A Danger-Theory-Based Immune Network Optimization Algorithm
Li, Tao; Xiao, Xin; Shi, Yuanquan
2013-01-01
Existing artificial immune optimization algorithms reflect a number of shortcomings, such as premature convergence and poor local search ability. This paper proposes a danger-theory-based immune network optimization algorithm, named dt-aiNet. The danger theory emphasizes that danger signals generated from changes of environments will guide different levels of immune responses, and the areas around danger signals are called danger zones. By defining the danger zone to calculate danger signals for each antibody, the algorithm adjusts antibodies' concentrations through its own danger signals and then triggers immune responses of self-regulation. So the population diversity can be maintained. Experimental results show that the algorithm has more advantages in the solution quality and diversity of the population. Compared with influential optimization algorithms, CLONALG, opt-aiNet, and dopt-aiNet, the algorithm has smaller error values and higher success rates and can find solutions to meet the accuracies within the specified function evaluation times. PMID:23483853
Duan, Litian; Wang, Zizhong John; Duan, Fu
2016-11-16
In the multiple-reader environment (MRE) of radio frequency identification (RFID) system, multiple readers are often scheduled to interrogate the randomized tags via operating at different time slots or frequency channels to decrease the signal interferences. Based on this, a Geometric Distribution-based Multiple-reader Scheduling Optimization Algorithm using Artificial Immune System (GD-MRSOA-AIS) is proposed to fairly and optimally schedule the readers operating from the viewpoint of resource allocations. GD-MRSOA-AIS is composed of two parts, where a geometric distribution function combined with the fairness consideration is first introduced to generate the feasible scheduling schemes for reader operation. After that, artificial immune system (including immune clone, immune mutation and immune suppression) quickly optimize these feasible ones as the optimal scheduling scheme to ensure that readers are fairly operating with larger effective interrogation range and lower interferences. Compared with the state-of-the-art algorithm, the simulation results indicate that GD-MRSOA-AIS could efficiently schedules the multiple readers operating with a fairer resource allocation scheme, performing in larger effective interrogation range.
Duan, Litian; Wang, Zizhong John; Duan, Fu
2016-01-01
In the multiple-reader environment (MRE) of radio frequency identification (RFID) system, multiple readers are often scheduled to interrogate the randomized tags via operating at different time slots or frequency channels to decrease the signal interferences. Based on this, a Geometric Distribution-based Multiple-reader Scheduling Optimization Algorithm using Artificial Immune System (GD-MRSOA-AIS) is proposed to fairly and optimally schedule the readers operating from the viewpoint of resource allocations. GD-MRSOA-AIS is composed of two parts, where a geometric distribution function combined with the fairness consideration is first introduced to generate the feasible scheduling schemes for reader operation. After that, artificial immune system (including immune clone, immune mutation and immune suppression) quickly optimize these feasible ones as the optimal scheduling scheme to ensure that readers are fairly operating with larger effective interrogation range and lower interferences. Compared with the state-of-the-art algorithm, the simulation results indicate that GD-MRSOA-AIS could efficiently schedules the multiple readers operating with a fairer resource allocation scheme, performing in larger effective interrogation range. PMID:27854342
Proposed method to construct Boolean functions with maximum possible annihilator immunity
NASA Astrophysics Data System (ADS)
Goyal, Rajni; Panigrahi, Anupama; Bansal, Rohit
2017-07-01
Nonlinearity and Algebraic(annihilator) immunity are two core properties of a Boolean function because optimum values of Annihilator Immunity and nonlinearity are required to resist fast algebraic attack and differential cryptanalysis respectively. For a secure cypher system, Boolean function(S-Boxes) should resist maximum number of attacks. It is possible if a Boolean function has optimal trade-off among its properties. Before constructing Boolean functions, we fixed the criteria of our constructions based on its properties. In present work, our construction is based on annihilator immunity and nonlinearity. While keeping above facts in mind,, we have developed a multi-objective evolutionary approach based on NSGA-II and got the optimum value of annihilator immunity with good bound of nonlinearity. We have constructed balanced Boolean functions having the best trade-off among balancedness, Annihilator immunity and nonlinearity for 5, 6 and 7 variables by the proposed method.
Payne, Kyle K; Bear, Harry D; Manjili, Masoud H
2014-08-01
The mammalian immune system has evolved to produce multi-tiered responses consisting of both innate and adaptive immune cells collaborating to elicit a functional response to a pathogen or neoplasm. Immune cells possess a shared ancestry, suggestive of a degree of coevolution that has resulted in optimal functionality as an orchestrated and highly collaborative unit. Therefore, the development of therapeutic modalities that harness the immune system should consider the crosstalk between cells of the innate and adaptive immune systems in order to elicit the most effective response. In this review, the authors will discuss the success achieved using adoptive cellular therapy in the treatment of cancer, recent trends that focus on purified T cells, T cells with genetically modified T-cell receptors and T cells modified to express chimeric antigen receptors, as well as the use of unfractionated immune cell reprogramming to achieve optimal cellular crosstalk upon infusion for adoptive cellular therapy.
Brewitz, Anna; Eickhoff, Sarah; Dähling, Sabrina; Quast, Thomas; Bedoui, Sammy; Kroczek, Richard A; Kurts, Christian; Garbi, Natalio; Barchet, Winfried; Iannacone, Matteo; Klauschen, Frederick; Kolanus, Waldemar; Kaisho, Tsuneyasu; Colonna, Marco; Germain, Ronald N; Kastenmüller, Wolfgang
2017-02-21
Adaptive cellular immunity is initiated by antigen-specific interactions between T lymphocytes and dendritic cells (DCs). Plasmacytoid DCs (pDCs) support antiviral immunity by linking innate and adaptive immune responses. Here we examined pDC spatiotemporal dynamics during viral infection to uncover when, where, and how they exert their functions. We found that pDCs accumulated at sites of CD8 + T cell antigen-driven activation in a CCR5-dependent fashion. Furthermore, activated CD8 + T cells orchestrated the local recruitment of lymph node-resident XCR1 chemokine receptor-expressing DCs via secretion of the XCL1 chemokine. Functionally, this CD8 + T cell-mediated reorganization of the local DC network allowed for the interaction and cooperation of pDCs and XCR1 + DCs, thereby optimizing XCR1 + DC maturation and cross-presentation. These data support a model in which CD8 + T cells upon activation create their own optimal priming microenvironment by recruiting additional DC subsets to the site of initial antigen recognition. Published by Elsevier Inc.
Optimism and Physical Health: A Meta-analytic Review
Rasmussen, Heather N.; Greenhouse, Joel B.
2010-01-01
Background Prior research links optimism to physical health, but the strength of the association has not been systematically evaluated. Purpose The purpose of this study is to conduct a meta-analytic review to determine the strength of the association between optimism and physical health. Methods The findings from 83 studies, with 108 effect sizes (ESs), were included in the analyses, using random-effects models. Results Overall, the mean ES characterizing the relationship between optimism and physical health outcomes was 0.17, p<.001. ESs were larger for studies using subjective (versus objective) measures of physical health. Subsidiary analyses were also conducted grouping studies into those that focused solely on mortality, survival, cardiovascular outcomes, physiological markers (including immune function), immune function only, cancer outcomes, outcomes related to pregnancy, physical symptoms, or pain. In each case, optimism was a significant predictor of health outcomes or markers, all p<.001. Conclusions Optimism is a significant predictor of positive physical health outcomes. PMID:19711142
The interplay between immunity and aging in Drosophila.
Garschall, Kathrin; Flatt, Thomas
2018-01-01
Here, we provide a brief review of the mechanistic connections between immunity and aging-a fundamental biological relationship that remains poorly understood-by considering two intertwined questions: how does aging affect immunity, and how does immunity affect aging? On the one hand, aging contributes to the deterioration of immune function and predisposes the organism to infections ("immuno-senescence"). On the other hand, excessive activation of the immune system can accelerate degenerative processes, cause inflammation and immunopathology, and thus promote aging ("inflammaging"). Interestingly, several recent lines of evidence support the hypothesis that restrained or curbed immune activity at old age (that is, optimized age-dependent immune homeostasis) might actually improve realized immune function and thereby promote longevity. We focus mainly on insights from Drosophila , a powerful genetic model system in which both immunity and aging have been extensively studied, and conclude by outlining several unresolved questions in the field.
Calvet, Christophe Y; Thalmensi, Jessie; Liard, Christelle; Pliquet, Elodie; Bestetti, Thomas; Huet, Thierry; Langlade-Demoyen, Pierre; Mir, Lluis M
2014-01-01
DNA vaccination consists in administering an antigen-encoding plasmid in order to trigger a specific immune response. This specific vaccine strategy is of particular interest to fight against various infectious diseases and cancer. Gene electrotransfer is the most efficient and safest non-viral gene transfer procedure and specific electrical parameters have been developed for several target tissues. Here, a gene electrotransfer protocol into the skin has been optimized in mice for efficient intradermal immunization against the well-known telomerase tumor antigen. First, the luciferase reporter gene was used to evaluate gene electrotransfer efficiency into the skin as a function of the electrical parameters and electrodes, either non-invasive or invasive. In a second time, these parameters were tested for their potency to generate specific cellular CD8 immune responses against telomerase epitopes. These CD8 T-cells were fully functional as they secreted IFNγ and were endowed with specific cytotoxic activity towards target cells. This simple and optimized procedure for efficient gene electrotransfer into the skin using the telomerase antigen is to be used in cancer patients for the phase 1 clinical evaluation of a therapeutic cancer DNA vaccine called INVAC-1. PMID:26015983
Chen, Tinggui; Xiao, Renbin
2014-01-01
Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments.
Chen, Tinggui; Xiao, Renbin
2014-01-01
Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023
Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation
Ogonek, Justyna; Kralj Juric, Mateja; Ghimire, Sakhila; Varanasi, Pavankumar Reddy; Holler, Ernst; Greinix, Hildegard; Weissinger, Eva
2016-01-01
The timely reconstitution and regain of function of a donor-derived immune system is of utmost importance for the recovery and long-term survival of patients after allogeneic hematopoietic stem cell transplantation (HSCT). Of note, new developments such as umbilical cord blood or haploidentical grafts were associated with prolonged immunodeficiency due to delayed immune reconstitution, raising the need for better understanding and enhancing the process of immune reconstitution and finding strategies to further optimize these transplant procedures. Immune reconstitution post-HSCT occurs in several phases, innate immunity being the first to regain function. The slow T cell reconstitution is regarded as primarily responsible for deleterious infections with latent viruses or fungi, occurrence of graft-versus-host disease, and relapse. Here we aim to summarize the major steps of the adaptive immune reconstitution and will discuss the importance of immune balance in patients after HSCT. PMID:27909435
Nabatanzi, Rose; Cose, Stephen; Joloba, Moses; Jones, Sarah Rowland; Nakanjako, Damalie
2018-03-15
HIV infection causes upregulation of markers of inflammation, immune activation and apoptosis of host adaptive, and innate immune cells particularly monocytes, natural killer (NK) and innate lymphoid cells (ILCs). Although antiretroviral therapy (ART) restores CD4 T-cell counts, the persistent aberrant activation of monocytes, NK and ILCs observed likely contributes to the incomplete recovery of T-cell effector functions. A better understanding of the effects of HIV infection and ART on the phenotype and function of circulating monocytes, NK, and ILCs is required to guide development of novel therapeutic interventions to optimize immune recovery.
The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model
NASA Astrophysics Data System (ADS)
Yang, Lu-Xing; Draief, Moez; Yang, Xiaofan
2016-05-01
Dynamic immunizations, under which the state of the propagation network of electronic viruses can be changed by adjusting the control measures, are regarded as an alternative to static immunizations. This paper addresses the optimal dynamical immunization under the widely accepted SIRS assumption. First, based on a controlled heterogeneous node-based SIRS model, an optimal control problem capturing the optimal dynamical immunization is formulated. Second, the existence of an optimal dynamical immunization scheme is shown, and the corresponding optimality system is derived. Next, some numerical examples are given to show that an optimal immunization strategy can be worked out by numerically solving the optimality system, from which it is found that the network topology has a complex impact on the optimal immunization strategy. Finally, the difference between a payoff and the minimum payoff is estimated in terms of the deviation of the corresponding immunization strategy from the optimal immunization strategy. The proposed optimal immunization scheme is justified, because it can achieve a low level of infections at a low cost.
Shen, Chi; Mao, Jian; Chen, Yongquan; Meng, Xiangyong; Ji, Zhongwei
2015-08-15
Chinese rice wine is well known for its unique flavor and high nutritional value. It is of interest to investigate the functional components of Chinese rice wine and their health benefits. Response surface design of three factors - pH, ethanol concentration and precipitation time - at three levels was utilized to optimize the extraction of Chinese rice wine polysaccharide (CRWP). The results indicated that the CRWP yield was 77.287% at the optimal levels for pH 8.4, ethanol concentration 88% and precipitation time 23 h. In addition, immune activity of CRWP was investigated by measuring body weight, spleen index and thymus index. Furthermore, immunity activity of CRWP was investigated by measuring lymphocyte proliferation, phagocytic index and phagocytic percentage of immunosuppressed mice. Compared with the control mice and model mice, it was found that CRWP has beneficial immune activities in vivo. These findings indicate that CRWP has immune activities in vivo by modulating the immune response, and implies full development and utilization of the nutritional value of Chinese rice wine. However, further work will be conducted in the future to elucidate the structure-bioactivity relationship for CRWP. © 2014 Society of Chemical Industry.
Salvat, Regina S; Verma, Deeptak; Parker, Andrew S; Kirsch, Jack R; Brooks, Seth A; Bailey-Kellogg, Chris; Griswold, Karl E
2017-06-27
Therapeutic proteins of wide-ranging function hold great promise for treating disease, but immune surveillance of these macromolecules can drive an antidrug immune response that compromises efficacy and even undermines safety. To eliminate widespread T-cell epitopes in any biotherapeutic and thereby mitigate this key source of detrimental immune recognition, we developed a Pareto optimal deimmunization library design algorithm that optimizes protein libraries to account for the simultaneous effects of combinations of mutations on both molecular function and epitope content. Active variants identified by high-throughput screening are thus inherently likely to be deimmunized. Functional screening of an optimized 10-site library (1,536 variants) of P99 β-lactamase (P99βL), a component of ADEPT cancer therapies, revealed that the population possessed high overall fitness, and comprehensive analysis of peptide-MHC II immunoreactivity showed the population possessed lower average immunogenic potential than the wild-type enzyme. Although similar functional screening of an optimized 30-site library (2.15 × 10 9 variants) revealed reduced population-wide fitness, numerous individual variants were found to have activity and stability better than the wild type despite bearing 13 or more deimmunizing mutations per enzyme. The immunogenic potential of one highly active and stable 14-mutation variant was assessed further using ex vivo cellular immunoassays, and the variant was found to silence T-cell activation in seven of the eight blood donors who responded strongly to wild-type P99βL. In summary, our multiobjective library-design process readily identified large and mutually compatible sets of epitope-deleting mutations and produced highly active but aggressively deimmunized constructs in only one round of library screening.
Evaluation of immune functions in captive immature loggerhead sea turtles (Caretta caretta).
Rousselet, Estelle; Levin, Milton; Gebhard, Erika; Higgins, Benjamin M; DeGuise, Sylvain; Godard-Codding, Céline A J
2013-11-15
Sea turtles face numerous environmental challenges, such as exposure to chemical pollution and biotoxins, which may contribute to immune system impairment, resulting in increased disease susceptibility. Therefore, a more thorough assessment of the host's immune response and its susceptibility is needed for these threatened and endangered animals. In this study, the innate and acquired immune functions of sixty-five clinically healthy, immature, captive loggerhead sea turtles (Caretta caretta) were assayed using non-lethal blood sample collection. Functional immune assays were developed and/or optimized for this species, including mitogen-induced lymphocyte proliferation, natural killer (NK) cell activity, phagocytosis, and respiratory burst. Peripheral blood mononuclear cells (PBMC) and phagocytes were isolated by density gradient centrifugation on Ficoll-Paque and discontinuous Percoll gradients, respectively. The T lymphocyte mitogens ConA significantly induced lymphocyte proliferation at 1 and 2 μg/mL while PHA significantly induced lymphocyte proliferation at 5 and 10 μg/mL. The B lymphocyte mitogen LPS significantly induced proliferation at 1 μg/mL. Monocytes demonstrated higher phagocytic activity than eosinophils. In addition, monocytes exhibited respiratory burst. Natural killer cell activity was higher against YAC-1 than K-562 target cells. These optimized assays may help to evaluate the integrity of loggerhead sea turtle's immune system upon exposure to environmental contaminants, as well as part of a comprehensive health assessment and monitoring program. Copyright © 2013 Elsevier B.V. All rights reserved.
Mental resilience, perceived immune functioning, and health.
Van Schrojenstein Lantman, Marith; Mackus, Marlou; Otten, Leila S; de Kruijff, Deborah; van de Loo, Aurora Jae; Kraneveld, Aletta D; Garssen, Johan; Verster, Joris C
2017-01-01
Mental resilience can be seen as a trait that enables an individual to recover from stress and to face the next stressor with optimism. People with resilient traits are considered to have a better mental and physical health. However, there are limited data available assessing the relationship between resilient individuals and their perspective of their health and immune status. Therefore, this study was conducted to examine the relationship between mental resilience, perceived health, and perceived immune status. A total of 779 participants recruited at Utrecht University completed a questionnaire consisting of demographic characteristics, the brief resilience scale for the assessment of mental resilience, the immune function questionnaire (IFQ), and questions regarding their perceived health and immune status. When correcting for gender, age, height, weight, smoker status, amount of cigarettes smoked per week, alcohol consumption status, amount of drinks consumed per week, drug use, and frequency of past year drug use, mental resilience was significantly correlated with perceived health ( r =0.233, p =0.0001), perceived immune functioning ( r =0.124, p =0.002), and IFQ score ( r =-0.185, p =0.0001). A significant, albeit modest, relationship was found between mental resilience and perceived immune functioning and health.
Gigley, Jason P.; Khan, Imtiaz A.
2011-01-01
Age associated impairment of immune function results in inefficient vaccination, tumor surveillance and increased severity of infections. Several alterations in adaptive immunity have been observed and recent studies report age related declines in innate immune responses to opportunistic pathogens including Encephalitozoon cuniculi. We previously demonstrated that conventional dendritic cells (cDC) from 9-month-old animals exhibit sub-optimal response to E. cuniculi infection, suggesting that age associated immune senescence begins earlier than expected. We focused this study on how age affects plasmacytoid DC (pDC) function. More specifically how aged pDC affect cDC function as we observed that the latter are the predominant activators of CD8 T cells during this infection. Our present study demonstrates that pDC from middle-aged mice (12 months) suppress young (8 week old) cDC driven CD8 T cell priming against E. cuniculi infection. The suppressive effect of pDC from older mice decreased maturation of young cDC via cell contact. Aged mouse pDC exhibited higher expression of PD-L1 and blockade of their interaction with cDC via this molecule restored cDC maturation and T cell priming. Furthermore, the PD-L1 dependent suppression of cDC T cell priming was restricted to effector function of antigen-specific CD8 T cells not their expansion. To the best of our knowledge, the data presented here is the first report highlighting a cell contact dependent, PD-L1 regulated, age associated defect in a DC subpopulation that results in a sub-optimal immune response against E. cuniculi infection. These results have broad implications for design of immunotherapeutic approaches to enhance immunity for aging populations. PMID:21695169
Gigley, Jason P; Khan, Imtiaz A
2011-01-01
Age associated impairment of immune function results in inefficient vaccination, tumor surveillance and increased severity of infections. Several alterations in adaptive immunity have been observed and recent studies report age related declines in innate immune responses to opportunistic pathogens including Encephalitozoon cuniculi. We previously demonstrated that conventional dendritic cells (cDC) from 9-month-old animals exhibit sub-optimal response to E. cuniculi infection, suggesting that age associated immune senescence begins earlier than expected. We focused this study on how age affects plasmacytoid DC (pDC) function. More specifically how aged pDC affect cDC function as we observed that the latter are the predominant activators of CD8 T cells during this infection. Our present study demonstrates that pDC from middle-aged mice (12 months) suppress young (8 week old) cDC driven CD8 T cell priming against E. cuniculi infection. The suppressive effect of pDC from older mice decreased maturation of young cDC via cell contact. Aged mouse pDC exhibited higher expression of PD-L1 and blockade of their interaction with cDC via this molecule restored cDC maturation and T cell priming. Furthermore, the PD-L1 dependent suppression of cDC T cell priming was restricted to effector function of antigen-specific CD8 T cells not their expansion. To the best of our knowledge, the data presented here is the first report highlighting a cell contact dependent, PD-L1 regulated, age associated defect in a DC subpopulation that results in a sub-optimal immune response against E. cuniculi infection. These results have broad implications for design of immunotherapeutic approaches to enhance immunity for aging populations.
Optimizing Tumor Microenvironment for Cancer Immunotherapy: β-Glucan-Based Nanoparticles
Zhang, Mei; Kim, Julian A.; Huang, Alex Yee-Chen
2018-01-01
Immunotherapy is revolutionizing cancer treatment. Recent clinical success with immune checkpoint inhibitors, chimeric antigen receptor T-cell therapy, and adoptive immune cellular therapies has generated excitement and new hopes for patients and investigators. However, clinically efficacious responses to cancer immunotherapy occur only in a minority of patients. One reason is the tumor microenvironment (TME), which potently inhibits the generation and delivery of optimal antitumor immune responses. As our understanding of TME continues to grow, strategies are being developed to change the TME toward one that augments the emergence of strong antitumor immunity. These strategies include eliminating tumor bulk to provoke the release of tumor antigens, using adjuvants to enhance antigen-presenting cell function, and employ agents that enhance immune cell effector activity. This article reviews the development of β-glucan and β-glucan-based nanoparticles as immune modulators of TME, as well as their potential benefit and future therapeutic applications. Cell-wall β-glucans from natural sources including plant, fungi, and bacteria are molecules that adopt pathogen-associated molecular pattern (PAMP) known to target specific receptors on immune cell subsets. Emerging data suggest that the TME can be actively manipulated by β-glucans and their related nanoparticles. In this review, we discuss the mechanisms of conditioning TME using β-glucan and β-glucan-based nanoparticles, and how this strategy enables future design of optimal combination cancer immunotherapies. PMID:29535722
microRNA regulation of T-cell differentiation and function
Jeker, Lukas T.; Bluestone, Jeffrey A.
2013-01-01
Summary microRNAs (miRNAs) are emerging as key controllers of T-cell differentiation and function. Their expression is dynamically regulated by extracellular signals such as costimulation and cytokine signals. miRNAs set thresholds for gene expression and optimize protein concentrations of genetic networks. Absence of individual miRNAs can lead to severe immune dysfunction. Here we review emerging principles and provide examples of important functions exerted by miRNAs. Although our understanding of miRNA function in T-cell differentiation is still rudimentary, the available evidence leaves no doubt that these small posttranscriptional regulators are indispensable for proper functioning of the immune system. PMID:23550639
Sandmeier, Franziska C; Tracy, Richard C
2014-09-01
We propose a new heuristic model that incorporates metabolic rate and pace of life to predict a vertebrate species' investment in adaptive immune function. Using reptiles as an example, we hypothesize that animals with low metabolic rates will invest more in innate immunity compared with adaptive immunity. High metabolic rates and body temperatures should logically optimize the efficacy of the adaptive immune system--through rapid replication of T and B cells, prolific production of induced antibodies, and kinetics of antibody--antigen interactions. In current theory, the precise mechanisms of vertebrate immune function oft are inadequately considered as diverse selective pressures on the evolution of pathogens. We propose that the strength of adaptive immune function and pace of life together determine many of the important dynamics of host-pathogen evolution, namely, that hosts with a short lifespan and innate immunity or with a long lifespan and strong adaptive immunity are expected to drive the rapid evolution of their populations of pathogens. Long-lived hosts that rely primarily on innate immune functions are more likely to use defense mechanisms of tolerance (instead of resistance), which are not expected to act as a selection pressure for the rapid evolution of pathogens' virulence. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
A novel metaheuristic for continuous optimization problems: Virus optimization algorithm
NASA Astrophysics Data System (ADS)
Liang, Yun-Chia; Rodolfo Cuevas Juarez, Josue
2016-01-01
A novel metaheuristic for continuous optimization problems, named the virus optimization algorithm (VOA), is introduced and investigated. VOA is an iteratively population-based method that imitates the behaviour of viruses attacking a living cell. The number of viruses grows at each replication and is controlled by an immune system (a so-called 'antivirus') to prevent the explosive growth of the virus population. The viruses are divided into two classes (strong and common) to balance the exploitation and exploration effects. The performance of the VOA is validated through a set of eight benchmark functions, which are also subject to rotation and shifting effects to test its robustness. Extensive comparisons were conducted with over 40 well-known metaheuristic algorithms and their variations, such as artificial bee colony, artificial immune system, differential evolution, evolutionary programming, evolutionary strategy, genetic algorithm, harmony search, invasive weed optimization, memetic algorithm, particle swarm optimization and simulated annealing. The results showed that the VOA is a viable solution for continuous optimization.
He, Jinlei; Zhang, Junrong; He, Yanxia; Huang, Fan; Li, Jiao; Chen, Qiwei; Chen, Dali; Chen, Jianping
2016-02-01
Legionnaires' disease, a kind of systemic disease with pneumonia as the main manifestation, is caused by Legionella pneumophila (L. pneumophila). In order to prevent the disease, we optimized Mip and FlaA, the virulence factors of L. pneumophila, to design recombinant Mip-FlaA dominant epitope vaccine against the pathogen. Firstly, the coding sequences of mip and flaA were optimized by DNAStar software and Expasy protein analysis system, and then, the tertiary structure and function of recombinant Mip-FlaA were predicted by PHYRE2 Protein Fold Recognition Server. After that, the optimized mip, flaA and mip-flaA were cloned, expressed and purified, and the proteins were used as dominant epitope vaccines to immunize BABL/c mice. Moreover, the IgG titers, histological changes in lung and the level of TNF-α, IFN-γ, IL-6 and IL-1β were detected to reflect the immunogenicity and protective immunity of the vaccines. The results of SDS-PAGE and Western blot proved the recombinant Mip-FlaA was successfully expressed. ELISA results of IgG titers and these cytokines showed Mip-FlaA group was capable to induce the strongest immune response, compared to PBS, Mip and FlaA groups. In addition, histopathology analysis demonstrated the mice immunized with Mip-FlaA showed better immune protection. Therefore, the work indicated that the above-described biological tools were useful in optimization of epitope vaccine. Antigenic characterization and immune protection of recombinant Mip-FlaA would be of great value in understanding the immunopathogenesis of the disease and in developing possible vaccine against the pathogen.
Tsave, Olga; Petanidis, Savvas; Kioseoglou, Efrosini; Yavropoulou, Maria P.; Yovos, John G.; Anestakis, Doxakis; Tsepa, Androniki; Salifoglou, Athanasios
2016-01-01
Over the last decade, a diverse spectrum of vanadium compounds has arisen as anti-inflammatory therapeutic metallodrugs targeting various diseases. Recent studies have demonstrated that select well-defined vanadium species are involved in many immune-driven molecular mechanisms that regulate and influence immune responses. In addition, advances in cell immunotherapy have relied on the use of metallodrugs to create a “safe,” highly regulated, environment for optimal control of immune response. Emerging findings include optimal regulation of B/T cell signaling and expression of immune suppressive or anti-inflammatory cytokines, critical for immune cell effector functions. Furthermore, in-depth perusals have explored NF-κB and Toll-like receptor signaling mechanisms in order to enhance adaptive immune responses and promote recruitment or conversion of inflammatory cells to immunodeficient tissues. Consequently, well-defined vanadium metallodrugs, poised to access and resensitize the immune microenvironment, interact with various biomolecular targets, such as B cells, T cells, interleukin markers, and transcription factors, thereby influencing and affecting immune signaling. A synthetically formulated and structure-based (bio)chemical reactivity account of vanadoforms emerges as a plausible strategy for designing drugs characterized by selectivity and specificity, with respect to the cellular molecular targets intimately linked to immune responses, thereby giving rise to a challenging field linked to the development of immune system vanadodrugs. PMID:27190573
Progress in HIV vaccine development
Hsu, Denise C.; O'Connell, Robert J.
2017-01-01
ABSTRACT An HIV-1 vaccine is needed to curtail the HIV epidemic. Only one (RV144) out of the 6 HIV-1 vaccine efficacy trials performed showed efficacy. A potential mechanism of protection is the induction of functional antibodies to V1V2 region of HIV envelope. The 2 main current approaches to the generation of protective immunity are through broadly neutralizing antibodies (bnAb) and induction of functional antibodies (non-neutralizing Abs with other potential anti-viral functions). Passive immunization using bnAb has advanced into phase II clinical trials. The induction of bnAb using mimics of the natural Env trimer or B-cell lineage vaccine design is still in pre-clinical phase. An attempt at optimization of protective functional antibodies will be assessed next with the efficacy trial (HVTN702) about to start. With on-going optimization of prime/boost strategies, the development of mosaic immunogens, replication competent vectors, and emergence of new strategies designed to induce bnAb, the prospects for a preventive HIV vaccine have never been more promising. PMID:28281871
Nonlinear identification using a B-spline neural network and chaotic immune approaches
NASA Astrophysics Data System (ADS)
dos Santos Coelho, Leandro; Pessôa, Marcelo Wicthoff
2009-11-01
One of the important applications of B-spline neural network (BSNN) is to approximate nonlinear functions defined on a compact subset of a Euclidean space in a highly parallel manner. Recently, BSNN, a type of basis function neural network, has received increasing attention and has been applied in the field of nonlinear identification. BSNNs have the potential to "learn" the process model from input-output data or "learn" fault knowledge from past experience. BSNN can be used as function approximators to construct the analytical model for residual generation too. However, BSNN is trained by gradient-based methods that may fall into local minima during the learning procedure. When using feed-forward BSNNs, the quality of approximation depends on the control points (knots) placement of spline functions. This paper describes the application of a modified artificial immune network inspired optimization method - the opt-aiNet - combined with sequences generate by Hénon map to provide a stochastic search to adjust the control points of a BSNN. The numerical results presented here indicate that artificial immune network optimization methods are useful for building good BSNN model for the nonlinear identification of two case studies: (i) the benchmark of Box and Jenkins gas furnace, and (ii) an experimental ball-and-tube system.
NASA Astrophysics Data System (ADS)
Cohen, Luchino
Immune functions are altered during space flights. Latent virus reactivation, reduction in the number of immune cells, decreased cell activation and increased sensitivity of astronauts to infections following their return on Earth demonstrate that the immune system is less efficient during space flight. The causes of this immune deficiency are not fully understood and this dysfunction during long-term missions could result in the appearance of opportunistic infections or a decrease in the immuno-surveillance mechanisms that eradicate cancer cells. Therefore, the immune functions of astronauts will have to be monitored continuously during long-term missions in space, using miniature and semi-automated diagnostic systems. The objectives of this project are to study the causes of space-related immunodeficiency, to develop countermeasures to maintain an optimal immune function and to improve our capacity to detect infectious diseases during space missions through the monitoring of astronauts' immune system. In order to achieve these objectives, an Immune Function Diagnostic System (IFDS) will be designed to perform a set of immunological assays on board spacecrafts or on planet-bound bases. Through flow cytometric assays and molecular biology analyses, this diagnostic system could improve medical surveillance of astronauts and could be used to test countermeasures aimed at preventing immune deficiency during space missions. The capacity of the instrument to assess cellular fluorescence and to quantify the presence of soluble molecules in biological samples would support advanced molecular studies in space life sciences. Finally, such diagnostic system could also be used on Earth in remote areas or in mobile hospitals following natural disasters to fight against infectious diseases and other pathologies.
Immune Response and Function: Exercise Conditioning Versus Bed-Rest and Spaceflight Deconditioning
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Jackson, C. G. R.; Lawless, D.
1994-01-01
Immune responses measured at rest immediately or some hours after exercise training (some with and some without increase in maximal oxygen uptake) gave variable and sometimes conflicting results; therefore, no general conclusions can be drawn. On the other hand, most immune responses were either unchanged (immunoglobulin, T cells, CD4+, and natural killer activity) or decreased (blood properdin, neutrophil phagocytic activity, salivary lysozymes, brain immunoglobulin A and G, and liver B lymphocytes and phytohemagglutinin activity) during prolonged bed rest. Some data suggested that exercise training during bed rest may partially ameliorate the decreased functioning of the immune system. Exercise and change in body position, especially during prolonged bed rest with plasma fluid shifts and diuresis, may induce a change in plasma protein concentration and content, which can influence drug metabolism as well as immune function. Leukocytosis, accompanied by lymphopenia and a depressed lymphocyte response, occurs in astronauts on return to Earth from spaceflight; recovery may depend on time of exposure to microgravity. It is clear that the effect of drugs and exercise used as countermeasures for microgravity deconditioning should be evaluated for their effect on an astronaut's immune system to assure optimal health and performance on long-duration space missions.
Immune defense and host life history.
Zuk, Marlene; Stoehr, Andrew M
2002-10-01
Recent interest has focused on immune response in an evolutionary context, with particular attention to disease resistance as a life-history trait, subject to trade-offs against other traits such as reproductive effort. Immune defense has several characteristics that complicate this approach, however; for example, because of the risk of autoimmunity, optimal immune defense is not necessarily maximum immune defense. Two important types of cost associated with immunity in the context of life history are resource costs, those related to the allocation of essential but limited resources, such as energy or nutrients, and option costs, those paid not in the currency of resources but in functional or structural components of the organism. Resource and option costs are likely to apply to different aspects of resistance. Recent investigations into possible trade-offs between reproductive effort, particularly sexual displays, and immunity have suggested interesting functional links between the two. Although all organisms balance the costs of immune defense against the requirements of reproduction, this balance works out differently for males than it does for females, creating sex differences in immune response that in turn are related to ecological factors such as the mating system. We conclude that immune response is indeed costly and that future work would do well to include invertebrates, which have sometimes been neglected in studies of the ecology of immune defense.
Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity.
Cissé, Yasmine M; Russart, Kathryn L G; Nelson, Randy J
2017-03-31
Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 9 weeks, then paired in full factorial design, mated, and thereafter housed under dark nights. Offspring were gestated and reared in dark nights, then tested as adults for cell-mediated and humoral immunity. Maternal exposure to dLAN dampened delayed type hypersensitivity (DTH) responses in male offspring. Maternal and paternal exposure to dLAN reduced DTH responses in female offspring. IgG antibodies to a novel antigen were elevated in offspring of dams exposed to dLAN. Paternal exposure to dLAN decreased splenic endocrine receptor expression and global methylation in a parental sex-specific manner. Together, these data suggest that exposure to dLAN has transgenerational effects on endocrine-immune function that may be mediated by global alterations in the epigenetic landscape of immune tissues.
Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity
Cissé, Yasmine M.; Russart, Kathryn L.G.; Nelson, Randy J.
2017-01-01
Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 9 weeks, then paired in full factorial design, mated, and thereafter housed under dark nights. Offspring were gestated and reared in dark nights, then tested as adults for cell-mediated and humoral immunity. Maternal exposure to dLAN dampened delayed type hypersensitivity (DTH) responses in male offspring. Maternal and paternal exposure to dLAN reduced DTH responses in female offspring. IgG antibodies to a novel antigen were elevated in offspring of dams exposed to dLAN. Paternal exposure to dLAN decreased splenic endocrine receptor expression and global methylation in a parental sex-specific manner. Together, these data suggest that exposure to dLAN has transgenerational effects on endocrine-immune function that may be mediated by global alterations in the epigenetic landscape of immune tissues. PMID:28361901
Cloud Model-Based Artificial Immune Network for Complex Optimization Problem
Wang, Mingan; Li, Jianming; Guo, Dongliang
2017-01-01
This paper proposes an artificial immune network based on cloud model (AINet-CM) for complex function optimization problems. Three key immune operators—cloning, mutation, and suppression—are redesigned with the help of the cloud model. To be specific, an increasing half cloud-based cloning operator is used to adjust the dynamic clone multipliers of antibodies, an asymmetrical cloud-based mutation operator is used to control the adaptive evolution of antibodies, and a normal similarity cloud-based suppressor is used to keep the diversity of the antibody population. To quicken the searching convergence, a dynamic searching step length strategy is adopted. For comparative study, a series of numerical simulations are arranged between AINet-CM and the other three artificial immune systems, that is, opt-aiNet, IA-AIS, and AAIS-2S. Furthermore, two industrial applications—finite impulse response (FIR) filter design and proportional-integral-differential (PID) controller tuning—are investigated and the results demonstrate the potential searching capability and practical value of the proposed AINet-CM algorithm. PMID:28630620
Cloud Model-Based Artificial Immune Network for Complex Optimization Problem.
Wang, Mingan; Feng, Shuo; Li, Jianming; Li, Zhonghua; Xue, Yu; Guo, Dongliang
2017-01-01
This paper proposes an artificial immune network based on cloud model (AINet-CM) for complex function optimization problems. Three key immune operators-cloning, mutation, and suppression-are redesigned with the help of the cloud model. To be specific, an increasing half cloud-based cloning operator is used to adjust the dynamic clone multipliers of antibodies, an asymmetrical cloud-based mutation operator is used to control the adaptive evolution of antibodies, and a normal similarity cloud-based suppressor is used to keep the diversity of the antibody population. To quicken the searching convergence, a dynamic searching step length strategy is adopted. For comparative study, a series of numerical simulations are arranged between AINet-CM and the other three artificial immune systems, that is, opt-aiNet, IA-AIS, and AAIS-2S. Furthermore, two industrial applications-finite impulse response (FIR) filter design and proportional-integral-differential (PID) controller tuning-are investigated and the results demonstrate the potential searching capability and practical value of the proposed AINet-CM algorithm.
Jiang, Hong; Chess, Leonard
2008-11-01
By discriminating self from nonself and controlling the magnitude and class of immune responses, the immune system mounts effective immunity against virtually any foreign antigens but avoids harmful immune responses to self. These are two equally important and related but distinct processes, which function in concert to ensure an optimal function of the immune system. Immunologically relevant clinical problems often occur because of failure of either process, especially the former. Currently, there is no unified conceptual framework to characterize the precise relationship between thymic negative selection and peripheral immune regulation, which is the basis for understanding self-non-self discrimination versus control of magnitude and class of immune responses. In this article, we explore a novel hypothesis of how the immune system discriminates self from nonself in the periphery during adaptive immunity. This hypothesis permits rational analysis of various seemingly unrelated biomedical problems inherent in immunologic disorders that cannot be uniformly interpreted by any currently existing paradigms. The proposed hypothesis is based on a unified conceptual framework of the "avidity model of peripheral T-cell regulation" that we originally proposed and tested, in both basic and clinical immunology, to understand how the immune system achieves self-nonself discrimination in the periphery.
Goettel, Jeremy A.; Biswas, Subhabrata; Lexmond, Willem S.; Yeste, Ada; Passerini, Laura; Patel, Bonny; Yang, Siyoung; Sun, Jiusong; Ouahed, Jodie; Shouval, Dror S.; McCann, Katelyn J.; Horwitz, Bruce H.; Mathis, Diane; Milford, Edgar L.; Notarangelo, Luigi D.; Roncarolo, Maria-Grazia; Fiebiger, Edda; Marasco, Wayne A.; Bacchetta, Rosa; Quintana, Francisco J.; Pai, Sung-Yun; Klein, Christoph; Muise, Aleixo M.
2015-01-01
Mice reconstituted with a human immune system provide a tractable in vivo model to assess human immune cell function. To date, reconstitution of murine strains with human hematopoietic stem cells (HSCs) from patients with monogenic immune disorders have not been reported. One obstacle precluding the development of immune-disease specific “humanized” mice is that optimal adaptive immune responses in current strains have required implantation of autologous human thymic tissue. To address this issue, we developed a mouse strain that lacks murine major histocompatibility complex class II (MHC II) and instead expresses human leukocyte antigen DR1 (HLA-DR1). These mice displayed improved adaptive immune responses when reconstituted with human HSCs including enhanced T-cell reconstitution, delayed-type hypersensitivity responses, and class-switch recombination. Following immune reconstitution of this novel strain with HSCs from a patient with immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, associated with aberrant FOXP3 function, mice developed a lethal inflammatory disorder with multiorgan involvement and autoantibody production mimicking the pathology seen in affected humans. This humanized mouse model permits in vivo evaluation of immune responses associated with genetically altered HSCs, including primary immunodeficiencies, and should facilitate the study of human immune pathobiology and the development of targeted therapeutics. PMID:25833964
2013-01-01
Background. Protein is a macronutrient essential for growth, muscle function, immunity and overall tissue homeostasis. Suboptimal protein intake can significantly impact physical function and overall health in older adults. Methods. This article reviews the literature on the recommendations for protein intake in older adults in light of the new evidence linking protein intake with sarcopenia and physical function. Challenges and opportunities for optimal protein nutrition in older persons are discussed. Results. Recent metabolic and epidemiological studies suggest that the current recommendations of protein intake may not be adequate for maintenance of physical function and optimal health in older adults. Methodological limitations and novel concepts in protein nutrition are also discussed. Conclusion. We conclude that new research and novel research methodologies are necessary to establish the protein needs and optimal patterns of protein intake for older persons. PMID:23183903
Regulation of the cellular and physiological effects of glutamine.
Chwals, Walter J
2004-10-01
Glutamine is the most abundant amino acid in humans and possesses many functions in the body. It is the major transporter of amino-nitrogen between cells and an important fuel source for rapidly dividing cells such as cells of the immune and gastrointestinal systems. It is important in the synthesis of nucleic acids, glutathione, citrulline, arginine, gamma aminobutyric acid, and glucose. It is important for growth, gastrointestinal integrity, acid-base homeostasis, and optimal immune function. The regulation of glutamine levels in cells via glutaminase and glutamine synthetase is discussed. The cellular and physiologic effects of glutamine upon the central nervous system, gastrointestinal function, during metabolic support, and following tissue injury and critical illness is also discussed.
The role of the immune system in central nervous system plasticity after acute injury.
Peruzzotti-Jametti, Luca; Donegá, Matteo; Giusto, Elena; Mallucci, Giulia; Marchetti, Bianca; Pluchino, Stefano
2014-12-26
Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Nehlsen-Cannarella, Sandra; Morukov, Boris; Pierson, Duane; Sams, Clarence
2007-01-01
There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk from prolonged immune dysregulation during space flight are not yet determined, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. Each of the clinical events resulting from immune dysfunction has the potential to impact mission critical objectives during exploration-class missions. To date, precious little in-flight immune data has been generated to assess this phenomenon. The majority of recent flight immune studies have been post-flight assessments, which may not accurately reflect the in-flight condition. There are no procedures currently in place to monitor immune function or its effect on crew health. The objective of this Supplemental Medical Objective (SMO) is to develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. This SMO will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flight-compatible immune monitoring strategy. Characterization of the clinical risk and the development of a monitoring strategy are necessary prerequisite activities prior to validating countermeasures. This study will determine, to the best level allowed by current technology, the in-flight status of crewmembers immune system. Pre-flight, in-flight and post-flight assessments of immune status, immune function, viral reactivation and physiological stress will be performed. The in-flight samples will allow a distinction between legitimate in-flight alterations and the physiological stresses of landing and readaptation which are believed to alter landing day assessments. The overall status of the immune system during flight (activation, deficiency, dysregulation) and the response of the immune system to specific latent virus reactivation (known to occur during space flight) will be thoroughly assessed. Following completion of the SMO the data will be evaluated to determine the optimal set of assays for routine monitoring of crewmember immune system function, should the clinical risk warrant such monitoring.
Chronic exposure to dim light at night suppresses immune responses in Siberian hamsters.
Bedrosian, Tracy A; Fonken, Laura K; Walton, James C; Nelson, Randy J
2011-06-23
Species have been adapted to specific niches optimizing survival and reproduction; however, urbanization by humans has dramatically altered natural habitats. Artificial light at night (LAN), termed 'light pollution', is an often overlooked, yet increasing disruptor of habitats, which perturbs physiological processes that rely on precise light information. For example, LAN alters the timing of reproduction and activity in some species, which decreases the odds of successful breeding and increases the threat of predation for these individuals, leading to reduced fitness. LAN also suppresses immune function, an important proxy for survival. To investigate the impact of LAN in a species naive to light pollution in its native habitat, immune function was examined in Siberian hamsters derived from wild-caught stock. After four weeks exposure to dim LAN, immune responses to three different challenges were assessed: (i) delayed-type hypersensitivity (DTH), (ii) lipopolysaccharide-induced fever, and (iii) bactericide activity of blood. LAN suppressed DTH response and reduced bactericide activity of blood after lipopolysaccharide treatment, in addition to altering daily patterns of locomotor activity, suggesting that human encroachment on habitats via night-time lighting may inadvertently compromise immune function and ultimately fitness.
Tian, Tian; Dubin, Krista; Jin, Qiushuang; Qureshi, Ali; King, Sandra L.; Liu, Luzheng; Jiang, Xiaodong; Murphy, George F.; Kupper, Thomas S.; Fuhlbrigge, Robert C.
2012-01-01
One strategy adopted by vaccinia virus (VV) to evade the host immune system is to encode homologs of TNF receptors (TNFR) that block TNFα function. The response to VV skin infection under conditions of TNFα deficiency, however, has not been reported. We found that TNFR1−/− mice developed larger primary lesions, numerous satellite lesions and higher skin virus levels after VV scarification. Following their recovery, these TNFR1−/− mice were fully protected against challenge with a lethal intranasal dose of VV, suggesting these mice developed an effective memory immune response. A functional systemic immune response of TNFR1−/− mice was further demonstrated by enhanced production of VV-specific IFNγ and VV-specific CD8+ T cells in spleens and draining lymph nodes. Interestingly, bone marrow (BM) reconstitution studies using WT BM in TNFR1−/− host mice, but not TNFR1−/− BM in WT host mice, reproduced the original results seen in TNFR1−/− mice, indicating that TNFR1 deficiency in resident skin cells, rather than hematopoietic cells, accounts for the impaired cutaneous immune response. Our data suggest that lack of TNFR1 leads to a skin-specific immune deficiency and that resident skin cells play a crucial role in mediating an optimal immune defense to VV cutaneous infection via TNFα/TNFR1 signaling. PMID:22318381
Adamo, Shelley A
2014-09-01
Intense, short-term stress (i.e., robust activation of the fight-or-flight response) typically produces a transient decline in resistance to disease in animals across phyla. Chemical mediators of the stress response (e.g., stress hormones) help induce this decline, suggesting that this transient immunosuppression is an evolved response. However, determining the function of stress hormones on immune function is difficult because of their complexity. Nevertheless, evidence suggests that stress hormones help maintain maximal resistance to disease during the physiological changes needed to optimize the body for intense physical activity. Work on insects demonstrates that stress hormones both shunt resources away from the immune system during fight-or-flight responses as well as reconfigure the immune system. Reconfiguring the immune system minimizes the impact of the loss of these resources and reduces the increased costs of some immune functions due to the physiological changes demanded by the fight-or-flight response. For example, during the stress response of the cricket Gryllus texensis, some molecular resources are shunted away from the immune system and toward lipid transport, resulting in a reduction in resistance to disease. However, insects' immune cells (hemocytes) have receptors for octopamine (the insect stress neurohormone). Octopamine increases many hemocyte functions, such as phagocytosis, and these changes would tend to mitigate the decline in immunity due to the loss of molecular resources. Moreover, because the stress response generates oxidative stress, some immune responses are probably more costly when activated during a stress response (e.g., those that produce reactive molecules). Some of these immune responses are depressed during stress in crickets, while others, whose costs are probably not increased during a stress response, are enhanced. Some effects of stress hormones on immune systems may be better understood as examples of reconfiguration rather than as mediating a trade-off. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Effects of Simulated Microgravity on Functions of Neutrophil-like HL-60 Cells
NASA Astrophysics Data System (ADS)
Wang, Chengzhi; Li, Ning; Zhang, Chen; Sun, Shujin; Gao, Yuxin; Long, Mian
2015-11-01
Altered gravity, especially microgravity affects cellular functions of immune cells and can result in immune dysfunction for long-term, manned spaceflight and space exploration. The underlying mechanism, however, of sensing and responding to the gravity alteration is poorly understood. Here, a rotary cell culture system (RCCS) bioreactor was used to elucidate the effects of simulated microgravity on polymorphonuclear neutrophils (PMN)-like HL-60 cells. Alteration of cell morphology, up-regulation of (nitric oxide) NO production, enhancement of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemotactic protein 1 (MCP-1) secretion, and diversity of cellular adhesion molecule expression were observed for the cells cultured in RCCS, leading to the up-regulated inflammatory immune responses and host defense. It was also indicated that such alterations in biological responses of PMNs mediated the reduced rolling velocity and decreased adhesion of PMN-like HL-60 cells on endothelial cells under shear flow. This work furthers the understandings in the effects and mechanism of microgravity on PMN functions, which are potentially helpful for optimizing the countermeasures to immune suppression in the future long-term, manned spaceflight.
Kegley, E B; Ball, J J; Beck, P A
2016-12-01
The importance of optimal mineral and vitamin nutrition on improving immune function and health has been recognized in the preceding decades. In the southeast, beef cattle are raised predominantly on forages that may be limiting in nutrients for optimal health, especially trace minerals such as Cu, Zn, and Se. Clinical deficiencies of these nutrients produce classic symptoms that are common to several nutrient deficiencies (e.g., slow growth and unthrifty appearance); however, subclinical deficiencies are more widespread and more difficult to detect, yet may result in broader economic losses. Dietary mineral concentrations often considered adequate for maximum growth, reproductive performance, or optimal immune function have been found to be insufficient at times of physiological stress (weaning, transport, comingling, etc.), when feed intake is reduced. The impacts of these deficiencies on beef cattle health are not apparent until calves have been subjected to these stressors. Health problems that are exacerbated by mineral or vitamin deficiencies include bovine respiratory disease, footrot, retained placenta, metritis, and mastitis. Many micronutrients have antioxidant properties through being components of enzymes and proteins that benefit animal health. In dairy cattle, high levels of supplemental Zn are generally associated with reduced somatic cell counts and improved foot health, possibly reflecting the importance of Zn in maintaining effective epithelial barriers. Neutrophils isolated from ruminants deficient in Cu or Se have reduced ability to kill ingested bacteria in vitro. Supplemental vitamin E, in its role as an intracellular antioxidant has been shown to decrease morbidity in stressed calves. There is more understanding of the important biological role that these nutrients play in the functioning of the complex and multifaceted immune system. However, there is still much to be learned about determining the micronutrient status of herds (and hence when supplementation will be beneficial), requirements for different genetic and environmental conditions, understanding the bioavailability of these nutrients from feedstuffs and forages, quantifying the bioavailability of different supplemental sources of these nutrients, and identifying the impact of dietary antagonists on these nutrients.
Trombetta, Amelia Chiara; Meroni, Marianna; Cutolo, Maurizio
2017-01-01
From the middle of the 19th century, it is known that endocrine and immune systems interact bi-directionally in different processes that ensure organism homeostasis. Endocrine and nervous systems have a pivotal role in the balancing of pro- and anti-inflammatory functions of immune system, and constitute a complex circadian neuroendocrine network. Autoimmune diseases have in fact a complex pathogenic origin in which the importance of endocrine system was demonstrated. In this chapter, we will mention the structure and function of steroidal hormones involved in the neuroendocrine immune network and we will address the ways in which endocrine and immune systems influence each other, in a bi-directional fashion. Adrenal hormones, sex hormones, vitamin D, and melatonin and prolactin importantly all contribute to the homeostasis of the immune system. Indeed, some of the steroidal hormone activities determine inhibition or stimulation of immune system components, in both physiological (i.e. suppression of an unwanted response in pregnancy, or stimulation of a protective response in infections) and pathological conditions. We will finally mention the rationale for optimization of exogenous administration of glucocorticoids in chronic autoimmune diseases, and the latest developments concerning these drugs. © 2017 S. Karger AG, Basel.
Teixeira, Ana Maria; Ferreira, José Pedro; Hogervorst, Eef; Braga, Margarida Ferreira; Bandelow, Stephan; Rama, Luís; Figueiredo, António; Campos, Maria João; Furtado, Guilherme Eustáquio; Chupel, Matheus Uba; Pedrosa, Filipa Martins
2016-01-01
Physical activity (PA) in elders has been shown to have positive effects on a plethora of chronic diseases and to improve immunity, mental health, and cognition. Chronic stress has also been shown to have immuno-suppressive effects and to accelerate immunosenescence. Exercise could be a significant factor in ameliorating the deleterious effects of chronic stress, but variables such as the type, intensity, and frequency of exercise that should be performed in order to effectively reduce the stress burden need to be defined clearly. PRO-HMECSI will allow us to investigate which hormonal and immunological parameters are able to mediate the effects of exercise on mucosal immunity, psychological/biological stress, and cognitive functioning in older people. Phase I consists of an observational cross-sectional study that compares elders groups (n = 223, >65 years) by functional fitness levels aiming to identify biomarkers involved in maintaining immune and mental health. Neuroendocrine and immune biomarkers of stress, psychological well-being related to mental health, neurocognitive function, functional fitness, and daily PA will be evaluated. Phase II consists of a 28-week intervention in elders with mild cognitive impairment (MCI) profile (n = 149, >65 years, divided in three groups of exercise and one control group), aiming to investigate whether the positive effect of three different types of chair-based exercise programs on physical and psychological health is mediated by an optimal endocrine environment. Primary outcomes are measures of cognitive function and global health. Secondary outcomes include the evaluation the other dimensions such as immune function, psychological health, and depression. Few studies addressed the effects of different types of exercise interventions in older population samples with MCI. We will also be able to determine which type of exercise is more effective in the immune and hormonal function of this population. PMID:27446898
Cellular and molecular interactions of mesenchymal stem cells in innate immunity.
Spaggiari, Grazia Maria; Moretta, Lorenzo
2013-01-01
In recent years, human mesenchymal stem/stromal cells (MSC) have attracted major attention for their possible clinical applications. In addition to their tissue regenerative capacity, they display immune-modulatory properties for which they have been used in the treatment of acute graft-versus-host disease and autoimmune diseases. Various studies have analyzed the inhibitory effect exerted by MSC on cells belonging to acquired or to innate immunity. In this context, MSC have been shown to inhibit proliferation and function of natural killer (NK) cells and to hinder the generation of dendritic cells and macrophages, thus interfering with inflammatory processes and with the generation of type I immune responses. In addition, MSC promote the differentiation of regulatory cells and participate in the regeneration of tissues damaged as a consequence of the inflammatory process. Different molecular mechanisms are involved in the immunosuppressive effect. Further investigation on the biology of MSC and on the regulatory events involved in their functional activities can help to optimize their use in clinical practice.
Poliovirus intrahost evolution is required to overcome tissue-specific innate immune responses.
Xiao, Yinghong; Dolan, Patrick Timothy; Goldstein, Elizabeth Faul; Li, Min; Farkov, Mikhail; Brodsky, Leonid; Andino, Raul
2017-08-29
RNA viruses, such as poliovirus, have a great evolutionary capacity, allowing them to quickly adapt and overcome challenges encountered during infection. Here we show that poliovirus infection in immune-competent mice requires adaptation to tissue-specific innate immune microenvironments. The ability of the virus to establish robust infection and virulence correlates with its evolutionary capacity. We further identify a region in the multi-functional poliovirus protein 2B as a hotspot for the accumulation of minor alleles that facilitate a more effective suppression of the interferon response. We propose that population genetic dynamics enables poliovirus spread between tissues through optimization of the genetic composition of low frequency variants, which together cooperate to circumvent tissue-specific challenges. Thus, intrahost virus evolution determines pathogenesis, allowing a dynamic regulation of viral functions required to overcome barriers to infection.RNA viruses, such as polioviruses, have a great evolutionary capacity and can adapt quickly during infection. Here, the authors show that poliovirus infection in mice requires adaptation to innate immune microenvironments encountered in different tissues.
Cytokines and the immune-neuroendocrine network: What did we learn from infection and autoimmunity?
Correa, Silvia G; Maccioni, Mariana; Rivero, Virginia E; Iribarren, Pablo; Sotomayor, Claudia E; Riera, Clelia M
2007-01-01
The initial view of the neuroendocrine-immune communication as the brake of immune activation is changing. Recent evidence suggests that the optimization of the body's overall response to infection could be actually the role of the immune-endocrine network. In gradually more complex organisms, the multiplicity of host-pathogen interfaces forced the development of efficient and protective responses. Molecules such as cytokines and Toll-like receptors (TLRs) are distributed both in the periphery and in the brain to participate in a coordinated adaptive function. When sustained release of inflammatory mediators occurs, as in autoimmune diseases, undesirable pathological consequences become evident with different manifestations and outcomes. Clearly, organisms are not well adapted to that disregulated condition yet, suggesting that additional partners within neuroendocrine-immune interactions might emerge from the evolutionary road.
Thwe, Phyu M; Pelgrom, Leonard; Cooper, Rachel; Beauchamp, Saritha; Reisz, Julie A; D'Alessandro, Angelo; Everts, Bart; Amiel, Eyal
2017-09-05
Dendritic cell (DC) activation by Toll-like receptor (TLR) agonists causes rapid glycolytic reprogramming that is required to meet the metabolic demands of their immune activation. Recent efforts in the field have identified an important role for extracellular glucose sourcing to support DC activation. However, the contributions of intracellular glucose stores to these processes have not been well characterized. We demonstrate that DCs possess intracellular glycogen stores and that cell-intrinsic glycogen metabolism supports the early effector functions of TLR-activated DCs. Inhibition of glycogenolysis significantly attenuates TLR-mediated DC maturation and impairs their ability to initiate lymphocyte activation. We further report that DCs exhibit functional compartmentalization of glucose- and glycogen-derived carbons, where these substrates preferentially contribute to distinct metabolic pathways. This work provides novel insights into nutrient homeostasis in DCs, demonstrating that differential utilization of glycogen and glucose metabolism regulates their optimal immune function. Copyright © 2017 Elsevier Inc. All rights reserved.
Tiling solutions for optimal biological sensing
NASA Astrophysics Data System (ADS)
Walczak, Aleksandra M.
2015-10-01
Biological systems, from cells to organisms, must respond to the ever-changing environment in order to survive and function. This is not a simple task given the often random nature of the signals they receive, as well as the intrinsically stochastic, many-body and often self-organized nature of the processes that control their sensing and response and limited resources. Despite a wide range of scales and functions that can be observed in the living world, some common principles that govern the behavior of biological systems emerge. Here I review two examples of very different biological problems: information transmission in gene regulatory networks and diversity of adaptive immune receptor repertoires that protect us from pathogens. I discuss the trade-offs that physical laws impose on these systems and show that the optimal designs of both immune repertoires and gene regulatory networks display similar discrete tiling structures. These solutions rely on locally non-overlapping placements of the responding elements (genes and receptors) that, overall, cover space nearly uniformly.
