammalian cells are limited in both efficiency and purity. In order to design a robust platform for the enumeration of a target cell population, high collection efficiencies are required. Additionally, the ability to isolate pure populations with minimal biological perturbation and efficient off-chip recovery will enable subcellular analyses of these cells for applications in personalized medicine. Here, a rational design approach for a simple and efficient device that isolates target cell populations via magnetic tagging is presented. In this work, two magnetophoretic microfluidic device designs are described, with optimized dimensions and operating conditions determined from a force balance equation that considers two dominant and opposing driving forces exerted on a magnetic-particle-tagged cell, namely, magnetic and viscous drag. Quantitative design criteria for an electromagnetic field displacement-based approach are presented, wherein target cells labeled with commercial magnetic microparticles flowing in a central sample stream are shifted laterally into a collection stream. Furthermore, the final device design is constrained to fit on standard rectangular glass coverslip (60 (L)×24 (W)×0.15 (H) mm3) to accommodate small sample volume and point-of-care design considerations. The anticipated performance of the device is examined via a parametric analysis of several key variables within the model. It is observed that minimal currents (<500 mA) are required to generate magnetic fields sufficient to separate cells from the sample streams flowing at rate as high as 7 ml∕h, comparable to the performance of current state-of-the-art magnet-activated cell sorting systems currently used in clinical settings. Experimental validation of the presented model illustrates that a device designed according to the derived rational optimization can effectively isolate (∼100%) a magnetic-particle-tagged cell population from a homogeneous suspension even in a low abundance. Overall, this design analysis provides a rational basis to select the operating conditions, including chamber and wire geometry, flow rates, and applied currents, for a magnetic-microfluidic cell separation device. PMID:21526007
Need low-cost networking? Consider DeviceNet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, W.H.
1996-11-01
The drive to reduce production costs and optimize system performance in manufacturing facilities causes many end users to invest in network solutions. Because of distinct differences between the way tasks are performed and the way data are handled for various applications, it is clear than more than one network will be needed in most facilities. What is not clear is which network is most appropriate for a given application. The information layer is the link between automation and information environments via management information systems (MISs) and manufacturing execution systems (MESs) and manufacturing execution systems (MESs). Here the market has chosenmore » a de facto standard in Ethernet, primarily transmission control protocol/internet protocol (TCP/IP) and secondarily manufacturing messaging system (MMS). There is no single standard at the device layer. However, the DeviceNet communication standard has made strides to reach this goal. This protocol eliminates expensive hardwiring and provides improved communication between devices and important device-level diagnostics not easily accessible or available through hardwired I/O interfaces. DeviceNet is a low-cost communications link connecting industrial devices to a network. Many original equipment manufacturers and end users have chosen the DeviceNet platform for several reasons, but most frequently because of four key features: interchangeability; low cost; advanced diagnostics; insert devices under power.« less
Feasibility of Crosslinked Acrylic Shape Memory Polymer for a Thrombectomy Device
Muschenborn, Andrea D.; Hearon, Keith; Volk, Brent L.; Conway, Jordan W.; Maitland, Duncan J.
2014-01-01
Purpose To evaluate the feasibility of utilizing a system of SMP acrylates for a thrombectomy device by determining an optimal crosslink density that provides both adequate recovery stress for blood clot removal and sufficient strain capacity to enable catheter delivery. Methods Four thermoset acrylic copolymers containing benzylmethacrylate (BzMA) and bisphenol A ethoxylate diacrylate (Mn~512, BPA) were designed with differing thermomechanical properties. Finite element analysis (FEA) was performed to ensure that the materials were able to undergo the strains imposed by crimping, and fabricated devices were subjected to force-monitored crimping, constrained recovery, and bench-top thrombectomy. Results Devices with 25 and 35 mole% BPA exhibited the highest recovery stress and the highest brittle response as they broke upon constrained recovery. On the contrary, the 15 mole % BPA devices endured all testing and their recovery stress (5 kPa) enabled successful bench-top thrombectomy in 2/3 times, compared to 0/3 for the devices with the lowest BPA content. Conclusion While the 15 mole% BPA devices provided the best trade-off between device integrity and performance, other SMP systems that offer recovery stresses above 5 kPa without increasing brittleness to the point of causing device failure would be more suitable for this application. PMID:25414549
Progress on Electronic and Optoelectronic Devices of 2D Layered Semiconducting Materials.
Wang, Feng; Wang, Zhenxing; Jiang, Chao; Yin, Lei; Cheng, Ruiqing; Zhan, Xueying; Xu, Kai; Wang, Fengmei; Zhang, Yu; He, Jun
2017-09-01
2D layered semiconducting materials (2DLSMs) represent the thinnest semiconductors, holding many novel properties, such as the absence of surface dangling bonds, sizable band gaps, high flexibility, and ability of artificial assembly. With the prospect of bringing revolutionary opportunities for electronic and optoelectronic applications, 2DLSMs have prospered over the past twelve years. From materials preparation and property exploration to device applications, 2DLSMs have been extensively investigated and have achieved great progress. However, there are still great challenges for high-performance devices. In this review, we provide a brief overview on the recent breakthroughs in device optimization based on 2DLSMs, particularly focussing on three aspects: device configurations, basic properties of channel materials, and heterostructures. The effects from device configurations, i.e., electrical contacts, dielectric layers, channel length, and substrates, are discussed. After that, the affect of the basic properties of 2DLSMs on device performance is summarized, including crystal defects, crystal symmetry, doping, and thickness. Finally, we focus on heterostructures based on 2DLSMs. Through this review, we try to provide a guide to improve electronic and optoelectronic devices of 2DLSMs for achieving practical device applications in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.
2000-08-25
This report describes results achieved during phase 1 of a three-phase subcontract to develop and understand thin-film solar cell technology associated to CuInSe{sub 2} and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for the development of viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scalemore » equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient and with respect to device structure and module encapsulation.« less
NASA Astrophysics Data System (ADS)
Basak, Jyotirmoy; Maitra, Subhamoy
2018-04-01
In device-independent (DI) paradigm, the trustful assumptions over the devices are removed and CHSH test is performed to check the functionality of the devices toward certifying the security of the protocol. The existing DI protocols consider infinite number of samples from theoretical point of view, though this is not practically implementable. For finite sample analysis of the existing DI protocols, we may also consider strategies for checking device independence other than the CHSH test. In this direction, here we present a comparative analysis between CHSH and three-party Pseudo-telepathy game for the quantum private query protocol in DI paradigm that appeared in Maitra et al. (Phys Rev A 95:042344, 2017) very recently.
Optimal nonlinear information processing capacity in delay-based reservoir computers
NASA Astrophysics Data System (ADS)
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo
2015-09-01
Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.
NASA Astrophysics Data System (ADS)
Liu, Li; Su, Pengyu; Yao, Huizhen; Wang, Jun; Fu, Wuyou; Liu, Xizhe; Yang, Haibin
2018-06-01
Doping, interface optimization and recrystallization are effective approaches for fabricating high performance perovskite solar cells (PSCs). In our work, simple CsBr treatment is introduced to improve the performance of TiO2 nanorods-based PSCs. Both Cs+ and Br- are doped into CH3NH3PbI3 simultaneously, as well as optimizes the interface between perovskite and hole-transporting material (HTM). In addition, the perovskite grains are recrystallized through this method. Finally, a power conversion efficiency (PCE) of 16.02% with 0.72 in fill factor (FF) and 1.08 in open circuit voltage (VOC) is obtained through CsBr treatment, which is 19.91% higher than that of untreated devices (13.36% with 0.65 in FF and 1.02 in VOC). Furthermore, the power output maintains ∼14% after 3500 h under the humidity within 15% at room temperature.
Optimal nonlinear information processing capacity in delay-based reservoir computers.
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo
2015-09-11
Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.
Optimal nonlinear information processing capacity in delay-based reservoir computers
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo
2015-01-01
Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature. PMID:26358528
OPS laser EPI design for different wavelengths
NASA Astrophysics Data System (ADS)
Moloney, J. V.; Hader, J.; Li, H.; Kaneda, Y.; Wang, T. S.; Yarborough, M.; Koch, S. W.; Stolz, W.; Kunert, B.; Bueckers, C.; Chaterjee, S.; Hardesty, G.
2009-02-01
Design of optimized semiconductor optically-pumped semiconductor lasers (OPSLs) depends on many ingredients starting from the quantum wells, barrier and cladding layers all the way through to the resonant-periodic gain (RPG) and high reflectivity Bragg mirror (DBR) making up the OPSL active mirror. Accurate growth of the individual layers making up the RPG region is critical if performance degradation due to cavity misalignment is to be avoided. Optimization of the RPG+DBR structure requires knowledge of the heat generation and heating sinking of the active mirror. Nonlinear Control Strategies SimuLaseTM software, based on rigorous many-body calculations of the semiconductor optical response, allows for quantum well and barrier optimization by correlating low intensity photoluminescence spectra computed for the design, with direct experimentally measured wafer-level edge and surface PL spectra. Consequently, an OPSL device optimization procedure ideally requires a direct iterative interaction between designer and grower. In this article, we discuss the application of the many-body microscopic approach to OPSL devices lasing at 850nm, 1040nm and 2μm. The latter device involves and application of the many-body approach to mid-IR OPSLs based on antimonide materials. Finally we will present results on based on structural modifications of the epitaxial structure and/or novel material combinations that offer the potential to extend OPSL technology to new wavelength ranges.
Structural design considerations for micromachined solid-oxide fuel cells
NASA Astrophysics Data System (ADS)
Srikar, V. T.; Turner, Kevin T.; Andrew Ie, Tze Yung; Spearing, S. Mark
Micromachined solid-oxide fuel cells (μSOFCs) are among a class of devices being investigated for portable power generation. Optimization of the performance and reliability of such devices requires robust, scale-dependent, design methodologies. In this first analysis, we consider the structural design of planar, electrolyte-supported, μSOFCs from the viewpoints of electrochemical performance, mechanical stability and reliability, and thermal behavior. The effect of electrolyte thickness on fuel cell performance is evaluated using a simple analytical model. Design diagrams that account explicitly for thermal and intrinsic residual stresses are presented to identify geometries that are resistant to fracture and buckling. Analysis of energy loss due to in-plane heat conduction highlights the importance of efficient thermal isolation in microscale fuel cell design.
Enhanced confinement in electron cyclotron resonance ion source plasma.
Schachter, L; Stiebing, K E; Dobrescu, S
2010-02-01
Power loss by plasma-wall interactions may become a limitation for the performance of ECR and fusion plasma devices. Based on our research to optimize the performance of electron cyclotron resonance ion source (ECRIS) devices by the use of metal-dielectric (MD) structures, the development of the method presented here, allows to significantly improve the confinement of plasma electrons and hence to reduce losses. Dedicated measurements were performed at the Frankfurt 14 GHz ECRIS using argon and helium as working gas and high temperature resistive material for the MD structures. The analyzed charge state distributions and bremsstrahlung radiation spectra (corrected for background) also clearly verify the anticipated increase in the plasma-electron density and hence demonstrate the advantage by the MD-method.
Oxide semiconductors for organic opto-electronic devices
NASA Astrophysics Data System (ADS)
Sigdel, Ajaya K.
In this dissertation, I have introduced various concepts on the modulations of various surface, interface and bulk opto-electronic properties of ZnO based semiconductor for charge transport, charge selectivity and optimal device performance. I have categorized transparent semiconductors into two sub groups depending upon their role in a device. Electrodes, usually 200 to 500 nm thick, optimized for good transparency and transporting the charges to the external circuit. Here, the electrical conductivity in parallel direction to thin film, i.e bulk conductivity is important. And contacts, usually 5 to 50 nm thick, are optimized in case of solar cells for providing charge selectivity and asymmetry to manipulate the built in field inside the device for charge separation and collection. Whereas in Organic LEDs (OLEDs), contacts provide optimum energy level alignment at organic oxide interface for improved charge injections. For an optimal solar cell performance, transparent electrodes are designed with maximum transparency in the region of interest to maximize the light to pass through to the absorber layer for photo-generation, plus they are designed for minimum sheet resistance for efficient charge collection and transport. As such there is need for material with high conductivity and transparency. Doping ZnO with some common elements such as B, Al, Ga, In, Ge, Si, and F result in n-type doping with increase in carriers resulting in high conductivity electrode, with better or comparable opto-electronic properties compared to current industry-standard indium tin oxide (ITO). Furthermore, improvement in mobility due to improvement on crystallographic structure also provide alternative path for high conductivity ZnO TCOs. Implementing these two aspects, various studies were done on gallium doped zinc oxide (GZO) transparent electrode, a very promising indium free electrode. The dynamics of the superimposed RF and DC power sputtering was utilized to improve the microstructure during the thin films growth, resulting in GZO electrode with conductivity greater than 4000 S/cm and transparency greater than ˜ 90%. Similarly, various studies on research and development of Indium Zinc Tin Oxide and Indium Zinc Oxide thin films which can be applied to flexible substrates for next generation solar cells application is presented. In these new TCO systems, understanding the role of crystallographic structure ranging from poly-crystalline to amorphous phase and the influence on the charge transport and optical transparency as well as important surface passivation and surface charge transport properties. Implementation of these electrode based on ZnO on opto-electronics devices such as OLED and OPV is complicated due to chemical interaction over time with the organic layer or with ambient. The problem of inefficient charge collection/injection due to poor understanding of interface and/or bulk property of oxide electrode exists at several oxide-organic interfaces. The surface conductivity, the work function, the formation of dipoles and the band-bending at the interfacial sites can positively or negatively impact the device performance. Detailed characterization of the surface composition both before and after various chemicals treatment of various oxide electrode can therefore provide insight into optimization of device performance. Some of the work related to controlling the interfacial chemistry associated with charge transport of transparent electrodes are discussed. Thus, the role of various pre-treatment on poly-crystalline GZO electrode and amorphous indium zinc oxide (IZO) electrode is compared and contrasted. From the study, we have found that removal of defects and self passivating defects caused by accumulation of hydroxides in the surface of both poly-crystalline GZO and amorphous IZO, are critical for improving the surface conductivity and charge transport. Further insight on how these insulating and self-passivating defects cause charge accumulation and recombination in an device is discussed. (Abstract shortened by UMI.)
Stacking multiple connecting functional materials in tandem organic light-emitting diodes
Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong
2017-01-01
Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency. PMID:28225028
Stacking multiple connecting functional materials in tandem organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong
2017-02-01
Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency.
NASA Astrophysics Data System (ADS)
Agrawal, Anant; Gavrielides, Marios A.; Weininger, Sandy; Chakrabarti, Kish; Pfefer, Joshua
2008-02-01
For a number of years, phantoms have been used to optimize device parameters and validate performance in the primary medical imaging modalities (CT, MRI, PET/SPECT, ultrasound). Furthermore, the FDA under the Mammography Quality Standards Act (MQSA) requires image quality evaluation of mammography systems using FDA-approved phantoms. The oldest quantitative optical diagnostic technology, pulse oximetry, also benefits from the use of active phantoms known as patient simulators to validate certain performance characteristics under different clinically-relevant conditions. As such, guidance provided by the FDA to its staff and to industry on the contents of pre-market notification and approval submissions includes suggestions on how to incorporate the appropriate phantoms in establishing device effectiveness. Research at the FDA supports regulatory statements on the use of phantoms by investigating how phantoms can be designed, characterized, and utilized to determine critical device performance characteristics. These examples provide a model for how novel techniques in the rapidly growing field of optical diagnostics can use phantoms during pre- and post-market regulatory testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mather, Barry A; Hodge, Brian S; Cho, Gyu-Jung
Voltage regulation devices have been traditionally installed and utilized to support distribution voltages. Installations of distributed energy resources (DERs) in distribution systems are rapidly increasing, and many of these generation resources have variable and uncertain power output. These generators can significantly change the voltage profile for a feeder; therefore, in the distribution system planning stage of the optimal operation and dispatch of voltage regulation devices, possible high penetrations of DERs should be considered. In this paper, we model the IEEE 34-bus test feeder, including all essential equipment. An optimization method is adopted to determine the optimal siting and operation ofmore » the voltage regulation devices in the presence of distributed solar power generation. Finally, we verify the optimal configuration of the entire system through the optimization and simulation results.« less
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Patnaik, Surya N.
2000-01-01
A preliminary aircraft engine design methodology is being developed that utilizes a cascade optimization strategy together with neural network and regression approximation methods. The cascade strategy employs different optimization algorithms in a specified sequence. The neural network and regression methods are used to approximate solutions obtained from the NASA Engine Performance Program (NEPP), which implements engine thermodynamic cycle and performance analysis models. The new methodology is proving to be more robust and computationally efficient than the conventional optimization approach of using a single optimization algorithm with direct reanalysis. The methodology has been demonstrated on a preliminary design problem for a novel subsonic turbofan engine concept that incorporates a wave rotor as a cycle-topping device. Computations of maximum thrust were obtained for a specific design point in the engine mission profile. The results (depicted in the figure) show a significant improvement in the maximum thrust obtained using the new methodology in comparison to benchmark solutions obtained using NEPP in a manual design mode.
NASA Astrophysics Data System (ADS)
Bencherif, H.; Djeffal, F.; Ferhati, H.
2016-09-01
This paper presents a hybrid approach based on an analytical and metaheuristic investigation to study the impact of the interdigitated electrodes engineering on both speed and optical performance of an Interdigitated Metal-Semiconductor-Metal Ultraviolet Photodetector (IMSM-UV-PD). In this context, analytical models regarding the speed and optical performance have been developed and validated by experimental results, where a good agreement has been recorded. Moreover, the developed analytical models have been used as objective functions to determine the optimized design parameters, including the interdigit configuration effect, via a Multi-Objective Genetic Algorithm (MOGA). The ultimate goal of the proposed hybrid approach is to identify the optimal design parameters associated with the maximum of electrical and optical device performance. The optimized IMSM-PD not only reveals superior performance in terms of photocurrent and response time, but also illustrates higher optical reliability against the optical losses due to the active area shadowing effects. The advantages offered by the proposed design methodology suggest the possibility to overcome the most challenging problem with the communication speed and power requirements of the UV optical interconnect: high derived current and commutation speed in the UV receiver.
Marchal, Wouter; Verboven, Inge; Kesters, Jurgen; Moeremans, Boaz; De Dobbelaere, Christopher; Bonneux, Gilles; Elen, Ken; Conings, Bert; Maes, Wouter; Boyen, Hans Gerd; Deferme, Wim; Van Bael, Marlies; Hardy, An
2017-01-01
The identification, fine-tuning, and process optimization of appropriate hole transporting layers (HTLs) for organic solar cells is indispensable for the production of efficient and sustainable functional devices. In this study, the optimization of a solution-processed molybdenum oxide (MoOx) layer fabricated from a combustion precursor is carried out via the introduction of zirconium and tin additives. The evaluation of the output characteristics of both organic photovoltaic (OPV) and organic light emitting diode (OLED) devices demonstrates the beneficial influence upon the addition of the Zr and Sn ions compared to the generic MoOx precursor. A dopant effect in which the heteroatoms and the molybdenum oxide form a chemical identity with fundamentally different structural properties could not be observed, as the additives do not affect the molybdenum oxide composition or electronic band structure. An improved surface roughness due to a reduced crystallinity was found to be a key parameter leading to the superior performance of the devices employing modified HTLs. PMID:28772483
InGaAs-based planar barrier diode as microwave rectifier
NASA Astrophysics Data System (ADS)
Farhani Zakaria, Nor; Rizal Kasjoo, Shahrir; Zailan, Zarimawaty; Mohamad Isa, Muammar; Arshad, Mohd Khairuddin Md; Taking, Sanna
2018-06-01
In this report, we proposed and simulated a new planar nonlinear rectifying device fabricated using InGaAs substrate and referred to as a planar barrier diode (PBD). Using an asymmetrical inverse-arrowhead-shaped structure between the electrodes, a nonuniform depletion region is developed, which creates a triangular energy barrier in the conducting channel. This barrier is voltage dependent and can be controlled by the applied voltage across the PBD, thus resulting in nonlinear diode-like current–voltage characteristics; thus it can be used as a rectifying device. The PBD’s working principle is explained using thermionic emission theory. Furthermore, by varying the PBD’s geometric design, the asymmetry of the current–voltage characteristics can be optimized to realize superior rectification performance. By employing the optimized structural parameters, the obtained cut-off frequency of the device was approximately 270 GHz with a curvature coefficient peak of 14 V‑1 at a low DC bias voltage of 50 mV.
Marchal, Wouter; Verboven, Inge; Kesters, Jurgen; Moeremans, Boaz; De Dobbelaere, Christopher; Bonneux, Gilles; Elen, Ken; Conings, Bert; Maes, Wouter; Boyen, Hans Gerd; Deferme, Wim; Van Bael, Marlies; Hardy, An
2017-01-30
The identification, fine-tuning, and process optimization of appropriate hole transporting layers (HTLs) for organic solar cells is indispensable for the production of efficient and sustainable functional devices. In this study, the optimization of a solution-processed molybdenum oxide (MoOx) layer fabricated from a combustion precursor is carried out via the introduction of zirconium and tin additives. The evaluation of the output characteristics of both organic photovoltaic (OPV) and organic light emitting diode (OLED) devices demonstrates the beneficial influence upon the addition of the Zr and Sn ions compared to the generic MoOx precursor. A dopant effect in which the heteroatoms and the molybdenum oxide form a chemical identity with fundamentally different structural properties could not be observed, as the additives do not affect the molybdenum oxide composition or electronic band structure. An improved surface roughness due to a reduced crystallinity was found to be a key parameter leading to the superior performance of the devices employing modified HTLs.
NASA Astrophysics Data System (ADS)
Hong, Ying; Zou, Jianhua; Ge, Gang; Xiao, Wanyue; Gao, Ling; Shao, Jinjun; Dong, Xiaochen
2017-10-01
In this article, a transparent integrated microfluidic device composed of a 3D-printed thin-layer flow cell (3D-PTLFC) and an S-shaped screen-printed electrode (SPE) has been designed and fabricated for heavy metal ion stripping analysis. A finite element modeling (FEM) simulation is employed to optimize the shape of the electrode, the direction of the inlet pipeline, the thin-layer channel height and the sample flow rate to enhance the electron-enrichment efficiency for stripping analysis. The results demonstrate that the S-shaped SPE configuration matches the channel in 3D-PTLFC perfectly for the anodic stripping behavior of the heavy metal ions. Under optimized conditions, a wide linear range of 1-80 µg l-1 is achieved for Pb2+ detection with a limit of 0.3 µg l-1 for the microfluidic device. Thus, the obtained integrated microfluidic device proves to be a promising approach for heavy metal ions stripping analysis with low cost and high performance.
Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing
Lu, Jia; Zhao, Chen; Zhao, Yingze; Zhang, Jingfang; Zhang, Yue; Chen, Li; Han, Qiyuan; Ying, Yue; Peng, Shuai; Ai, Runna; Wang, Yu
2018-01-01
Abstract Precise investigation and manipulation of dynamic biological processes often requires molecular modulation in a controlled inducible manner. The clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) has emerged as a versatile tool for targeted gene editing and transcriptional programming. Here, we designed and vigorously optimized a series of Hybrid drug Inducible CRISPR/Cas9 Technologies (HIT) for transcriptional activation by grafting a mutated human estrogen receptor (ERT2) to multiple CRISPR/Cas9 systems, which renders them 4-hydroxytamoxifen (4-OHT) inducible for the access of genome. Further, extra functionality of simultaneous genome editing was achieved with one device we named HIT2. Optimized terminal devices herein delivered advantageous performances in comparison with several existing designs. They exerted selective, titratable, rapid and reversible response to drug induction. In addition, these designs were successfully adapted to an orthogonal Cas9. HIT systems developed in this study can be applied for controlled modulation of potentially any genomic loci in multiple modes. PMID:29237052
Liu, Jinpeng; Horimai, Hideyoshi; Lin, Xiao; Liu, Jinyan; Huang, Yong; Tan, Xiaodi
2017-06-01
The collinear holographic data storage system (CHDSS) is a very promising storage system due to its large storage capacities and high transfer rates in the era of big data. The digital micro-mirror device (DMD) as a spatial light modulator is the key device of the CHDSS due to its high speed, high precision, and broadband working range. To improve the system stability and performance, an optimal micro-mirror tilt angle was theoretically calculated and experimentally confirmed by analyzing the relationship between the tilt angle of the micro-mirror on the DMD and the power profiles of diffraction patterns of the DMD at the Fourier plane. In addition, we proposed a novel chess board sync mark design in the data page to reduce the system bit error rate in circumstances of reduced aperture required to decrease noise and median exposure amount. It will provide practical guidance for future DMD based CHDSS development.
Computer-Aided Design and Optimization of High-Performance Vacuum Electronic Devices
2006-08-15
approximations to the metric, and space mapping wherein low-accuracy (coarse mesh) solutions can potentially be used more effectively in an...interface and algorithm development. • Work on space - mapping or related methods for utilizing models of varying levels of approximation within an
Electrical characterization of organic thin film transistors and alternative device architectures
NASA Astrophysics Data System (ADS)
Newman, Christopher R.
In the last 10--15 years, organic semiconductors have evolved from experimental curiosities into viable alternatives for practical applications involving large-area and low-cost electronics such as display backplanes, electronic paper, radio frequency identification (RFID) tags, and solar cells. Many of the initially-stated goals in this field have been achieved; organic semconductors have demonstrated performance comparable to or greater than amorphous silicon (a-Si), the entrenched technology for most of the applications listed above. At present, the major obstacles remaining to commercialization of devices based on organic semiconductors involve material stability, processing considerations and optimization of the other device components (e.g. metal contacts and dielectric materials). Despite these technical achievements, significant gaps remain in our understanding of the underlying transport physics in these devices. This thesis summarizes experiments performed on organic field-effect transistors (OFETs) in an attempt to address some of these knowledge gaps. The FET, in addition to being a very useful device for practical applications (such as the driving elements in pixel backplanes), is also a very flexible architecture from an experimental standpoint. The presence of a capacitively-coupled gate electrode allows the investigation of transport physics as a function of carrier concentration. For devices in which non-idealities (i.e. carrier traps) largely dictate the observed characteristics, this is a very useful feature. Although practical OFETs are fabricated as conventional single-gate structures on an organic thin film (OTFTs), more exotic structures can often provide insights that standard OTFTs cannot. Specifically, single-crystal OFETs allow the investigation of carrier transport in the absence of grain boundaries, and double-gated OTFTs facilitate the investigation and comparison of properties across two discrete interfaces. One of the remaining challenges in terms of achieving stability inorganic semiconductors involves understanding, and hopefully minimizing, the bias stress effect of operating OTFTs. Largely ignored during the years in which research groups sought to optimize the standard device metrics of field-effect mobility, current on/off ratio, and threshold voltage, operational stability is emerging as a dominant consideration in these materials. Experiments performed with the goal of quantifying and understanding the bias-stress effect in organic semiconductors are described at the end of this thesis.
Reduced contact resistance of a-IGZO thin film transistors with inkjet-printed silver electrodes
NASA Astrophysics Data System (ADS)
Chen, Jianqiu; Ning, Honglong; Fang, Zhiqiang; Tao, Ruiqiang; Yang, Caigui; Zhou, Yicong; Yao, Rihui; Xu, Miao; Wang, Lei; Peng, Junbiao
2018-04-01
In this study, high performance amorphous In–Ga–Zn–O (a-IGZO) TFTs were successfully fabricated with inkjet-printed silver source-drain electrodes. The results showed that increased channel thickness has an improving trend in the properties of TFTs due to the decreased contact resistance. Compared with sputtered silver TFTs, devices with printed silver electrodes were more sensitive to the thickness of active layer. Furthermore, the devices with optimized active layer showed high performances with a maximum saturation mobility of 8.73 cm2 · V‑1 · S‑1 and an average saturation mobility of 6.97 cm2 · V‑1 · S‑1, I on/I off ratio more than 107 and subthreshold swing of 0.28 V/decade, which were comparable with the analogous devices with sputtered electrodes.
Optimization of material/device parameters of CdTe photovoltaic for solar cells applications
NASA Astrophysics Data System (ADS)
Wijewarnasuriya, Priyalal S.
2016-05-01
Cadmium telluride (CdTe) has been recognized as a promising photovoltaic material for thin-film solar cell applications due to its near optimum bandgap of ~1.5 eV and high absorption coefficient. The energy gap is near optimum for a single-junction solar cell. The high absorption coefficient allows films as thin as 2.5 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies near 20% have been produced with poly-CdTe materials. This paper examines n/p heterostructure device architecture. The performance limitations related to doping concentrations, minority carrier lifetimes, absorber layer thickness, and surface recombination velocities at the back and front interfaces is assessed. Ultimately, the paper explores device architectures of poly- CdTe and crystalline CdTe to achieve performance comparable to gallium arsenide (GaAs).
Current challenges for clinical trials of cardiovascular medical devices.
Zannad, Faiez; Stough, Wendy Gattis; Piña, Ileana L; Mehran, Roxana; Abraham, William T; Anker, Stefan D; De Ferrari, Gaetano M; Farb, Andrew; Geller, Nancy L; Kieval, Robert S; Linde, Cecilia; Redberg, Rita F; Stein, Kenneth; Vincent, Alphons; Woehrle, Holger; Pocock, Stuart J
2014-07-15
Several features of cardiovascular devices raise considerations for clinical trial conduct. Prospective, randomized, controlled trials remain the highest quality evidence for safety and effectiveness assessments, but, for instance, blinding may be challenging. In order to avoid bias and not confound data interpretation, the use of objective endpoints and blinding patients, study staff, core labs, and clinical endpoint committees to treatment assignment are helpful approaches. Anticipation of potential bias should be considered and planned for prospectively in a cardiovascular device trial. Prospective, single-arm studies (often referred to as registry studies) can provide additional data in some cases. They are subject to selection bias even when carefully designed; thus, they are generally not acceptable as the sole basis for pre-market approval of high risk cardiovascular devices. However, they complement the evidence base and fill the gaps unanswered by randomized trials. Registry studies present device safety and effectiveness in day-to-day clinical practice settings and detect rare adverse events in the post-market period. No single research design will be appropriate for every cardiovascular device or target patient population. The type of trial, appropriate control group, and optimal length of follow-up will depend on the specific device, its potential clinical benefits, the target patient population and the existence (or lack) of effective therapies, and its anticipated risks. Continued efforts on the part of investigators, the device industry, and government regulators are needed to reach the optimal approach for evaluating the safety and performance of innovative devices for the treatment of cardiovascular disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Performance of a Diaphragmed Microlens for a Packaged Microspectrometer
Lo, Joe; Chen, Shih-Jui; Fang, Qiyin; Papaioannou, Thanassis; Kim, Eun-Sok; Gundersen, Martin; Marcu, Laura
2009-01-01
This paper describes the design, fabrication, packaging and testing of a microlens integrated in a multi-layered MEMS microspectrometer. The microlens was fabricated using modified PDMS molding to form a suspended lens diaphragm. Gaussian beam propagation model was used to measure the focal length and quantify M2 value of the microlens. A tunable calibration source was set up to measure the response of the packaged device. Dual wavelength separation by the packaged device was demonstrated by CCD imaging and beam profiling of the spectroscopic output. We demonstrated specific techniques to measure critical parameters of microoptics systems for future optimization of spectroscopic devices. PMID:22399943
Experimental Demonstration of xor Operation in Graphene Magnetologic Gates at Room Temperature
NASA Astrophysics Data System (ADS)
Wen, Hua; Dery, Hanan; Amamou, Walid; Zhu, Tiancong; Lin, Zhisheng; Shi, Jing; Žutić, Igor; Krivorotov, Ilya; Sham, L. J.; Kawakami, Roland K.
2016-04-01
We report the experimental demonstration of a magnetologic gate built on graphene at room temperature. This magnetologic gate consists of three ferromagnetic electrodes contacting a single-layer graphene spin channel and relies on spin injection and spin transport in the graphene. We utilize electrical bias tuning of spin injection to balance the inputs and achieve "exclusive or" (xor) logic operation. Furthermore, a simulation of the device performance shows that substantial improvement towards spintronic applications can be achieved by optimizing the device parameters such as the device dimensions. This advance holds promise as a basic building block for spin-based information processing.
NASA Astrophysics Data System (ADS)
Yu, Xiao-Qin; Zhu, Zhen-Gang; Su, Gang; Jauho, A.-P.
2017-11-01
The thermoelectric performance of a topological energy converter is analyzed. The H -shaped device is based on a combination of transverse topological effects involving the spin: the inverse spin Hall effect and the spin Nernst effect. The device can convert a temperature drop in one arm into an electric power output in the other arm. Analytical expressions for the output voltage, the figure of merit (Z T ), and energy-converting efficiency are reported. We show that the output voltage and the Z T can be tuned by the geometry of the device and the physical properties of the material. Importantly, contrary to a conventional thermoelectric device, here a low electric conductivity may, in fact, enhance the Z T value, thereby opening a path to strategies in optimizing the figure of merit.
Finite-element analysis of NiTi wire deflection during orthodontic levelling treatment
NASA Astrophysics Data System (ADS)
Razali, M. F.; Mahmud, A. S.; Mokhtar, N.; Abdullah, J.
2016-02-01
Finite-element analysis is an important product development tool in medical devices industry for design and failure analysis of devices. This tool helps device designers to quickly explore various design options, optimizing specific designs and providing a deeper insight how a device is actually performing. In this study, three-dimensional finite-element models of superelastic nickel-titanium arch wire engaged in a three brackets system were developed. The aim was to measure the effect of binding friction developed on wire-bracket interaction towards the remaining recovery force available for tooth movement. Uniaxial and three brackets bending test were modelled and validated against experimental works. The prediction made by the three brackets bending models shows good agreement with the experimental results.
Sharma, Bhupendra Kumar; Stoesser, Anna; Mondal, Sandeep Kumar; Garlapati, Suresh K; Fawey, Mohammed H; Chakravadhanula, Venkata Sai Kiran; Kruk, Robert; Hahn, Horst; Dasgupta, Subho
2018-06-12
Oxide semiconductors typically show superior device performance compared to amorphous silicon or organic counterparts, especially, when they are physical vapor deposited. However, it is not easy to reproduce identical device characteristics when the oxide field-effect transistors (FETs) are solution-processed/ printed; the level of complexity further intensifies with the need to print the passive elements as well. Here, we developed a protocol for designing the most electronically compatible electrode/ channel interface based on the judicious material selection. Exploiting this newly developed fabrication schemes, we are now able to demonstrate high-performance all-printed FETs and logic circuits using amorphous indium-gallium-zinc oxide (a-IGZO) semiconductor, indium tin oxide (ITO) as electrodes and composite solid polymer electrolyte as the gate insulator. Interestingly, all-printed FETs demonstrate an optimal electrical performance in terms of threshold voltages and device mobility and may very well be compared with devices fabricated using sputtered ITO electrodes. This observation originates from the selection of electrode/ channel materials from the same transparent semiconductor oxide family, resulting in the formation of In-Sn-Zn-O (ITZO) based diffused a-IGZO/ ITO interface that controls doping density while ensuring high electrical performance. Compressive spectroscopic studies reveal that Sn doping mediated excellent band alignment of IGZO with ITO electrodes is responsible for the excellent device performance observed. All-printed n-MOS based logic circuits have also been demonstrated towards new-generation portable electronics.
WaveSAX device: design optimization through scale modelling and a PTO strategical control system
NASA Astrophysics Data System (ADS)
Peviani, Maximo; Danelli, Andrea; Dadone, Gianluca; Dalmasso, Alberto
2017-04-01
WaveSAX is an innovative OWC (Oscillating Water Column) device for the generation of electricity from wave power, conceived to be installed in coastal marine structures, such as ports and harbours. The device - especially designed for the typical wave climate of Mediterranean Sea - is characterized by two important aspects: flexibility to fit in different structural configurations and replication in a large number of units. A model of the WaveSAX device on a scale 1:5 has been built and tested in the ocean tank at Ecole Centrale de Nantes (France). The study aimed to analyse the behaviour of the device, including two Wells turbine configurations (with three and four blades), with regular and irregular wave conditions in the ocean wave tank. The model and the wave basin were equipped with a series of sensors which allowed to measure the following parameters during the tests: pressure in different points inside the device, the free water surface displacement inside and outside the device, the rotational velocity and the torque at the top of the axis. The tests had the objective to optimize the device design, especially as far as the characteristics of the rotor of the turbine is concern. Although the performance of the WaveSAX has been satisfactory for regular wave conditions, the behaviour of the Wells turbines for irregular wave climate has shown limitations in terms of maintaining the capacity to transform hydraulics energy into mechanical power. To optimize the efficiency of the turbine, an electronical system has been built on the basis of the ocean tank tests. It allows to continuously monitor and command the rotational speed and the torque of the rotor connected with the turbine, and to control in real time the electrical flow of a motor-generator, either absorbing energy as a generator, or providing power to the turbine working as an engine. Two strategies - based on the velocity and the torque control - have been investigate in the electronic test bench simulating four wave conditions previously tested in the ocean tank at the ECN (Nantes, France). The results showed a satisfactory behaviour of the system and allowed to define the optimal velocity and torque conditions to maximize the PTO. REFERENCES 1. M. Peviani, 2015, 'WAVESAX device: conceptual design and perspectives', 8th European Seminar OWEMES 2015, Offshore Wind and other marine renewable Energies in Mediterranean and European Seas, Rome, Italy 2. B. Holmes, K. Nielsen, 2010, Guidelines for the Development & Testing of Wave Energy Systems, OES-IA Annex II Task 2.1, Report T02-2.1 3. G. Agate, A. Amicarelli, M. Peviani, 2014, 'Analisi fluidodinamica di un prototipo per la conversione di energia da moto ondoso: ottimizzazione della componente fissa e stime preliminari di potenza assorbita con la girante', RSE Ricerca di Sistema, Report 14001669 4. G. Agate, A. Amicarelli, A. Danelli, M. Peviani, 2015, 'Ottimizzazione del disegno di un dispositivo di generazione d'energia dal moto ondoso: simulazioni numeriche e studi in vasca di laboratorio idraulico, RSE Ricerca di Sistema, Report 15000671 5. A. Agate, A. Amicarelli, A. Danelli, M. Peviani, 2015. 'Optimization of the WaveSAX device: numerical modelling and ocean wave basin tests', VI International Conference on Computational Methods in Marine Engineering MARINE 2015, Rome, Italy 6. A. Danelli, M. Peviani, 2016. 'Performance evaluation of an innovative device to transform wave power into electric energy in ports and harbours". CORE 2nd International Conference on Offshore Renewable Energy; Glasgow, UK 7. M. Peviani, A. Danelli, G. Agate, F. Thiebaut, 2014, 'WAVETUBE RSE1, addressed to test an innovative device to transform wave power into electric energy in ports and harbours', Infrastructure post access report in the MARINET project framework 8. M. Peviani, A. Danelli, G. Agate, S. Bourdier, 2015, WAVESAX RSE2, addressed to test an innovative device to transform wave power into electric energy in ports and harbours', Infrastructure post access report in the MARINET project framework.
NASA Astrophysics Data System (ADS)
Doyle, E. J.; Kim, K. W.; Peebles, W. A.; Rhodes, T. L.
1997-01-01
Reflectometry is an attractive and versatile diagnostic technique that can address a wide range of measurement needs on fusion devices. However, progress in the area of profile measurement has been hampered by the lack of a well-understood basis for the optimum design and implementation of such systems. Such a design basis is provided by the realization that reflectometer systems utilized for density profile measurements are in fact specialized forms of radar systems. In this article five criteria are introduced by which reflectometer systems can be systematically designed for optimal performance: range resolution, spatial sampling, turbulence immunity, bandwidth optimization, and the need for adaptive data processing. Many of these criteria are familiar from radar systems analysis, and are applicable to reflectometry after allowance is made for differences stemming from the nature of the plasma target. These criteria are utilized to critically evaluate current reflectometer density profile techniques and indicate improvements that can impact current and next step devices, such as ITER.
Probing the tumor microenvironment: collection and induction
NASA Astrophysics Data System (ADS)
Williams, James K.; Padgen, Michael R.; Wang, Yarong; Entenberg, David; Gertler, Frank; Condeelis, John S.; Castracane, James
2012-03-01
The Nano Intravital Device, or NANIVID, is under development as an optically transparent, implantable tool to study the tumor microenvironment. Two etched glass substrates are sealed using a thin polymer membrane to create a reservoir with a single outlet. This reservoir is loaded with a hydrogel blend that contains growth factors or other chemicals to be delivered to the tumor microenvironment. When the device is implanted in the tumor, the hydrogel will swell and release these entrapped molecules, forming a gradient. Validation of the device has been performed in vitro using epidermal growth factor (EGF) and MenaINV, a highly invasive, rat mammary adenocarcinoma cell line. In both 2-D and 3-D environments, cells migrated toward the gradient of EGF released from the device. The chorioallantoic membrane (CAM) of White Leghorn chicken eggs is being utilized to grow xenograft tumors that will be used for ex vivo cell collection. Device optimization is being performed for in vivo use as a tool to collect the invasive cell population. Preliminary cell collection experiments in vivo were performed using a mouse model of breast cancer. As a second application, the device is being explored as a delivery vehicle for chemicals that induce controlled changes in the tumor microenvironment. H2O2 was loaded in the device and generated intracellular reactive oxygen species (ROS) in cells near the device outlet. In the future, other induction targets will be explored, including hypoglycemia and the manipulation of extracellular matrix stiffness.
Experimental study of high-performance cooling system pipeline diameter and working fluid amount
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan; Hrabovsky, Peter; Papučík, Štefan
2016-03-01
This work deals with heat transfer resulting from the operation of power electronic components. Heat is removed from the mounting plate, which is the evaporator of the loop thermosyphon to the condenser and by natural convection is transferred to ambient. This work includes proposal of cooling device - loop thermosyphon, with its construct and follow optimization of cooling effect. Optimization proceeds by selecting the quantity of working fluid and selection of diameters vapour line and liquid line of loop thermosyphon.
Modeling of defect tolerance of IMM multijunction photovoltaics for space application
NASA Astrophysics Data System (ADS)
Mehrotra, Akhil; Freundlich, Alex
2013-03-01
Reduction of defects by use of thick sophisticated graded metamorphic buffers in inverted metamorphic solar cells has been a requirement to obtain high efficiency devices. With increase in number of metamorphic junctions to obtain higher efficiencies, these graded buffers constitute a significant part of growth time and cost for manufacturer of the solar cells. It's been shown that ultrathin 3 and 4 junction IMM devices perform better in presence of dislocations or/and radiation harsh environment compared to conventional thick IMM devices. Thickness optimization of the device would result in better defect and radiation tolerant behavior of 0.7ev and 1.0ev InGaAs sub-cells which would in turn require thinner buffers with higher efficiencies, hence reducing the total device thickness. It is also shown that for 3 and 4 junc. IMM, with an equivalent 1015 cm-2 1 MeV electron fluence radiation, very high EOL efficiencies can be afforded with substantially higher dislocation densities (<2×107 cm-2) than those commonly perceived as acceptable for IMM devices with remaining power factor as high as 0.85. The irregular radiation degradation behavior in 4-junc IMM is also explained by back photon reflection from gold contacts and reduced by using thickness optimization of 0.7ev and 1.0ev InGaAs sub-cells.
Zhou, Liang; Kwok, Chi-Chung; Cheng, Gang; Zhang, Hongjie; Che, Chi-Ming
2013-07-15
In this work, organic electroluminescent (EL) devices with double light-emitting layers (EMLs) having stepwise energy levels were designed to improve the EL performance of a red-light-emitting platinum(II) Schiff base complex. A series of devices with single or double EML(s) were fabricated and characterized. Compared with single-EML devices, double-EML devices showed improved EL efficiency and brightness, attributed to better balance in carriers. In addition, the stepwise distribution in energy levels of host materials is instrumental in broadening the recombination zone, thus delaying the roll-off of EL efficiency. The highest EL current efficiency and power efficiency of 17.36 cd/A and 14.73 lm/W, respectively, were achieved with the optimized double-EML devices. At high brightness of 1000 cd/m², EL efficiency as high as 8.89 cd/A was retained.
Performance, stability and operation voltage optimization of screen-printed aqueous supercapacitors
Lehtimäki, Suvi; Railanmaa, Anna; Keskinen, Jari; Kujala, Manu; Tuukkanen, Sampo; Lupo, Donald
2017-01-01
Harvesting micropower energy from the ambient environment requires an intermediate energy storage, for which printed aqueous supercapacitors are well suited due to their low cost and environmental friendliness. In this work, a systematic study of a large set of devices is used to investigate the effect of process variability and operating voltage on the performance and stability of screen printed aqueous supercapacitors. The current collectors and active layers are printed with graphite and activated carbon inks, respectively, and aqueous NaCl used as the electrolyte. The devices are characterized through galvanostatic discharge measurements for quantitative determination of capacitance and equivalent series resistance (ESR), as well as impedance spectroscopy for a detailed study of the factors contributing to ESR. The capacitances are 200–360 mF and the ESRs 7.9–12.7 Ω, depending on the layer thicknesses. The ESR is found to be dominated by the resistance of the graphite current collectors and is compatible with applications in low-power distributed electronics. The effects of different operating voltages on the capacitance, leakage and aging rate of the supercapacitors are tested, and 1.0 V found to be the optimal choice for using the devices in energy harvesting applications. PMID:28382962
High-Z plasma facing components in fusion devices: boundary conditions and operational experiences
NASA Astrophysics Data System (ADS)
Neu, R.
2006-04-01
In present day fusion devices optimization of the performance and experimental freedom motivates the use of low-Z plasma facing materials (PFMs). However, in a future fusion reactor, for economic reasons, a sufficient lifetime of the first wall components is essential. Additionally, tritium retention has to be small to meet safety requirements. Tungsten appears to be the most realistic material choice for reactor plasma facing components (PFCs) because it exhibits the lowest erosion. But besides this there are a lot of criteria which have to be fulfilled simultaneously in a reactor. Results from present day devices and from laboratory experiments confirm the advantages of high-Z PFMs but also point to operational restrictions, when using them as PFCs. These are associated with the central impurity concentration, which is determined by the sputtering yield, the penetration of the impurities and their transport within the confined plasma. The restrictions could exclude successful operation of a reactor, but concomitantly there exist remedies to ameliorate their impact. Obviously some price has to be paid in terms of reduced performance but lacking of materials or concepts which could substitute high-Z PFCs, emphasis has to be put on the development and optimization of reactor-relevant scenarios which incorporate the experiences and measures.
Xie, Chao; Nie, Biao; Zeng, Longhui; Liang, Feng-Xia; Wang, Ming-Zheng; Luo, Linbao; Feng, Mei; Yu, Yongqiang; Wu, Chun-Yan; Wu, Yucheng; Yu, Shu-Hong
2014-04-22
Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core-shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 10(3) at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core-shell heterojunction device could find potential applications in future high-performance optoelectronic devices.
Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers.
Hyun, Byung-Ryool; Choi, Joshua J; Seyler, Kyle L; Hanrath, Tobias; Wise, Frank W
2013-12-23
Oxides are commonly employed as electron-transport layers in optoelectronic devices based on semiconductor nanocrystals, but are relatively rare as hole-transport layers. We report studies of NiO hole-transport layers in PbS nanocrystal photovoltaic structures. Transient fluorescence experiments are used to verify the relevant energy levels for hole transfer. On the basis of these results, planar heterojunction devices with ZnO as the photoanode and NiO as the photocathode were fabricated and characterized. Solution-processed devices were used to systematically study the dependence on nanocrystal size and achieve conversion efficiency as high as 2.5%. Optical modeling indicates that optimum performance should be obtained with thinner oxide layers than can be produced reliably by solution casting. Room-temperature sputtering allows deposition of oxide layers as thin as 10 nm, which enables optimization of device performance with respect to the thickness of the charge-transport layers. The best devices achieve an open-circuit voltage of 0.72 V and efficiency of 5.3% while eliminating most organic material from the structure and being compatible with tandem structures.
Akhavan, Vahid A; Harvey, Taylor B; Stolle, C Jackson; Ostrowski, David P; Glaz, Micah S; Goodfellow, Brian W; Panthani, Matthew G; Reid, Dariya K; Vanden Bout, David A; Korgel, Brian A
2013-03-01
Thin-film photovoltaic devices (PVs) were prepared by selenization using oleylamine-capped Cu(In,Ga)Se2 (CIGS) nanocrystals sintered at a high temperature (>500 °C) under Se vapor. The device performance varied significantly with [Ga]/[In+Ga] content in the nanocrystals. The highest power conversion efficiency (PCE) observed in the devices studied was 5.1 % under air mass 1.5 global (AM 1.5 G) illumination, obtained with [Ga]/[In+Ga]=0.32. The variation in PCE with composition is partly a result of bandgap tuning and optimization, but the main influence of nanocrystal composition appeared to be on the quality of the sintered films. The [Cu]/[In+Ga] content was found to be strongly influenced by the [Ga]/[In+Ga] concentration, which appears to be correlated with the morphology of the sintered film. For this reason, only small changes in the [Ga]/[In+Ga] content resulted in significant variations in device efficiency. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2007-01-01
The NASA Glenn Research Center s Avionics, Power and Communications Branch of the Engineering and Systems Division initiated the Hybrid Power Management (HPM) Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors and fuel cells. HPM has extremely wide potential. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. One of the unique power devices being utilized by HPM for energy storage is the ultracapacitor. An ultracapacitor is an electrochemical energy storage device, which has extremely high volumetric capacitance energy due to high surface area electrodes, and very small electrode separation. Ultracapacitors are a reliable, long life, maintenance free, energy storage system. This flexible operating system can be applied to all power systems to significantly improve system efficiency, reliability, and performance. There are many existing and conceptual applications of HPM.
NASA Astrophysics Data System (ADS)
Melnikov, A. A.; Kostishin, V. G.; Alenkov, V. V.
2017-05-01
Real operating conditions of a thermoelectric cooling device are in the presence of thermal resistances between thermoelectric material and a heat medium or cooling object. They limit performance of a device and should be considered when modeling. Here we propose a dimensionless mathematical steady state model, which takes them into account. Analytical equations for dimensionless cooling capacity, voltage, and coefficient of performance (COP) depending on dimensionless current are given. For improved accuracy a device can be modeled with use of numerical or combined analytical-numerical methods. The results of modeling are in acceptable accordance with experimental results. The case of zero temperature difference between hot and cold heat mediums at which the maximum cooling capacity mode appears is considered in detail. Optimal device parameters for maximal cooling capacity, such as fraction of thermal conductance on the cold side y, fraction of current relative to maximal j' are estimated in range of 0.38-0.44 and 0.48-0.95, respectively, for dimensionless conductance K' = 5-100. Also, a method for determination of thermal resistances of a thermoelectric cooling system is proposed.