Gartlan, Kate H; Wee, Janet L; Demaria, Maria C; Nastovska, Roza; Chang, Tsz Man; Jones, Eleanor L; Apostolopoulos, Vasso; Pietersz, Geoffrey A; Hickey, Michael J; van Spriel, Annemiek B; Wright, Mark D
2013-05-01
Previous studies on the role of the tetraspanin CD37 in cellular immunity appear contradictory. In vitro approaches indicate a negative regulatory role, whereas in vivo studies suggest that CD37 is necessary for optimal cellular responses. To resolve this discrepancy, we studied the adaptive cellular immune responses of CD37(-/-) mice to intradermal challenge with either tumors or model antigens and found that CD37 is essential for optimal cell-mediated immunity. We provide evidence that an increased susceptibility to tumors observed in CD37(-/-) mice coincides with a striking failure to induce antigen-specific IFN-γ-secreting T cells. We also show that CD37 ablation impairs several aspects of DC function including: in vivo migration from skin to draining lymph nodes; chemo-tactic migration; integrin-mediated adhesion under flow; the ability to spread and form actin protrusions and in vivo priming of adoptively transferred naïve T cells. In addition, multiphoton microscopy-based assessment of dermal DC migration demonstrated a reduced rate of migration and increased randomness of DC migration in CD37(-/-) mice. Together, these studies are consistent with a model in which the cellular defect that underlies poor cellular immune induction in CD37(-/-) mice is impaired DC migration. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke
2013-01-01
Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066
NASA Astrophysics Data System (ADS)
Mozaffari, Ahmad; Vajedi, Mahyar; Azad, Nasser L.
2015-06-01
The main proposition of the current investigation is to develop a computational intelligence-based framework which can be used for the real-time estimation of optimum battery state-of-charge (SOC) trajectory in plug-in hybrid electric vehicles (PHEVs). The estimated SOC trajectory can be then employed for an intelligent power management to significantly improve the fuel economy of the vehicle. The devised intelligent SOC trajectory builder takes advantage of the upcoming route information preview to achieve the lowest possible total cost of electricity and fossil fuel. To reduce the complexity of real-time optimization, the authors propose an immune system-based clustering approach which allows categorizing the route information into a predefined number of segments. The intelligent real-time optimizer is also inspired on the basis of interactions in biological immune systems, and is called artificial immune algorithm (AIA). The objective function of the optimizer is derived from a computationally efficient artificial neural network (ANN) which is trained by a database obtained from a high-fidelity model of the vehicle built in the Autonomie software. The simulation results demonstrate that the integration of immune inspired clustering tool, AIA and ANN, will result in a powerful framework which can generate a near global optimum SOC trajectory for the baseline vehicle, that is, the Toyota Prius PHEV. The outcomes of the current investigation prove that by taking advantage of intelligent approaches, it is possible to design a computationally efficient and powerful SOC trajectory builder for the intelligent power management of PHEVs.
How Does Optimism Suppress Immunity? Evaluation of Three Affective Pathways
Segerstrom, Suzanne C.
2005-01-01
Studies have linked optimism to poorer immunity during difficult stressors. In the present report, when first-year law students (N = 46) relocated to attend law school, reducing conflict among curricular and extracurricular goals, optimism predicted larger delayed type hypersensitivity responses, indicating more robust in vivo cellular immunity. However, when students did not relocate, increasing goal conflict, optimism predicted smaller responses. Although this effect has been attributed to negative affect when difficult stressors violate optimistic expectancies, distress did not mediate optimism’s effects on immunity. Alternative affective mediators related to engagement – engaged affect and fatigue – likewise failed to mediate optimism’s effects, although all three types of affect independently influenced in vivo immunity. Alternative pathways include effort or self-regulatory depletion. PMID:17014284
Pap, Péter L; Sesarman, Alina; Vágási, Csongor I; Buehler, Deborah M; Pătraş, Laura; Versteegh, Maaike A; Banciu, Manuela
2014-01-01
Temporally changing environmental conditions occur in most parts of the world and can exert strong pressure on the immune defense of organisms. Seasonality may result in changes in physiological traits over the year, and such changes may be essential for the optimization of defense against infections. Evidence from field and laboratory studies suggest the existence of links between environmental conditions, such as infection risk, and the ability of animals to mount an immune response or to overcome infections; however, the importance of parasites in mediating seasonal change in immune defense is still debated. In this study, we test the hypothesis that seasonal change in immune function and connected physiological traits is related to parasite infection. We sampled captive house sparrows (Passer domesticus) once every 2 mo over 14 mo and compared the annual variation in 12 measures of condition, immune function, antioxidant status, and oxidative damage among birds naturally infested with coccidians or medicated against these parasites. We found significant variation in 10 of 12 traits over the year. However, we found little support for parasite-mediated change in immune function and oxidative status in captive house sparrows. Of the 12 measures, only one was slightly affected by parasite treatment. In support of the absence of any effect of coccidians on the annual profile of the condition and physiological traits, we found no consistent relationships between the intensity of infestation and these response variables over the year. Our results show that chronic coccidian infections have limited effect on the seasonal changing of physiological traits and that the patterns of these measures are probably more affected by acute infection and/or virulent parasite strains.
Senescence in immune priming and attractiveness in a beetle.
Daukšte, J; Kivleniece, I; Krama, T; Rantala, M J; Krams, I
2012-07-01
Age-related decline in immune activity is referred to as immunosenescence and has been observed for both the adaptive immune response of vertebrates and the innate immune system of invertebrates. Because maintaining a basic level of immune defence and mounting an immune response is costly, optimal investment in immune function should vary over a wide range of individual states such as the individual's age. In this study, we tested whether the immune response and immunological priming within individuals become less efficient with age using mealworm beetles, Tenebrio molitor, as a model organism. We also tested whether ageing and immunological priming affected the odours produced by males. We found that young males of T. molitor were capable of mounting an immune response a sterile nylon monofilament implant with the potential to exhibit a simple form of immune memory through mechanisms of immune priming. Older males did not increase their immune response to a second immune challenge, which negatively affected their sexual attractiveness and remaining life span. Our results indicate that the immune system of older males in T. molitor is less effective, suggesting complex evolutionary trade-offs between ageing, immune response and sexual attractiveness. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Role of the Microbiota in Immunity and inflammation
Belkaid, Yasmine; Hand, Timothy
2014-01-01
The microbiota plays a fundamental role on the induction, training and function of the host immune system. In return, the immune system has largely evolved as a means to maintain the symbiotic relationship of the host with these highly diverse and evolving microbes. When operating optimally this immune system–microbiota alliance allows the induction of protective responses to pathogens and the maintenance of regulatory pathways involved in the maintenance of tolerance to innocuous antigens. However, in high-income countries overuse of antibiotics, changes in diet, and elimination of constitutive partners such as nematodes has selected for a microbiota that lack the resilience and diversity required to establish balanced immune responses. This phenomenon is proposed to account for some of the dramatic rise in autoimmune and inflammatory disorders in parts of the world where our symbiotic relationship with the microbiota has been the most affected. PMID:24679531
The immunological response created by interstitial and non-invasive laser immunotherapy
NASA Astrophysics Data System (ADS)
Bahavar, Cody F.; Zhou, Feifan; Hasanjee, Aamr M.; West, Connor L.; Nordquist, Robert E.; Hode, Tomas; Liu, Hong; Chen, Wei R.
2015-03-01
Laser immunotherapy (LIT) is an innovative cancer modality that uses laser irradiation and immunological stimulation to treat late-stage, metastatic cancers. LIT can be performed through either interstitial or non-invasive laser irradiation. Although LIT is still in development, recent clinical trials have shown that it can be used to successfully treat patients with late-stage breast cancer and melanoma. The development of LIT has been focused on creating an optimal immune response created by irradiating the tumor. One important factor that could enhance the immune response is the duration of laser irradiation. Irradiating the tumor for a shorter or longer amount of time could weaken the immune response created by LIT. Another factor that could weaken this immune response is the proliferation of regulatory T cells (TRegs) in response to the laser irradiation. However, low dose cyclophosphamide (CY) can help suppress the proliferation of TRegs and help create a more optimal immune response. An additional factor that could weaken the effectiveness of LIT is the selectivity of the laser. If LIT is performed non-invasively, then deeply embedded tumors and highly pigmented skin could cause an uneven temperature distribution inside the tumor. To solve this problem, an immunologically modified carbon nanotube system was created by using an immunoadjuvant known as glycated chitosan (GC) as a surfactant for single-walled carbon nanotubes (SWNTs) to immunologically modify SWNTs. SWNT-GC retains the optical properties of SWNTs and the immunological functions of GC to help increase the selectivity of the laser and create a more optimal immune response. In this preliminary study, tumor-bearing rats were treated with LIT either interstitially by an 805-nm laser with GC and low-dose CY, or non-invasively by a 980-nm laser with SWNT-GC. The goal was to observe the effects of CY on the immune response induced by LIT and to also determine the effect of irradiation duration for interstitial and noninvasive LIT.
Datta, Dibyadyuti; Bansal, Geetha P; Gerloff, Dietlind L; Ellefsen, Barry; Hannaman, Drew; Kumar, Nirbhay
2017-01-05
Pfs48/45 and Pfs25 are leading candidates for the development of Plasmodium falciparum transmission blocking vaccines (TBV). Expression of Pfs48/45 in the erythrocytic sexual stages and presentation to the immune system during infection in the human host also makes it ideal for natural boosting. However, it has been challenging to produce a fully folded, functionally active Pfs48/45, using various protein expression platforms. In this study, we demonstrate that full-length Pfs48/45 encoded by DNA plasmids is able to induce significant transmission reducing immune responses. DNA plasmids encoding Pfs48/45 based on native (WT), codon optimized (SYN), or codon optimized and mutated (MUT1 and MUT2), to prevent any asparagine (N)-linked glycosylation were compared with or without intramuscular electroporation (EP). EP significantly enhanced antibody titers and transmission blocking activity elicited by immunization with SYN Pfs48/45 DNA vaccine. Mosquito membrane feeding assays also revealed improved functional immunogenicity of SYN Pfs48/45 (N-glycosylation sites intact) as compared to MUT1 or MUT2 Pfs48/45 DNA plasmids (all N-glycosylation sites mutated). Boosting with recombinant Pfs48/45 protein after immunization with each of the different DNA vaccines resulted in significant boosting of antibody response and improved transmission reducing capabilities of all four DNA vaccines. Finally, immunization with a combination of DNA plasmids (SYN Pfs48/45 and SYN Pfs25) also provides support for the possibility of combining antigens targeting different life cycle stages in the parasite during transmission through mosquitoes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Robustness trade-offs and host–microbial symbiosis in the immune system
Kitano, Hiroaki; Oda, Kanae
2006-01-01
The immune system provides organisms with robustness against pathogen threats, yet it also often adversely affects the organism as in autoimmune diseases. Recently, the molecular interactions involved in the immune system have been uncovered. At the same time, the role of the bacterial flora and its interactions with the host immune system have been identified. In this article, we try to reconcile these findings to draw a consistent picture of the host defense system. Specifically, we first argue that the network of molecular interactions involved in immune functions has a bow-tie architecture that entails inherent trade-offs among robustness, fragility, resource limitation, and performance. Second, we discuss the possibility that commensal bacteria and the host immune system constitute an integrated defense system. This symbiotic association has evolved to optimize its robustness against pathogen attacks and nutrient perturbations by harboring a broad range of microorganisms. Owing to the inherent propensity of a host immune system toward hyperactivity, maintenance of bacterial flora homeostasis might be particularly important in the development of preventive strategies against immune disorders such as autoimmune diseases. PMID:16738567
NASA Technical Reports Server (NTRS)
Simon, M. K.; Udalov, S.; Huth, G. K.
1976-01-01
The forward link of the overall Ku-band communication system consists of the ground- TDRS-orbiter communication path. Because the last segment of the link is directed towards a relatively low orbiting shuttle, a PN code is used to reduce the spectral density. A method is presented for incorporating code acquisition and tracking functions into the orbiter's Ku-band receiver. Optimization of a three channel multiplexing technique is described. The importance of Costas loop parameters to provide false lock immunity for the receiver, and the advantage of using a sinusoidal subcarrier waveform, rather than square wave, are discussed.
Optimization of immunoglobulin substitution therapy by a stochastic immune response model.
Figge, Marc Thilo
2009-05-28
The immune system is a complex adaptive system of cells and molecules that are interwoven in a highly organized communication network. Primary immune deficiencies are disorders in which essential parts of the immune system are absent or do not function according to plan. X-linked agammaglobulinemia is a B-lymphocyte maturation disorder in which the production of immunoglobulin is prohibited by a genetic defect. Patients have to be put on life-long immunoglobulin substitution therapy in order to prevent recurrent and persistent opportunistic infections. We formulate an immune response model in terms of stochastic differential equations and perform a systematic analysis of empirical therapy protocols that differ in the treatment frequency. The model accounts for the immunoglobulin reduction by natural degradation and by antigenic consumption, as well as for the periodic immunoglobulin replenishment that gives rise to an inhomogeneous distribution of immunoglobulin specificities in the shape space. Results are obtained from computer simulations and from analytical calculations within the framework of the Fokker-Planck formalism, which enables us to derive closed expressions for undetermined model parameters such as the infection clearance rate. We find that the critical value of the clearance rate, below which a chronic infection develops, is strongly dependent on the strength of fluctuations in the administered immunoglobulin dose per treatment and is an increasing function of the treatment frequency. The comparative analysis of therapy protocols with regard to the treatment frequency yields quantitative predictions of therapeutic relevance, where the choice of the optimal treatment frequency reveals a conflict of competing interests: In order to diminish immunomodulatory effects and to make good economic sense, therapeutic immunoglobulin levels should be kept close to physiological levels, implying high treatment frequencies. However, clearing infections without additional medication is more reliably achieved by substitution therapies with low treatment frequencies. Our immune response model predicts that the compromise solution of immunoglobulin substitution therapy has a treatment frequency in the range from one infusion per week to one infusion per two weeks.
Nutritional strategies to optimize dairy cattle immunity.
Sordillo, L M
2016-06-01
Dairy cattle are susceptible to increased incidence and severity of both metabolic and infectious diseases during the periparturient period. A major contributing factor to increased health disorders is alterations in bovine immune mechanisms. Indeed, uncontrolled inflammation is a major contributing factor and a common link among several economically important infectious and metabolic diseases including mastitis, retained placenta, metritis, displaced abomasum, and ketosis. The nutritional status of dairy cows and the metabolism of specific nutrients are critical regulators of immune cell function. There is now a greater appreciation that certain mediators of the immune system can have a reciprocal effect on the metabolism of nutrients. Thus, any disturbances in nutritional or immunological homeostasis can provide deleterious feedback loops that can further enhance health disorders, increase production losses, and decrease the availability of safe and nutritious dairy foods for a growing global population. This review will discuss the complex interactions between nutrient metabolism and immune functions in periparturient dairy cattle. Details of how either deficiencies or overexposure to macro- and micronutrients can contribute to immune dysfunction and the subsequent development of health disorders will be presented. Specifically, the ways in which altered nutrient metabolism and oxidative stress can interact to compromise the immune system in transition cows will be discussed. A better understanding of the linkages between nutrition and immunity may facilitate the design of nutritional regimens that will reduce disease susceptibility in early lactation cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The deconvolution of complex spectra by artificial immune system
NASA Astrophysics Data System (ADS)
Galiakhmetova, D. I.; Sibgatullin, M. E.; Galimullin, D. Z.; Kamalova, D. I.
2017-11-01
An application of the artificial immune system method for decomposition of complex spectra is presented. The results of decomposition of the model contour consisting of three components, Gaussian contours, are demonstrated. The method of artificial immune system is an optimization method, which is based on the behaviour of the immune system and refers to modern methods of search for the engine optimization.
Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang
2015-01-01
To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data.
Immunosurveillance and therapy of multiple myeloma are CD226 dependent
Guillerey, Camille; Ferrari de Andrade, Lucas; Vuckovic, Slavica; Miles, Kim; Ngiow, Shin Foong; Yong, Michelle C.R.; Teng, Michele W.L.; Colonna, Marco; Ritchie, David S.; Chesi, Martha; Bergsagel, P. Leif; Hill, Geoffrey R.; Smyth, Mark J.; Martinet, Ludovic
2015-01-01
Multiple myeloma (MM) is an age-dependent hematological malignancy. Evaluation of immune interactions that drive MM relies on in vitro experiments that do not reflect the complex cellular stroma involved in MM pathogenesis. Here we used Vk*MYC transgenic mice, which spontaneously develop MM, and demonstrated that the immune system plays a critical role in the control of MM progression and the response to treatment. We monitored Vk*MYC mice that had been crossed with Cd226 mutant mice over a period of 3 years and found that CD226 limits spontaneous MM development. The CD226-dependent anti-myeloma immune response against transplanted Vk*MYC MM cells was mediated both by NK and CD8+ T cells through perforin and IFN-γ pathways. Moreover, CD226 expression was required for optimal antimyeloma efficacy of cyclophosphamide (CTX) and bortezomib (Btz), which are both standardly used to manage MM in patients. Activation of costimulatory receptor CD137 with mAb (4-1BB) exerted strong antimyeloma activity, while inhibition of coinhibitory receptors PD-1 and CTLA-4 had no effect. Taken together, the results of this study provide in vivo evidence that CD226 is important for MM immunosurveillance and indicate that specific immune components should be targeted for optimal MM treatment efficacy. As progressive immunosuppression associates with MM development, strategies aimed to increase immune functions may have important therapeutic implications in MM. PMID:25893601
Akalu, Yemsratch T; Rothlin, Carla V; Ghosh, Sourav
2017-03-01
Cancer immunotherapy utilizing T-cell checkpoint inhibitors has shown tremendous clinical success. Yet, this mode of treatment is effective in only a subset of patients. Unresponsive patients tend to have non-T-cell-inflamed tumors that lack markers associated with the activation of adaptive anti-tumor immune responses. Notably, elimination of cancer cells by T cells is critically dependent on the optimal activity of innate immune cells. Therefore, identifying new targets that regulate innate immune cell function and promote the engagement of adaptive tumoricidal responses is likely to lead to the development of improved therapies against cancer. Here, we review the TAM receptor tyrosine kinases-TYRO3, AXL, and MERTK-as an emerging class of innate immune checkpoints that participate in key steps of anti-tumoral immunity. Namely, TAM-mediated efferocytosis, negative regulation of dendritic cell activity, and dysregulated production of chemokines collectively favor the escape of malignant cells. Hence, disabling TAM signaling may promote engagement of adaptive immunity and complement T-cell checkpoint blockade. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Schwalfenberg, Gerry K
2011-01-01
This review looks at the critical role of vitamin D in improving barrier function, production of antimicrobial peptides including cathelicidin and some defensins, and immune modulation. The function of vitamin D in the innate immune system and in the epithelial cells of the oral cavity, lung, gastrointestinal system, genito-urinary system, skin and surface of the eye is discussed. Clinical conditions are reviewed where vitamin D may play a role in the prevention of infections or where it may be used as primary or adjuvant treatment for viral, bacterial and fungal infections. Several conditions such as tuberculosis, psoriasis, eczema, Crohn's disease, chest infections, wound infections, influenza, urinary tract infections, eye infections and wound healing may benefit from adequate circulating 25(OH)D as substrate. Clinical diseases are presented in which optimization of 25(OH)D levels may benefit or cause harm according to present day knowledge. The safety of using larger doses of vitamin D in various clinical settings is discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ntumngia, Francis B.; King, Christopher L.; Adams, John H.
2014-01-01
Plasmodium vivax Duffy binding protein region II (DBPII) is an essential ligand for reticulocyte invasion, thereby making this molecule an attractive vaccine candidate against asexual blood-stage P. vivax. Similar to other Plasmodium blood-stage vaccine candidates, strain-specific immunity due to DBPII allelic variation may complicate vaccine efficacy. Targeting immune responses to more conserved epitopes that are potential targets of strain-transcending neutralizing immunity is necessary to avoid induction of strain-specific responses to dominant variant epitopes. In this article, we focus on different approaches to optimize the design of DBP immunogenicity to target conserved epitopes, which is important for developing a broadly effective vaccine against P. vivax. PMID:23068913
NASA Technical Reports Server (NTRS)
Loftus, David J. (Inventor)
2006-01-01
System and method for enclosing cells and/or tissue, for purposes of growth, cell differentiation, suppression of cell differentiation, biological processing and/or transplantation of cells and tissues (biological inserts), and for secretion, sensing and monitoring of selected chemical substances and activation of gene expression of biological inserts implanted into a human body. Selected cells and/or tissue are enveloped in a "cage" that is primarily carbon nanotube Bucky paper, with a selected thickness and porosity. Optionally, selected functional groups, proteins and/or peptides are attached to the carbon nanotube cage, or included within the cage, to enhance the growth and/or differentiation of the cells and/or tissue, to select for certain cellular sub-populations, to optimize certain functions of the cells and/or tissue and/or to optimize the passage of chemicals across the cage surface(s). A cage system is also used as an immuns shield and to control operation of a nano-device or macroscopic device, located within the cage, to provide or transform a selected chemical and/or a selected signal.
Designing lymphocyte functional structure for optimal signal detection: voilà, T cells.
Noest, A J
2000-11-21
One basic task of immune systems is to detect signals from unknown "intruders" amidst a noisy background of harmless signals. To clarify the functional importance of many observed lymphocyte properties, I ask: What properties would a cell have if one designed it according to the theory of optimal detection, with minimal regard for biological constraints? Sparse and reasonable assumptions about the statistics of available signals prove sufficient for deriving many features of the optimal functional structure, in an incremental and modular design. The use of one common formalism guarantees that all parts of the design collaborate to solve the detection task. Detection performance is computed at several stages of the design. Comparison between design variants reveals e.g. the importance of controlling the signal integration time. This predicts that an appropriate control mechanism should exist. Comparing the design to reality, I find a striking similarity with many features of T cells. For example, the formalism dictates clonal specificity, serial receptor triggering, (grades of) anergy, negative and positive selection, co-stimulation, high-zone tolerance, and clonal production of cytokines. Serious mismatches should be found if T cells were hindered by mechanistic constraints or vestiges of their (co-)evolutionary history, but I have not found clear examples. By contrast, fundamental mismatches abound when comparing the design to immune systems of e.g. invertebrates. The wide-ranging differences seem to hinge on the (in)ability to generate a large diversity of receptors. Copyright 2000 Academic Press.
Patterson, Susan L
2015-09-01
Older individuals often experience declines in cognitive function after events (e.g. infection, or injury) that trigger activation of the immune system. This occurs at least in part because aging sensitizes the response of microglia (the brain's resident immune cells) to signals triggered by an immune challenge. In the aging brain, microglia respond to these signals by producing more pro-inflammatory cytokines (e.g. interleukin-1beta or IL-1β) and producing them for longer than microglia in younger brains. This exaggerated inflammatory response can compromise processes critical for optimal cognitive functioning. Interleukin-1β is central to the inflammatory response and is a key mediator and modulator of an array of associated biological functions; thus its production and release is usually very tightly regulated. This review will focus on the impact of dysregulated production of IL-1β on hippocampus dependent-memory systems and associated synaptic plasticity processes. The neurotrophin brain-derived neurotrophic factor (BNDF) helps to protect neurons from damage caused by infection or injury, and it plays a critical role in many of the same memory and hippocampal plasticity processes compromised by dysregulated production of IL-1β. This suggests that an exaggerated brain inflammatory response, arising from aging and a secondary immune challenge, may erode the capacity to provide the BDNF needed for memory-related plasticity processes at hippocampal synapses. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'. Copyright © 2014 Elsevier Ltd. All rights reserved.
Campi-Azevedo, Ana Carolina; Peruhype-Magalhães, Vanessa; Coelho-Dos-Reis, Jordana Grazziela; Costa-Pereira, Christiane; Yamamura, Anna Yoshida; Lima, Sheila Maria Barbosa de; Simões, Marisol; Campos, Fernanda Magalhães Freire; de Castro Zacche Tonini, Aline; Lemos, Elenice Moreira; Brum, Ricardo Cristiano; de Noronha, Tatiana Guimarães; Freire, Marcos Silva; Maia, Maria de Lourdes Sousa; Camacho, Luiz Antônio Bastos; Rios, Maria; Chancey, Caren; Romano, Alessandro; Domingues, Carla Magda; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis
2017-09-01
Technological innovations in vaccinology have recently contributed to bring about novel insights for the vaccine-induced immune response. While the current protocols that use peripheral blood samples may provide abundant data, a range of distinct components of whole blood samples are required and the different anticoagulant systems employed may impair some properties of the biological sample and interfere with functional assays. Although the interference of heparin in functional assays for viral neutralizing antibodies such as the functional plaque-reduction neutralization test (PRNT), considered the gold-standard method to assess and monitor the protective immunity induced by the Yellow fever virus (YFV) vaccine, has been well characterized, the development of pre-analytical treatments is still required for the establishment of optimized protocols. The present study intended to optimize and evaluate the performance of pre-analytical treatment of heparin-collected blood samples with ecteola-cellulose (ECT) to provide accurate measurement of anti-YFV neutralizing antibodies, by PRNT. The study was designed in three steps, including: I. Problem statement; II. Pre-analytical steps; III. Analytical steps. Data confirmed the interference of heparin on PRNT reactivity in a dose-responsive fashion. Distinct sets of conditions for ECT pre-treatment were tested to optimize the heparin removal. The optimized protocol was pre-validated to determine the effectiveness of heparin plasma:ECT treatment to restore the PRNT titers as compared to serum samples. The validation and comparative performance was carried out by using a large range of serum vs heparin plasma:ECT 1:2 paired samples obtained from unvaccinated and 17DD-YFV primary vaccinated subjects. Altogether, the findings support the use of heparin plasma:ECT samples for accurate measurement of anti-YFV neutralizing antibodies. Copyright © 2017 Elsevier B.V. All rights reserved.
Bado-Nilles, A; Techer, R; Porcher, J M; Geffard, A; Gagnaire, B; Betoulle, S; Sanchez, W
2014-09-01
Today, the list of endocrine disrupting compounds (EDCs) in freshwater and marine environments that mimic or block endogenous hormones is expanding at an alarming rate. As immune and reproductive systems may interact in a bidirectional way, some authors proposed the immune capacities as attractive markers to evaluate the hormonal potential of environmental samples. Thus, the present work proposed to gain more knowledge on direct biological effects of natural and EDCs on female fish splenic leucocyte non-specific immune activities by using ex vivo assays. After determining the optimal required conditions to analyze splenic immune responses, seven different EDCs were tested ex vivo at 0.01, 1 and 100nM over 12h on the leucocyte functions of female three-spined stickleback, Gasterosteus aculeatus. In summary, we found that natural hormones acted as immunostimulants, whilst EDCs were immunosuppressive. Copyright © 2014 Elsevier B.V. All rights reserved.
van der Maten, Erika; de Jonge, Marien I; de Groot, Ronald; van der Flier, Michiel; Langereis, Jeroen D
2017-02-08
Most bacteria entering the bloodstream will be eliminated through complement activation on the bacterial surface and opsonophagocytosis. However, when these protective innate immune systems do not work optimally, or when bacteria are equipped with immune evasion mechanisms that prevent killing, this can lead to serious infections such as bacteremia and meningitis, which is associated with high morbidity and mortality. In order to study the complement evasion mechanisms of bacteria and the capacity of human blood to opsonize and kill bacteria, we developed a versatile whole blood killing assay wherein both phagocyte function and complement activity can easily be monitored and modulated. In this assay we use a selective thrombin inhibitor hirudin to fully preserve complement activity of whole blood. This assay allows controlled analysis of the requirements for active complement by replacing or heat-inactivating plasma, phagocyte function and bacterial immune evasion mechanisms that contribute to survival in human blood.
van der Maten, Erika; de Jonge, Marien I.; de Groot, Ronald; van der Flier, Michiel; Langereis, Jeroen D.
2017-01-01
Most bacteria entering the bloodstream will be eliminated through complement activation on the bacterial surface and opsonophagocytosis. However, when these protective innate immune systems do not work optimally, or when bacteria are equipped with immune evasion mechanisms that prevent killing, this can lead to serious infections such as bacteremia and meningitis, which is associated with high morbidity and mortality. In order to study the complement evasion mechanisms of bacteria and the capacity of human blood to opsonize and kill bacteria, we developed a versatile whole blood killing assay wherein both phagocyte function and complement activity can easily be monitored and modulated. In this assay we use a selective thrombin inhibitor hirudin to fully preserve complement activity of whole blood. This assay allows controlled analysis of the requirements for active complement by replacing or heat-inactivating plasma, phagocyte function and bacterial immune evasion mechanisms that contribute to survival in human blood. PMID:28176849
Effects of Malignant Melanoma Initiating Cells on T-Cell Activation
Schatton, Tobias; Schütte, Ute; Frank, Markus H.
2016-01-01
Although human malignant melanoma is a highly immunogenic cancer, both the endogenous antitumor immune response and melanoma immunotherapy often fail to control neoplastic progression. Accordingly, characterizing melanoma cell subsets capable of evading antitumor immunity could unravel optimized treatment strategies that might reduce morbidity and mortality from melanoma. By virtue of their preferential capacity to modulate antitumor immune responses and drive inexorable tumor growth and progression, malignant melanoma-initiating cells (MMICs) warrant closer investigation to further elucidate the cellular and molecular mechanisms underlying melanoma immune evasion and immunotherapy resistance. Here we describe methodologies that enable the characterization of immunoregulatory effects of purified MMICs versus melanoma bulk populations in coculture with syngeneic or allogeneic lymphocytes, using [3H] thymidine incorporation, enzyme-linked immunosorbent spot (ELISPOT), or ELISA assays. These assays were traditionally developed to analyze alloimmune processes and we successfully adapted them for the study of tumor-mediated immunomodulatory functions. PMID:26786883
NASA Astrophysics Data System (ADS)
Sundaresan, Alamelu; Kulkarni, Anil D.; Yamauchi, Keiko; Pellis, Neal R.
2006-09-01
Space travel and long-term space residence such as envisaged in the exploration era implicates burdens on the immune system. An optimal immune response is required to countered and with-stand exposure to pathogens. Countermeasure development is an important avenue in space research especially for long-term space exploration. Microgravity exposure causes detrimental effects in lymphocyte functions which may impair immune response. Impaired lymphocyte function can be remedied by bypassing cell membrane events. This is done by using compounds such as Phorbol Myristate Acetate (PMA). Since activation in mouse splenocytes was augmented using nucleotides, it was essential to observe their effects on human lymphocyte locomotion. A nucleotide/nucleoside (NT/NT) mixture from Otsuka Pharmaceuticals (Naruto, Japan) was used at recommended doses. In lymphocytes cultured in modeled microgravity, the NT/NT mixture used orchestrated locomotion recovery by more than 87%, similar to the response documented with PMA in lymphocytes. Both 12µM and 120µM doses worked similarly. These are preliminary results leading to the possible use of the NT/NT mixture to mitigate immune suppression in micro-gravity. More studies in this direction are required to delineate the role of NT/NT on the immune response in microgravity.
Regulation of immune cells in the uterus during pregnancy in ruminants.
Hansen, P J
2007-03-01
Pregnancy results in a change in number and function of immune cells in utero that potentially affects fetal survival and uterine defense mechanisms postpartum. These changes are driven by local signals from the conceptus as well as from hormonal changes mediated by the placenta or maternal system. In sheep, for example, macrophages accumulate in the uterine endometrium during pregnancy (Tekin and Hansen, 2004). Use of a unilaterally pregnant model, in which pregnancy is surgically confined to 1 uterine horn, has revealed that accumulation of macrophages is due to systemic signals (numbers of cells in the nonpregnant uterine horn of the unilaterally pregnant ewe higher than amounts in uteri of nonpregnant ewes) and locally produced signals (number of cells in the uterus of unilaterally ligated ewes higher in the pregnant horn than in the nonpregnant horn; Tekin and Hansen, 2004). Gamma-delta T cells also accumulate in uterine epithelium during pregnancy as a result of unidentified systemic signals (Lee et al., 1992; Majewski et al., 2001). These cells may participate in growth of the conceptus, immunosuppression, or placental detachment at parturition. One of the key regulators of uterine immune function is progesterone. In sheep, progesterone can block tissue graft rejection in utero when injected to achieve concentrations too low to directly inhibit lymphocyte proliferation (Majewski and Hansen, 2002; Padua et al., 2005). Progesterone probably inhibits uterine immune responses in sheep indirectly by inducing secretion of a member of the serine proteinase inhibitor family called uterine serpin from the endometrial epithelium. Uterine serpin can block lymphocyte proliferation in vitro in sheep (Peltier et al., 2000) and natural killer cell-mediated abortion in vivo in mice (Liu and Hansen, 1993). Uterine serpin is also present in cattle, goats, and pigs, but its role in immune function in these species has not been documented. The relevance of changes in uterine immune function to the reproductive and immune status of ruminants has not been fully established. There is evidence for immunological causes of pregnancy loss associated with cloned fetuses (Hill et al., 2002) and with mastitis (Hansen et al., 2004), but it is not known whether inappropriate recognition of alloantigens on the conceptus is an important cause of pregnancy loss. It is also possible that downregulation of uterine immune function during pregnancy can lead to a postpartum uterus with a compromised capacity for preventing establishment of infectious disease. Thus, optimal immune function in utero requires a balance between the need to maintain effective immune surveillance and effector mechanisms with the requirement that immunological responses leading to conceptus demise are minimized.
Chen, Xi-Lin; Serrano, Daniel; Ghobadi, Farnaz; Mayhue, Marian; Hoebe, Kasper; Ilangumaran, Subburaj; Ramanathan, Sheela
2016-01-01
GTPase of the immune associated nucleotide binding protein (GIMAP) family of proteins are expressed essentially in cells of the hematopoietic system. Mutation in the founding member of this gene family, Gimap5, results in the lymphopenic phenotype in Bio-Breeding diabetes prone rats. In mice, deletion of functional Gimap5 gene affects the survival and renewal of hematopoietic stem cells in addition to the defects observed in T cells. Here we show that T cells from OTII TCR-transgenic Gimap5sph/sph mice do not proliferate in response to its cognate antigen. Furthermore, T cells from Gimap5 mutant rats and mice show decreased phosphorylation of STAT5 following stimulation with IL-7. Our results suggest that functional Gimap5 is required for optimal signaling through TCR and IL-7R in T cells. PMID:27023180
Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang
2015-01-01
To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data. PMID:25807466
Kradin, R L
1995-01-01
In this paper, I have briefly explored metaphors shared by the immune and nervous systems and shown that this exercise can lead to the elucidation of common principles of organization, as well as to predictions concerning how the immune system functions. Metaphor itself undoubtedly reflects the way in which we categorize and retrieve information 44], so it is not surprising that the deep processes of language tend to sample information from related data categories. Although the nervous and immune systems are obviously not the same and metaphors are indeed just that, my primary goal has been to suggest that by virtue of their having evolved in parallel over millions of years, the nervous and immune systems currently use the same archetypal principles and strategies to address related challenges in information processing and retrieval. Ultimately, nature is conservative. One need only look at a tree, a river, the airways, or the vascular bed in order to see how a fractal pattern of repetitive dichotomous branching has been used by each, in order to optimize the transport of fluids over large distances [45]. While each system has had to adopt different materials in order to solve the problem, the shape of their solutions is remarkably alike. In the immune and nervous systems, the elements used to produce optimal functional responses are also quite different, but again the solutions have been achieved by comparable strategies. I am certain that these two great systems of information processing, each responding with vastly different kinetics, will prove to be far more integrally interdependent than has been previously recognized. For example, should a swift response by the immune system be required in an overwhelming invasion by microbial pathogens, the immune system may be able to cooperate with the rapidly reacting nervous system to rid the host of the invaders. In this regard, we have shown that the beta-adrenergic hormone epinephrine rapidly increases the traffic of memory T-cells to mucosal sites, presumably representing an immune component of the fight-or-flight response [46]. Neural evolution appears to have as its goal the development of more efficient information processing systems that lead to higher levels of consciousness. However, in modern times, technologic advances in information processing have rapidly outstripped the slower adaptations that can be made by evolution. In order to satisfy his compulsive quest for information, man has recently developed and recruited the aid of computers.(ABSTRACT TRUNCATED AT 400 WORDS)
Alice, Alejandro F; Kramer, Gwen; Bambina, Shelly; Baird, Jason R; Bahjat, Keith S; Gough, Michael J; Crittenden, Marka R
2018-01-01
Although prophylactic vaccines provide protective humoral immunity against infectious agents, vaccines that elicit potent CD8 T cell responses are valuable tools to shape and drive cellular immunity against cancer and intracellular infection. In particular, IFN-γ-polarized cytotoxic CD8 T cell immunity is considered optimal for protective immunity against intracellular Ags. Suppressor of cytokine signaling (SOCS)1 is a cross-functional negative regulator of TLR and cytokine receptor signaling via degradation of the receptor-signaling complex. We hypothesized that loss of SOCS1 in dendritic cells (DCs) would improve T cell responses by accentuating IFN-γ-directed immune responses. We tested this hypothesis using a recombinant Listeria monocytogenes vaccine platform that targets CD11c + DCs in mice in which SOCS1 is selectively deleted in all CD11c + cells. Unexpectedly, in mice lacking SOCS1 expression in CD11c + cells, we observed a decrease in CD8 + T cell response to the L. monocytogenes vaccine. NK cell responses were also decreased in mice lacking SOCS1 expression in CD11c + cells but did not explain the defect in CD8 + T cell immunity. We found that DCs lacking SOCS1 expression were functional in driving Ag-specific CD8 + T cell expansion in vitro but that this process was defective following infection in vivo. Instead, monocyte-derived innate TNF-α and inducible NO synthase-producing DCs dominated the antibacterial response. Thus, loss of SOCS1 in CD11c + cells skewed the balance of immune response to infection by increasing innate responses while decreasing Ag-specific adaptive responses to infectious Ags. Copyright © 2017 by The American Association of Immunologists, Inc.
The endoplasmic reticulum in plant immunity and cell death
Eichmann, Ruth; Schäfer, Patrick
2012-01-01
The endoplasmic reticulum (ER) is a highly dynamic organelle in eukaryotic cells and a major production site of proteins destined for vacuoles, the plasma membrane, or apoplast in plants. At the ER, these secreted proteins undergo multiple processing steps, which are supervised and conducted by the ER quality control system. Notably, processing of secreted proteins can considerably elevate under stress conditions and exceed ER folding capacities. The resulting accumulation of unfolded proteins is defined as ER stress. The efficiency of cells to re-establish proper ER function is crucial for stress adaptation. Besides delivering proteins directly antagonizing and resolving stress conditions, the ER monitors synthesis of immune receptors. This indicates the significance of the ER for the establishment and function of the plant immune system. Recent studies point out the fragility of the entire system and highlight the ER as initiator of programed cell death (PCD) in plants as was reported for vertebrates. This review summarizes current knowledge on the impact of the ER on immune and PCD signaling. Understanding the integration of stress signals by the ER bears a considerable potential to optimize development and to enhance stress resistance of plants. PMID:22936941
The endoplasmic reticulum in plant immunity and cell death.
Eichmann, Ruth; Schäfer, Patrick
2012-01-01
The endoplasmic reticulum (ER) is a highly dynamic organelle in eukaryotic cells and a major production site of proteins destined for vacuoles, the plasma membrane, or apoplast in plants. At the ER, these secreted proteins undergo multiple processing steps, which are supervised and conducted by the ER quality control system. Notably, processing of secreted proteins can considerably elevate under stress conditions and exceed ER folding capacities. The resulting accumulation of unfolded proteins is defined as ER stress. The efficiency of cells to re-establish proper ER function is crucial for stress adaptation. Besides delivering proteins directly antagonizing and resolving stress conditions, the ER monitors synthesis of immune receptors. This indicates the significance of the ER for the establishment and function of the plant immune system. Recent studies point out the fragility of the entire system and highlight the ER as initiator of programed cell death (PCD) in plants as was reported for vertebrates. This review summarizes current knowledge on the impact of the ER on immune and PCD signaling. Understanding the integration of stress signals by the ER bears a considerable potential to optimize development and to enhance stress resistance of plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chotiyarnwong, Pojchong; Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University; Stewart-Jones, Guillaume B.
Crystals of an MHC class I molecule bound to naturally occurring peptide variants from the dengue virus NS3 protein contained high levels of solvent and required optimization of cryoprotectant and dehydration protocols for each complex to yield well ordered diffraction, a process facilitated by the use of a free-mounting system. T-cell recognition of the antigenic peptides presented by MHC class I molecules normally triggers protective immune responses, but can result in immune enhancement of disease. Cross-reactive T-cell responses may underlie immunopathology in dengue haemorrhagic fever. To analyze these effects at the molecular level, the functional MHC class I molecule HLA-A*1101more » was crystallized bound to six naturally occurring peptide variants from the dengue virus NS3 protein. The crystals contained high levels of solvent and required optimization of the cryoprotectant and dehydration protocols for each complex to yield well ordered diffraction, a process that was facilitated by the use of a free-mounting system.« less
miR-34 Modulates Innate Immunity and Ecdysone Signaling in Drosophila
Xiong, Xiao-Peng; Chang, Kung-Yen; Ren, Xingjie; Ni, Jian-Quan; Rana, Tariq M.; Zhou, Rui
2016-01-01
microRNAs are endogenous small regulatory RNAs that modulate myriad biological processes by repressing target gene expression in a sequence-specific manner. Here we show that the conserved miRNA miR-34 regulates innate immunity and ecdysone signaling in Drosophila. miR-34 over-expression activates antibacterial innate immunity signaling both in cultured cells and in vivo, and flies over-expressing miR-34 display improved survival and pathogen clearance upon Gram-negative bacterial infection; whereas miR-34 knockout animals are defective in antibacterial defense. In particular, miR-34 achieves its immune-stimulatory function, at least in part, by repressing the two novel target genes Dlg1 and Eip75B. In addition, our study reveals a mutual repression between miR-34 expression and ecdysone signaling, and identifies miR-34 as a node in the intricate interplay between ecdysone signaling and innate immunity. Lastly, we identify cis-regulatory genomic elements and trans-acting transcription factors required for optimal ecdysone-mediated repression of miR-34. Taken together, our study enriches the repertoire of immune-modulating miRNAs in animals, and provides new insights into the interplay between steroid hormone signaling and innate immunity. PMID:27893816
miR-34 Modulates Innate Immunity and Ecdysone Signaling in Drosophila.
Xiong, Xiao-Peng; Kurthkoti, Krishna; Chang, Kung-Yen; Li, Jian-Liang; Ren, Xingjie; Ni, Jian-Quan; Rana, Tariq M; Zhou, Rui
2016-11-01
microRNAs are endogenous small regulatory RNAs that modulate myriad biological processes by repressing target gene expression in a sequence-specific manner. Here we show that the conserved miRNA miR-34 regulates innate immunity and ecdysone signaling in Drosophila. miR-34 over-expression activates antibacterial innate immunity signaling both in cultured cells and in vivo, and flies over-expressing miR-34 display improved survival and pathogen clearance upon Gram-negative bacterial infection; whereas miR-34 knockout animals are defective in antibacterial defense. In particular, miR-34 achieves its immune-stimulatory function, at least in part, by repressing the two novel target genes Dlg1 and Eip75B. In addition, our study reveals a mutual repression between miR-34 expression and ecdysone signaling, and identifies miR-34 as a node in the intricate interplay between ecdysone signaling and innate immunity. Lastly, we identify cis-regulatory genomic elements and trans-acting transcription factors required for optimal ecdysone-mediated repression of miR-34. Taken together, our study enriches the repertoire of immune-modulating miRNAs in animals, and provides new insights into the interplay between steroid hormone signaling and innate immunity.
NASA Astrophysics Data System (ADS)
Bellingeri, Michele; Agliari, Elena; Cassi, Davide
2015-10-01
The best strategy to immunize a complex network is usually evaluated in terms of the percolation threshold, i.e. the number of vaccine doses which make the largest connected cluster (LCC) vanish. The strategy inducing the minimum percolation threshold represents the optimal way to immunize the network. Here we show that the efficacy of the immunization strategies can change during the immunization process. This means that, if the number of doses is limited, the best strategy is not necessarily the one leading to the smallest percolation threshold. This outcome should warn about the adoption of global measures in order to evaluate the best immunization strategy.
Fecher, Philipp; Caspell, Richard; Naeem, Villian; Karulin, Alexey Y; Kuerten, Stefanie; Lehmann, Paul V
2018-05-31
In individuals who have once developed humoral immunity to an infectious/foreign antigen, the antibodies present in their body can mediate instant protection when the antigen re-enters. Such antigen-specific antibodies can be readily detected in the serum. Long term humoral immunity is, however, also critically dependent on the ability of memory B cells to engage in a secondary antibody response upon re-exposure to the antigen. Antibody molecules in the body are short lived, having a half-life of weeks, while memory B cells have a life span of decades. Therefore, the presence of serum antibodies is not always a reliable indicator of B cell memory and comprehensive monitoring of humoral immunity requires that both serum antibodies and memory B cells be assessed. The prevailing view is that resting memory B cells and B cell blasts in peripheral blood mononuclear cells (PBMC) cannot be cryopreserved without losing their antibody secreting function, and regulated high throughput immune monitoring of B cell immunity is therefore confined to-and largely limited by-the need to test freshly isolated PBMC. Using optimized protocols for freezing and thawing of PBMC, and four color ImmunoSpot ® analysis for the simultaneous detection of all immunoglobulin classes/subclasses we show here that both resting memory B cells and B cell blasts retain their ability to secrete antibody after thawing, and thus demonstrate the feasibility of B cell immune monitoring using cryopreserved PBMC.
Bao, Bin; Thakur, Archana; Li, Yiwei; Ahmad, Aamir; Azmi, Asfar S.; Banerjee, Sanjeev; Kong, Dejuan; Ali, Shadan; Lum, Lawrence G.; Sarkar, Fazlul H.
2013-01-01
Over decades, cancer treatment has been mainly focused on targeting cancer cells and not much attention to host tumor microenvironment. Recent advances suggest that the tumor microenvironment requires in-depth investigation for understanding the interactions between tumor cell biology and immunobiology in order to optimize therapeutic approaches. Tumor microenvironment consists of cancer cells and tumor associated reactive fibroblasts, infiltrating non-cancer cells, secreted soluble factors or molecules, and non-cellular support materials. Tumor associated host immune cells such as Th1, Th2, Th17, regulatory cells, dendritic cells, macrophages, and myeloid-derived suppressor cells are major components of the tumor microenvironment. Accumulating evidence suggests that these tumor associated immune cells may play important roles in cancer development and progression. However, the exact functions of these cells in the tumor microenvironment are poorly understood. In the tumor microenvironment, NF-κB plays an important role in cancer development and progression because this is a major transcription factor which regulates immune functions within the tumor microenvironment. In this review, we will focus our discussion on the immunological contribution of NF-κB in tumor associated host immune cells within the tumor microenvironment. We will also discuss the potential protective role of zinc, a well-known immune response mediator, in the regulation of these immune cells and cancer cells in the tumor microenvironment especially because zinc could be useful for conditioning the tumor microenvironment toward innovative cancer therapy. PMID:22155217
Lin, Jingjing; Jing, Honglei
2016-01-01
Artificial immune system is one of the most recently introduced intelligence methods which was inspired by biological immune system. Most immune system inspired algorithms are based on the clonal selection principle, known as clonal selection algorithms (CSAs). When coping with complex optimization problems with the characteristics of multimodality, high dimension, rotation, and composition, the traditional CSAs often suffer from the premature convergence and unsatisfied accuracy. To address these concerning issues, a recombination operator inspired by the biological combinatorial recombination is proposed at first. The recombination operator could generate the promising candidate solution to enhance search ability of the CSA by fusing the information from random chosen parents. Furthermore, a modified hypermutation operator is introduced to construct more promising and efficient candidate solutions. A set of 16 common used benchmark functions are adopted to test the effectiveness and efficiency of the recombination and hypermutation operators. The comparisons with classic CSA, CSA with recombination operator (RCSA), and CSA with recombination and modified hypermutation operator (RHCSA) demonstrate that the proposed algorithm significantly improves the performance of classic CSA. Moreover, comparison with the state-of-the-art algorithms shows that the proposed algorithm is quite competitive. PMID:27698662
Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M; Lucas, Megan; Spencer, John S; Amara, Rama Rao; Plikaytis, Bonnie B; Posey, James E; Sable, Suraj B
2016-05-13
Heterologous prime-boosting has emerged as a powerful vaccination approach against tuberculosis. However, optimal timing to boost BCG-immunity using subunit vaccines remains unclear in clinical trials. Here, we followed the adhesin Apa-specific T-cell responses in BCG-primed mice and investigated its BCG-booster potential. The Apa-specific T-cell response peaked 32-52 weeks after parenteral or mucosal BCG-priming but waned significantly by 78 weeks. A subunit-Apa-boost during the contraction-phase of BCG-response had a greater effect on the magnitude and functional quality of specific cellular and humoral responses compared to a boost at the peak of BCG-response. The cellular response increased following mucosal BCG-prime-Apa-subunit-boost strategy compared to Apa-subunit-prime-BCG-boost approach. However, parenteral BCG-prime-Apa-subunit-boost by a homologous route was the most effective strategy in-terms of enhancing specific T-cell responses during waning in the lung and spleen. Two Apa-boosters markedly improved waning BCG-immunity and significantly reduced Mycobacterium tuberculosis burdens post-challenge. Our results highlight the challenges of optimization of prime-boost regimens in mice where BCG drives persistent immune-activation and suggest that boosting with a heterologous vaccine may be ideal once the specific persisting effector responses are contracted. Our results have important implications for design of prime-boost regimens against tuberculosis in humans.
Tumor cell-derived microparticles: a new form of cancer vaccine.
Zhang, Huafeng; Huang, Bo
2015-08-01
For cancer vaccines, tumor antigen availability is currently not an issue due to technical advances. However, the generation of optimal immune stimulation during vaccination is challenging. We have recently demonstrated that tumor cell-derived microparticles (MP) can function as a new form of potent cancer vaccine by efficiently activating type I interferon pathway in a cGAS/STING dependent manner.
Supernatural T cells: genetic modification of T cells for cancer therapy.
Kershaw, Michael H; Teng, Michele W L; Smyth, Mark J; Darcy, Phillip K
2005-12-01
Immunotherapy is receiving much attention as a means of treating cancer, but complete, durable responses remain rare for most malignancies. The natural immune system seems to have limitations and deficiencies that might affect its ability to control malignant disease. An alternative to relying on endogenous components in the immune repertoire is to generate lymphocytes with abilities that are greater than those of natural T cells, through genetic modification to produce 'supernatural' T cells. This Review describes how such T cells can circumvent many of the barriers that are inherent in the tumour microenvironment while optimizing T-cell specificity, activation, homing and antitumour function.
A model for HIV/AIDS pandemic with optimal control
NASA Astrophysics Data System (ADS)
Sule, Amiru; Abdullah, Farah Aini
2015-05-01
Human immunodeficiency virus and acquired immune deficiency syndrome (HIV/AIDS) is pandemic. It has affected nearly 60 million people since the detection of the disease in 1981 to date. In this paper basic deterministic HIV/AIDS model with mass action incidence function are developed. Stability analysis is carried out. And the disease free equilibrium of the basic model was found to be locally asymptotically stable whenever the threshold parameter (RO) value is less than one, and unstable otherwise. The model is extended by introducing two optimal control strategies namely, CD4 counts and treatment for the infective using optimal control theory. Numerical simulation was carried out in order to illustrate the analytic results.
Nagai, Hiroki; Muto, Manabu
2018-06-01
Over the last two decades, molecular-targeted agents have become mainstream treatment for many types of malignancies and have improved the overall survival of patients. However, most patients eventually develop resistance to these targeted therapies. Recently, immunotherapies such as immune checkpoint inhibitors have revolutionized the treatment paradigm for many types of malignancies. Immune checkpoint inhibitors have been approved for treatment of melanoma, non-small cell lung cancer, renal cell carcinoma, head and neck squamous cell carcinoma, Hodgkin's lymphoma, bladder cancer and gastric cancer. However, oncologists have been faced with immune-related adverse events caused by immune checkpoint inhibitors; these are generally mild but can be fatal in some cases. Because immune checkpoint inhibitors have distinct toxicity profiles from those of chemotherapy or targeted therapy, many oncologists are not familiar with the principles for optimal management of immune-related adverse events, which require early recognition and appropriate treatment without delay. To achieve this, oncologists must educate patients and health-care workers, develop checklists of appropriate tests for immune-related adverse events and collaborate closely with organ specialists. Clinical questions that remain include whether immune checkpoint inhibitors should be administered to patients with autoimmune disease and whether patients for whom immune-related adverse events lead to delays in immunotherapy should be retreated. In addition, the predicted use of combination immunotherapies in the near future means that oncologists will face a higher incidence and severity of immune-related adverse events. This review provides an overview of the optimal management of immune-related adverse events attributed to immune checkpoint inhibitors.
Product Mix Selection Using AN Evolutionary Technique
NASA Astrophysics Data System (ADS)
Tsoulos, Ioannis G.; Vasant, Pandian
2009-08-01
This paper proposes an evolutionary technique for the solution of a real—life industrial problem and particular for the product mix selection problem. The evolutionary technique is a combination of a genetic algorithm that preserves the feasibility of the trial solutions with penalties and some local optimization method. The goal of this paper has been achieved in finding the best near optimal solution for the profit fitness function respect to vagueness factor and level of satisfaction. The findings of the profit values will be very useful for the decision makers in the industrial engineering sector for the implementation purpose. It's possible to improve the solutions obtained in this study by employing other meta-heuristic methods such as simulated annealing, tabu Search, ant colony optimization, particle swarm optimization and artificial immune systems.
How sex and age affect immune responses, susceptibility to infections, and response to vaccination
Giefing-Kröll, Carmen; Berger, Peter; Lepperdinger, Günter; Grubeck-Loebenstein, Beatrix
2015-01-01
Do men die young and sick, or do women live long and healthy? By trying to explain the sexual dimorphism in life expectancy, both biological and environmental aspects are presently being addressed. Besides age-related changes, both the immune and the endocrine system exhibit significant sex-specific differences. This review deals with the aging immune system and its interplay with sex steroid hormones. Together, they impact on the etiopathology of many infectious diseases, which are still the major causes of morbidity and mortality in people at old age. Among men, susceptibilities toward many infectious diseases and the corresponding mortality rates are higher. Responses to various types of vaccination are often higher among women thereby also mounting stronger humoral responses. Women appear immune-privileged. The major sex steroid hormones exhibit opposing effects on cells of both the adaptive and the innate immune system: estradiol being mainly enhancing, testosterone by and large suppressive. However, levels of sex hormones change with age. At menopause transition, dropping estradiol potentially enhances immunosenescence effects posing postmenopausal women at additional, yet specific risks. Conclusively during aging, interventions, which distinctively consider the changing level of individual hormones, shall provide potent options in maintaining optimal immune functions. PMID:25720438
HIV-1 functional cure: will the dream come true?
Liu, Chao; Ma, Xiancai; Liu, Bingfeng; Chen, Cancan; Zhang, Hui
2015-11-20
The reservoir of human immunodeficiency virus type 1 (HIV-1), a long-lived pool of latently infected cells harboring replication-competent viruses, is the major obstacle to curing acquired immune deficiency syndrome (AIDS). Although the combination antiretroviral therapy (cART) can successfully suppress HIV-1 viremia and significantly delay the progression of the disease, it cannot eliminate the viral reservoir and the patient must continue to take anti-viral medicines for life. Currently, the appearance of the 'Berlin patient', the 'Boston patients', and the 'Mississippi baby' have inspired many therapeutic strategies for HIV-1 aimed at curing efforts. However, the specific eradication of viral latency and the recovery and optimization of the HIV-1-specific immune surveillance are major challenges to achieving such a cure. Here, we summarize recent studies addressing the mechanisms underlying the viral latency and define two categories of viral reservoir: 'shallow' and 'deep'. We also present the current strategies and recent advances in the development of a functional cure for HIV-1, focusing on full/partial replacement of the immune system, 'shock and kill', and 'permanent silencing' approaches.
Conditioning of Model Identification Task in Immune Inspired Optimizer SILO
NASA Astrophysics Data System (ADS)
Wojdan, K.; Swirski, K.; Warchol, M.; Maciorowski, M.
2009-10-01
Methods which provide good conditioning of model identification task in immune inspired, steady-state controller SILO (Stochastic Immune Layer Optimizer) are presented in this paper. These methods are implemented in a model based optimization algorithm. The first method uses a safe model to assure that gains of the process's model can be estimated. The second method is responsible for elimination of potential linear dependences between columns of observation matrix. Moreover new results from one of SILO implementation in polish power plant are presented. They confirm high efficiency of the presented solution in solving technical problems.
Prenatal Tdap immunization and risk of maternal and newborn adverse events.
Layton, J Bradley; Butler, Anne M; Li, Dongmei; Boggess, Kim A; Weber, David J; McGrath, Leah J; Becker-Dreps, Sylvia
2017-07-24
Many countries recommend combined tetanus toxoid, reduced diphtheria toxoid and acellular pertussis immunization (Tdap) during pregnancy to stimulate transplacental transmission of pertussis antibodies to newborns. The immune system can be altered during pregnancy, potentially resulting in differing immunization risks in pregnant women. The safety of widespread Tdap immunization during pregnancy needs to be established. Our objective was to assess whether prenatal Tdap immunization was associated with adverse birth outcomes, and to evaluate the effect of timing of Tdap administration on these outcomes. We identified pregnancies at delivery in a large insurance claims database (2010-2014). Tdap immunization was categorized as optimal prenatal (27+weeks), early prenatal (<27weeks), postpartum (≤7days post-delivery), or none. Medical claims were searched to identify maternal adverse immunization reactions (e.g. anaphylaxis, fever, Guillian-Barre syndrome [GBS]), adverse birth outcomes (e.g. preeclampsia/eclampsia, premature rupture or membranes, chorioamnionitis) and newborn outcomes (e.g. respiratory distress, pulmonary hypertension, neonatal jaundice). Women with optimal or early prenatal Tdap were compared to those not immunized in pregnancy, using propensity score-weighted log-binomial regression and Cox proportional hazards models to estimate risk ratios (RR) and hazard ratios (HR). We identified 1,079,034 deliveries and 677,075 linked newborns; 11.5% were immunized optimally and 2.3% immunized early. There were 1 case of post-immunization anaphylaxis, and 12 cases of maternal encephalopathy (all post- delivery); there were no cases of GBS. Optimally-timed immunization was associated with small increased relative risks of: chorioamnionitis [RR=1.11, (95% CI: 1.07-1.15), overall risk=2.8%], and postpartum hemorrhage [RR=1.23 (95% DI: 1.18-1.28), overall risk=2.4%]; however, these relative increases corresponded to low absolute risk increases. Tdap was not associated with increased risk of any adverse newborn outcome. Overall, prenatal Tdap immunization was not associated with newborn adverse events, but potential associations with chorioamnionitis consistent with one previous study and postpartum hemorrhage require further investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kirschman, Lucas J; Crespi, Erica J; Warne, Robin W
2018-01-01
Ubiquitous environmental stressors are often thought to alter animal susceptibility to pathogens and contribute to disease emergence. However, duration of exposure to a stressor is likely critical, because while chronic stress is often immunosuppressive, acute stress can temporarily enhance immune function. Furthermore, host susceptibility to stress and disease often varies with ontogeny; increasing during critical developmental windows. How the duration and timing of exposure to stressors interact to shape critical windows and influence disease processes is not well tested. We used ranavirus and larval amphibians as a model system to investigate how physiological stress and pathogenic infection shape development and disease dynamics in vertebrates. Based on a resource allocation model, we designed experiments to test how exposure to stressors may induce resource trade-offs that shape critical windows and disease processes because the neuroendocrine stress axis coordinates developmental remodelling, immune function and energy allocation in larval amphibians. We used wood frog larvae (Lithobates sylvaticus) to investigate how chronic and acute exposure to corticosterone, the dominant amphibian glucocorticoid hormone, mediates development and immune function via splenocyte immunohistochemistry analysis in association with ranavirus infection. Corticosterone treatments affected immune function, as both chronic and acute exposure suppressed splenocyte proliferation, although viral replication rate increased only in the chronic corticosterone treatment. Time to metamorphosis and survival depended on both corticosterone treatment and infection status. In the control and chronic corticosterone treatments, ranavirus infection decreased survival and delayed metamorphosis, although chronic corticosterone exposure accelerated rate of metamorphosis in uninfected larvae. Acute corticosterone exposure accelerated metamorphosis increased survival in infected larvae. Interactions between stress exposure (via glucocorticoid actions) and infection impose resource trade-offs that shape optimal allocation between development and somatic function. As a result, critical disease windows are likely shaped by stress exposure because any conditions that induce changes in differentiation rates will alter the duration and susceptibility of organisms to stressors or disease. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Chronobiology and the treatment of rheumatoid arthritis.
Cutolo, Maurizio
2012-05-01
As circadian rhythms and biological signaling occur in a complex network with cyclical 24-h period interactions (chronobiology) between the central and the autonomic nervous systems, the endocrine glands and the immune system, this review will explore the involvement of this emerging network in the disease pathophysiology and management. Recent advances regarding nocturnal hormones such as melatonin and prolactin that activate the nighttime immune response, and the successive rise of cortisol that dowregulates the ongoing immune reactivity very early in the morning, will be discussed within the circadian neuroendocrine immune network. In addition, the role of sleep and the daily distribution of body energy, which are important factors for the homoeostatic regulation of circadian physiological/pathological processes of the immune network will be reviewed.In chronic immune/inflammatory conditions such as rheumatoid arthritis (RA), stiffness and functional disability are evident in the early morning hours as under the chronic stress of the disease the nighttime adrenal cortisol production becomes insufficient to inhibit ongoing nocturnal immune/inflammatory activity. Currently, the most advanced approach to optimizing the risk-benefit ratio for long-term glucocorticoid treatment in RA seems to be low-dose chronotherapy with modified nighttime release prednisone (release at 3 a.m.). A similar chronotherapeutical approach could also be effective with disease-modifying antirheumatic drugs such as methotrexate.
DyNAVacS: an integrative tool for optimized DNA vaccine design.
Harish, Nagarajan; Gupta, Rekha; Agarwal, Parul; Scaria, Vinod; Pillai, Beena
2006-07-01
DNA vaccines have slowly emerged as keystones in preventive immunology due to their versatility in inducing both cell-mediated as well as humoral immune responses. The design of an efficient DNA vaccine, involves choice of a suitable expression vector, ensuring optimal expression by codon optimization, engineering CpG motifs for enhancing immune responses and providing additional sequence signals for efficient translation. DyNAVacS is a web-based tool created for rapid and easy design of DNA vaccines. It follows a step-wise design flow, which guides the user through the various sequential steps in the design of the vaccine. Further, it allows restriction enzyme mapping, design of primers spanning user specified sequences and provides information regarding the vectors currently used for generation of DNA vaccines. The web version uses Apache HTTP server. The interface was written in HTML and utilizes the Common Gateway Interface scripts written in PERL for functionality. DyNAVacS is an integrated tool consisting of user-friendly programs, which require minimal information from the user. The software is available free of cost, as a web based application at URL: http://miracle.igib.res.in/dynavac/.
A stochastic chemical dynamic approach to correlate autoimmunity and optimal vitamin-D range.
Roy, Susmita; Shrinivas, Krishna; Bagchi, Biman
2014-01-01
Motivated by several recent experimental observations that vitamin-D could interact with antigen presenting cells (APCs) and T-lymphocyte cells (T-cells) to promote and to regulate different stages of immune response, we developed a coarse grained but general kinetic model in an attempt to capture the role of vitamin-D in immunomodulatory responses. Our kinetic model, developed using the ideas of chemical network theory, leads to a system of nine coupled equations that we solve both by direct and by stochastic (Gillespie) methods. Both the analyses consistently provide detail information on the dependence of immune response to the variation of critical rate parameters. We find that although vitamin-D plays a negligible role in the initial immune response, it exerts a profound influence in the long term, especially in helping the system to achieve a new, stable steady state. The study explores the role of vitamin-D in preserving an observed bistability in the phase diagram (spanned by system parameters) of immune regulation, thus allowing the response to tolerate a wide range of pathogenic stimulation which could help in resisting autoimmune diseases. We also study how vitamin-D affects the time dependent population of dendritic cells that connect between innate and adaptive immune responses. Variations in dose dependent response of anti-inflammatory and pro-inflammatory T-cell populations to vitamin-D correlate well with recent experimental results. Our kinetic model allows for an estimation of the range of optimum level of vitamin-D required for smooth functioning of the immune system and for control of both hyper-regulation and inflammation. Most importantly, the present study reveals that an overdose or toxic level of vitamin-D or any steroid analogue could give rise to too large a tolerant response, leading to an inefficacy in adaptive immune function.
Xu, Xiaoli; Liu, Xianmei; Long, Jinhua; Hu, Zuquan; Zheng, Qinni; Zhang, Chunlin; Li, Long; Wang, Yun; Jia, Yi; Qiu, Wei; Zhou, Jing; Yao, Weijuan; Zeng, Zhu
2017-01-01
Interlukin-10 (IL-10) is an immunomodulatory cytokine which predominantly induces immune-tolerance. It has been also identified as a major cytokine in the tumor microenvironment that markedly mediates tumor immune escape. Previous studies on the roles of IL-10 in tumor immunosuppression mainly focus on its biochemical effects. But the effects of IL-10 on the biophysical characteristics of immune cells are ill-defined. Dendritic cells (DCs) are the most potent antigen-presenting cells and play a key role in the anti-tumor immune response. IL-10 can affect the immune regulatory functions of DCs in various ways. In this study, we aim to explore the effects of IL-10 on the biophysical functions of mature DCs (mDCs). mDCs were treated with different concentrations of IL-10 and their biophysical characteristics were identified. The results showed that the biophysical properties of mDCs, including electrophoresis mobility, osmotic fragility and deformability, as well as their motilities, were impaired by IL-10. Meanwhile, the cytoskeleton (F-actin) of mDCs was reorganized by IL-10. IL-10 caused the alternations in the expressions of fasin1 and profilin1 as well as the phosphorylation of cofilin1 in a concentration-dependent fashion. Moreover, Fourier transformed infrared resonance data showed that IL-10 made the status of gene transcription and metabolic turnover of mDCs more active. These results demonstrate a new aspect of IL-10's actions on the immune system and represent one of the mechanisms for immune escape of tumors. It may provide a valuable clue to optimize and improve the efficiency of DC-based immunotherapy against cancer.
Nagao, Ryan J; Lundy, Scott; Khaing, Zin Z; Schmidt, Christine E
2011-07-01
Acellular grafts are a viable option for use in nerve reconstruction surgeries. Recently, our lab created a novel optimized decellularization procedure that removes immunological material while leaving the majority of the extracellular matrix structure intact. The optimized acellular (OA) graft has been shown to elicit an immune response equal to or less than that elicited by the isograft, the analog of the autograft in the rat model. We investigated the performance of the OA graft to provide functional recovery in a long-term study. We performed a long-term functional regeneration evaluation study using the sciatic functional index to quantify recovery of Lewis rats at regular time intervals for up to 52 weeks after graft implantation following 1 cm sciatic nerve resection. OA grafts were compared against other decellularized methods (Sondell treatment and thermal decellularization), as well as the isograft and primary neurorrhaphy. The OA graft supported comparable functional recovery to the isograft and superior regeneration to thermal and Sondell decellularization methods. Furthermore, the OA graft promoted early recovery to a greater degree compared to acellular grafts obtained using either the thermal or the Sondell methods. Equivalent functional recovery to the isograft suggests that the OA nerve graft may be a future clinical alternative to the current autologous tissue graft.
AITSO: A Tool for Spatial Optimization Based on Artificial Immune Systems
Zhao, Xiang; Liu, Yaolin; Liu, Dianfeng; Ma, Xiaoya
2015-01-01
A great challenge facing geocomputation and spatial analysis is spatial optimization, given that it involves various high-dimensional, nonlinear, and complicated relationships. Many efforts have been made with regard to this specific issue, and the strong ability of artificial immune system algorithms has been proven in previous studies. However, user-friendly professional software is still unavailable, which is a great impediment to the popularity of artificial immune systems. This paper describes a free, universal tool, named AITSO, which is capable of solving various optimization problems. It provides a series of standard application programming interfaces (APIs) which can (1) assist researchers in the development of their own problem-specific application plugins to solve practical problems and (2) allow the implementation of some advanced immune operators into the platform to improve the performance of an algorithm. As an integrated, flexible, and convenient tool, AITSO contributes to knowledge sharing and practical problem solving. It is therefore believed that it will advance the development and popularity of spatial optimization in geocomputation and spatial analysis. PMID:25678911
Methods and Protocols for Developing Prion Vaccines.
Marciniuk, Kristen; Taschuk, Ryan; Napper, Scott
2016-01-01
Prion diseases denote a distinct form of infectivity that is based in the misfolding of a self-protein (PrP(C)) into a pathological, infectious conformation (PrP(Sc)). Efforts to develop vaccines for prion diseases have been complicated by the potential dangers that are associated with induction of immune responses against a self-protein. As a consequence, there is considerable appeal for vaccines that specifically target the misfolded prion conformation. Such conformation-specific immunotherapy is made possible through the identification of vaccine targets (epitopes) that are exclusively presented as a consequence of misfolding. An immune response directed against these targets, termed disease-specific epitopes (DSEs), has the potential to spare the function of the native form of the protein while clearing, or neutralizing, the infectious isomer. Although identification of DSEs represents a critical first step in the induction of conformation-specific immune responses, substantial efforts are required to translate these targets into functional vaccines. Due to the poor immunogenicity that is inherent to self-proteins, and that is often associated with short peptides, substantial efforts are required to overcome tolerance-to-self and maximize the resultant immune response following DSE-based immunization. This often includes optimization of target sequences in terms of immunogenicity and development of effective formulation and delivery strategies for the associated peptides. Further, these vaccines must satisfy additional criteria from perspectives of specificity (PrP(C) vs. PrP(Sc)) and safety (antibody-induced template-driven misfolding of PrP(C)). The emphasis of this report is on the steps required to translate DSEs into prion vaccines and subsequent evaluation of the resulting immune responses.
Surfactant Protein-D Is Essential for Immunity to Helminth Infection
Schnoeller, Corinna; Chetty, Alisha; Smith, Katherine; Darby, Matthew; Roberts, Luke; Mackay, Rosie-Marie; Whitwell, Harry J.; Timms, John F.; Madsen, Jens; Selkirk, Murray E.; Brombacher, Frank; Clark, Howard William; Horsnell, William G. C.
2016-01-01
Pulmonary epithelial cell responses can enhance type 2 immunity and contribute to control of nematode infections. An important epithelial product is the collectin Surfactant Protein D (SP-D). We found that SP-D concentrations increased in the lung following Nippostrongylus brasiliensis infection; this increase was dependent on key components of the type 2 immune response. We carried out loss and gain of function studies of SP-D to establish if SP-D was required for optimal immunity to the parasite. N. brasiliensis infection of SP-D-/- mice resulted in profound impairment of host innate immunity and ability to resolve infection. Raising pulmonary SP-D levels prior to infection enhanced parasite expulsion and type 2 immune responses, including increased numbers of IL-13 producing type 2 innate lymphoid cells (ILC2), elevated expression of markers of alternative activation by alveolar macrophages (alvM) and increased production of the type 2 cytokines IL-4 and IL-13. Adoptive transfer of alvM from SP-D-treated parasite infected mice into naïve recipients enhanced immunity to N. brasiliensis. Protection was associated with selective binding by the SP-D carbohydrate recognition domain (CRD) to L4 parasites to enhance their killing by alvM. These findings are the first demonstration that the collectin SP-D is an essential component of host innate immunity to helminths. PMID:26900854
Hablützel, Pascal I; Brown, Martha; Friberg, Ida M; Jackson, Joseph A
2016-09-01
The effect of anthropogenic environments on the function of the vertebrate immune system is a problem of general importance. For example, it relates to the increasing rates of immunologically-based disease in modern human populations and to the desirability of identifying optimal immune function in domesticated animals. Despite this importance, our present understanding is compromised by a deficit of experimental studies that make adequately matched comparisons between wild and captive vertebrates. We transferred post-larval fishes (three-spined sticklebacks), collected in the wild, to an anthropogenic (captive) environment. We then monitored, over 11 months, how the systemic expression of immunity genes changed in comparison to cohort-matched wild individuals in the originator population (total n = 299). We found that a range of innate (lyz, defbl2, il1r-like, tbk1) and adaptive (cd8a, igmh) immunity genes were up-regulated in captivity, accompanied by an increase in expression of the antioxidant enzyme, gpx4a. For some genes previously known to show seasonality in the wild, this appeared to be reduced in captive fishes. Captive fishes tended to express immunity genes, including igzh, foxp3b, lyz, defbl2, and il1r-like, more variably. Furthermore, although gene co-expression patterns (analyzed through gene-by-gene correlations and mutual information theory based networks) shared common structure in wild and captive fishes, there was also significant divergence. For one gene in particular, defbl2, high expression was associated with adverse health outcomes in captive fishes. Taken together, these results demonstrate widespread regulatory changes in the immune system in captive populations, and that the expression of immunity genes is more constrained in the wild. An increase in constitutive systemic immune activity, such as we observed here, may alter the risk of immunopathology and contribute to variance in health in vertebrate populations exposed to anthropogenic environments.
Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M.; Lucas, Megan; Spencer, John S.; Amara, Rama Rao; Plikaytis, Bonnie B.; Posey, James E.; Sable, Suraj B.
2016-01-01
Heterologous prime–boosting has emerged as a powerful vaccination approach against tuberculosis. However, optimal timing to boost BCG-immunity using subunit vaccines remains unclear in clinical trials. Here, we followed the adhesin Apa-specific T-cell responses in BCG-primed mice and investigated its BCG-booster potential. The Apa-specific T-cell response peaked 32–52 weeks after parenteral or mucosal BCG-priming but waned significantly by 78 weeks. A subunit-Apa-boost during the contraction-phase of BCG-response had a greater effect on the magnitude and functional quality of specific cellular and humoral responses compared to a boost at the peak of BCG-response. The cellular response increased following mucosal BCG-prime–Apa-subunit-boost strategy compared to Apa-subunit-prime–BCG-boost approach. However, parenteral BCG-prime–Apa-subunit-boost by a homologous route was the most effective strategy in-terms of enhancing specific T-cell responses during waning in the lung and spleen. Two Apa-boosters markedly improved waning BCG-immunity and significantly reduced Mycobacterium tuberculosis burdens post-challenge. Our results highlight the challenges of optimization of prime–boost regimens in mice where BCG drives persistent immune-activation and suggest that boosting with a heterologous vaccine may be ideal once the specific persisting effector responses are contracted. Our results have important implications for design of prime–boost regimens against tuberculosis in humans. PMID:27173443
Toll-Like Receptor Function in Acute Wounds
Chen, Lin; DiPietro, Luisa A.
2017-01-01
Significance: Inflammation is an integral part of immune response and supports optimal wound healing in adults. Inflammatory cells such as neutrophils, macrophages, dendritic cells, lymphocytes, and mast cells produce important cytokines, chemokines, and growth factors. These immune cells interact with keratinocytes, fibroblasts, and endothelial cells (ECs), as well as the extracellular matrix within a complicated network that promotes and regulates wound healing. Aberrant and persistent inflammation may result in delayed wound healing, scar formation, or chronic wounds. Targeting the molecules involved in the inflammatory response may have great potential therapeutic value. Recent Advances and Critical Issues: Toll-like receptors (TLRs) are pattern recognition receptors that recognize pathogen-associated molecular patterns from microbes or danger-associated molecular patterns from damaged cells. The discovery of TLRs sheds new light on the mechanism by which the inflammatory or innate immune response is initiated in wound healing. Convincing evidence now shows that multiple types of cells, including infiltrating or resident inflammatory cells, keratinocytes, fibroblasts, and ECs, express specific types of TLRs. Experimental reduction of certain TLRs or treatment of wounds with TLR ligands has been shown to affect wound healing. A better understanding of the involvement of TLRs in the innate immune response during skin wound healing may suggest novel strategies to improve the quality of tissue repair. Future Directions: Despite the indisputable role of TLRs in regulating the immune response in acute wound healing, the functions of TLRs that are relevant to human wound healing and chronic wounds are poorly understood. PMID:29062591
Liu, Hebin; Schneider, Helga; Recino, Asha; Richardson, Christine; Goldberg, Martin W.; Rudd, Christopher E.
2015-01-01
Summary While immune cell adaptors regulate proximal T cell signaling, direct regulation of the nuclear pore complex (NPC) has not been reported. NPC has cytoplasmic filaments composed of RanGAP1 and RanBP2 with the potential to interact with cytoplasmic mediators. Here, we show that the immune cell adaptor SLP-76 binds directly to SUMO-RanGAP1 of cytoplasmic fibrils of the NPC, and that this interaction is needed for optimal NFATc1 and NF-κB p65 nuclear entry in T cells. Transmission electron microscopy showed anti-SLP-76 cytoplasmic labeling of the majority of NPCs in anti-CD3 activated T cells. Further, SUMO-RanGAP1 bound to the N-terminal lysine 56 of SLP-76 where the interaction was needed for optimal RanGAP1-NPC localization and GAP exchange activity. While the SLP-76-RanGAP1 (K56E) mutant had no effect on proximal signaling, it impaired NF-ATc1 and p65/RelA nuclear entry and in vivo responses to OVA peptide. Overall, we have identified SLP-76 as a direct regulator of nuclear pore function in T cells. PMID:26321253
Liu, Hebin; Schneider, Helga; Recino, Asha; Richardson, Christine; Goldberg, Martin W; Rudd, Christopher E
2015-09-03
While immune cell adaptors regulate proximal T cell signaling, direct regulation of the nuclear pore complex (NPC) has not been reported. NPC has cytoplasmic filaments composed of RanGAP1 and RanBP2 with the potential to interact with cytoplasmic mediators. Here, we show that the immune cell adaptor SLP-76 binds directly to SUMO-RanGAP1 of cytoplasmic fibrils of the NPC, and that this interaction is needed for optimal NFATc1 and NF-κB p65 nuclear entry in T cells. Transmission electron microscopy showed anti-SLP-76 cytoplasmic labeling of the majority of NPCs in anti-CD3 activated T cells. Further, SUMO-RanGAP1 bound to the N-terminal lysine 56 of SLP-76 where the interaction was needed for optimal RanGAP1-NPC localization and GAP exchange activity. While the SLP-76-RanGAP1 (K56E) mutant had no effect on proximal signaling, it impaired NF-ATc1 and p65/RelA nuclear entry and in vivo responses to OVA peptide. Overall, we have identified SLP-76 as a direct regulator of nuclear pore function in T cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Drosophila innate immunity: regional and functional specialization of prophenoloxidases.
Dudzic, Jan P; Kondo, Shu; Ueda, Ryu; Bergman, Casey M; Lemaitre, Bruno
2015-10-01
The diversification of immune systems during evolution involves the expansion of particular gene families in given phyla. A better understanding of the metazoan immune system requires an analysis of the logic underlying such immune gene amplification. This analysis is now within reach due to the ease with which we can generate multiple mutations in an organism. In this paper, we analyze the contribution of the three Drosophila prophenoloxidases (PPOs) to host defense by generating single, double and triple mutants. PPOs are enzymes that catalyze the production of melanin at the site of infection and around parasites. They are the rate-limiting enzymes that contribute to the melanization reaction, a major immune mechanism of arthropods. The number of PPO-encoding genes is variable among insects, ranging from one in the bee to ten in the mosquito. By analyzing mutations alone and in combination, we ascribe a specific function to each of the three PPOs of Drosophila. Our study confirms that two PPOs produced by crystal cells, PPO1 and PPO2, contribute to the bulk of melanization in the hemolymph, upon septic or clean injury. In contrast, PPO3, a PPO restricted to the D. melanogaster group, is expressed in lamellocytes and contributes to melanization during the encapsulation process. Interestingly, another overlapping set of PPOs, PPO2 and PPO3, achieve melanization of the capsule upon parasitoid wasp infection. The use of single or combined mutations allowed us to show that each PPO mutant has a specific phenotype, and that knocking out two of three genes is required to abolish fully a particular function. Thus, Drosophila PPOs have partially overlapping functions to optimize melanization in at least two conditions: following injury or during encapsulation. Since PPO3 is restricted to the D. melanogaster group, this suggests that production of PPO by lamellocytes emerged as a recent defense mechanism against parasitoid wasps. We conclude that differences in spatial localization, immediate or late availability, and mode of activation underlie the functional diversification of the three Drosophila PPOs, with each of them having non-redundant but overlapping functions.
A novel immune resistance mechanism of melanoma cells controlled by the ADAR1 enzyme
Galore-Haskel, Gilli; Nemlich, Yael; Greenberg, Eyal; Ashkenazi, Shira; Hakim, Motti; Itzhaki, Orit; Shoshani, Noa; Shapira-Fromer, Ronnie; Ben-Ami, Eytan; Ofek, Efrat; Anafi, Liat; Besser, Michal J.
2015-01-01
The blossom of immunotherapy in melanoma highlights the need to delineate mechanisms of immune resistance. Recently, we have demonstrated that the RNA editing protein, adenosine deaminase acting on RNA-1 (ADAR1) is down-regulated during metastatic transition of melanoma, which enhances melanoma cell proliferation and tumorigenicity. Here we investigate the role of ADAR1 in melanoma immune resistance. Importantly, knockdown of ADAR1 in human melanoma cells induces resistance to tumor infiltrating lymphocytes in a cell contact-dependent mechanism. We show that ADAR1, in an editing-independent manner, regulates the biogenesis of miR-222 at the transcription level and thereby Intercellular Adhesion Molecule 1 (ICAM1) expression, which consequently affects melanoma immune resistance. ADAR1 thus has a novel, pivotal, role in cancer immune resistance. Corroborating with these results, the expression of miR-222 in melanoma tissue specimens was significantly higher in patients who had no clinical benefit from treatment with ipilimumab as compared to patients that responded clinically, suggesting that miR-222 could function as a biomarker for the prediction of response to ipilimumab. These results provide not only novel insights on melanoma immune resistance, but also pave the way to the development of innovative personalized tools to enable optimal drug selection and treatment. PMID:26338962
Glucose Metabolism in T Cells and Monocytes: New Perspectives in HIV Pathogenesis
Palmer, Clovis S.; Cherry, Catherine L.; Sada-Ovalle, Isabel; Singh, Amit; Crowe, Suzanne M.
2016-01-01
Activation of the immune system occurs in response to the recognition of foreign antigens and receipt of optimal stimulatory signals by immune cells, a process that requires energy. Energy is also needed to support cellular growth, differentiation, proliferation, and effector functions of immune cells. In HIV-infected individuals, persistent viral replication, together with inflammatory stimuli contributes to chronic immune activation and oxidative stress. These conditions remain even in subjects with sustained virologic suppression on antiretroviral therapy. Here we highlight recent studies demonstrating the importance of metabolic pathways, particularly those involving glucose metabolism, in differentiation and maintenance of the activation states of T cells and monocytes. We also discuss how changes in the metabolic status of these cells may contribute to ongoing immune activation and inflammation in HIV- infected persons and how this may contribute to disease progression, establishment and persistence of the HIV reservoir, and the development of co-morbidities. We provide evidence that other viruses such as Epstein–Barr and Flu virus also disrupt the metabolic machinery of their host cells. Finally, we discuss how redox signaling mediated by oxidative stress may regulate metabolic responses in T cells and monocytes during HIV infection. PMID:27211546
The Suckling Rat as a Model for Immunonutrition Studies in Early Life
Pérez-Cano, Francisco J.; Franch, Àngels; Castellote, Cristina; Castell, Margarida
2012-01-01
Diet plays a crucial role in maintaining optimal immune function. Research demonstrates the immunomodulatory properties and mechanisms of particular nutrients; however, these aspects are studied less in early life, when diet may exert an important role in the immune development of the neonate. Besides the limited data from epidemiological and human interventional trials in early life, animal models hold the key to increase the current knowledge about this interaction in this particular period. This paper reports the potential of the suckling rat as a model for immunonutrition studies in early life. In particular, it describes the main changes in the systemic and mucosal immune system development during rat suckling and allows some of these elements to be established as target biomarkers for studying the influence of particular nutrients. Different approaches to evaluate these immune effects, including the manipulation of the maternal diet during gestation and/or lactation or feeding the nutrient directly to the pups, are also described in detail. In summary, this paper provides investigators with useful tools for better designing experimental approaches focused on nutrition in early life for programming and immune development by using the suckling rat as a model. PMID:22899949
Paula, Carine; Motta, Adriana; Schmitz, Carla; Nunes, Claudia P; Souza, Ana Paula; Bonorino, Cristina
2009-02-01
It is known that immune system functions decrease with age, and that adaptive immune responses, especially CD4+ T cell function, seem to be the main affected point in immunity with aging. Dendritic cells (DC) are the major antigen presenting cell (APC), and at least part of the defects observed in adaptive immunity of aged individuals could be due to diminished potential of bone marrow to generate new DC, or defects in DC function. In this study, we investigated if the ability of aged bone marrow (BM) to generate new DC in vitro, as well as aged BM-derived DC responses to lypopolysaccharide (LPS). Because DC are important tools in newly developing anti-tumor therapies, we also studied the ability of aged DC to phagocytose and present antigen from necrotic tumor cells. We found that aged BM generated fewer DC in vitro compared to young BM. While LPS-induced DC maturation is reduced in DC of aged mice, a high TNF-alpha production is observed in aged DC even without LPS stimulation. While phagocytosis of tumor cells is not affected by age, and DC derived from aged BM show a higher TNF-alpha production in response to phagocytosis, presentation of tumor antigens was decreased in aged DC. Because class II upregulation in response to phagocytosis was similar between aged and young DC, this could indicate an age associated processing defect in the exogenous pathway. These findings suggest that age of BM used to generate DC does not impair their phagocytic ability or TNF-alpha production, however leads to a decreased yield in mature DC, reduced response to LPS, and diminished antigen processing/presentation potential. Our results are relevant to optimization DC-based vaccine design for aged populations.
Mackus, Marlou; Kruijff, Deborah de; Otten, Leila S; Kraneveld, Aletta D; Garssen, Johan; Verster, Joris C
2017-04-12
Altered immune functioning has been demonstrated in individuals with autism spectrum disorder (ASD). The current study explores the relationship between perceived immune functioning and experiencing ASD traits in healthy young adults. N = 410 students from Utrecht University completed a survey on immune functioning and autistic traits. In addition to a 1-item perceived immune functioning rating, the Immune Function Questionnaire (IFQ) was completed to assess perceived immune functioning. The Dutch translation of the Autism-Spectrum Quotient (AQ) was completed to examine variation in autistic traits, including the domains "social insights and behavior", "difficulties with change", "communication", "phantasy and imagination", and "detail orientation". The 1-item perceived immune functioning score did not significantly correlate with the total AQ score. However, a significant negative correlation was found between perceived immune functioning and the AQ subscale "difficulties with change" (r = -0.119, p = 0.019). In women, 1-item perceived immune functioning correlated significantly with the AQ subscales "difficulties with change" (r = -0.149, p = 0.029) and "communication" (r = -0.145, p = 0.032). In men, none of the AQ subscales significantly correlated with 1-item perceived immune functioning. In conclusion, a modest relationship between perceived immune functioning and several autistic traits was found.
Immunogenicity, protective efficacy and mechanism of novel CCS adjuvanted influenza vaccine.
Even-Or, Orli; Samira, Sarit; Rochlin, Eli; Balasingam, Shobana; Mann, Alex J; Lambkin-Williams, Rob; Spira, Jack; Goldwaser, Itzhak; Ellis, Ronald; Barenholz, Yechezkel
2010-09-07
We optimized the immunogenicity of adjuvanted seasonal influenza vaccine based on commercial split influenza virus as an antigen (hemagglutinin = HA) and on a novel polycationic liposome as a potent adjuvant and efficient antigen carrier (CCS/C-HA vaccine). The vaccine was characterized physicochemically, and the mechanism of action of CCS/C as antigen carrier and adjuvant was studied. The optimized CCS/C-HA split virus vaccine, when administered intramuscularly (i.m.), is significantly more immunogenic in mice, rats and ferrets than split virus HA vaccine alone, and it provides for protective immunity in ferrets and mice against live virus challenge that exceeds the degree of efficacy of the split virus vaccine. Similar adjuvant effects of optimized CCS/C are also observed in mice for H1N1 swine influenza antigen. The CCS/C-HA vaccine enhances immune responses via the Th1 and Th2 pathways, and it increases both the humoral responses and the production of IL-2 and IFN-γ but not of the pro-inflammatory factor TNFα. In mice, levels of CD4(+) and CD8(+) T-cells and of MHC II and CD40 co-stimulatory molecules are also elevated. Structure-function relationship studies of the CCS molecule as an adjuvant/carrier show that replacing the saturated palmitoyl acyl chain with the mono-unsaturated oleoyl (C18:1) chain affects neither size distribution and zeta potential nor immune responses in mice. However, replacing the polyalkylamine head group spermine (having two secondary amines) with spermidine (having only one secondary amine) reduces the enhancement of the immune response by ∼ 50%, while polyalkylamines by themselves are ineffective in improving the immunogenicity over the commercial HA vaccine. This highlights the importance of the particulate nature of the carrier and the polyalkylamine secondary amines in the enhancement of the immune responses against seasonal influenza. Altogether, our results suggest that the CCS/C polycationic liposomes combine the activities of a potent adjuvant and efficient carrier of seasonal and swine flu vaccines and support further development of the CCS/C-HA vaccine. Copyright © 2010. Published by Elsevier Ltd.
Krebber, A; Bornhauser, S; Burmester, J; Honegger, A; Willuda, J; Bosshard, H R; Plückthun, A
1997-02-14
A prerequisite for the use of recombinant antibody technologies starting from hybridomas or immune repertoires is the reliable cloning of functional immunoglobulin genes. For this purpose, a standard phage display system was optimized for robustness, vector stability, tight control of scFv-delta geneIII expression, primer usage for PCR amplification of variable region genes, scFv assembly strategy and subsequent directional cloning using a single rare cutting restriction enzyme. This integrated cloning, screening and selection system allowed us to rapidly obtain antigen binding scFvs derived from spleen-cell repertoires of mice immunized with ampicillin as well as from all hybridoma cell lines tested to date. As representative examples, cloning of monoclonal antibodies against a his tag, leucine zippers, the tumor marker EGP-2 and the insecticide DDT is presented. Several hybridomas whose genes could not be cloned in previous experimental setups, but were successfully obtained with the present system, expressed high amounts of aberrant heavy and light chain mRNAs, which were amplified by PCR and greatly exceeded the amount of binding antibody sequences. These contaminating variable region genes were successfully eliminated by employing the optimized phage display system, thus avoiding time consuming sequencing of non-binding scFv genes. To maximize soluble expression of functional scFvs subsequent to cloning, a compatible vector series to simplify modification, detection, multimerization and rapid purification of recombinant antibody fragments was constructed.
McCutcheon, Krista M; Gray, Julia; Chen, Natalie Y; Liu, Keyi; Park, Minha; Ellsworth, Stote; Tripp, Ralph A; Tompkins, S Mark; Johnson, Scott K; Samet, Shelly; Pereira, Lenore; Kauvar, Lawrence M
2014-01-01
Viral entry targets with therapeutic neutralizing potential are subject to multiple escape mechanisms, including antigenic drift, immune dominance of functionally irrelevant epitopes, and subtle variations in host cell mechanisms. A surprising finding of recent years is that potent neutralizing antibodies to viral epitopes independent of strain exist, but are poorly represented across the diverse human population. Identifying these antibodies and understanding the biology mediating the specific immune response is thus difficult. An effective strategy for meeting this challenge is to incorporate multiplexed antigen screening into a high throughput survey of the memory B cell repertoire from immune individuals. We used this approach to discover suites of cross-clade antibodies directed to conformational epitopes in the stalk region of the influenza A hemagglutinin (HA) protein and to select high-affinity anti-peptide antibodies to the glycoprotein B (gB) of human cytomegalovirus. In each case, our screens revealed a restricted VH and VL germline usage, including published and previously unidentified gene families. The in vivo evolution of paratope specificity with optimal neutralizing activity was understandable after correlating biological activities with kinetic binding and epitope recognition. Iterative feedback between antigen probe design based on structure and function information with high throughput multiplexed screening demonstrated a generally applicable strategy for efficient identification of safe, native, finely tuned antibodies with the potential for high genetic barriers to viral escape.
Matsuoka, Ken-Ichi
2018-02-01
CD4 + CD25 + Foxp3 + Treg is a functionally distinct subset of mature T cells with broad suppressive activity and has been shown to play an important role in the establishment of immune tolerance after HSCT. Altered cytokine environment in post-HSCT lymphopenia with a relative functional deficiency of IL-2 could hamper the reconstitution of Treg, leading to refractory GVHD. Based on the theory of low-dose IL-2 in which Treg can be selectively stimulated through the high-affinity IL-2 receptor, clinical studies have been conducted and demonstrated that low-dose IL-2 administration can restore Treg homeostasis and promote the expansion of this subset on the polymorphic processes of Treg reconstitution after HSCT. The new therapeutic indication of IL-2 for immune tolerance has launched in the field of HSCT and is spreading to the other fields including the treatment for autoimmune diseases. To further extend the indication of low-dose IL-2 to more patients with various immunological problems, the optimization of the timing and dosing of IL-2 intervention and the concomitant immune suppressive therapy according to each patient-based assessment are to be desired in the near future. Further prospective studies may facilitate the development of novel therapeutic algorithms for the effective and safe induction of immune tolerance after HSCT.
Immunological investments reflect parasite abundance in island populations of Darwin's finches.
Lindström, Karin M; Foufopoulos, Johannes; Pärn, Henrik; Wikelski, Martin
2004-07-22
The evolution of parasite resistance can be influenced by the abundance of parasites in the environment. However, it is yet unresolved whether vertebrates change their investment in immune function in response to variation in parasite abundance. Here, we compare parasite abundance in four populations of small ground finches (Geospiza fuliginosa) in the Galapagos archipelago. We predicted that populations exposed to high parasite loads should invest more in immune defence, or alternatively use a different immunological defence strategy. We found that parasite prevalence and/or infection intensity increased with island size. As predicted, birds on large islands had increased concentrations of natural antibodies and mounted a strong specific antibody response faster than birds on smaller islands. By contrast, the magnitude of cell-mediated immune responses decreased with increasing parasite pressure, i.e. on larger islands. The data support the hypothesis that investments into the immune defence are influenced by parasite-mediated selection. Our results are consistent with the hypothesis that different immunological defence strategies are optimal in parasite-rich and parasite-poor environments. Copyright 2004 The Royal Society
Pardo, Carlos A; Farmer, Cristan A; Thurm, Audrey; Shebl, Fatma M; Ilieva, Jorjetta; Kalra, Simran; Swedo, Susan
2017-01-01
The causes of autism likely involve genetic and environmental factors that influence neurobiological changes and the neurological and behavioral features of the disorder. Immune factors and inflammation are hypothesized pathogenic influences, but have not been examined longitudinally. In a cohort of 104 participants with autism, we performed an assessment of immune mediators such as cytokines, chemokines, or growth factors in serum and cerebrospinal fluid ( n = 67) to determine potential influences of such mediators in autism. As compared with 54 typically developing controls, we found no evidence of differences in the blood profile of immune mediators supportive of active systemic inflammation mechanisms in participants with autism. Some modulators of immune function (e.g., EGF and soluble CD40 ligand) were increased in the autism group; however, no evidence of group differences in traditional markers of active inflammation (e.g., IL-6, TNFα, IL-1β) were observed in the serum. Further, within-subject stability (measured by estimated intraclass correlations) of most analytes was low, indicating that a single measurement is not a reliable prospective indicator of concentration for most analytes. Additionally, in participants with autism, there was little correspondence between the blood and CSF profiles of cytokines, chemokines, and growth factors, suggesting that peripheral markers may not optimally reflect the immune status of the central nervous system. Although the relatively high fraction of intrathecal production of selected chemokines involved in monocyte/microglia function may suggest a possible relationship with the homeostatic role of microglia, control data are needed for further interpretation of its relevance in autism. These longitudinal observations fail to provide support for the hypothesized role of disturbances in the expression of circulating cytokines and chemokines as an indicator of systemic inflammation in autism. ClinicalTrials.gov, NCT00298246.
Kasonde, Musonda; Steele, Pamela
2017-04-19
Human resources is the backbone of any system and the key enabler for all other functions to effectively perform. This is no different with the Immunization Supply Chain, more so in todays' complex operating environment with the increasing strain caused by new vaccines and expanding immunization programmes (Source: WHO, UNICEF). In order to drive the change that is required for sustainability and continuous improvement, every immunization supply chain needs an effective leader. A dedicated and competent immunization supply chain leader with adequate numbers of skilled, accountable, motivated and empowered personnel at all levels of the health system to overcome existing and emerging immunization supply chain (ISC) challenges. Without an effective supply chain leader supported by capable and motivated staff, none of the interventions designed to strengthen the supply chain can be effective or sustainable (Source: Gavi Alliance SC Strategy 2014). This landscape analysis was preceded by an HR Evidence Review (March 2014) and has served to inform global partner strategies and country activities, as well as highlight where most support is required. The study also aimed to define the status quo in order to create some form of baseline against which to measure the impact of interventions related to HR going forward. The analysis was comprised of a comprehensive desk review, a survey of 40 respondents from 32 countries and consultations with ISC practitioners in several forums. The findings highlight key areas that should inform the pillars of a HR capacity development plan. At the same time, it revealed that there are some positive examples of where countries are actively addressing some of the issues identified and putting in place mechanisms and structures to optimize the SC function. Copyright © 2017. Published by Elsevier Ltd.
Murphy, Andrew J; Macdonald, Lynn E; Stevens, Sean; Karow, Margaret; Dore, Anthony T; Pobursky, Kevin; Huang, Tammy T; Poueymirou, William T; Esau, Lakeisha; Meola, Melissa; Mikulka, Warren; Krueger, Pamela; Fairhurst, Jeanette; Valenzuela, David M; Papadopoulos, Nicholas; Yancopoulos, George D
2014-04-08
Mice genetically engineered to be humanized for their Ig genes allow for human antibody responses within a mouse background (HumAb mice), providing a valuable platform for the generation of fully human therapeutic antibodies. Unfortunately, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which their genetic humanization was carried out. Heretofore, HumAb mice have been generated by disrupting the endogenous mouse Ig genes and simultaneously introducing human Ig transgenes at a different and random location; KO-plus-transgenic humanization. As we describe in the companion paper, we attempted to make mice that more efficiently use human variable region segments in their humoral responses by precisely replacing 6 Mb of mouse Ig heavy and kappa light variable region germ-line gene segments with their human counterparts while leaving the mouse constant regions intact, using a unique in situ humanization approach. We reasoned the introduced human variable region gene segments would function indistinguishably in their new genetic location, whereas the retained mouse constant regions would allow for optimal interactions and selection of the resulting antibodies within the mouse environment. We show that these mice, termed VelocImmune mice because they were generated using VelociGene technology, efficiently produce human:mouse hybrid antibodies (that are rapidly convertible to fully human antibodies) and have fully functional humoral immune systems indistinguishable from those of WT mice. The efficiency of the VelocImmune approach is confirmed by the rapid progression of 10 different fully human antibodies into human clinical trials.
Shaffer, J Scott; Moore, Penny L; Kardar, Mehran; Chakraborty, Arup K
2016-10-24
Strategies to elicit Abs that can neutralize diverse strains of a highly mutable pathogen are likely to result in a potent vaccine. Broadly neutralizing Abs (bnAbs) against HIV have been isolated from patients, proving that the human immune system can evolve them. Using computer simulations and theory, we study immunization with diverse mixtures of variant antigens (Ags). Our results show that particular choices for the number of variant Ags and the mutational distances separating them maximize the probability of inducing bnAbs. The variant Ags represent potentially conflicting selection forces that can frustrate the Darwinian evolutionary process of affinity maturation. An intermediate level of frustration maximizes the chance of evolving bnAbs. A simple model makes vivid the origin of this principle of optimal frustration. Our results, combined with past studies, suggest that an appropriately chosen permutation of immunization with an optimally designed mixture (using the principles that we describe) and sequential immunization with variant Ags that are separated by relatively large mutational distances may best promote the evolution of bnAbs.
Shaffer, J. Scott; Moore, Penny L.; Kardar, Mehran; Chakraborty, Arup K.
2016-01-01
Strategies to elicit Abs that can neutralize diverse strains of a highly mutable pathogen are likely to result in a potent vaccine. Broadly neutralizing Abs (bnAbs) against HIV have been isolated from patients, proving that the human immune system can evolve them. Using computer simulations and theory, we study immunization with diverse mixtures of variant antigens (Ags). Our results show that particular choices for the number of variant Ags and the mutational distances separating them maximize the probability of inducing bnAbs. The variant Ags represent potentially conflicting selection forces that can frustrate the Darwinian evolutionary process of affinity maturation. An intermediate level of frustration maximizes the chance of evolving bnAbs. A simple model makes vivid the origin of this principle of optimal frustration. Our results, combined with past studies, suggest that an appropriately chosen permutation of immunization with an optimally designed mixture (using the principles that we describe) and sequential immunization with variant Ags that are separated by relatively large mutational distances may best promote the evolution of bnAbs. PMID:27791170
Germann, Anja; Oh, Young-Joo; Schmidt, Tomm; Schön, Uwe; Zimmermann, Heiko; von Briesen, Hagen
2013-10-01
The ability to analyze cryopreserved peripheral blood mononuclear cell (PBMC) from biobanks for antigen-specific immunity is necessary to evaluate response to immune-based therapies. To ensure comparable assay results, collaborative research in multicenter trials needs reliable and reproducible cryopreservation that maintains cell viability and functionality. A standardized cryopreservation procedure is comprised of not only sample collection, preparation and freezing but also low temperature storage in liquid nitrogen without any temperature fluctuations, to avoid cell damage. Therefore, we have developed a storage approach to minimize suboptimal storage conditions in order to maximize cell viability, recovery and T-cell functionality. We compared the influence of repeated temperature fluctuations on cell health from sample storage, sample sorting and removal in comparison to sample storage without temperature rises. We found that cyclical temperature shifts during low temperature storage reduce cell viability, recovery and immune response against specific-antigens. We showed that samples handled under a protective hood system, to avoid or minimize such repeated temperature rises, have comparable cell viability and cell recovery rates to samples stored without any temperature fluctuations. Also T-cell functionality could be considerably increased with the use of the protective hood system compared to sample handling without such a protection system. This data suggests that the impact of temperature fluctuation on cell integrity should be carefully considered in future clinical vaccine trials and consideration should be given to optimal sample storage conditions. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
A Peptide Filtering Relation Quantifies MHC Class I Peptide Optimization
Goldstein, Leonard D.; Howarth, Mark; Cardelli, Luca; Emmott, Stephen; Elliott, Tim; Werner, Joern M.
2011-01-01
Major Histocompatibility Complex (MHC) class I molecules enable cytotoxic T lymphocytes to destroy virus-infected or cancerous cells, thereby preventing disease progression. MHC class I molecules provide a snapshot of the contents of a cell by binding to protein fragments arising from intracellular protein turnover and presenting these fragments at the cell surface. Competing fragments (peptides) are selected for cell-surface presentation on the basis of their ability to form a stable complex with MHC class I, by a process known as peptide optimization. A better understanding of the optimization process is important for our understanding of immunodominance, the predominance of some T lymphocyte specificities over others, which can determine the efficacy of an immune response, the danger of immune evasion, and the success of vaccination strategies. In this paper we present a dynamical systems model of peptide optimization by MHC class I. We incorporate the chaperone molecule tapasin, which has been shown to enhance peptide optimization to different extents for different MHC class I alleles. Using a combination of published and novel experimental data to parameterize the model, we arrive at a relation of peptide filtering, which quantifies peptide optimization as a function of peptide supply and peptide unbinding rates. From this relation, we find that tapasin enhances peptide unbinding to improve peptide optimization without significantly delaying the transit of MHC to the cell surface, and differences in peptide optimization across MHC class I alleles can be explained by allele-specific differences in peptide binding. Importantly, our filtering relation may be used to dynamically predict the cell surface abundance of any number of competing peptides by MHC class I alleles, providing a quantitative basis to investigate viral infection or disease at the cellular level. We exemplify this by simulating optimization of the distribution of peptides derived from Human Immunodeficiency Virus Gag-Pol polyprotein. PMID:22022238
An Orthogonal Evolutionary Algorithm With Learning Automata for Multiobjective Optimization.
Dai, Cai; Wang, Yuping; Ye, Miao; Xue, Xingsi; Liu, Hailin
2016-12-01
Research on multiobjective optimization problems becomes one of the hottest topics of intelligent computation. In order to improve the search efficiency of an evolutionary algorithm and maintain the diversity of solutions, in this paper, the learning automata (LA) is first used for quantization orthogonal crossover (QOX), and a new fitness function based on decomposition is proposed to achieve these two purposes. Based on these, an orthogonal evolutionary algorithm with LA for complex multiobjective optimization problems with continuous variables is proposed. The experimental results show that in continuous states, the proposed algorithm is able to achieve accurate Pareto-optimal sets and wide Pareto-optimal fronts efficiently. Moreover, the comparison with the several existing well-known algorithms: nondominated sorting genetic algorithm II, decomposition-based multiobjective evolutionary algorithm, decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes, multiobjective optimization by LA, and multiobjective immune algorithm with nondominated neighbor-based selection, on 15 multiobjective benchmark problems, shows that the proposed algorithm is able to find more accurate and evenly distributed Pareto-optimal fronts than the compared ones.
Thackray, Larissa B; Shrestha, Bimmi; Richner, Justin M; Miner, Jonathan J; Pinto, Amelia K; Lazear, Helen M; Gale, Michael; Diamond, Michael S
2014-10-01
Upon activation of Toll-like and RIG-I-like receptor signaling pathways, the transcription factor IRF5 translocates to the nucleus and induces antiviral immune programs. The recent discovery of a homozygous mutation in the immunoregulatory gene guanine exchange factor dedicator of cytokinesis 2 (Dock2mu/mu) in several Irf5-/- mouse colonies has complicated interpretation of immune functions previously ascribed to IRF5. To define the antiviral functions of IRF5 in vivo, we infected backcrossed Irf5-/-×Dock2wt/wt mice (here called Irf5-/- mice) and independently generated CMV-Cre Irf5fl/fl mice with West Nile virus (WNV), a pathogenic neurotropic flavivirus. Compared to congenic wild-type animals, Irf5-/- and CMV-Cre Irf5fl/fl mice were more vulnerable to WNV infection, and this phenotype was associated with increased infection in peripheral organs, which resulted in higher virus titers in the central nervous system. The loss of IRF5, however, was associated with only small differences in the type I interferon response systemically and in the draining lymph node during WNV infection. Instead, lower levels of several other proinflammatory cytokines and chemokines, as well as fewer and less activated immune cells, were detected in the draining lymph node 2 days after WNV infection. WNV-specific antibody responses in Irf5-/- mice also were blunted in the context of live or inactivated virus infection and this was associated with fewer antigen-specific memory B cells and long-lived plasma cells. Our results with Irf5-/- mice establish a key role for IRF5 in shaping the early innate immune response in the draining lymph node, which impacts the spread of virus infection, optimal B cell immunity, and disease pathogenesis. Although the roles of IRF3 and IRF7 in orchestrating innate and adaptive immunity after viral infection are established, the function of the related transcription factor IRF5 remains less certain. Prior studies in Irf5-/- mice reported conflicting results as to the contribution of IRF5 in regulating type I interferon and adaptive immune responses. The lack of clarity may stem from a recently discovered homozygous loss-of-function mutation of the immunoregulatory gene Dock2 in several colonies of Irf5-/- mice. Here, using a mouse model with a deficiency in IRF5 and wild-type Dock2 alleles, we investigated how IRF5 modulates West Nile virus (WNV) pathogenesis and host immune responses. Our in vivo studies indicate that IRF5 has a key role in shaping the early proinflammatory cytokine response in the draining lymph node, which impacts immunity and control of WNV infection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Song, Xiaokai; Zhao, Xiaofang; Xu, Lixin; Yan, Ruofeng; Li, Xiangrui
2017-04-01
In our previous study, an effective DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2 was constructed. In the present study, the immunization dose of the DNA vaccine pVAX1.0-TA4-IL-2 was further optimized. With the optimized dose, the dynamics of antibodies induced by the DNA vaccine was determined using indirect ELISA. To evaluate the immune protection duration of the DNA vaccine, two-week-old chickens were intramuscularly immunized twice and the induced efficacy was evaluated by challenging with E. tenella at 5, 9, 13, 17 and 21weeks post the last immunization (PLI) separately. To evaluate the efficacy stability of the DNA vaccine, two-week-old chickens were immunized with 3 batches of the DNA vaccine, and the induced efficacy was evaluated by challenging with E. tenella. The results showed that the optimal dose was 25μg. The induced antibody level persisted until 10weeks PPI. For the challenge time of 5 and 9weeks PLI, the immunization resulted in ACIs of 182.28 and 162.23 beyond 160, showing effective protection. However, for the challenge time of 13, 17 and 21weeks PLI, the immunization resulted in ACIs below 160 which means poor protection. Therefore, the immune protection duration of the DNA vaccination was at least 9weeks PLI. DNA immunization with three batches DNA vaccine resulted in ACIs of 187.52, 191.57 and 185.22, which demonstrated that efficacies of the three batches DNA vaccine were effective and stable. Overall, our results indicate that DNA vaccine pVAX1.0-TA4-IL-2 has the potential to be developed as effective vaccine against coccidiosis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kieslich, Chris A; Morikis, Dimitrios
2012-01-01
The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the divergence of jawless fish.
Kieslich, Chris A.; Morikis, Dimitrios
2012-01-01
The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of −1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic “hot-spots”. Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic “hot-spots” at the two functional sites of C3d, while the surface of CR2 lacks electrostatic “hot-spots” despite its excessively positive nature. We propose that the electrostatic “hot-spots” of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the divergence of jawless fish. PMID:23300422
Preserved MHC-II antigen processing and presentation function in chronic HCV infection
DH, Canaday; CJ, Burant; L, Jones; H, Aung; L, Woc-Colburn; DD, Anthony
2010-01-01
Individuals with chronic HCV infection have impaired response to vaccine, though the etiology remains to be elucidated. Dendritic cells (DC) and monocytes (MN) provide antigen uptake, processing, presentation, and costimulatory functions necessary to achieve optimal immune responses. The integrity of antigen processing and presentation function within these antigen presenting cells (APC) in the setting of HCV infection has been unclear. We used a novel T cell hybridoma system that specifically measures MHC-II antigen processing and presentation function of human APC. Results demonstrate MHC-II antigen processing and presentation function is preserved in both myeloid DC (mDC) and MN in the peripheral blood of chronically HCV-infected individuals, and indicates that an alteration in this function does not likely underlie the defective HCV-infected host response to vaccination. PMID:21055734
Serious Non-AIDS Conditions in HIV: Benefit of Early ART.
Lundgren, Jens D; Borges, Alvaro H; Neaton, James D
2018-04-01
Optimal control of HIV can be achieved by early diagnosis followed by the initiation of antiretroviral therapy (ART). Two large randomised trials (TEMPRANO and START) have recently been published documenting the clinical benefits to HIV-positive adults of early ART initiation. Main findings are reviewed with a focus on serious non-AIDS (SNA) conditions. Data from the two trials demonstrated that initiating ART early in the course of HIV infection resulted in marked reductions in the risk of opportunistic diseases and invasive bacterial infections. This indicates that HIV causes immune impairment in early infection that is remedied by controlling viral replication. Intriguingly, in START, a marked reduction in risk of cancers, both infection-related and unrelated types of cancers, was observed. Like the findings for opportunistic infections, this anti-cancer effect of early ART shows how the immune system influences important pro-oncogenic processes. In START, there was also some evidence suggesting that early ART initiation preserved kidney function, although the clinical consequence of this remains unclear. Conversely, while no adverse effects were evident, the trials did not demonstrate a clear effect on metabolic-related disease outcomes, pulmonary disease, or neurocognitive function. HIV causes immune impairment soon after acquisition of infection. ART reverses this harm at least partially. The biological nature of the immune impairment needs further elucidation, as well as mechanisms and clinical impact of innate immune activation. Based on the findings from TEMPRANO and START, and because ART lowers the risk of onward transmission, ART initiation should be offered to all persons following their diagnosis of HIV.
Artificial immune system for effective properties optimization of magnetoelectric composites
NASA Astrophysics Data System (ADS)
Poteralski, Arkadiusz; Dziatkiewicz, Grzegorz
2018-01-01
The optimization problem of the effective properties for magnetoelectric composites is considered. The effective properties are determined by the semi-analytical Mori-Tanaka approach. The generalized Eshelby tensor components are calculated numerically by using the Gauss quadrature method for the integral representation of the inclusion problem. The linear magnetoelectric constitutive equation is used. The effect of orientation of the electromagnetic materials components is taken into account. The optimization problem of the design is formulated and the artificial immune system is applied to solve it.
Optimal vaccination strategies and rational behaviour in seasonal epidemics.
Doutor, Paulo; Rodrigues, Paula; Soares, Maria do Céu; Chalub, Fabio A C C
2016-12-01
We consider a SIRS model with time dependent transmission rate. We assume time dependent vaccination which confers the same immunity as natural infection. We study two types of vaccination strategies: (i) optimal vaccination, in the sense that it minimizes the effort of vaccination in the set of vaccination strategies for which, for any sufficiently small perturbation of the disease free state, the number of infectious individuals is monotonically decreasing; (ii) Nash-equilibria strategies where all individuals simultaneously minimize the joint risk of vaccination versus the risk of the disease. The former case corresponds to an optimal solution for mandatory vaccinations, while the second corresponds to the equilibrium to be expected if vaccination is fully voluntary. We are able to show the existence of both optimal and Nash strategies in a general setting. In general, these strategies will not be functions but Radon measures. For specific forms of the transmission rate, we provide explicit formulas for the optimal and the Nash vaccination strategies.
Barabas, Sascha; Spindler, Theresa; Kiener, Richard; Tonar, Charlotte; Lugner, Tamara; Batzilla, Julia; Bendfeldt, Hanna; Rascle, Anne; Asbach, Benedikt; Wagner, Ralf; Deml, Ludwig
2017-03-07
In healthy individuals, Cytomegalovirus (CMV) infection is efficiently controlled by CMV-specific cell-mediated immunity (CMI). Functional impairment of CMI in immunocompromized individuals however can lead to uncontrolled CMV replication and severe clinical complications. Close monitoring of CMV-specific CMI is therefore clinically relevant and might allow a reliable prognosis of CMV disease as well as assist personalized therapeutic decisions. Objective of this work was the optimization and technical validation of an IFN-γ ELISpot assay for a standardized, sensitive and reliable quantification of CMV-reactive effector cells. T-activated® immunodominant CMV IE-1 and pp65 proteins were used as stimulants. All basic assay parameters and reagents were tested and optimized to establish a user-friendly protocol and maximize the signal-to-noise ratio of the ELISpot assay. Optimized and standardized ELISpot revealed low intra-assay, inter-assay and inter-operator variability (coefficient of variation CV below 22%) and CV inter-site was lower than 40%. Good assay linearity was obtained between 6 × 10 4 and 2 × 10 5 PBMC per well upon stimulation with T-activated® IE-1 (R 2 = 0.97) and pp65 (R 2 = 0.99) antigens. Remarkably, stimulation of peripheral blood mononuclear cells (PBMC) with T-activated® IE-1 and pp65 proteins resulted in the activation of a broad range of CMV-reactive effector cells, including CD3 + CD4 + (Th), CD3 + CD8 + (CTL), CD3 - CD56 + (NK) and CD3 + CD56 + (NKT-like) cells. Accordingly, the optimized IFN-γ ELISpot assay revealed very high sensitivity (97%) in a cohort of 45 healthy donors, of which 32 were CMV IgG-seropositive. The combined use of T-activated® IE-1 and pp65 proteins for the stimulation of PBMC with the optimized IFN-γ ELISpot assay represents a highly standardized, valuable tool to monitor the functionality of CMV-specific CMI with great sensitivity and reliability.