Optimal Timing of Heart Transplant After HeartMate II Left Ventricular Assist Device Implantation.
Steffen, Robert J; Blackstone, Eugene H; Smedira, Nicholas G; Soltesz, Edward G; Hoercher, Katherine J; Thuita, Lucy; Starling, Randall C; Mountis, Maria; Moazami, Nader
2017-11-01
Optimal timing of heart transplantation in patients supported with second-generation left ventricular assist devices (LVADs) is unknown. Despite this, patients with LVADs continue to receive priority on the heart transplant waiting list. Our objective was to determine the optimal timing of transplantation for patients bridged with continuous-flow LVADs. A total of 301 HeartMate II LVADs (Thoratec Corp, Pleasanton, CA) were implanted in 285 patients from October 2004 to June 2013, and 86 patients underwent transplantation through the end of follow-up. Optimal transplantation timing was the product of surviving on LVAD support and surviving transplant. Three-year survival after both HeartMate II implantation and heart transplantation was unchanged when transplantation occurred within 9 months of implantation. Survival decreased as the duration of support exceeded this. Preoperative risk factors for death on HeartMate II support were prior valve operation, prior coronary artery bypass grafting, low albumin, low glomerular filtration rate, higher mean arterial pressure, hypertension, and earlier date of implant. Survival for patients without these risk factors was lowest when transplant was performed within 3 months but was relatively constant with increased duration of support. Longer duration of support was associated with poorer survival for patients with many of these risk factors. Device reimplantation, intracranial hemorrhage, and postimplant dialysis during HeartMate II support were associated with decreased survival. Survival of patients supported by the HeartMate II is affected by preoperative comorbidities and postoperative complications. Transplantation before complications is imperative in optimizing survival. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
A magnetorheological fluid locking device
NASA Astrophysics Data System (ADS)
Kavlicoglu, Barkan; Liu, Yanming
2011-04-01
A magnetorheological fluid (MRF) device is designed to provide a static locking force caused by the operation of a controllable MRF valve. The intent is to introduce an MRF device which provides the locking force of a fifth wheel coupler while maintaining the "powerless" locking capability when required. A passive magnetic field supplied by a permanent magnet provides a powerless locking resistance force. The passively closed MRF valve provides sufficient reaction force to eliminate axial displacement to a pre-defined force value. Unlocking of the device is provided by means of an electromagnet which re-routes the magnetic field distribution along the MR valve, and minimizes the resistance. Three dimensional electromagnetic finite element analyses are performed to optimize the MRF lock valve performance. The MRF locking valve is fabricated and tested for installation on a truck fifth wheel application. An experimental setup, resembling actual working conditions, is designed and tests are conducted on vehicle interface schemes. The powerless-locking capacity and the unlocking process with minimal resistance are experimentally demonstrated.
Simplified human thermoregulatory model for designing wearable thermoelectric devices
NASA Astrophysics Data System (ADS)
Wijethunge, Dimuthu; Kim, Donggyu; Kim, Woochul
2018-02-01
Research on wearable and implantable devices have become popular with the strong need in market. A precise understanding of the thermal properties of human skin, which are not constant values but vary depending on ambient condition, is required for the development of such devices. In this paper, we present simplified human thermoregulatory model for accurately estimating the thermal properties of the skin without applying rigorous calculations. The proposed model considers a variable blood flow rate through the skin, evaporation functions, and a variable convection heat transfer from the skin surface. In addition, wearable thermoelectric generation (TEG) and refrigeration devices were simulated. We found that deviations of 10-60% can be resulted in estimating TEG performance without considering human thermoregulatory model owing to the fact that thermal resistance of human skin is adapted to ambient condition. Simplicity of the modeling procedure presented in this work could be beneficial for optimizing and predicting the performance of any applications that are directly coupled with skin thermal properties.
Towards stable and commercially available perovskite solar cells
Park, Nam-Gyu; Grätzel, Michael; Miyasaka, Tsutomu; ...
2016-10-17
Solar cells employing a halide perovskite with an organic cation now show power conversion efficiency of up to 22%. But, these cells are facing issues towards commercialization, such as the need to achieve long-term stability and the development of a manufacturing method for the reproducible fabrication of high-performance devices. We propose a strategy to obtain stable and commercially viable perovskite solar cells. A reproducible manufacturing method is suggested, as well as routes to manage grain boundaries and interfacial charge transport. Electroluminescence is regarded as a metric to gauge theoretical efficiency. We highlight how optimizing the design of device architectures ismore » important not only for achieving high efficiency but also for hysteresis-free and stable performance. Here, we argue that reliable device characterization is needed to ensure the advance of this technology towards practical applications. We believe that perovskite-based devices can be competitive with silicon solar modules, and discuss issues related to the safe management of toxic material.« less
Speckle-based portable device for in-situ metrology of x-ray mirrors at Diamond Light Source
NASA Astrophysics Data System (ADS)
Wang, Hongchang; Kashyap, Yogesh; Zhou, Tunhe; Sawhney, Kawal
2017-09-01
For modern synchrotron light sources, the push toward diffraction-limited and coherence-preserved beams demands accurate metrology on X-ray optics. Moreover, it is important to perform in-situ characterization and optimization of X-ray mirrors since their ultimate performance is critically dependent on the working conditions. Therefore, it is highly desirable to develop a portable metrology device, which can be easily implemented on a range of beamlines for in-situ metrology. An X-ray speckle-based portable device for in-situ metrology of synchrotron X-ray mirrors has been developed at Diamond Light Source. Ultra-high angular sensitivity is achieved by scanning the speckle generator in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that characterization and alignment of X-ray mirrors is simple and fast. The functionality and feasibility of this device is presented with representative examples.
Options for Auditory Training for Adults with Hearing Loss.
Olson, Anne D
2015-11-01
Hearing aid devices alone do not adequately compensate for sensory losses despite significant technological advances in digital technology. Overall use rates of amplification among adults with hearing loss remain low, and overall satisfaction and performance in noise can be improved. Although improved technology may partially address some listening problems, auditory training may be another alternative to improve speech recognition in noise and satisfaction with devices. The literature underlying auditory plasticity following placement of sensory devices suggests that additional auditory training may be needed for reorganization of the brain to occur. Furthermore, training may be required to acquire optimal performance from devices. Several auditory training programs that are readily accessible for adults with hearing loss, hearing aids, or cochlear implants are described. Programs that can be accessed via Web-based formats and smartphone technology are reviewed. A summary table is provided for easy access to programs with descriptions of features that allow hearing health care providers to assist clients in selecting the most appropriate auditory training program to fit their needs.
NASA Astrophysics Data System (ADS)
Zheng, Shuang; Wu, Zhenxuan; Zhang, Chuan; Liu, Huan; Yan, Minnan; Su, Xiaodan; Wang, Jin; Zhang, Hongmei; Ma, Dongge
2017-07-01
We report the fabrication of high performance inverted polymer solar cells with simply modified indium tin oxide (ITO) by an ultrathin aluminum (Al) and sodium chloride (NaCl) composite layer. The device efficiency and stability were both improved. The optimized device with poly(3-hexylthiophene) as the donor and [6,6]-phenyl-C61-butyric acid methylester as the acceptor under AM 1.5 (100 mw cm-2) radiation achieved a high power conversion efficiency of 3.88% with an open-circuit voltage of 0.60 V and a fill factor of 0.61, which is significantly higher than those of the inverted devices with only Al or NaCl as modification interlayer, respectively. Moreover, the stability is enhanced by about 70% more than that of the conventional device. The significant enhancement is attributed to the reduced work function of ITO electrode from 4.75 to 3.90 eV by modification as well as the improvement of the electrode interface.
High density arrays of micromirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folta, J. M.; Decker, J. Y.; Kolman, J.
We established and achieved our goal to (1) fabricate and evaluate test structures based on the micromirror design optimized for maskless lithography applications, (2) perform system analysis and code development for the maskless lithography concept, and (3) identify specifications for micromirror arrays (MMAs) for LLNL's adaptive optics (AO) applications and conceptualize new devices.
Determination of the optimal atrioventricular interval in sick sinus syndrome during DDD pacing.
Kato, Masaya; Dote, Keigo; Sasaki, Shota; Goto, Kenji; Takemoto, Hiroaki; Habara, Seiji; Hasegawa, Daiji; Matsuda, Osamu
2005-09-01
Although the AAI pacing mode has been shown to be electromechanically superior to the DDD pacing mode in sick sinus syndrome (SSS), there is evidence suggesting that during AAI pacing the presence of natural ventricular activation pattern is not enough for hemodynamic benefit to occur. Myocardial performance index (MPI) is a simply measurable Doppler-derived index of combined systolic and diastolic myocardial performance. The aim of this study was to investigate whether AAI pacing mode is electromechanically superior to the DDD mode in patients with SSS by using Doppler-derived MPI. Thirty-nine SSS patients with dual-chamber pacing devices were evaluated by using Doppler echocardiography in AAI mode and DDD mode. The optimal atrioventricular (AV) interval in DDD mode was determined and atrial stimulus-R interval was measured in AAI mode. The ratio of the atrial stimulus-R interval to the optimal AV interval was defined as relative AV interval (rAVI) and the ratio of MPI in AAI mode to that in DDD mode was defined as relative MPI (rMPI). The rMPI was significantly correlated with atrial stimulus-R interval and rAVI (r = 0.57, P = 0.0002, and r = 0.67, P < 0.0001, respectively). A cutoff point of 1.73 for rAVI provided optimum sensitivity and specificity for rMPI >1 based on the receiver operator curves. Even though the intrinsic AV conduction is moderately prolonged, some SSS patients with dual-chamber pacing devices benefit from the ventricular pacing with optimal AV interval. MPI is useful to determine the optimal pacing mode in acute experiment.
Spin pumping driven auto-oscillator for phase-encoded logic—device design and material requirements
NASA Astrophysics Data System (ADS)
Rakheja, S.; Kani, N.
2017-05-01
In this work, we propose a spin nano-oscillator (SNO) device where information is encoded in the phase (time-shift) of the output oscillations. The spin current required to set up the oscillations in the device is generated through spin pumping from an input nanomagnet that is precessing at RF frequencies. We discuss the operation of the SNO device, in which either the in-plane (IP) or out-of-plane (OOP) magnetization oscillations are utilized toward implementing ultra-low-power circuits. Using physical models of the nanomagnet dynamics and the spin transport through non-magnetic channels, we quantify the reliability of the SNO device using a "scaling ratio". Material requirements for the nanomagnet and the channel to ensure correct logic functionality are identified using the scaling ratio metric. SNO devices consume (2-5)× lower energy compared to CMOS devices and other spin-based devices with similar device sizes and material parameters. The analytical models presented in this work can be used to optimize the performance and scaling of SNO devices in comparison to CMOS devices at ultra-scaled technology nodes.
Moore, C S; Wood, T J; Avery, G; Balcam, S; Needler, L; Beavis, A W; Saunderson, J R
2014-05-07
The purpose of this study was to examine the use of three physical image quality metrics in the calibration of an automatic exposure control (AEC) device for chest radiography with a computed radiography (CR) imaging system. The metrics assessed were signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and mean effective noise equivalent quanta (eNEQm), all measured using a uniform chest phantom. Subsequent calibration curves were derived to ensure each metric was held constant across the tube voltage range. Each curve was assessed for its clinical appropriateness by generating computer simulated chest images with correct detector air kermas for each tube voltage, and grading these against reference images which were reconstructed at detector air kermas correct for the constant detector dose indicator (DDI) curve currently programmed into the AEC device. All simulated chest images contained clinically realistic projected anatomy and anatomical noise and were scored by experienced image evaluators. Constant DDI and CNR curves do not appear to provide optimized performance across the diagnostic energy range. Conversely, constant eNEQm and SNR do appear to provide optimized performance, with the latter being the preferred calibration metric given as it is easier to measure in practice. Medical physicists may use the SNR image quality metric described here when setting up and optimizing AEC devices for chest radiography CR systems with a degree of confidence that resulting clinical image quality will be adequate for the required clinical task. However, this must be done with close cooperation of expert image evaluators, to ensure appropriate levels of detector air kerma.
NASA Astrophysics Data System (ADS)
Moore, C. S.; Wood, T. J.; Avery, G.; Balcam, S.; Needler, L.; Beavis, A. W.; Saunderson, J. R.
2014-05-01
The purpose of this study was to examine the use of three physical image quality metrics in the calibration of an automatic exposure control (AEC) device for chest radiography with a computed radiography (CR) imaging system. The metrics assessed were signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and mean effective noise equivalent quanta (eNEQm), all measured using a uniform chest phantom. Subsequent calibration curves were derived to ensure each metric was held constant across the tube voltage range. Each curve was assessed for its clinical appropriateness by generating computer simulated chest images with correct detector air kermas for each tube voltage, and grading these against reference images which were reconstructed at detector air kermas correct for the constant detector dose indicator (DDI) curve currently programmed into the AEC device. All simulated chest images contained clinically realistic projected anatomy and anatomical noise and were scored by experienced image evaluators. Constant DDI and CNR curves do not appear to provide optimized performance across the diagnostic energy range. Conversely, constant eNEQm and SNR do appear to provide optimized performance, with the latter being the preferred calibration metric given as it is easier to measure in practice. Medical physicists may use the SNR image quality metric described here when setting up and optimizing AEC devices for chest radiography CR systems with a degree of confidence that resulting clinical image quality will be adequate for the required clinical task. However, this must be done with close cooperation of expert image evaluators, to ensure appropriate levels of detector air kerma.
MouthLab: A Tricorder Concept Optimized for Rapid Medical Assessment.
Fridman, Gene Y; Tang, Hai; Feller-Kopman, David; Hong, Yang
2015-09-01
The goal of rapid medical assessment (RMA) is to estimate the general health of a patient during an emergency room or a doctor's office visit, or even while the patient is at home. Currently the devices used during RMA are typically "all-in-one" vital signs monitors. They require time, effort and expertise to attach various sensors to the body. A device optimized for RMA should instead require little effort or expertise to operate and be able to rapidly obtain and consolidate as much information as possible. MouthLab is a battery powered hand-held device intended to acquire and evaluate many measurements such as non-invasive blood sugar, saliva and respiratory biochemistry. Our initial prototype acquires standard vital signs: pulse rate (PR), breathing rate (BR), temperature (T), blood oxygen saturation (SpO2), blood pressure (BP), and a three-lead electrocardiogram. In our clinical study we tested the device performance against the measurements obtained with a standard patient monitor. 52 people participated in the study. The measurement errors were as follows: PR: -1.7 ± 3.5 BPM, BR: 0.4 ± 2.4 BPM, T: -0.4 ± 1.24 °F, SpO2: -0.6 ± 1.7%. BP systolic: -1.8 ± 12 mmHg, BP diastolic: 0.6 ± 8 mmHg. We have shown that RMA can be easily performed non-invasively by patients with no prior training.
NASA Astrophysics Data System (ADS)
Chaujar, Rishu; Kaur, Ravneet; Saxena, Manoj; Gupta, Mridula; Gupta, R. S.
2008-08-01
The distortion and linearity behaviour of MOSFETs is imperative for low-noise applications and RFICs design. In this paper, an extensive study on the RF-distortion and linearity behaviour of Laterally Amalgamated DUal Material GAte Concave (L-DUMGAC) MOSFET is performed and the influence of technology variations such as gate length, negative junction depth (NJD), substrate bias, drain bias and gate material workfunction is explored using ATLAS device simulator. Simulation results reveal that L-DUMGAC MOSFET significantly enhances the linearity and intermodulation distortion performance in terms of figure of merit (FOM) metrics: V, V, IIP3, IMD3 and higher order transconductance coefficients: gm1, gm2, gm3, proving its efficacy for RFIC design. The work, thus, optimize the device's bias point for RFICs with higher efficiency and better linearity performance.
Cappione, Amedeo; Mabuchi, Masaharu; Briggs, David; Nadler, Timothy
2015-04-01
Protein immuno-detection encompasses a broad range of analytical methodologies, including western blotting, flow cytometry, and microscope-based applications. These assays which detect, quantify, and/or localize expression for one or more proteins in complex biological samples, are reliant upon fluorescent or enzyme-tagged target-specific antibodies. While small molecule labeling kits are available with a range of detection moieties, the workflow is hampered by a requirement for multiple dialysis-based buffer exchange steps that are both time-consuming and subject to sample loss. In a previous study, we briefly described an alternative method for small-scale protein labeling with small molecule dyes whereby all phases of the conjugation workflow could be performed in a single centrifugal diafiltration device. Here, we expand on this foundational work addressing functionality of the device at each step in the workflow (sample cleanup, labeling, unbound dye removal, and buffer exchange/concentration) and the implications for optimizing labeling efficiency. When compared to other common buffer exchange methodologies, centrifugal diafiltration offered superior performance as measured by four key parameters (process time, desalting capacity, protein recovery, retain functional integrity). Originally designed for resin-based affinity purification, the device also provides a platform for up-front antibody purification or albumin carrier removal. Most significantly, by exploiting the rapid kinetics of NHS-based labeling reactions, the process of continuous diafiltration minimizes reaction time and long exposure to excess dye, guaranteeing maximal target labeling while limiting the risks associated with over-labeling. Overall, the device offers a simplified workflow with reduced processing time and hands-on requirements, without sacrificing labeling efficiency, final yield, or conjugate performance. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Yang; Li, Hua; He, Jinghui; Xu, Qingfeng; Li, Najun; Chen, Dongyun; Lu, Jianmei
2016-07-20
A cooperative photoelectrical strategy is proposed for effectively modulating the performance of a multilevel data-storage device. By taking advantage of organic photoelectronic molecules as storage media, the fabricated device exhibited enhanced working parameters under the action of both optical and electrical inputs. In cooperation with UV light, the operating voltages of the memory device were decreased, which was beneficial for low energy consumption. Moreover, the ON/OFF current ratio was more tunable and facilitated high-resolution multilevel storage. Compared with previous methods that focused on tuning the storage media, this study provides an easy approach for optimizing organic devices through multiple physical channels. More importantly, this method holds promise for integrating multiple functionalities into high-density data-storage devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Fan, Zhi-Qiang; Jiang, Xiang-Wei; Luo, Jun-Wei; Jiao, Li-Ying; Huang, Ru; Li, Shu-Shen; Wang, Lin-Wang
2017-10-01
As Moore's law approaches its end, two-dimensional (2D) materials are intensely studied for their potentials as one of the "More than Moore' (MM) devices. However, the ultimate performance limits and the optimal design parameters for such devices are still unknown. One common problem for the 2D-material-based device is the relative weak on-current. In this study, two-dimensional Schottky-barrier field-effect transistors (SBFETs) consisting of in-plane heterojunctions of 1T metallic-phase and 2H semiconducting-phase transition-metal dichalcogenides (TMDs) are studied following the recent experimental synthesis of such devices at a much larger scale. Our ab initio simulation reveals the ultimate performance limits of such devices and offers suggestions for better TMD materials. Our study shows that the Schottky-barrier heights (SBHs) of the in-plane 1T/2H contacts are smaller than the SBHs of out-of-plane contacts, and the contact coupling is also stronger in the in-plane contact. Due to the atomic thickness of the monolayer TMD, the average subthreshold swing of the in-plane TMD-SBFETs is found to be close to the limit of 60 mV/dec, and smaller than that of the out-of-plane TMD-SBFET device. Different TMDs are considered and it is found that the in-plane WT e2-SBFET provides the best performance and can satisfy the performance requirement of the sub-10-nm high-performance transistor outlined by the International Technology Roadmap for Semiconductors, and thus could be developed into a viable sub-10-nm MM device in the future.
Optimal diabatic dynamics of Majorana-based quantum gates
NASA Astrophysics Data System (ADS)
Rahmani, Armin; Seradjeh, Babak; Franz, Marcel
2017-08-01
In topological quantum computing, unitary operations on qubits are performed by adiabatic braiding of non-Abelian quasiparticles, such as Majorana zero modes, and are protected from local environmental perturbations. In the adiabatic regime, with timescales set by the inverse gap of the system, the errors can be made arbitrarily small by performing the process more slowly. To enhance the performance of quantum information processing with Majorana zero modes, we apply the theory of optimal control to the diabatic dynamics of Majorana-based qubits. While we sacrifice complete topological protection, we impose constraints on the optimal protocol to take advantage of the nonlocal nature of topological information and increase the robustness of our gates. By using the Pontryagin's maximum principle, we show that robust equivalent gates to perfect adiabatic braiding can be implemented in finite times through optimal pulses. In our implementation, modifications to the device Hamiltonian are avoided. Focusing on thermally isolated systems, we study the effects of calibration errors and external white and 1 /f (pink) noise on Majorana-based gates. While a noise-induced antiadiabatic behavior, where a slower process creates more diabatic excitations, prohibits indefinite enhancement of the robustness of the adiabatic scheme, our fast optimal protocols exhibit remarkable stability to noise and have the potential to significantly enhance the practical performance of Majorana-based information processing.
Optimized micromirror arrays for adaptive optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalicek, M. Adrian
This paper describes the design, layout, fabrication, and surface characterization of highly optimized surface micromachined micromirror devices. Design considerations and fabrication capabilities are presented. These devices are fabricated in the state-of-the-art, four-level, planarized, ultra-low-stress polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics that have previously been unrealizable in standard three-layer polysilicon processes. The reduced 1 {mu}m minimum feature sizes and 0.1 {mu}m mask resolution make it possible to produce dense wiring patterns and irregularly shaped flexures. Likewise, mirror surfaces canmore » be uniquely distributed and segmented in advanced patterns and often irregular shapes in order to minimize wavefront error across the pupil. The ultra-low-stress polysilicon and planarized upper layer allow designers to make larger and more complex micromirrors of varying shape and surface area within an array while maintaining uniform performance of optical surfaces. Powerful layout functions of the AutoCAD editor simplify the design of advanced micromirror arrays and make it possible to optimize devices according to the capabilities of the fabrication process. Micromirrors fabricated in this process have demonstrated a surface variance across the array from only 2{endash}3 nm to a worst case of roughly 25 nm while boasting active surface areas of 98{percent} or better. Combining the process planarization with a {open_quotes}planarized-by-design{close_quotes} approach will produce micromirror array surfaces that are limited in flatness only by the surface deposition roughness of the structural material. Ultimately, the combination of advanced process and layout capabilities have permitted the fabrication of highly optimized micromirror arrays for adaptive optics. {copyright} {ital 1999 American Institute of Physics.}« less
Pushing the Performance Limit of Sub-100 nm Molybdenum Disulfide Transistors.
Liu, Yuan; Guo, Jian; Wu, Yecun; Zhu, Enbo; Weiss, Nathan O; He, Qiyuan; Wu, Hao; Cheng, Hung-Chieh; Xu, Yang; Shakir, Imran; Huang, Yu; Duan, Xiangfeng
2016-10-12
Two-dimensional semiconductors (2DSCs) such as molybdenum disulfide (MoS 2 ) have attracted intense interest as an alternative electronic material in the postsilicon era. However, the ON-current density achieved in 2DSC transistors to date is considerably lower than that of silicon devices, and it remains an open question whether 2DSC transistors can offer competitive performance. A high current device requires simultaneous minimization of the contact resistance and channel length, which is a nontrivial challenge for atomically thin 2DSCs, since the typical low contact resistance approaches for 2DSCs either degrade the electronic properties of the channel or are incompatible with the fabrication process for short channel devices. Here, we report a new approach toward high-performance MoS 2 transistors by using a physically assembled nanowire as a lift-off mask to create ultrashort channel devices with pristine MoS 2 channel and self-aligned low resistance metal/graphene hybrid contact. With the optimized contact in short channel devices, we demonstrate sub-100 nm MoS 2 transistor delivering a record high ON-current of 0.83 mA/μm at 300 K and 1.48 mA/μm at 20 K, which compares well with that of silicon devices. Our study, for the first time, demonstrates that the 2DSC transistors can offer comparable performance to the 2017 target for silicon transistors in International Technology Roadmap for Semiconductors (ITRS), marking an important milestone in 2DSC electronics.
Long, Guankui; Wan, Xiangjian; Kan, Bin; Hu, Zhicheng; Yang, Xuan; Zhang, Yi; Zhang, Mingtao; Wu, Hongbing; Huang, Fei; Su, Shijian; Cao, Yong; Chen, Yongsheng
2014-08-01
Although the performance of polymer solar cells has been improved significantly recently through careful optimization with different interlayers for the same materials, more improvement is needed in this respect for small-molecule-based solar cells, particularly for the electron-transport layers (ETLs). In this work, three different solution-processed ETLs, PFN, ZnO nanoparticles, and LiF, were investigated and compared in the performance of small-molecule-based devices, and power conversion efficiencies (PCEs) of 8.32, 7.30, and 7.38% were achieved, respectively. The mechanism for the ETL-induced enhancement has been studied, and different ETLs have a significantly different impact on the device performance. The clearly improved performance of PFN is attributed to the combination of reduced bimolecular recombination and increased effective photon absorption in the active layer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Impact of Low Molecular Weight Poly(3-hexylthiophene)s as Additives in Organic Photovoltaic Devices.