Balandya, Emmanuel; Reynolds, Teri; Obaro, Stephen; Makani, Julie
2016-01-01
Individuals with sickle cell anemia (SCA) have increased susceptibility to infections, secondary to impairment of immune function. Besides the described dysfunction in innate immunity, including impaired opsonization and phagocytosis of bacteria, evidence of dysfunction of T and B lymphocytes in SCA has also been reported. This includes reduction in the proportion of circulating CD4+ and CD8+ T cells, reduction of CD4+ helper : CD8+ suppressor T cell ratio, aberrant activation and dysfunction of regulatory T cells (Treg), skewing of CD4+ T cells towards Th2 response and loss of IgM-secreting CD27+IgMhighIgDlow memory B cells. These changes occur on the background of immune activation characterized by predominance of memory CD4+ T cell phenotypes, increased Th17 signaling and elevated levels of C-reactive protein and pro-inflammatory cytokines IL-6 and TNF-α, which may affect the immunogenicity and protective efficacy of vaccines available to prevent infections in SCA. Thus, in order to optimize the use of vaccines in SCA, a thorough understanding of T and B lymphocyte functions and vaccine reactivity among individuals with SCA is needed. Studies should be encouraged of different SCA populations, including sub-Saharan Africa where the burden of SCA is highest. This article summarizes our current understanding of lymphocyte biology in SCA, and highlights areas that warrant future research. PMID:27237467
Hu, Minlu; Patel, Sravan Kumar; Zhou, Tian; Rohan, Lisa C
2015-12-10
Efflux and uptake transporters of drugs are key regulators of the pharmacokinetics of many antiretroviral drugs. A growing body of literature has revealed the expression and functionality of multiple transporters in female genital tract (FGT), colorectal tissue, and immune cells. Drug transporters could play a significant role in the efficacy of preventative strategies for HIV-1 acquisition. Pre-exposure prophylaxis (PrEP) is a promising strategy, which utilizes topically (vaginally or rectally), orally or other systemically administered antiretroviral drugs to prevent the sexual transmission of HIV to receptive partners. The drug concentration in the receptive mucosal tissues and target immune cells for HIV is critical for PrEP effectiveness. Hence, there is an emerging interest in utilizing transporter information to explain tissue disposition patterns of PrEP drugs, to interpret inter-individual variability in PrEP drug pharmacokinetics and effectiveness, and to improve tissue drug exposure through modulation of the cervicovaginal, colorectal, or immune cell transporters. In this review, the existing literature on transporter expression, functionality and regulation in the transmission-related tissues and cells is summarized. In addition, the relevance of transporter function for drug delivery and strategies that could exploit transporters for increased drug concentration at target locales is discussed. The overall goal is to facilitate an understanding of drug transporters for PrEP optimization. Copyright © 2015 Elsevier B.V. All rights reserved.
Free terminal time optimal control problem of an HIV model based on a conjugate gradient method.
Jang, Taesoo; Kwon, Hee-Dae; Lee, Jeehyun
2011-10-01
The minimum duration of treatment periods and the optimal multidrug therapy for human immunodeficiency virus (HIV) type 1 infection are considered. We formulate an optimal tracking problem, attempting to drive the states of the model to a "healthy" steady state in which the viral load is low and the immune response is strong. We study an optimal time frame as well as HIV therapeutic strategies by analyzing the free terminal time optimal tracking control problem. The minimum duration of treatment periods and the optimal multidrug therapy are found by solving the corresponding optimality systems with the additional transversality condition for the terminal time. We demonstrate by numerical simulations that the optimal dynamic multidrug therapy can lead to the long-term control of HIV by the strong immune response after discontinuation of therapy.
Dynamic reciprocity in cell-scaffold interactions.
Mauney, Joshua R; Adam, Rosalyn M
2015-03-01
Tissue engineering in urology has shown considerable promise. However, there is still much to understand, particularly regarding the interactions between scaffolds and their host environment, how these interactions regulate regeneration and how they may be enhanced for optimal tissue repair. In this review, we discuss the concept of dynamic reciprocity as applied to tissue engineering, i.e. how bi-directional signaling between implanted scaffolds and host tissues such as the bladder drives the process of constructive remodeling to ensure successful graft integration and tissue repair. The impact of scaffold content and configuration, the contribution of endogenous and exogenous bioactive factors, the influence of the host immune response and the functional interaction with mechanical stimulation are all considered. In addition, the temporal relationships of host tissue ingrowth, bioactive factor mobilization, scaffold degradation and immune cell infiltration, as well as the reciprocal signaling between discrete cell types and scaffolds are discussed. Improved understanding of these aspects of tissue repair will identify opportunities for optimization of repair that could be exploited to enhance regenerative medicine strategies for urology in future studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Memory CD8+ T Cells Protect Dendritic Cells from CTL Killing1
Watchmaker, Payal B.; Urban, Julie A.; Berk, Erik; Nakamura, Yutaro; Mailliard, Robbie B.; Watkins, Simon C.; van Ham, S. Marieke; Kalinski, Pawel
2010-01-01
CD8+ T cells have been shown to be capable of either suppressing or promoting immune responses. To reconcile these contrasting regulatory functions, we compared the ability of human effector and memory CD8+ T cells to regulate survival and functions of dendritic cells (DC). We report that, in sharp contrast to the effector cells (CTLs) that kill DCs in a granzyme B- and perforin-dependent mechanism, memory CD8+ T cells enhance the ability of DCs to produce IL-12 and to induce functional Th1 and CTL responses in naive CD4+ and CD8+ T cell populations. Moreover, memory CD8+ T cells that release the DC-activating factor TNF-α before the release of cytotoxic granules induce DC expression of an endogenous granzyme B inhibitor PI-9 and protect DCs from CTL killing with similar efficacy as CD4+ Th cells. The currently identified DC-protective function of memory CD8+ T cells helps to explain the phenomenon of CD8+ T cell memory, reduced dependence of recall responses on CD4+ T cell help, and the importance of delayed administration of booster doses of vaccines for the optimal outcome of immunization. PMID:18322193
Pan, Jia-Hong; Feng, Lin; Jiang, Wei-Dan; Wu, Pei; Kuang, Sheng-Yao; Tang, Ling; Zhang, Yong-An; Zhou, Xiao-Qiu; Liu, Yang
2017-01-01
This study investigated the effects of dietary vitamin E on growth, disease resistance and the immunity and structural integrity of head kidney, spleen and skin in grass carp (Ctenopharyngodon idella). The fish were fed six diets containing graded levels of vitamin E (0, 45, 90, 135, 180 and 225 mg/kg diet) for 10 weeks. Subsequently, a challenge test was conducted by injection of Aeromonas hydrophila. The results showed that compared with optimal vitamin E supplementation, vitamin E deficiency caused depressed growth, poor survival rates and increased skin lesion morbidity in grass carp. Meanwhile, vitamin E deficiency decreased lysozyme and acid phosphatase activities, complement component 3 and complement component 4 contents in the head kidney, spleen and skin of grass carp (P < 0.05). Moreover, vitamin E deficiency down-regulated antimicrobial peptides (Hepcidin, liver-expressed antimicrobial peptide-2A, -2B, β-defensin), IL-10, TGFβ1, IκBα, TOR and S6K1 mRNA levels (P < 0.05) and up-regulated IL-1β, IL-6, IL-8, IFN-γ2 and TNFα, NF-κB p65, IKKα, IKKβ and 4EBP1 (not in the head kidney) mRNA levels (P < 0.05). In addition, vitamin E deficiency caused oxidative damage, decreased superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and glutathione reductase (GR) activities, and down-regulated the mRNA levels of antioxidant enzymes and signaling molecules Nrf2 (P < 0.05). Vitamin E deficiency also induced apoptosis by up-regulating capase-2, -3, -7, and -8 mRNA levels in the head kidney, spleen and skin of grass carp. In conclusion, this study indicated that dietary vitamin E deficiency depressed fish growth, impaired the immune function and disturbed the structural integrity of the head kidney, spleen and skin in grass carp, but optimal vitamin E supplementation can reverse those negative effects in fish. The optimal vitamin E requirements for young grass carp (266.39-1026.63 g) to achieve optimal growth performance and disease resistance based on the percent weight gain (PWG) and skin lesion morbidity were estimated to be 116.2 and 130.9 mg/kg diet, respectively. Meanwhile, based on immune indicator (LA activity in the head kidney) and antioxidant indicator (protection of spleen against MDA), the optimal vitamin E requirements for young grass carp were estimated to be 123.8 and 136.4 mg/kg diet, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Sen; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Zeng, Yun-Yun; Xu, Shu-De; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu
2016-08-01
This study investigated the effects of exogenous lipase supplementation on the growth performance, intestinal growth and function, immune response and physical barrier function, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella). A total of 450 grass carp (255.02 ± 0.34 g) were fed five diets for 60 days. There were 5 dietary treatments that included a normal protein and lipid diet containing 30% crude protein (CP) with 5% ether extract (EE), and the low-protein and high-lipid diets (28% CP, 6% EE) supplemented with graded levels of exogenous lipase supplementation activity at 0, 1193, 2560 and 3730 U/kg diet. The results indicated that compared with a normal protein and lipid diet (30% CP, 5% EE), a low-protein and high-lipid diet (28% CP, 6% EE) (un-supplemented lipase) improved lysozyme activities and complement component 3 contents in the distal intestine (DI), interleukin 10 mRNA expression in the proximal intestine (PI), and glutathione S-transferases activity and glutathione content in the intestine of young grass carp. In addition, in low-protein and high-lipid diets, optimal exogenous lipase supplementation significantly increased acid phosphatase (ACP) activities and complement component 3 (C3) contents (P < 0.05), up-regulated the relative mRNA levels of antimicrobial peptides (liver expressed antimicrobial peptide 2 and hepcidin) and anti-inflammatory cytokines (interleukin 10 and transforming growth factor β1) and signaling molecules inhibitor protein-κBα (IκBα) and target of rapamycin (TOR) (P < 0.05), down-regulated the mRNA levels of pro-inflammatory cytokines (tumor necrosis factor α, interleukin 8, interferon γ2, and interleukin 1β), and signaling molecules (nuclear factor kappa B p65, IκB kinase β, IκB kinase γ) (P < 0.05) in the intestine of young grass carp. Moreover, optimal exogenous lipase supplementation significantly decreased reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl (PC) contents (P < 0.05), improved the activities of anti-superoxide anion (ASA) and anti-hydroxyl radical (AHR), glutathione content, and the activities and mRNA levels of antioxidant enzymes (copper/zinc superoxide dismutase, manganese superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferases and glutathione reductase) (P < 0.05), up-regulated signaling molecule NF-E2-related factor 2 (Nrf2) (P < 0.05), down-regulated signaling molecules (Kelch-like-ECH-associated protein 1a, Kelch-like-ECH-associated protein 1b) (P < 0.05) in the intestine of young grass carp. Furthermore, optimal exogenous lipase supplementation significantly elevated the mRNA levels of tight junction proteins (Occludin, zonula occludens 1, Claudin b, Claudin c and Claudin 3) (P < 0.05), down-regulated the mRNA levels of tight junction proteins (Claudin 12 and Claudin 15a) (P < 0.05), down-regulated signaling molecules myosin light chain kinase (P < 0.05) in the intestine of young grass carp. In conclusion, dietary lipid could partially spare protein, and the low-protein and high-lipid diet could improve growth, intestinal growth and function, immune response and antioxidant capability of fish. Meanwhile, in high-fat and low-protein diets, optimal exogenous lipase supplementation improved growth, intestinal growth and function, intestinal immunity, physical barrier, and regulated the mRNA expression of related signal molecules of fish. The optimal level of exogenous lipase supplementation in young grass carp (255-771 g) was estimated to be 1193 U kg(-1) diet. Copyright © 2016. Published by Elsevier Ltd.
Chen, Kang; Zhou, Xiao-Qiu; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Feng, Lin
2018-03-01
In aquaculture, the occurrence of enteritis has increased and dietary nutrition is considered as one of the major strategies to solve this problem. In the present study, we assume that dietary phosphorus might enhance intestinal immune barrier and physical barrier function to reduce the occurrence of enteritis in fish. To test this assumption, a total of 540 grass carp (Ctenopharyngodon idella) were investigated by feeding graded levels of available phosphorus (0.95-8.75 g/kg diet) and then infection with Aeromonas hydrophila. The results firstly showed that phosphorus deficiency decreased the ability to combat enteritis, which might be related to the impairment of intestinal immune barrier and physical barrier function. Compared with optimal phosphorus level, phosphorus deficiency decreased fish intestinal antimicrobial substances activities or contents and down-regulated antimicrobial peptides mRNA levels leading to the impairment of intestinal immune response. Phosphorus deficiency down-regulated fish intestinal anti-inflammatory cytokines mRNA levels and up-regulated the mRNA levels of pro-inflammatory cytokines [except IL-1β and IL-12p35 in distal intestine (DI) and IL-12p40] causing aggravated of intestinal inflammatory responses, which might be related to the signalling molecules target of rapamycin and nuclear factor kappa B. In addition, phosphorus deficiency disturbed fish intestinal tight junction function and induced cell apoptosis as well as oxidative damage leading to impaired of fish intestinal physical barrier function, which might be partially associated with the signalling molecules myosin light chain kinase, c-Jun N-terminal protein kinase and NF-E2-related factor 2, respectively. Finally, based on the ability to combat enteritis, dietary available phosphorus requirement for grass carp (254.56-898.23 g) was estimated to be 4.68 g/kg diet. Copyright © 2017. Published by Elsevier Ltd.
Verification of immune response optimality through cybernetic modeling.
Batt, B C; Kompala, D S
1990-02-09
An immune response cascade that is T cell independent begins with the stimulation of virgin lymphocytes by antigen to differentiate into large lymphocytes. These immune cells can either replicate themselves or differentiate into plasma cells or memory cells. Plasma cells produce antibody at a specific rate up to two orders of magnitude greater than large lymphocytes. However, plasma cells have short life-spans and cannot replicate. Memory cells produce only surface antibody, but in the event of a subsequent infection by the same antigen, memory cells revert rapidly to large lymphocytes. Immunologic memory is maintained throughout the organism's lifetime. Many immunologists believe that the optimal response strategy calls for large lymphocytes to replicate first, then differentiate into plasma cells and when the antigen has been nearly eliminated, they form memory cells. A mathematical model incorporating the concept of cybernetics has been developed to study the optimality of the immune response. Derived from the matching law of microeconomics, cybernetic variables control the allocation of large lymphocytes to maximize the instantaneous antibody production rate at any time during the response in order to most efficiently inactivate the antigen. A mouse is selected as the model organism and bacteria as the replicating antigen. In addition to verifying the optimal switching strategy, results showing how the immune response is affected by antigen growth rate, initial antigen concentration, and the number of antibodies required to eliminate an antigen are included.
Choi, Yoonjoo; Verma, Deeptak; Griswold, Karl E; Bailey-Kellogg, Chris
2017-01-01
Therapeutic proteins are yielding ever more advanced and efficacious new drugs, but the biological origins of these highly effective therapeutics render them subject to immune surveillance within the patient's body. When recognized by the immune system as a foreign agent, protein drugs elicit a coordinated response that can manifest a range of clinical complications including rapid drug clearance, loss of functionality and efficacy, delayed infusion-like allergic reactions, more serious anaphylactic shock, and even induced auto-immunity. It is thus often necessary to deimmunize an exogenous protein in order to enable its clinical application; critically, the deimmunization process must also maintain the desired therapeutic activity.To meet the growing need for effective, efficient, and broadly applicable protein deimmunization technologies, we have developed the EpiSweep suite of protein design algorithms. EpiSweep seamlessly integrates computational prediction of immunogenic T cell epitopes with sequence- or structure-based assessment of the impacts of mutations on protein stability and function, in order to select combinations of mutations that make Pareto optimal trade-offs between the competing goals of low immunogenicity and high-level function. The methods are applicable both to the design of individual functionally deimmunized variants as well as the design of combinatorial libraries enriched in functionally deimmunized variants. After validating EpiSweep in a series of retrospective case studies providing comparisons to conventional approaches to T cell epitope deletion, we have experimentally demonstrated it to be highly effective in prospective application to deimmunization of a number of different therapeutic candidates. We conclude that our broadly applicable computational protein design algorithms guide the engineer towards the most promising deimmunized therapeutic candidates, and thereby have the potential to accelerate development of new protein drugs by shortening time frames and improving hit rates.
Choi, Yoonjoo; Verma, Deeptak; Griswold, Karl E.; Bailey-Kellogg, Chris
2016-01-01
Therapeutic proteins are yielding ever more advanced and efficacious new drugs, but the biological origins of these highly effective therapeutics renders them subject to immune surveillance within the patient’s body. When recognized by the immune system as a foreign agent, protein drugs elicit a coordinated response that can manifest a range of clinical complications including rapid drug clearance, loss of functionality and efficacy, delayed infusion-like allergic reactions, more serious anaphylactic shock, and even induced auto-immunity. It is thus often necessary to deimmunize an exogenous protein in order to enable its clinical application; critically, the deimmunization process must also maintain the desired therapeutic activity. To meet the growing need for effective, efficient, and broadly applicable protein deimmunization technologies, we have developed the EpiSweep suite of protein design algorithms. EpiSweep seamlessly integrates computational prediction of immunogenic T cell epitopes with sequence- or structure- based assessment of the impacts of mutations on protein stability and function, in order to select combinations of mutations that make Pareto optimal trade-offs between the competing goals of low immunogenicity and high-level function. The methods are applicable both to the design of individual functionally deimmunized variants as well as the design of combinatorial libraries enriched in functionally deimmunized variants. After validating EpiSweep in a series of retrospective case studies providing comparisons to conventional approaches to T cell epitope deletion, we have experimentally demonstrated it to be highly effective in prospective application to deimmunization of a number of different therapeutic candidates. We conclude that our broadly applicable computational protein design algorithms guide the engineer towards the most promising deimmunized therapeutic candidates, and thereby have the potential to accelerate development of new protein drugs by shortening time frames and improving hit rates. PMID:27914063
Pulmonary surfactant for neonatal respiratory disorders.
Merrill, Jeffrey D; Ballard, Roberta A
2003-04-01
Surfactant therapy has revolutionized neonatal care and is used routinely for preterm infants with respiratory distress syndrome. Recent investigation has further elucidated the function of surfactant-associated proteins and their contribution toward surfactant and lung immune defense functions. As the field of neonatology moves away from intubation and mechanical ventilation of preterm infants at birth toward more aggressive use of nasal continuous positive airway pressure, the optimal timing of exogenous surfactant therapy remains unclear. Evidence suggests that preterm neonates with bronchopulmonary dysplasia and prolonged mechanical ventilation also experience surfactant dysfunction; however, exogenous surfactant therapy beyond the first week of life has not been well studied. Surfactant replacement therapy has been studied for use in other respiratory disorders, including meconium aspiration syndrome and pneumonia. Commercial surfactant preparations currently available are not optimal, given the variability of surfactant protein content and their susceptibility to inhibition. Further progress in the treatment of neonatal respiratory disorders may include the development of "designer" surfactant preparations.
Vitamin D Axis in Inflammatory Bowel Diseases: Role, Current Uses and Future Perspectives
Del Pinto, Rita; Ferri, Claudio; Cominelli, Fabio
2017-01-01
Increasing evidence supports the concept that the vitamin D axis possesses immunoregulatory functions, with vitamin D receptor (VDR) status representing the major determinant of vitamin D’s pleiotropic effects. Vitamin D promotes the production of anti-microbial peptides, including β-defensins and cathelicidins, the shift towards Th2 immune responses, and regulates autophagy and epithelial barrier integrity. Impairment of vitamin D-mediated pathways are associated with chronic inflammatory conditions, including inflammatory bowel diseases (IBD). Interestingly, inhibition of vitamin D pathways results in dysbiosis of the gut microbiome, which has mechanistically been implicated in the development of IBD. Herein, we explore the role of the vitamin D axis in immune-mediated diseases, with particular emphasis on its interplay with the gut microbiome in the pathogenesis of IBD. The potential clinical implications and therapeutic relevance of this interaction will also be discussed, including optimizing VDR function, both with vitamin D analogues and probiotics, which may represent a complementary approach to current IBD treatments. PMID:29112157
Interactions of Gut Microbiota, Endotoxemia, Immune Function, and Diet in Exertional Heatstroke
Lee, Elaine C.; Armstrong, Elizabeth M.
2018-01-01
Exertional heatstroke (EHS) is a medical emergency that cannot be predicted, requires immediate whole-body cooling to reduce elevated internal body temperature, and is influenced by numerous host and environmental factors. Widely accepted predisposing factors (PDF) include prolonged or intense exercise, lack of heat acclimatization, sleep deprivation, dehydration, diet, alcohol abuse, drug use, chronic inflammation, febrile illness, older age, and nonsteroidal anti-inflammatory drug use. The present review links these factors to the human intestinal microbiota (IM) and diet, which previously have not been appreciated as PDF. This review also describes plausible mechanisms by which these PDF lead to EHS: endotoxemia resulting from elevated plasma lipopolysaccharide (i.e., a structural component of the outer membrane of Gram-negative bacteria) and tissue injury from oxygen free radicals. We propose that recognizing the lifestyle and host factors which are influenced by intestine-microbial interactions, and modifying habitual dietary patterns to alter the IM ecosystem, will encourage efficient immune function, optimize the intestinal epithelial barrier, and reduce EHS morbidity and mortality. PMID:29850597
Systemic Acquired Resistance and Salicylic Acid: Past, Present and Future.
Klessig, Daniel F; Choi, Hyong Woo; Dempsey, D'Maris Amick
2018-05-21
Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development, as well as the activation of defenses against biotic and abiotic stress. Here we present a historical overview of the progress that has been made to date in elucidating SA's role in signaling plant immune responses. The ability of plants to develop acquired immunity after pathogen infection was first proposed in 1933. However, most of our knowledge about plant immune signaling was generated over the last three decades, following the discovery that SA is an endogenous defense signal. During this time-frame, researchers have identified i) two pathways through which SA can be synthesized, ii) numerous proteins that regulate SA synthesis and metabolism, and iii) some of the signaling components that function downstream of SA, including a large number of SA targets/receptors. In addition, it has become increasingly evident that SA does not signal immune responses by itself, but rather as part of an intricate network that involves many other plant hormones. Future efforts to develop a comprehensive understanding of SA-mediated immune signaling will therefore need to close knowledge gaps that exist within the SA pathway itself, as well as clarify how crosstalk among the different hormone signaling pathways leads to an immune response that is both robust and optimized for maximal efficacy, depending on identity of the attacking pathogen.
Quantitative genetics of immunity and life history under different photoperiods.
Hammerschmidt, K; Deines, P; Wilson, A J; Rolff, J
2012-05-01
Insects with complex life-cycles should optimize age and size at maturity during larval development. When inhabiting seasonal environments, organisms have limited reproductive periods and face fundamental decisions: individuals that reach maturity late in season have to either reproduce at a small size or increase their growth rates. Increasing growth rates is costly in insects because of higher juvenile mortality, decreased adult survival or increased susceptibility to parasitism by bacteria and viruses via compromised immune function. Environmental changes such as seasonality can also alter the quantitative genetic architecture. Here, we explore the quantitative genetics of life history and immunity traits under two experimentally induced seasonal environments in the cricket Gryllus bimaculatus. Seasonality affected the life history but not the immune phenotypes. Individuals under decreasing day length developed slower and grew to a bigger size. We found ample additive genetic variance and heritability for components of immunity (haemocyte densities, proPhenoloxidase activity, resistance against Serratia marcescens), and for the life history traits, age and size at maturity. Despite genetic covariance among traits, the structure of G was inconsistent with genetically based trade-off between life history and immune traits (for example, a strong positive genetic correlation between growth rate and haemocyte density was estimated). However, conditional evolvabilities support the idea that genetic covariance structure limits the capacity of individual traits to evolve independently. We found no evidence for G × E interactions arising from the experimentally induced seasonality.
Assessing the Mechanisms of MDS and Its Transformation to Leukemia in a Novel Humanized Mouse
2016-05-01
achievements N/A References N/A References: 1. Rongvaux, A., et al., Development and function of human innate immune cells in a...in cancer survivors. MDS is inherently difficult to study. MDS stem cells cannot be grown in culture and in vivo models are thus the gold standard...However, MDS stem cells are diseased and fail to efficiently engraft in current immunodeficient mouse models. We have optimized engraftment of
Arkoosh, Mary R; Van Gaest, Ahna L; Strickland, Stacy A; Hutchinson, Greg P; Krupkin, Alex B; Dietrich, Joseph P
2015-06-02
Polybrominated diphenyl ethers (PBDEs), used as commercial flame-retardants, are bioaccumulating in threatened Pacific salmon. However, little is known of PBDE effects on critical physiological functions required for optimal health and survival. BDE-47 and BDE-99 are the predominant PBDE congeners found in Chinook salmon collected from the Pacific Northwest. In the present study, both innate immunity (phagocytosis and production of superoxide anion) and pathogen challenge were used to evaluate health and survival in groups of juvenile Chinook salmon exposed orally to either BDE-47 or BDE-99 at environmentally relevant concentrations. Head kidney macrophages from Chinook salmon exposed to BDE-99, but not those exposed to BDE-47, were found to have a reduced ability in vitro to engulf foreign particles. However, both congeners increased the in vitro production of superoxide anion in head kidney macrophages. Salmon exposed to either congener had reduced survival during challenge with the pathogenic marine bacteria Listonella anguillarum. The concentration response curves generated for these end points were nonmonotonic and demonstrated a requirement for using multiple environmentally relevant PBDE concentrations for effect studies. Consequently, predicting risk from toxicity reference values traditionally generated with monotonic concentration responses may underestimate PBDE effect on critical physiological functions required for optimal health and survival in salmon.
Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection.
Glennie, Nelson D; Yeramilli, Venkata A; Beiting, Daniel P; Volk, Susan W; Weaver, Casey T; Scott, Phillip
2015-08-24
Leishmaniasis causes a significant disease burden worldwide. Although Leishmania-infected patients become refractory to reinfection after disease resolution, effective immune protection has not yet been achieved by human vaccines. Although circulating Leishmania-specific T cells are known to play a critical role in immunity, the role of memory T cells present in peripheral tissues has not been explored. Here, we identify a population of skin-resident Leishmania-specific memory CD4+ T cells. These cells produce IFN-γ and remain resident in the skin when transplanted by skin graft onto naive mice. They function to recruit circulating T cells to the skin in a CXCR3-dependent manner, resulting in better control of the parasites. Our findings are the first to demonstrate that CD4+ TRM cells form in response to a parasitic infection, and indicate that optimal protective immunity to Leishmania, and thus the success of a vaccine, may depend on generating both circulating and skin-resident memory T cells. © 2015 Glennie et al.
Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection
Glennie, Nelson D.; Yeramilli, Venkata A.; Beiting, Daniel P.; Volk, Susan W.; Weaver, Casey T.
2015-01-01
Leishmaniasis causes a significant disease burden worldwide. Although Leishmania-infected patients become refractory to reinfection after disease resolution, effective immune protection has not yet been achieved by human vaccines. Although circulating Leishmania-specific T cells are known to play a critical role in immunity, the role of memory T cells present in peripheral tissues has not been explored. Here, we identify a population of skin-resident Leishmania-specific memory CD4+ T cells. These cells produce IFN-γ and remain resident in the skin when transplanted by skin graft onto naive mice. They function to recruit circulating T cells to the skin in a CXCR3-dependent manner, resulting in better control of the parasites. Our findings are the first to demonstrate that CD4+ TRM cells form in response to a parasitic infection, and indicate that optimal protective immunity to Leishmania, and thus the success of a vaccine, may depend on generating both circulating and skin-resident memory T cells. PMID:26216123
Osada, Takuya; Nagaoka, Koji; Takahara, Masashi; Yang, Xiao Yi; Liu, Cong-Xiao; Guo, Hongtao; Roy Choudhury, Kingshuk; Hobeika, Amy; Hartman, Zachary; Morse, Michael A; Lyerly, H Kim
2015-05-01
Most dendritic cell (DC)-based vaccines have loaded the DC with defined antigens, but loading with autologos tumor-derived antigens would generate DCs that activate personalized tumor-specific T-cell responses. We hypothesized that DC matured with an optimized combination of reagents and loaded with tumor-derived antigens using a clinically feasible electroporation strategy would induce potent antitumor immunity. We first studied the effects on DC maturation and antigen presentation of the addition of picibanil (OK432) to a combination of zoledronic acid, tumor necrosis factor-α, and prostaglandin E2. Using DC matured with the optimized combination, we tested 2 clinically feasible sources of autologous antigen for electroloading, total tumor mRNA or total tumor lysate, to determine which stimulated more potent antigen-specific T cells in vitro and activated more potent antitumor immunity in vivo. The combination of tumor necrosis factor-α/prostaglandin E2/zoledronic acid/OK432 generated DC with high expression of maturation markers and antigen-specific T-cell stimulatory function in vitro. Mature DC electroloaded with tumor-derived mRNA [mRNA electroporated dendritic cell (EPDC)] induced greater expansion of antigen-specific T cells in vitro than DC electroloaded with tumor lysate (lysate EPDC). In a therapeutic model of MC38-carcinoembryonic antigen colon cancer-bearing mice, vaccination with mRNA EPDC induced the most efficient anti-carcinoembryonic antigen cellular immune response, which significantly suppressed tumor growth. In conclusion, mature DC electroloaded with tumor-derived mRNA are a potent cancer vaccine, especially useful when specific tumor antigens for vaccination have not been identified, allowing autologous tumor, and if unavailable, allogeneic cell lines to be used as an unbiased source of antigen. Our data support clinical testing of this strategy.
Deletion of BCG Hip1 protease enhances dendritic cell and CD4 T cell responses.
Bizzell, Erica; Sia, Jonathan Kevin; Quezada, Melanie; Enriquez, Ana; Georgieva, Maria; Rengarajan, Jyothi
2018-04-01
Dendritic cells (DCs) play a key role in the generation of CD4 T cell responses to pathogens. Mycobacterium tuberculosis (Mtb) harbors immune evasion mechanisms that impair DC responses and prevent optimal CD4 T cell immunity. The vaccine strain Mycobacterium bovis Bacille Calmette-Guérin (BCG) shares many of the immune evasion proteins utilized by Mtb, but the role of these proteins in DC and T cell responses elicited by BCG is poorly understood. We previously reported that the Mtb serine protease, Hip1, promotes sub-optimal DC responses during infection. Here, we tested the hypothesis that BCG Hip1 modulates DC functions and prevents optimal antigen-specific CD4 T cell responses that limit the immunogenicity of BCG. We generated a strain of BCG lacking hip1 (BCGΔhip1) and show that it has superior capacity to induce DC maturation and cytokine production compared with the parental BCG. Furthermore, BCGΔhip1-infected DCs were more effective at driving the production of IFN-γ and IL-17 from antigen-specific CD4 T cells in vitro. Mucosal transfer of BCGΔhip1-infected DCs into mouse lungs induced robust CD4 T cell activation in vivo and generated antigen-specific polyfunctional CD4 T cell responses in the lungs. Importantly, BCGΔhip1-infected DCs enhanced control of pulmonary bacterial burden following Mtb aerosol challenge compared with the transfer of BCG-infected DCs. These results reveal that BCG employs Hip1 to impair DC activation, leading to attenuated lung CD4 T cell responses with limited capacity to control Mtb burden after challenge. ©2017 Society for Leukocyte Biology.
Organization of an optimal adaptive immune system
NASA Astrophysics Data System (ADS)
Walczak, Aleksandra; Mayer, Andreas; Balasubramanian, Vijay; Mora, Thierry
The repertoire of lymphocyte receptors in the adaptive immune system protects organisms from a diverse set of pathogens. A well-adapted repertoire should be tuned to the pathogenic environment to reduce the cost of infections. I will discuss a general framework for predicting the optimal repertoire that minimizes the cost of infections contracted from a given distribution of pathogens. The theory predicts that the immune system will have more receptors for rare antigens than expected from the frequency of encounters and individuals exposed to the same infections will have sparse repertoires that are largely different, but nevertheless exploit cross-reactivity to provide the same coverage of antigens. I will show that the optimal repertoires can be reached by dynamics that describes the competitive binding of antigens by receptors, and selective amplification of stimulated receptors.
Lee, Amanda J; Ashkar, Ali A
2012-02-01
Herpes simplex virus (HSV)-2 is the predominant cause of genital herpes and has been implicated in HIV infection and transmission. Thus far, vaccines developed against HSV-2 have been clinically ineffective in preventing infection. This review aims to summarize the innate and adaptive immune responses against HSV-2 and examines the current status of vaccine development. Both innate and adaptive immune responses are essential for an effective primary immune response and the generation of immunity. The innate response involves Toll-like receptors, natural killer cells, plasmacytoid dendritic cells, and type I, II, and III interferons. The adaptive response requires a balance between CD4+ and CD8+ T-cells for optimal viral clearance. T-regulatory cells may be involved, although their exact function has yet to be determined. Current vaccine development involves the use of HSV-2 peptides or attenuated/replication-defective HSV-2 to generate adaptive anti-HSV-2 immune responses, however the generation of innate responses may also be an important consideration. Although vaccine development has primarily focused on the adaptive response, arguments for innate involvement are emerging. A greater understanding of the innate and adaptive processes underlying the response to HSV-2 infection will provide the foundation for the development of an effective vaccine.
The immune system: a target for functional foods?
Calder, Philip C; Kew, Samantha
2002-11-01
The immune system acts to protect the host from infectious agents that exist in the environment (bacteria, viruses, fungi, parasites) and from other noxious insults. The immune system is constantly active, acting to discriminate 'non-self' from 'self'. The immune system has two functional divisions: the innate and the acquired. Both components involve various blood-borne factors (complement, antibodies, cytokines) and cells. A number of methodologies exist to assess aspects of immune function; many of these rely upon studying cells in culture ex vivo. There are large inter-individual variations in many immune functions even among the healthy. Genetics, age, gender, smoking habits, habitual levels of exercise, alcohol consumption, diet, stage in the female menstrual cycle, stress, history of infections and vaccinations, and early life experiences are likely to be important contributors to the observed variation. While it is clear that individuals with immune responses significantly below 'normal' are more susceptible to infectious agents and exhibit increased infectious morbidity and mortality, it is not clear how the variation in immune function among healthy individuals relates to variation in susceptibility to infection. Nutrient status is an important factor contributing to immune competence: undernutrition impairs the immune system, suppressing immune functions that are fundamental to host protection. Undernutrition leading to impairment of immune function can be due to insufficient intake of energy and macronutrients and/or due to deficiencies in specific micronutrients. Often these occur in combination. Nutrients that have been demonstrated (in either animal or human studies) to be required for the immune system to function efficiently include essential amino acids, the essential fatty acid linoleic acid, vitamin A, folic acid, vitamin B6, vitamin B12, vitamin C, vitamin E, Zn, Cu, Fe and Se. Practically all forms of immunity may be affected by deficiencies in one or more of these nutrients. Animal and human studies have demonstrated that adding the deficient nutrient back to the diet can restore immune function and resistance to infection. Among the nutrients studied most in this regard are vitamin E and Zn. Increasing intakes of some nutrients above habitual and recommended levels can enhance some aspects of immune function. However, excess amounts of some nutrients also impair immune function. There is increasing evidence that probiotic bacteria improve host immune function. The effect of enhancing immune function on host resistance to infection in healthy individuals is not clear.
Doerfler, Phillip A.; Todd, Adrian G.; Clément, Nathalie; Falk, Darin J.; Nayak, Sushrusha; Herzog, Roland W.; Byrne, Barry J.
2016-01-01
Pompe disease is a progressive neuromuscular disorder caused by lysosomal accumulation of glycogen from a deficiency in acid alpha-glucosidase (GAA). Replacement of the missing enzyme is available by repeated protein infusions; however, efficacy is limited by immune response and inability to restore enzymatic function in the central nervous system. An alternative therapeutic option is adeno-associated virus (AAV)-mediated gene therapy, which results in widespread gene transfer and prolonged transgene expression. Both enzyme replacement therapy (ERT) and gene therapy can elicit anti-GAA immune reactions that dampen their effectiveness and pose life-threatening risks to patient safety. To modulate the immune responses related to gene therapy, we show that a human codon-optimized GAA (coGAA) driven by a liver-specific promoter (LSP) using AAV9 is capable of promoting immune tolerance in a Gaa−/− mouse model. Copackaging AAV9-LSP-coGAA with the tissue-restricted desmin promoter (AAV9-DES-coGAA) demonstrates the necessary cell autonomous expression in cardiac muscle, skeletal muscle, peripheral nerve, and the spinal cord. Simultaneous high-level expression in liver led to the expansion of GAA-specific regulatory T-cells (Tregs) and induction of immune tolerance. Transfer of Tregs into naïve recipients prevented pathogenic allergic reactions after repeated ERT challenges. Copackaged AAV9 also attenuated preexisting humoral and cellular immune responses, which enhanced the biochemical correction. Our data present a therapeutic design in which simultaneous administration of two copackaged AAV constructs may provide therapeutic benefit and resolve immune reactions in the treatment of multisystem disorders. PMID:26603344
An evolving new paradigm: endothelial cells – conditional innate immune cells
2013-01-01
Endothelial cells (ECs) are a heterogeneous population that fulfills many physiological processes. ECs also actively participate in both innate and adaptive immune responses. ECs are one of the first cell types to detect foreign pathogens and endogenous metabolite-related danger signals in the bloodstream, in which ECs function as danger signal sensors. Treatment with lipopolysaccharide activates ECs, causing the production of pro-inflammatory cytokines and chemokines, which amplify the immune response by recruiting immune cells. Thus, ECs function as immune/inflammation effectors and immune cell mobilizers. ECs also induce cytokine production by immune cells, in which ECs function as immune regulators either by activating or suppressing immune cell function. In addition, under certain conditions, ECs can serve as antigen presenting cells (antigen presenters) by expressing both MHC I and II molecules and presenting endothelial antigens to T cells. These facts along with the new concept of endothelial plasticity suggest that ECs are dynamic cells that respond to extracellular environmental changes and play a meaningful role in immune system function. Based on these novel EC functions, we propose a new paradigm that ECs are conditional innate immune cells. This paradigm provides a novel insight into the functions of ECs in inflammatory/immune pathologies. PMID:23965413
An evolving new paradigm: endothelial cells--conditional innate immune cells.
Mai, Jietang; Virtue, Anthony; Shen, Jerry; Wang, Hong; Yang, Xiao-Feng
2013-08-22
Endothelial cells (ECs) are a heterogeneous population that fulfills many physiological processes. ECs also actively participate in both innate and adaptive immune responses. ECs are one of the first cell types to detect foreign pathogens and endogenous metabolite-related danger signals in the bloodstream, in which ECs function as danger signal sensors. Treatment with lipopolysaccharide activates ECs, causing the production of pro-inflammatory cytokines and chemokines, which amplify the immune response by recruiting immune cells. Thus, ECs function as immune/inflammation effectors and immune cell mobilizers. ECs also induce cytokine production by immune cells, in which ECs function as immune regulators either by activating or suppressing immune cell function. In addition, under certain conditions, ECs can serve as antigen presenting cells (antigen presenters) by expressing both MHC I and II molecules and presenting endothelial antigens to T cells. These facts along with the new concept of endothelial plasticity suggest that ECs are dynamic cells that respond to extracellular environmental changes and play a meaningful role in immune system function. Based on these novel EC functions, we propose a new paradigm that ECs are conditional innate immune cells. This paradigm provides a novel insight into the functions of ECs in inflammatory/immune pathologies.
Large-Scale Culture and Genetic Modification of Human Natural Killer Cells for Cellular Therapy.
Lapteva, Natalia; Parihar, Robin; Rollins, Lisa A; Gee, Adrian P; Rooney, Cliona M
2016-01-01
Recent advances in methods for the ex vivo expansion of human natural killer (NK) cells have facilitated the use of these powerful immune cells in clinical protocols. Further, the ability to genetically modify primary human NK cells following rapid expansion allows targeting and enhancement of their immune function. We have successfully adapted an expansion method for primary NK cells from peripheral blood mononuclear cells or from apheresis products in gas permeable rapid expansion devices (G-Rexes). Here, we describe an optimized protocol for rapid and robust NK cell expansion as well as a method for highly efficient retroviral transduction of these ex vivo expanded cells. These methodologies are good manufacturing practice (GMP) compliant and could be used for clinical-grade product manufacturing.
The application of immune genetic algorithm in main steam temperature of PID control of BP network
NASA Astrophysics Data System (ADS)
Li, Han; Zhen-yu, Zhang
In order to overcome the uncertainties, large delay, large inertia and nonlinear property of the main steam temperature controlled object in the power plant, a neural network intelligent PID control system based on immune genetic algorithm and BP neural network is designed. Using the immune genetic algorithm global search optimization ability and good convergence, optimize the weights of the neural network, meanwhile adjusting PID parameters using BP network. The simulation result shows that the system is superior to conventional PID control system in the control of quality and robustness.
The effects of sex hormones on immune function: a meta-analysis.
Foo, Yong Zhi; Nakagawa, Shinichi; Rhodes, Gillian; Simmons, Leigh W
2017-02-01
The effects of sex hormones on immune function have received much attention, especially following the proposal of the immunocompetence handicap hypothesis. Many studies, both experimental and correlational, have been conducted to test the relationship between immune function and the sex hormones testosterone in males and oestrogen in females. However, the results are mixed. We conducted four cross-species meta-analyses to investigate the relationship between sex hormones and immune function: (i) the effect of testosterone manipulation on immune function in males, (ii) the correlation between circulating testosterone level and immune function in males, (iii) the effect of oestrogen manipulation on immune function in females, and (iv) the correlation between circulating oestrogen level and immune function in females. The results from the experimental studies showed that testosterone had a medium-sized immunosuppressive effect on immune function. The effect of oestrogen, on the other hand, depended on the immune measure used. Oestrogen suppressed cell-mediated immune function while reducing parasite loads. The overall correlation (meta-analytic relationship) between circulating sex hormone level and immune function was not statistically significant for either testosterone or oestrogen despite the power of meta-analysis. These results suggest that correlational studies have limited value for testing the effects of sex hormones on immune function. We found little evidence of publication bias in the four data sets using indirect tests. There was a weak and positive relationship between year of publication and effect size for experimental studies of testosterone that became non-significant after we controlled for castration and immune measure, suggesting that the temporal trend was due to changes in these moderators over time. Graphical analyses suggest that the temporal trend was due to an increased use of cytokine measures across time. We found substantial heterogeneity in effect sizes, except in correlational studies of testosterone, even after we accounted for the relevant random and fixed factors. In conclusion, our results provide good evidence that testosterone suppresses immune function and that the effect of oestrogen varies depending on the immune measure used. © 2016 Cambridge Philosophical Society.
Previte, Dana M; O'Connor, Erin C; Novak, Elizabeth A; Martins, Christina P; Mollen, Kevin P; Piganelli, Jon D
2017-01-01
The immune system is necessary for protecting against various pathogens. However, under certain circumstances, self-reactive immune cells can drive autoimmunity, like that exhibited in type 1 diabetes (T1D). CD4+ T cells are major contributors to the immunopathology in T1D, and in order to drive optimal T cell activation, third signal reactive oxygen species (ROS) must be present. However, the role ROS play in mediating this process remains to be further understood. Recently, cellular metabolic programs have been shown to dictate the function and fate of immune cells, including CD4+ T cells. During activation, CD4+ T cells must transition metabolically from oxidative phosphorylation to aerobic glycolysis to support proliferation and effector function. As ROS are capable of modulating cellular metabolism in other models, we sought to understand if blocking ROS also regulates CD4+ T cell activation and effector function by modulating T cell metabolism. To do so, we utilized an ROS scavenging and potent antioxidant manganese metalloporphyrin (MnP). Our results demonstrate that redox modulation during activation regulates the mTOR/AMPK axis by maintaining AMPK activation, resulting in diminished mTOR activation and reduced transition to aerobic glycolysis in diabetogenic splenocytes. These results correlated with decreased Myc and Glut1 upregulation, reduced glucose uptake, and diminished lactate production. In an adoptive transfer model of T1D, animals treated with MnP demonstrated delayed diabetes progression, concurrent with reduced CD4+ T cell activation. Our results demonstrate that ROS are required for driving and sustaining T cell activation-induced metabolic reprogramming, and further support ROS as a target to minimize aberrant immune responses in autoimmunity.
Spencer, Monique E; Jain, Alka; Matteini, Amy; Beamer, Brock A; Wang, Nae-Yuh; Leng, Sean X; Punjabi, Naresh M; Walston, Jeremy D; Fedarko, Neal S
2010-08-01
Neopterin, a GTP metabolite expressed by macrophages, is a marker of immune activation. We hypothesize that levels of this serum marker alter with donor age, reflecting increased chronic immune activation in normal aging. In addition to age, we assessed gender, race, body mass index (BMI), and percentage of body fat (%fat) as potential covariates. Serum was obtained from 426 healthy participants whose age ranged from 18 to 87 years. Anthropometric measures included %fat and BMI. Neopterin concentrations were measured by competitive ELISA. The paired associations between neopterin and age, BMI, or %fat were analyzed by Spearman's correlation or by linear regression of log-transformed neopterin, whereas overall associations were modeled by multiple regression of log-transformed neopterin as a function of age, gender, race, BMI, %fat, and interaction terms. Across all participants, neopterin exhibited a positive association with age, BMI, and %fat. Multiple regression modeling of neopterin in women and men as a function of age, BMI, and race revealed that each covariate contributed significantly to neopterin values and that optimal modeling required an interaction term between race and BMI. The covariate %fat was highly correlated with BMI and could be substituted for BMI to yield similar regression coefficients. The association of age and gender with neopterin levels and their modification by race, BMI, or %fat reflect the biology underlying chronic immune activation and perhaps gender differences in disease incidence, morbidity, and mortality.
Laguía-Becher, Melina; Martín, Valentina; Kraemer, Mauricio; Corigliano, Mariana; Yacono, María L; Goldman, Alejandra; Clemente, Marina
2010-07-15
Codon optimization and subcellular targeting were studied with the aim to increase the expression levels of the SAG178-322 antigen of Toxoplasma gondii in tobacco leaves. The expression of the tobacco-optimized and native versions of the SAG1 gene was explored by transient expression from the Agrobacterium tumefaciens binary expression vector, which allows targeting the recombinant protein to the endoplasmic reticulum (ER) and the apoplast. Finally, mice were subcutaneously and orally immunized with leaf extracts-SAG1 and the strategy of prime boost with rSAG1 expressed in Escherichia coli was used to optimize the oral immunization with leaf extracts-SAG1. Leaves agroinfiltrated with an unmodified SAG1 gene accumulated 5- to 10-fold more than leaves agroinfiltrated with a codon-optimized SAG1 gene. ER localization allowed the accumulation of higher levels of native SAG1. However, no significant differences were observed between the mRNA accumulations of the different versions of SAG1. Subcutaneous immunization with leaf extracts-SAG1 (SAG1) protected mice against an oral challenge with a non-lethal cyst dose, and this effect could be associated with the secretion of significant levels of IFN-gamma. The protection was increased when mice were ID boosted with rSAG1 (SAG1+boost). This group elicited a significant Th1 humoral and cellular immune response characterized by high levels of IFN-gamma. In an oral immunization assay, the SAG1+boost group showed a significantly lower brain cyst burden compared to the rest of the groups. Transient agroinfiltration was useful for the expression of all of the recombinant proteins tested. Our results support the usefulness of endoplasmic reticulum signal peptides in enhancing the production of recombinant proteins meant for use as vaccines. The results showed that this plant-produced protein has potential for use as vaccine and provides a potential means for protecting humans and animals against toxoplasmosis.
Vij, Rajesh; Lin, Zhonghua; Chiang, Nancy; Vernes, Jean-Michel; Storek, Kelly M; Park, Summer; Chan, Joyce; Meng, Y Gloria; Comps-Agrar, Laetitia; Luan, Peng; Lee, Sophia; Schneider, Kellen; Bevers, Jack; Zilberleyb, Inna; Tam, Christine; Koth, Christopher M; Xu, Min; Gill, Avinash; Auerbach, Marcy R; Smith, Peter A; Rutherford, Steven T; Nakamura, Gerald; Seshasayee, Dhaya; Payandeh, Jian; Koerber, James T
2018-05-08
Outer membrane proteins (OMPs) in Gram-negative bacteria are essential for a number of cellular functions including nutrient transport and drug efflux. Escherichia coli BamA is an essential component of the OMP β-barrel assembly machinery and a potential novel antibacterial target that has been proposed to undergo large (~15 Å) conformational changes. Here, we explored methods to isolate anti-BamA monoclonal antibodies (mAbs) that might alter the function of this OMP and ultimately lead to bacterial growth inhibition. We first optimized traditional immunization approaches but failed to identify mAbs that altered cell growth after screening >3000 hybridomas. We then developed a "targeted boost-and-sort" strategy that combines bacterial cell immunizations, purified BamA protein boosts, and single hybridoma cell sorting using amphipol-reconstituted BamA antigen. This unique workflow improves the discovery efficiency of FACS + mAbs by >600-fold and enabled the identification of rare anti-BamA mAbs with bacterial growth inhibitory activity in the presence of a truncated lipopolysaccharide layer. These mAbs represent novel tools for dissecting the BamA-mediated mechanism of β-barrel folding and our workflow establishes a new template for the efficient discovery of novel mAbs against other highly dynamic membrane proteins.
Integrative medicine and human health - the role of pre-, pro- and synbiotics
2012-01-01
Western lifestyle is associated with a sustained low grade increase in inflammation -increased levels of endotoxin in the body and increased activation of Toll-like receptors and neutrophils, which leads to impaired immunity and reduced resistance to disease, changes which might explain the epidemic of chronic diseases spreading around the globe. The immune system cannot function properly without access to bacteria and raw plants, rich not only in bacteria but also in plant fibre, antioxidants, healthy fats and numerous other nutrients. Modern food technology with plant breeding, separation, condensation of food ingredients, heating, freezing, drying, irradiation, microwaving, are effective tool to counteract optimal immune function, and suspected to be a leading cause of so called Western diseases. Supply of pre-, pro-, and synbiotics have sometimes proved to be effective tools to counteract, especially acute diseases, but have often failed, especially in chronic diseases. Thousands of factors contribute to unhealth and numerous alterations in life style and food habits are often needed, in order to prevent and cure “treatment-resistant” chronic diseases. Such alterations include avoiding processed foods rich in pro-inflammatory molecules, but also a focus on consuming substantial amounts of foods with documented anti-inflammatory effects, often raw and fresh green vegetables and tubers such as turmeric/curcumin. PMID:23369440
Effects of Alcohol on Tumor Growth, Metastasis, Immune Response, and Host Survival
Meadows, Gary G.; Zhang, Hui
2015-01-01
Most research involving alcohol and cancer concerns the relationship between alcohol consumption and cancer risk and the mechanisms of carcinogenesis. This review relates the amount and duration of alcohol intake in humans and in animal models of cancer to tumor growth, angiogenesis, invasion, metastasis, immune response, and host survival in specific types and subtypes of cancer. Research on the influence of alcohol drinking on human cancer patients is limited. Although there is more information in animal models of cancer, many aspects still are ill defined. More research is needed to define the mechanisms that underlie the role of alcohol on cancer progression in both animals and humans. Activation of the immune system can play a positive role in keeping cancer under control, but this also can facilitate cancer progression. Additionally, a functional immune system is required for cancer patients to achieve an optimal response to conventional chemotherapy. Insight into the underlying mechanisms of these interactions could lead to effective immunotherapeutic approaches to treat alcoholics with cancer. Defining the epigenetic mechanisms that modulate cancer progression also has great potential for the development of new treatment options not only for treating alcoholics with cancer but also for treating other alcohol-induced diseases. PMID:26695753
Metabolite-Sensing G Protein-Coupled Receptors-Facilitators of Diet-Related Immune Regulation.
Tan, Jian K; McKenzie, Craig; Mariño, Eliana; Macia, Laurence; Mackay, Charles R
2017-04-26
Nutrition and the gut microbiome regulate many systems, including the immune, metabolic, and nervous systems. We propose that the host responds to deficiency (or sufficiency) of dietary and bacterial metabolites in a dynamic way, to optimize responses and survival. A family of G protein-coupled receptors (GPCRs) termed the metabolite-sensing GPCRs bind to various metabolites and transmit signals that are important for proper immune and metabolic functions. Members of this family include GPR43, GPR41, GPR109A, GPR120, GPR40, GPR84, GPR35, and GPR91. In addition, bile acid receptors such as GPR131 (TGR5) and proton-sensing receptors such as GPR65 show similar features. A consistent feature of this family of GPCRs is that they provide anti-inflammatory signals; many also regulate metabolism and gut homeostasis. These receptors represent one of the main mechanisms whereby the gut microbiome affects vertebrate physiology, and they also provide a link between the immune and metabolic systems. Insufficient signaling through one or more of these metabolite-sensing GPCRs likely contributes to human diseases such as asthma, food allergies, type 1 and type 2 diabetes, hepatic steatosis, cardiovascular disease, and inflammatory bowel diseases.
Khader, Shabaana A.; Rangel-Moreno, Javier; Fountain, Jeffrey J.; Martino, Cynthia A; Reiley, William W; Pearl, John E.; Winslow, Gary M; Woodland, David L; Randall, Troy D; Cooper, Andrea M.
2009-01-01
Mycobacterium tuberculosis infection results in the generation of protective cellular immunity and formation of granulomatous structures in the lung. CXC chemokine ligand (CXCL)-13, CC chemokine ligand (CCL)-21 and CCL19 are constitutively expressed in the secondary lymphoid organs and play a dominant role in the homing of lymphocytes and dendritic cells. Although it is known that dendritic cell transport of M. tuberculosis from the lung to the draining lymph node is dependent on CCL19/CCL21, we show here that CCL19/CCL21 is also important for the accumulation of antigen-specific IFNγ-producing T cells in the lung, development of the granuloma, and control of mycobacteria. Importantly, we also show that CXCL13 is not required for generation of IFNγ responses, but is essential for the spatial arrangement of lymphocytes within granulomas, optimal activation of phagocytes and subsequent control of mycobacterial growth. Further, we show that these chemokines are also induced in the lung during the early immune responses following pulmonary M. tuberculosis infection. These results demonstrate that homeostatic chemokines perform distinct functions that cooperate to mediate effective expression of immunity against M. tuberculosis infection. PMID:19933855
Striking the right immunological balance prevents progression of tuberculosis.
Vyas, Shachi Pranjal; Goswami, Ritobrata
2017-12-01
Tuberculosis (TB) caused by infection with Mycobacterium tuberculosis (Mtb) is a major burden for human health worldwide. Current standard treatments for TB require prolonged administration of antimycobacterial drugs leading to exaggerated inflammation and tissue damage. This can result in the reactivation of latent TB culminating in TB progression. Thus, there is an unmet need to develop therapies that would shorten the duration of anti-TB treatment and to induce optimal protective immune responses to control the spread of mycobacterial infection with minimal lung pathology. Granulomata is the hallmark structure formed by the organized accumulation of immune cells including macrophages, natural killer cells, dendritic cells, neutrophils, T cells, and B cells to the site of Mtb infection. It safeguards the host by containing Mtb in latent form. However, granulomata can undergo caseation and contribute to the reactivation of latent TB, if the immune responses developed to fight mycobacterial infection are not properly controlled. Thus, an optimal balance between innate and adaptive immune cells might play a vital role in containing mycobacteria in latent form for prolonged periods and prevent the spread of Mtb infection from one individual to another. Optimal and well-regulated immune responses against Mycobacterium tuberculosis may help to prevent the reactivation of latent TB. Moreover, therapies targeting balanced immune responses could help to improve treatment outcomes among latently infected TB patients and thereby limit the dissemination of mycobacterial infection.
Kaulfuß, Meike; Wensing, Ina; Windmann, Sonja; Hrycak, Camilla Patrizia; Bayer, Wibke
2017-02-06
In the Friend retrovirus mouse model we developed potent adenovirus-based vaccines that were designed to induce either strong Friend virus GagL 85-93 -specific CD8 + T cell or antibody responses, respectively. To optimize the immunization outcome we evaluated vaccination strategies using combinations of these vaccines. While the vaccines on their own confer strong protection from a subsequent Friend virus challenge, the simple combination of the vaccines for the establishment of an optimized immunization protocol did not result in a further improvement of vaccine effectivity. We demonstrate that the co-immunization with GagL 85-93 /leader-gag encoding vectors together with envelope-encoding vectors abrogates the induction of GagL 85-93 -specific CD8 + T cells, and in successive immunization protocols the immunization with the GagL 85-93 /leader-gag encoding vector had to precede the immunization with an envelope encoding vector for the efficient induction of GagL 85-93 -specific CD8 + T cells. Importantly, the antibody response to envelope was in fact enhanced when the mice were adenovirus-experienced from a prior immunization, highlighting the expedience of this approach. To circumvent the immunosuppressive effect of envelope on immune responses to simultaneously or subsequently administered immunogens, we developed a two immunizations-based vaccination protocol that induces strong immune responses and confers robust protection of highly Friend virus-susceptible mice from a lethal Friend virus challenge.
Sekar, Ashokkumar; Kim, Myoungjin; Jeong, Hyeong Chul; Kim, Keun
2018-05-28
Lactobacillus pentosus K1-23 was selected from among 25 lactic acid bacterial strains owing to its high inhibitory activity against several pathogenic bacteria, including Escherichia coli , Salmonella typhimurium , S. gallinarum , Staphylococcus aureus , Pseudomonas aeruginosa , Clostridium perfringens , and Listeria monocytogenes . Additionally, among 13 strains of Aureobasidium spp., A. pullulans NRRL 58012 was shown to produce the highest amount of β-glucan (15.45 ± 0.07%) and was selected. Next, the optimal conditions for a solid-phase mixed culture with these two different microorganisms (one bacterium and one yeast) were determined. The optimal inoculum sizes for L. pentosus and A. pullulans were 1% and 5%, respectively. The appropriate inoculation time for L. pentosus K1-23 was 3 days after the inoculation of A. pullulans to initiate fermentation. The addition of 0.5% corn steep powder and 0.1% FeSO₄ to the basal medium resulted in the increased production of lactic acid bacterial cells and β-glucan. The following optimal conditions for solid-phase mixed culture were also statistically determined by using the response surface method: 37.84°C, pH 5.25, moisture content of 60.82%, and culture time of 6.08 days for L. pentosus ; and 24.11°C, pH 5.65, moisture content of 60.08%, and culture time of 5.71 days for A. pullulans. Using the predicted optimal conditions, the experimental production values of L. pentosus cells and β-glucan were 3.15 ± 0.10 × 10⁸ CFU/g and 13.41 ± 0.04%, respectively. This mixed culture may function as a highly efficient antibiotic substitute based on the combined action of its anti-pathogenic bacterial and immune-enhancing activities.
Optimal Solution for an Engineering Applications Using Modified Artificial Immune System
NASA Astrophysics Data System (ADS)
Padmanabhan, S.; Chandrasekaran, M.; Ganesan, S.; patan, Mahamed Naveed Khan; Navakanth, Polina
2017-03-01
An Engineering optimization leads a essential role in several engineering application areas like process design, product design, re-engineering and new product development, etc. In engineering, an awfully best answer is achieved by comparison to some completely different solutions by utilization previous downside information. An optimization algorithms provide systematic associate degreed economical ways that within which of constructing and comparison new design solutions so on understand at best vogue, thus on best solution efficiency and acquire the foremost wonderful design impact. In this paper, a new evolutionary based Modified Artificial Immune System (MAIS) algorithm used to optimize an engineering application of gear drive design. The results are compared with existing design.
Choline is required in the diet of lactating dams to maintain maternal immune function.
Dellschaft, Neele S; Ruth, Megan R; Goruk, Susan; Lewis, Erin D; Richard, Caroline; Jacobs, René L; Curtis, Jonathan M; Field, Catherine J
2015-06-14
Choline demands during lactation are high; however, detailed knowledge is lacking regarding the optimal dietary intake during this critical period. The present study was designed to determine the effects of varying intakes of choline on maternal immune function during lactation. Primiparous Sprague-Dawley rats (n 42) were randomised 24-48 h before birth and fed the following diets for 21 d: choline-devoid (0 g choline/kg diet; D, n 10); 1·0 g choline/kg diet (C1, n 11); 2·5 g choline/kg diet (C2·5, n 10); 6·2 g choline/kg diet (C6, n 11). Splenocytes were isolated and stimulated ex vivo with concanavalin A, lipopolysaccharide (LPS) or CD3/CD28. D and C6 dams had lower final body weight, spleen weight and average pup weight than C1 dams (P< 0·05). There was a linear relationship between free choline concentration in pup stomach contents with maternal dietary choline content (P< 0·001, r² 0·415). Compared with C1 and C2·5, D spleens had a lower proportion of mature T cells and activated suppressor cells, and this resulted in reduced cytokine production after stimulation (P< 0·05). Feeding 6·2 g choline/kg diet resulted in a higher cytokine production after stimulation with CD3/CD28 (P< 0·05). Except for a higher IL-6 production after LPS stimulation with cells from the C2·5 dams (P< 0·05), there were no differences between the C1 and C2·5 dams. For the first time, we show that feeding lactating mothers a diet free of choline has substantial effects on their immune function and on offspring growth. Additionally, excess dietary choline had adverse effects on maternal and offspring body weight but only minimal effects on maternal immune function.
A Mathematical Tumor Model with Immune Resistance and Drug Therapy: An Optimal Control Approach
De Pillis, L. G.; Radunskaya, A.
2001-01-01
We present a competition model of cancer tumor growth that includes both the immune system response and drug therapy. This is a four-population model that includes tumor cells, host cells, immune cells, and drug interaction. We analyze the stability of the drug-free equilibria with respect to the immune response in order to look for target basins of attraction. One of our goals was to simulate qualitatively the asynchronous tumor-drug interaction known as “Jeffs phenomenon.” The model we develop is successful in generating this asynchronous response behavior. Our other goal was to identify treatment protocols that could improve standard pulsed chemotherapymore » regimens. Using optimal control theory with constraints and numerical simulations, we obtain new therapy protocols that we then compare with traditional pulsed periodic treatment. The optimal control generated therapies produce larger oscillations in the tumor population over time. However, by the end of the treatment period, total tumor size is smaller than that achieved through traditional pulsed therapy, and the normal cell population suffers nearly no oscillations.« less
A Mathematical Tumor Model with Immune Resistance and Drug Therapy: An Optimal Control Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Pillis, L. G.; Radunskaya, A.
We present a competition model of cancer tumor growth that includes both the immune system response and drug therapy. This is a four-population model that includes tumor cells, host cells, immune cells, and drug interaction. We analyze the stability of the drug-free equilibria with respect to the immune response in order to look for target basins of attraction. One of our goals was to simulate qualitatively the asynchronous tumor-drug interaction known as “Jeffs phenomenon.” The model we develop is successful in generating this asynchronous response behavior. Our other goal was to identify treatment protocols that could improve standard pulsed chemotherapymore » regimens. Using optimal control theory with constraints and numerical simulations, we obtain new therapy protocols that we then compare with traditional pulsed periodic treatment. The optimal control generated therapies produce larger oscillations in the tumor population over time. However, by the end of the treatment period, total tumor size is smaller than that achieved through traditional pulsed therapy, and the normal cell population suffers nearly no oscillations.« less
Bouvier, Isabelle; Jusforgues-Saklani, Hélène; Lim, Annick; Lemaître, Fabrice; Lemercier, Brigitte; Auriau, Charlotte; Nicola, Marie-Anne; Leroy, Sandrine; Law, Helen K.; Bandeira, Antonio; Moon, James J.; Bousso, Philippe; Albert, Matthew L.
2011-01-01
Delivery of cell-associated antigen represents an important strategy for vaccination. While many experimental models have been developed in order to define the critical parameters for efficient cross-priming, few have utilized quantitative methods that permit the study of the endogenous repertoire. Comparing different strategies of immunization, we report that local delivery of cell-associated antigen results in delayed T cell cross-priming due to the increased time required for antigen capture and presentation. In comparison, delivery of disseminated antigen resulted in rapid T cell priming. Surprisingly, local injection of cell-associated antigen, while slower, resulted in the differentiation of a more robust, polyfunctional, effector response. We also evaluated the combination of cell-associated antigen with poly I:C delivery and observed an immunization route-specific effect regarding the optimal timing of innate immune stimulation. These studies highlight the importance of considering the timing and persistence of antigen presentation, and suggest that intradermal injection with delayed adjuvant delivery is the optimal strategy for achieving CD8+ T cell cross-priming. PMID:22566860
Evasion of adaptive and innate immune response mechanisms by γ-herpesviruses
Feng, Pinghui; Moses, Ashlee; Früh, Klaus
2015-01-01
γ-Herpesviral immune evasion mechanisms are optimized to support the acute, lytic and the longterm, latent phase of infection. During acute infection, specific immune modulatory proteins limit, but also exploit, the antiviral activities of cell intrinsic innate immune responses as well as those of innate and adaptive immune cells. During latent infection, a restricted gene expression program limits immune targeting and cis-acting mechanisms to reduce the antigen presentation as well as antigenicity of latency-associated proteins. Here, we will review recent progress in our understanding of γ-herpesviral immune evasion strategies. PMID:23735334
Findings from case studies of state and local immunization programs.
Fairbrother, G; Kuttner, H; Miller, W; Hogan, R; McPhillips, H; Johnson, K A; Alexander, E R
2000-10-01
As part of its examination of federal support for immunization services during the past decade, the Institute of Medicine (IOM) Committee on Immunization Finance Policies and Practices (IFPP) commissioned eight case studies of the states of Alabama, Maine, Michigan, New Jersey, North Carolina, Texas, and Washington; and a two-county study of Los Angeles and San Diego in California. Specifically, the IOM Committee and these studies reviewed the use of Section 317 grants by the states. Section 317 is a discretionary grant program that supports vaccine purchase and other immunization-related program activities. These studies afforded the Committee an in-depth look at local policy choices, the performance of immunization programs, and federal and state spending for immunization during the past decade. The case-study reports were developed through interviews with state and local health department officials, including immunization program directors, Medicaid agency staff, budget analysts, and Centers for Disease Control and Prevention public health advisors to the jurisdiction. Other sources included state and federal administrative records and secondary sources on background factors and state-level trends. The case studies were supplemented by site visits to Detroit, Houston, Los Angeles, Newark, and San Diego. The nature of immunization "infrastructure" supported by the Section 317 program is shifting from primarily service delivery to a broader set of roles that puts the public effort at the head of a broad immunization partnership among public health, health financing, and other entities in both the public and private sectors. The rate and intensity of transition vary across the case-study areas. In the emerging pattern, service delivery increasingly takes place in the private sector and is related to managed care. "Infrastructure" is moving beyond supporting a core state staff and local health department service delivery to include such activities as immunization registries, quality improvement, and coordination with programs outside public health agencies. At the same time, the recent decline in federal Section 317 support is forcing difficult choices between old and new activities at the state and local levels. Immunization programs function as an organic component of the local health care financing and delivery systems of which they are a part. Immunization efforts are organized and conducted within distinctive state and local fiscal, economic, and health care contexts. Section 317 Financial Assistance grants, while playing a vital role in supporting immunization "infrastructure," have been too unstable and unpredictable to elicit the strategic planning, programming, and own-source spending that would be optimal for state and local programs. The predominant immunization function of state and local public health agencies is becoming assurance of age-appropriate immunization throughout the lifespan. To be successful in this emerging role, the health agencies must be supported with appropriate staffing, interagency collaboration, and clearly articulated authority.
Yu, Yun-Zhou; Ma, Yao; Xu, Wen-Hui; Wang, Shuang; Sun, Zhi-Wei
2015-08-01
DNA vaccines are generally weak stimulators of the immune system. Fortunately, their efficacy can be improved using a viral replicon vector or by the addition of immunostimulatory CpG motifs, although the design of these engineered DNA vectors requires optimization. Our results clearly suggest that multiple copies of three types of CpG motifs or combinations of various types of CpG motifs cloned into a viral replicon vector backbone with strong immunostimulatory activities on human PBMC are efficient adjuvants for these DNA vaccines to modulate and enhance protective immunity against anthrax, although modifications with these different CpG forms in vivo elicited inconsistent immune response profiles. Modification with more copies of CpG motifs elicited more potent adjuvant effects leading to the generation of enhanced immunity, which indicated a CpG motif dose-dependent enhancement of antigen-specific immune responses. Notably, the enhanced and/or synchronous adjuvant effects were observed in modification with combinations of two different types of CpG motifs, which provides not only a contribution to the knowledge base on the adjuvant activities of CpG motifs combinations but also implications for the rational design of optimal DNA vaccines with combinations of CpG motifs as "built-in" adjuvants. We describe an efficient strategy to design and optimize DNA vaccines by the addition of combined immunostimulatory CpG motifs in a viral replicon DNA plasmid to produce strong immune responses, which indicates that the CpG-modified viral replicon DNA plasmid may be desirable for use as vector of DNA vaccines.
Ntumngia, Francis B.; Schloegel, Jesse; Barnes, Samantha J.; McHenry, Amy M.; Singh, Sanjay; King, Christopher L.
2012-01-01
The Duffy binding protein (DBP) is a vital ligand for Plasmodium vivax blood-stage merozoite invasion, making the molecule an attractive vaccine candidate against vivax malaria. Similar to other blood-stage vaccine candidates, DBP allelic variation eliciting a strain-specific immunity may be a major challenge for development of a broadly effective vaccine against vivax malaria. To understand whether conserved epitopes can be the target of neutralizing anti-DBP inhibition, we generated a set of monoclonal antibodies to DBP and functionally analyzed their reactivity to a panel of allelic variants. Quantitative analysis by enzyme-linked immunosorbent assay (ELISA) determined that some monoclonal antibodies reacted strongly with epitopes conserved on all DBP variants tested, while reactivity of others was allele specific. Qualitative analysis characterized by anti-DBP functional inhibition using an in vitro erythrocyte binding inhibition assay indicated that there was no consistent correlation between the endpoint titers and functional inhibition. Some monoclonal antibodies were broadly inhibitory while inhibition of others varied significantly by target allele. These data demonstrate a potential for vaccine-elicited immunization to target conserved epitopes but optimization of DBP epitope target specificity and immunogenicity may be necessary for protection against diverse P. vivax strains. PMID:22215740
Ntumngia, Francis B; Schloegel, Jesse; Barnes, Samantha J; McHenry, Amy M; Singh, Sanjay; King, Christopher L; Adams, John H
2012-03-01
The Duffy binding protein (DBP) is a vital ligand for Plasmodium vivax blood-stage merozoite invasion, making the molecule an attractive vaccine candidate against vivax malaria. Similar to other blood-stage vaccine candidates, DBP allelic variation eliciting a strain-specific immunity may be a major challenge for development of a broadly effective vaccine against vivax malaria. To understand whether conserved epitopes can be the target of neutralizing anti-DBP inhibition, we generated a set of monoclonal antibodies to DBP and functionally analyzed their reactivity to a panel of allelic variants. Quantitative analysis by enzyme-linked immunosorbent assay (ELISA) determined that some monoclonal antibodies reacted strongly with epitopes conserved on all DBP variants tested, while reactivity of others was allele specific. Qualitative analysis characterized by anti-DBP functional inhibition using an in vitro erythrocyte binding inhibition assay indicated that there was no consistent correlation between the endpoint titers and functional inhibition. Some monoclonal antibodies were broadly inhibitory while inhibition of others varied significantly by target allele. These data demonstrate a potential for vaccine-elicited immunization to target conserved epitopes but optimization of DBP epitope target specificity and immunogenicity may be necessary for protection against diverse P. vivax strains.
Human Cytomegalovirus UL18 Utilizes US6 for Evading the NK and T-Cell Responses
Kim, Youngkyun; Park, Boyoun; Cho, Sunglim; Shin, Jinwook; Cho, Kwangmin; Jun, Youngsoo; Ahn, Kwangseog
2008-01-01
Human cytomegalovirus (HCMV) US6 glycoprotein inhibits TAP function, resulting in down-regulation of MHC class I molecules at the cell surface. Cells lacking MHC class I molecules are susceptible to NK cell lysis. HCMV expresses UL18, a MHC class I homolog that functions as a surrogate to prevent host cell lysis. Despite a high level of sequence and structural homology between UL18 and MHC class I molecules, surface expression of MHC class I, but not UL18, is down regulated by US6. Here, we describe a mechanism of action by which HCMV UL18 avoids attack by the self-derived TAP inhibitor US6. UL18 abrogates US6 inhibition of ATP binding by TAP and, thereby, restores TAP-mediated peptide translocation. In addition, UL18 together with US6 interferes with the physical association between MHC class I molecules and TAP that is required for optimal peptide loading. Thus, regardless of the recovery of TAP function, surface expression of MHC class I molecules remains decreased. UL18 represents a unique immune evasion protein that has evolved to evade both the NK and the T cell immune responses. PMID:18688275
Changes in Nutritional Status Impact Immune Cell Metabolism and Function.
Alwarawrah, Yazan; Kiernan, Kaitlin; MacIver, Nancie J
2018-01-01
Immune cell function and metabolism are closely linked. Many studies have now clearly demonstrated that alterations in cellular metabolism influence immune cell function and that, conversely, immune cell function determines the cellular metabolic state. Less well understood, however, are the effects of systemic metabolism or whole organism nutritional status on immune cell function and metabolism. Several studies have demonstrated that undernutrition is associated with immunosuppression, which leads to both increased susceptibility to infection and protection against several types of autoimmune disease, whereas overnutrition is associated with low-grade, chronic inflammation that increases the risk of metabolic and cardiovascular disease, promotes autoreactivity, and disrupts protective immunity. Here, we review the effects of nutritional status on immunity and highlight the effects of nutrition on circulating cytokines and immune cell populations in both human studies and mouse models. As T cells are critical members of the immune system, which direct overall immune response, we will focus this review on the influence of systemic nutritional status on T cell metabolism and function. Several cytokines and hormones have been identified which mediate the effects of nutrition on T cell metabolism and function through the expression and action of key regulatory signaling proteins. Understanding how T cells are sensitive to both inadequate and overabundant nutrients may enhance our ability to target immune cell metabolism and alter immunity in both malnutrition and obesity.
Sun, Xiaoqiang; Xian, Huifang; Tian, Shuo; Sun, Tingzhe; Qin, Yunfei; Zhang, Shoutao; Cui, Jun
2016-07-08
RIG-I is an essential receptor in the initiation of the type I interferon (IFN) signaling pathway upon viral infection. Although K63-linked ubiquitination plays an important role in RIG-I activation, the optimal modulation of conjugated and unanchored ubiquitination of RIG-I as well as its functional implications remains unclear. In this study, we determined that, in contrast to the RIG-I CARD domain, full-length RIG-I must undergo K63-linked ubiquitination at multiple sites to reach full activity. A systems biology approach was designed based on experiments using full-length RIG-I. Model selection for 7 candidate mechanisms of RIG-I ubiquitination inferred a hierarchical architecture of the RIG-I ubiquitination mode, which was then experimentally validated. Compared with other mechanisms, the selected hierarchical mechanism exhibited superior sensitivity and robustness in RIG-I-induced type I IFN activation. Furthermore, our model analysis and experimental data revealed that TRIM4 and TRIM25 exhibited dose-dependent synergism. These results demonstrated that the hierarchical mechanism of multi-site/type ubiquitination of RIG-I provides an efficient, robust and optimal synergistic regulatory module in antiviral immune responses.
Sun, Xiaoqiang; Xian, Huifang; Tian, Shuo; Sun, Tingzhe; Qin, Yunfei; Zhang, Shoutao; Cui, Jun
2016-01-01
RIG-I is an essential receptor in the initiation of the type I interferon (IFN) signaling pathway upon viral infection. Although K63-linked ubiquitination plays an important role in RIG-I activation, the optimal modulation of conjugated and unanchored ubiquitination of RIG-I as well as its functional implications remains unclear. In this study, we determined that, in contrast to the RIG-I CARD domain, full-length RIG-I must undergo K63-linked ubiquitination at multiple sites to reach full activity. A systems biology approach was designed based on experiments using full-length RIG-I. Model selection for 7 candidate mechanisms of RIG-I ubiquitination inferred a hierarchical architecture of the RIG-I ubiquitination mode, which was then experimentally validated. Compared with other mechanisms, the selected hierarchical mechanism exhibited superior sensitivity and robustness in RIG-I-induced type I IFN activation. Furthermore, our model analysis and experimental data revealed that TRIM4 and TRIM25 exhibited dose-dependent synergism. These results demonstrated that the hierarchical mechanism of multi-site/type ubiquitination of RIG-I provides an efficient, robust and optimal synergistic regulatory module in antiviral immune responses. PMID:27387525
NASA Astrophysics Data System (ADS)
Sun, Xiaoqiang; Xian, Huifang; Tian, Shuo; Sun, Tingzhe; Qin, Yunfei; Zhang, Shoutao; Cui, Jun
2016-07-01
RIG-I is an essential receptor in the initiation of the type I interferon (IFN) signaling pathway upon viral infection. Although K63-linked ubiquitination plays an important role in RIG-I activation, the optimal modulation of conjugated and unanchored ubiquitination of RIG-I as well as its functional implications remains unclear. In this study, we determined that, in contrast to the RIG-I CARD domain, full-length RIG-I must undergo K63-linked ubiquitination at multiple sites to reach full activity. A systems biology approach was designed based on experiments using full-length RIG-I. Model selection for 7 candidate mechanisms of RIG-I ubiquitination inferred a hierarchical architecture of the RIG-I ubiquitination mode, which was then experimentally validated. Compared with other mechanisms, the selected hierarchical mechanism exhibited superior sensitivity and robustness in RIG-I-induced type I IFN activation. Furthermore, our model analysis and experimental data revealed that TRIM4 and TRIM25 exhibited dose-dependent synergism. These results demonstrated that the hierarchical mechanism of multi-site/type ubiquitination of RIG-I provides an efficient, robust and optimal synergistic regulatory module in antiviral immune responses.
Management of Patients with Atopic Dermatitis: The Role of Emollient Therapy
Catherine Mack Correa, M.; Nebus, Judith
2012-01-01
Atopic dermatitis is a common inflammatory skin disorder that afflicts a growing number of young children. Genetic, immune, and environmental factors interact in a complex fashion to contribute to disease expression. The compromised stratum corneum found in atopic dermatitis leads to skin barrier dysfunction, which results in aggravation of symptoms by aeroallergens, microbes, and other insults. Infants—whose immune system and epidermal barrier are still developing—display a higher frequency of atopic dermatitis. Management of patients with atopic dermatitis includes maintaining optimal skin care, avoiding allergic triggers, and routinely using emollients to maintain a hydrated stratum corneum and to improve barrier function. Flares of atopic dermatitis are often managed with courses of topical corticosteroids or calcineurin inhibitors. This paper discusses the role of emollients in the management of atopic dermatitis, with particular emphasis on infants and young children. PMID:23008699
Huang, Chi-Wei; Wei, Chia-Cheng; Liao, Vivian Hsiu-Chuan
2014-01-01
Background Selenium (Se) is an important nutrient that carries out many biological processes including maintaining optimal immune function. Here, inorganic selenite (Se(IV)) was evaluated for its pathogen resistance and potential-associated factors in Caenorhabditis elegans. The immune effects of Se(IV) were investigated by examining the responses of C. elegans to Pseudomonas aerugonisa PA14 strain. Principal Findings Se(IV)-treated C. elegans showed increased survival under PA14 infection compared with untreated controls. The significant pathogen resistance of Se(IV) on C. elegans might not be attributed to the effects of Se(IV) on PA14 as Se(IV) showed no effect on bacterial quorum-sensing and virulence factors of PA14. This study showed that Se(IV) enhanced the expression of a gene pivotal for the innate immunity in C. elegans. The study found that the pathogen-resistant phenotypes contributed by Se(IV) was absent from the skn-1 mutant worms. Moreover, Se(IV) influenced the subcellular distribution of SKN-1/Nrf in C. elegans upon PA14 infection. Furthermore, Se(IV) increased mRNA levels of SKN-1 target genes (gst-4 and gcs-1). Conclusions This study found evidence of Se(IV) protecting C. elegans against P. aeruginosa PA14 infection by exerting effects on the innate immunity of C. elegans that is likely mediated via regulation of a SKN-1-dependent signaling pathway. PMID:25147937
A transcriptional serenAID: the role of noncoding RNAs in class switch recombination
Yewdell, William T.; Chaudhuri, Jayanta
2017-01-01
Abstract During an immune response, activated B cells may undergo class switch recombination (CSR), a molecular rearrangement that allows B cells to switch from expressing IgM and IgD to a secondary antibody heavy chain isotype such as IgG, IgA or IgE. Secondary antibody isotypes provide the adaptive immune system with distinct effector functions to optimally combat various pathogens. CSR occurs between repetitive DNA elements within the immunoglobulin heavy chain (Igh) locus, termed switch (S) regions and requires the DNA-modifying enzyme activation-induced cytidine deaminase (AID). AID-mediated DNA deamination within S regions initiates the formation of DNA double-strand breaks, which serve as biochemical beacons for downstream DNA repair pathways that coordinate the ligation of DNA breaks. Myriad factors contribute to optimal AID targeting; however, many of these factors also localize to genomic regions outside of the Igh locus. Thus, a current challenge is to explain the specific targeting of AID to the Igh locus. Recent studies have implicated noncoding RNAs in CSR, suggesting a provocative mechanism that incorporates Igh-specific factors to enable precise AID targeting. Here, we chronologically recount the rich history of noncoding RNAs functioning in CSR to provide a comprehensive context for recent and future discoveries. We present a model for the RNA-guided targeting of AID that attempts to integrate historical and recent findings, and highlight potential caveats. Lastly, we discuss testable hypotheses ripe for current experimentation, and explore promising ideas for future investigations. PMID:28535205
Cyclooxygenase-1 and -2 Play Contrasting Roles in Listeria-Stimulated Immunity.
Theisen, Erin; McDougal, Courtney E; Nakanishi, Masako; Stevenson, David M; Amador-Noguez, Daniel; Rosenberg, Daniel W; Knoll, Laura J; Sauer, John-Demian
2018-06-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase (COX) activity and are commonly used for pain relief and fever reduction. NSAIDs are used following childhood vaccinations and cancer immunotherapies; however, how NSAIDs influence the development of immunity following these therapies is unknown. We hypothesized that NSAIDs would modulate the development of an immune response to Listeria monocytogenes -based immunotherapy. Treatment of mice with the nonspecific COX inhibitor indomethacin impaired the generation of cell-mediated immunity. This phenotype was due to inhibition of the inducible COX-2 enzyme, as treatment with the COX-2-selective inhibitor celecoxib similarly inhibited the development of immunity. In contrast, loss of COX-1 activity improved immunity to L. monocytogenes Impairments in immunity were independent of bacterial burden, dendritic cell costimulation, or innate immune cell infiltrate. Instead, we observed that PGE 2 production following L. monocytogenes is critical for the formation of an Ag-specific CD8 + T cell response. Use of the alternative analgesic acetaminophen did not impair immunity. Taken together, our results suggest that COX-2 is necessary for optimal CD8 + T cell responses to L. monocytogenes , whereas COX-1 is detrimental. Use of pharmacotherapies that spare COX-2 activity and the production of PGE 2 like acetaminophen will be critical for the generation of optimal antitumor responses using L. monocytogenes . Copyright © 2018 by The American Association of Immunologists, Inc.
Computer-guided design of optimal microbial consortia for immune system modulation
Szabady, Rose L; Bhattarai, Shakti K; Olle, Bernat; Norman, Jason M; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Gerber, Georg K; Sander, Chris; Honda, Kenya
2018-01-01
Manipulation of the gut microbiota holds great promise for the treatment of diseases. However, a major challenge is the identification of therapeutically potent microbial consortia that colonize the host effectively while maximizing immunologic outcome. Here, we propose a novel workflow to select optimal immune-inducing consortia from microbiome compositicon and immune effectors measurements. Using published and newly generated microbial and regulatory T-cell (Treg) data from germ-free mice, we estimate the contributions of twelve Clostridia strains with known immune-modulating effect to Treg induction. Combining this with a longitudinal data-constrained ecological model, we predict the ability of every attainable and ecologically stable subconsortium in promoting Treg activation and rank them by the Treg Induction Score (TrIS). Experimental validation of selected consortia indicates a strong and statistically significant correlation between predicted TrIS and measured Treg. We argue that computational indexes, such as the TrIS, are valuable tools for the systematic selection of immune-modulating bacteriotherapeutics. PMID:29664397
Computer-guided design of optimal microbial consortia for immune system modulation.
Stein, Richard R; Tanoue, Takeshi; Szabady, Rose L; Bhattarai, Shakti K; Olle, Bernat; Norman, Jason M; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Gerber, Georg K; Sander, Chris; Honda, Kenya; Bucci, Vanni
2018-04-17
Manipulation of the gut microbiota holds great promise for the treatment of diseases. However, a major challenge is the identification of therapeutically potent microbial consortia that colonize the host effectively while maximizing immunologic outcome. Here, we propose a novel workflow to select optimal immune-inducing consortia from microbiome compositicon and immune effectors measurements. Using published and newly generated microbial and regulatory T-cell (T reg ) data from germ-free mice, we estimate the contributions of twelve Clostridia strains with known immune-modulating effect to T reg induction. Combining this with a longitudinal data-constrained ecological model, we predict the ability of every attainable and ecologically stable subconsortium in promoting T reg activation and rank them by the T reg Induction Score (TrIS). Experimental validation of selected consortia indicates a strong and statistically significant correlation between predicted TrIS and measured T reg . We argue that computational indexes, such as the TrIS, are valuable tools for the systematic selection of immune-modulating bacteriotherapeutics. © 2018, Stein et al.
Effects of Space Missions on the Human Immune System: A Meta-Analysis
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Barger, L. K.; Baldini, F.; Huff, D.
1995-01-01
Future spaceflight will require travelers to spend ever-increasing periods of time in microgravity. Optimal functioning of the immune system is of paramount importance for the health and performance of these travelers. A meta-analysis statistical procedure was used to analyze immune system data from crew members in United States and Soviet space missions from 8.5 to 140 days duration between 1968 and 1985. Ten immunological parameters (immunoglobulins A, G, M, D, white blood cell (WBC) count, number of lymphocytes, percent total lymphocytes, percent B lymphocytes, percent T lymphocytes, and lymphocyte reactivity to mitogen) were investigated using multifactorial, repeated measure analysis of variance. With the preflight level set at 100, WBC count increased to 154 +/- 14% (mean +/- SE; p less than or equal to 0.05) immediately after flight; there was a decrease in lymphocyte count (83 +/- 4%; p less than or equal to 0.05) and percent of total lymphocytes (69 +/- 1%; p less than or equal to 0.05) immediately after flight, with reduction in RNA synthesis to phytohemagglutinin (PHA) to 51 +/- 21% (p less than or equal to 0.05) and DNA synthesis to PHA to 61 +/- 8% (p less than or equal to 0.05) at the first postflight measurement. Thus, some cellular immunological functions are decreased significantly following spaceflight. More data are needed on astronauts' age, aerobic power output, and parameters of their exercise training program to determine if these immune system responses are due solely to microgravity exposure or perhaps to some other aspect of spaceflight.
MacPherson, Kathryn P; Sompol, Pradoldej; Kannarkat, George T; Chang, Jianjun; Sniffen, Lindsey; Wildner, Mary E; Norris, Christopher M; Tansey, Malú G
2017-06-01
Clinical and animal model studies have implicated inflammation and peripheral immune cell responses in the pathophysiology of Alzheimer's disease (AD). Peripheral immune cells including T cells circulate in the cerebrospinal fluid (CSF) of healthy adults and are found in the brains of AD patients and AD rodent models. Blocking entry of peripheral macrophages into the CNS was reported to increase amyloid burden in an AD mouse model. To assess inflammation in the 5xFAD (Tg) mouse model, we first quantified central and immune cell profiles in the deep cervical lymph nodes and spleen. In the brains of Tg mice, activated (MHCII + , CD45 high , and Ly6C high ) myeloid-derived CD11b + immune cells are decreased while CD3 + T cells are increased as a function of age relative to non-Tg mice. These immunological changes along with evidence of increased mRNA levels for several cytokines suggest that immune regulation and trafficking patterns are altered in Tg mice. Levels of soluble Tumor Necrosis Factor (sTNF) modulate blood-brain barrier (BBB) permeability and are increased in CSF and brain parenchyma post-mortem in AD subjects and Tg mice. We report here that in vivo peripheral administration of XPro1595, a novel biologic that sequesters sTNF into inactive heterotrimers, reduced the age-dependent increase in activated immune cells in Tg mice, while decreasing the overall number of CD4 + T cells. In addition, XPro1595 treatment in vivo rescued impaired long-term potentiation (LTP) measured in brain slices in association with decreased Aβ plaques in the subiculum. Selective targeting of sTNF may modulate brain immune cell infiltration, and prevent or delay neuronal dysfunction in AD. Immune cells and cytokines perform specialized functions inside and outside the brain to maintain optimal brain health; but the extent to which their activities change in response to neuronal dysfunction and degeneration is not well understood. Our findings indicate that neutralization of sTNF reduced the age-dependent increase in activated immune cells in Tg mice, while decreasing the overall number of CD4 + T cells. In addition, impaired long-term potentiation (LTP) was rescued by XPro1595 in association with decreased hippocampal Aβ plaques. Selective targeting of sTNF holds translational potential to modulate brain immune cell infiltration, dampen neuroinflammation, and prevent or delay neuronal dysfunction in AD. Copyright © 2017 Elsevier Inc. All rights reserved.
Mycobacterium tuberculosis impairs dendritic cell functions through the serine hydrolase Hip1
Madan-Lala, Ranjna; Sia, Jonathan Kevin; King, Rebecca; Adekambi, Toidi; Monin, Leticia; Khader, Shabaana A; Pulendran, Bali; Rengarajan, Jyothi
2014-01-01
Mycobacterium tuberculosis (Mtb) is a highly successful human pathogen that primarily resides in host phagocytes, such as macrophages and dendritic cells (DCs), and interferes with their functions. While multiple strategies used by Mtb to modulate macrophage responses have been discovered, interactions between Mtb and DCs are less well understood. DCs are the primary antigen presenting acells (APCs) of the immune system and play a central role in linking innate and adaptive immune responses to microbial pathogens. In this study we show that Mtb impairs DC cytokine secretion, maturation and antigen presentation through the cell envelope-associated serine hydrolase Hip1. Compared to wild type, a hip1 mutant strain of Mtb induced enhanced levels of the key T helper 1 (Th1)-inducing cytokine IL-12, as well as other proinflammatory cytokines (IL-23, IL-6, TNF-α, IL-1β, IL-18) in DCs via MyD88- and TLR2/9-dependent pathways, indicating that Hip1 restricts optimal DC inflammatory responses. Infection with the hip1 mutant also induced higher levels of MHC class II and co-stimulatory molecules, CD40 and CD86, indicating that Mtb impairs DC maturation through Hip1. Further, we show that Mtb promotes sub-optimal antigen presentation, as DCs infected with the hip1 mutant showed increased capacity to present antigen to OT-II- and early secreted antigenic target 6 (ESAT-6)-specific transgenic CD4 T cells and enhanced Th1 and Th17 polarization. Overall, these data show that Mtb impairs DC functions and modulates the nature of antigen-specific T cell responses, with important implications for vaccination strategies. PMID:24659689
The Role of Nutritional Aspects in Food Allergy: Prevention and Management.
Mazzocchi, Alessandra; Venter, Carina; Maslin, Kate; Agostoni, Carlo
2017-08-09
The prevalence of food allergy in childhood appears to be increasing in both developed and transitional countries. The aim of this paper is to review and summarise key findings in the prevention and management of food allergy, focusing on the role of dietary components and nutritional habits in the development and optimal functioning of the immune system. Essential fatty acids, zinc and vitamin D are likely to enhance the anti-inflammatory and antioxidative barrier and promote immunologic tolerance. Additionally, nutritional components such as pre- and probiotics represent a novel research approach in the attempt to induce a tolerogenic immune environment. For all these reasons, the traditional avoidance diet has been, in recent years, completely reconsidered. New findings on the protective effect of an increased diversity of food introduced in the first year of life on allergic diseases are consistent with the hypothesis that exposure to a variety of food antigens during early life might play a role in the development of immune tolerance. Accordingly, therapeutic (and even preventive) interventions should be planned on an individual basis.
2014-01-01
Military personnel are deployed abroad for missions ranging from humanitarian relief efforts to combat actions; delay or interruption in these activities due to disease transmission can cause operational disruptions, significant economic loss, and stressed or exceeded military medical resources. Deployed troops function in environments favorable to the rapid and efficient transmission of many viruses particularly when levels of protection are suboptimal. When immunity among deployed military populations is low, the risk of vaccine-preventable disease outbreaks increases, impacting troop readiness and achievement of mission objectives. However, targeted vaccination and the optimization of preexisting immunity among deployed populations can decrease the threat of outbreaks among deployed troops. Here we describe methods for the computational modeling of disease transmission to explore how preexisting immunity compares with vaccination at the time of deployment as a means of preventing outbreaks and protecting troops and mission objectives during extended military deployment actions. These methods are illustrated with five modeling case studies for separate diseases common in many parts of the world, to show different approaches required in varying epidemiological settings. PMID:25009579
Burgess, Colleen; Peace, Angela; Everett, Rebecca; Allegri, Buena; Garman, Patrick
2014-01-01
Military personnel are deployed abroad for missions ranging from humanitarian relief efforts to combat actions; delay or interruption in these activities due to disease transmission can cause operational disruptions, significant economic loss, and stressed or exceeded military medical resources. Deployed troops function in environments favorable to the rapid and efficient transmission of many viruses particularly when levels of protection are suboptimal. When immunity among deployed military populations is low, the risk of vaccine-preventable disease outbreaks increases, impacting troop readiness and achievement of mission objectives. However, targeted vaccination and the optimization of preexisting immunity among deployed populations can decrease the threat of outbreaks among deployed troops. Here we describe methods for the computational modeling of disease transmission to explore how preexisting immunity compares with vaccination at the time of deployment as a means of preventing outbreaks and protecting troops and mission objectives during extended military deployment actions. These methods are illustrated with five modeling case studies for separate diseases common in many parts of the world, to show different approaches required in varying epidemiological settings.
Preclinical evaluation of a chemically detoxified pneumolysin as pneumococcal vaccine antigen.
Hermand, Philippe; Vandercammen, Annick; Mertens, Emmanuel; Di Paolo, Emmanuel; Verlant, Vincent; Denoël, Philippe; Godfroid, Fabrice
2017-01-02
The use of protein antigens able to protect against the majority of Streptococcus pneumoniae serotypes is envisaged as stand-alone and/or complement to the current capsular polysaccharide-based pneumococcal vaccines. Pneumolysin (Ply) is a key virulence factor that is highly conserved in amino acid sequence across pneumococcal serotypes, and therefore may be considered as a vaccine target. However, native Ply cannot be used in vaccines due to its intrinsic cytolytic activity. In the present work a completely, irreversibly detoxified pneumolysin (dPly) has been generated using an optimized formaldehyde treatment. Detoxi-fication was confirmed by dPly challenge in mice and histological analysis of the injection site in rats. Immunization with dPly elicited Ply-specific functional antibodies that were able to inhibit Ply activity in a hemolysis assay. In addition, immunization with dPly protected mice against lethal intranasal challenge with Ply, and intranasal immunization inhibited nasopharyngeal colonization after intranasal challenge with homologous or heterologous pneumococcal strain. Our findings supported dPly as a valid candidate antigen for further pneumococcal vaccine development.
Preclinical evaluation of a chemically detoxified pneumolysin as pneumococcal vaccine antigen
Hermand, Philippe; Vandercammen, Annick; Mertens, Emmanuel; Di Paolo, Emmanuel; Verlant, Vincent; Denoël, Philippe; Godfroid, Fabrice
2017-01-01
ABSTRACT The use of protein antigens able to protect against the majority of Streptococcus pneumoniae serotypes is envisaged as stand-alone and/or complement to the current capsular polysaccharide-based pneumococcal vaccines. Pneumolysin (Ply) is a key virulence factor that is highly conserved in amino acid sesec-typsecquence across pneumococcal serotypes, and therefore may be considered as a vaccine target. However, native Ply cannot be used in vaccines due to its intrinsic cytolytic activity. In the present work a completely, irreversibly detoxified pneumolysin (dPly) has been generated using an optimized formaldehyde treatment. Detoxi-fication was confirmed by dPly challenge in mice and histological analysis of the injection site in rats. Immunization with dPly elicited Ply-specific functional antibodies that were able to inhibit Ply activity in a hemolysis assay. In addition, immunization with dPly protected mice against lethal intranasal challenge with Ply, and intranasal immunization inhibited nasopharyngeal colonization after intranasal challenge with homologous or heterologous pneumococcal strain. Our findings supported dPly as a valid candidate antigen for further pneumococcal vaccine development. PMID:27768518
Toxicological and pharmacological assessment of AGEN1884, a novel human IgG1 anti-CTLA-4 antibody
Gonzalez, Ana; Manrique, Mariana; Chand, Dhan; Savitsky, David; Morin, Benjamin; Breous-Nystrom, Ekaterina; Dupont, Christopher; Ward, Rebecca A.; Mundt, Cornelia; Duckless, Benjamin; Tang, Hao; Findeis, Mark A.; Schuster, Andrea; Waight, Jeremy D.; Underwood, Dennis; Clarke, Christopher; Ritter, Gerd; Merghoub, Taha; Schaer, David; Wolchok, Jedd D.; van Dijk, Marc; Buell, Jennifer S.; Cuillerot, Jean-Marie; Stein, Robert; Drouin, Elise E.
2018-01-01
CTLA-4 and CD28 exemplify a co-inhibitory and co-stimulatory signaling axis that dynamically sculpts the interaction of antigen-specific T cells with antigen-presenting cells. Anti-CTLA-4 antibodies enhance tumor-specific immunity through a variety of mechanisms including: blockade of CD80 or CD86 binding to CTLA-4, repressing regulatory T cell function and selective elimination of intratumoral regulatory T cells via an Fcγ receptor-dependent mechanism. AGEN1884 is a novel IgG1 antibody targeting CTLA-4. It potently enhanced antigen-specific T cell responsiveness that could be potentiated in combination with other immunomodulatory antibodies. AGEN1884 was well-tolerated in non-human primates and enhanced vaccine-mediated antigen-specific immunity. AGEN1884 combined effectively with PD-1 blockade to elicit a T cell proliferative response in the periphery. Interestingly, an IgG2 variant of AGEN1884 revealed distinct functional differences that may have implications for optimal dosing regimens in patients. Taken together, the pharmacological properties of AGEN1884 support its clinical investigation as a single therapeutic and combination agent. PMID:29617360
Suppression of lethal autoimmunity by regulatory T cells with a single TCR specificity
Hemmers, Saskia; Schizas, Michail; Faire, Mehlika B.; Konopacki, Catherine; Schmidt-Supprian, Marc; Germain, Ronald N.
2017-01-01
The regulatory T cell (T reg cell) T cell receptor (TCR) repertoire is highly diverse and skewed toward recognition of self-antigens. TCR expression by T reg cells is continuously required for maintenance of immune tolerance and for a major part of their characteristic gene expression signature; however, it remains unknown to what degree diverse TCR-mediated interactions with cognate self-antigens are required for these processes. In this study, by experimentally switching the T reg cell TCR repertoire to a single T reg cell TCR, we demonstrate that T reg cell function and gene expression can be partially uncoupled from TCR diversity. An induced switch of the T reg cell TCR repertoire to a random repertoire also preserved, albeit to a limited degree, the ability to suppress lymphadenopathy and T helper cell type 2 activation. At the same time, these perturbations of the T reg cell TCR repertoire led to marked immune cell activation, tissue inflammation, and an ultimately severe autoimmunity, indicating the importance of diversity and specificity for optimal T reg cell function. PMID:28130403
Immunotherapeutic Strategies in Breast Cancer: Preclinical and Clinical Trials
2005-09-01
M.K. Brenner, and C.M. Rooney, Long-term restoration of immunity against Epstein - Barr virus infection by adoptive transfer of gene-modified virus ...R.A. Krance, M.K. Brenner, and C.M. Rooney, Long-term restoration of immunity against Epstein - Barr virus infection by adoptive transfer of gene...immunity will result in anti-tumor immunity. We propose to develop an optimal cancer vaccine using epithelial cell mucin MUCI peptides or protein or MUCl
The Immune System and Developmental Programming of Brain and Behavior
Bilbo, Staci D.; Schwarz, Jaclyn M.
2012-01-01
The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone-behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease if prolonged or exaggerated. The developing brain in particular is exquisitely sensitive to both endogenous and exogenous signals, and increasing evidence suggests the immune system has a critical role in brain development and associated behavioral outcomes for the life of the individual. Indeed, there are associations between many neuropsychiatric disorders and immune dysfunction, with a distinct etiology in neurodevelopment. The goal of this review is to describe the important role of the immune system during brain development, and to discuss some of the many ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, mood and cognition. PMID:22982535
USDA-ARS?s Scientific Manuscript database
The use of live oocyst vaccines is becoming increasingly important in the control of avian coccidosis in broiler chicks. Knowledge of the mechanisms of how chicks uptake oocysts and become immune is important for optimizing delivery of live vaccines. The current study tests the hypothesis that chick...
Fundamental resource-allocating model in colleges and universities based on Immune Clone Algorithms
NASA Astrophysics Data System (ADS)
Ye, Mengdie
2017-05-01
In this thesis we will seek the combination of antibodies and antigens converted from the optimal course arrangement and make an analogy with Immune Clone Algorithms. According to the character of the Algorithms, we apply clone, clone gene and clone selection to arrange courses. Clone operator can combine evolutionary search and random search, global search and local search. By cloning and clone mutating candidate solutions, we can find the global optimal solution quickly.
Optimization of lipid-assisted nanoparticle for disturbing neutrophils-related inflammation.
Liu, Yang; Cao, Zhi-Ting; Xu, Cong-Fei; Lu, Zi-Dong; Luo, Ying-Li; Wang, Jun
2018-07-01
Inflammation is closely related to the development of many diseases and is commonly characterized by abnormal infiltration of immune cells, especially neutrophils. The current therapeutics of inflammatory diseases give little attention to direct modulation of these diseases with respect to immune cells. Nanoparticles are applied for efficient drug delivery into the disease-related immune cells, but their performance is significantly affected by their surface properties. In this study, to optimize the properties of nanoparticles for modulating neutrophils-related inflammation, we prepared a library of poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PEG-b-PLGA)-based cationic lipid-assisted nanoparticles (CLANs) with different surface PEG density and surface charge. Optimized CLANs for neutrophils targeting were screened in high-fat diet (HFD)-induced type 2 diabetes (T2D) mice. Then, a CRISPR-Cas9 plasmid expressing a guide RNA (gRNA) targeting neutrophil elastase (NE) was encapsulated into the optimized CLAN and denoted as CLAN pCas9/gNE . After intravenous injection, CLAN pCas9/gNE successfully disrupted the NE gene of neutrophils and mitigated the insulin resistance of T2D mice via reducing the inflammation in epididymal white adipose tissue (eWAT) and in the liver. This strategy provides an example of abating the inflammatory microenvironment by directly modulating immune cells with nanoparticles carrying genome editing tools. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cell-Mediated Immune Function and Cytokine Regulation During Space Flight
NASA Technical Reports Server (NTRS)
Sams, Clarence F.; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)
2000-01-01
The changes in immune function which occur during space flight potentially expose the crews to an increased risk for development of illness. Decreased cellular immune function has been repeatedly documented after space flight and confirmed during flight by in vivo delayed-type hypersensitivity testing. However, correlation of immune changes with a clinically significant risk factor has not yet been performed. Our hypothesis is that space flight induces a decrease in cell-mediated immune function accompanied by a shift from a type 1 cytokine pattern (favoring cell-mediated immunity) to a type 2 cytokine pattern (favoring humoral immunity). We further hypothesize that reactivation of latent viruses will occur during space flight in association with the decreased cellular immunity. To test these hypotheses, we will determine the effects of space flight on cell-mediated immunity and viral reactivation. We will utilize delayed-type hypersensitivity testing as an in vivo measure of integrated cell-mediated immune function. The production of cytokines and immunoregulatory factors by lymphocytes and monocytes will be measured to determine whether changes in cytokine patterns are associated with the space flight-induced immune dysregulation. Correlation of antigen-specific immune changes with reactivation of latent herpes viruses will be determined by measuring peripheral levels of viral (CMV, VZV, EBV) antigen-specific T cells and comparing to the levels of EBV-infected B-cells by fluorescence in situ hybridization and flow cytometry. A comparison of cell-mediated immune function, cytokine regulation and viral reactivation will provide new insights into crew member health risks during flight.
He, Han-Qing; Ling, Luo-Ya; Xu, Xu-Qing
2009-02-01
To know the status of Immunization program in Zhejiang Province. The investigation on immunization program in zhejiang province was conducted, and the SWOT analysis was corducted to make a comprehensive evaluation. 11 cities, 22 counties and 44 towns were investigated in this study, and the current immunization program in Zhejiang province were explored by SWOT analysis. The SWOT Matrix, includes SO (strength-opportunity), ST (strength-threat), WO (weakness-opportunity) and WT (weakness-threat) can apply to make optimal strategy for the development of expanded program on immunization.
Verguet, Stéphane; Johri, Mira; Morris, Shaun K.; Gauvreau, Cindy L.; Jha, Prabhat; Jit, Mark
2015-01-01
Background The Measles & Rubella Initiative, a broad consortium of global health agencies, has provided support to measles-burdened countries, focusing on sustaining high coverage of routine immunization of children and supplementing it with a second dose opportunity for measles vaccine through supplemental immunization activities (SIAs). We estimate optimal scheduling of SIAs in countries with the highest measles burden. Methods We develop an age-stratified dynamic compartmental model of measles transmission. We explore the frequency of SIAs in order to achieve measles control in selected countries and two Indian states with high measles burden. Specifically, we compute the maximum allowable time period between two consecutive SIAs to achieve measles control. Results Our analysis indicates that a single SIA will not control measles transmission in any of the countries with high measles burden. However, regular SIAs at high coverage levels are a viable strategy to prevent measles outbreaks. The periodicity of SIAs differs between countries and even within a single country, and is determined by population demographics and existing routine immunization coverage. Conclusions Our analysis can guide country policymakers deciding on the optimal scheduling of SIA campaigns and the best combination of routine and SIA vaccination to control measles. PMID:25541214
Toshimitsu, T; Ozaki, S; Mochizuki, J; Furuichi, K; Asami, Y
2017-04-01
Studies on the health-promoting effects of lactic acid bacteria (LAB) are numerous, but few provide examples of the relationship between LAB function and culture conditions. We verified the effect of differences in culture conditions on Lactobacillus plantarum OLL2712 functionality; this strain exhibits anti-inflammatory activity and preventive effects against metabolic disorders. We measured interleukin-10 (IL-10) and IL-12 production in murine immune cells treated with OLL2712 cells prepared under various culture conditions. The results showed that the IL-10-inducing activities of OLL2712 cells on murine immune cells differed dramatically between OLL2712 groups at different culture phases and using different culture medium components, temperatures, and neutralizing pHs. In particular, exponential-phase cells had much more IL-10-inducing activity than stationary-phase cells. We confirmed that the Toll-like receptor 2 (TLR2) stimulation activity of OLL2712 cells depended on culture conditions in conjunction with IL-10-inducing activity. We also demonstrated functional differences by culture phases in vivo ; OLL2712 cells at exponential phase had more anti-inflammatory activity and anti-metabolic-disorder effects on obese and diabetic mice than those by their stationary-phase counterparts. These results suggest that culture conditions affect the functionality of anti-inflammatory LAB. IMPORTANCE While previous studies demonstrated that culture conditions affected the immunomodulatory properties of lactic acid bacteria (LAB), few have comprehensively investigated the relationship between culture conditions and LAB functionality. In this study, we demonstrated several culture conditions of Lactobacillus plantarum OLL2712 for higher anti-inflammatory activity. We also showed that culture conditions concretely influenced the health-promoting functions of OLL2712 in vivo , particularly against metabolic disorders. Further, we characterized a novel mechanism by which changing LAB culture conditions affected immunomodulatory properties. Our results suggest that culture condition optimization is important for the production of LAB with anti-inflammatory activity. Copyright © 2017 American Society for Microbiology.
Woodhams, Douglas C.; Brandt, Hannelore; Baumgartner, Simone; Kielgast, Jos; Küpfer, Eliane; Tobler, Ursina; Davis, Leyla R.; Schmidt, Benedikt R.; Bel, Christian; Hodel, Sandro; Knight, Rob; McKenzie, Valerie
2014-01-01
Pathogenesis is strongly dependent on microbial context, but development of probiotic therapies has neglected the impact of ecological interactions. Dynamics among microbial communities, host immune responses, and environmental conditions may alter the effect of probiotics in human and veterinary medicine, agriculture and aquaculture, and the proposed treatment of emerging wildlife and zoonotic diseases such as those occurring on amphibians or vectored by mosquitoes. Here we use a holistic measure of amphibian mucosal defenses to test the effects of probiotic treatments and to assess disease risk under different ecological contexts. We developed a non-invasive assay for antifungal function of the skin mucosal ecosystem (mucosome function) integrating host immune factors and the microbial community as an alternative to pathogen exposure experiments. From approximately 8500 amphibians sampled across Europe, we compared field infection prevalence with mucosome function against the emerging fungal pathogen Batrachochytrium dendrobatidis. Four species were tested with laboratory exposure experiments, and a highly susceptible species, Alytes obstetricans, was treated with a variety of temperature and microbial conditions to test the effects of probiotic therapies and environmental conditions on mucosome function. We found that antifungal function of the amphibian skin mucosome predicts the prevalence of infection with the fungal pathogen in natural populations, and is linked to survival in laboratory exposure experiments. When altered by probiotic therapy, the mucosome increased antifungal capacity, while previous exposure to the pathogen was suppressive. In culture, antifungal properties of probiotics depended strongly on immunological and environmental context including temperature, competition, and pathogen presence. Functional changes in microbiota with shifts in temperature provide an alternative mechanistic explanation for patterns of disease susceptibility related to climate beyond direct impact on host or pathogen. This nonlethal management tool can be used to optimize and quickly assess the relative benefits of probiotic therapies under different climatic, microbial, or host conditions. PMID:24789229
Nutritional Supplements for Strength Power Athletes
NASA Astrophysics Data System (ADS)
Wilborn, Colin
Over the last decade research involving nutritional supplementation and sport performance has increased substantially. Strength and power athletes have specific needs to optimize their performance. Nutritional supplementation cannot be viewed as a replacement for a balanced diet but as an important addition to it. However, diet and supplementation are not mutually exclusive, nor does one depend on the other. Strength and power athletes have four general areas of supplementation needs. First, strength athletes need supplements that have a direct effect on performance. The second group of supplements includes those that promote recovery. The third group comprises the supplements that enhance immune function. The last group of supplements includes those that provide energy or have a direct effect on the workout. This chapter reviews the key supplements needed to optimize the performance and training of the strength athlete.
2011-05-17
HSC-infused DRAG and control mice were immunized with 1 flocculation unit of TT vaccine ( Sanofi Pasteur) by the intramuscular route, and the titers... Vaccine Program, Naval Medical Research Center/Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America, 2 Department...human vaccines prior to clinical trials. However, current humanized mouse models show sub-optimal human T cell reconstitution and limited ability to
Immune System Dysfunction in the Elderly.
Fuentes, Eduardo; Fuentes, Manuel; Alarcón, Marcelo; Palomo, Iván
2017-01-01
Human aging is characterized by both physical and physiological frailty that profoundly affects the immune system. In this context aging is associated with declines in adaptive and innate immunity established as immunosenescence. Immunosenescence is a new concept that reflects the age-associated restructuring changes of innate and adaptive immune functions. Thus elderly individuals usually present chronic low-level inflammation, higher infection rates and chronic diseases. A study of alterations in the immune system during aging could provide a potentially useful biomarker for the evaluation of immune senescence treatment. The immune system is the result of the interplay between innate and adaptive immunity, yet the impact of aging on this function is unclear. In this article the function of the immune system during aging is explored.
Segner, Helmut; Verburg-van Kemenade, B M Lidy; Chadzinska, Magdalena
2017-01-01
The present review discusses the communication between the hypothalamic-pituitary-gonad (HPG) axis and the immune system of vertebrates, attempting to situate the HPG-immune interaction into the context of life history trade-offs between reproductive and immune functions. More specifically, (i) we review molecular and cellular interactions between hormones of the HPG axis, and, as far as known, the involved mechanisms on immune functions, (ii) we evaluate whether the HPG-immune crosstalk serves as proximate mechanism mediating reproductive-immune trade-offs, and (iii) we ask whether the nature of the HPG-immune interaction is conserved throughout vertebrate evolution, despite the changes in immune functions, reproductive modes, and life histories. In all vertebrate classes studied so far, HPG hormones have immunomodulatory functions, and indications exist that they contribute to reproduction-immunity resource trade-offs, although the very limited information available for most non-mammalian vertebrates makes it difficult to judge how comparable or different the interactions are. There is good evidence that the HPG-immune crosstalk is part of the proximate mechanisms underlying the reproductive-immune trade-offs of vertebrates, but it is only one factor in a complex network of factors and processes. The fact that the HPG-immune interaction is flexible and can adapt to the functional and physiological requirements of specific life histories. Moreover, the assumption of a relatively fixed pattern of HPG influence on immune functions, with, for example, androgens always leading to immunosuppression and estrogens always being immunoprotective, is probably oversimplified, but the HPG-immune interaction can vary depending on the physiological and envoironmental context. Finally, the HPG-immune interaction is not only driven by resource trade-offs, but additional factors such as, for instance, the evolution of viviparity shape this neuroendocrine-immune relationship. Copyright © 2016 Elsevier Ltd. All rights reserved.
Integration of Immunity with Physical and Cognitive Function in Definitions of Successful Aging
Griffin, Patricia; Michel, Joshua J.; Huysman, Kristy; Logar, Alison J.; Vallejo, Abbe N.
2012-01-01
Studies comparing chronologically “young” versus “old” humans document age-related decline of classical immunological functions. However, older adults aged ≥65 years have very heterogeneous health phenotypes. A significant number of them are functionally independent and are surviving well into their 8th–11th decade life, observations indicating that aging or old age is not synonymous with immune incompetence. While there are dramatic age-related changes in the immune system, not all of these changes may be considered detrimental. Here, we review evidences for novel immunologic processes that become elaborated with advancing age that complement preserved classical immune functions and promote immune homeostasis later in life. We propose that elaboration such of late life immunologic properties is indicative of beneficial immune remodeling that is an integral component of successful aging, an emerging physiologic construct associated with similar age-related physiologic adaptations underlying maintenance of physical and cognitive function. We suggest that a systems approach integrating immune, physical, and cognitive functions, rather than a strict immunodeficiency-minded approach, will be key towards innovations in clinical interventions to better promote protective immunity and functional independence among the elderly. PMID:22500270
Wu, Junjie; Waxman, David J
2015-01-01
Cancer chemotherapy using cytotoxic drugs can induce immunogenic tumor cell death; however, dosing regimens and schedules that enable single-agent chemotherapy to induce adaptive immune-dependent ablation of large, established tumors with activation of long-term immune memory have not been identified. Here, we investigate this issue in a syngeneic, implanted GL261 glioma model in immune-competent mice given cyclophosphamide on a 6-day repeating metronomic schedule. Two cycles of metronomic cyclophosphamide treatment induced sustained upregulation of tumor-associated CD8+ cytotoxic T lymphocyte (CTL) cells, natural killer (NK) cells, macrophages, and other immune cells. Expression of CTL- and NK–cell-shared effectors peaked on Day 6, and then declined by Day 9 after the second cyclophosphamide injection and correlated inversely with the expression of the regulatory T cell (Treg) marker Foxp3. Sustained tumor regression leading to tumor ablation was achieved after several cyclophosphamide treatment cycles. Tumor ablation required CD8+ T cells, as shown by immunodepletion studies, and was associated with immunity to re-challenge with GL261 glioma cells, but not B16-F10 melanoma or Lewis lung carcinoma cells. Rejection of GL261 tumor re-challenge was associated with elevated CTLs in blood and increased CTL infiltration in tumors, consistent with the induction of long-term, specific CD8+ T-cell anti-GL261 tumor memory. Co-depletion of CD8+ T cells and NK cells did not inhibit tumor regression beyond CD8+ T-cell depletion alone, suggesting that the metronomic cyclophosphamide-activated NK cells function via CD8a+ T cells. Taken together, these findings provide proof-of-concept that single-agent chemotherapy delivered on an optimized metronomic schedule can eradicate large, established tumors and induce long-term immune memory. PMID:26137402
Brumme, Chanson J.; Martin, Eric; Listgarten, Jennifer; Brockman, Mark A.; Le, Anh Q.; Chui, Celia K. S.; Cotton, Laura A.; Knapp, David J. H. F.; Riddler, Sharon A.; Haubrich, Richard; Nelson, George; Pfeifer, Nico; DeZiel, Charles E.; Heckerman, David; Apps, Richard; Carrington, Mary; Mallal, Simon; Harrigan, P. Richard; John, Mina
2012-01-01
HLA class I-associated polymorphisms identified at the population level mark viral sites under immune pressure by individual HLA alleles. As such, analysis of their distribution, frequency, location, statistical strength, sequence conservation, and other properties offers a unique perspective from which to identify correlates of protective cellular immunity. We analyzed HLA-associated HIV-1 subtype B polymorphisms in 1,888 treatment-naïve, chronically infected individuals using phylogenetically informed methods and identified characteristics of HLA-associated immune pressures that differentiate protective and nonprotective alleles. Over 2,100 HLA-associated HIV-1 polymorphisms were identified, approximately one-third of which occurred inside or within 3 residues of an optimally defined cytotoxic T-lymphocyte (CTL) epitope. Differential CTL escape patterns between closely related HLA alleles were common and increased with greater evolutionary distance between allele group members. Among 9-mer epitopes, mutations at HLA-specific anchor residues represented the most frequently detected escape type: these occurred nearly 2-fold more frequently than expected by chance and were computationally predicted to reduce peptide-HLA binding nearly 10-fold on average. Characteristics associated with protective HLA alleles (defined using hazard ratios for progression to AIDS from natural history cohorts) included the potential to mount broad immune selection pressures across all HIV-1 proteins except Nef, the tendency to drive multisite and/or anchor residue escape mutations within known CTL epitopes, and the ability to strongly select mutations in conserved regions within HIV's structural and functional proteins. Thus, the factors defining protective cellular immune responses may be more complex than simply targeting conserved viral regions. The results provide new information to guide vaccine design and immunogenicity studies. PMID:23055555
Radiation-Induced Immune Modulation in Prostate Cancer
2008-01-01
cancers. 15. SUBJECT TERMS Radiation, Dendritic Cells , Cytokines, PSA 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...radiation is more than a cytotoxic agent. Our recent study has shown that radiation modulates the immune system by affecting dendritic cell (DC...translate radiation-induced tumor cell death into generation of tumor immunity in the hope of optimizing therapy for localized and disseminated prostate
Luo, Dandan; Ge, Weihong; Hu, Xiao; Li, Chen; Lee, Chia-Ming; Zhou, Liqiang; Wu, Zhourui; Yu, Juehua; Lin, Sheng; Yu, Jing; Xu, Wei; Chen, Lei; Zhang, Chong; Jiang, Kun; Zhu, Xingfei; Li, Haotian; Gao, Xinpei; Geng, Yanan; Jing, Bo; Wang, Zhen; Zheng, Changhong; Zhu, Rongrong; Yan, Qiao; Lin, Quan; Ye, Keqiang; Sun, Yi E; Cheng, Liming
2018-06-28
The mammalian central nervous system (CNS) is considered an immune privileged system as it is separated from the periphery by the blood brain barrier (BBB). Yet, immune functions have been postulated to heavily influence the functional state of the CNS, especially after injury or during neurodegeneration. There is controversy regarding whether adaptive immune responses are beneficial or detrimental to CNS injury repair. In this study, we utilized immunocompromised SCID mice and subjected them to spinal cord injury (SCI). We analyzed motor function, electrophysiology, histochemistry, and performed unbiased RNA-sequencing. SCID mice displayed improved CNS functional recovery compared to WT mice after SCI. Weighted gene-coexpression network analysis (WGCNA) of spinal cord transcriptomes revealed that SCID mice had reduced expression of immune function-related genes and heightened expression of neural transmission-related genes after SCI, which was confirmed by immunohistochemical analysis and was consistent with better functional recovery. Transcriptomic analyses also indicated heightened expression of neurotransmission-related genes before injury in SCID mice, suggesting that a steady state of immune-deficiency potentially led to CNS hyper-connectivity. Consequently, SCID mice without injury demonstrated worse performance in Morris water maze test. Taken together, not only reduced inflammation after injury but also dampened steady-state immune function without injury heightened the neurotransmission program, resulting in better or worse behavioral outcomes respectively. This study revealed the intricate relationship between immune and nervous systems, raising the possibility for therapeutic manipulation of neural function via immune modulation.