Seibers, Zach D; Le, Thinh P; Lee, Youngmin; Gomez, Enrique D; Kilbey, S Michael
2018-01-24
Despite tremendous progress in using additives to enhance the power conversion efficiency of organic photovoltaic devices, significant challenges remain in controlling the microstructure of the active layer, such as at internal donor-acceptor interfaces. Here, we demonstrate that the addition of low molecular weight poly(3-hexylthiophene)s (low-MW P3HT) to the P3HT/fullerene active layer increases device performance up to 36% over an unmodified control device. Low MW P3HT chains ranging in size from 1.6 to 8.0 kg/mol are blended with 77.5 kg/mol P3HT chains and [6,6]-phenyl C 61 butyric acid methyl ester (PCBM) fullerenes while keeping P3HT/PCBM ratio constant. Optimal photovoltaic device performance increases are obtained for each additive when incorporated into the bulk heterojunction blend at loading levels that are dependent upon additive MW. Small-angle X-ray scattering and energy-filtered transmission electron microscopy imaging reveal that domain sizes are approximately invariant at low loading levels of the low-MW P3HT additive, and wide-angle X-ray scattering suggests that P3HT crystallinity is unaffected by these additives. These results suggest that oligomeric P3HTs compatibilize donor-acceptor interfaces at low loading levels but coarsen domain structures at higher loading levels and they are consistent with recent simulations results. Although results are specific to the P3HT/PCBM system, the notion that low molecular weight additives can enhance photovoltaic device performance generally provides a new opportunity for improving device performance and operating lifetimes.
NASA Astrophysics Data System (ADS)
Akgul, Funda Aksoy; Akgul, Guvenc
2017-02-01
Recently, CuO has attracted much interest owing to its suitable material properties, inexpensive fabrication cost and potential applications for optoelectronic devices. In this study, CuO thin films were deposited on glass substrates using chemical bath deposition technique and post-deposition annealing effect on the properties of the prepared samples were investigated. p-n heterojunction solar cells were then constructed by coating of p-type CuO films onto the vertically well-aligned n-type Si nanowires synthesized through MACE method. Photovoltaic performance of the fabricated devices were determined with current-voltage (I-V) measurements under AM 1.5 G illumination. The optimal short-circuit current density, open-circuit voltage, fill factor and power conversion efficiency were found to be 3.2 mA/cm-2, 337 mV, 37.9 and 0.45%, respectively. The observed performance clearly indicates that the investigated device structure could be a promising candidate for high-performance low-cost new-generation photovoltaic diodes.
Lv, Decheng
2012-01-01
Numerous researches demonstrated the possibility of derivation of Schwann-like (SC-like) cells in vitro from bone marrow stromal cells (BMSCs). However, the concentration of the induce factors were different in those studies, especially for the critical factors forskolin (FSK) and β-heregulin (HRG). Here, we used a new and useful method to build an integrated microfluidic chip for rapid analyses of the optimal combination between the induce factors FSK and HRG. The microfluidic device was mainly composed of an upstream concentration gradient generator (CGG) and a downstream cell culture module. Rat BMSCs were cultured in the cell chambers for 11 days at the different concentrations of induce factors generated by CGG. The result of immunofluorescence staining on-chip showed that the group of 4.00 µM FSK and 250.00 ng/ml HRG presented an optimal effect to promote the derivation of SC-like cells. Moreover, the optimal SC-like cells obtained on-chip were further tested using DRG co-culture and ELISA to detect their functional performance. Our findings demonstrate that SC-like cells could be obtained with high efficiency and functional performance in the optimal inducers combination. PMID:22880114
Tian, Xiliang; Wang, Shouyu; Zhang, Zhen; Lv, Decheng
2012-01-01
Numerous researches demonstrated the possibility of derivation of Schwann-like (SC-like) cells in vitro from bone marrow stromal cells (BMSCs). However, the concentration of the induce factors were different in those studies, especially for the critical factors forskolin (FSK) and β-heregulin (HRG). Here, we used a new and useful method to build an integrated microfluidic chip for rapid analyses of the optimal combination between the induce factors FSK and HRG. The microfluidic device was mainly composed of an upstream concentration gradient generator (CGG) and a downstream cell culture module. Rat BMSCs were cultured in the cell chambers for 11 days at the different concentrations of induce factors generated by CGG. The result of immunofluorescence staining on-chip showed that the group of 4.00 µM FSK and 250.00 ng/ml HRG presented an optimal effect to promote the derivation of SC-like cells. Moreover, the optimal SC-like cells obtained on-chip were further tested using DRG co-culture and ELISA to detect their functional performance. Our findings demonstrate that SC-like cells could be obtained with high efficiency and functional performance in the optimal inducers combination.
NASA Astrophysics Data System (ADS)
Kandala, Abhinav; Mezzacapo, Antonio; Temme, Kristan; Bravyi, Sergey; Takita, Maika; Chavez-Garcia, Jose; Córcoles, Antonio; Smolin, John; Chow, Jerry; Gambetta, Jay
Hybrid quantum-classical algorithms can be used to find variational solutions to generic quantum problems. Here, we present an experimental implementation of a device-oriented optimizer that uses superconducting quantum hardware. The experiment relies on feedback between the quantum device and classical optimization software which is robust to measurement noise. Our device-oriented approach uses naturally available interactions for the preparation of trial states. We demonstrate the application of this technique for solving interacting spin and molecular structure problems.
Enhanced Sensitivity of a Surface Acoustic Wave Gyroscope
NASA Astrophysics Data System (ADS)
Zhang, Yanhua; Wang, Wen
2009-10-01
In this paper, we present an optimal design and performance evaluation of a surface acoustic wave (SAW) gyroscope. It consists of a two-port SAW resonator (SAWR) and a SAW sensor (SAWS) structured using a delay line pattern. The SAW resonator provides a stable reference vibration and creates a standing wave, and the vibrating metallic dot array at antinodes of the standing wave induces the second SAW in the normal direction by the Coriolis force, and the SAW sensor is used to detect the secondary SAW. By using the coupling of modes (COM), the SAW resonator was simulated, and the effects of the design parameters on the frequency response of the device were investigated. Also, a theoretical analysis was performed to investigate the effect of metallic dots on the frequency response of the SAW device. The measured frequency response S21 of the fabricated 80 MHz two-port SAW resonator agrees well with the simulated result, that is, a low insertion loss (˜5 dB) and a single steep resonance peak were observed. In the gyroscopic experiments using a rate table, optimal metallic dot thickness was determined, and the sensitivity of the fabricated SAW gyroscope with an optimal metallic dot thickness of ˜350 nm was determined to be 3.2 µV deg-1 s-1.
Current-limiting challenges for all-spin logic devices
Su, Li; Zhang, Youguang; Klein, Jacques-Olivier; Zhang, Yue; Bournel, Arnaud; Fert, Albert; Zhao, Weisheng
2015-01-01
All-spin logic device (ASLD) has attracted increasing interests as one of the most promising post-CMOS device candidates, thanks to its low power, non-volatility and logic-in-memory structure. Here we investigate the key current-limiting factors and develop a physics-based model of ASLD through nano-magnet switching, the spin transport properties and the breakdown characteristic of channel. First, ASLD with perpendicular magnetic anisotropy (PMA) nano-magnet is proposed to reduce the critical current (Ic0). Most important, the spin transport efficiency can be enhanced by analyzing the device structure, dimension, contact resistance as well as material parameters. Furthermore, breakdown current density (JBR) of spin channel is studied for the upper current limitation. As a result, we can deduce current-limiting conditions and estimate energy dissipation. Based on the model, we demonstrate ASLD with different structures and channel materials (graphene and copper). Asymmetric structure is found to be the optimal option for current limitations. Copper channel outperforms graphene in term of energy but seriously suffers from breakdown current limit. By exploring the current limit and performance tradeoffs, the optimization of ASLD is also discussed. This benchmarking model of ASLD opens up new prospects for design and implementation of future spintronics applications. PMID:26449410
High-efficiency cell concepts on low-cost silicon sheets
NASA Technical Reports Server (NTRS)
Bell, R. O.; Ravi, K. V.
1985-01-01
The limitations on sheet growth material in terms of the defect structure and minority carrier lifetime are discussed. The effect of various defects on performance are estimated. Given these limitations designs for a sheet growth cell that will make the best of the material characteristics are proposed. Achievement of optimum synergy between base material quality and device processing variables is proposed. A strong coupling exists between material quality and the variables during crystal growth, and device processing variables. Two objectives are outlined: (1) optimization of the coupling for maximum performance at minimal cost; and (2) decoupling of materials from processing by improvement in base material quality to make it less sensitive to processing variables.
Bix, Laura; Seo, Do Chan; Ladoni, Moslem; Brunk, Eric; Becker, Mark W
2016-01-01
Effective standardization of medical device labels requires objective study of varied designs. Insufficient empirical evidence exists regarding how practitioners utilize and view labeling. Measure the effect of graphic elements (boxing information, grouping information, symbol use and color-coding) to optimize a label for comparison with those typical of commercial medical devices. Participants viewed 54 trials on a computer screen. Trials were comprised of two labels that were identical with regard to graphics, but differed in one aspect of information (e.g., one had latex, the other did not). Participants were instructed to select the label along a given criteria (e.g., latex containing) as quickly as possible. Dependent variables were binary (correct selection) and continuous (time to correct selection). Eighty-nine healthcare professionals were recruited at Association of Surgical Technologists (AST) conferences, and using a targeted e-mail of AST members. Symbol presence, color coding and grouping critical pieces of information all significantly improved selection rates and sped time to correct selection (α = 0.05). Conversely, when critical information was graphically boxed, probability of correct selection and time to selection were impaired (α = 0.05). Subsequently, responses from trials containing optimal treatments (color coded, critical information grouped with symbols) were compared to two labels created based on a review of those commercially available. Optimal labels yielded a significant positive benefit regarding the probability of correct choice ((P<0.0001) LSM; UCL, LCL: 97.3%; 98.4%, 95.5%)), as compared to the two labels we created based on commercial designs (92.0%; 94.7%, 87.9% and 89.8%; 93.0%, 85.3%) and time to selection. Our study provides data regarding design factors, namely: color coding, symbol use and grouping of critical information that can be used to significantly enhance the performance of medical device labels.
Tonet, Oliver; Marinelli, Martina; Citi, Luca; Rossini, Paolo Maria; Rossini, Luca; Megali, Giuseppe; Dario, Paolo
2008-01-15
Interaction with machines is mediated by human-machine interfaces (HMIs). Brain-machine interfaces (BMIs) are a particular class of HMIs and have so far been studied as a communication means for people who have little or no voluntary control of muscle activity. In this context, low-performing interfaces can be considered as prosthetic applications. On the other hand, for able-bodied users, a BMI would only be practical if conceived as an augmenting interface. In this paper, a method is introduced for pointing out effective combinations of interfaces and devices for creating real-world applications. First, devices for domotics, rehabilitation and assistive robotics, and their requirements, in terms of throughput and latency, are described. Second, HMIs are classified and their performance described, still in terms of throughput and latency. Then device requirements are matched with performance of available interfaces. Simple rehabilitation and domotics devices can be easily controlled by means of BMI technology. Prosthetic hands and wheelchairs are suitable applications but do not attain optimal interactivity. Regarding humanoid robotics, the head and the trunk can be controlled by means of BMIs, while other parts require too much throughput. Robotic arms, which have been controlled by means of cortical invasive interfaces in animal studies, could be the next frontier for non-invasive BMIs. Combining smart controllers with BMIs could improve interactivity and boost BMI applications.
Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor
NASA Astrophysics Data System (ADS)
Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Flanagan, J. W.; Fontes, E.; Heltsley, B. K.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Seeley, R.; Shanks, J.
2014-12-01
We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of 10 - 100 μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of 2 - 5 GeV. x-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances.
Ding, Xu; Han, Jianghong; Shi, Lei
2015-01-01
In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating “bottleneck” sensor nodes is also developed in this paper. PMID:25785305
Ding, Xu; Han, Jianghong; Shi, Lei
2015-03-16
In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating "bottleneck" sensor nodes is also developed in this paper.
Platform for efficient switching between multiple devices in the intensive care unit.
De Backere, F; Vanhove, T; Dejonghe, E; Feys, M; Herinckx, T; Vankelecom, J; Decruyenaere, J; De Turck, F
2015-01-01
This article is part of the Focus Theme of METHODS of Information in Medicine on "Managing Interoperability and Complexity in Health Systems". Handheld computers, such as tablets and smartphones, are becoming more and more accessible in the clinical care setting and in Intensive Care Units (ICUs). By making the most useful and appropriate data available on multiple devices and facilitate the switching between those devices, staff members can efficiently integrate them in their workflow, allowing for faster and more accurate decisions. This paper addresses the design of a platform for the efficient switching between multiple devices in the ICU. The key functionalities of the platform are the integration of the platform into the workflow of the medical staff and providing tailored and dynamic information at the point of care. The platform is designed based on a 3-tier architecture with a focus on extensibility, scalability and an optimal user experience. After identification to a device using Near Field Communication (NFC), the appropriate medical information will be shown on the selected device. The visualization of the data is adapted to the type of the device. A web-centric approach was used to enable extensibility and portability. A prototype of the platform was thoroughly evaluated. The scalability, performance and user experience were evaluated. Performance tests show that the response time of the system scales linearly with the amount of data. Measurements with up to 20 devices have shown no performance loss due to the concurrent use of multiple devices. The platform provides a scalable and responsive solution to enable the efficient switching between multiple devices. Due to the web-centric approach new devices can easily be integrated. The performance and scalability of the platform have been evaluated and it was shown that the response time and scalability of the platform was within an acceptable range.
Poormohammadi, Ali; Bahrami, Abdulrahman; Farhadian, Maryam; Ghorbani Shahna, Farshid; Ghiasvand, Alireza
2017-12-08
Carbotrap B as a highly pure surface sorbent with excellent adsorption/desorption properties was packed into a stainless steel needle to develop a new needle trap device (NTD). The performance of the prepared NTD was investigated for sampling, pre-concentration and injection of benzene, toluene, ethyl benzene, o-xylene, and p-xylene (BTEX) into the column of gas chromatography-mass spectrometry (GC-MS) device. Response surface methodology (RSM) with central composite design (CCD) was also employed in two separate consecutive steps to optimize the sampling and device parameters. First, the sampling parameters such as sampling temperature and relative humidity were optimized. Afterwards, the RSM was used for optimizing the desorption parameters including desorption temperature and time. The results indicated that the peak area responses of the analytes of interest decreased with increasing sampling temperature and relative humidity. The optimum values of desorption temperature were in the range 265-273°C, and desorption time were in the range 3.4-3.8min. The limits of detection (LODs) and limits of quantitation (LOQs) of the studied analytes were found over the range of 0.03-0.04ng/mL, and 0.1-0.13ng/mL, respectively. These results demonstrated that the NTD packed with Carbotrap B offers a high sensitive procedure for sampling and analysis of BTEX in concentration range of 0.03-25ng/mL in air. Copyright © 2017 Elsevier B.V. All rights reserved.
Optimal digital filtering for tremor suppression.
Gonzalez, J G; Heredia, E A; Rahman, T; Barner, K E; Arce, G R
2000-05-01
Remote manually operated tasks such as those found in teleoperation, virtual reality, or joystick-based computer access, require the generation of an intermediate electrical signal which is transmitted to the controlled subsystem (robot arm, virtual environment, or a cursor in a computer screen). When human movements are distorted, for instance, by tremor, performance can be improved by digitally filtering the intermediate signal before it reaches the controlled device. This paper introduces a novel tremor filtering framework in which digital equalizers are optimally designed through pursuit tracking task experiments. Due to inherent properties of the man-machine system, the design of tremor suppression equalizers presents two serious problems: 1) performance criteria leading to optimizations that minimize mean-squared error are not efficient for tremor elimination and 2) movement signals show ill-conditioned autocorrelation matrices, which often result in useless or unstable solutions. To address these problems, a new performance indicator in the context of tremor is introduced, and the optimal equalizer according to this new criterion is developed. Ill-conditioning of the autocorrelation matrix is overcome using a novel method which we call pulled-optimization. Experiments performed with artificially induced vibrations and a subject with Parkinson's disease show significant improvement in performance. Additional results, along with MATLAB source code of the algorithms, and a customizable demo for PC joysticks, are available on the Internet at http:¿tremor-suppression.com.
Woo, Hyunsuk; Vishwanath, Sujaya Kumar; Jeon, Sanghun
2018-03-07
The next-generation electronic society is dependent on the performance of nonvolatile memory devices, which has been continuously improving. In the last few years, many memory devices have been introduced. However, atomic switches are considered to be a simple and reliable basis for next-generation nonvolatile devices. In general, atomic switch-based resistive switching is controlled by electrochemical metallization. However, excess ion injection from the entire area of the active electrode into the switching layer causes device nonuniformity and degradation of reliability. Here, we propose the fabrication of a high-performance atomic switch based on Cu x -Se 1- x by inserting lanthanide (Ln) metal buffer layers such as neodymium (Nd), samarium (Sm), dysprosium (Dy), or lutetium (Lu) between the active metal layer and the electrolyte. Current-atomic force microscopy results confirm that Cu ions penetrate through the Ln-buffer layer and form thin conductive filaments inside the switching layer. Compared with the Pt/Cu x -Se 1- x /Al 2 O 3 /Pt device, the optimized Pt/Cu x -Se 1- x /Ln/Al 2 O 3 /Pt devices show improvement in the on/off resistance ratio (10 2 -10 7 ), retention (10 years/85 °C), endurance (∼10 000 cycles), and uniform resistance state distribution.
Investigation of Short Channel Effects on Device Performance for 60nm NMOS Transistor
NASA Astrophysics Data System (ADS)
Chinnappan, U.; Sanudin, R.
2017-08-01
In the aggressively scaled complementary metal oxide semiconductor (CMOS) devices, shallower p-n junctions and low sheet resistances are essential for short-channel effect (SCE) control and high device performance. The SCE are attributed to two physical phenomena that are the limitation imposed on electron drift characteristics in channel and the modification of the threshold voltage (Vth) due to the shortening channel length. The decrement of Vth with decrement in gate length is a well-known attribute in SCE known as “threshold voltage roll-off’. In this research, the Technology Computer Aided Design (TCAD) was used to model the SCE phenomenon effect on 60nm n-type metal oxide semiconductor (NMOS) transistor. There are three parameters being investigated, which are the oxide thickness (Tox), gate length (L), acceptor concentration (Na). The simulation data were used to visualise the effect of SCE on the 60nm NMOS transistor. Simulation data suggest that all three parameters have significant effect on Vth, and hence on the transistor performance. It is concluded that there is a trade-off among these three parameters to obtain an optimized transistor performance.
Energy Harvesting Based Body Area Networks for Smart Health.
Hao, Yixue; Peng, Limei; Lu, Huimin; Hassan, Mohammad Mehedi; Alamri, Atif
2017-07-10
Body area networks (BANs) are configured with a great number of ultra-low power consumption wearable devices, which constantly monitor physiological signals of the human body and thus realize intelligent monitoring. However, the collection and transfer of human body signals consume energy, and considering the comfort demand of wearable devices, both the size and the capacity of a wearable device's battery are limited. Thus, minimizing the energy consumption of wearable devices and optimizing the BAN energy efficiency is still a challenging problem. Therefore, in this paper, we propose an energy harvesting-based BAN for smart health and discuss an optimal resource allocation scheme to improve BAN energy efficiency. Specifically, firstly, considering energy harvesting in a BAN and the time limits of human body signal transfer, we formulate the energy efficiency optimization problem of time division for wireless energy transfer and wireless information transfer. Secondly, we convert the optimization problem into a convex optimization problem under a linear constraint and propose a closed-form solution to the problem. Finally, simulation results proved that when the size of data acquired by the wearable devices is small, the proportion of energy consumed by the circuit and signal acquisition of the wearable devices is big, and when the size of data acquired by the wearable devices is big, the energy consumed by the signal transfer of the wearable device is decisive.
A neural network device for on-line particle identification in cosmic ray experiments
NASA Astrophysics Data System (ADS)
Scrimaglio, R.; Finetti, N.; D'Altorio, L.; Rantucci, E.; Raso, M.; Segreto, E.; Tassoni, A.; Cardarilli, G. C.
2004-05-01
On-line particle identification is one of the main goals of many experiments in space both for rare event studies and for optimizing measurements along the orbital trajectory. Neural networks can be a useful tool for signal processing and real time data analysis in such experiments. In this document we report on the performances of a programmable neural device which was developed in VLSI analog/digital technology. Neurons and synapses were accomplished by making use of Operational Transconductance Amplifier (OTA) structures. In this paper we report on the results of measurements performed in order to verify the agreement of the characteristic curves of each elementary cell with simulations and on the device performances obtained by implementing simple neural structures on the VLSI chip. A feed-forward neural network (Multi-Layer Perceptron, MLP) was implemented on the VLSI chip and trained to identify particles by processing the signals of two-dimensional position-sensitive Si detectors. The radiation monitoring device consisted of three double-sided silicon strip detectors. From the analysis of a set of simulated data it was found that the MLP implemented on the neural device gave results comparable with those obtained with the standard method of analysis confirming that the implemented neural network could be employed for real time particle identification.
NASA Astrophysics Data System (ADS)
Jen, Alex K.
2015-10-01
The performance of polymer and hybrid solar cells is also strongly dependent on their efficiency in harvesting light, exciton dissociation, charge transport, and charge collection at the metal/organic/metal oxide or the metal/perovskite/metal oxide interfaces. Our laboratory employs a molecular engineering approach to develop processible low band-gap polymers with high charge carrier mobility that can enhance power conversion efficiency of the single junction solar cells to values as high as ~11%. We have also developed several innovative strategies to modify the interface of bulk-heterojunction devices and create new device architectures to fully explore their potential for solar applications. In this talk, the integrated approach of combining material design, interface, and device engineering to significantly improve the performance of polymer and hybrid perovskite photovoltaic cells will be discussed. Specific emphasis will be placed on the development of low band-gap polymers with reduced reorganizational energy and proper energy levels, formation of optimized morphology of active layer, and minimized interfacial energy barriers using functional conductive surfactants. At the end, several new device architectures and optical engineering strategies to make tandem cells and semitransparent solar cells will be discussed to explore the full promise of polymer and perovskite hybrid solar cells.
[Design of medical devices management system supporting full life-cycle process management].
Su, Peng; Zhong, Jianping
2014-03-01
Based on the analysis of the present status of medical devices management, this paper optimized management process, developed a medical devices management system with Web technologies. With information technology to dynamic master the use of state of the entire life-cycle of medical devices. Through the closed-loop management with pre-event budget, mid-event control and after-event analysis, improved the delicacy management level of medical devices, optimized asset allocation, promoted positive operation of devices.
Designing, programming, and optimizing a (small) quantum computer
NASA Astrophysics Data System (ADS)
Svore, Krysta
In 1982, Richard Feynman proposed to use a computer founded on the laws of quantum physics to simulate physical systems. In the more than thirty years since, quantum computers have shown promise to solve problems in number theory, chemistry, and materials science that would otherwise take longer than the lifetime of the universe to solve on an exascale classical machine. The practical realization of a quantum computer requires understanding and manipulating subtle quantum states while experimentally controlling quantum interference. It also requires an end-to-end software architecture for programming, optimizing, and implementing a quantum algorithm on the quantum device hardware. In this talk, we will introduce recent advances in connecting abstract theory to present-day real-world applications through software. We will highlight recent advancement of quantum algorithms and the challenges in ultimately performing a scalable solution on a quantum device.
Inkjet-printed p-type nickel oxide thin-film transistor
NASA Astrophysics Data System (ADS)
Hu, Hailong; Zhu, Jingguang; Chen, Maosheng; Guo, Tailiang; Li, Fushan
2018-05-01
High-performance inkjet-printed nickel oxide thin-film transistors (TFTs) with Al2O3 high-k dielectric have been fabricated using a sol-gel precursor ink. The "coffee ring" effect during the printing process was facilely restrained by modifying the viscosity of the ink to control the outward capillary flow. The impacts on the device performance was studied in detail in consideration of annealing temperature of the nickel oxide film and the properties of dielectric layer. The optimized switching ability of the device were achieved at an annealing temperature of 280 °C on a 50-nm-thick Al2O3 dielectric layer, with a hole mobility of 0.78 cm2/V·s, threshold voltage of -0.6 V and on/off current ratio of 5.3 × 104. The as-printed p-type oxide TFTs show potential application in low-cost, large-area complementary electronic devices.
Study on the stability and reliability of Clinotron at Y-band
NASA Astrophysics Data System (ADS)
Li, Shuang; Wang, Jianguo; Chen, Zaigao; Wang, Guangqiang; Wang, Dongyang; Teng, Yan
2017-11-01
To improve the stability and reliability of Clinotron at the Y-band, some key issues are researched, such as the synchronous operating mode, the heat accumulation on the slow-wave structure, and the errors in micro-fabrication. By analyzing the dispersion relationship, the working mode is determined as the TM10 mode. The problem of heat dissipation on a comb is researched to make a trade-off on the choice of suitable working conditions, making sure that the safety and efficiency of the device are guaranteed simultaneously. The study on the effect of tolerance on device's performance is also conducted to determine the acceptable error during micro-fabrication. The validity of the device and the cost for fabrication are both taken into consideration. At last, the performance of Clinotron under the optimized conditions demonstrates that it can work steadily at 315.89 GHz and the output power is about 12 W, showing advanced stability and reliability.