Synthesizing epidemiological and economic optima for control of immunizing infections.
Klepac, Petra; Laxminarayan, Ramanan; Grenfell, Bryan T
2011-08-23
Epidemic theory predicts that the vaccination threshold required to interrupt local transmission of an immunizing infection like measles depends only on the basic reproductive number and hence transmission rates. When the search for optimal strategies is expanded to incorporate economic constraints, the optimum for disease control in a single population is determined by relative costs of infection and control, rather than transmission rates. Adding a spatial dimension, which precludes local elimination unless it can be achieved globally, can reduce or increase optimal vaccination levels depending on the balance of costs and benefits. For weakly coupled populations, local optimal strategies agree with the global cost-effective strategy; however, asymmetries in costs can lead to divergent control optima in more strongly coupled systems--in particular, strong regional differences in costs of vaccination can preclude local elimination even when elimination is locally optimal. Under certain conditions, it is locally optimal to share vaccination resources with other populations.
Cell-Mediated Immunity to Target the Persistent Human Immunodeficiency Virus Reservoir
Montaner, Luis J.
2017-01-01
Abstract Effective clearance of virally infected cells requires the sequential activity of innate and adaptive immunity effectors. In human immunodeficiency virus (HIV) infection, naturally induced cell-mediated immune responses rarely eradicate infection. However, optimized immune responses could potentially be leveraged in HIV cure efforts if epitope escape and lack of sustained effector memory responses were to be addressed. Here we review leading HIV cure strategies that harness cell-mediated control against HIV in stably suppressed antiretroviral-treated subjects. We focus on strategies that may maximize target recognition and eradication by the sequential activation of a reconstituted immune system, together with delivery of optimal T-cell responses that can eliminate the reservoir and serve as means to maintain control of HIV spread in the absence of antiretroviral therapy (ART). As evidenced by the evolution of ART, we argue that a combination of immune-based strategies will be a superior path to cell-mediated HIV control and eradication. Available data from several human pilot trials already identify target strategies that may maximize antiviral pressure by joining innate and engineered T cell responses toward testing for sustained HIV remission and/or cure. PMID:28520969
Abhyankar, Mayuresh M; Orr, Mark T; Lin, Susan; Suraju, Mohammed O; Simpson, Adrian; Blust, Molly; Pham, Tiep; Guderian, Jeffrey A; Tomai, Mark A; Elvecrog, James; Pedersen, Karl; Petri, William A; Fox, Christopher B
2018-01-01
Amebiasis caused by Entamoeba histolytic a is the third leading cause of parasitic mortality globally, with some 100,000 deaths annually, primarily among young children. Protective immunity to amebiasis is associated with fecal IgA and IFN-γ in humans; however, no vaccine exists. We have previously identified recombinant LecA as a potential protective vaccine antigen. Here we describe the development of a stable, manufacturable PEGylated liposomal adjuvant formulation containing two synthetic Toll-like receptor (TLR) ligands: GLA (TLR4) and 3M-052 (TLR7/8). The liposomes stimulated production of monocyte/macrophage chemoattractants MCP-1 and Mip-1β, and Th1-associated cytokines IL-12p70 and IFN-γ from human whole blood dependent on TLR ligand composition and dose. The liposomes also demonstrated acceptable physicochemical compatibility with the recombinant LecA antigen. Whereas mice immunized with LecA and GLA-liposomes demonstrated enhanced antigen-specific fecal IgA titers, mice immunized with LecA and 3M-052-liposomes showed a stronger Th1 immune profile. Liposomes containing GLA and 3M-052 together elicited both LecA-specific fecal IgA and Th1 immune responses. Furthermore, the quality of the immune response could be modulated with modifications to the liposomal formulation based on PEG length. Compared to subcutaneous administration, the optimized liposome adjuvant composition with LecA antigen administered intranasally resulted in significantly enhanced fecal IgA, serum IgG2a, as well as systemic IFN-γ and IL-17A levels in mice. The optimized intranasal regimen provided greater than 80% protection from disease as measured by parasite antigen in the colon. This work demonstrates the physicochemical and immunological characterization of an optimized mucosal adjuvant system containing a combination of TLR ligands with complementary activities and illustrates the importance of adjuvant composition and route of delivery to enhance a multifaceted and protective immune response to amebiasis.
A Role for NKG2D in NK Cell–Mediated Resistance to Poxvirus Disease
Fang, Min; Lanier, Lewis L; Sigal, Luis J
2008-01-01
Ectromelia virus (ECTV) is an orthopoxvirus (OPV) that causes mousepox, the murine equivalent of human smallpox. C57BL/6 (B6) mice are naturally resistant to mousepox due to the concerted action of innate and adaptive immune responses. Previous studies have shown that natural killer (NK) cells are a component of innate immunity that is essential for the B6 mice resistance to mousepox. However, the mechanism of NK cell–mediated resistance to OPV disease remains undefined. Here we show that B6 mice resistance to mousepox requires the direct cytolytic function of NK cells, as well as their ability to boost the T cell response. Furthermore, we show that the activating receptor NKG2D is required for optimal NK cell–mediated resistance to disease and lethality. Together, our results have important implication towards the understanding of natural resistance to pathogenic viral infections. PMID:18266471
Insights into human CD8(+) T-cell memory using the yellow fever and smallpox vaccines.
Ahmed, Rafi; Akondy, Rama S
2011-03-01
Live virus vaccines provide a unique opportunity to study human CD8(+) T-cell memory in the context of a controlled, primary acute viral infection. Yellow fever virus-17D and Dryvax are two such live-virus vaccines that are highly efficacious, used worldwide and provide long-term immunity against yellow fever and smallpox respectively. In this review, we describe the properties of virus-specific memory CD8(+) T cells generated in smallpox and yellow fever vaccinees. We address fundamental questions regarding magnitude, functional quality and longevity of the CD8(+) T-cell response, which are otherwise challenging to address in humans. These findings provide insights into the attributes of the human immune system as well as provide a benchmark for the optimal quality of a CD8(+) T-cell response that can be used to evaluate novel candidate vaccines.
Yang, Jessica A.; Tubo, Noah J.; Gearhart, Micah D.; Bardwell, Vivian J.; Jenkins, Marc K.
2015-01-01
CD4+ germinal center (GC) T follicular helper (GC-Tfh) cells help B cells become long-lived plasma cells and memory cells. The transcriptional repressor BCL6 plays a key role in GC-Tfh formation by inhibiting the expression of genes that promote differentiation into other lineages. We determined whether BCOR, a component of a Polycomb repressive complex that interacts with the BCL6 BTB domain, influences GC-Tfh differentiation. T cell-targeted BCOR deficiency led to a substantial loss of peptide:MHCII-specific GC-Tfh cells following Listeria monocytogenes infection and a 2-fold decrease following immunization with a peptide in CFA. The reduction in GC-Tfh cells was associated with diminished plasma cell and GC B cell formation. Thus, T cell-expressed BCOR is critical for optimal GC-Tfh differentiation and humoral immunity. PMID:25964495
Influence of Photoperiod on Hormones, Behavior, and Immune Function
Walton, James C.; Weil, Zachary M.; Nelson, Randy J.
2011-01-01
Photoperiodism is the ability of plants and animals to measure environmental day length to ascertain time of year. Central to the evolution of photoperiodism in animals is the adaptive distribution of energetically challenging activities across the year to optimize reproductive fitness while balancing the energetic tradeoffs necessary for seasonally- appropriate survival strategies. The ability to accurately predict future events requires endogenous mechanisms to permit physiological anticipation of annual conditions. Day length provides a virtually noise free environmental signal to monitor and accurately predict time of the year. In mammals, melatonin provides the hormonal signal transducing day length. Duration of pineal melatonin is inversely related to day length and its secretion drives enduring changes in many physiological systems, including the HPA, HPG, and brain-gut axes, the autonomic nervous system, and the immune system. Thus, melatonin is the fulcrum mediating redistribution of energetic investment among physiological processes to maximize fitness and survival. PMID:21156187
Reproductive investment is connected to innate immunity in a long-lived animal.
Neggazi, Sara A; Noreikiene, Kristina; Öst, Markus; Jaatinen, Kim
2016-10-01
Life-history theory predicts that organisms optimize their resource allocation strategy to maximize lifetime reproductive success. Individuals can flexibly reallocate resources depending on their life-history stage, and environmental and physiological factors, which lead to variable life-history strategies even within species. Physiological trade-offs between immunity and reproduction are particularly relevant for long-lived species that need to balance current reproduction against future survival and reproduction, but their underlying mechanisms are poorly understood. A major unresolved issue is whether the first-line innate immune function is suppressed by reproductive investment. In this paper, we tested if reproductive investment is associated with the suppression of innate immunity, and how this potential trade-off is resolved depending on physiological state and residual reproductive value. We used long-lived capital-breeding female eiders (Somateria mollissima) as a model. We showed that the innate immune response, measured by plasma bacteria-killing capacity (BKC), was negatively associated with increasing reproductive investment, i.e., with increasing clutch size and advancing incubation stage. Females in a better physiological state, as indexed by low heterophil-to-lymphocyte (H/L) ratios, showed higher BKC during early incubation, but this capacity decreased as incubation progressed, whereas females in poorer state showed low BKC capacity throughout incubation. Although plasma BKC generally declined with increasing H/L ratios, this decrease was most pronounced in young females. Our results demonstrate that reproductive investment can suppress constitutive first-line immune defence in a long-lived bird, but the degree of immunosuppression depends on physiological state and age.
Optimized dosing of a CCR2 antagonist for amplification of vaccine immunity.
Mitchell, Leah A; Hansen, Ryan J; Beaupre, Adam J; Gustafson, Daniel L; Dow, Steven W
2013-02-01
We have recently discovered that inflammatory monocytes recruited to lymph nodes in response to vaccine-induced inflammation can function as potent negative regulators of both humoral and cell-mediated immune responses to vaccination. Monocyte depletion or migration blockade can significantly amplify both antibody titers and cellular immune responses to vaccination with several different antigens in mouse models. Thus, we hypothesized that the use of small molecule CCR2 inhibitors to block monocyte migration into lymph nodes may represent a broadly effective means of amplifying vaccine immunity. To address this question, the role of CCR2 in monocyte recruitment to vaccine draining lymph nodes was initially explored in CCR2-/- mice. Next, a small molecule antagonist of CCR2 (RS102895) was evaluated in mouse vaccination models. Initial studies revealed that a single intraperitoneal dose of RS102895 failed to effectively block monocyte recruitment following vaccination. Pharmacokinetic analysis of RS102895 revealed a short half-life (approximately 1h), and suggested that a multi-dose treatment regimen would be more effective. We found that administration of RS102895 every 6 h resulted in consistent plasma levels of 20 ng/ml or greater, which effectively blocked monocyte migration to lymph nodes following vaccination. Moreover, administration of RS102895 with concurrent vaccination markedly enhanced vaccine responses following immunization against the influenza antigen HA1. We concluded that administration of small molecule CCR2 antagonists such as RS102895 in the immediate post-vaccine period could be used as a novel means of significantly enhancing vaccine immunity. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhu, Xiaotong; Pan, Yanyan; Zheng, Li; Cui, Liwang; Cao, Yaming
2012-02-20
Clinical immunity to malaria in human populations is developed after repeated exposure to malaria. Regulation and balance of host immune responses may lead to optimal immunity against malaria parasite infection. Polysaccharides (ABPS) derived from the Chinese herb ox knee Achyranthes bidentata possess immuno-modulatory functions. The aim of this study is to use the rodent malaria model Plasmodium yoelii 17XL (P. y17XL) to examine whether pretreatment with ABPS will modulate host immunity against malaria infection and improve the outcome of the disease. To determine whether ABPS could modulate immunity against malaria, mice were pretreated with ABPS prior to blood-stage infection by P. y17XL. Host survival and parasitaemia were monitored daily. The effect of pretreatment on host immune responses was studied through the quantitation of cytokines, dendritic cell populations, and natural regulatory T cells (Treg). Pretreatment with ABPS prior to infection significantly extended the survival time of mice after P. y17XL infection. At three and five days post-infection, ABPS pretreated mice developed stronger Th1 immune responses against malaria infection with the number of F4/80+CD36+ macrophages and levels of IFN-γ, TNF-α and nitric oxide being significantly higher than in the control group. More importantly, ABPS-treated mice developed more myeloid (CD11c+CD11b+) and plasmacytoid dendritic cells (CD11c+CD45R+/B220+) than control mice. ABPS pretreatment also resulted in modulated expression of MHC-II, CD86, and especially Toll-like receptor 9 by CD11c+ dendritic cells. In comparison, pretreatment with ABPS did not alter the number of natural Treg or the production of the anti-inflammatory cytokine IL-10. Pretreatment with the immuno-modulatory ABPS selectively enhanced Th1 immune responses to control the proliferation of malaria parasites, and prolonged the survival of mice during subsequent malaria infection.
Meningococcal conjugate vaccines: optimizing global impact
Terranella, Andrew; Cohn, Amanda; Clark, Thomas
2011-01-01
Meningococcal conjugate vaccines have several advantages over polysaccharide vaccines, including the ability to induce greater antibody persistence, avidity, immunologic memory, and herd immunity. Since 1999, meningococcal conjugate vaccine programs have been established across the globe. Many of these vaccination programs have resulted in significant decline in meningococcal disease in several countries. Recent introduction of serogroup A conjugate vaccine in Africa offers the potential to eliminate meningococcal disease as a public health problem in Africa. However, the duration of immune response and the development of widespread herd immunity in the population remain important questions for meningococcal vaccine programs. Because of the unique epidemiology of meningococcal disease around the world, the optimal vaccination strategy for long-term disease prevention will vary by country. PMID:22114508
Claus, Maren; Dychus, Nicole; Ebel, Melanie; Damaschke, Jürgen; Maydych, Viktoriya; Wolf, Oliver T; Kleinsorge, Thomas; Watzl, Carsten
2016-10-01
The immune system is essential to provide protection from infections and cancer. Disturbances in immune function can therefore directly affect the health of the affected individual. Many extrinsic and intrinsic factors such as exposure to chemicals, stress, nutrition and age have been reported to influence the immune system. These influences can affect various components of the immune system, and we are just beginning to understand the causalities of these changes. To investigate such disturbances, it is therefore essential to analyze the different components of the immune system in a comprehensive fashion. Here, we demonstrate such an approach which provides information about total number of leukocytes, detailed quantitative and qualitative changes in the composition of lymphocyte subsets, cytokine levels in serum and functional properties of T cells, NK cells and monocytes. Using samples from a cohort of 24 healthy volunteers, we demonstrate the feasibility of our approach to detect changes in immune functions.
Emotion: The Self-regulatory Sense
2014-01-01
While emotion is a central component of human health and well-being, traditional approaches to understanding its biological function have been wanting. A dynamic systems model, however, broadly redefines and recasts emotion as a primary sensory system—perhaps the first sensory system to have emerged, serving the ancient autopoietic function of “self-regulation.” Drawing upon molecular biology and revelations from the field of epigenetics, the model suggests that human emotional perceptions provide an ongoing stream of “self-relevant” sensory information concerning optimally adaptive states between the organism and its immediate environment, along with coupled behavioral corrections that honor a universal self-regulatory logic, one still encoded within cellular signaling and immune functions. Exemplified by the fundamental molecular circuitry of sensorimotor control in the E coli bacterium, the model suggests that the hedonic (affective) categories emerge directly from positive and negative feedback processes, their good/bad binary appraisals relating to dual self-regulatory behavioral regimes—evolutionary purposes, through which organisms actively participate in natural selection, and through which humans can interpret optimal or deficit states of balanced being and becoming. The self-regulatory sensory paradigm transcends anthropomorphism, unites divergent theoretical perspectives and isolated bodies of literature, while challenging time-honored assumptions. While suppressive regulatory strategies abound, it suggests that emotions are better understood as regulating us, providing a service crucial to all semantic language, learning systems, evaluative decision-making, and fundamental to optimal physical, mental, and social health. PMID:24808986
QR images: optimized image embedding in QR codes.
Garateguy, Gonzalo J; Arce, Gonzalo R; Lau, Daniel L; Villarreal, Ofelia P
2014-07-01
This paper introduces the concept of QR images, an automatic method to embed QR codes into color images with bounded probability of detection error. These embeddings are compatible with standard decoding applications and can be applied to any color image with full area coverage. The QR information bits are encoded into the luminance values of the image, taking advantage of the immunity of QR readers against local luminance disturbances. To mitigate the visual distortion of the QR image, the algorithm utilizes halftoning masks for the selection of modified pixels and nonlinear programming techniques to locally optimize luminance levels. A tractable model for the probability of error is developed and models of the human visual system are considered in the quality metric used to optimize the luminance levels of the QR image. To minimize the processing time, the optimization techniques proposed to consider the mechanics of a common binarization method and are designed to be amenable for parallel implementations. Experimental results show the graceful degradation of the decoding rate and the perceptual quality as a function the embedding parameters. A visual comparison between the proposed and existing methods is presented.
An improved immune algorithm for optimizing the pulse width modulation control sequence of inverters
NASA Astrophysics Data System (ADS)
Sheng, L.; Qian, S. Q.; Ye, Y. Q.; Wu, Y. H.
2017-09-01
In this article, an improved immune algorithm (IIA), based on the fundamental principles of the biological immune system, is proposed for optimizing the pulse width modulation (PWM) control sequence of a single-phase full-bridge inverter. The IIA takes advantage of the receptor editing and adaptive mutation mechanisms of the immune system to develop two operations that enhance the population diversity and convergence of the proposed algorithm. To verify the effectiveness and examine the performance of the IIA, 17 cases are considered, including fixed and disturbed resistances. Simulation results show that the IIA is able to obtain an effective PWM control sequence. Furthermore, when compared with existing immune algorithms (IAs), genetic algorithms (GAs), a non-traditional GA, simplified simulated annealing, and a generalized Hopfield neural network method, the IIA can achieve small total harmonic distortion (THD) and large magnitude. Meanwhile, a non-parametric test indicates that the IIA is significantly better than most comparison algorithms. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/0305215X.2016.1250894.
Lymph Nodes and Cancer Metastasis: New Perspectives on the Role of Intranodal Lymphatic Sinuses.
Ji, Rui-Cheng
2016-12-28
The lymphatic system is essential for transporting interstitial fluid, soluble antigen, and immune cells from peripheral tissues to lymph nodes (LNs). Functional integrity of LNs is dependent on intact lymphatics and effective lymph drainage. Molecular mechanisms that facilitate interactions between tumor cells and lymphatic endothelial cells (LECs) during tumor progression still remain to be identified. The cellular and molecular structures of LNs are optimized to trigger a rapid and efficient immune response, and to participate in the process of tumor metastasis by stimulating lymphangiogenesis and establishing a premetastatic niche in LNs. Several molecules, e.g., S1P, CCR7-CCL19/CCL21, CXCL12/CXCR4, IL-7, IFN-γ, TGF-β, and integrin α4β1 play an important role in controlling the activity of LN stromal cells including LECs, fibroblastic reticular cells (FRCs) and follicular dendritic cells (DCs). The functional stromal cells are critical for reconstruction and remodeling of the LN that creates a unique microenvironment of tumor cells and LECs for cancer metastasis. LN metastasis is a major determinant for the prognosis of most human cancers and clinical management. Ongoing work to elucidate the function and molecular regulation of LN lymphatic sinuses will provide insight into cancer development mechanisms and improve therapeutic approaches for human malignancy.
Mycobacterium tuberculosis GroEL2 Modulates Dendritic Cell Responses.
Georgieva, Maria; Sia, Jonathan Kevin; Bizzell, Erica; Madan-Lala, Ranjna; Rengarajan, Jyothi
2018-02-01
Mycobacterium tuberculosis successfully subverts the host immune response to promote disease progression. In addition to its known intracellular niche in macrophages, M. tuberculosis interferes with the functions of dendritic cells (DCs), which are the primary antigen-presenting cells of the immune system. We previously showed that M. tuberculosis dampens proinflammatory responses and impairs DC functions through the cell envelope-associated serine protease Hip1. Here we present data showing that M. tuberculosis GroEL2, a substrate of Hip1, modulates DC functions. The full-length GroEL2 protein elicited robust proinflammatory responses from DCs and promoted DC maturation and antigen presentation to T cells. In contrast, the cleaved form of GroEL2, which predominates in M. tuberculosis , was poorly immunostimulatory and was unable to promote DC maturation and antigen presentation. Moreover, DCs exposed to full-length, but not cleaved, GroEL2 induced strong antigen-specific gamma interferon (IFN-γ), interleukin-2 (IL-2), and IL-17A cytokine responses from CD4 + T cells. Moreover, the expression of cleaved GroEL2 in the hip1 mutant restored the robust T cell responses to wild-type levels, suggesting that proteolytic cleavage of GroEL2 allows M. tuberculosis to prevent optimal DC-T cell cross talk during M. tuberculosis infection. Copyright © 2018 American Society for Microbiology.
Cytokines in immunogenic cell death: Applications for cancer immunotherapy.
Showalter, Anne; Limaye, Arati; Oyer, Jeremiah L; Igarashi, Robert; Kittipatarin, Christina; Copik, Alicja J; Khaled, Annette R
2017-09-01
Despite advances in treatments like chemotherapy and radiotherapy, metastatic cancer remains a leading cause of death for cancer patients. While many chemotherapeutic agents can efficiently eliminate cancer cells, long-term protection against cancer is not achieved and many patients experience cancer recurrence. Mobilizing and stimulating the immune system against tumor cells is one of the most effective ways to protect against cancers that recur and/or metastasize. Activated tumor specific cytotoxic T lymphocytes (CTLs) can seek out and destroy metastatic tumor cells and reduce tumor lesions. Natural Killer (NK) cells are a front-line defense against drug-resistant tumors and can provide tumoricidal activity to enhance tumor immune surveillance. Cytokines like IFN-γ or TNF play a crucial role in creating an immunogenic microenvironment and therefore are key players in the fight against metastatic cancer. To this end, a group of anthracyclines or treatments like photodynamic therapy (PDT) exert their effects on cancer cells in a manner that activates the immune system. This process, known as immunogenic cell death (ICD), is characterized by the release of membrane-bound and soluble factors that boost the function of immune cells. This review will explore different types of ICD inducers, some in clinical trials, to demonstrate that optimizing the cytokine response brought about by treatments with ICD-inducing agents is central to promoting anti-cancer immunity that provides long-lasting protection against disease recurrence and metastasis. Copyright © 2017. Published by Elsevier Ltd.
Mealey, R.H.; Stone, D.M.; Hines, M.T.; Alperin, D.C.; Littke, M.H.; Leib, S.R.; Leach, S.E.; Hines, S.A.
2012-01-01
Improving the ability of DNA-based vaccines to induce potent Type1/Th1 responses against intracellular pathogens in large outbred species is essential. Rhodoccocus equi and equine infectious anemia virus (EIAV) are two naturally occurring equine pathogens that also serve as important large animal models of neonatal immunity and lentiviral immune control. Neonates present a unique challenge for immunization due to their diminished immunologic capabilities and apparent Th2 bias. In an effort to augment R. equi- and EIAV-specific Th1 responses induced by DNA vaccination, we hypothesized that a dual promoter plasmid encoding recombinant equine IL-12 (rEqIL-12) would function as a molecular adjuvant. In adult horses, DNA vaccines induced R. equi- and EIAV-specific antibody and lymphoproliferative responses, and EIAV-specific CTL and tetramer-positive CD8+ T lymphocytes. These responses were not enhanced by the rEqIL-12 plasmid. In neonatal foals, DNA immunization induced EIAV-specific antibody and lymphoproliferative responses, but not CTL. The R. equi vapA vaccine was poorly immunogenic in foals even when co-administered with the IL-12 plasmid. It was concluded that DNA immunization was capable of inducing Th1 responses in horses; dose and route were significant variables, but rEqIL-12 was not an effective molecular adjuvant. Additional work is needed to optimize DNA vaccine-induced Th1 responses in horses, especially in neonates. PMID:17889970
Galluzzi, Lorenzo; Vacchelli, Erika; Eggermont, Alexander; Fridman, Wolf Hervé; Galon, Jerome; Sautès-Fridman, Catherine; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido
2012-01-01
Toll-like receptors (TLRs) are prototypic pattern recognition receptors (PRRs) best known for their ability to activate the innate immune system in response to conserved microbial components such as lipopolysaccharide and double-stranded RNA. Accumulating evidence indicates that the function of TLRs is not restricted to the elicitation of innate immune responses against invading pathogens. TLRs have indeed been shown to participate in tissue repair and injury-induced regeneration as well as in adaptive immune responses against cancer. In particular, TLR4 signaling appears to be required for the efficient processing and cross-presentation of cell-associated tumor antigens by dendritic cells, which de facto underlie optimal therapeutic responses to some anticancer drugs. Thus, TLRs constitute prominent therapeutic targets for the activation/intensification of anticancer immune responses. In line with this notion, long-used preparations such as the Coley toxin (a mixture of killed Streptococcus pyogenes and Serratia marcescens bacteria) and the bacillus Calmette-Guérin (BCG, an attenuated strain of Mycobacterium bovis originally developed as a vaccine against tuberculosis), both of which have been associated with consistent anticancer responses, potently activate TLR2 and TLR4 signaling. Today, besides BCG, only one TLR agonist is FDA-approved for therapeutic use in cancer patients: imiquimod. In this Trial Watch, we will briefly present the role of TLRs in innate and cognate immunity and discuss the progress of clinical studies evaluating the safety and efficacy of experimental TLR agonists as immunostimulatory agents for oncological indications. PMID:22934262
Rekoske, Brian T; Smith, Heath A; Olson, Brian M; Maricque, Brett B; McNeel, Douglas G
2015-08-01
DNA vaccines have demonstrated antitumor efficacy in multiple preclinical models, but low immunogenicity has been observed in several human clinical trials. This has led to many approaches seeking to improve the immunogenicity of DNA vaccines. We previously reported that a DNA vaccine encoding the cancer-testis antigen SSX2, modified to encode altered epitopes with increased MHC class I affinity, elicited a greater frequency of cytolytic, multifunctional CD8(+) T cells in non-tumor-bearing mice. We sought to test whether this optimized vaccine resulted in increased antitumor activity in mice bearing an HLA-A2-expressing tumor engineered to express SSX2. We found that immunization of tumor-bearing mice with the optimized vaccine elicited a surprisingly inferior antitumor effect relative to the native vaccine. Both native and optimized vaccines led to increased expression of PD-L1 on tumor cells, but antigen-specific CD8(+) T cells from mice immunized with the optimized construct expressed higher PD-1. Splenocytes from immunized animals induced PD-L1 expression on tumor cells in vitro. Antitumor activity of the optimized vaccine could be increased when combined with antibodies blocking PD-1 or PD-L1, or by targeting a tumor line not expressing PD-L1. These findings suggest that vaccines aimed at eliciting effector CD8(+) T cells, and DNA vaccines in particular, might best be combined with PD-1 pathway inhibitors in clinical trials. This strategy may be particularly advantageous for vaccines targeting prostate cancer, a disease for which antitumor vaccines have demonstrated clinical benefit and yet PD-1 pathway inhibitors alone have shown little efficacy to date. ©2015 American Association for Cancer Research.
[Effect of polysaccharides in processed Sibiraea on immunologic function of immunosuppression mice].
Duan, Bowen; Li, Yun; Liu, Xin; Yang, Yongjian
2010-06-01
To study the effect of polysaccharides in processed Sibiraea on the immunologic function of immunosuppression mice. The immunosuppressed mice were induced by cyclophosphamide. After the treatment, the organ weight index and the delayed type hypersensitivity of the mice were investigated. The humoral immune function was determined by serum hemolysin assay. Non-specific immune function was determined by carbon clearance method. Cellular immune function was determined by spleen lymphocyte proliferation test. Two hundred kunming mice were randomly divided into five groups: normal controls, model group, low-dose group (110 mg x kg(-1)), middle-dose group (220 mg x kg(-1)), high-dose group (440 mg x kg(-1)). Drugs were given to the mice by oral gavage every day. The immunosuppressed mice treated with Sibiraea polysibcharide at intragastrica dose of 110-440 mg x kg(-1) have increased weight of the immune organs, increased content of DTH and content in serum hemolysin lgG and lgM. Mean while the rate of carbon clearance was enhanced and the proliferation of spleen lymphocyte was increased. Polysaccharides in processed Sibiraea can increase the weight of the immune organs. At the same time, non-specific immune, DTH, humoral immune and cellular immune function were enhanced significantly.
In immune defense: redefining the role of the immune system in chronic disease.
Rubinow, Katya B; Rubinow, David R
2017-03-01
The recognition of altered immune system function in many chronic disease states has proven to be a pivotal advance in biomedical research over the past decade. For many metabolic and mood disorders, this altered immune activity has been characterized as inflammation, with the attendant assumption that the immune response is aberrant. However, accumulating evidence challenges this assumption and suggests that the immune system may be mounting adaptive responses to chronic stressors. Further, the inordinate complexity of immune function renders a simplistic, binary model incapable of capturing critical mechanistic insights. In this perspective article, we propose alternative paradigms for understanding the role of the immune system in chronic disease. By invoking allostasis or systems biology rather than inflammation, we can ascribe greater functional significance to immune mediators, gain newfound appreciation of the adaptive facets of altered immune activity, and better avoid the potentially disastrous effects of translating erroneous assumptions into novel therapeutic strategies.
Iglesias-Carrasco, Maider; Head, Megan L; Jennions, Michael D; Cabido, Carlos
2016-06-21
The optimal allocation of resources to sexual signals and other life history traits is usually dependent on an individual's condition, while variation in the expression of sexual traits across environments depends on the combined effects of local adaptation, mean condition, and phenotypic responses to environment-specific cues that affect resource allocation. A clear contrast can often be drawn between natural habitats and novel habitats, such as forest plantations and urban areas. In some species, males seem to change their sexual signals in these novel environments, but why this occurs and how it affects signal reliability is still poorly understood. The relative size of sexual traits and level of immune responses were significantly lower for male palmate newts Lissotriton helveticus caught in pine and eucalyptus plantations compared to those caught in native forests, but there was no habitat-dependent difference in body condition (n = 18 sites, 382 males). The reliability with which sexual traits signalled body condition and immune responses was the same in all three habitats. Finally, we conducted a mesocosm experiment in which males were maintained in pine, eucalypt or oak infused water for 21 days. Males in plantation-like water (pine or eucalypt) showed significantly lower immune responses but no change in body condition. This matches the pattern seen for field-caught males. Unlike field-caught males, however, there was no relationship between water type and relative sexual trait size. Pine and eucalyptus plantations are likely to be detrimental to male palmate newt because they are associated with reduced immune function and smaller sexual traits. This could be because ecological aspects of these novel habitats, such as high water turbidity or changes in male-male competition, drive selection for reduced investment into sexual traits. However, it is more probable that there are differences in the ease of acquisition, hence optimal allocation, of resources among habitats. Our mesocosm experiment also provides some evidence that water toxicity is a causal factor. Our findings offer insights into how plantations affect amphibian life histories, and how novel habitats might generate long-term selection for new resource allocation strategies in native species.
Geographical variation in parasitism shapes larval immune function in a phytophagous insect
NASA Astrophysics Data System (ADS)
Vogelweith, Fanny; Dourneau, Morgane; Thiéry, Denis; Moret, Yannick; Moreau, Jérôme
2013-12-01
Two of the central goals of immunoecology are to understand natural variation in the immune system among populations and to identify those selection pressures that shape immune traits. Maintenance of the immune system can be costly, and both food quality and parasitism selection pressure are factors potentially driving immunocompetence. In tritrophic interactions involving phytophagous insects, host plants, and natural enemies, the immunocompetence of phytophagous insects is constrained by selective forces from both the host plants and the natural enemies. Here, we assessed the roles of host plants and natural enemies as selective pressures on immune variation among natural populations of Lobesia botrana. Our results showed marked geographical variation in immune defenses and parasitism among different natural populations. Larval immune functions were dependent of the host plant quality and were positively correlated to parasitism, suggesting that parasitoids select for greater investment into immunity in moth. Furthermore, investment in immune defense was negatively correlated with body size, suggesting that it is metabolically expensive. The findings emphasize the roles of host plants and parasitoids as selective forces shaping host immune functions in natural conditions. We argue that kinds of study are central to understanding natural variations in immune functions, and the selective forces beyond.
Balzar, Silvana
2017-01-01
Idiopathic chronic inflammatory conditions (ICIC) such as allergy, asthma, chronic obstructive pulmonary disease, and various autoimmune conditions are a worldwide health problem. Understanding the pathogenesis of ICIC is essential for their successful therapy and prevention. However, efforts are hindered by the lack of comprehensive understanding of the human immune system function. In line with those efforts, described here is a concept of stochastic continuous dual resetting (CDR) of the immune repertoire as a basic principle that governs the function of immunity. The CDR functions as a consequence of system's thermodynamically determined intrinsic tendency to acquire new states of inner equilibrium and equilibrium against the environment. Consequently, immune repertoire undergoes continuous dual (two-way) resetting: against the physiologic continuous changes of self and against the continuously changing environment. The CDR-based dynamic concept of immunity describes mechanisms of self-regulation, tolerance, and immunosenescence, and emphasizes the significance of immune system's compartmentalization in the pathogenesis of ICIC. The CDR concept's relative simplicity and concomitantly documented congruency with empirical, clinical, and experimental data suggest it may represent a plausible theoretical framework to better understand the human immune system function.
Kilpimaa, Janne; Alatalo, Rauno V; Siitari, Heli
2004-02-07
Good genes models of sexual selection assume that sexual advertisement is costly and thus the level of advertisement honestly reveals heritable viability. Recently it has been suggested that an important cost of sexual advertisement might be impairment of the functioning of the immune system. In this field experiment we investigated the possible trade-offs between immune function and sexual advertisement by manipulating both mating effort and activity of immune defence in male pied flycatchers. Mating effort was increased in a non-arbitrary manner by removing females from mated males during nest building. Widowed males sustained higher haematocrit levels than control males and showed higher expression of forehead patch height, suggesting that manipulation succeeded in increasing mating effort. Males that were experimentally forced to increase mating effort had reduced humoral immune responsiveness compared with control males. In addition, experimental activation of immune defence by vaccination with novel antigens reduced the expression of male ornament dimensions. To conclude, our results indicate that causality behind the trade-off between immune function and sexual advertisement may work in both directions: sexual activity suppresses immune function but immune challenge also reduces sexual advertisement.
Kilpimaa, Janne; Alatalo, Rauno V.; Siitari, Heli
2004-01-01
Good genes models of sexual selection assume that sexual advertisement is costly and thus the level of advertisement honestly reveals heritable viability. Recently it has been suggested that an important cost of sexual advertisement might be impairment of the functioning of the immune system. In this field experiment we investigated the possible trade-offs between immune function and sexual advertisement by manipulating both mating effort and activity of immune defence in male pied flycatchers. Mating effort was increased in a non-arbitrary manner by removing females from mated males during nest building. Widowed males sustained higher haematocrit levels than control males and showed higher expression of forehead patch height, suggesting that manipulation succeeded in increasing mating effort. Males that were experimentally forced to increase mating effort had reduced humoral immune responsiveness compared with control males. In addition, experimental activation of immune defence by vaccination with novel antigens reduced the expression of male ornament dimensions. To conclude, our results indicate that causality behind the trade-off between immune function and sexual advertisement may work in both directions: sexual activity suppresses immune function but immune challenge also reduces sexual advertisement. PMID:15058434
Brusch, George A; Billy, Gopal; Blattman, Joseph N; DeNardo, Dale F
Resource availability can impact immune function, with the majority of studies of such influences focusing on the allocation of energy investment into immune versus other physiological functions. When energy is a limited resource, performance trade-offs can result, compromising immunity. Dehydration is also considered a physiological challenge resulting from the limitation of a vital resource, yet previous research has found a positive relationship between dehydration and innate immune performance. However, these studies did not examine the effects of dehydration on immunity when there was another concurrent, substantial physiological challenge. Thus, we examined the impact of reproduction and water deprivation, individually and in combination, on immune performance in Children's pythons (Antaresia childreni). We collected blood samples from free-ranging A. childreni to evaluate osmolality and innate immune function (lysis, agglutination, bacterial growth inhibition) during the austral dry season, when water availability is limited and this species is typically reproducing. To examine how reproduction and water imbalance, both separately and combined, impact immune function, we used a laboratory-based 2 × 2 experiment. Our results demonstrate that A. childreni experience significant dehydration during the dry season and that, overall, osmolality, regardless of the underlying cause (seasonal rainfall, water deprivation, or reproduction), is positively correlated with increased innate immune performance.
Optimization of ceragenins for prevention of bacterial colonization of hydrogel contact lenses.
Gu, Xiaobo; Jennings, Jacob D; Snarr, Jason; Chaudhary, Vinod; Pollard, Jacob E; Savage, Paul B
2013-09-17
We provided contact lens hydrogels with an antibacterial innate immune function using nonpeptide mimics of endogenous antimicrobial peptides. Antimicrobial peptide mimics, ceragenins, were prepared for either covalent attachment to hydrogels or for controlled elution from lenses. The lipophilicity of the ceragenins was varied incrementally to provide differing levels of association with hydrophobic domains in lenses. Ceragenin-containing lenses were challenged repeatedly with Staphylococcus aureus or Pseudomonas aeruginosa in nutrient media. Bacterial growth and biofilm formation on lenses were quantified. A ceragenin covalently fixed in lenses effectively inhibited S. aureus biofilm formation on lenses in 10% tryptic soy broth (approximately 3-log reduction), but did not reduce biofilm formation in 100% tryptic soy broth. Ceragenins designed to elute from lenses were incorporated at 1% relative to the dry weight of the lenses. The ceragenin with the optimal lipid content, CSA-138, prevented bacterial colonization of lenses for 15 days with P. aeruginosa and for 30 days with S. aureus (daily exchange of growth media and reinoculation with 10⁶ CFU). Measurement of CSA-138 elution showed that concentrations of the ceragenin never exceeded 5 μg/mL in a 24-hour period and that after 4 days of elution, concentrations dropped to <0.5 μg/mL, while maintaining antibacterial activity. Ceragenin CSA-138 appears well suited for providing an innate immune-like function to abiotic hydrogel contact lenses for extended periods of time. Elution of even low concentrations of CSA-138 (<0.5 μg) is sufficient to eliminate inocula of 10⁶ CFU of S. aureus and P. aeruginosa.
Generation of improved humanized mouse models for human infectious diseases
Brehm, Michael A.; Wiles, Michael V.; Greiner, Dale L.; Shultz, Leonard D.
2014-01-01
The study of human-specific infectious agents has been hindered by the lack of optimal small animal models. More recently development of novel strains of immunodeficient mice has begun to provide the opportunity to utilize small animal models for the study of many human-specific infectious agents. The introduction of a targeted mutation in the IL2 receptor common gamma chain gene (IL2rgnull) in mice already deficient in T and B cells led to a breakthrough in the ability to engraft hematopoietic stem cells, as well as functional human lymphoid cells and tissues, effectively creating human immune systems in immunodeficient mice. These humanized mice are becoming increasingly important as pre-clinical models for the study of human immunodeficiency virus-1 (HIV-1) and other human-specific infectious agents. However, there remain a number of opportunities to further improve humanized mouse models for the study of human-specific infectious agents. This is being done by the implementation of innovative technologies, which collectively will accelerate the development of new models of genetically modified mice, including; i) modifications of the host to reduce innate immunity, which impedes human cell engraftment; ii) genetic modification to provide human-specific growth factors and cytokines required for optimal human cell growth and function; iii) and new cell and tissue engraftment protocols. The development of “next generation” humanized mouse models continues to provide exciting opportunities for the establishment of robust small animal models to study the pathogenesis of human-specific infectious agents, as well as for testing the efficacy of therapeutic agents and experimental vaccines. PMID:24607601
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billiard, Fabienne; Buard, Valerie; Benderitter, Marc
Purpose: To assess the frequency and the functional characteristics of one major component of immune tolerance, the CD4{sup +}FoxP3{sup +} regulatory T cells (Tregs) in a mouse model of abdominal irradiation. Methods and Materials: Mice were exposed to a single abdominal dose of {gamma}-radiation (10 Gy). We evaluated small intestine Treg infiltration by Foxp3 immunostaining and the functional suppressive activity of Tregs isolated from mesenteric lymph nodes. Results: Foxp3 immunostaining showed that radiation induced a long-term infiltration of the intestine by Tregs (levels 5.5 times greater than in controls). Co-culture of Tregs from mesenteric lymph nodes with CD4{sup +} effectormore » cells showed that the Tregs had lost their suppressive function. This loss was associated with a significant decrease in the levels of Foxp3, TGF-{beta}, and CTLA-4 mRNA, all required for optimal Treg function. At Day 90 after irradiation, Tregs regained their suppressive activity as forkhead box P3 (Foxp3), transforming growth factor beta (TGF-{beta}), and cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression returned to normal. Analysis of the secretory function of mesenteric lymph node Tregs, activated in vitro with anti-CD3/anti-CD28 Abs, showed that this dysfunction was independent of a defect in interleukin-10 secretion. Conclusion: Radiation caused a long-term accumulation of function-impaired Foxp3{sup +}CD4{sup +} Tregs in the intestine. Our study provides new insights into how radiation affects the immune tolerance in peripheral tissues.« less
Uckun, Fatih M.; Ma, Hong; Zhang, Jian; Ozer, Zahide; Dovat, Sinisa; Mao, Cheney; Ishkhanian, Rita; Goodman, Patricia; Qazi, Sanjive
2012-01-01
Ikaros is a zinc finger-containing DNA-binding protein that plays a pivotal role in immune homeostasis through transcriptional regulation of the earliest stages of lymphocyte ontogeny and differentiation. Functional deficiency of Ikaros has been implicated in the pathogenesis of acute lymphoblastic leukemia, the most common form of childhood cancer. Therefore, a stringent regulation of Ikaros activity is considered of paramount importance, but the operative molecular mechanisms responsible for its regulation remain largely unknown. Here we provide multifaceted genetic and biochemical evidence for a previously unknown function of spleen tyrosine kinase (SYK) as a partner and posttranslational regulator of Ikaros. We demonstrate that SYK phoshorylates Ikaros at unique C-terminal serine phosphorylation sites S358 and S361, thereby augmenting its nuclear localization and sequence-specific DNA binding activity. Mechanistically, we establish that SYK-induced Ikaros activation is essential for its nuclear localization and optimal transcription factor function. PMID:23071339
Yang, Jiajun; Qian, Kun; Wang, Chonglong; Wu, Yijing
2018-06-01
The gastrointestinal tract of pigs is densely populated with microorganisms that closely interact with the host and with ingested feed. Gut microbiota benefits the host by providing nutrients from dietary substrates and modulating the development and function of the digestive and immune systems. An optimized gastrointestinal microbiome is crucial for pigs' health, and establishment of the microbiome in piglets is especially important for growth and disease resistance. However, the microbiome in the gastrointestinal tract of piglets is immature and easily influenced by the environment. Supplementing the microbiome of piglets with probiotic bacteria such as Lactobacillus could help create an optimized microbiome by improving the abundance and number of lactobacilli and other indigenous probiotic bacteria. Dominant indigenous probiotic bacteria could improve piglets' growth and immunity through certain cascade signal transduction pathways. The piglet body provides a permissive habitat and nutrients for bacterial colonization and growth. In return, probiotic bacteria produce prebiotics such as short-chain fatty acids and bacteriocins that benefit piglets by enhancing their growth and reducing their risk of enteric infection by pathogens. A comprehensive understanding of the interactions between piglets and members of their gut microbiota will help develop new dietary interventions that can enhance piglets' growth, protect piglets from enteric diseases caused by pathogenic bacteria, and maximize host feed utilization.
NASA Astrophysics Data System (ADS)
Crescio, Claudia; Orecchioni, Marco; Ménard-Moyon, Cécilia; Sgarrella, Francesco; Pippia, Proto; Manetti, Roberto; Bianco, Alberto; Delogu, Lucia Gemma
2014-07-01
Spaceflights lead to dysregulation of the immune cell functionality affecting the expression of activation markers and cytokine production. Short oxidized multi-walled carbon nanotubes functionalized by 1,3-dipolar cycloaddition have been reported to activate immune cells. In this Communication we have performed surface marker assays and multiplex ELISA on primary monocytes and T cells under microgravity. We have discovered that carbon nanotubes, through their immunostimulatory properties, are able to fight spaceflight immune system dysregulations.Spaceflights lead to dysregulation of the immune cell functionality affecting the expression of activation markers and cytokine production. Short oxidized multi-walled carbon nanotubes functionalized by 1,3-dipolar cycloaddition have been reported to activate immune cells. In this Communication we have performed surface marker assays and multiplex ELISA on primary monocytes and T cells under microgravity. We have discovered that carbon nanotubes, through their immunostimulatory properties, are able to fight spaceflight immune system dysregulations. Electronic supplementary information (ESI) available: Experimental section, structures of f-MWCNTs and uptake by human primary immune cells. See DOI: 10.1039/c4nr02711f
Tomar, Namrata; De, Rajat K.
2013-01-01
Response of an immune system to a pathogen attack depends on the balance between the host immune defense and the virulence of the pathogen. Investigation of molecular interactions between the proteins of a host and a pathogen helps in identifying the pathogenic proteins. It is necessary to understand the dynamics of a normally behaved host system to evaluate the capacity of its immune system upon pathogen attack. In this study, we have compared the behavior of an unperturbed and pathogen perturbed host system. Moreover, we have developed a formalism under Flux Balance Analysis (FBA) for the optimization of conflicting objective functions. We have constructed an integrated pathway system, which includes Staphylococcal Superantigen (SAg) expression regulatory pathway and TCR signaling pathway of Homo sapiens. We have implemented the method on this pathway system and observed the behavior of host signaling molecules upon pathogen attack. The entire study has been divided into six different cases, based on the perturbed/unperturbed conditions. In other words, we have investigated unperturbed and pathogen perturbed human TCR signaling pathway, with different combinations of optimization of concentrations of regulatory and signaling molecules. One of these cases has aimed at finding out whether minimization of the toxin production in a pathogen leads to the change in the concentration levels of the proteins coded by TCR signaling pathway genes in the infected host. Based on the computed results, we have hypothesized that the balance between TCR signaling inhibitory and stimulatory molecules can keep TCR signaling system into resting/stimulating state, depending upon the perturbation. The proposed integrated host-pathogen interaction pathway model has accurately reflected the experimental evidences, which we have used for validation purpose. The significance of this kind of investigation lies in revealing the susceptible interaction points that can take back the Staphylococcal Enterotoxin (SE)-challenged system within the range of normal behavior. PMID:24324645
NASA Technical Reports Server (NTRS)
Sams, Clarence; Crucian, Brian; Stowe, Raymond; Pierson, Duane; Mehta, Satish; Morukov, Boris; Uchakin, Peter; Nehlsen-Cannarella, Sandra
2008-01-01
Validation of Procedures for Monitoring Crew Member Immune Function - Short Duration Biological Investigation (Integrated Immune-SDBI) will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flightcompatible immune monitoring strategy. Immune system changes will be monitored by collecting and analyzing blood, urine and saliva samples from crewmembers before, during and after space flight.
Optimization and shelf life of a low-lactose yogurt with Lactobacillus rhamnosus HN001.
Ibarra, A; Acha, R; Calleja, M-T; Chiralt-Boix, A; Wittig, E
2012-07-01
Lactose intolerance results in gastrointestinal discomfort and the malabsorption of certain nutrients, such as calcium. The replacement of milk with low-lactose and probiotic-enriched dairy products is an effective strategy of mitigating the symptoms of lactose intolerance. Lactobacillus rhamnosus HN001 (HN001) is a safe, immunity-stimulating probiotic. We have developed a process to increase the hydrolysis of lactose and HN001 growth in yogurt versus β-galactosidase (βG) concentration and enzymatic hydrolysis time (EHT) before bacterial fermentation. The objective of this study was to optimize the conditions by which yogurt is processed as a function of βG and EHT using a multifactorial design, with lactose content, HN001 growth, process time, and sensory quality as dependent variables. Further, the shelf life of the optimized yogurt was evaluated. In the optimization study, polynomials explained the dependent variables. Based on Pearson correlation coefficients, HN001 growth correlated positively with the hydrolysis of lactose. However, low lactose content and high HN001 count increased the fermentation time and lowered the sensory quality. The optimized conditions-using polynomials to obtain yogurt with >1 × 10(7) cfu of HN001/mL, <10 g of lactose/L, and a minimum overall sensory quality of 7 on the Karlsruhe scale-yielded a theoretical value of 910 neutral lactose units/kg for βG and 2.3h for EHT, which were validated in an industrial-scale assay. Based on a shelf-life study at 3 temperatures, the hydrolysis of lactose and the growth of HN001 continue during storage. Arrhenius equations were developed for the variables in the shelf-life study. Our results demonstrate that it is feasible to develop a low-lactose yogurt to which HN001 has been added for lactose-intolerant persons who wish to strengthen their immune system. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Regulatory Phosphorylation of Ikaros by Bruton's Tyrosine Kinase
Zhang, Jian; Ishkhanian, Rita; Uckun, Fatih M.
2013-01-01
Diminished Ikaros function has been implicated in the pathogenesis of acute lymphoblastic leukemia (ALL), the most common form of childhood cancer. Therefore, a stringent regulation of Ikaros is of paramount importance for normal lymphocyte ontogeny. Here we provide genetic and biochemical evidence for a previously unknown function of Bruton's tyrosine kinase (BTK) as a partner and posttranslational regulator of Ikaros, a zinc finger-containing DNA-binding protein that plays a pivotal role in immune homeostasis. We demonstrate that BTK phosphorylates Ikaros at unique phosphorylation sites S214 and S215 in the close vicinity of its zinc finger 4 (ZF4) within the DNA binding domain, thereby augmenting its nuclear localization and sequence-specific DNA binding activity. Our results further demonstrate that BTK-induced activating phosphorylation is critical for the optimal transcription factor function of Ikaros. PMID:23977012
Cellular Interactions and Immune Response of Spherical Nucleic Acid (SNA) Nanoconjugates
NASA Astrophysics Data System (ADS)
Massich, Matthew David
Spherical nucleic acid (SNA) nanoconjugates consist of a densely packed monolayer shell of highly-oriented oligonucleotides covalently bound to a gold nanoparticle core. The nanoconjugates exhibit several important qualities, which make them useful for various biological applications, such as antisense gene regulation strategies and the intracellular detection of biomolecules. The focus of this thesis was to characterize the nanoconjugates interaction with cultured cells and specifically the immune response to their intracellular presence. The immune response of macrophage cells to internalized nanoconjugates was studied, and due to the dense functionalization of oligonucleotides on the surface of the nanoparticle and the resulting high localized salt concentration the innate immune response to the nanoconjugates is ˜25-fold less when compared to a lipoplex carrying the same sequence. Additionally, genome-wide expression profiling was used to study the biological response of cultured cells to the nanoconjugates. The biological response of HeLa cells to gold nanoparticles stabilized by weakly bound ligands was significant, yet when these same nanoparticles were stably functionalized with covalently attached oligonucleotides the cells showed no measurable response. In human keratinocytes, the oligonucleotide sequences caused 427 genes to be differentially expressed when complexed with Dharmafect, but when the oligonucleotides were conjugated to nanoparticles only 7 genes were differentially expressed. Beyond characterizing the cellular interactions and immune response of the nanoconjugates, the optimal length of siRNA (from 19--34 base pairs) that induces the most gene knockdown while maintaining limited immune activation was determined to be 24 base pairs. Further, the SNAs were shown to be useful as a potential antiviral gene therapy by demonstrating approximately 50% knockdown of the Ebola VP35 gene. Lastly, a scanning probe-enabled method was used to rapidly create nanoscale fibronectin patterns over large areas with a range of feature sizes, thereby opening the field of nanocombinatorics. This allowed the investigation of the relationship between fibronectin feature size and stem cell fate. MSCs cultured on nanoscale fibronectin features directed differentiation toward osteogenesis to a greater extent than cells grown on both microscale features and cells grown on non-patterned fibronectin substrates with osteogenic inducing media, demonstrating a new method for controlling stem cell fate.
Effects of in utero JP-8 jet fuel exposure on the immune systems of pregnant and newborn mice.
Harris, D T; Sakiestewa, D; He, X; Titone, D; Witten, M
2007-10-01
The US Air Force has implemented the widespread use of JP-8 jet fuel in its operations, although a thorough understanding of its potential effects upon exposed personnel is unclear. Previous work has reported that JP-8 exposure is immunosuppressive. In the present study, the effects of in-utero JP-8 jet fuel exposure in mice were examined to ascertain any potential effects of jet fuel exposure on female personnel and their offspring. Exposure by the aerosol route (at 1000 mg/m3 for 1 h/day; similar to exposures incurred by flight line personnel) commencing during the first (d7 to birth) or last (d15 to birth) trimester of pregnancy was analyzed. It was observed that even 6-8 weeks after the last jet fuel exposure that the immune system of the dams (mother of newborn mice) was affected (in accordance with previous reports on normal mice). That is, thymus organ weights and viable cell numbers were decreased, and immune function was depressed. A decrease in viable male offspring was found, notably more pronounced when exposure started during the first trimester of pregnancy. Regardless of when jet fuel exposure started, all newborn mice (at 6-8 weeks after birth) reported significant immunosuppression. That is, newborn pups displayed decreased immune organ weights, decreased viable immune cell numbers and suppressed immune function. When the data were analyzed in relation to the respective mothers of the pups the data were more pronounced. Although all jet fuel-exposed pups were immunosuppressed as compared with control pups, male offspring were more affected by jet fuel exposure than female pups. Furthermore, the immune function of the newborn mice was directly correlated to the immune function of their respective mothers. That is, mothers showing the lowest immune function after JP-8 exposure gave birth to pups displaying the greatest effects of jet fuel exposure on immune function. Mothers who showed the highest levels of immune function after in-utero JP-8 exposure gave birth to pups displaying levels of immune function similar to controls animals that had the lowest levels of immune function. These data indicated that a genetic component might be involved in determining immune responses after jet fuel exposure. Overall, the data showed that in-utero JP-8 jet fuel exposure had long-term detrimental effects on newborn mice, particularly on the viability and immune competence of male offspring.
Kangassalo, Katariina; Valtonen, Terhi M; Sorvari, Jouni; Kecko, Sanita; Pölkki, Mari; Krams, Indrikis; Krama, Tatjana; Rantala, Markus J
2018-06-29
Organisms in the wild are likely to face multiple immune challenges as well as additional ecological stressors, yet their interactive effects on immune function are poorly understood. Insects are found to respond to cues of increased infection risk by enhancing their immune capacity. However, such adaptive plasticity in immune function may be limited by physiological and environmental constraints. Here, we investigated the effects of two environmental stressors - poor larval diet and an artificial parasite-like immune challenge at the pupal stage - on adult immune function, growth and development in the greater wax moth (Galleria mellonella). Males whose immune system was activated with an artificial parasite-like immune challenge had weaker immune response - measured as strength of encapsulation response - as adults compared to the control groups, but only when raised in high-nutrition larval diet. Immune activation did not negatively affect adult immune response in males reared in low-nutrition larval diet, indicating that poor larval diet improved the capacity of the insects to respond to repeated immune challenges. Low-nutrition larval diet also had a positive independent effect on immune capacity in females, yet it negatively affected development time and adult body mass in both sexes. As in the nature immune challenges are rarely isolated, and adverse nutritional environment may indicate an elevated risk of infection, resilience to repeated immune challenges as a response to poor nutritional environment could provide a significant fitness advantage. The present study highlights the importance of considering environmental context when investigating effects of immune activation in insects. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Cell-Mediated Immunity to Target the Persistent Human Immunodeficiency Virus Reservoir.