"Genetically Engineered" Nanoelectronics
NASA Technical Reports Server (NTRS)
Klimeck, Gerhard; Salazar-Lazaro, Carlos H.; Stoica, Adrian; Cwik, Thomas
2000-01-01
The quantum mechanical functionality of nanoelectronic devices such as resonant tunneling diodes (RTDs), quantum well infrared-photodetectors (QWIPs), quantum well lasers, and heterostructure field effect transistors (HFETs) is enabled by material variations on an atomic scale. The design and optimization of such devices requires a fundamental understanding of electron transport in such dimensions. The Nanoelectronic Modeling Tool (NEMO) is a general-purpose quantum device design and analysis tool based on a fundamental non-equilibrium electron transport theory. NEW was combined with a parallelized genetic algorithm package (PGAPACK) to evolve structural and material parameters to match a desired set of experimental data. A numerical experiment that evolves structural variations such as layer widths and doping concentrations is performed to analyze an experimental current voltage characteristic. The genetic algorithm is found to drive the NEMO simulation parameters close to the experimentally prescribed layer thicknesses and doping profiles. With such a quantitative agreement between theory and experiment design synthesis can be performed.
NASA Astrophysics Data System (ADS)
Plimley, Brian; Coffer, Amy; Zhang, Yigong; Vetter, Kai
2016-08-01
Previously, scientific silicon charge-coupled devices (CCDs) with 10.5-μm pixel pitch and a thick (650 μm), fully depleted bulk have been used to measure gamma-ray-induced fast electrons and demonstrate electron track Compton imaging. A model of the response of this CCD was also developed and benchmarked to experiment using Monte Carlo electron tracks. We now examine the trade-off in pixel pitch and electronic noise. We extend our CCD response model to different pixel pitch and readout noise per pixel, including pixel pitch of 2.5 μm, 5 μm, 10.5 μm, 20 μm, and 40 μm, and readout noise from 0 eV/pixel to 2 keV/pixel for 10.5 μm pixel pitch. The CCD images generated by this model using simulated electron tracks are processed by our trajectory reconstruction algorithm. The performance of the reconstruction algorithm defines the expected angular sensitivity as a function of electron energy, CCD pixel pitch, and readout noise per pixel. Results show that our existing pixel pitch of 10.5 μm is near optimal for our approach, because smaller pixels add little new information but are subject to greater statistical noise. In addition, we measured the readout noise per pixel for two different device temperatures in order to estimate the effect of temperature on the reconstruction algorithm performance, although the readout is not optimized for higher temperatures. The noise in our device at 240 K increases the FWHM of angular measurement error by no more than a factor of 2, from 26° to 49° FWHM for electrons between 425 keV and 480 keV. Therefore, a CCD could be used for electron-track-based imaging in a Peltier-cooled device.
CATO: a CAD tool for intelligent design of optical networks and interconnects
NASA Astrophysics Data System (ADS)
Chlamtac, Imrich; Ciesielski, Maciej; Fumagalli, Andrea F.; Ruszczyk, Chester; Wedzinga, Gosse
1997-10-01
Increasing communication speed requirements have created a great interest in very high speed optical and all-optical networks and interconnects. The design of these optical systems is a highly complex task, requiring the simultaneous optimization of various parts of the system, ranging from optical components' characteristics to access protocol techniques. Currently there are no computer aided design (CAD) tools on the market to support the interrelated design of all parts of optical communication systems, thus the designer has to rely on costly and time consuming testbed evaluations. The objective of the CATO (CAD tool for optical networks and interconnects) project is to develop a prototype of an intelligent CAD tool for the specification, design, simulation and optimization of optical communication networks. CATO allows the user to build an abstract, possible incomplete, model of the system, and determine its expected performance. Based on design constraints provided by the user, CATO will automatically complete an optimum design, using mathematical programming techniques, intelligent search methods and artificial intelligence (AI). Initial design and testing of a CATO prototype (CATO-1) has been completed recently. The objective was to prove the feasibility of combining AI techniques, simulation techniques, an optical device library and a graphical user interface into a flexible CAD tool for obtaining optimal communication network designs in terms of system cost and performance. CATO-1 is an experimental tool for designing packet-switching wavelength division multiplexing all-optical communication systems using a LAN/MAN ring topology as the underlying network. The two specific AI algorithms incorporated are simulated annealing and a genetic algorithm. CATO-1 finds the optimal number of transceivers for each network node, using an objective function that includes the cost of the devices and the overall system performance.
Investigating enhanced thermoelectric performance of graphene-based nano-structures.
Hossain, Md Sharafat; Huynh, Duc Hau; Jiang, Liming; Rahman, Sharmin; Nguyen, Phuong Duc; Al-Dirini, Feras; Hossain, Faruque; Bahk, Je-Hyeong; Skafidas, Efstratios
2018-03-08
Recently, it has been demonstrated that graphene nano-ribbons (GNRs) exhibit superior thermoelectric performance compared to graphene sheets. However, the underlying mechanism behind this enhancement has not been systematically investigated and significant opportunity remains for further enhancement of the thermoelectric performance of GNRs by optimizing their charge carrier concentration. In this work, we modulate the carrier concentration of graphene-based nano-structures using a gate voltage and investigate the resulting carrier-concentration-dependent thermoelectric parameters using the Boltzmann transport equations. We investigate the effect of energy dependent scattering time and the role of substrate-induced charge carrier fluctuation in optimizing the Seebeck coefficient and power factor. Our approach predicts the scattering mechanism and the extent of the charge carrier fluctuation in different samples and explains the enhancement of thermoelectric performance of GNR samples. Subsequently, we propose a route towards the enhancement of thermoelectric performance of graphene-based devices which can also be applied to other two-dimensional materials.
Morbioli, Giorgio Gianini; Mazzu-Nascimento, Thiago; Milan, Luis Aparecido; Stockton, Amanda M; Carrilho, Emanuel
2017-05-02
Paper-based devices are a portable, user-friendly, and affordable technology that is one of the best analytical tools for inexpensive diagnostic devices. Three-dimensional microfluidic paper-based analytical devices (3D-μPADs) are an evolution of single layer devices and they permit effective sample dispersion, individual layer treatment, and multiplex analytical assays. Here, we present the rational design of a wax-printed 3D-μPAD that enables more homogeneous permeation of fluids along the cellulose matrix than other existing designs in the literature. Moreover, we show the importance of the rational design of channels on these devices using glucose oxidase, peroxidase, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) reactions. We present an alternative method for layer stacking using a magnetic apparatus, which facilitates fluidic dispersion and improves the reproducibility of tests performed on 3D-μPADs. We also provide the optimized designs for printing, facilitating further studies using 3D-μPADs.
Driver electronics design and control for a total artificial heart linear motor.
Unthan, Kristin; Cuenca-Navalon, Elena; Pelletier, Benedikt; Finocchiaro, Thomas; Steinseifer, Ulrich
2018-01-27
For any implantable device size and efficiency are critical properties. Thus, a linear motor for a Total Artificial Heart was optimized with focus on driver electronics and control strategies. Hardware requirements were defined from power supply and motor setup. Four full bridges were chosen for the power electronics. Shunt resistors were set up for current measurement. Unipolar and bipolar switching for power electronics control were compared regarding current ripple and power losses. Here, unipolar switching showed smaller current ripple and required less power to create the necessary motor forces. Based on calculations for minimal power losses Lorentz force was distributed to the actor's four coils. The distribution was determined as ratio of effective magnetic flux through each coil, which was captured by a force test rig. Static and dynamic measurements under physiological conditions analyzed interaction of control and hardware and all efficiencies were over 89%. In conclusion, the designed electronics, optimized control strategy and applied current distribution create the required motor force and perform optimal under physiological conditions. The developed driver electronics and control offer optimized size and efficiency for any implantable or portable device with multiple independent motor coils. Graphical Abstract ᅟ.
PediaFlow™ Maglev Ventricular Assist Device: A Prescriptive Design Approach.
Antaki, James F; Ricci, Michael R; Verkaik, Josiah E; Snyder, Shaun T; Maul, Timothy M; Kim, Jeongho; Paden, Dave B; Kameneva, Marina V; Paden, Bradley E; Wearden, Peter D; Borovetz, Harvey S
2010-03-01
This report describes a multi-disciplinary program to develop a pediatric blood pump, motivated by the critical need to treat infants and young children with congenital and acquired heart diseases. The unique challenges of this patient population require a device with exceptional biocompatibility, miniaturized for implantation up to 6 months. This program implemented a collaborative, prescriptive design process, whereby mathematical models of the governing physics were coupled with numerical optimization to achieve a favorable compromise among several competing design objectives. Computational simulations of fluid dynamics, electromagnetics, and rotordynamics were performed in two stages: first using reduced-order formulations to permit rapid optimization of the key design parameters; followed by rigorous CFD and FEA simulations for calibration, validation, and detailed optimization. Over 20 design configurations were initially considered, leading to three pump topologies, judged on the basis of a multi-component analysis including criteria for anatomic fit, performance, biocompatibility, reliability, and manufacturability. This led to fabrication of a mixed-flow magnetically levitated pump, the PF3, having a displaced volume of 16.6 cc, approximating the size of a AA battery and producing a flow capacity of 0.3-1.5 L/min. Initial in vivo evaluation demonstrated excellent hemocompatibility after 72 days of implantation in an ovine. In summary, combination of prescriptive and heuristic design principles have proven effective in developing a miniature magnetically levitated blood pump with excellent performance and biocompatibility, suitable for integration into chronic circulatory support system for infants and young children; aiming for a clinical trial within 3 years.
Single-drop optimization of protein crystallization.
Meyer, Arne; Dierks, Karsten; Hilterhaus, Dierk; Klupsch, Thomas; Mühlig, Peter; Kleesiek, Jens; Schöpflin, Robert; Einspahr, Howard; Hilgenfeld, Rolf; Betzel, Christian
2012-08-01
A completely new crystal-growth device has been developed that permits charting a course across the phase diagram to produce crystalline samples optimized for diffraction experiments. The utility of the device is demonstrated for the production of crystals for the traditional X-ray diffraction data-collection experiment, of microcrystals optimal for data-collection experiments at a modern microbeam insertion-device synchrotron beamline and of nanocrystals required for data collection on an X-ray laser beamline.
Design of high-efficiency, radiation-hard, GaInP/GaAs solar cells
NASA Technical Reports Server (NTRS)
Kurtz, Sarah R.; Bertness, K. A.; Kibbler, A. E.; Kramer, C.; Olson, J. M.
1994-01-01
In recently years, Ga(0.5)In((0.5)P/GaAs cells have drawn increased attention both because of their high efficiencies and because they are well suited for space applications. They can be grown and processed as two-junction devices with roughly twice the voltage and half the current of GaAs cells. They have low temperature coefficients, and have good potential for radiation hardness. We have previously reported the effects of electron irradiation on test cells which were not optimally designed for space. From those results we estimated that an optimally designed cell could achieve 20 percent after irradiation with 10(exp 15) cm(exp -2) 1 MeV electrons. Modeling studies predicted that slightly higher efficiencies may be achievable. Record efficiencies for EOL performance of other types of cells are significantly lower. Even the best Si and InP cells have BOL efficiencies lower than the EOL efficiency we report here. Good GaAs cells have an EOL efficiency of 16 percent. The InP/Ga(0.5)In(0.5)As two-junction, two-terminal device has a BOL efficiency as high as 22.2 percent, but radiation results for these cells were limited. In this study we use the previous modeling and irradiation results to design a set of Ga(0.5)In(0.5)P/GaAs cells that will demonstrate the importance of the design parameters and result in high-efficiency devices. We report record AMO efficiencies: a BOL efficiency of 25.7 percent for a device optimized for BOL performance and two of different designs with EOL efficiencies of 19.6 percent (at 10(exp 15) cm(exp -2) 1MeV electrons). We vary the bottom-cell base doping and the top-cell thickness to show the effects of these two important design parameters. We get an unexpected result indicating that the dopant added to the bottom-cell base also increases the degradation of the top cell.
Machine learning-based patient specific prompt-gamma dose monitoring in proton therapy
NASA Astrophysics Data System (ADS)
Gueth, P.; Dauvergne, D.; Freud, N.; Létang, J. M.; Ray, C.; Testa, E.; Sarrut, D.
2013-07-01
Online dose monitoring in proton therapy is currently being investigated with prompt-gamma (PG) devices. PG emission was shown to be correlated with dose deposition. This relationship is mostly unknown under real conditions. We propose a machine learning approach based on simulations to create optimized treatment-specific classifiers that detect discrepancies between planned and delivered dose. Simulations were performed with the Monte-Carlo platform Gate/Geant4 for a spot-scanning proton therapy treatment and a PG camera prototype currently under investigation. The method first builds a learning set of perturbed situations corresponding to a range of patient translation. This set is then used to train a combined classifier using distal falloff and registered correlation measures. Classifier performances were evaluated using receiver operating characteristic curves and maximum associated specificity and sensitivity. A leave-one-out study showed that it is possible to detect discrepancies of 5 mm with specificity and sensitivity of 85% whereas using only distal falloff decreases the sensitivity down to 77% on the same data set. The proposed method could help to evaluate performance and to optimize the design of PG monitoring devices. It is generic: other learning sets of deviations, other measures and other types of classifiers could be studied to potentially reach better performance. At the moment, the main limitation lies in the computation time needed to perform the simulations.
Micro-Scale Regenerative Heat Exchanger
NASA Technical Reports Server (NTRS)
Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred
2004-01-01
A micro-scale regenerative heat exchanger has been designed, optimized and fabricated for use in a micro-Stirling device. Novel design and fabrication techniques enabled the minimization of axial heat conduction losses and pressure drop, while maximizing thermal regenerative performance. The fabricated prototype is comprised of ten separate assembled layers of alternating metal-dielectric composite. Each layer is offset to minimize conduction losses and maximize heat transfer by boundary layer disruption. A grating pattern of 100 micron square non-contiguous flow passages were formed with a nominal 20 micron wall thickness, and an overall assembled ten-layer thickness of 900 microns. Application of the micro heat exchanger is envisioned in the areas of micro-refrigerators/coolers, micropower devices, and micro-fluidic devices.
HF-Release of Sacrificial Layers in CMOS-integrated MOEMS structures
NASA Astrophysics Data System (ADS)
Döring, S.; Friedrichs, M.; Pufe, W.; Schulze, M.
2016-10-01
In this paper we will present details of the release process of SiO2 sacrificial layers we use within a multi-level MOEMS process developed by IPMS. Using such sacrificial layers gain a lot of benefits necessary for the production of high-end MOEMS devices like high surface quality and great surface planarity. However the HF-release of the sacrificial layer can be connected with specific issues. We present, which mechanisms are involved in the release process and how knowing them, can be the key for an optimized performance of the device. More-over we will present how to protect the CMOS backplane of our devices from unwanted HF attack during the release.
VCSELs for datacom applications
NASA Astrophysics Data System (ADS)
Wipiejewski, Torsten; Wolf, Hans-Dieter; Korte, Lutz; Huber, Wolfgang; Kristen, Guenter; Hoyler, Charlotte; Hedrich, Harald; Kleinbub, Oliver; Albrecht, Tony; Mueller, Juergen; Orth, Andreas; Spika, Zeljko; Lutgen, Stephan; Pflaeging, Hartwig; Harrasser, Joerg; Droegemueller, Karsten; Plickert, Volker; Kuhl, Detlef; Blank, Juergen; Pietsch, Doris; Stange, Herwig; Karstensen, Holger
1999-04-01
The use of oxide confined VCSELs in datacom applications is demonstrated. The devices exhibit low threshold currents of approximately 3 mA and low electrical series resistance of about 50 (Omega) . The emission wavelength is in the 850 nm range. Life times of the devices are several million hours under normal operating conditions. VCSEL arrays are employed in a high performance parallel optical link called PAROLITM. This optical ink provides 12 parallel channels with a total bandwidth exceeding 12 Gbit/s. The VCSELs optimized for the parallel optical link show excellent threshold current uniformity between channels of < 50 (mu) A. The array life time drops compared to a single device, but is still larger than 1 million hours.
Optimization of the Negative Electrode in Organic Photovoltaic Devices
NASA Astrophysics Data System (ADS)
Reese, Matthew; White, Matthew; Rumbles, Garry; Ginley, David; Shaheen, Sean
2007-03-01
A blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) is used as the active layer in a series of bulk heterojunction organic solar cells. This polymer blend serves as a test-bed to explore the significant effects on device performance of using low work function metals and/or alkali metal halides as the top, negative electrode. Work function values reported in the literature are compared with those measured for our thin films. A series of contact materials are investigated including Al, Ca/Al, Ba/Al, LiF/Al; many devices are prepared with each contact type to validate the statistical significance of the results.
NASA Astrophysics Data System (ADS)
Gong, Xiaoyan; Li, Ying; Zhang, Yongqiang
2018-06-01
In view of the enlargement of fully mechanized face excavation and long distance driving, gas emission and dust production increase greatly. However, the current ventilation device direction angle, caliber and front-back distance cannot change dynamically at any time, resulting in the serious accumulation in the dead zone. In this paper, a new device were proposed that can solve above problems. Finite element ANSYS software were used to simulate and optimize the structural safety of the control device' key components. The optimization results showed that the equivalent stress decreases by 49%; after the optimization of deformation and mass are 0.829mm and 0.548kg, which were 21% and 10% lower than before.The quality, safety, reliability and cost of the control device reach the expected standards perfectly, which can meet the requirements of safe ventilation and down-dusting of fully mechanized face.
Optimization of Smart Structure for Improving Servo Performance of Hard Disk Drive
NASA Astrophysics Data System (ADS)
Kajiwara, Itsuro; Takahashi, Masafumi; Arisaka, Toshihiro
Head positioning accuracy of the hard disk drive should be improved to meet today's increasing performance demands. Vibration suppression of the arm in the hard disk drive is very important to enhance the servo bandwidth of the head positioning system. In this study, smart structure technology is introduced into the hard disk drive to suppress the vibration of the head actuator. It has been expected that the smart structure technology will contribute to the development of small and light-weight mechatronics devices with the required performance. First, modeling of the system is conducted with finite element method and modal analysis. Next, the actuator location and the control system are simultaneously optimized using genetic algorithm. Vibration control effect with the proposed vibration control mechanisms has been evaluated by some simulations.
Leung, Siu-Fung; Gu, Leilei; Zhang, Qianpeng; Tsui, Kwong-Hoi; Shieh, Jia-Min; Shen, Chang-Hong; Hsiao, Tzu-Hsuan; Hsu, Chin-Hung; Lu, Linfeng; Li, Dongdong; Lin, Qingfeng; Fan, Zhiyong
2014-01-01
Three-dimensional (3-D) nanostructures have demonstrated enticing potency to boost performance of photovoltaic devices primarily owning to the improved photon capturing capability. Nevertheless, cost-effective and scalable fabrication of regular 3-D nanostructures with decent robustness and flexibility still remains as a challenging task. Meanwhile, establishing rational design guidelines for 3-D nanostructured solar cells with the balanced electrical and optical performance are of paramount importance and in urgent need. Herein, regular arrays of 3-D nanospikes (NSPs) were fabricated on flexible aluminum foil with a roll-to-roll compatible process. The NSPs have precisely controlled geometry and periodicity which allow systematic investigation on geometry dependent optical and electrical performance of the devices with experiments and modeling. Intriguingly, it has been discovered that the efficiency of an amorphous-Si (a-Si) photovoltaic device fabricated on NSPs can be improved by 43%, as compared to its planar counterpart, in an optimal case. Furthermore, large scale flexible NSP solar cell devices have been fabricated and demonstrated. These results not only have shed light on the design rules of high performance nanostructured solar cells, but also demonstrated a highly practical process to fabricate efficient solar panels with 3-D nanostructures, thus may have immediate impact on thin film photovoltaic industry. PMID:24603964
Leung, Siu-Fung; Gu, Leilei; Zhang, Qianpeng; Tsui, Kwong-Hoi; Shieh, Jia-Min; Shen, Chang-Hong; Hsiao, Tzu-Hsuan; Hsu, Chin-Hung; Lu, Linfeng; Li, Dongdong; Lin, Qingfeng; Fan, Zhiyong
2014-03-07
Three-dimensional (3-D) nanostructures have demonstrated enticing potency to boost performance of photovoltaic devices primarily owning to the improved photon capturing capability. Nevertheless, cost-effective and scalable fabrication of regular 3-D nanostructures with decent robustness and flexibility still remains as a challenging task. Meanwhile, establishing rational design guidelines for 3-D nanostructured solar cells with the balanced electrical and optical performance are of paramount importance and in urgent need. Herein, regular arrays of 3-D nanospikes (NSPs) were fabricated on flexible aluminum foil with a roll-to-roll compatible process. The NSPs have precisely controlled geometry and periodicity which allow systematic investigation on geometry dependent optical and electrical performance of the devices with experiments and modeling. Intriguingly, it has been discovered that the efficiency of an amorphous-Si (a-Si) photovoltaic device fabricated on NSPs can be improved by 43%, as compared to its planar counterpart, in an optimal case. Furthermore, large scale flexible NSP solar cell devices have been fabricated and demonstrated. These results not only have shed light on the design rules of high performance nanostructured solar cells, but also demonstrated a highly practical process to fabricate efficient solar panels with 3-D nanostructures, thus may have immediate impact on thin film photovoltaic industry.
Tex, David M; Nakamura, Tetsuya; Imaizumi, Mitsuru; Ohshima, Takeshi; Kanemitsu, Yoshihiko
2017-05-16
Tandem solar cells are suited for space applications due to their high performance, but also have to be designed in such a way to minimize influence of degradation by the high energy particle flux in space. The analysis of the subcell performance is crucial to understand the device physics and achieve optimized designs of tandem solar cells. Here, the radiation-induced damage of inverted grown InGaP/GaAs/InGaAs triple-junction solar cells for various electron fluences are characterized using conventional current-voltage (I-V) measurements and time-resolved photoluminescence (PL). The conversion efficiencies of the entire device before and after damage are measured with I-V curves and compared with the efficiencies predicted from the time-resolved method. Using the time-resolved data the change in the carrier dynamics in the subcells can be discussed. Our optical method allows to predict the absolute electrical conversion efficiency of the device with an accuracy of better than 5%. While both InGaP and GaAs subcells suffered from significant material degradation, the performance loss of the total device can be completely ascribed to the damage in the GaAs subcell. This points out the importance of high internal electric fields at the operating point.
Gao, Leyi; Patterson, Eric E; Shippy, Scott A
2006-02-01
A simple automated nanoliter scale injection device which allows for reproducible 5 nL sample injections from samples with a volume of <1 microL is successfully used for conventional capillary electrophoresis (CE) and Hadamard transform (HT) CE detection. Two standard fused silica capillaries are assembled axially through the device to function as an injection and a separation capillary. Sample solution is supplied to the injection capillary using pressure controlled with a solenoid valve. Buffer solution flows gravimetrically by the junction of the injection and separation capillaries and is also gated with a solenoid valve. Plugs of sample are pushed into the space between the injection and separation capillaries for electrokinectic injection. To evaluate the performance of the injection device, several optimizations are performed including the influence of flow rates, the injected sample volume and the control of the buffer transverse flow on the overall sensitivity. The system was then applied to HT-CE-UV detection for the signal-to-noise ratio (S/N) improvement of the nitric oxide (NO) metabolites, nitrite and nitrate. In addition, signal averaging was performed to explore the possibility of greater sensitivity enhancements compared to single injections.
Simeoni, Ricardo
2015-06-11
This paper presents the configuration and digital signal processing details of a tablet-based hearing aid transmitting wirelessly to standard earphones, whereby the tablet performs full sound processing rather than solely providing a means of setting adjustment by streaming to conventional digital hearing aids. The presented device confirms the recognized advantages of this tablet-based approach (e.g., in relation to cost, frequency domain processing, amplification range, versatility of functionality, component battery rechargeability), and flags the future wider-spread availability of such hearing solutions within mainstream healthcare. The use of a relatively high sampling frequency was found to be beneficial for device performance, while the use of optional off-the-shelf add-on components (e.g., data acquisition device, high fidelity microphone, compact wireless transmitter/receiver, wired headphones) are also discussed in relation to performance optimization. The easy-to-follow configuration utilized is well suited to student learning/research instrumentation projects within the health and biomedical sciences. In this latter regard, the presented device was pedagogically integrated into a flipped classroom approach for the teaching of bioinstrumentation within an Allied Health Sciences School, with the subsequent establishment of positive student engagement outcomes.
Characterization of Initial Parameter Information for Lifetime Prediction of Electronic Devices.
Li, Zhigang; Liu, Boying; Yuan, Mengxiong; Zhang, Feifei; Guo, Jiaqiang
2016-01-01
Newly manufactured electronic devices are subject to different levels of potential defects existing among the initial parameter information of the devices. In this study, a characterization of electromagnetic relays that were operated at their optimal performance with appropriate and steady parameter values was performed to estimate the levels of their potential defects and to develop a lifetime prediction model. First, the initial parameter information value and stability were quantified to measure the performance of the electronics. In particular, the values of the initial parameter information were estimated using the probability-weighted average method, whereas the stability of the parameter information was determined by using the difference between the extrema and end points of the fitting curves for the initial parameter information. Second, a lifetime prediction model for small-sized samples was proposed on the basis of both measures. Finally, a model for the relationship of the initial contact resistance and stability over the lifetime of the sampled electromagnetic relays was proposed and verified. A comparison of the actual and predicted lifetimes of the relays revealed a 15.4% relative error, indicating that the lifetime of electronic devices can be predicted based on their initial parameter information.
Characterization of Initial Parameter Information for Lifetime Prediction of Electronic Devices
Li, Zhigang; Liu, Boying; Yuan, Mengxiong; Zhang, Feifei; Guo, Jiaqiang
2016-01-01
Newly manufactured electronic devices are subject to different levels of potential defects existing among the initial parameter information of the devices. In this study, a characterization of electromagnetic relays that were operated at their optimal performance with appropriate and steady parameter values was performed to estimate the levels of their potential defects and to develop a lifetime prediction model. First, the initial parameter information value and stability were quantified to measure the performance of the electronics. In particular, the values of the initial parameter information were estimated using the probability-weighted average method, whereas the stability of the parameter information was determined by using the difference between the extrema and end points of the fitting curves for the initial parameter information. Second, a lifetime prediction model for small-sized samples was proposed on the basis of both measures. Finally, a model for the relationship of the initial contact resistance and stability over the lifetime of the sampled electromagnetic relays was proposed and verified. A comparison of the actual and predicted lifetimes of the relays revealed a 15.4% relative error, indicating that the lifetime of electronic devices can be predicted based on their initial parameter information. PMID:27907188
Phunchongharn, Phond; Hossain, Ekram; Camorlinga, Sergio
2011-11-01
We study the multiple access problem for e-Health applications (referred to as secondary users) coexisting with medical devices (referred to as primary or protected users) in a hospital environment. In particular, we focus on transmission scheduling and power control of secondary users in multiple spatial reuse time-division multiple access (STDMA) networks. The objective is to maximize the spectrum utilization of secondary users and minimize their power consumption subject to the electromagnetic interference (EMI) constraints for active and passive medical devices and minimum throughput guarantee for secondary users. The multiple access problem is formulated as a dual objective optimization problem which is shown to be NP-complete. We propose a joint scheduling and power control algorithm based on a greedy approach to solve the problem with much lower computational complexity. To this end, an enhanced greedy algorithm is proposed to improve the performance of the greedy algorithm by finding the optimal sequence of secondary users for scheduling. Using extensive simulations, the tradeoff in performance in terms of spectrum utilization, energy consumption, and computational complexity is evaluated for both the algorithms.
NASA Astrophysics Data System (ADS)
Ozbulut, O. E.; Silwal, B.
2014-04-01
This study investigates the optimum design parameters of a superelastic friction base isolator (S-FBI) system through a multi-objective genetic algorithm and performance-based evaluation approach. The S-FBI system consists of a flat steel- PTFE sliding bearing and a superelastic NiTi shape memory alloy (SMA) device. Sliding bearing limits the transfer of shear across the isolation interface and provides damping from sliding friction. SMA device provides restoring force capability to the isolation system together with additional damping characteristics. A three-story building is modeled with S-FBI isolation system. Multiple-objective numerical optimization that simultaneously minimizes isolation-level displacements and superstructure response is carried out with a genetic algorithm (GA) in order to optimize S-FBI system. Nonlinear time history analyses of the building with S-FBI system are performed. A set of 20 near-field ground motion records are used in numerical simulations. Results show that S-FBI system successfully control response of the buildings against near-fault earthquakes without sacrificing in isolation efficacy and producing large isolation-level deformations.
Lamp pumped Nd:YAG laser. Space-qualifiable Nd:YAG laser for optical communications
NASA Technical Reports Server (NTRS)
Ward, K. B.
1973-01-01
Results are given of a program concerned with the design, fabrication, and evaluation of alkali pump lamps for eventual use in a space qualified Nd:YAG laser system. The study included evaluation of 2mm through 6mm bore devices. Primary emphasis was placed upon the optimization of the 4mm bore lamp and later on the 6mm bore lamp. As part of this effort, reference was made to the Sylvania work concerned with the theoretical modeling of the Nd:YAG laser. With the knowledge gained, a projection of laser performance was made based upon realistic lamp parameters which should easily be achieved during following developmental efforts. Measurements were made on the lamp performance both in and out of the cavity configuration. One significant observation was that for a constant vapor pressure device, the spectral and fluorescent output did not vary for vacuum or argon environment. Therefore, the laser can be operated in an inert environment (eg. argon) with no degradation in output. Laser output of 3.26 watts at 430 watts input was obtained for an optimized 4mm bore lamp.
Micro-opto-mechanical devices and systems using epitaxial lift off
NASA Technical Reports Server (NTRS)
Camperi-Ginestet, C.; Kim, Young W.; Wilkinson, S.; Allen, M.; Jokerst, N. M.
1993-01-01
The integration of high quality, single crystal thin film gallium arsenide (GaAs) and indium phosphide (InP) based photonic and electronic materials and devices with host microstructures fabricated from materials such as silicon (Si), glass, and polymers will enable the fabrication of the next generation of micro-opto-mechanical systems (MOMS) and optoelectronic integrated circuits. Thin film semiconductor devices deposited onto arbitrary host substrates and structures create hybrid (more than one material) near-monolithic integrated systems which can be interconnected electrically using standard inexpensive microfabrication techniques such as vacuum metallization and photolithography. These integrated systems take advantage of the optical and electronic properties of compound semiconductor devices while still using host substrate materials such as silicon, polysilicon, glass and polymers in the microstructures. This type of materials optimization for specific tasks creates higher performance systems than those systems which must use trade-offs in device performance to integrate all of the function in a single material system. The low weight of these thin film devices also makes them attractive for integration with micromechanical devices which may have difficulty supporting and translating the full weight of a standard device. These thin film devices and integrated systems will be attractive for applications, however, only when the development of low cost, high yield fabrication and integration techniques makes their use economically feasible. In this paper, we discuss methods for alignment, selective deposition, and interconnection of thin film epitaxial GaAs and InP based devices onto host substrates and host microstructures.
What is the Optimal Strategy for Adaptive Servo-Ventilation Therapy?
Imamura, Teruhiko; Kinugawa, Koichiro
2018-05-23
Clinical advantages in the adaptive servo-ventilation (ASV) therapy have been reported in selected heart failure patients with/without sleep-disorder breathing, whereas multicenter randomized control trials could not demonstrate such advantages. Considering this discrepancy, optimal patient selection and device setting may be a key for the successful ASV therapy. Hemodynamic and echocardiographic parameters indicating pulmonary congestion such as elevated pulmonary capillary wedge pressure were reported as predictors of good response to ASV therapy. Recently, parameters indicating right ventricular dysfunction also have been reported as good predictors. Optimal device setting with appropriate pressure setting during appropriate time may also be a key. Large-scale prospective trial with optimal patient selection and optimal device setting is warranted.
NASA Astrophysics Data System (ADS)
Liu, Tongjun; Wang, Tongcai; Luan, Weiling; Cao, Qimin
2017-05-01
Waste heat recovery through thermoelectric generators is a promising way to improve energy conversion efficiency. This paper proposes a type of heat pipe assisted thermoelectric generator (HP-TEG) system. The expandable evaporator and condenser surface of the heat pipe facilitates the intensive assembly of thermoelectric (TE) modules to compose a compact device. Compared with a conventional layer structure thermoelectric generator, this system is feasible for the installment of more TE couples, thus increasing power output. To investigate the performance of the HP-TEG and the optimal number of TE couples, a theoretical model was presented and verified by experiment results. Further theoretical analysis results showed the performance of the HP-TEG could be further improved by optimizing the parameters, including the inlet air temperature, the thermal resistance of the heating section, and thermal resistance of the cooling structure. Moreover, applying a proper number of TE couples is important to acquire the best power output performance.
Reconfiguration of Smart Distribution Network in the Presence of Renewable DG’s Using GWO Algorithm
NASA Astrophysics Data System (ADS)
Siavash, M.; Pfeifer, C.; Rahiminejad, A.; Vahidi, B.
2017-08-01
In this paper, the optimal reconfiguration of smart distribution system is performed with the aim of active power loss reduction and voltage stability improvement. The distribution network is considered equipped with wind turbines and solar cells as Renewable DG’s (RDG’s). Because of the presence of smart metering devices, the network state is known accurately at any moment. Based on the network conditions (the amount of load and generation of RDG’s), the optimal configuration of the network is obtained. The optimization problem is solved using a recently introduced method known as Grey Wolf Optimizer (GWO). The proposed approach is applied on 69-bus radial test system and the results of the GWO are compared to those of Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). The results show the effectiveness of the proposed approach and the selected optimization method.
Effects of Voltage-Bias Annealing on Metastable Defect Populations in CIGS and CZTSe Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Steven P.; Johnston, Steve; Teeter, Glenn
2016-11-21
We report on voltage-bias annealing (VBA) experiments performed on CIGS and CZTSe solar cells. In these experiments, completed devices were annealed at moderate temperatures and subsequently quenched with continuously applied voltage bias. These treatments resulted in substantial reversible changes in device characteristics. Photovoltaic (PV) conversion efficiency of the CIGS device varied from below 3% to above 15%, with corresponding changes in CIGS hole density from ~1014 cm-3 to ~1017 cm-3. In the CZTSe device, open-circuit voltage varied from 289 meV to 446 meV, caused by an approximately factor of fifty change in the CZTSe hole density. We interpret these findingsmore » in terms of reversible changes to the metastable point-defect populations that control key properties in these materials. Implications for optimization of PV materials and connections to long-term stability of PV devices are discussed.« less
Emerging Semitransparent Solar Cells: Materials and Device Design.
Tai, Qidong; Yan, Feng
2017-09-01
Semitransparent solar cells can provide not only efficient power-generation but also appealing images and show promising applications in building integrated photovoltaics, wearable electronics, photovoltaic vehicles and so forth in the future. Such devices have been successfully realized by incorporating transparent electrodes in new generation low-cost solar cells, including organic solar cells (OSCs), dye-sensitized solar cells (DSCs) and organometal halide perovskite solar cells (PSCs). In this review, the advances in the preparation of semitransparent OSCs, DSCs, and PSCs are summarized, focusing on the top transparent electrode materials and device designs, which are all crucial to the performance of these devices. Techniques for optimizing the efficiency, color and transparency of the devices are addressed in detail. Finally, a summary of the research field and an outlook into the future development in this area are provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wellmann, Peter J
2017-11-17
Power electronics belongs to the future key technologies in order to increase system efficiency as well as performance in automotive and energy saving applications. Silicon is the major material for electronic switches since decades. Advanced fabrication processes and sophisticated electronic device designs have optimized the silicon electronic device performance almost to their theoretical limit. Therefore, to increase the system performance, new materials that exhibit physical and chemical properties beyond silicon need to be explored. A number of wide bandgap semiconductors like silicon carbide, gallium nitride, gallium oxide, and diamond exhibit outstanding characteristics that may pave the way to new performance levels. The review will introduce these materials by (i) highlighting their properties, (ii) introducing the challenges in materials growth, and (iii) outlining limits that need innovation steps in materials processing to outperform current technologies.
2017-01-01
Power electronics belongs to the future key technologies in order to increase system efficiency as well as performance in automotive and energy saving applications. Silicon is the major material for electronic switches since decades. Advanced fabrication processes and sophisticated electronic device designs have optimized the silicon electronic device performance almost to their theoretical limit. Therefore, to increase the system performance, new materials that exhibit physical and chemical properties beyond silicon need to be explored. A number of wide bandgap semiconductors like silicon carbide, gallium nitride, gallium oxide, and diamond exhibit outstanding characteristics that may pave the way to new performance levels. The review will introduce these materials by (i) highlighting their properties, (ii) introducing the challenges in materials growth, and (iii) outlining limits that need innovation steps in materials processing to outperform current technologies. PMID:29200530
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-09
...] Workshop on Optimizing Clinical Trial Design for the Development of Pediatric Cardiovascular Devices AGENCY... (AAP), the American College of Cardiology (ACC), and the Society for Cardiovascular Angiography and... Development of Pediatric Cardiovascular Devices.'' The topic to be discussed is pediatric cardiovascular...
Realizing Efficient Energy Harvesting from Organic Photovoltaic Cells
NASA Astrophysics Data System (ADS)
Zou, Yunlong
Organic photovoltaic cells (OPVs) are emerging field of research in renewable energy. The development of OPVs in recent years has made this technology viable for many niche applications. In order to realize widespread application however, the power conversion efficiency requires further improvement. The efficiency of an OPV depends on the short-circuit current density (JSC), open-circuit voltage (VOC) and fill factor (FF). For state-of-the-art devices, JSC is mostly optimized with the application of novel low-bandgap materials and a bulk heterojunction device architecture (internal quantum efficiency approaching 100%). The remaining limiting factors are the low VOC and FF. This work focuses on overcoming these bottlenecks for improved efficiency. Temperature dependent measurements of device performance are used to examine both charge transfer and exciton ionization process in OPVs. The results permit an improved understanding of the intrinsic limit for VOC in various device architectures and provide insight on device operation. Efforts have also been directed at engineering device architecture for optimized FF, realizing a very high efficiency of 8% for vapor deposited small molecule OPVs. With collaborators, new molecules with tailored desired energy levels are being designed for further improvements in efficiency. A new type of hybrid organic-inorganic perovskite material is also included in this study. By addressing processing issues and anomalous hysteresis effects, a very high efficiency of 19.1% is achieved. Moving forward, topics including engineering film crystallinity, exploring tandem architectures and understanding degradation mechanisms will further push OPVs toward broad commercialization.
Yandell, Matthew B; Quinlivan, Brendan T; Popov, Dmitry; Walsh, Conor; Zelik, Karl E
2017-05-18
Wearable assistive devices have demonstrated the potential to improve mobility outcomes for individuals with disabilities, and to augment healthy human performance; however, these benefits depend on how effectively power is transmitted from the device to the human user. Quantifying and understanding this power transmission is challenging due to complex human-device interface dynamics that occur as biological tissues and physical interface materials deform and displace under load, absorbing and returning power. Here we introduce a new methodology for quickly estimating interface power dynamics during movement tasks using common motion capture and force measurements, and then apply this method to quantify how a soft robotic ankle exosuit interacts with and transfers power to the human body during walking. We partition exosuit end-effector power (i.e., power output from the device) into power that augments ankle plantarflexion (termed augmentation power) vs. power that goes into deformation and motion of interface materials and underlying soft tissues (termed interface power). We provide empirical evidence of how human-exosuit interfaces absorb and return energy, reshaping exosuit-to-human power flow and resulting in three key consequences: (i) During exosuit loading (as applied forces increased), about 55% of exosuit end-effector power was absorbed into the interfaces. (ii) However, during subsequent exosuit unloading (as applied forces decreased) most of the absorbed interface power was returned viscoelastically. Consequently, the majority (about 75%) of exosuit end-effector work over each stride contributed to augmenting ankle plantarflexion. (iii) Ankle augmentation power (and work) was delayed relative to exosuit end-effector power, due to these interface energy absorption and return dynamics. Our findings elucidate the complexities of human-exosuit interface dynamics during transmission of power from assistive devices to the human body, and provide insight into improving the design and control of wearable robots. We conclude that in order to optimize the performance of wearable assistive devices it is important, throughout design and evaluation phases, to account for human-device interface dynamics that affect power transmission and thus human augmentation benefits.
Liu, Zeke; Sun, Yaxiang; Yuan, Jianyu; Wei, Huaixin; Huang, Xiaodong; Han, Lu; Wang, Weiwei; Wang, Haiqiao; Ma, Wanli
2013-10-25
Solution-processed hybrid solar cells employing a low band-gap polymer and PbSx Se1-x alloy nanocrystals, achieving a record high PCE of 5.50% and an optimal FF of 67% are presented. The remarkable device efficiency can be attributed to the high-performance active materials, the optimal polymer/NCs ratio and, more importantly, the vertical donor/(donor:acceptor)/acceptor structure which benefits charge dissociation and transport. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimization of a multi-well array SERS chip
NASA Astrophysics Data System (ADS)
Abell, J. L.; Driskell, J. D.; Dluhy, R. A.; Tripp, R. A.; Zhao, Y.-P.
2009-05-01
SERS-active substrates are fabricated by oblique angle deposition and patterned by a polymer-molding technique to provide a uniform array for high throughput biosensing and multiplexing. Using a conventional SERS-active molecule, 1,2-Bis(4-pyridyl)ethylene (BPE), we show that this device provides a uniform Raman signal enhancement from well to well. The patterning technique employed in this study demonstrates a flexibility allowing for patterning control and customization, and performance optimization of the substrate. Avian influenza is analyzed to demonstrate the ability of this multi-well patterned SERS substrate for biosensing.
Zeng, Qiang; Li, Tao; Song, Xinbing; Zhang, Xiangdong
2016-04-18
We propose and experimentally demonstrate an optimized setup to implement quantum controlled-NOT operation using polarization and orbital angular momentum qubits. This device is more adaptive to inputs with various polarizations, and can work both in classical and quantum single-photon regime. The logic operations performed by such a setup not only possess high stability and polarization-free character, they can also be easily extended to deal with multi-qubit input states. As an example, the experimental implementation of generalized three-qubit Toffoli gate has been presented.
NASA Astrophysics Data System (ADS)
Merabet, Lotfi B.; Rizzo, Joseph F., III; Pascual-Leone, Alvaro; Fernandez, Eduardo
2007-03-01
Appropriate delivery of electrical stimulation to intact visual structures can evoke patterned sensations of light in individuals who have been blind for many years. This pivotal finding has lent credibility to the concept of restoring functional vision by artificial means. As numerous groups worldwide pursue human clinical testing with visual prosthetic devices, it is becoming increasingly clear that there remains a considerable gap between the challenges of prosthetic device development and the rehabilitative strategies needed to implement this new technology in patients. An important area of future work will be the development of appropriate pre- and post-implantation measures of performance and establishing candidate selection criteria in order to quantify technical advances, guide future device design and optimize therapeutic success. We propose that the selection of an 'ideal' candidate should also be considered within the context of the variable neuroplastic changes that follow vision loss. Specifically, an understanding of the adaptive and compensatory changes that occur within the brain could assist in guiding the development of post-implantation rehabilitative strategies and optimize behavioral outcomes.
Characterization of a highly efficient chevron-shaped anti-contamination device
NASA Astrophysics Data System (ADS)
Fiore, M.; Vermeersch, O.; Forte, M.; Casalis, G.; François, C.
2016-04-01
This paper is devoted to the characterization of an optimized chevron-shaped anti-contamination device (ACD). This device can prevent efficiently the propagation of turbulence from the fuselage along the attachment line (hypothetical streamline that spreads the flow going to suction side and the one going to pressure side) of swept wings and enables the development of a new laminar boundary layer downstream. More specifically, the aim is to prevent boundary-layer transition along the attachment line by a contamination process. This process is characterized by the typical Reynolds number overline{R} and the associated Poll's criterion. Thus, ACD efficiency will be expressed in terms of overline{R} values. Some experiments performed on a new numerically optimized ACD have shown its ability to prevent leading-edge contamination up to overline{R} values close to the natural transition process of the laminar boundary layer along the attachment line. The corresponding stability analysis of the laminar boundary layer is made using the Görtler-Hämmerlin stability approach. The study is completed with the different transition processes that can occur downstream the attachment line, around the airfoil, especially with crossflow analysis.
NASA Astrophysics Data System (ADS)
Fang, W.; Quan, S. H.; Xie, C. J.; Ran, B.; Li, X. L.; Wang, L.; Jiao, Y. T.; Xu, T. W.
2017-05-01
The majority of the thermal energy released in an automotive internal combustion cycle is exhausted as waste heat through the tail pipe. This paper describes an automobile exhaust thermoelectric generator (AETEG), designed to recycle automobile waste heat. A model of the output characteristics of each thermoelectric device was established by testing their open circuit voltage and internal resistance, and combining the output characteristics. To better describe the relationship, the physical model was transformed into a topological model. The connection matrix was used to describe the relationship between any two thermoelectric devices in the topological structure. Different topological structures produced different power outputs; their output power was maximised by using an iterative algorithm to optimize the series-parallel electrical topology structure. The experimental results have shown that the output power of the optimal topology structure increases by 18.18% and 29.35% versus that of a pure in-series or parallel topology, respectively, and by 10.08% versus a manually defined structure (based on user experience). The thermoelectric conversion device increased energy efficiency by 40% when compared with a traditional car.
Molecular materials for high performance OPV devices (Conference Presentation)
NASA Astrophysics Data System (ADS)
Jones, David J.
2016-09-01
We recently reported the high performing molecular donor for OPV devices based on a benzodithiophene core, a terthiophene bridge and a rhodamine acceptor (BTR) [1]. In this work we optimized side-chain placement of a known chromophore by ensuring the thiophene hexyl side-chains are regioregular, which should allow the chromophore to lie flat. The unexpected outcome was a nematic liquid crystalline material with significantly improved performance (now 9.6% PCE), excellent charge transport properties, reduced geminate recombination rates and excellent performance with active layers up to 400nm. Three phase changes were indicated by DSC analysis with a melt to a crystalline domain at 175 oC, transition to a nematic liquid crystalline domain at 186 oC and an isotropic melt at 196 oC. In our desire to better understand the structure property relationships of this class of p-type organic semiconductor we have synthesized a series of analogues where the length of the chromophore has been altered through modification of the oligothiophene bridge to generate, the monothiophene (BMR), the bisthiophene (BBR), the known terthiophene (BTR), the quaterthiophene (BQR) and the pentathiophene (BPR). BMR, BBR and BPR have clean melting points while BQR, like BTR shows a complicated series of phase transitions. Device efficiencies after solvent vapour annealing are BMR (3.5%), BBR (6.0%), BTR (9.3%), BQR (9.4%), and BPR (8.7%) unoptimised. OPV devices with BTR in the active layer are not stable under thermal annealing, however the bridge extended BQR and BPR form thermally stable devices. We are currently optimising these devices, but initial results indicate PCEs >9% for thermally annealed devices containing BQR, while BPR devices have not yet been optimised and have PCEs > 8%. In order to develop the device performance we have included BQR in ternary devices with the commercially available PTB7-Th and we report device efficiencies of over 10.5%. We are currently optimising device assembly and annealing conditions and relating these back to key materials properties. I will discuss the development of these new materials, their materials properties, structural data, and optimised device performance. I will examination of chromophore length on the Nematic Liquid Crystalline properties and on materials development and performance resulting in materials with > 9% PCE in OPV. [1] Sun, K.; Xiao, Z.; Lu, S.; Zajaczkowski, W.; Pisula, W.; Hanssen, E.; White, J. M.; Williamson, R. M.; Subbiah, J.; Ouyang, J.; Holmes, A. B.; Wong, W. W.; Jones, D. J., Nat. Commun. 2015, 6, 6013. DOI: 10.1038/ncomms7013
Xing, Cheng-Mei; Meng, Fan-Ning; Quan, Miao; Ding, Kai; Dang, Yuan; Gong, Yong-Kuan
2017-09-01
A versatile fabrication and performance optimization strategy of PEG and zwitterionic polymer coatings is developed on the sensor chip of surface plasma resonance (SPR) instrument. A random copolymer bearing phosphorylcholine zwitterion and active ester side chains (PMEN) and carboxylic PEG coatings with comparable thicknesses were deposited on SPR sensor chips via amidation coupling on the precoated polydopamine (PDA) intermediate layer. The PMEN coating showed much stronger resistance to bovine serum albumin (BSA) adsorption than PEG coating at very thin thickness (∼1nm). However, the BSA resistant efficacy of PEG coating could exceed that of PMEN due to stronger steric repelling effect when the thickness increased to 1.5∼3.3nm. Interestingly, both the PEG and PMEN thick coatings (≈3.6nm) showed ultralow fouling by BSA and bovine plasma fibrinogen (Fg). Moreover, changes in the PEG end group from -OH to -COOH, protein adsorption amount could increase by 10-fold. Importantly, the optimized PMEN and PEG-OH coatings were easily duplicated on other substrates due to universal adhesion of the PDA layer, showed excellent resistance to platelet, bacteria and proteins, and no significant difference in the antifouling performances was observed. These detailed results can explain the reported discrepancy in performances between PEG and zwitterionic polymer coatings by thickness. This facile and substrate-independent coating strategy may benefit the design and manufacture of advanced antifouling biomedical devices and long circulating nanocarriers. Prevention of biofouling is one of the biggest challenges for all biomedical applications. However, it is very difficult to fabricate a highly hydrophilic antifouling coating on inert materials or large devices. In this study, PEG and zwitterion polymers, the most widely investigated polymers with best antifouling performance, are conveniently immobilized on different kinds of substrates from their aqueous solutions by precoating a polydopamine intermediate layer as the universal adhesive and readily re-modifiable surface. Importantly, the coating fabrication and antifouling performance can be monitored and optimized quantitatively by a surface plasma resonance (SPR) system. More significantly, the SPR on-line optimized coatings were successfully duplicated off-line on other substrates, and supported by their excellent antifouling properties. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Li, Michelle W; Huynh, Bryan H; Hulvey, Matthew K; Lunte, Susan M; Martin, R Scott
2006-02-15
This work describes the fabrication and evaluation of a poly(dimethyl)siloxane (PDMS)-based device that enables the discrete injection of a sample plug from a continuous-flow stream into a microchannel for subsequent analysis by electrophoresis. Devices were fabricated by aligning valving and flow channel layers followed by plasma sealing the combined layers onto a glass plate that contained fittings for the introduction of liquid sample and nitrogen gas. The design incorporates a reduced-volume pneumatic valve that actuates (on the order of hundreds of milliseconds) to allow analyte from a continuously flowing sampling channel to be injected into a separation channel for electrophoresis. The injector design was optimized to include a pushback channel to flush away stagnant sample associated with the injector dead volume. The effect of the valve actuation time, the pushback voltage, and the sampling stream flow rate on the performance of the device was characterized. Using the optimized design and an injection frequency of 0.64 Hz showed that the injection process is reproducible (RSD of 1.77%, n = 15). Concentration change experiments using fluorescein as the analyte showed that the device could achieve a lag time as small as 14 s. Finally, to demonstrate the potential uses of this device, the microchip was coupled to a microdialysis probe to monitor a concentration change and sample a fluorescein dye mixture.