Riley, James L; Montaner, Luis J
2017-03-15
Effective clearance of virally infected cells requires the sequential activity of innate and adaptive immunity effectors. In human immunodeficiency virus (HIV) infection, naturally induced cell-mediated immune responses rarely eradicate infection. However, optimized immune responses could potentially be leveraged in HIV cure efforts if epitope escape and lack of sustained effector memory responses were to be addressed. Here we review leading HIV cure strategies that harness cell-mediated control against HIV in stably suppressed antiretroviral-treated subjects. We focus on strategies that may maximize target recognition and eradication by the sequential activation of a reconstituted immune system, together with delivery of optimal T-cell responses that can eliminate the reservoir and serve as means to maintain control of HIV spread in the absence of antiretroviral therapy (ART). As evidenced by the evolution of ART, we argue that a combination of immune-based strategies will be a superior path to cell-mediated HIV control and eradication. Available data from several human pilot trials already identify target strategies that may maximize antiviral pressure by joining innate and engineered T cell responses toward testing for sustained HIV remission and/or cure. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
St Pierre, Cristina; Guo, Jane; Shin, John D; Engstrom, Laura W; Lee, Hyun-Hee; Herbert, Alan; Surdi, Laura; Baker, James; Salmon, Michael; Shah, Sanjiv; Ellis, J Michael; Houshyar, Hani; Crackower, Michael A; Kleinschek, Melanie A; Jones, Dallas C; Hicks, Alexandra; Zaller, Dennis M; Alves, Stephen E; Ramadas, Ravisankar A
2017-01-01
While the immune system is essential for the maintenance of the homeostasis, health and survival of humans, aberrant immune responses can lead to chronic inflammatory and autoimmune disorders. Pharmacological modulation of drug targets in the immune system to ameliorate disease also carry a risk of immunosuppression that could lead to adverse outcomes. Therefore, it is important to understand the 'immune fingerprint' of novel therapeutics as they relate to current and, clinically used immunological therapies to better understand their potential therapeutic benefit as well as immunosuppressive ability that might lead to adverse events such as infection risks and cancer. Since the mechanistic investigation of pharmacological modulators in a drug discovery setting is largely compound- and mechanism-centric but not comprehensive in terms of immune system impact, we developed a human tissue based functional assay platform to evaluate the impact of pharmacological modulators on a range of innate and adaptive immune functions. Here, we demonstrate that it is possible to generate a qualitative and quantitative immune system impact of pharmacological modulators, which might help better understand and predict the benefit-risk profiles of these compounds in the treatment of immune disorders.
Effects of the space flight environment on the immune system
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald; Butel, Janet S.; Shearer, William T.
2003-01-01
Space flight conditions have a dramatic effect on a variety of physiologic functions of mammals, including muscle, bone, and neurovestibular function. Among the physiological functions that are affected when humans or animals are exposed to space flight conditions is the immune response. The focus of this review is on the function of the immune system in space flight conditions during actual space flights, as well as in models of space flight conditions on the earth. The experiments were carried out in tissue culture systems, in animal models, and in human subjects. The results indicate that space flight conditions alter cell-mediated immune responses, including lymphocyte proliferation and subset distribution, and cytokine production. The mechanism(s) of space flight-induced alterations in immune system function remain(s) to be established. It is likely, however, that multiple factors, including microgravity, stress, neuroendocrine factors, sleep disruption, and nutritional factors, are involved in altering certain functions of the immune system. Such alterations could lead to compromised defenses against infections and tumors.
Bendz, Henriette; Ruhland, Sibylle C; Pandya, Maya J; Hainzl, Otmar; Riegelsberger, Stefan; Braüchle, Christoph; Mayer, Matthias P; Buchner, Johannes; Issels, Rolf D; Noessner, Elfriede
2007-10-26
Heat shock proteins (HSPs) have shown promise for the optimization of protein-based vaccines because they can transfer exogenous antigens to dendritic cells and at the same time induce their maturation. Great care must be exercised in interpretating HSP-driven studies, as by-products linked to the recombinant generation of these proteins have been shown to mediate immunological effects. We generated highly purified human recombinant Hsp70 and demonstrated that it strongly enhances the cross-presentation of exogenous antigens resulting in better antigen-specific T cell stimulation. Augmentation of T cell stimulation was a direct function of the degree of complex formation between Hsp70 and peptides and correlated with improved antigen delivery to endosomal compartments. The Hsp70 activity was independent of TAP proteins and was not inhibited by exotoxin A or endosomal acidification. Consequently, Hsp70 enhanced cross-presentation of various antigenic sequences, even when they required different post-uptake processing and trafficking, as exemplified by the tumor antigens tyrosinase and Melan-A/MART-1. Furthermore, Hsp70 enhanced cross-presentation by different antigen-presenting cells (APCs), including dendritic cells and B cells. Importantly, enhanced cross-presentation and antigen-specific T cell activation were observed in the absence of innate signals transmitted by Hsp70. As Hsp70 supports the cross-presentation of different antigens and APCs and is inert to APC function, it may show efficacy in various settings of immune modulation, including induction of antigen-specific immunity or tolerance.
Longevity of T-cell memory following acute viral infection.
Walker, Joshua M; Slifka, Mark K
2010-01-01
Investigation of T-cell-mediated immunity following acute viral infection represents an area of research with broad implications for both fundamental immunology research as well as vaccine development. Here, we review techniques that are used to assess T-cell memory including limiting dilution analysis, enzyme-linked immunospot (ELISPOT) assays, intracellular cytokine staining (ICCS) and peptide-MHC Class I tetramer staining. The durability of T-cell memory is explored in the context of several acute viral infections including vaccinia virus (VV), measles virus (MV) and yellow fever virus (YFV). Following acute infection, different virus-specific T-cell subpopulations exhibit distinct cytokine profiles and these profiles change over the course of infection. Differential regulation of the cytotoxic proteins, granzyme A, granzyme B and perforin are also observed in virus-specific T cells following infection. As a result of this work, we have gained a broader understanding of the kinetics and magnitude of antiviral T-cell immunity as well as new insight into the patterns of immunodominance and differential regulation of cytokines and cytotoxicity-associated molecules. This information may eventually lead to the generation of more effective vaccines that elicit T-cell memory with the optimal combination of functional characteristics required for providing protective immunity against infectious disease.
TCR hypervariable regions expressed by T cells that respond to effective tumor vaccines.
Jordan, Kimberly R; Buhrman, Jonathan D; Sprague, Jonathan; Moore, Brandon L; Gao, Dexiang; Kappler, John W; Slansky, Jill E
2012-10-01
A major goal of immunotherapy for cancer is the activation of T cell responses against tumor-associated antigens (TAAs). One important strategy for improving antitumor immunity is vaccination with peptide variants of TAAs. Understanding the mechanisms underlying the expansion of T cells that respond to the native tumor antigen is an important step in developing effective peptide-variant vaccines. Using an immunogenic mouse colon cancer model, we compare the binding properties and the TCR genes expressed by T cells elicited by peptide variants that elicit variable antitumor immunity directly ex vivo. The steady-state affinity of the natural tumor antigen for the T cells responding to effective peptide vaccines was higher relative to ineffective peptides, consistent with their improved function. Ex vivo analysis showed that T cells responding to the effective peptides expressed a CDR3β motif, which was also shared by T cells responding to the natural antigen and not those responding to the less effective peptide vaccines. Importantly, these data demonstrate that peptide vaccines can expand T cells that naturally respond to tumor antigens, resulting in more effective antitumor immunity. Future immunotherapies may require similar stringent analysis of the responding T cells to select optimal peptides as vaccine candidates.
Mito-magneto: A Tool for Nanoparticle Mediated Mitochondria Isolation†
Banik, Bhabatosh; Askins, Brett W.; Dhar, Shanta
2016-01-01
The field of intracellular organelle targeting using nanoparticles (NPs) is mushrooming rapidly. Thus, the area of nanotechnology-enabled targeting of mitochondrion, the cellular powerhouse, for diseases characterized by mitochondrial dysfunctions such as cancer, diseases of the central nervous system, cardiovascular diseases is also growing at a rapid pace. Optimization of NP’s ability to target the mitochondria requires quantification of the particles in this subcellular organelle and isolation of mitochondria from cells. Conventional gradient centrifugation used in currently available methods may not be appropriate for NP containing mitochondria isolation as these particles undergo Brownian motion under centrifugal forces yielding irreproducible results. There is only one method for centrifugation free mitochondria isolation, however this method requires immune-precipitation. Thus, a reliable centrifugation and immune-precipitation free method is urgently needed to support this growing field of nanotechnology-based mitochondria targeting. Here, we report a mitochondria-targeted magnetic NP, Mito-magneto, to avoid centrifugation and immune precipitation methods for isolation of functional, respiration active pure mitochondria which can be used to analyze and quantify mitochondria targeting properties of various NPs to provide an important tool for the growing field of “mitochondrial nanomedicine”. PMID:27735003
Jet fuel-induced immunotoxicity.
Harris, D T; Sakiestewa, D; Titone, D; Robledo, R F; Young, R S; Witten, M
2000-09-01
Chronic exposure to jet fuel has been shown to cause human liver dysfunction, emotional dysfunction, abnormal electroencephalograms, shortened attention spans, and to decrease sensorimotor speed (3-5). Exposure to potential environmental toxicants such as jet fuel may have significant effects on host systems beyond those readily visible (e.g., physiology, cardiology, respiratory, etc.), e.g., the immune system. Significant changes in immune function, even if short-lived, may have serious consequences for the exposed host that may impinge affect susceptibility to infectious agents. Major alterations in immune function that are long lasting may result in an increased likelihood of development and/or progression of cancer, as well as autoimmune diseases. In the current study mice were exposed 1 h/day for 7 days to a 1000-mg/m3 concentration of aerosolized jet fuel obtained from various sources (JP-8, JP-8+100 and Jet A1) and of differing compositions to simulate occupational exposures. Twenty-four hours after the last exposure the mice were analyzed for effects on the immune system. It was observed that exposure to all jet fuel sources examined had detrimental effects on the immune system. Decreases in viable immune cell numbers and immune organ weights were found. Jet fuel exposure resulted in differential losses of immune cell populations in the thymus. Further, jet fuel exposure resulted in significantly decreased immune function, as analyzed by mitogenesis assays. Suppressed immune function could not be overcome by the addition of exogenous growth factors known to stimulate immune function. Thus, short-term, low-concentration exposure of mice to aerosolized jet fuel, regardless of source or composition, caused significant deleterious effects on the immune system.
Immune-responsiveness of CD4+ T cells during Streptococcus suis serotype 2 infection
Lecours, Marie-Pier; Letendre, Corinne; Clarke, Damian; Lemire, Paul; Galbas, Tristan; Benoit-Biancamano, Marie-Odile; Thibodeau, Jacques; Gottschalk, Marcelo; Segura, Mariela
2016-01-01
The pathogenesis of Streptococcus suis infection, a major swine and human pathogen, is only partially understood and knowledge on the host adaptive immune response is critically scarce. Yet, S. suis virulence factors, particularly its capsular polysaccharide (CPS), enable this bacterium to modulate dendritic cell (DC) functions and potentially impair the immune response. This study aimed to evaluate modulation of T cell activation during S. suis infection and the role of DCs in this response. S. suis-stimulated total mouse splenocytes readily produced TNF-α, IL-6, IFN-γ, CCL3, CXCL9, and IL-10. Ex vivo and in vivo analyses revealed the involvement of CD4+ T cells and a Th1 response. Nevertheless, during S. suis infection, levels of the Th1-derived cytokines TNF-α and IFN-γ were very low. A transient splenic depletion of CD4+ T cells and a poor memory response were also observed. Moreover, CD4+ T cells secreted IL-10 and failed to up-regulate optimal levels of CD40L and CD69 in coculture with DCs. The CPS hampered release of several T cell-derived cytokines in vitro. Finally, a correlation was established between severe clinical signs of S. suis disease and impaired antibody responses. Altogether, these results suggest S. suis interferes with the adaptive immune response. PMID:27905502
Computational study for optimization of a plasmon FET as a molecular biosensor
NASA Astrophysics Data System (ADS)
Ciappesoni, Mark; Cho, Seongman; Tian, Jieyuan; Kim, Sung Jin
2018-02-01
Surface Plasmon Resonance (SPR) is currently being widely studied as it exhibits sensitive optical properties to changes in in the refractive index of the surrounding medium. As novel devices using SPR have been developing rapidly there is a necessity to develop models and simulation environments that will allow for continued development and optimization of these devices. A biological sensing device of interest is the Plasmon FET which has been proven experimentally to have a limit of detection (LOD) of 20pg/ml while being immune to the absorption of the medium. The Plasmon FET is a metal-semiconductor-metal detector which employ functionalized gold nanostructures on a semi-conducting layer. This direct approach has the advantages of not requiring readout optics reducing size and allowing for point-of -care measurements. Using Lumerical FDTD and Device numerical solvers, we can report an advanced simulation environment illustrating several key sensor specifications including LOD, resolution, sensitivity, and dynamic range, for a variety of biological markers providing a comprehensive analysis of a Direct Plasmon-to-Electric conversion device designed to function with colored mediums (eg.whole blood). This model allows for the simulation and optimization of a plasmonic sensor that already o ers advantages in size, operability, and multiplexing-capability, with real time monitoring.
Gold kiwifruit ( Actinidia chinensis 'Hort16A') for immune support.
Skinner, Margot A; Loh, Jacelyn M S; Hunter, Denise C; Zhang, Jingli
2011-05-01
Kiwifruit is a good source of several vitamins and minerals and dietary fibre, and contains a number of phytochemicals; so kiwifruit potentially provides health benefits beyond basic nutrition. Consumption of green kiwifruit can have positive effects on cardiovascular health through antioxidant activity, inhibition of platelet aggregation and lowered TAG levels, and gut health through improving laxation, aiding digestion and promoting a healthy gut microflora. The importance of nutrition on immune function is well recognised, with deficiencies in vitamins A, C, E, B6 and B12, folic acid, Zn, Cu, Fe and Se being associated with impaired immune function and increased susceptibility to diseases. Evidence is growing that kiwifruit enhances immunity, with several small murine studies showing enhancement of innate and adaptive immune function. Few studies have examined the effect of kiwifruit on immune function in human subjects, but a recent study has revealed that kiwifruit up-regulates several 'immune' and 'DNA and repair'-related gene sets, and down-regulates one gene set related to Ig secretion. Taken together, the evidence from the literature provides supporting data for designing a human intervention trial to validate the ability of kiwifruit to support immune function in healthy and immunocompromised populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spector, June T., E-mail: spectj@uw.edu; Department of Medicine, School of Medicine, University of Washington, Seattle, WA; De Roos, Anneclaire J., E-mail: ajd335@drexel.edu
Background: Polychlorinated biphenyl (PCB) exposure has been associated with non-Hodgkin lymphoma in several studies, and the immune system is a potential mediator. Objectives: We analyzed associations of plasma PCBs with immune function measures. We hypothesized that higher plasma PCB concentrations are associated with lower immune function cross-sectionally, and that increases in PCB concentrations over a one year period are associated with decreases in immune function. Methods: Plasma PCB concentrations and immune function [natural killer (NK) cell cytotoxicity and PHA-induced T-lymphocyte proliferation (PHA-TLP)] were measured at baseline and one year in 109 postmenopausal overweight women participating in an exercise intervention studymore » in the Seattle, Washington (USA) area. Mixed models, with adjustment for body mass index and other potential confounders, were used to estimate associations of PCBs with immune function cross-sectionally and longitudinally. Results: Associations of PCBs with immune function measures differed across groups of PCBs (e.g., medium- and high-chlorinated and dioxin-like [mono-ortho-substituted]) and by the time frame for the comparison (cross-sectional vs. longitudinal). Higher concentrations of medium- and high-chlorinated PCBs were associated with higher PHA-TLP cross-sectionally but not longitudinally. The mean decrease in 0.5 µg/mL PHA-TLP/50.0 pmol/g-lipid increase in dioxin-like PCBs over one year was 51.6 (95% confidence interval 2.7, 100.5; P=0.039). There was no association between plasma PCBs and NK cytotoxicity. Conclusions: These results do not provide strong evidence of impaired cellular immunity from PCB exposure. Larger longitudinal studies with greater variability in PCB exposures are needed to further examine temporal associations of PCBs with immune function. - Highlights: • Plasma PCBs and immune function were measured in 109 women at baseline and one year. • Immune measures included T lymphocyte proliferation (TLP) and NK cell cytotoxicity. • Higher-chlorinated PCBs were positively associated with TLP in cross-section. • An increase in dioxin-like PCBs was associated with a decrease in TLP over one year. • We did not find strong evidence of impaired cellular immunity from PCB exposure.« less
Shan, Qiang; Xue, Hai-Hui; Harty, John T.
2017-01-01
Sepsis is a systemic infection that enhances host vulnerability to secondary infections normally controlled by T cells. Using CLP sepsis model, we observed that sepsis induces apoptosis of circulating memory CD8 T-cells (TCIRCM) and diminishes their effector functions, leading to impaired CD8 T-cell mediated protection to systemic pathogen re-infection. In the context of localized re-infections, tissue resident memory CD8 T-cells (TRM) provide robust protection in a variety of infectious models. TRM rapidly ‘sense’ infection in non-lymphoid tissues and ‘alarm’ the host by enhancing immune cell recruitment to the site of the infection to accelerate pathogen clearance. Here, we show that compared to pathogen-specific TCIRCM, sepsis does not invoke significant numerical decline of Vaccinia virus induced skin-TRM keeping their effector functions (e.g., Ag-dependent IFN-γ production) intact. IFN-γ-mediated recruitment of immune cells to the site of localized infection was, however, reduced in CLP hosts despite TRM maintaining their ‘sensing and alarming’ functions. The capacity of memory CD8 T-cells in the septic environment to respond to inflammatory cues and arrive to the site of secondary infection/antigen exposure remained normal suggesting T-cell-extrinsic factors contributed to the observed lesion. Mechanistically, we showed that IFN-γ produced rapidly during sepsis-induced cytokine storm leads to reduced IFN-γR1 expression on vascular endothelium. As a consequence, decreased expression of adhesion molecules and/or chemokines (VCAM1 and CXCL9) on skin endothelial cells in response to TRM-derived IFN-γ was observed, leading to sub-optimal bystander-recruitment of effector cells and increased susceptibility to pathogen re-encounter. Importantly, as visualized by intravital 2-photon microscopy, exogenous administration of CXCL9/10 was sufficient to correct sepsis-induced impairments in recruitment of effector cells at the localized site of TRM antigen recognition. Thus, sepsis has the capacity to alter skin TRM anamnestic responses without directly impacting TRM number and/or function, an observation that helps to further define the immunoparalysis phase in sepsis survivors. PMID:28910403
NASA Astrophysics Data System (ADS)
Mahapatra, Prasant Kumar; Sethi, Spardha; Kumar, Amod
2015-10-01
In conventional tool positioning technique, sensors embedded in the motion stages provide the accurate tool position information. In this paper, a machine vision based system and image processing technique for motion measurement of lathe tool from two-dimensional sequential images captured using charge coupled device camera having a resolution of 250 microns has been described. An algorithm was developed to calculate the observed distance travelled by the tool from the captured images. As expected, error was observed in the value of the distance traversed by the tool calculated from these images. Optimization of errors due to machine vision system, calibration, environmental factors, etc. in lathe tool movement was carried out using two soft computing techniques, namely, artificial immune system (AIS) and particle swarm optimization (PSO). The results show better capability of AIS over PSO.
Waiczies, Helmar; Lepore, Stefano; Janitzek, Nicole; Hagen, Ulrike; Seifert, Frank; Ittermann, Bernd; Purfürst, Bettina; Pezzutto, Antonio; Paul, Friedemann; Niendorf, Thoralf; Waiczies, Sonia
2011-01-01
The development of cellular tracking by fluorine (19F) magnetic resonance imaging (MRI) has introduced a number of advantages for following immune cell therapies in vivo. These include improved signal selectivity and a possibility to correlate cells labeled with fluorine-rich particles with conventional anatomic proton (1H) imaging. While the optimization of the cellular labeling method is clearly important, the impact of labeling on cellular dynamics should be kept in mind. We show by 19F MR spectroscopy (MRS) that the efficiency in labeling cells of the murine immune system (dendritic cells) by perfluoro-15-crown-5-ether (PFCE) particles increases with increasing particle size (560>365>245>130 nm). Dendritic cells (DC) are professional antigen presenting cells and with respect to impact of PFCE particles on DC function, we observed that markers of maturation for these cells (CD80, CD86) were also significantly elevated following labeling with larger PFCE particles (560 nm). When labeled with these larger particles that also gave an optimal signal in MRS, DC presented whole antigen more robustly to CD8+ T cells than control cells. Our data suggest that increasing particle size is one important feature for optimizing cell labeling by PFCE particles, but may also present possible pitfalls such as alteration of the immunological status of these cells. Therefore depending on the clinical scenario in which the 19F-labeled cellular vaccines will be applied (cancer, autoimmune disease, transplantation), it will be interesting to monitor the fate of these cells in vivo in the relevant preclinical mouse models. PMID:21811551
Prins, Jelmer R; Eskandar, Sharon; Eggen, Bart J L; Scherjon, Sicco A
2018-04-01
Disturbances in fetal neurodevelopment have extensively been related to neurodevelopmental disorders in early and later life. Fetal neurodevelopment is dependent on adequate functioning of the fetal immune system. During pregnancy, the maternal immune system is challenged to both tolerate the semi-allogenic fetus and to protect the mother and fetus from microbes. The fetal immune system is influenced by maternal immune disturbances; therefore, perturbations in maternal immunity likely do not only alter pregnancy outcome but also alter fetal neurodevelopment. A possible common pathway could be modulating the functioning of tissue macrophages in the placenta and brain. Maternal immune tolerance towards the fetus involves several complex adaptations. In this active maternal immune state, the fetus develops its own immunity. As cytokines and other players of the immune system -which can pass the placenta- are involved in neurodevelopment, disruptions in immune balance influence fetal neurodevelopment. Several studies reported an association between maternal immune activation, complications of pregnancy as preeclampsia, and altered neonatal neurodevelopment. A possible pathway involves dysfunctioning of microglia cells, the immune cells of the brain. Functionality of microglia cells during normal pregnancy is, however, poorly understood. The recent outbreak of ZIKA virus (ZKV), but also the literature on virus infections in general and its consequences on microglial cell function and fetal neurodevelopment show the devastating effects a virus infection during pregnancy can have. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Microbiota regulate the development and function of the immune cells.
Yu, Qing; Jia, Anna; Li, Yan; Bi, Yujing; Liu, Guangwei
2018-03-04
Microbiota is a group of microbes coexisting and co-evolving with the immune system in the host body for millions of years. There are mutual interaction between microbiota and the immune system. Immune cells can shape the populations of microbiota in the gut of animals and humans, and the presence of microbiota and the microbial products can regulate the development and function of the immune cells in the host. Although microbiota resides mainly at the mucosa, the effect of microbiota on the immune system can be both local at the mucosa and systemic through the whole body. At the mucosal sites, the presences of microbiota and microbial products have a direct effect on the immune cells. Microbiota induces production of effectors from immune cells, such as cytokines and inflammatory factors, influencing the further development and function of the immune cells. Experimental data have shown that microbial products can influence the activity of some key factors in signaling pathways. At the nonmucosal sites, such as the bone marrow, peripheral lymph nodes, and spleen, microbiota can also regulate the development and function of the immune cells via several mechanisms in mice, such as introduction of chromatin-level changes through histone acetylation and DNA methylation. Given the important effect of microbiota on the immune system, many immunotherapies that are mediated by immune system rely on gut microbiota. Thus, the study of how microbiota influences immune system bring a potential therapy prospect in preventing and treating diseases.
NASA Astrophysics Data System (ADS)
Neves, Marco A. C.; Simões, Sérgio; Sá e Melo, M. Luisa
2010-12-01
CXCR4 is a G-protein coupled receptor for CXCL12 that plays an important role in human immunodeficiency virus infection, cancer growth and metastasization, immune cell trafficking and WHIM syndrome. In the absence of an X-ray crystal structure, theoretical modeling of the CXCR4 receptor remains an important tool for structure-function analysis and to guide the discovery of new antagonists with potential clinical use. In this study, the combination of experimental data and molecular modeling approaches allowed the development of optimized ligand-receptor models useful for elucidation of the molecular determinants of small molecule binding and functional antagonism. The ligand-guided homology modeling approach used in this study explicitly re-shaped the CXCR4 binding pocket in order to improve discrimination between known CXCR4 antagonists and random decoys. Refinement based on multiple test-sets with small compounds from single chemotypes provided the best early enrichment performance. These results provide an important tool for structure-based drug design and virtual ligand screening of new CXCR4 antagonists.
Baygin, Mehmet; Karakose, Mehmet
2013-01-01
Nowadays, the increasing use of group elevator control systems owing to increasing building heights makes the development of high-performance algorithms necessary in terms of time and energy saving. Although there are many studies in the literature about this topic, they are still not effective enough because they are not able to evaluate all features of system. In this paper, a new approach of immune system-based optimal estimate is studied for dynamic control of group elevator systems. The method is mainly based on estimation of optimal way by optimizing all calls with genetic, immune system and DNA computing algorithms, and it is evaluated with a fuzzy system. The system has a dynamic feature in terms of the situation of calls and the option of the most appropriate algorithm, and it also adaptively works in terms of parameters such as the number of floors and cabins. This new approach which provides both time and energy saving was carried out in real time. The experimental results comparatively demonstrate the effects of method. With dynamic and adaptive control approach in this study carried out, a significant progress on group elevator control systems has been achieved in terms of time and energy efficiency according to traditional methods. PMID:23935433
Immunological hazards from nutritional imbalance in athletes.
Shephard, R J; Shek, P N
1998-01-01
This review examines the influences of nutritional imbalance on immune function of competitive athletes, who may adopt an unusual diet in an attempt to enhance performance. A major increase in body fat can have adverse effects on immune response. In contrast, a negative energy balance and reduction of body mass are likely to impair immune function in an already thin athlete. A moderate increase in polyunsaturated fat enhances immune function, but excessive consumption can be detrimental. Since endurance exercise leads to protein catabolism, an athlete may need 2.0 g/kg protein rather than the 0.7-1.0 g/kg recommended for a sedentary individual. Both sustained exercise and overtraining reduce plasma glutamine levels, which may contribute to suppressed immune function postexercise. A large intake of carbohydrate counters glutamine depletion but may also modify immune responses by altering the secretion of glucose-regulating hormones. Vitamins are important to immune function because of their antioxidant role. However, the clinical benefits of vitamin C supplementation are not enhanced by the use of more complex vitamin mixtures, and excessive vitamin E can have negative effects. Iron, selenium, zinc, calcium, and magnesium ion all influence immune function. Supplements may be required after heavy sweating, but an excessive intake of iron facilitates bacterial growth. In making dietary recommendations to athletes, it is important to recognize that immune response can be jeopardized not only by deficiencies but also by excessive intake of certain nutrients. The goal should be a well-balanced diet.
Dehydroepiandrosterone and multiple measures of functional immunity in young adults.
Prall, Sean P; Muehlenbein, Michael P
2015-01-01
Human immune function is strongly influenced by variation in hormone concentrations. The adrenal androgens dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulfate (DHEA-S) are thought to be beneficial to immune function and disease resistance, but physiologically interact with testosterone and cortisol. We predict that DHEA and DHEA-S will interact with these other hormones in determining immunological outcomes. Understanding the interactive effects of these hormones will aid in understanding variability in immunocompetence and clarify discrepancies in human studies of androgen-immune interactions. Thirty-eight participants collected morning saliva over three days, from which concentrations of DHEA, DHEA-S, testosterone, and cortisol were measured, as well as salivary bacteria killing ability to measure innate immune function. From blood collection, serum was collected to measure innate immune function via a hemolytic complement assay, and whole blood collected and processed to measure proliferative responses of lymphocytes in the presence of mitogens. DHEA was negatively correlated with T cell proliferation, and positively correlated with salivary bacteria killing in male participants. Additionally, using regression models, DHEA-S was negatively associated with hemolytic complement activity, but interaction variables did not yield statistically significant relationships for any other outcome measure. While interactions with other hormones did not significantly relate with immune function measures in this sample, DHEA and DHEA-S did differentially impact multiple branches of the immune system. Generally characterized as immunosupportive in action, DHEA is shown to inhibit certain facets of innate and cell-mediated immunity, suggesting a more complex role in regulating immunocompetence. © 2015 Wiley Periodicals, Inc.
Takashima, Eizo; Williams, Marni; Eiglmeier, Karin; Pain, Adrien; Guelbeogo, Wamdaogo M.; Gneme, Awa; Brito-Fravallo, Emma; Holm, Inge; Lavazec, Catherine; Sagnon, N’Fale; Baxter, Richard H.; Riehle, Michelle M.; Vernick, Kenneth D.
2015-01-01
Nucleotide variation patterns across species are shaped by the processes of natural selection, including exposure to environmental pathogens. We examined patterns of genetic variation in two sister species, Anopheles gambiae and Anopheles coluzzii, both efficient natural vectors of human malaria in West Africa. We used the differentiation signature displayed by a known coordinate selective sweep of immune genes APL1 and TEP1 in A. coluzzii to design a population genetic screen trained on the sweep, classified a panel of 26 potential immune genes for concordance with the signature, and functionally tested their immune phenotypes. The screen results were strongly predictive for genes with protective immune phenotypes: genes meeting the screen criteria were significantly more likely to display a functional phenotype against malaria infection than genes not meeting the criteria (p = 0.0005). Thus, an evolution-based screen can efficiently prioritize candidate genes for labor-intensive downstream functional testing, and safely allow the elimination of genes not meeting the screen criteria. The suite of immune genes with characteristics similar to the APL1-TEP1 selective sweep appears to be more widespread in the A. coluzzii genome than previously recognized. The immune gene differentiation may be a consequence of adaptation of A. coluzzii to new pathogens encountered in its niche expansion during the separation from A. gambiae, although the role, if any of natural selection by Plasmodium is unknown. Application of the screen allowed identification of new functional immune factors, and assignment of new functions to known factors. We describe biochemical binding interactions between immune proteins that underlie functional activity for malaria infection, which highlights the interplay between pathogen specificity and the structure of immune complexes. We also find that most malaria-protective immune factors display phenotypes for either human or rodent malaria, with broad specificity a rarity. PMID:26633695
Uicker, William C; McCracken, James P; Buchanan, Kent L
2006-02-01
Cryptococcosis is a life-threatening disease caused by the encapsulated yeast, Cryptococcus neoformans. Although infection with C. neoformans is initiated in the lungs, morbidity and mortality is mostly associated with infections of the central nervous system (CNS). Individuals with deficiencies in cell-mediated immunity, such as patients with AIDS, are more susceptible to disseminated cryptococcosis, highlighting the importance of cell-mediated immunity and CD4+ T cells in host resistance against C. neoformans. Using a mouse model of cryptococcal meningoencephalitis, we have shown that immunization of mice with a cryptococcal antigen induced a protective immune response that crossed the blood-brain barrier and initiated an immune response directly in the CNS if C. neoformans was present. The regional protective response was characteristic of a Type-1 (Th1) response in the types of cells present at the site of infection and in the cytokines and chemokines expressed. Here, we extend those findings and report that CD4+ T cells are required for survival of immune mice infected directly in the brain with C. neoformans and sensitized CD4 + T cells can transfer partial protection to naive mice infected intracerebrally with C. neoformans. Furthermore, CD4 + T cells were also important for optimal infiltration of inflammatory cells at the site of infection and in the expression of cytokines and chemokines associated with protection in the brain. Lastly, CD4+ T cells were required for optimal regional production and secretion of IFNgamma and in the significantly increased expression of iNOS in C. neoformans-infected brains of immune mice.
MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells
Jones, Russell G.; Pearce, Edward J.
2017-01-01
Tissue-resident immune cells must balance survival in peripheral tissues with the capacity to respond rapidly upon infection or tissue damage, and in turn couple these responses with intrinsic metabolic control and conditions in the tissue microenvironment. The serine/threonine kinase mammalian/mechanistic target of rapamycin (mTOR) is a central integrator of extracellular and intracellular growth signals and cellular metabolism and plays important roles in both innate and adaptive immune responses. This review discusses the function of mTOR signaling in the differentiation and function of tissue-resident immune cells, with focus on the role of mTOR as a metabolic sensor and its impact on metabolic regulation in innate and adaptive immune cells. We also discuss the impact of metabolic constraints in tissues on immune homeostasis and disease, and how manipulating mTOR activity with drugs such as rapamycin can modulate immunity in these contexts. PMID:28514674
Retinoic Acid as a Modulator of T Cell Immunity
Bono, Maria Rosa; Tejon, Gabriela; Flores-Santibañez, Felipe; Fernandez, Dominique; Rosemblatt, Mario; Sauma, Daniela
2016-01-01
Vitamin A, a generic designation for an array of organic molecules that includes retinal, retinol and retinoic acid, is an essential nutrient needed in a wide array of aspects including the proper functioning of the visual system, maintenance of cell function and differentiation, epithelial surface integrity, erythrocyte production, reproduction, and normal immune function. Vitamin A deficiency is one of the most common micronutrient deficiencies worldwide and is associated with defects in adaptive immunity. Reports from epidemiological studies, clinical trials and experimental studies have clearly demonstrated that vitamin A plays a central role in immunity and that its deficiency is the cause of broad immune alterations including decreased humoral and cellular responses, inadequate immune regulation, weak response to vaccines and poor lymphoid organ development. In this review, we will examine the role of vitamin A in immunity and focus on several aspects of T cell biology such as T helper cell differentiation, function and homing, as well as lymphoid organ development. Further, we will provide an overview of the effects of vitamin A deficiency in the adaptive immune responses and how retinoic acid, through its effect on T cells can fine-tune the balance between tolerance and immunity. PMID:27304965
ERIC Educational Resources Information Center
Littrell, Jill
1996-01-01
Discusses the psychological states associated with enhanced immune system functioning and those associated with suppressed immune functioning. Reviews studies of psychological and behavioral interventions to boost the immune systems of people who are HIV positive. Suggests that group interventions can enhance psychological states associated with…
Innovative Approaches to Improve Anti-Infective Vaccine Efficacy.
Yeaman, Michael R; Hennessey, John P
2017-01-06
Safe and efficacious vaccines are arguably the most successful medical interventions of all time. Yet the ongoing discovery of new pathogens, along with emergence of antibiotic-resistant pathogens and a burgeoning population at risk of such infections, imposes unprecedented public health challenges. To meet these challenges, innovative strategies to discover and develop new or improved anti-infective vaccines are necessary. These approaches must intersect the most meaningful insights into protective immunity and advanced technologies with capabilities to deliver immunogens for optimal immune protection. This goal is considered through several recent advances in host-pathogen relationships, conceptual strides in vaccinology, and emerging technologies. Given a clear and growing risk of pandemic disease should the threat of infection go unmet, developing vaccines that optimize protective immunity against high-priority and antibiotic-resistant pathogens represents an urgent and unifying imperative.
Photodynamic therapy for cancer and activation of immune response
NASA Astrophysics Data System (ADS)
Mroz, Pawel; Huang, Ying-Ying; Hamblin, Michael R.
2010-02-01
Anti-tumor immunity is stimulated after PDT for cancer due to the acute inflammatory response, exposure and presentation of tumor-specific antigens, and induction of heat-shock proteins and other danger signals. Nevertheless effective, powerful tumor-specific immune response in both animal models and also in patients treated with PDT for cancer, is the exception rather than the rule. Research in our laboratory and also in others is geared towards identifying reasons for this sub-optimal immune response and discovering ways of maximizing it. Reasons why the immune response after PDT is less than optimal include the fact that tumor-antigens are considered to be self-like and poorly immunogenic, the tumor-mediated induction of CD4+CD25+foxP3+ regulatory T-cells (T-regs), that are able to inhibit both the priming and the effector phases of the cytotoxic CD8 T-cell anti-tumor response and the defects in dendritic cell maturation, activation and antigen-presentation that may also occur. Alternatively-activated macrophages (M2) have also been implicated. Strategies to overcome these immune escape mechanisms employed by different tumors include combination regimens using PDT and immunostimulating treatments such as products obtained from pathogenic microorganisms against which mammals have evolved recognition systems such as PAMPs and toll-like receptors (TLR). This paper will cover the use of CpG oligonucleotides (a TLR9 agonist found in bacterial DNA) to reverse dendritic cell dysfunction and methods to remove the immune suppressor effects of T-regs that are under active study.
Sexual Signaling and Immune Function in the Black Field Cricket Teleogryllus commodus
Drayton, Jean M.; Hall, Matthew D.; Hunt, John; Jennions, Michael D.
2012-01-01
The immunocompetence handicap hypothesis predicts that male sexual trait expression should be positively correlated with immunocompetence. Here we investigate if immune function in the cricket, Teleogryllus commodus, is related to specific individual components of male sexual signals, as well as to certain multivariate combinations of these components that females most strongly prefer. Male T. commodus produce both advertisement and courtship calls prior to mating. We measured fine-scale structural parameters of both call types and also recorded nightly advertisement calling effort. We then measured two standard indices of immune function: lysozyme-like activity of the haemolymph and haemocyte counts. We found a weak, positive relationship between advertisement calling effort and lysozyme-like activity. There was, however, little evidence that individual structural call components or the net multivariate attractiveness of either call type signalled immune function. The relationships between immunity and sexual signaling did not differ between inbred and outbred males. Our data suggest that it is unlikely that females assess overall male immune function using male calls. PMID:22808047
Susceptibility to Alcohol Hangovers: The Association with Self-Reported Immune Status.
van de Loo, Aurora J A E; Mackus, Marlou; van Schrojenstein Lantman, Marith; Kraneveld, Aletta D; Brookhuis, Karel A; Garssen, Johan; Scholey, Andrew; Verster, Joris C
2018-06-18
Increasing evidence points at a role for the immune system in the genesis of the alcohol hangover. This study investigated the association between self-reported immune function and experiencing hangovers. Dutch students aged 18 to 30 years old were invited to complete an online survey. Eighteen items on immune-related complaints were completed to assess self-reported immune function. Alcohol consumption in the past month (with respect to usual consumption and the occasion of heaviest drinking) was also recorded. Subjects with an estimated blood alcohol concentration (eBAC) of 0.18% or higher on their heaviest drinking occasion in the prior month were included in the analyses. Self-reported immune function was compared between drinkers with a hangover and those who claimed to be hangover resistant. In total, of 481 subjects (79.2% women) with a mean (SD) age of 21.1 (1.9) years old were included in the analysis. Of these, 83.3% ( n = 400) reported having hangovers and 16.8% ( n = 81) claimed to be hangover resistant. Drinkers with hangovers had significantly higher self-reported overall immune function scores when compared to hangover-resistant drinkers (mean ± SD = 10.5 ± 3.6 versus 13.1 ± 4.9, p = 0.0001), indicating a poorer immune status. In conclusion, experiencing alcohol hangovers is associated with significantly poorer self-reported immune function.
Gause, William C; Maizels, Rick M
2016-01-01
Important insights have recently been gained in our understanding of the intricate relationship in the intestinal milieu between the vertebrate host mucosal immune response, commensal bacteria, and helminths. Helminths are metazoan worms (macrobiota) and trigger immune responses that include potent regulatory components capable of controlling harmful inflammation, protecting barrier function and mitigating tissue damage. They can secrete a variety of products that directly affect immune regulatory function but they also have the capacity to influence the composition of microbiota, which can also then impact immune function. Conversely, changes in microbiota can affect susceptibility to helminth infection, indicating that crosstalk between these two disparate groups of endobiota can play an essential role in host intestinal immune function and homeostasis. PMID:27116368
Bidirectional optimization of the melting spinning process.
Liang, Xiao; Ding, Yongsheng; Wang, Zidong; Hao, Kuangrong; Hone, Kate; Wang, Huaping
2014-02-01
A bidirectional optimizing approach for the melting spinning process based on an immune-enhanced neural network is proposed. The proposed bidirectional model can not only reveal the internal nonlinear relationship between the process configuration and the quality indices of the fibers as final product, but also provide a tool for engineers to develop new fiber products with expected quality specifications. A neural network is taken as the basis for the bidirectional model, and an immune component is introduced to enlarge the searching scope of the solution field so that the neural network has a larger possibility to find the appropriate and reasonable solution, and the error of prediction can therefore be eliminated. The proposed intelligent model can also help to determine what kind of process configuration should be made in order to produce satisfactory fiber products. To make the proposed model practical to the manufacturing, a software platform is developed. Simulation results show that the proposed model can eliminate the approximation error raised by the neural network-based optimizing model, which is due to the extension of focusing scope by the artificial immune mechanism. Meanwhile, the proposed model with the corresponding software can conduct optimization in two directions, namely, the process optimization and category development, and the corresponding results outperform those with an ordinary neural network-based intelligent model. It is also proved that the proposed model has the potential to act as a valuable tool from which the engineers and decision makers of the spinning process could benefit.
Wolvers, Danielle AW; van Herpen-Broekmans, Wendy MR; Logman, Margot HGM; van der Wielen, Reggy PJ; Albers, Ruud
2006-01-01
Background Supplementation of nutritional deficiencies helps to improve immune function and resistance to infections in malnourished subjects. However, the suggested benefits of dietary supplementation for immune function in healthy well nourished subjects is less clear. Among the food constituents frequently associated with beneficial effects on immune function are micronutrients such as vitamin C, vitamin E, β-carotene and zinc, and colostrum. This study was designed to investigate the effects these ingredients on immune function markers in healthy volunteers. Methods In a double-blind, randomized, parallel, 2*2, placebo-controlled intervention study one hundred thirty-eight healthy volunteers aged 40–80 y (average 57 ± 10 y) received one of the following treatments: (1) bovine colostrum concentrate 1.2 g/d (equivalent to ~500 mg/d immunoglobulins), (2) micronutrient mix of 288 mg vitamin E, 375 mg vitamin C, 12 mg β-carotene and 15 mg zinc/day, (3) combination of colostrum and micronutrient mix, or (4) placebo. Several immune function parameters were assessed after 6 and 10 weeks. Data were analyzed by analysis of variance. Groups were combined to test micronutrient treatment versus no micronutrient treatment, and colostrum treatment versus no colostrum treatment. Results Overall, consumption of the micronutrient mix significantly enhanced delayed-type hypersensitivity (DTH) responses (p < 0.05). Adjusted covariance analysis showed a positive association between DTH and age. Separate analysis of younger and older age groups indicated that it was the older population that benefited from micronutrient consumption. The other immune function parameters including responses to systemic tetanus and oral typhoid vaccination, phagocytosis, oxidative burst, lymphocyte proliferation and lymphocyte subset distribution were neither affected by the consumption of micronutrients nor by the consumption of bovine colostrum concentrate. Conclusion Consumption of bovine colostrum had no effect on any of the immune parameters assessed. The micronutrient mix enhanced cellular immunity as measured by DTH, with an increased effect by incremental age, but did not affect any of the other immune parameters measured. Although correlations between decreased DTH and enhanced risk of certain infection have been reported, it remains unclear whether and enhanced DTH response actually improves immune defense. The present data suggests that improvement of immune parameters in a population with a generally good immune and nutritional status is limited and that improvement of immune function in this population may be difficult. PMID:17118191
The effect of hydration state and energy balance on innate immunity of a desert reptile.
Moeller, Karla T; Butler, Michael W; Denardo, Dale F
2013-05-04
Immune function is a vital physiological process that is often suppressed during times of resource scarcity due to investments in other physiological systems. While energy is the typical currency that has been examined in such trade-offs, limitations of other resources may similarly lead to trade-offs that affect immune function. Specifically, water is a critical resource with profound implications for organismal ecology, yet its availability can fluctuate at local, regional, and even global levels. Despite this, the effect of osmotic state on immune function has received little attention. Using agglutination and lysis assays as measures of an organism's plasma concentration of natural antibodies and capacity for foreign cell destruction, respectively, we tested the independent effects of osmotic state, digestive state, and energy balance on innate immune function in free-ranging and laboratory populations of the Gila monster, Heloderma suspectum. This desert-dwelling lizard experiences dehydration and energy resource fluctuations on a seasonal basis. Dehydration was expected to decrease innate immune function, yet we found that dehydration increased lysis and agglutination abilities in both lab and field studies, a relationship that was not simply an effect of an increased concentration of immune molecules. Laboratory-based differences in digestive state were not associated with lysis or agglutination metrics, although in our field population, a loss of fat stores was correlated with an increase in lysis. Depending on the life history of an organism, osmotic state may have a greater influence on immune function than energy availability. Thus, consideration of osmotic state as a factor influencing immune function will likely improve our understanding of ecoimmunology and the disease dynamics of a wide range of species.
The effect of hydration state and energy balance on innate immunity of a desert reptile
2013-01-01
Introduction Immune function is a vital physiological process that is often suppressed during times of resource scarcity due to investments in other physiological systems. While energy is the typical currency that has been examined in such trade-offs, limitations of other resources may similarly lead to trade-offs that affect immune function. Specifically, water is a critical resource with profound implications for organismal ecology, yet its availability can fluctuate at local, regional, and even global levels. Despite this, the effect of osmotic state on immune function has received little attention. Results Using agglutination and lysis assays as measures of an organism’s plasma concentration of natural antibodies and capacity for foreign cell destruction, respectively, we tested the independent effects of osmotic state, digestive state, and energy balance on innate immune function in free-ranging and laboratory populations of the Gila monster, Heloderma suspectum. This desert-dwelling lizard experiences dehydration and energy resource fluctuations on a seasonal basis. Dehydration was expected to decrease innate immune function, yet we found that dehydration increased lysis and agglutination abilities in both lab and field studies, a relationship that was not simply an effect of an increased concentration of immune molecules. Laboratory-based differences in digestive state were not associated with lysis or agglutination metrics, although in our field population, a loss of fat stores was correlated with an increase in lysis. Conclusions Depending on the life history of an organism, osmotic state may have a greater influence on immune function than energy availability. Thus, consideration of osmotic state as a factor influencing immune function will likely improve our understanding of ecoimmunology and the disease dynamics of a wide range of species. PMID:23642164
B cell function in the immune response to helminths
Harris, Nicola
2010-01-01
Similar T helper (Th)2-type immune responses are generated against different helminths parasites, but the mechanisms that initiate Th2 immunity, and the specific immune components that mediate protection against these parasites, can vary greatly. B cells are increasingly recognized as important during the Th2-type immune response to helminths, and B cell activation might be a target for effective vaccine development. Antibody production is a function of B cells during helminth infection and understanding how polyclonal and antigen-specific antibodies contribute should provide important insights into how protective immunity develops. In addition, B cells might also contribute to the host response against helminths through antibody-independent functions including, antigen-presentation, as well as regulatory and effector activity. In this review, we examine the role of B cells during Th2-type immune response to these multicellular parasites. PMID:21159556
Neuromuscular complications of immune checkpoint inhibitor therapy.
Kolb, Noah A; Trevino, Christopher R; Waheed, Waqar; Sobhani, Fatemeh; Landry, Kara K; Thomas, Alissa A; Hehir, Mike
2018-01-17
Immune checkpoint inhibitor (ICPI) therapy unleashes the body's natural immune system to fight cancer. ICPIs improve overall cancer survival, however, the unbridling of the immune system may induce a variety of immune-related adverse events. Neuromuscular immune complications are rare but they can be severe. Myasthenia gravis and inflammatory neuropathy are the most common neuromuscular adverse events but a variety of others including inflammatory myopathy are reported. The pathophysiologic mechanism of these autoimmune disorders may differ from that of non-ICPI-related immune diseases. Accordingly, while the optimal treatment for ICPI-related neuromuscular disorders generally follows a traditional paradigm, there are important novel considerations in selecting appropriate immunosuppressive therapy. This review presents 2 new cases, a summary of neuromuscular ICPI complications, and an approach to the diagnosis and treatment of these disorders. Muscle Nerve, 2018. © 2018 Wiley Periodicals, Inc.
Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix
2017-01-01
Background A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. Methods To do this we used captive house sparrows (Passer domesticus) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Results Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. Discussion We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic. PMID:28875066
Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix; Hoi, Herbert
2017-01-01
A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. To do this we used captive house sparrows ( Passer domesticus ) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.
2015-09-01
Award Number: W81XWH-11-1-0384 TITLE: Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for...Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine Therapy 5b. GRANT NUMBER CA100463 5c...Listeria monocytogenes (Lm) on human dendritic cells (DCs) to optimize Lm-based DC cancer vaccines. The project aims are: 1) Compare the activation and
Mutturi, Sarma
2017-06-27
Although handful tools are available for constraint-based flux analysis to generate knockout strains, most of these are either based on bilevel-MIP or its modifications. However, metaheuristic approaches that are known for their flexibility and scalability have been less studied. Moreover, in the existing tools, sectioning of search space to find optimal knocks has not been considered. Herein, a novel computational procedure, termed as FOCuS (Flower-pOllination coupled Clonal Selection algorithm), was developed to find the optimal reaction knockouts from a metabolic network to maximize the production of specific metabolites. FOCuS derives its benefits from nature-inspired flower pollination algorithm and artificial immune system-inspired clonal selection algorithm to converge to an optimal solution. To evaluate the performance of FOCuS, reported results obtained from both MIP and other metaheuristic-based tools were compared in selected case studies. The results demonstrated the robustness of FOCuS irrespective of the size of metabolic network and number of knockouts. Moreover, sectioning of search space coupled with pooling of priority reactions based on their contribution to objective function for generating smaller search space significantly reduced the computational time.
Epitope Specificity Delimits the Functional Capabilities of Vaccine-Induced CD8 T Cell Populations
Hill, Brenna J.; Darrah, Patricia A.; Ende, Zachary; Ambrozak, David R.; Quinn, Kylie M.; Darko, Sam; Gostick, Emma; Wooldridge, Linda; van den Berg, Hugo A.; Venturi, Vanessa; Larsen, Martin; Davenport, Miles P.; Seder, Robert A.
2014-01-01
Despite progress toward understanding the correlates of protective T cell immunity in HIV infection, the optimal approach to Ag delivery by vaccination remains uncertain. We characterized two immunodominant CD8 T cell populations generated in response to immunization of BALB/c mice with a replication-deficient adenovirus serotype 5 vector expressing the HIV-derived Gag and Pol proteins at equivalent levels. The Gag-AI9/H-2Kd epitope elicited high-avidity CD8 T cell populations with architecturally diverse clonotypic repertoires that displayed potent lytic activity in vivo. In contrast, the Pol-LI9/H-2Dd epitope elicited motif-constrained CD8 T cell repertoires that displayed lower levels of physical avidity and lytic activity despite equivalent measures of overall clonality. Although low-dose vaccination enhanced the functional profiles of both epitope-specific CD8 T cell populations, greater polyfunctionality was apparent within the Pol-LI9/H-2Dd specificity. Higher proportions of central memory-like cells were present after low-dose vaccination and at later time points. However, there were no noteworthy phenotypic differences between epitope-specific CD8 T cell populations across vaccine doses or time points. Collectively, these data indicate that the functional and phenotypic properties of vaccine-induced CD8 T cell populations are sensitive to dose manipulation, yet constrained by epitope specificity in a clonotype-dependent manner. PMID:25348625
The Individual and Population Genetics of Antibody Immunity.
Watson, Corey T; Glanville, Jacob; Marasco, Wayne A
2017-07-01
Antibodies (Abs) produced by immunoglobulin (IG) genes are the most diverse proteins expressed in humans. While part of this diversity is generated by recombination during B-cell development and mutations during affinity maturation, the germ-line IG loci are also diverse across human populations and ethnicities. Recently, proof-of-concept studies have demonstrated genotype-phenotype correlations between specific IG germ-line variants and the quality of Ab responses during vaccination and disease. However, the functional consequences of IG genetic variation in Ab function and immunological outcomes remain underexplored. In this opinion article, we outline interconnections between IG genomic diversity and Ab-expressed repertoires and structure. We further propose a strategy for integrating IG genotyping with functional Ab profiling data as a means to better predict and optimize humoral responses in genetically diverse human populations, with immediate implications for personalized medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.
Salt, chloride, bleach, and innate host defense
Wang, Guoshun; Nauseef, William M.
2015-01-01
Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979
Salt, chloride, bleach, and innate host defense.
Wang, Guoshun; Nauseef, William M
2015-08-01
Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. © Society for Leukocyte Biology.
Optimization of dendritic cell loading with tumor cell lysates for cancer immunotherapy.
Hatfield, Paul; Merrick, Alison E; West, Emma; O'Donnell, Dearbhaile; Selby, Peter; Vile, Richard; Melcher, Alan A
2008-09-01
The immune response to cancer is critically determined by the way in which tumor cells die. As necrotic, stress-associated death can be associated with activation of antitumor immunity, whole tumor cell antigen loading strategies for dendritic cell (DC)-based vaccination have commonly used freeze-thaw "necrotic" lysates as an immunogenic source of tumor-associated antigens. In this study, the effect of such lysates on the ability of DCs to mature in response to well-established maturation stimuli was examined, and methods to enhance lysate-induced DC activation explored. Freeze-thaw lysates were prepared from murine tumor cell lines and their effects on bone marrow-derived DC maturation and function examined. Unmodified freeze-thaw tumor cell lysates inhibited the toll-like receptor-induced maturation and function of bone marrow-derived DCs, preventing up-regulation of CD40, CD86, and major histocompatibility complex class II, and reducing secretion of inflammatory cytokines [interleukin (IL)-12 p70, tumor necrosis factor-alpha, and IL-6]. Although IL-10 secretion was increased by lysate-pulsed DCs, this was not responsible for the observed suppression of IL-12. Although activation of the nuclear factor-kappaB pathway remained intact, the kinase activity of phosphorylated p38 mitogen-activated protein kinase was inhibited in lysate-pulsed DCs. Lysate-induced DC suppression was partially reversed in vitro by induction of tumor cell stress before lysis, and only DCs loaded with stressed lysates afforded protection against tumor challenge in vivo. These data suggest that ex vivo freeze-thaw of tumor cells does not effectively mimic in vivo immunogenic necrosis, and advocates careful characterization and optimization of tumor cell-derived vaccine sources for cancer immunotherapy.
Valdés-Tovar, Marcela; Escobar, Carolina; Solís-Chagoyán, Héctor; Asai, Miguel; Benítez-King, Gloria
2015-03-01
The light-dark cycle is an environmental factor that influences immune physiology, and so, variations of the photoperiod length result in altered immune responsivity. Macrophage physiology comprises a spectrum of functions that goes from host defense to immune down-regulation, in addition to their homeostatic activities. Macrophages also play a key role in the transition from innate to adaptive immune responses. Met-enkephalin (MEnk) has been recognized as a modulator of macrophage physiology acting in an autocrine or paracrine fashion to influence macrophage activation, phenotype polarization and production of cytokines that would enhance lymphocyte activation at early stages of an immune response. Previously it was shown that splenic MEnk tissue content is reduced in rats exposed to constant light. In this work, we explored whether production of Met-enkephalin-containing peptides (MECPs) in cultured splenic macrophages is affected by exposure of rats to a constant light regime. In addition, we explored whether primary immune response was impaired under this condition. We found that in rats, 15 days in constant light was sufficient to disrupt their general activity rhythm. Splenic MEnk content oscillations and levels were also blunted throughout a 24-h period in animals subjected to constant light. In agreement, de novo synthesis of MECPs evaluated through incorporation of (35)S-methionine was reduced in splenic macrophages from rats exposed to constant light. Moreover, MECPs immunocytochemistry showed a decrease in the intracellular content and lack of granule-like deposits in this condition. Furthermore, we found that primary T-dependent antibody response was compromised in rats exposed to constant light. In those animals, pharmacologic treatment with MEnk increased IFN-γ-secreting cells. Also, IL-2 secretion from antigen-stimulated splenocytes was reduced after incubation with naloxone, suggesting that immune-derived opioid peptides and stimulation of opioid receptors are involved in this process. Thus, the immune impairment observed from early stages of the response in constant light-subjected rats, could be associated with reduced production of macrophage-derived enkephalins, leading to a sub-optimal interaction between macrophages and lymphocytes in the spleen and the subsequent deficiency in antibody production.
Luzze, Henry; Badiane, Ousseynou; Mamadou Ndiaye, El Hadji; Ndiaye, Annette Seck; Atuhaire, Brian; Atuhebwe, Phionah; Guinot, Phillippe; Fry Sosne, Erin; Gueye, Abdoulaye
2017-04-19
As immunization programs around the world undergo rapid change and expansion, supply chain and logistics systems have become strained, making it increasingly challenging for national public health systems to provide reliable, safe, and efficient access to vaccines. Governments and immunization partners have been aware of this problem for several years, and in 2010, the World Health Organization (WHO) launched the Effective Vaccine Management (EVM) process to help countries identify shortcomings in their immunization supply chains and develop plans for systematic improvement. EVM improvement plans now exist in all Gavi-eligible countries plus many middle- and upper-income countries; however, implementation has been slow and in many cases fraught with financial, managerial, structural, and political roadblocks. Recognizing that significant change of any kind requires a supportive policy environment and strong leadership, PATH began working in Uganda and Senegal to landscape the policy environment around immunization and identify relevant policies, administrative and technical roles and responsibilities, and other issues that may be affecting the supply chain for immunization. The policy landscape assessments included a desk review and a series of structured, in-depth interviews with key international, national, and local stakeholders. The findings highlighted a number of critical issues and challenges in both countries that may be preventing supply chains from functioning optimally. These challenges include a need for better coordination and planning between immunization programs and supply chain managers; the need for sufficient, timely and reliable financing for all aspects of immunization programs; the need for high-level managers trained in immunization supply chain management; and an urgent need for better, more timely data for decision-making. Overcoming these challenges will require the involvement of high-level political actors-including ministers of health and finance, parliamentarians, and other officials who have the ability to approve and influence policy, personnel, and structural changes; ensure work plans are backed with adequate resources for implementation; and hold program managers accountable for achieving agreed indicators. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Higdon, Lauren E; Lee, Karim; Tang, Qizhi; Maltzman, Jonathan S
2016-09-01
Research on human immune responses frequently involves the use of peripheral blood mononuclear cells (PBMC) immediately, or at significantly delayed timepoints, after collection. This requires PBMC isolation from whole blood and cryopreservation for some applications. It is important to standardize protocols for blood collection, PBMC isolation, cryopreservation, and thawing that maximize survival and functionality of PBMC at the time of analysis. This resource includes detailed protocols describing blood collection tubes, isolation of PBMC using a density gradient, cryopreservation of PBMC, and thawing of cells as well as preparation for functional assays. For each protocol, we include important considerations, such as timing, storage temperatures, and freezing rate. In addition, we provide alternatives so that researchers can make informed decisions in determining the optimal protocol for their application.