Perspective: Stochastic magnetic devices for cognitive computing
NASA Astrophysics Data System (ADS)
Roy, Kaushik; Sengupta, Abhronil; Shim, Yong
2018-06-01
Stochastic switching of nanomagnets can potentially enable probabilistic cognitive hardware consisting of noisy neural and synaptic components. Furthermore, computational paradigms inspired from the Ising computing model require stochasticity for achieving near-optimality in solutions to various types of combinatorial optimization problems such as the Graph Coloring Problem or the Travelling Salesman Problem. Achieving optimal solutions in such problems are computationally exhaustive and requires natural annealing to arrive at the near-optimal solutions. Stochastic switching of devices also finds use in applications involving Deep Belief Networks and Bayesian Inference. In this article, we provide a multi-disciplinary perspective across the stack of devices, circuits, and algorithms to illustrate how the stochastic switching dynamics of spintronic devices in the presence of thermal noise can provide a direct mapping to the computational units of such probabilistic intelligent systems.
Phototransistors Development and their Applications to Lidar
NASA Technical Reports Server (NTRS)
Abedin, M. N.; Refaat, Tamer F.; Ismail, Syed; Singh, Upendra N.
2007-01-01
Custom-designed two-micron phototransistors have been developed using Liquid Phase Epitaxy (LPE), Molecular Beam Epitaxy (MBE) and Metal-Organic Chemical Vapor Deposition (MOCVD) techniques under Laser Risk Reduction Program (LRRP). The devices were characterized in the Detector Characterization Laboratory at NASA Langley Research Center. It appears that the performance of LPE- and MBE-grown phototransistors such as responsivity, noise-equivalent-power, and gain, are better than MOCVD-grown devices. Lidar tests have been conducted using LPE and MBE devices under the 2-micrometer CO2 Differential Absorption Lidar (DIAL) Instrument Incubator Program (IIP) at the National Center for Atmospheric Research (NCAR), Boulder, Colorado. The main focus of these tests was to examine the phototransistors performances as compared to commercial InGaAs avalanche photodiode by integrating them into the Raman-shifted Eye-safe Aerosol Lidar (REAL) operating at 1.543 micrometers. A simultaneous measurement of the atmospheric backscatter signals using the LPE phototransistors and the commercial APD demonstrated good agreement between these two devices. On the other hand, simultaneous detection of lidar backscatter signals using MBE-grown phototransistor and InGaAs APD, showed a general agreement between these two devices with a lower performance than LPE devices. These custom-built phototransistors were optimized for detection around 2-micrometer wavelength while the lidar tests were performed at 1.543 micrometers. Phototransistor operation at 2-micron will improve the performance of a lidar system operating at that wavelength. Measurements include detecting hard targets (Rocky Mountains), atmospheric structure consisting of cirrus clouds and boundary layer. These phototransistors may have potential for high sensitivity differential absorption lidar measurements of carbon dioxide and water vapor at 2.05-micrometers and 1.9-micrometers, respectively.
Shapiro, M; Raz, E; Becske, T; Nelson, P K
2014-04-01
Low-porosity endoluminal devices for the treatment of intracranial aneurysms, also known as flow diverters, have been in experimental and clinical use for close to 10 years. Despite rigorous evidence of their safety and efficacy in well-controlled trials, a number of key factors concerning their use remain poorly defined. Among these, none has received more attention to date than the debate on how many devices are optimally required to achieve a safe, effective, and economical outcome. Additional, related questions concern device sizing relative to the parent artery and optimal method of deployment of the devices. While some or all of these issues may be ultimately answered on an empiric basis via subgroup analysis of growing treatment cohorts, we believe that careful in vitro examination of relevant device properties can also help guide its in vivo use. We conducted a number of benchtop experiments to investigate the varied porosity of Pipeline Embolization Devices deployed in a simulated range of parent vessel diameters and applied these results toward conceptualizing optimal treatment strategies of fusiform and wide-neck aneurysms. The results of our studies confirm a predictable parabolic variability in device porosity based on the respective comparative sizes of the device and recipient artery, as well as device curvature. Even modest oversizing leads to a significant increase in porosity. The experiments demonstrate various deleterious effects of device oversizing relative to the parent artery and provide strategies for addressing size mismatches when they are unavoidable.
Evidence-Based Recommendations for Optimizing Light in Day-to-Day Spaceflight Operations
NASA Technical Reports Server (NTRS)
Whitmire, Alexandra; Leveton, Lauren; Barger, Laura; Clark, Toni; Bollweg, Laura; Ohnesorge, Kristine; Brainard, George
2015-01-01
NASA Behavioral Health and Performance Element (BHP) personnel have previously reported on efforts to transition evidence-based recommendations for a flexible lighting system on the International Space Station (ISS). Based on these recommendations, beginning in 2016 the ISS will replace the current fluorescent-based lights with an LED-based system to optimize visual performance, facilitate circadian alignment, promote sleep, and hasten schedule shifting. Additional efforts related to lighting countermeasures in spaceflight operations have also been underway. As an example, a recent BHP research study led by investigators at Harvard Medical School and Brigham and Women's Hospital, evaluated the acceptability, feasibility, and effectiveness of blue-enriched light exposure during exercise breaks for flight controllers working the overnight shift in the Mission Control Center (MCC) at NASA Johnson Space Center. This effort, along with published laboratory studies that have demonstrated the effectiveness of appropriately timed light for promoting alertness, served as an impetus for new light options, and educational protocols for flight controllers. In addition, a separate set of guidelines related to the light emitted from electronic devices, were provided to the Astronaut Office this past year. These guidelines were based on an assessment led by NASA's Lighting Environment Test Facility that included measuring the spectral power distribution, irradiance, and radiance of light emitted from ISS-grade laptops and I-Pads, as well as Android devices. Evaluations were conducted with and without the use of off-the-shelf screen filters as well as a software application that touts minimizing the short-wave length of the visible light spectrum. This presentation will focus on the transition for operations process related to lighting countermeasures in the MCC, as well as the evidence to support recommendations for optimal use of laptops, I-Pads, and Android devices during all phases of spaceflight operations.
Energy Harvesting Based Body Area Networks for Smart Health
Hao, Yixue; Peng, Limei; Alamri, Atif
2017-01-01
Body area networks (BANs) are configured with a great number of ultra-low power consumption wearable devices, which constantly monitor physiological signals of the human body and thus realize intelligent monitoring. However, the collection and transfer of human body signals consume energy, and considering the comfort demand of wearable devices, both the size and the capacity of a wearable device’s battery are limited. Thus, minimizing the energy consumption of wearable devices and optimizing the BAN energy efficiency is still a challenging problem. Therefore, in this paper, we propose an energy harvesting-based BAN for smart health and discuss an optimal resource allocation scheme to improve BAN energy efficiency. Specifically, firstly, considering energy harvesting in a BAN and the time limits of human body signal transfer, we formulate the energy efficiency optimization problem of time division for wireless energy transfer and wireless information transfer. Secondly, we convert the optimization problem into a convex optimization problem under a linear constraint and propose a closed-form solution to the problem. Finally, simulation results proved that when the size of data acquired by the wearable devices is small, the proportion of energy consumed by the circuit and signal acquisition of the wearable devices is big, and when the size of data acquired by the wearable devices is big, the energy consumed by the signal transfer of the wearable device is decisive. PMID:28698501
Implicit Formulation of Muscle Dynamics in OpenSim
NASA Technical Reports Server (NTRS)
Humphreys, Brad; Dembia, Chris; Lewandowski, Beth; Van Den Bogert, Antonie
2017-01-01
Astronauts lose bone and muscle mass during spaceflight. Exercise countermeasure is the primary method for counteracting bone and muscle mass loss in space. New spacecraft exercise device concepts are currently being developed for the NASAs new crew exploration vehicle. The NASA Digital Astronaut Project (DAP) uses computational modeling to help determine if the new exercise devices will be effective as countermeasures. The NASA Digital Astronaut Project is developing the ability to utilize predictive simulation to provide insight into the change in kinematics and kinetics with a change in device and gravitational environment (1-g versus 0-g). For example, in space exercise the subject's body weight is applied in addition to the loads prescribed for musculoskeletal maintenance. How and where these loads are applied obviously directly impacts bone and tissue loads. Additionally, due to space vehicle structural requirements, exercise devices are often placed on vibration isolation systems. This changes the apparent impedance or stiffness of the device as seen by the user. Data collection under these conditions is often impractical and limited. Predictive modeling provides a means to have a virtual subject to test hypotheses. Predictive simulation provides a virtual subject for which we are able to perform studies such as sensitivity to device loading and vibration isolation without the need for laboratory kinematic or kinetic test data.Direct Collocation optimization provides an efficient means to perform task based optimization and predictive modeling. It is relatively straight forward to structure a physical exercise task in a Direct Collocation mathematical formulation: perform a motion such that you start at an initial pose, achieve a given amount of deflection i.e a squat, return to the initial pose, and minimize muscle activation cost. Direct Collocation is advantageous in that it does not require numerical integration to evaluate the objective function. Instead, the system dynamics are transformed to discrete time and the optimizer is constrained such that the solution is not considered to be a valid unless the dynamic equations are satisfied at all time points. The simulation and optimization are effectively done simultaneously. Due to the implicit integration, time steps can be more coarse than in a differential equation solver. In a gait scenario this means that that the model constraints and cost function are evaluated at 100 nodes in the gait cycle versus 10,000 integration steps in a variable-step forward dynamic simulation. Furthermore, no time is wasted on accurate simulations of movements that are far from the optimum. Constrained optimization algorithms require a Jacobian matrix that contains the partial derivatives of each of the dynamic constraints with respect to of each of the state and control variables at all time points. This is a large but sparse matrix. An implicit dynamics formulation requires computation of the dynamic residuals f as a function of the states x and their derivatives, and controls u:f(x, dxdt, u) 0If the dynamics of musculoskeletal system are formulated implicitly, the Jacobian elements are often available analytically, eliminating the need for numerical differentiation; this is obviously computationally advantageous. Additionally, implicit formulation of musculoskeletal dynamics do not suffer from singularities from low mass bodies, zero muscle activation, or other stiff system or
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, Riley E.; Mangan, Niall M.; Li, Jian V.
2016-11-21
In novel photovoltaic absorbers, it is often difficult to assess the root causes of low open-circuit voltages, which may be due to bulk recombination or sub-optimal contacts. In the present work, we discuss the role of temperature- and illumination-dependent device electrical measurements in quantifying and distinguishing these performance losses - in particular, for determining bounds on interface recombination velocities, band alignment, and minority carrier lifetime. We assess the accuracy of this approach by direct comparison to photoelectron spectroscopy. Then, we demonstrate how more computationally intensive model parameter fitting approaches can draw more insights from this broad measurement space. We applymore » this measurement and modeling approach to high-performance III-V and thin-film chalcogenide devices.« less
Battery energy storage sizing when time of use pricing is applied.
Carpinelli, Guido; Khormali, Shahab; Mottola, Fabio; Proto, Daniela
2014-01-01
Battery energy storage systems (BESSs) are considered a key device to be introduced to actuate the smart grid paradigm. However, the most critical aspect related to the use of such device is its economic feasibility as it is a still developing technology characterized by high costs and limited life duration. Particularly, the sizing of BESSs must be performed in an optimized way in order to maximize the benefits related to their use. This paper presents a simple and quick closed form procedure for the sizing of BESSs in residential and industrial applications when time-of-use tariff schemes are applied. A sensitivity analysis is also performed to consider different perspectives in terms of life span and future costs.
Battery Energy Storage Sizing When Time of Use Pricing Is Applied
Khormali, Shahab
2014-01-01
Battery energy storage systems (BESSs) are considered a key device to be introduced to actuate the smart grid paradigm. However, the most critical aspect related to the use of such device is its economic feasibility as it is a still developing technology characterized by high costs and limited life duration. Particularly, the sizing of BESSs must be performed in an optimized way in order to maximize the benefits related to their use. This paper presents a simple and quick closed form procedure for the sizing of BESSs in residential and industrial applications when time-of-use tariff schemes are applied. A sensitivity analysis is also performed to consider different perspectives in terms of life span and future costs. PMID:25295309
Optimizing Dense Plasma Focus Neutron Yields with Fast Gas Jets
NASA Astrophysics Data System (ADS)
McMahon, Matthew; Kueny, Christopher; Stein, Elizabeth; Link, Anthony; Schmidt, Andrea
2016-10-01
We report a study using the particle-in-cell code LSP to perform fully kinetic simulations modeling dense plasma focus (DPF) devices with high density gas jets on axis. The high density jet models fast gas puffs which allow for more mass on axis while maintaining the optimal pressure for the DPF. As the density of the jet compared to the background fill increases we find the neutron yield increases, as does the variability in the neutron yield. Introducing perturbations in the jet density allow for consistent seeding of the m =0 instability leading to more consistent ion acceleration and higher neutron yields with less variability. Jets with higher on axis density are found to have the greatest yield. The optimal jet configuration is explored. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
de Graaff, W; Grimard, B
2018-05-01
Synchronization programs using progesterone-releasing intravaginal devices that allow for fixed time artificial insemination are still finding increasing application in bovine reproduction. This practice is useful for rationalizing livestock management because an increased number of cows can be inseminated in one session without the need for estrus detection. Although much of the innovation related to the design and development of intravaginal devices for use in cattle took place in the previous century, progress in understanding the physiology of the bovine estrous cycle resulted in shorter treatment durations, a trend which is still continuing. In this competitive market, with little functional differentiation between the existing devices, the shorter treatment duration prompted for optimization of the progesterone content in the device, as the cost of the drug significantly contributes to the price per unit. For CIDR ® a reduction of the progesterone content of about 30 per cent was realized. Price reduction remained an important target for further device development. Next to reduction of progesterone content, cheaper and easier to process materials like polyethylene vinyl acetate (EVA) copolymers have been explored to replace the commonly used silicone elastomers. The reengineering effort of CIDR ® demonstrated that knowledge of release kinetics and insight into gradual depletion patterns in the device is critical for optimization of drug content without compromising performance (blood levels). More recent publications related to the use of alternative polymers like EVA and polyisoprene (IP) indicated encouraging results regarding further reduction of progesterone content. The use of EVA seems most promising, because it is in principle a low-cost polymer available in many grades and this thermoplastic polymer can be processed easily by means of commonly used techniques like injection molding and extrusion. The use of thermoplastic polymers, however, requires insight into the physical-chemical phenomena related to drug dissolution and re-crystallization taking place in the polymer during processing at high temperatures. These aspects, which may critically affect product stability, are often overlooked and are prompting to cover some of the background in this review. Finally, two different innovative approaches are discussed, one related to programable electronic devices for tailored simultaneous drug release and the other is a flexible drug-loaded helix, which is retained very well in several species without causing the usual inflammatory response. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Yannan; Yuan, Jianyu; Sun, Jianxia; Ding, Guanqun; Han, Lu; Ling, Xufeng; Ma, Wanli
2017-04-19
We have investigated a series of commercially available alkenyl carboxylic acids with different alkenyl chain lengths (trans-2-hexenoic acid (CA-6), trans-2-decenoic acid (CA-10), 9-tetradecenoic acid (CA-14)) for use as solvent additives in polymer-polymer non-fullerene solar cells. We systematically investigated their effect on the film absorption, morphology, carrier generation, transport, and recombination in all-polymer solar cells. We revealed that these additives have a significant impact on the aggregation of polymer acceptor, leading to improved phase segregation in the blend film. This in-depth understanding of the additives effect on the nanomorphology in all-polymer solar cell can help further boost the device performance. By using CA-10 with the optimal alkenyl chain length, we achieved fine phase separation, balanced charge transport, and suppressed recombination in all-polymer solar cells. As a result, an optimal power conversion efficiency (PCE) of 5.71% was demonstrated which is over 50% higher than that of the as-cast device (PCE = 3.71%) and slightly higher than that of devices with DIO treatment (PCE = 5.68%). Compared with widely used DIO, these halogen-free alkenyl carboxylic acids have a more sustainable processing as well as better performance, which may make them more promising candidates for use as processing additives in organic non-fullerene solar cells.
Kline, Neal D; Tripathi, Ashish; Mirsafavi, Rustin; Pardoe, Ian; Moskovits, Martin; Meinhart, Carl; Guicheteau, Jason A; Christesen, Steven D; Fountain, Augustus W
2016-11-01
A microfluidic device is being developed by University of California-Santa Barbara as part of a joint effort with the United States Army to develop a portable, rapid drug detection device. Surface-enhanced Raman spectroscopy (SERS) is used to provide a sensitive, selective detection technique within the microfluidic platform employing metallic nanoparticles as the SERS medium. Using several illicit drugs as analytes, the work presented here describes the efforts of the Edgewood Chemical Biological Center to optimize the microfluidic platform by investigating the role of nanoparticle material, nanoparticle size, excitation wavelength, and capping agents on the performance, and drug concentration detection limits achievable with Ag and Au nanoparticles that will ultimately be incorporated into the final design. This study is particularly important as it lays out a systematic comparison of limits of detection and potential interferences from working with several nanoparticle capping agents-such as tannate, citrate, and borate-which does not seem to have been done previously as the majority of studies only concentrate on citrate as the capping agent. Morphine, cocaine, and methamphetamine were chosen as test analytes for this study and were observed to have limits of detection (LOD) in the range of (1.5-4.7) × 10 -8 M (4.5-13 ng/mL), with the borate capping agent having the best performance.
Miranda-Muñoz, José M.; Carretero-Palacios, Sol; Jiménez-Solano, Alberto; Li, Yuelong; Lozano, Gabriel
2016-01-01
Herein we realize an optical design that optimizes the performance of bifacial solar cells without modifying any of the usually employed components. In order to do so, dielectric scatterers of controlled size and shape have been successfully integrated in the working electrodes of dye-sensitized solar cells (DSSCs), resulting in bifacial devices of outstanding performance. Power conversion efficiencies (PCEs) as high as 6.7% and 5.4% have been attained under front and rear illumination, respectively, which represent a 25% and a 33% PCE enhancement with respect to an 8 μm-thick standard solar cell electrode using platinum as the catalytic material. The remarkable bifacial character of our approach is demonstrated by the high rear/front efficiency ratio attained, around 80%, which is among the largest reported for this sort of device. The proposed optimized design is based on a Monte Carlo approach in which the multiple scattering of light within the cell is fully accounted for. We identified that the spherical shape of the scatterers is the key parameter controlling the angular distribution of the scattering, the most efficient devices being those in which the inclusions provide a narrow forward-oriented angular distribution of the scattered light. PMID:27019714
Zhang, Xiaoliang; Aitola, Kerttu; Hägglund, Carl; Kaskela, Antti; Johansson, Malin B; Sveinbjörnsson, Kári; Kauppinen, Esko I; Johansson, Erik M J
2017-01-20
Single-walled carbon nanotubes (SWCNTs) show great potential as an alternative material for front electrodes in photovoltaic applications, especially for flexible devices. In this work, a press-transferred transparent SWCNT film was utilized as front electrode for colloidal quantum dot solar cells (CQDSCs). The solar cells were fabricated on both glass and flexible substrates, and maximum power conversion efficiencies of 5.5 and 5.6 %, respectively, were achieved, which corresponds to 90 and 92 % of an indium-doped tin oxide (ITO)-based device (6.1 %). The SWCNTs are therefore a very good alternative to the ITO-based electrodes especially for flexible solar cells. The optical electric field distribution and optical losses within the devices were simulated theoretically and the results agree with the experimental results. With the optical simulations that were performed it may also be possible to enhance the photovoltaic performance of SWCNT-based solar cells even further by optimizing the device configuration or by using additional optical active layers, thus reducing light reflection of the device and increasing light absorption in the quantum dot layer. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sub-10 nm Ta Channel Responsible for Superior Performance of a HfO 2 Memristor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hao; Han, Lili; Lin, Peng
Memristive devices are promising candidates for the next generation non-volatile memory and neuromorphic computing. It has been widely accepted that the motion of oxygen anions leads to the resistance changes for valence-change-memory (VCM) type of materials. Only very recently it was speculated that metal cations could also play an important role, but no direct physical characterizations have been reported yet. We report a Ta/HfO 2/Pt memristor with fast switching speed, record high endurance (120 billion cycles) and reliable retention. We also programmed the device to 24 discrete resistance levels, and also demonstrated over a million (220) epochs of potentiation andmore » depression, suggesting that our devices can be used for both multi-level non-volatile memory and neuromorphic computing applications. More importantly, we directly observed a sub-10 nm Ta-rich and O-deficient conduction channel within the HfO 2 layer that is responsible for the switching. Our work deepens our understanding of the resistance switching mechanism behind oxide-based memristive devices and paves the way for further device performance optimization for a broad spectrum of applications.« less
Kim, Jong-Hoon; Yang, Heesun
2014-09-01
While significant progress of electroluminescent (EL) quantum dot light-emitting diodes (QD-LEDs) that rely exclusively on Cd-containing II-VI quantum dots (QDs) has been reported over the past two decades with respect to device processing and performance, devices based on non-Cd QDs as an active emissive layer (EML) remain at the early stage of development. In this work, utilizing highly luminescent colloidal CuInS2 (CIS)/ZnS QDs, all-solution-processed multilayered QD-LEDs are fabricated by sequentially spin depositing a hole transport layer of poly(9-vinlycarbazole), an EML of CIS/ZnS QDs, and an electron transport layer of ZnO nanoparticles. Our focus in device fabrication is to vary the thickness of the QD EML, which is one of the primary determinants in EL performance but has not been addressed in earlier reports. The device with an optimal EML thickness exhibits a peak luminance of 1564 cd/m2 and current efficiency of 2.52 cd/A. This record value in efficiency is higher by 3-4 times that of CIS QD-LEDs reported previously.
Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films.
Chen, Fanhong; Wan, Pengbo; Xu, Haijun; Sun, Xiaoming
2017-05-31
Flexible transparent electronic devices have recently gained immense popularity in smart wearable electronics and touch screen devices, which accelerates the development of the portable power sources with reliable flexibility, robust transparency and integration to couple these electronic devices. For potentially coupled as energy storage modules in various flexible, transparent and portable electronics, the flexible transparent supercapacitors are developed and assembled from hierarchical nanocomposite films of reduced graphene oxide (rGO) and aligned polyaniline (PANI) nanoarrays upon their synergistic advantages. The nanocomposite films are fabricated from in situ PANI nanoarrays preparation in a blended solution of aniline monomers and rGO onto the flexible, transparent, and stably conducting film (FTCF) substrate, which is obtained by coating silver nanowires (Ag NWs) layer with Meyer rod and then coating of rGO layer on polyethylene terephthalate (PET) substrate. Optimization of the transparency, the specific capacitance, and the flexibility resulted in the obtained all-solid state nanocomposite supercapacitors exhibiting enhanced capacitance performance, good cycling stability, excellent flexibility, and superior transparency. It provides promising application prospects for exploiting flexible, low-cost, transparent, and high-performance energy storage devices to be coupled into various flexible, transparent, and wearable electronic devices.
Lee, Yun-Ju; Wang, Jian; Cheng, Samuel R; Hsu, Julia W P
2013-09-25
We demonstrate improved organic photovoltaic device performance using solution processed electron transport layers of ZnO nanoparticle (NP) films containing organic additives, poly(vinylpyrrolidone) (PVP), or diethanolamine (DEA), that do not require post processing after film deposition. Inclusion of PVP or DEA decreased the ZnO work function by 0.4 eV through interfacial dipole formation. While PVP did not change the ZnO NP shape or size, DEA modified the ZnO shape from 5 nm × 15 nm nanorods to 5 nm nanoparticles. At an optimized PVP concentration of 0.7 wt %, ZnO NP:PVP electron transport layers (ETLs) improved the efficiency of inverted P3HT:PCBM devices by 37%, primarily through higher fill factor. ZnO NP:PVP and ZnO NP:DEA ETLs increased the open circuit voltage of inverted P3HT:ICBA devices by 0.07 V due to decreasing ETL work function, leading to enhanced built-in field. The relationship between ZnO nanocomposite ETL work function, donor-acceptor energy offset, and device performance is discussed. The effects of the two additives are compared.
Sub-10 nm Ta Channel Responsible for Superior Performance of a HfO 2 Memristor
Jiang, Hao; Han, Lili; Lin, Peng; ...
2016-06-23
Memristive devices are promising candidates for the next generation non-volatile memory and neuromorphic computing. It has been widely accepted that the motion of oxygen anions leads to the resistance changes for valence-change-memory (VCM) type of materials. Only very recently it was speculated that metal cations could also play an important role, but no direct physical characterizations have been reported yet. We report a Ta/HfO 2/Pt memristor with fast switching speed, record high endurance (120 billion cycles) and reliable retention. We also programmed the device to 24 discrete resistance levels, and also demonstrated over a million (220) epochs of potentiation andmore » depression, suggesting that our devices can be used for both multi-level non-volatile memory and neuromorphic computing applications. More importantly, we directly observed a sub-10 nm Ta-rich and O-deficient conduction channel within the HfO 2 layer that is responsible for the switching. Our work deepens our understanding of the resistance switching mechanism behind oxide-based memristive devices and paves the way for further device performance optimization for a broad spectrum of applications.« less
GaN-on-Silicon - Present capabilities and future directions
NASA Astrophysics Data System (ADS)
Boles, Timothy
2018-02-01
Gallium Nitride, in the form of epitaxial HEMT transistors on various substrate materials, is the newest and most promising semiconductor technology for high performance devices in the RF, microwave, and mmW arenas. This is particularly true for GaN-on-Silicon based devices and MMIC's which enable both state-of-the-art high frequency functionality and the ability to scale production into large wafer diameter CMOS foundries. The design and development of GaN-on-Silicon structures and devices will be presented beginning with the basic material parameters, growth of the required epitaxial construction, and leading to the fundamental operational theory of high frequency, high power HEMTs. In this discussion comparisons will be made with alternative substrate materials with emphasis on contrasting the inherent advantages of a silicon based system. Theory of operation of microwave and mmW high power HEMT devices will be presented with special emphasis on fundamental limitations of device performance including inherent frequency limiting transit time analysis, required impedance transformations, internal and external parasitic reactance, thermal impedance optimization, and challenges improved by full integration into monolithic MMICs. Lastly, future directions for implementing GaN-on-Silicon into mainstream CMOS silicon semiconductor technologies will be discussed.
NASA Astrophysics Data System (ADS)
Magdi, Sara; Swillam, Mohamed A.
2017-02-01
The efficiencies of thin film amorphous silicon (a-Si) solar cells are restricted by the small thickness required for efficient carrier collection. This thickness limitations result in poor light absorption. In this work, broadband absorption enhancement is theoretically achieved in a-Si solar cells by using nanostructured back electrode along with surface texturing. The back electrode is formed of Au nanogratings and the surface texturing consists of Si nanocones. The results were then compared to random texturing surfaces. Three dimensional finite difference time domain (FDTD) simulations are used to design and optimize the structure. The Au nanogratings achieved absorption enhancement in the long wavelengths due to sunlight coupling to surface plasmon polaritons (SPP) modes. High absorption enhancement was achieved at short wavelengths due to the decreased reflection and enhanced scattering inside the a-Si absorbing layer. Optimizations have been performed to obtain the optimal geometrical parameters for both the nanogratings and the periodic texturing. In addition, an enhancement factor (i.e. absorbed power in nanostructured device/absorbed power in reference device) was calculated to evaluate the enhancement obtained due to the incorporation of each nanostructure.
Preliminary evaluation of a novel bone-conduction device for single-sided deafness.
Popelka, Gerald R; Derebery, Jennifer; Blevins, Nikolas H; Murray, Michael; Moore, Brian C J; Sweetow, Robert W; Wu, Ben; Katsis, Mina
2010-04-01
A new intraoral bone-conduction device has advantages over existing bone-conduction devices for reducing the auditory deficits associated with single-sided deafness (SSD). Existing bone-conduction devices effectively mitigate auditory deficits from single-sided deafness but have suboptimal microphone locations, limited frequency range, and/or require invasive surgery. A new device has been designed to improve microphone placement (in the ear canal of the deaf ear), provide a wider frequency range, and eliminate surgery by delivering bone-conduction signals to the teeth via a removable oral appliance. Forces applied by the oral appliance were compared with forces typically experienced by the teeth from normal functions such as mastication or from other appliances. Tooth surface changes were measured on extracted teeth, and transducer temperature was measured under typical use conditions. Dynamic operating range, including gain, bandwidth, and maximum output limits, were determined from uncomfortable loudness levels and vibrotactile thresholds, and speech recognition scores were measured using normal-hearing subjects. Auditory performance in noise (Hearing in Noise Test) was measured in a limited sample of SSD subjects. Overall comfort, ease of insertion, and removal and visibility of the oral appliance in comparison with traditional hearing aids were measured using a rating scale. The oral appliance produces forces that are far below those experienced by the teeth from normal functions or conventional dental appliances. The bone-conduction signal level can be adjusted to prevent tactile perception yet provide sufficient gain and output at frequencies from 250 to 12,000 Hz. The device does not damage tooth surfaces nor produce heat, can be inserted and removed easily, and is as comfortable to wear as traditional hearing aids. The new microphone location has advantages for reducing the auditory deficits caused by SSD, including the potential to provide spatial cues introduced by reflections from the pinna, compared with microphone locations for existing devices. A new approach for SSD has been proposed that optimizes microphone location and delivers sound by bone conduction through a removable oral appliance. Measures in the laboratory using normal-hearing subjects indicate that the device provides useful gain and output for SSD patients, is comfortable, does not seem to have detrimental effects on oral function or oral health, and has several advantages over existing devices. Specifically, microphone placement is optimized for reducing the auditory deficit caused by SSD, frequency bandwidth is much greater, and the system does not require surgical placement. Auditory performance in a small sample of SSD subjects indicated a substantial advantage compared with not wearing the device. Future studies will involve performance measures on SSD patients wearing the device for longer periods.
Development of fluorescence based handheld imaging devices for food safety inspection
NASA Astrophysics Data System (ADS)
Lee, Hoyoung; Kim, Moon S.; Chao, Kuanglin; Lefcourt, Alan M.; Chan, Diane E.
2013-05-01
For sanitation inspection in food processing environment, fluorescence imaging can be a very useful method because many organic materials reveal unique fluorescence emissions when excited by UV or violet radiation. Although some fluorescence-based automated inspection instrumentation has been developed for food products, there remains a need for devices that can assist on-site inspectors performing visual sanitation inspection of the surfaces of food processing/handling equipment. This paper reports the development of an inexpensive handheld imaging device designed to visualize fluorescence emissions and intended to help detect the presence of fecal contaminants, organic residues, and bacterial biofilms at multispectral fluorescence emission bands. The device consists of a miniature camera, multispectral (interference) filters, and high power LED illumination. With WiFi communication, live inspection images from the device can be displayed on smartphone or tablet devices. This imaging device could be a useful tool for assessing the effectiveness of sanitation procedures and for helping processors to minimize food safety risks or determine potential problem areas. This paper presents the design and development including evaluation and optimization of the hardware components of the imaging devices.
NASA Technical Reports Server (NTRS)
Montgomery, Raymond C.; Scott, Michael A.; Weston, Robert P.
1998-01-01
This paper represents an initial study on the use of quasi-static shape change devices in aircraft maneuvering. The macroscopic effects and requirements for these devices in flight control are the focus of this study. Groups of devices are postulated to replace the conventional leading-edge flap (LEF) and the all-moving wing tip (AMT) on the tailless LMTAS-ICE (Lockheed Martin Tactical Aircraft Systems - Innovative Control Effectors) configuration. The maximum quasi-static shape changes are 13.8% and 7.7% of the wing section thickness for the LEF and AMT replacement devices, respectively. A Computational Fluid Dynamics (CFD) panel code is used to determine the control effectiveness of groups of these devices. A preliminary design of a wings-leveler autopilot is presented. Initial evaluation at 0.6 Mach at 15,000 ft. altitude is made through batch simulation. Results show small disturbance stability is achieved, however, an increase in maximum distortion is needed to statically offset five degrees of sideslip. This only applies to the specific device groups studied, encouraging future research on optimal device placement.
Teeter, Glenn; Harvey, Steve P.; Johnston, Steve
2017-01-30
Our contribution describes the influence of low-temperature annealing with and without applied voltage bias on thin-film Cu 2ZnSnSe 4 (CZTSe), Cu(In,Ga)Se 2 (CIGS), and CdS material properties and solar cell performance. In order to quantify the effects of cation disorder on CZTSe device performance, completed devices were annealed under open-circuit conditions at various temperatures from 110 degrees C to 215 degrees C and subsequently quenched. Measurements on these devices document systematic, reversible changes in solar-cell performance consistent with a reduction in CZTSe band tails at lower annealing temperatures. CIGS and CZTSe solar cells were also annealed at various temperatures (200more » degrees C for CIGS and 110 degrees C-215 degrees C for CZTSe) and subsequently quenched with continuously applied voltage bias to explore the effects of non-equilibrium annealing conditions. For both absorbers, large reversible changes in device characteristics correlated with the magnitude and sign of the applied voltage bias were observed. For CZTSe devices, the voltage-bias annealing (VBA) produced reversible changes in open-circuit voltage (VOC) from 289 meV to 446 meV. For CIGS solar cells, even larger changes were observed in device performance: photovoltaic (PV) conversion efficiency of the CIGS device varied from below 3% to above 15%, with corresponding changes in CIGS hole density of about three orders of magnitude. Findings from these VBA experiments are interpreted in terms of changes to the metastable point-defect populations that control key properties in the absorber layers, and in the CdS buffer layer. Computational device modeling was performed to assess the impacts of cation disorder on the CZTSe VOC deficit, and to elucidate the effects of VBA treatments on metastable point defect populations in CZTSe, CIGS, and CdS. Our results indicate that band tails impose important limitations on CZTSe device performance. Device modeling results also indicate that non-equilibrium processing conditions including the effects of voltage bias can dramatically alter point-defect-mediated opto-electronic properties of semiconductors. Implications for optimization of PV materials and connections to long-term stability of PV devices are discussed.« less
NASA Astrophysics Data System (ADS)
Teeter, G.; Harvey, S. P.; Johnston, S.
2017-01-01
This contribution describes the influence of low-temperature annealing with and without applied voltage bias on thin-film Cu2ZnSnSe4 (CZTSe), Cu(In,Ga)Se2 (CIGS), and CdS material properties and solar cell performance. To quantify the effects of cation disorder on CZTSe device performance, completed devices were annealed under open-circuit conditions at various temperatures from 110 °C to 215 °C and subsequently quenched. Measurements on these devices document systematic, reversible changes in solar-cell performance consistent with a reduction in CZTSe band tails at lower annealing temperatures. CIGS and CZTSe solar cells were also annealed at various temperatures (200 °C for CIGS and 110 °C-215 °C for CZTSe) and subsequently quenched with continuously applied voltage bias to explore the effects of non-equilibrium annealing conditions. For both absorbers, large reversible changes in device characteristics correlated with the magnitude and sign of the applied voltage bias were observed. For CZTSe devices, the voltage-bias annealing (VBA) produced reversible changes in open-circuit voltage (VOC) from 289 meV to 446 meV. For CIGS solar cells, even larger changes were observed in device performance: photovoltaic (PV) conversion efficiency of the CIGS device varied from below 3% to above 15%, with corresponding changes in CIGS hole density of about three orders of magnitude. Findings from these VBA experiments are interpreted in terms of changes to the metastable point-defect populations that control key properties in the absorber layers, and in the CdS buffer layer. Computational device modeling was performed to assess the impacts of cation disorder on the CZTSe VOC deficit, and to elucidate the effects of VBA treatments on metastable point defect populations in CZTSe, CIGS, and CdS. Results indicate that band tails impose important limitations on CZTSe device performance. Device modeling results also indicate that non-equilibrium processing conditions including the effects of voltage bias can dramatically alter point-defect-mediated opto-electronic properties of semiconductors. Implications for optimization of PV materials and connections to long-term stability of PV devices are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teeter, Glenn; Harvey, Steve P.; Johnston, Steve
Our contribution describes the influence of low-temperature annealing with and without applied voltage bias on thin-film Cu 2ZnSnSe 4 (CZTSe), Cu(In,Ga)Se 2 (CIGS), and CdS material properties and solar cell performance. In order to quantify the effects of cation disorder on CZTSe device performance, completed devices were annealed under open-circuit conditions at various temperatures from 110 degrees C to 215 degrees C and subsequently quenched. Measurements on these devices document systematic, reversible changes in solar-cell performance consistent with a reduction in CZTSe band tails at lower annealing temperatures. CIGS and CZTSe solar cells were also annealed at various temperatures (200more » degrees C for CIGS and 110 degrees C-215 degrees C for CZTSe) and subsequently quenched with continuously applied voltage bias to explore the effects of non-equilibrium annealing conditions. For both absorbers, large reversible changes in device characteristics correlated with the magnitude and sign of the applied voltage bias were observed. For CZTSe devices, the voltage-bias annealing (VBA) produced reversible changes in open-circuit voltage (VOC) from 289 meV to 446 meV. For CIGS solar cells, even larger changes were observed in device performance: photovoltaic (PV) conversion efficiency of the CIGS device varied from below 3% to above 15%, with corresponding changes in CIGS hole density of about three orders of magnitude. Findings from these VBA experiments are interpreted in terms of changes to the metastable point-defect populations that control key properties in the absorber layers, and in the CdS buffer layer. Computational device modeling was performed to assess the impacts of cation disorder on the CZTSe VOC deficit, and to elucidate the effects of VBA treatments on metastable point defect populations in CZTSe, CIGS, and CdS. Our results indicate that band tails impose important limitations on CZTSe device performance. Device modeling results also indicate that non-equilibrium processing conditions including the effects of voltage bias can dramatically alter point-defect-mediated opto-electronic properties of semiconductors. Implications for optimization of PV materials and connections to long-term stability of PV devices are discussed.« less
On the Properties and Design of Organic Light-Emitting Devices
NASA Astrophysics Data System (ADS)
Erickson, Nicholas C.
Organic light-emitting devices (OLEDs) are attractive for use in next-generation display and lighting technologies. In display applications, OLEDs offer a wide emission color gamut, compatibility with flexible substrates, and high power efficiencies. In lighting applications, OLEDs offer attractive features such as broadband emission, high-performance, and potential compatibility with low-cost manufacturing methods. Despite recent demonstrations of near unity internal quantum efficiencies (photons out per electron in), OLED adoption lags conventional technologies, particularly in large-area displays and general lighting applications. This thesis seeks to understand the optical and electronic properties of OLED materials and device architectures which lead to not only high peak efficiency, but also reduced device complexity, high efficiency under high excitation, and optimal white-light emission. This is accomplished through the careful manipulation of organic thin film compositions fabricated via vacuum thermal evaporation, and the introduction of a novel device architecture, the graded-emissive layer (G-EML). This device architecture offers a unique platform to study the electronic properties of varying compositions of organic semiconductors and the resulting device performance. This thesis also introduces an experimental technique to measure the spatial overlap of electrons and holes within an OLED's emissive layer. This overlap is an important parameter which is affected by the choice of materials and device design, and greatly impacts the operation of the OLED at high excitation densities. Using the G-EML device architecture, OLEDs with improved efficiency characteristics are demonstrated, achieving simultaneously high brightness and high efficiency.
Seok, Youngung; Joung, Hyou-Arm; Byun, Ju-Young; Jeon, Hyo-Sung; Shin, Su Jeong; Kim, Sanghyo; Shin, Young-Beom; Han, Hyung Soo; Kim, Min-Gon
2017-01-01
Paper-based diagnostic devices have many advantages as a one of the multiple diagnostic test platforms for point-of-care (POC) testing because they have simplicity, portability, and cost-effectiveness. However, despite high sensitivity and specificity of nucleic acid testing (NAT), the development of NAT based on a paper platform has not progressed as much as the others because various specific conditions for nucleic acid amplification reactions such as pH, buffer components, and temperature, inhibitions from technical differences of paper-based device. Here, we propose a paper-based device for performing loop-mediated isothermal amplification (LAMP) with real-time simultaneous detection of multiple DNA targets. We determined the optimal chemical components to enable dry conditions for the LAMP reaction without lyophilization or other techniques. We also devised the simple paper device structure by sequentially stacking functional layers, and employed a newly discovered property of hydroxynaphthol blue fluorescence to analyze real-time LAMP signals in the paper device. This proposed platform allowed analysis of three different meningitis DNA samples in a single device with single-step operation. This LAMP-based multiple diagnostic device has potential for real-time analysis with quantitative detection of 10 2 -10 5 copies of genomic DNA. Furthermore, we propose the transformation of DNA amplification devices to a simple and affordable paper system approach with great potential for realizing a paper-based NAT system for POC testing.
Seok, Youngung; Joung, Hyou-Arm; Byun, Ju-Young; Jeon, Hyo-Sung; Shin, Su Jeong; Kim, Sanghyo; Shin, Young-Beom; Han, Hyung Soo; Kim, Min-Gon
2017-01-01
Paper-based diagnostic devices have many advantages as a one of the multiple diagnostic test platforms for point-of-care (POC) testing because they have simplicity, portability, and cost-effectiveness. However, despite high sensitivity and specificity of nucleic acid testing (NAT), the development of NAT based on a paper platform has not progressed as much as the others because various specific conditions for nucleic acid amplification reactions such as pH, buffer components, and temperature, inhibitions from technical differences of paper-based device. Here, we propose a paper-based device for performing loop-mediated isothermal amplification (LAMP) with real-time simultaneous detection of multiple DNA targets. We determined the optimal chemical components to enable dry conditions for the LAMP reaction without lyophilization or other techniques. We also devised the simple paper device structure by sequentially stacking functional layers, and employed a newly discovered property of hydroxynaphthol blue fluorescence to analyze real-time LAMP signals in the paper device. This proposed platform allowed analysis of three different meningitis DNA samples in a single device with single-step operation. This LAMP-based multiple diagnostic device has potential for real-time analysis with quantitative detection of 102-105 copies of genomic DNA. Furthermore, we propose the transformation of DNA amplification devices to a simple and affordable paper system approach with great potential for realizing a paper-based NAT system for POC testing. PMID:28740546
Open-loop-feedback control of serum drug concentrations: pharmacokinetic approaches to drug therapy.
Jelliffe, R W
1983-01-01
Recent developments to optimize open-loop-feedback control of drug dosage regimens, generally applicable to pharmacokinetically oriented therapy with many drugs, involve computation of patient-individualized strategies for obtaining desired serum drug concentrations. Analyses of past therapy are performed by least squares, extended least squares, and maximum a posteriori probability Bayesian methods of fitting pharmacokinetic models to serum level data. Future possibilities for truly optimal open-loop-feedback therapy with full Bayesian methods, and conceivably for optimal closed-loop therapy in such data-poor clinical situations, are also discussed. Implementation of these various therapeutic strategies, using automated, locally controlled infusion devices, has also been achieved in prototype form.
A minimalistic and optimized conveyor belt for neutral atoms.
Roy, Ritayan; Condylis, Paul C; Prakash, Vindhiya; Sahagun, Daniel; Hessmo, Björn
2017-10-20
Here we report of a design and the performance of an optimized micro-fabricated conveyor belt for precise and adiabatic transportation of cold atoms. A theoretical model is presented to determine optimal currents in conductors used for the transportation. We experimentally demonstrate a fast adiabatic transportation of Rubidium ( 87 Rb) cold atoms with minimal loss and heating with as few as three conveyor belt conductors. This novel design of a multilayered conveyor belt structure is fabricated in aluminium nitride (AlN) because of its outstanding thermal and electrical properties. This demonstration would pave a way for a compact and portable quantum device required for quantum information processing and sensors, where precise positioning of cold atoms is desirable.
An approach to optimal semi-active control of vibration energy harvesting based on MEMS
NASA Astrophysics Data System (ADS)
Rojas, Rafael A.; Carcaterra, Antonio
2018-07-01
In this paper the energy harvesting problem involving typical MEMS technology is reduced to an optimal control problem, where the objective function is the absorption of the maximum amount of energy in a given time interval from a vibrating environment. The interest here is to identify a physical upper bound for this energy storage. The mathematical tool is a new optimal control called Krotov's method, that has not yet been applied to engineering problems, except in quantum dynamics. This approach leads to identify new maximum bounds to the energy harvesting performance. Novel MEMS-based device control configurations for vibration energy harvesting are proposed with particular emphasis to piezoelectric, electromagnetic and capacitive circuits.
NASA Astrophysics Data System (ADS)
Hyeok Park, Jong; Kim, Chulhee; Kim, Young Chul
2009-02-01
We demonstrate a novel light-emitting diode (LED) of a graded bilayer structure that comprises poly(N-vinylcarbazole) (PVK) with good hole transport ability as the energy donor and a new distyrylanthracene-triazine-based dendrimer with enhanced electron transport ability as the light-emitting molecule. The device contains a graded bilayer structure of the PVK film covered with the dendrimer film prepared by sequential spin-casting of the dendrimer layer from a solvent that only swells the PVK layer. The bilayer device demonstrated a significantly enhanced electoluminescence quantum efficiency compared with the dendrimer single layer device or the PVK : dendrimer blend device with optimized composition. We also prepared composite LEDs with an MEH-PPV : emissive dendrimer blend. By doping the electron-deficient MEH-PPV layer with a small amount of the distyrylanthracene-triazine-based dendrimer, we could not only enhance the device performance but also depress the long-wavelength emission of MEH-PPV.
NASA Astrophysics Data System (ADS)
Mo, Changki; Radziemski, Leon J.; Clark, William W.
2007-04-01
This paper presents current work on a project to demonstrate the feasibility of harvesting energy for medical devices from internal biomechanical forces using piezoelectric transducer technology based on PMN-PT. The energy harvesting device in this study is a partially covered, simply-supported PMN-PT unimorph circular plate to capture biomechanical energy and to provide power to implanted medical devices. Power harvesting performance for the piezoelectric energy harvesting diaphragm structure is examined analytically. The analysis includes comprehensive modeling and parametric study to provide a design primer for a specific application. An expression for the total power output from the devices for applied pressure is shown, and then used to determine optimal design parameters. It is shown that the device's deflections and stresses under load are the limiting factors in the design. While the primary material choice for energy harvesting today is PZT, an advanced material, PMN-PT, which exhibits improved potential over current materials, is used.
NASA Astrophysics Data System (ADS)
Smith, A. D.; Vaziri, S.; Rodriguez, S.; Östling, M.; Lemme, M. C.
2015-06-01
A chip to wafer scale, CMOS compatible method of graphene device fabrication has been established, which can be integrated into the back end of the line (BEOL) of conventional semiconductor process flows. In this paper, we present experimental results of graphene field effect transistors (GFETs) which were fabricated using this wafer scalable method. The carrier mobilities in these transistors reach up to several hundred cm2 V-1 s-1. Further, these devices exhibit current saturation regions similar to graphene devices fabricated using mechanical exfoliation. The overall performance of the GFETs can not yet compete with record values reported for devices based on mechanically exfoliated material. Nevertheless, this large scale approach is an important step towards reliability and variability studies as well as optimization of device aspects such as electrical contacts and dielectric interfaces with statistically relevant numbers of devices. It is also an important milestone towards introducing graphene into wafer scale process lines.
High-Throughput, Data-Rich Cellular RNA Device Engineering
Townshend, Brent; Kennedy, Andrew B.; Xiang, Joy S.; Smolke, Christina D.
2015-01-01
Methods for rapidly assessing sequence-structure-function landscapes and developing conditional gene-regulatory devices are critical to our ability to manipulate and interface with biology. We describe a framework for engineering RNA devices from preexisting aptamers that exhibit ligand-responsive ribozyme tertiary interactions. Our methodology utilizes cell sorting, high-throughput sequencing, and statistical data analyses to enable parallel measurements of the activities of hundreds of thousands of sequences from RNA device libraries in the absence and presence of ligands. Our tertiary interaction RNA devices exhibit improved performance in terms of gene silencing, activation ratio, and ligand sensitivity as compared to optimized RNA devices that rely on secondary structure changes. We apply our method to building biosensors for diverse ligands and determine consensus sequences that enable ligand-responsive tertiary interactions. These methods advance our ability to develop broadly applicable genetic tools and to elucidate understanding of the underlying sequence-structure-function relationships that empower rational design of complex biomolecules. PMID:26258292
Nanocontact Disorder in Nanoelectronics for Modulation of Light and Gas Sensitivities.
Lin, Yen-Fu; Chang, Chia-Hung; Hung, Tsu-Chang; Jian, Wen-Bin; Tsukagoshi, Kazuhito; Wu, Yue-Han; Chang, Li; Liu, Zhaoping; Fang, Jiye
2015-08-11
To fabricate reliable nanoelectronics, whether by top-down or bottom-up processes, it is necessary to study the electrical properties of nanocontacts. The effect of nanocontact disorder on device properties has been discussed but not quantitatively studied. Here, by carefully analyzing the temperature dependence of device electrical characteristics and by inspecting them with a microscope, we investigated the Schottky contact and Mott's variable-range-hopping resistances connected in parallel in the nanocontact. To interpret these parallel resistances, we proposed a model of Ti/TiOx in the interface between the metal electrodes and nanowires. The hopping resistance as well as the nanocontact disorder dominated the total device resistance for high-resistance devices, especially at low temperatures. Furthermore, we introduced nanocontact disorder to modulate the light and gas responsivities of the device; unexpectedly, it multiplied the sensitivities compared with the intrinsic sensitivity of the nanowires. Our results improve the collective understanding of electrical contacts to low-dimensional semiconductor devices and will aid performance optimization in future nanoelectronics.
Nanocontact Disorder in Nanoelectronics for Modulation of Light and Gas Sensitivities
Lin, Yen-Fu; Chang, Chia-Hung; Hung, Tsu-Chang; Jian, Wen-Bin; Tsukagoshi, Kazuhito; Wu, Yue-Han; Chang, Li; Liu, Zhaoping; Fang, Jiye
2015-01-01
To fabricate reliable nanoelectronics, whether by top-down or bottom-up processes, it is necessary to study the electrical properties of nanocontacts. The effect of nanocontact disorder on device properties has been discussed but not quantitatively studied. Here, by carefully analyzing the temperature dependence of device electrical characteristics and by inspecting them with a microscope, we investigated the Schottky contact and Mott’s variable-range-hopping resistances connected in parallel in the nanocontact. To interpret these parallel resistances, we proposed a model of Ti/TiOx in the interface between the metal electrodes and nanowires. The hopping resistance as well as the nanocontact disorder dominated the total device resistance for high-resistance devices, especially at low temperatures. Furthermore, we introduced nanocontact disorder to modulate the light and gas responsivities of the device; unexpectedly, it multiplied the sensitivities compared with the intrinsic sensitivity of the nanowires. Our results improve the collective understanding of electrical contacts to low-dimensional semiconductor devices and will aid performance optimization in future nanoelectronics. PMID:26260674