NASA Astrophysics Data System (ADS)
Okoro, Elvis; Mann, Vivek; Ellis, Ivory; Mansoor, Elvedina; Olamigoke, Loretta; Marriott, Karla Sue; Denkins, Pamela; Williams, Willie; Sundaresan, Alamelu
2017-08-01
Microgravity and radiation exposure during space flight have been widely reported to induce the suppression of normal immune system function, and increase the risk of cancer development in humans. These findings pose a serious risk to manned space missions. Interestingly, recent studies have shown that benzofuran-2-carboxylic acid derivatives can inhibit the progression of some of these devastating effects on earth and in modeled microgravity. However, these studies had not assessed the impacts of benzofuran-2- carboxylic acid and its derivatives on global gene expression under spaceflight conditions. In this study, the ability of a specific benzofuran-2-carboxylic acid derivative (KMEG) to confer protection from radiation and restore normal immune function was investigated following exposure to space flight conditions on the ISS. Normal human peripheral blood mononuclear cells (lymphocytes) treated with 10 µ g/ml of KMEG together with untreated control samples were flown on Nanoracks hardware on Spacex-3 flight. The Samples were returned one month later and gene expression was analyzed. A 1g-ground control experiment was performed in parallel at the Kennedy spaceflight center. The first overall subtractive unrestricted analysis revealed 78 genes, which were differentially expressed in space flight KMEG, untreated lymphocytes as compared to the corresponding ground controls. However, in KMEG-treated space flight lymphocytes, there was an increased expression of a group of genes that mediate increased transcription, translation and innate immune system mediating functions of lymphocytes as compared to KMEG-untreated samples. Analysis of genes related to T cell proliferation in spaceflight KMEG-treated lymphocytes compared to 1g-ground KMEG- treated lymphocytes revealed six T cell proliferation and signaling genes to be significantly upregulated (p < 0.001) and five related genes were found to be significantly down-regulated. These genes play a significant role in promoting the proliferation of T-lymphocytes, the regulation of membrane trafficking, promote early response, mediating C-myc related proliferation, promote antiapoptotic activity and protects mitochondria from the accumulation of oxidatively damaged membrane proteins. Overall, our analysis indicates that KMEG promotes T- cell proliferation and has an anti-inflammatory effect, thereby increasing immunity and possible protection from chronic inflammation setting which is optimally required during long term space flights.
Design of a Selective Substrate and Activity Based Probe for Human Neutrophil Serine Protease 4
Kasperkiewicz, Paulina; Poreba, Marcin; Snipas, Scott J.; Lin, S. Jack; Kirchhofer, Daniel; Salvesen, Guy S.; Drag, Marcin
2015-01-01
Human neutrophil serine protease 4 (NSP4), also known as PRSS57, is a recently discovered fourth member of the neutrophil serine proteases family. Although its biological function is not precisely defined, it is suggested to regulate neutrophil response and innate immune reactions. To create optimal substrates and visualization probes for NSP4 that distinguish it from other NSPs we have employed a Hybrid Combinatorial Substrate Library approach that utilizes natural and unnatural amino acids to explore protease subsite preferences. Library results were validated by synthesizing individual substrates, leading to the identification of an optimal substrate peptide. This substrate was converted to a covalent diphenyl phosphonate probe with an embedded biotin tag. This probe demonstrated high inhibitory activity and stringent specificity and may be suitable for visualizing NSP4 in the background of other NSPs. PMID:26172376
Cao, Qi; Wang, Li; Du, Fang; Sheng, Huiming; Zhang, Yan; Wu, Juanjuan; Shen, Baihua; Shen, Tianwei; Zhang, Jingwu; Li, Dangsheng; Li, Ningli
2007-07-01
Regulatory T cells (Treg) play important roles in immune system homeostasis, and may also be involved in tumor immunotolerance by suppressing Th1 immune response which is involved in anti-tumor immunity. We have previously reported that immunization with attenuated activated autologous T cells leads to enhanced anti-tumor immunity and upregulated Th1 responses in vivo. However, the underlying molecular mechanisms are not well understood. Here we show that Treg function was significantly downregulated in mice that received immunization of attenuated activated autologous T cells. We found that Foxp3 expression decreased in CD4+CD25+ T cells from the immunized mice. Moreover, CD4+CD25+Foxp3+ Treg obtained from immunized mice exhibited diminished immunosuppression ability compared to those from naïve mice. Further analysis showed that the serum of immunized mice contains a high level of anti-CD25 antibody (about 30 ng/ml, p<0.01 vs controls). Consistent with a role of anti-CD25 response in the downregulation of Treg, adoptive transfer of serum from immunized mice to naïve mice led to a significant decrease in Treg population and function in recipient mice. The triggering of anti-CD25 response in immunized mice can be explained by the fact that CD25 was induced to a high level in the ConA activated autologous T cells used for immunization. Our results demonstrate for the first time that immunization with attenuated activated autologous T cells evokes anti-CD25 antibody production, which leads to impeded CD4+CD25+Foxp3+ Treg expansion and function in vivo. We suggest that dampened Treg function likely contributes to enhanced Th1 response in immunized mice and is at least part of the mechanism underlying the boosted anti-tumor immunity.
Prosper, Olivia; Ruktanonchai, Nick; Martcheva, Maia
2014-07-21
Following over two decades of research, the malaria vaccine candidate RTS,S has reached the final stages of vaccine trials, demonstrating an efficacy of roughly 50% in young children. Regions with high malaria prevalence tend to have high levels of naturally acquired immunity (NAI) to severe malaria; NAI is caused by repeated exposure to infectious bites and results in large asymptomatic populations. To address concerns about how these vaccines will perform in regions with existing NAI, we developed a simple malaria model incorporating vaccination and NAI. Typically, if the basic reproduction number (R0) for malaria is greater than unity, the disease will persist; otherwise, the disease will become extinct. However, analysis of this model revealed that NAI, compounded by a subpopulation with only partial protection to malaria, may render vaccination efforts ineffective and potentially detrimental to malaria control, by increasing R0 and increasing the likelihood of malaria persistence even when R0<1. The likelihood of this scenario increases when non-immune infected individuals are treated disproportionately compared with partially immune individuals - a plausible scenario since partially immune individuals are more likely to be asymptomatically infected. Consequently, we argue that active case-detection of asymptomatic infections is a critical component of an effective malaria control program. We then investigated optimal vaccination and bednet control programs under two endemic settings with varying levels of naturally acquired immunity: a typical setting under which prevalence decays when R0<1, and a setting in which subthreshold endemic equilibria exist. A qualitative comparison of the optimal control results under the first setting revealed that the optimal policy differs depending on whether the goal is to reduce total morbidity, or to reduce clinical infections. Furthermore, this comparison dictates that control programs should place less effort in vaccination as the level of NAI in a population, and as disease prevalence, increases. In the second setting, we demonstrated that the optimal policy is able to confer long-term benefits with a 10-year control program by pushing the system into a new state where the disease-free equilibrium becomes the attracting equilibrium. While this result suggests that one can theoretically achieve long-term benefits with a short-term strategy, we illustrate that in this second setting, a small environmental change, or the introduction of new cases via immigration, places the population at high risk for a malaria epidemic. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vitamin D and Its Role During Pregnancy in Attaining Optimal Health of Mother and Fetus
Wagner, Carol L.; Taylor, Sarah N.; Dawodu, Adekunle; Johnson, Donna D.; Hollis, Bruce W.
2012-01-01
Despite its discovery a hundred years ago, vitamin D has emerged as one of the most controversial nutrients and prohormones of the 21st century. Its role in calcium metabolism and bone health is undisputed but its role in immune function and long-term health is debated. There are clear indicators from in vitro and animal in vivo studies that point to vitamin D’s indisputable role in both innate and adaptive immunity; however, the translation of these findings to clinical practice, including the care of the pregnant woman, has not occurred. Until recently, there has been a paucity of data from randomized controlled trials to establish clear cut beneficial effects of vitamin D supplementation during pregnancy. An overview of vitamin metabolism, states of deficiency, and the results of recent clinical trials conducted in the U.S. are presented with an emphasis on what is known and what questions remain to be answered. PMID:22666547
Cook, Peter C; Owen, Heather; Deaton, Aimée M; Borger, Jessica G; Brown, Sheila L; Clouaire, Thomas; Jones, Gareth-Rhys; Jones, Lucy H; Lundie, Rachel J; Marley, Angela K; Morrison, Vicky L; Phythian-Adams, Alexander T; Wachter, Elisabeth; Webb, Lauren M; Sutherland, Tara E; Thomas, Graham D; Grainger, John R; Selfridge, Jim; McKenzie, Andrew N J; Allen, Judith E; Fagerholm, Susanna C; Maizels, Rick M; Ivens, Alasdair C; Bird, Adrian; MacDonald, Andrew S
2015-04-24
Dendritic cells (DCs) direct CD4(+) T-cell differentiation into diverse helper (Th) subsets that are required for protection against varied infections. However, the mechanisms used by DCs to promote Th2 responses, which are important both for immunity to helminth infection and in allergic disease, are currently poorly understood. We demonstrate a key role for the protein methyl-CpG-binding domain-2 (Mbd2), which links DNA methylation to repressive chromatin structure, in regulating expression of a range of genes that are associated with optimal DC activation and function. In the absence of Mbd2, DCs display reduced phenotypic activation and a markedly impaired capacity to initiate Th2 immunity against helminths or allergens. These data identify an epigenetic mechanism that is central to the activation of CD4(+) T-cell responses by DCs, particularly in Th2 settings, and reveal methyl-CpG-binding proteins and the genes under their control as possible therapeutic targets for type-2 inflammation.
Recruited Monocytes and Type 2 Immunity Promote Lung Regeneration following Pneumonectomy.
Lechner, Andrew J; Driver, Ian H; Lee, Jinwoo; Conroy, Carmen M; Nagle, Abigail; Locksley, Richard M; Rock, Jason R
2017-07-06
To investigate the role of immune cells in lung regeneration, we used a unilateral pneumonectomy model that promotes the formation of new alveoli in the remaining lobes. Immunofluorescence and single-cell RNA sequencing found CD115+ and CCR2+ monocytes and M2-like macrophages accumulating in the lung during the peak of type 2 alveolar epithelial stem cell (AEC2) proliferation. Genetic loss of function in mice and adoptive transfer studies revealed that bone marrow-derived macrophages (BMDMs) traffic to the lung through a CCL2-CCR2 chemokine axis and are required for optimal lung regeneration, along with Il4ra-expressing leukocytes. Our data suggest that these cells modulate AEC2 proliferation and differentiation. Finally, we provide evidence that group 2 innate lymphoid cells are a source of IL-13, which promotes lung regeneration. Together, our data highlight the potential for immunomodulatory therapies to stimulate alveologenesis in adults. Copyright © 2017 Elsevier Inc. All rights reserved.
The role of dendritic cells in cancer.
Hansen, Morten; Andersen, Mads Hald
2017-04-01
Though present in low numbers, dendritic cells (DCs) are recognized as major players in the control of cancer by adaptive immunity. The roles of cytotoxic CD8 + T-cells and Th1 helper CD4 + T-cells are well-documented in murine models of cancer and associated with a profound prognostic impact when infiltrating human tumors, but less information is known about how these T-cells gain access to the tumor or how they are primed to become tumor-specific. Here, we highlight recent findings that demonstrate a vital role of CD103 + DCs, which have been shown to be experts in cross-priming and the induction of anti-tumor immunity. We also focus on two different mediators that impair the function of tumor-associated DCs: prostaglandin E 2 and β-catenin. Both of these mediators seem to be important for the exclusion of T-cells in the tumor microenvironment and may represent key pathways to target in optimized treatment regimens against cancer.
Hallmarks of response to immune checkpoint blockade
Cogdill, Alexandria P; Andrews, Miles C; Wargo, Jennifer A
2017-01-01
Unprecedented advances have been made in the treatment of cancer through the use of immune checkpoint blockade, with approval of several checkpoint blockade regimens spanning multiple cancer types. However, responses to this form of therapy are not universal, and insights are clearly needed to identify optimal biomarkers of response and to combat mechanisms of therapeutic resistance. A working knowledge of the hallmarks of cancer yields insight into responses to immune checkpoint blockade, although the focus of this is rather tumour-centric and additional factors are pertinent, including host immunity and environmental influences. Herein, we describe the foundation for pillars and hallmarks of response to immune checkpoint blockade, with a discussion of their relevance to immune monitoring and mechanisms of resistance. Evolution of this understanding will ultimately help guide treatment strategies to enhance therapeutic responses. PMID:28524159
Ascough, Stephanie; Paterson, Suzanna; Chiu, Christopher
2018-01-01
Respiratory syncytial virus (RSV) and influenza are among the most important causes of severe respiratory disease worldwide. Despite the clinical need, barriers to developing reliably effective vaccines against these viruses have remained firmly in place for decades. Overcoming these hurdles requires better understanding of human immunity and the strategies by which these pathogens evade it. Although superficially similar, the virology and host response to RSV and influenza are strikingly distinct. Influenza induces robust strain-specific immunity following natural infection, although protection by current vaccines is short-lived. In contrast, even strain-specific protection is incomplete after RSV and there are currently no licensed RSV vaccines. Although animal models have been critical for developing a fundamental understanding of antiviral immunity, extrapolating to human disease has been problematic. It is only with recent translational advances (such as controlled human infection models and high-dimensional technologies) that the mechanisms responsible for differences in protection against RSV compared to influenza have begun to be elucidated in the human context. Influenza infection elicits high-affinity IgA in the respiratory tract and virus-specific IgG, which correlates with protection. Long-lived influenza-specific T cells have also been shown to ameliorate disease. This robust immunity promotes rapid emergence of antigenic variants leading to immune escape. RSV differs markedly, as reinfection with similar strains occurs despite natural infection inducing high levels of antibody against conserved antigens. The immunomodulatory mechanisms of RSV are thus highly effective in inhibiting long-term protection, with disturbance of type I interferon signaling, antigen presentation and chemokine-induced inflammation possibly all contributing. These lead to widespread effects on adaptive immunity with impaired B cell memory and reduced T cell generation and functionality. Here, we discuss the differences in clinical outcome and immune response following influenza and RSV. Specifically, we focus on differences in their recognition by innate immunity; the strategies used by each virus to evade these early immune responses; and effects across the innate-adaptive interface that may prevent long-lived memory generation. Thus, by comparing these globally important pathogens, we highlight mechanisms by which optimal antiviral immunity may be better induced and discuss the potential for these insights to inform novel vaccines. PMID:29552008
Tradeoffs between immune function and childhood growth among Amazonian forager-horticulturalists.
Urlacher, Samuel S; Ellison, Peter T; Sugiyama, Lawrence S; Pontzer, Herman; Eick, Geeta; Liebert, Melissa A; Cepon-Robins, Tara J; Gildner, Theresa E; Snodgrass, J Josh
2018-04-24
Immune function is an energetically costly physiological activity that potentially diverts calories away from less immediately essential life tasks. Among developing organisms, the allocation of energy toward immune function may lead to tradeoffs with physical growth, particularly in high-pathogen, low-resource environments. The present study tests this hypothesis across diverse timeframes, branches of immunity, and conditions of energy availability among humans. Using a prospective mixed-longitudinal design, we collected anthropometric and blood immune biomarker data from 261 Amazonian forager-horticulturalist Shuar children (age 4-11 y old). This strategy provided baseline measures of participant stature, s.c. body fat, and humoral and cell-mediated immune activity as well as subsample longitudinal measures of linear growth (1 wk, 3 mo, 20 mo) and acute inflammation. Multilevel analyses demonstrate consistent negative effects of immune function on growth, with children experiencing up to 49% growth reduction during periods of mildly elevated immune activity. The direct energetic nature of these relationships is indicated by ( i ) the manifestation of biomarker-specific negative immune effects only when examining growth over timeframes capturing active competition for energetic resources, ( ii ) the exaggerated impact of particularly costly inflammation on growth, and ( iii ) the ability of children with greater levels of body fat (i.e., energy reserves) to completely avoid the growth-inhibiting effects of acute inflammation. These findings provide evidence for immunologically and temporally diverse body fat-dependent tradeoffs between immune function and growth during childhood. We discuss the implications of this work for understanding human developmental energetics and the biological mechanisms regulating variation in human ontogeny, life history, and health.
An Optimized Protocol to Analyze Glycolysis and Mitochondrial Respiration in Lymphocytes.
Traba, Javier; Miozzo, Pietro; Akkaya, Billur; Pierce, Susan K; Akkaya, Munir
2016-11-21
Lymphocytes respond to a variety of stimuli by activating intracellular signaling pathways, which in turn leads to rapid cellular proliferation, migration and differentiation, and cytokine production. All of these events are tightly linked to the energy status of the cell, and therefore studying the energy-producing pathways may give clues about the overall functionality of these cells. The extracellular flux analyzer is a commonly used device for evaluating the performance of glycolysis and mitochondrial respiration in many cell types. This system has been used to study immune cells in a few published reports, yet a comprehensive protocol optimized particularly for lymphocytes is lacking. Lymphocytes are fragile cells that survive poorly in ex vivo conditions. Oftentimes lymphocyte subsets are rare, and working with low cell numbers is inevitable. Thus, an experimental strategy that addresses these difficulties is required. Here, we provide a protocol that allows for rapid isolation of viable lymphocytes from lymphoid tissues, and for the analysis of their metabolic states in the extracellular flux analyzer. Furthermore, we provide results of experiments in which the metabolic activities of several lymphocyte subtypes at different cell densities were compared. These observations suggest that our protocol can be used to achieve consistent, well-standardized results even at low cell concentrations, and thus it may have broad applications in future studies focusing on the characterization of metabolic events in immune cells.
An FDA oncology analysis of immune activating products and first-in-human dose selection.
Saber, Haleh; Gudi, Ramadevi; Manning, Michael; Wearne, Emily; Leighton, John K
2016-11-01
As sub-therapeutic doses are not medically justifiable in patients with cancer, we retrospectively analyzed data on immune activating products, to assess approaches used in first-in-human (FIH) dose selection, the utility of animal toxicology studies in dose selection, and the length of time to complete FIH trials. The information collected included pharmacology and toxicology data, FIH dose and rationale, and dose-finding trial design. We used the principles of the Hill equation to estimate the FIH doses for antibodies and compared them to the doses administered to patients with acceptable toxicities. For approximately half the antibodies (44%) examined, the FIH doses were at least a hundred-fold lower than the doses safely administered to patients, indicating optimization of FIH dose selection and/or optimization of dose-finding trial design is needed to minimize patient exposure to sub-therapeutic doses. However, selection of the FIH dose for antibodies based on animal toxicology studies using 1/6th the HNSTD or 1/10th the NOAEL resulted in human doses that were unsafe for several antibodies examined. We also concluded that antibodies with Fc-modifications for increased effector function may be less tolerated, resulting in toxicities at lower doses than those without such modifications. There was insufficient information to evaluate CD3 bispecific products. Published by Elsevier Inc.
Oh, Boram; Lam, Raymond H. W.; Fan, Rong; Cornell, Timothy T.; Shanley, Thomas P.; Kurabayashi, Katsuo; Fu, Jianping
2015-01-01
An accurate measurement of the immune status in patients with immune system disorders is critical in evaluating the stage of diseases and tailoring drug treatments. The functional cellular immunity test is a promising method to establish the diagnosis of immune dysfunctions. The conventional functional cellular immunity test involves measurements of the capacity of peripheral blood mononuclear cells to produce pro-inflammatory cytokines when stimulated ex vivo. However, this “bulk” assay measures the overall reactivity of a population of lymphocytes and monocytes, making it difficult to pinpoint the phenotype or real identity of the reactive immune cells involved. In this research, we develop a large surface micromachined polydimethylsiloxane (PDMS) microfiltration membrane (PMM) with high porosity, which is integrated in a microfluidic microfiltration platform. Using the PMM with functionalized microbeads conjugated with antibodies against specific cell surface proteins, we demonstrated rapid, efficient and high-throughput on-chip isolation, enrichment, and stimulation of subpopulations of immune cells from blood specimens. Furthermore, the PMM-integrated microfiltration platform, coupled with a no-wash homogeneous chemiluminescence assay (“AlphaLISA”), enables us to demonstrate rapid and sensitive on-chip immunophenotyping assays for subpopulations of immune cells isolated directly from minute quantities of blood samples. PMID:23335389
Li, Hui; Cui, Quan; Zhang, Zhihong; Luo, Qingming
2015-01-01
Background The nonlinear optical microscopy has become the current state-of-the-art for intravital imaging. Due to its advantages of high resolution, superior tissue penetration, lower photodamage and photobleaching, as well as intrinsic z-sectioning ability, this technology has been widely applied in immunoimaging for a decade. However, in terms of monitoring immune events in native physiological environment, the conventional nonlinear optical microscope system has to be optimized for live animal imaging. Generally speaking, three crucial capabilities are desired, including high-speed, large-area and multicolor imaging. Among numerous high-speed scanning mechanisms used in nonlinear optical imaging, polygon scanning is not only linearly but also dispersion-freely with high stability and tunable rotation speed, which can overcome disadvantages of multifocal scanning, resonant scanner and acousto-optical deflector (AOD). However, low frame rate, lacking large-area or multicolor imaging ability make current polygonbased nonlinear optical microscopes unable to meet the requirements of immune event monitoring. Methods We built up a polygon-based nonlinear optical microscope system which was custom optimized for immunoimaging with high-speed, large-are and multicolor imaging abilities. Results Firstly, we validated the imaging performance of the system by standard methods. Then, to demonstrate the ability to monitor immune events, migration of immunocytes observed by the system based on typical immunological models such as lymph node, footpad and dorsal skinfold chamber are shown. Finally, we take an outlook for the possible advance of related technologies such as sample stabilization and optical clearing for more stable and deeper intravital immunoimaging. Conclusions This study will be helpful for optimizing nonlinear optical microscope to obtain more comprehensive and accurate information of immune events. PMID:25694951
Selot, Ruchita; Arumugam, Sathyathithan; Mary, Bertin; Cheemadan, Sabna; Jayandharan, Giridhara R.
2017-01-01
Of the 12 common serotypes used for gene delivery applications, Adeno-associated virus (AAV)rh.10 serotype has shown sustained hepatic transduction and has the lowest seropositivity in humans. We have evaluated if further modifications to AAVrh.10 at its phosphodegron like regions or predicted immunogenic epitopes could improve its hepatic gene transfer and immune evasion potential. Mutant AAVrh.10 vectors were generated by site directed mutagenesis of the predicted targets. These mutant vectors were first tested for their transduction efficiency in HeLa and HEK293T cells. The optimal vector was further evaluated for their cellular uptake, entry, and intracellular trafficking by quantitative PCR and time-lapse confocal microscopy. To evaluate their potential during hepatic gene therapy, C57BL/6 mice were administered with wild-type or optimal mutant AAVrh.10 and the luciferase transgene expression was documented by serial bioluminescence imaging at 14, 30, 45, and 72 days post-gene transfer. Their hepatic transduction was further verified by a quantitative PCR analysis of AAV copy number in the liver tissue. The optimal AAVrh.10 vector was further evaluated for their immune escape potential, in animals pre-immunized with human intravenous immunoglobulin. Our results demonstrate that a modified AAVrh.10 S671A vector had enhanced cellular entry (3.6 fold), migrate rapidly to the perinuclear region (1 vs. >2 h for wild type vectors) in vitro, which further translates to modest increase in hepatic gene transfer efficiency in vivo. More importantly, the mutant AAVrh.10 vector was able to partially evade neutralizing antibodies (~27–64 fold) in pre-immunized animals. The development of an AAV vector system that can escape the circulating neutralizing antibodies in the host will substantially widen the scope of gene therapy applications in humans. PMID:28769791
French, Martyn A.; Tjiam, M. Christian; Abudulai, Laila N.; Fernandez, Sonia
2017-01-01
Contemporary antiretroviral therapy (ART) is effective and tolerable for long periods of time but cannot eradicate human immunodeficiency virus type 1 (HIV-1) infection by either elimination of viral reservoirs or enhancement of HIV-1-specific immune responses. Boosting “protective” HIV-1-specific immune responses by active or passive immunization will therefore be necessary to control or eradicate HIV-1 infection and is currently the topic of intense investigation. Recently reported studies conducted in HIV patients and non-human primate (NHP) models of HIV-1 infection suggest that HIV-1-specific IgG antibody responses may contribute to the control of HIV-1 infection. However, production of IgG antibodies with virus neutralizing activity by vaccination remains problematic and while vaccine-induced natural killer cell-activating IgG antibodies have been shown to prevent the acquisition of HIV-1 infection, they may not be sufficient to control or eradicate established HIV-1 infection. It is, therefore, important to consider other functional characteristics of IgG antibody responses. IgG antibodies to viruses also mediate opsonophagocytic antibody responses against virions and capsids that enhance the function of phagocytic cells playing critical roles in antiviral immune responses, particularly conventional dendritic cells and plasmacytoid dendritic cells. Emerging evidence suggests that these antibody functions might contribute to the control of HIV-1 infection. In addition, IgG antibodies contribute to the intracellular degradation of viruses via binding to the cytosolic fragment crystallizable (Fc) receptor tripartite motif containing-21 (TRIM21). The functional activity of an IgG antibody response is influenced by the IgG subclass content, which affects binding to antigens and to Fcγ receptors on phagocytic cells and to TRIM21. The IgG subclass content and avidity of IgG antibodies is determined by germinal center (GC) reactions in follicles of lymphoid tissue. As HIV-1 infects cells in GCs and induces GC dysfunction, which may persist during ART, strategies for boosting HIV-1-specific IgG antibody responses should include early commencement of ART and possibly the use of particular antiretroviral drugs to optimize drug levels in lymphoid follicles. Finally, enhancing particular functions of HIV-1-specific IgG antibody responses by using adjuvants or cytokines to modulate the IgG subclass content of the antibody response might be investigated in NHP models of HIV-1 infection and during trials of therapeutic vaccines in HIV patients. PMID:28725225
Gause, William C; Maizels, Rick M
2016-08-01
Important insights have recently been gained in our understanding of the intricate relationship in the intestinal milieu between the vertebrate host mucosal immune response, commensal bacteria, and helminths. Helminths are metazoan worms (macrobiota) and trigger immune responses that include potent regulatory components capable of controlling harmful inflammation, protecting barrier function and mitigating tissue damage. They can secrete a variety of products that directly affect immune regulatory function but they also have the capacity to influence the composition of microbiota, which can also then impact immune function. Conversely, changes in microbiota can affect susceptibility to helminth infection, indicating that crosstalk between these two disparate groups of endobiota can play an essential role in host intestinal immune function and homeostasis. Copyright © 2016. Published by Elsevier Ltd.
Robson, Matthew J; Quinlan, Meagan A; Blakely, Randy D
2017-05-17
Serotonin (5-hydroxytryptamine, 5-HT) has long been recognized as a key contributor to the regulation of mood and anxiety and is strongly associated with the etiology of major depressive disorder (MDD). Although more known for its roles within the central nervous system (CNS), 5-HT is recognized to modulate several key aspects of immune system function that may contribute to the development of MDD. Copious amounts of research have outlined a connection between alterations in immune system function, inflammation status, and MDD. Supporting this connection, peripheral immune activation results in changes in the function and/or expression of many components of 5-HT signaling that are associated with depressive-like phenotypes. How 5-HT is utilized by the immune system to effect CNS function and ultimately behaviors related to depression is still not well understood. This Review summarizes the evidence that immune system alterations related to depression affect CNS 5-HT signaling that can alter MDD-relevant behaviors and that 5-HT regulates immune system signaling within the CNS and periphery. We suggest that targeting the interrelationships between immune and 5-HT signaling may provide more effective treatments for subsets of those suffering from inflammation-associated MDD.
IMMUNE SYSTEM MATURITY AND SENSITIVITY TO CHEMICAL EXPOSURE
It is well established that human diseases associated with abnormal immune function, including some common infectious diseases and asthma, are considerably more prevalent at younger ages. The immune system continues to mature after birth, and functional immaturity accounts for m...
Changes in the immune system are conditioned by nutrition.
Marcos, A; Nova, E; Montero, A
2003-09-01
Undernutrition due to insufficient intake of energy and macronutrients and/or due to deficiencies in specific micronutrients impairs the immune system, suppressing immune functions that are fundamental to host protection. The most consistent abnormalities are seen in cell-mediated immunity, complement system, phagocyte function, cytokine production, mucosal secretory antibody response, and antibody affinity. There is a number of physiological situations such as ageing and performance of intense physical exercise associated with an impairment of some immune parameters' response. Nutrition can influence the extent of immune alteration in both of them. There are also numerous pathological situations in which nutrition plays a role as a primary or secondary determinant of some underlying immunological impairments. This includes obesity, eating disorders (anorexia nervosa and bulimia nervosa), food hypersensitivity and gastrointestinal disorders as some examples. The implications of nutrition on immune function in these disorders are briefly reviewed.
Kobayashi, Yuka; Watanabe, Takeshi
2016-01-01
We previously generated artificial lymph node-like tertiary lymphoid organs (artTLOs) in mice using lymphotoxin α-expressing stromal cells. Here, we show the construction of transplantable and functional artTLOs by applying soluble factors trapped in slow-releasing gels in the absence of lymphoid tissue organizer stromal cells. The resultant artTLOs were easily removable, transplantable, and were capable of attracting memory B and T cells. Importantly, artTLOs induced a powerful antigen-specific secondary immune response, which was particularly pronounced in immune-compromised hosts. Synthesis of functionally stable immune tissues/organs like those described here may be a first step to eventually develop immune system-based therapeutics. Although much needs to be learned from the precise mechanisms of action, they may offer ways in the future to reestablish immune functions to overcome hitherto untreatable diseases, including severe infection, cancer, autoimmune diseases, and various forms of immune deficiencies, including immune-senescence during aging.
MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells.
Jones, Russell G; Pearce, Edward J
2017-05-16
Tissue-resident immune cells must balance survival in peripheral tissues with the capacity to respond rapidly upon infection or tissue damage, and in turn couple these responses with intrinsic metabolic control and conditions in the tissue microenvironment. The serine/threonine kinase mammalian/mechanistic target of rapamycin (mTOR) is a central integrator of extracellular and intracellular growth signals and cellular metabolism and plays important roles in both innate and adaptive immune responses. This review discusses the function of mTOR signaling in the differentiation and function of tissue-resident immune cells, with focus on the role of mTOR as a metabolic sensor and its impact on metabolic regulation in innate and adaptive immune cells. We also discuss the impact of metabolic constraints in tissues on immune homeostasis and disease, and how manipulating mTOR activity with drugs such as rapamycin can modulate immunity in these contexts. Copyright © 2017. Published by Elsevier Inc.
Analysis and optimization of cross-immunity epidemic model on complex networks
NASA Astrophysics Data System (ADS)
Chen, Chao; Zhang, Hao; Wu, Yin-Hua; Feng, Wei-Qiang; Zhang, Jian
2015-09-01
There are various infectious diseases in real world, and these diseases often spread on a network of population and compete for the limited hosts. Cross-immunity is an important disease competing pattern, which has attracted the attention of many researchers. In this paper, we discovered an important conclusion for two cross-immunity epidemics on a network. When the infectious ability of the second epidemic takes a fixed value, the infectious ability of the first epidemic has an optimal value which minimizes the sum of the infection sizes of the two epidemics. We also proposed a simple mathematical analysis method for the infection size of the second epidemic using the cavity method. The proposed method and conclusion are verified by simulation results. Minor inaccuracies of the existing mathematical methods for the infection size of the second epidemic are also found and discussed in experiments, which have not been noticed in existing research.
Biomimetically Engineered Demi-Bacteria Potentiate Vaccination against Cancer.
Ni, Dezhi; Qing, Shuang; Ding, Hui; Yue, Hua; Yu, Di; Wang, Shuang; Luo, Nana; Su, Zhiguo; Wei, Wei; Ma, Guanghui
2017-10-01
Failure in enhancing antigen immunogenicity has limited the development of cancer vaccine. Inspired by effective immune responses toward microorganisms, demi-bacteria (DB) from Bacillus are engineered as carriers for cancer vaccines. The explored hydrothermal treatment enables the Bacillus to preserve optimal pathogen morphology with intrinsic mannose receptor agonist. Meanwhile, the treated Bacillus can be further endowed with ideal hollow/porous structure for efficient accommodation of antigen and adjuvant, such as CpG. Therefore, this optimal engineered nanoarchitecture allows multiple immunostimulatory elements integrate in a pattern closely resembling that of bacterial pathogens. Such pathogen mimicry greatly enhances antigen uptake and cross-presentation, resulting in stronger immune activation suitable for cancer vaccines. Indeed, DB-based biomimetic vaccination in mice induces synergistic cellular and humoral immune responses, achieving potent therapeutic and preventive effects against cancer. Application of microorganism-sourced materials thus presents new opportunities for potent cancer therapy.
Biomimetically Engineered Demi‐Bacteria Potentiate Vaccination against Cancer
Ni, Dezhi; Qing, Shuang; Ding, Hui; Yue, Hua; Yu, Di; Wang, Shuang; Luo, Nana; Su, Zhiguo
2017-01-01
Abstract Failure in enhancing antigen immunogenicity has limited the development of cancer vaccine. Inspired by effective immune responses toward microorganisms, demi‐bacteria (DB) from Bacillus are engineered as carriers for cancer vaccines. The explored hydrothermal treatment enables the Bacillus to preserve optimal pathogen morphology with intrinsic mannose receptor agonist. Meanwhile, the treated Bacillus can be further endowed with ideal hollow/porous structure for efficient accommodation of antigen and adjuvant, such as CpG. Therefore, this optimal engineered nanoarchitecture allows multiple immunostimulatory elements integrate in a pattern closely resembling that of bacterial pathogens. Such pathogen mimicry greatly enhances antigen uptake and cross‐presentation, resulting in stronger immune activation suitable for cancer vaccines. Indeed, DB‐based biomimetic vaccination in mice induces synergistic cellular and humoral immune responses, achieving potent therapeutic and preventive effects against cancer. Application of microorganism‐sourced materials thus presents new opportunities for potent cancer therapy. PMID:29051851
Development of a GA-Fuzzy-Immune PID Controller with Incomplete Derivation for Robot Dexterous Hand
Liu, Xin-hua; Chen, Xiao-hu; Zheng, Xian-hua; Li, Sheng-peng; Wang, Zhong-bin
2014-01-01
In order to improve the performance of robot dexterous hand, a controller based on GA-fuzzy-immune PID was designed. The control system of a robot dexterous hand and mathematical model of an index finger were presented. Moreover, immune mechanism was applied to the controller design and an improved approach through integration of GA and fuzzy inference was proposed to realize parameters' optimization. Finally, a simulation example was provided and the designed controller was proved ideal. PMID:25097881
An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm.
Zhu, Qingling; Lin, Qiuzhen; Chen, Weineng; Wong, Ka-Chun; Coello Coello, Carlos A; Li, Jianqiang; Chen, Jianyong; Zhang, Jun
2017-09-01
The selection of swarm leaders (i.e., the personal best and global best), is important in the design of a multiobjective particle swarm optimization (MOPSO) algorithm. Such leaders are expected to effectively guide the swarm to approach the true Pareto optimal front. In this paper, we present a novel external archive-guided MOPSO algorithm (AgMOPSO), where the leaders for velocity update are all selected from the external archive. In our algorithm, multiobjective optimization problems (MOPs) are transformed into a set of subproblems using a decomposition approach, and then each particle is assigned accordingly to optimize each subproblem. A novel archive-guided velocity update method is designed to guide the swarm for exploration, and the external archive is also evolved using an immune-based evolutionary strategy. These proposed approaches speed up the convergence of AgMOPSO. The experimental results fully demonstrate the superiority of our proposed AgMOPSO in solving most of the test problems adopted, in terms of two commonly used performance measures. Moreover, the effectiveness of our proposed archive-guided velocity update method and immune-based evolutionary strategy is also experimentally validated on more than 30 test MOPs.
Dose-dependent modulation of CD8 and functional avidity as a result of peptide encounter
Kroger, Charles J; Alexander-Miller, Martha A
2007-01-01
The generation of an optimal CD8+ cytotoxic T lymphocyte (CTL) response is critical for the clearance of many intracellular pathogens. Previous studies suggest that one contributor to an optimal immune response is the presence of CD8+ cells exhibiting high functional avidity. In this regard, CD8 expression has been shown to contribute to peptide sensitivity. Here, we investigated the ability of naive splenocytes to modulate CD8 expression according to the concentration of stimulatory peptide antigen. Our results showed that the level of CD8 expressed was inversely correlated with the amount of peptide used for the primary stimulation, with higher concentrations of antigen resulting in lower expression of both CD8α and CD8β. Importantly the ensuing CD8low and CD8high CTL populations were not the result of the selective outgrowth of naive CD8+ T-cell subpopulations expressing distinct levels of CD8. Subsequent encounter with peptide antigen resulted in continued modulation of both the absolute level and the isoform of CD8 expressed and in the functional avidity of the responding cells. We propose that CD8 cell surface expression is not a static property, but can be modulated to ‘fine tune’ the sensitivity of responding CTL to a defined concentration of antigen. PMID:17484768
Yang, Chunpeng; Gao, Xinyu; Gong, Rui
2017-01-01
Therapeutic monoclonal antibodies and Fc-fusion proteins are successfully used in treatment of various diseases mainly including cancer, immune disease, and viral infection, which belong to the Fc-based therapeutics. In recent years, engineered Fc-derived antibody domains have also shown potential for Fc-based therapeutics. To increase the druggability of Fc-based therapeutic candidates, many efforts have been made in optimizing physicochemical properties and functions mediated by Fc fragment. The desired result is that we can simultaneously obtain Fc variants with increased physicochemical properties in vitro and capacity of mediating appropriate functions in vivo . However, changes of physicochemical properties of Fc may result in alternation of Fc-mediated functions and vice versa , which leads to undesired outcomes for further development of Fc-based therapeutics. Therefore, whether modified Fc fragments are suitable for achievement of expected clinical results or not needs to be seriously considered. Now, this question comes to be noticed and should be figured out to make better translation from the results of laboratory into clinical applications. In this review, we summarize different strategies on engineering physicochemical properties of Fc, and preliminarily elucidate the relationships between modified Fc in vitro and the subsequent therapeutic influence in vivo .
Yang, Chunpeng; Gao, Xinyu; Gong, Rui
2018-01-01
Therapeutic monoclonal antibodies and Fc-fusion proteins are successfully used in treatment of various diseases mainly including cancer, immune disease, and viral infection, which belong to the Fc-based therapeutics. In recent years, engineered Fc-derived antibody domains have also shown potential for Fc-based therapeutics. To increase the druggability of Fc-based therapeutic candidates, many efforts have been made in optimizing physicochemical properties and functions mediated by Fc fragment. The desired result is that we can simultaneously obtain Fc variants with increased physicochemical properties in vitro and capacity of mediating appropriate functions in vivo. However, changes of physicochemical properties of Fc may result in alternation of Fc-mediated functions and vice versa, which leads to undesired outcomes for further development of Fc-based therapeutics. Therefore, whether modified Fc fragments are suitable for achievement of expected clinical results or not needs to be seriously considered. Now, this question comes to be noticed and should be figured out to make better translation from the results of laboratory into clinical applications. In this review, we summarize different strategies on engineering physicochemical properties of Fc, and preliminarily elucidate the relationships between modified Fc in vitro and the subsequent therapeutic influence in vivo. PMID:29375551
[Impact of thymic function in age-related immune deterioration].
Ferrando-Martínez, Sara; de la Fuente, Mónica; Guerrero, Juan Miguel; Leal, Manuel; Muñoz-Fernández, M Ángeles
2013-01-01
Age-related biological deterioration also includes immune system deterioration and, in consequence, a rise in the incidence and prevalence of infections and cancers, as well as low responses to vaccination strategies. Out of all immune cell subsets, T-lymphocytes seem to be involved in most of the age-related defects. Since T-lymphocytes mature during their passage through the thymus, and the thymus shows an age-related process of atrophy, thymic regression has been proposed as the triggering event of this immune deterioration in elderly people. Historically, it has been accepted that the young thymus sets the T-lymphocyte repertoire during the childhood, whereupon atrophy begins until the elderly thymus is a non-functional evolutionary trace. However, a rising body of knowledge points toward the thymus functioning during adulthood. In the elderly, higher thymic function is associated with a younger immune system, while thymic function failure is associated with all-cause mortality. Therefore, any new strategy focused on the improvement of the elderly quality of life, especially those trying to influence the immune system, should take into account, together with peripheral homeostasis, thymus function as a key element in slowing down age-related decline. Copyright © 2012 SEGG. Published by Elsevier Espana. All rights reserved.
Nzioki, Japheth Mativo; Ouma, James; Ombaka, James Hebert; Onyango, Rosebella Ongutu
2017-01-01
Immunization is a powerful and cost-effective health intervention which averts an estimated 2 to 3 million deaths every year. Kenya has a high infant and under five mortality and morbidity rates. Increasing routine child immunization coverage is one way of reducing child morbidity and mortality rates in Kenya. Community Health Workers (CHWs) have emerged as critical human resources for health in developing countries. The Community Strategy (CS) is one of the CHW led interventions promoting Maternal and Child Health (MCH) in Kenya. This study sought to establish the effect of CS on infant vaccination Coverage (IVC) in Mwingi west sub-county; Kenya. This was a pretest - posttest experimental study design with 1 pretest and 2 post-test surveys conducted in intervention and control sites. Mwingi west and Mwingi north sub-counties where intervention and control sites respectively. Sample size in each survey was 422 households. Women with a child aged 9-12 months were main respondents. Intervention site end-term evaluation indicated that; the CS increased IVC by 10.1% (Z =6.0241, P <0.0001), from a suboptimal level of 88.7% at baseline survey to optimal level of 98.8% at end term survey. Infants in intervention site were 2.5 times more likely to receive all recommended immunizations within their first year of life [(crude OR= 2.475, P<0.0001; 95%CI: 1.794-3.414) (adj. OR=2.516, P<0.0001; 95%CI: 1.796-3.5240)]. CS increased IVC in intervention site to optimal level (98.8%). To improve child health outcomes through immunization coverage, Kenya needs to fast-track nationwide implementation of the CS intervention.
Nzioki, Japheth Mativo; Ouma, James; Ombaka, James Hebert; Onyango, Rosebella Ongutu
2017-01-01
Introduction Immunization is a powerful and cost-effective health intervention which averts an estimated 2 to 3 million deaths every year. Kenya has a high infant and under five mortality and morbidity rates. Increasing routine child immunization coverage is one way of reducing child morbidity and mortality rates in Kenya. Community Health Workers (CHWs) have emerged as critical human resources for health in developing countries. The Community Strategy (CS) is one of the CHW led interventions promoting Maternal and Child Health (MCH) in Kenya. This study sought to establish the effect of CS on infant vaccination Coverage (IVC) in Mwingi west sub-county; Kenya. Methods This was a pretest - posttest experimental study design with 1 pretest and 2 post-test surveys conducted in intervention and control sites. Mwingi west and Mwingi north sub-counties where intervention and control sites respectively. Sample size in each survey was 422 households. Women with a child aged 9-12 months were main respondents. Results Intervention site end-term evaluation indicated that; the CS increased IVC by 10.1% (Z =6.0241, P <0.0001), from a suboptimal level of 88.7% at baseline survey to optimal level of 98.8% at end term survey. Infants in intervention site were 2.5 times more likely to receive all recommended immunizations within their first year of life [(crude OR= 2.475, P<0.0001; 95%CI: 1.794-3.414) (adj. OR=2.516, P<0.0001; 95%CI: 1.796-3.5240)]. Conclusion CS increased IVC in intervention site to optimal level (98.8%). To improve child health outcomes through immunization coverage, Kenya needs to fast-track nationwide implementation of the CS intervention. PMID:29138657
Liu, Yuanbao; Liu, Zhihao; Deng, Xiuying; Hu, Ying; Wang, Zhiguo; Lu, Peishan; Guo, Hongxiong; Sun, Xiang; Xu, Yan; Tang, Fenyang; Zhu, Feng-Cai
2018-05-01
In China, one dose measles-mumps-rubella vaccine (MMR) was administered to children aged 18-24 months. The mumps incidence was still high. Data on the waning immunity to mumps after MMR vaccination are limited. This study aimed to describe the waning immunity to mumps in kindergarten and primary school children to provide a scientific basis for confirming an optimal age for a second dose. An observational, prospective study on one-dose MMR in children in kindergarten and primary school was conducted from 2015 to 2016. Waning immunity to mumps in terms of seropositivity and geometric antibody concentration (GMC) with time was analyzed. In total, 7436 eligible subjects in kindergarten (3435) and primary school (4001) were included in 2015. The overall GMC (201.7 U/ml) and seropositivity (75.4%) to mumps antibodies in 2016 were significantly lower compared to those in 2015 (218.7 U/ml, 78.4%). Asymptomatic infection occurred within one year in 8.8% of children who received one-dose MMR. Children who received one-dose MMR in kindergarten and primary school were at high risk of mumps infection, and waning immunity occurred with time. Determining the optimal age for the second dose of MMR in children should be prioritized to prevent mumps epidemics.
De Loof, Arnold; Schoofs, Liliane; Huybrechts, Roger
2016-01-15
Drastic changes in hormone titers, in particular of steroid hormones, are intuitively interpreted as necessary and beneficial for optimal functioning of animals. Peaks in progesterone- and estradiol titers that accompany the estrus cycle in female vertebrates as well as in ecdysteroids at each molt and during metamorphosis of holometabolous insects are prominent examples. A recent analysis of insect metamorphosis yielded the view that, in general, a sharp rise in sex steroid hormone titer signals that somewhere in the body some tissue(s) is undergoing programmed cell death/apoptosis. Increased steroid production is part of this process. Typical examples are ovarian follicle cells in female vertebrates and invertebrates and the prothoracic gland cells, the main production site of ecdysteroids in larval insects. A duality emerges: programmed cell death-apoptosis is deleterious at the cellular level, but it may yield beneficial effects at the organismal level. Reconciling both opposites requires reevaluating the probable evolutionary origin and role of peptidic brain hormones that direct steroid hormone synthesis. Do e.g. Luteinizing Hormone in vertebrates and Prothoracicotropic Hormone (PTTH: acting through the Torso receptor) in insects still retain an ancient role as toxins in the early immune system? Does the functional link of some neuropeptides with Ca(2+)-induced apoptosis make sense in endocrine archeology? The endocrine system as a remnant of the ancient immune system is undoubtedly counterintuitive. Yet, we will argue that such paradigm enables the logical framing of many aspects, the endocrine one inclusive of both male and female reproductive physiology. Copyright © 2015 Elsevier Inc. All rights reserved.
Immune function trade-offs in response to parasite threats.
Kirschman, Lucas J; Quade, Adam H; Zera, Anthony J; Warne, Robin W
2017-04-01
Immune function is often involved in physiological trade-offs because of the energetic costs of maintaining constitutive immunity and mounting responses to infection. However, immune function is a collection of discrete immunity factors and animals should allocate towards factors that combat the parasite threat with the highest fitness cost. For example, animals on dispersal fronts of expanding population may be released from density-dependent diseases. The costs of immunity, however, and life history trade-offs in general, are often context dependent. Trade-offs are often most apparent under conditions of unusually limited resources or when animals are particularly stressed, because the stress response can shift priorities. In this study we tested how humoral and cellular immune factors vary between phenotypes of a wing dimorphic cricket and how physiological stress influences these immune factors. We measured constitutive lysozyme activity, a humoral immune factor, and encapsulation response, a cellular immune factor. We also stressed the crickets with a sham predator in a full factorial design. We found that immune strategy could be explained by the selective pressures encountered by each morph and that stress decreased encapsulation, but not lysozyme activity. These results suggest a possible trade-off between humoral and cellular immunity. Given limited resources and the expense of immune factors, parasite pressures could play a key factor in maintaining insect polyphenism via disruptive selection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jasoni, Christine L.; Sanders, Tessa R.; Kim, Dong Won
2015-01-01
The functions of the nervous system can be powerfully modulated by the immune system. Although traditionally considered to be quite separate, neuro-immune interactions are increasingly recognized as critical for both normal and pathological nervous system function in the adult. However, a growing body of information supports a critical role for neuro-immune interactions before birth, particularly in the prenatal programming of later-life neurobehavioral disease risk. This review will focus on maternal obesity, as it represents an environment of pathological immune system function during pregnancy that elevates offspring neurobehavioral disease risk. We will first delineate the normal role of the immune system during pregnancy, including the role of the placenta as both a barrier and relayer of inflammatory information between the maternal and fetal environments. This will be followed by the current exciting findings of how immuno-modulatory molecules may elevate offspring risk of neurobehavioral disease by altering brain development and, consequently, later life function. Finally, by drawing parallels with pregnancy complications other than obesity, we will suggest that aberrant immune activation, irrespective of its origin, may lead to neuro-immune interactions that otherwise would not exist in the developing brain. These interactions could conceivably derail normal brain development and/or later life function, and thereby elevate risk for obesity and other neurobehavioral disorders later in the offspring's life. PMID:25691854
A Novel Virus-Like Particle Based Vaccine Platform Displaying the Placental Malaria Antigen VAR2CSA.
Thrane, Susan; Janitzek, Christoph M; Agerbæk, Mette Ø; Ditlev, Sisse B; Resende, Mafalda; Nielsen, Morten A; Theander, Thor G; Salanti, Ali; Sander, Adam F
2015-01-01
Placental malaria caused by Plasmodium falciparum is a major cause of mortality and severe morbidity. Clinical testing of a soluble protein-based vaccine containing the parasite ligand, VAR2CSA, has been initiated. VAR2CSA binds to the human receptor chondroitin sulphate A (CSA) and is responsible for sequestration of Plasmodium falciparum infected erythrocytes in the placenta. It is imperative that a vaccine against malaria in pregnancy, if administered to women before they become pregnant, can induce a strong and long lasting immune response. While most soluble protein-based vaccines have failed during clinical testing, virus-like particle (VLP) based vaccines (e.g., the licensed human papillomavirus vaccines) have demonstrated high efficacy, suggesting that the spatial assembly of the vaccine antigen is a critical parameter for inducing an optimal long-lasting protective immune response. We have developed a VLP vaccine display platform by identifying regions of the HPV16 L1 coat protein where a biotin acceptor site (AviTagTM) can be inserted without compromising VLP-assembly. Subsequent biotinylation of Avi-L1 VLPs allow us to anchor monovalent streptavidin (mSA)-fused proteins to the biotin, thereby obtaining a dense and repetitive VLP-display of the vaccine antigen. The mSA-VAR2CSA antigen was delivered on the Avi-L1 VLP platform and tested in C57BL/6 mice in comparison to two soluble protein-based vaccines consisting of naked VAR2CSA and mSA-VAR2CSA. The mSA-VAR2CSA Avi-L1 VLP and soluble mSA-VAR2CSA vaccines induced higher antibody titers than the soluble naked VAR2CSA vaccine after three immunizations. The VAR2CSA Avi-L1 VLP vaccine induced statistically significantly higher endpoint titres compared to the soluble mSA-VAR2CSA vaccine, after 1st and 2nd immunization; however, this difference was not statistically significant after 3rd immunization. Importantly, the VLP-VAR2CSA induced antibodies were functional in inhibiting the binding of parasites to CSA. This study demonstrates that the described Avi-L1 VLP-platform may serve as a versatile system for facilitating optimal VLP-display of large and complex vaccine antigens.
Rose, Fabrice; Wern, Jeanette Erbo; Gavins, Francesca; Andersen, Peter; Follmann, Frank; Foged, Camilla
2018-02-10
Induction of mucosal immunity with vaccines is attractive for the immunological protection against pathogen entry directly at the site of infection. An example is infection with Chlamydia trachomatis (Ct), which is the most common sexually transmitted infection in the world, and there is an unmet medical need for an effective vaccine. A vaccine against Ct should elicit protective humoral and cell-mediated immune (CMI) responses in the genital tract mucosa. We previously designed an antibody- and CMI-inducing adjuvant based on poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles modified with the cationic surfactant dimethyldioctadecylammonium bromide and the immunopotentiator trehalose-6,6'-dibehenate. Here we show that immunization with these lipid-polymer hybrid nanoparticles (LPNs) coated with the mucoadhesive polymer chitosan enhances mucosal immune responses. Glycol chitosan (GC)-modified LPNs were engineered using an oil-in-water single emulsion solvent evaporation method. The nanoparticle design was optimized in a highly systematic way by using a quality-by-design approach to define the optimal operating space and to gain maximal mechanistic information about the GC coating of the LPNs. Cryo-transmission electron microscopy revealed a PLGA core coated with one or several concentric lipid bilayers. The GC coating of the surface was identified as a saturable, GC concentration-dependent increase in particle size and a reduction of the zeta-potential, and the coating layer could be compressed upon addition of salt. Increased antigen-specific mucosal immune responses were induced in the lungs and the genital tract with the optimized GC-coated LPN adjuvant upon nasal immunization of mice with the recombinant Ct fusion antigen CTH522. The mucosal responses were characterized by CTH522-specific IgG/IgA antibodies, together with CTH522-specific interferon γ-producing Th1 cells. This study demonstrates that mucosal administration of CTH522 adjuvanted with chitosan-coated LPNs represents a promising strategy to modulate the magnitude of mucosal vaccine responses. Copyright © 2017 Elsevier B.V. All rights reserved.
B cells as multi-functional players during Mycobacterium tuberculosis infection and disease.
du Plessis, Willem J; Walzl, Gerhard; Loxton, André G
2016-03-01
Immunity to tuberculosis is still understood to be driven and maintained by T-cell derived immune responses. With a steady influx of data, it is becoming clear that B cells, the mediators of humoral immunity, have the capacity to function in roles not previously appreciated within the traditional B cell dogma. In this review we aim to discuss B cells, from its generation through to its functioning as effectors in both the innate and adaptive immune response, within the tuberculosis domain. Copyright © 2015 Elsevier Ltd. All rights reserved.
Felgner, Sebastian; Kocijancic, Dino; Frahm, Michael; Heise, Ulrike; Rohde, Manfred; Zimmermann, Kurt; Falk, Christine; Weiss, Siegfried
2018-01-01
ABSTRACT Cancer is one of the leading causes of death in the industrialized world and represents a tremendous social and economic burden. As conventional therapies fail to provide a sustainable cure for most cancer patients, the emerging unique immune therapeutic approach of bacteria-mediated tumor therapy (BMTT) is marching towards a feasible solution. Although promising results have been obtained with BMTT using various preclinical tumor models, for advancement a major concern is immunity against the bacterial vector itself. Pre-exposure to the therapeutic agent under field conditions is a reasonable expectation and may limit the therapeutic efficacy of BMTT. In the present study, we investigated the therapeutic potential of Salmonella and E. coli vector strains in naïve and immunized tumor bearing mice. Pre-exposure to the therapeutic agent caused a significant aberrant phenotype of the microenvironment of colonized tumors and limited the in vivo efficacy of established BMTT vector strains Salmonella SL7207 and E. coli Symbioflor-2. Using targeted genetic engineering, we generated the optimized auxotrophic Salmonella vector strain SF200 (ΔlpxR9 ΔpagL7 ΔpagP8 ΔaroA ΔydiV ΔfliF) harboring modifications in Lipid A and flagella synthesis. This combination of mutations resulted in an increased immune-stimulatory capacity and as such the strain was able to overcome the efficacy-limiting effects of pre-exposure. Thus, we conclude that any limitations of BMTT concerning anti-bacterial immunity may be countered by strategies that optimize the immune-stimulatory capacity of the attenuated vector strains. PMID:29308303
Modulation of Immune Function by Polyphenols: Possible Contribution of Epigenetic Factors
Cuevas, Alejandro; Saavedra, Nicolás; Salazar, Luis A.; Abdalla, Dulcineia S. P.
2013-01-01
Several biological activities have been described for polyphenolic compounds, including a modulator effect on the immune system. The effects of these biologically active compounds on the immune system are associated to processes as differentiation and activation of immune cells. Among the mechanisms associated to immune regulation are epigenetic modifications as DNA methylation of regulatory sequences, histone modifications and posttranscriptional repression by microRNAs that influences the gene expression of key players involved in the immune response. Considering that polyphenols are able to regulate the immune function and has been also demonstrated an effect on epigenetic mechanisms, it is possible to hypothesize that there exists a mediator role of epigenetic mechanisms in the modulation of the immune response by polyphenols. PMID:23812304
Generating compact classifier systems using a simple artificial immune system.
Leung, Kevin; Cheong, France; Cheong, Christopher
2007-10-01
Current artificial immune system (AIS) classifiers have two major problems: 1) their populations of B-cells can grow to huge proportions, and 2) optimizing one B-cell (part of the classifier) at a time does not necessarily guarantee that the B-cell pool (the whole classifier) will be optimized. In this paper, the design of a new AIS algorithm and classifier system called simple AIS is described. It is different from traditional AIS classifiers in that it takes only one B-cell, instead of a B-cell pool, to represent the classifier. This approach ensures global optimization of the whole system, and in addition, no population control mechanism is needed. The classifier was tested on seven benchmark data sets using different classification techniques and was found to be very competitive when compared to other classifiers.
Tiller, Kathryn E.; Tessier, Peter M.
2017-01-01
The use of monoclonal antibodies as therapeutics requires optimizing several of their key attributes. These include binding affinity and specificity, folding stability, solubility, pharmacokinetics, effector functions, and compatibility with the attachment of additional antibody domains (bispecific antibodies) and cytotoxic drugs (antibody–drug conjugates). Addressing these and other challenges requires the use of systematic design methods that complement powerful immunization and in vitro screening methods. We review advances in designing the binding loops, scaffolds, domain interfaces, constant regions, post-translational and chemical modifications, and bispecific architectures of antibodies and fragments thereof to improve their bioactivity. We also highlight unmet challenges in antibody design that must be overcome to generate potent antibody therapeutics. PMID:26274600
Rejuvenating Strategies for Stem Cell-based Therapies in Aging
Neves, Joana; Sousa-Victor, Pedro; Jasper, Heinrich
2017-01-01
SUMMARY Recent advances in our understanding of tissue regeneration and the development of efficient approaches to induce and differentiate pluripotent stem cells for cell replacement therapies promise exciting avenues for treating degenerative age-related diseases. However, clinical studies and insights from model organisms have identified major roadblocks that normal aging processes impose on tissue regeneration. These new insights suggest that specific targeting of environmental niche components, including growth factors, ECM and immune cells, and intrinsic stem cell properties that are affected by aging will be critical for development of new strategies to improve stem cell function and optimize tissue repair processes. PMID:28157498
Synthetic biology approaches to engineer T cells.
Wu, Chia-Yung; Rupp, Levi J; Roybal, Kole T; Lim, Wendell A
2015-08-01
There is rapidly growing interest in learning how to engineer immune cells, such as T lymphocytes, because of the potential of these engineered cells to be used for therapeutic applications such as the recognition and killing of cancer cells. At the same time, our knowhow and capability to logically engineer cellular behavior is growing rapidly with the development of synthetic biology. Here we describe how synthetic biology approaches are being used to rationally alter the behavior of T cells to optimize them for therapeutic functions. We also describe future developments that will be important in order to construct safe and precise T cell therapeutics. Copyright © 2015 Elsevier Ltd. All rights reserved.
Immunotoxicological effects of JP-8 jet fuel exposure.
Harris, D T; Sakiestewa, D; Robledo, R F; Witten, M
1997-01-01
Chronic exposure to jet fuel has been shown to have adverse effects on human liver function, to cause emotional dysfunction, to cause abnormal electroencephalograms, to cause shortened attention spans, and to decrease sensorimotor speed (3-5). Due to the decision by the United States Air Force to implement the widespread use of JP-8 jet fuel in its operations, a thorough understanding of its potential effects upon exposed personnel is both critical and necessary. Exposure to potential environmental toxicants such as JP-8 may have significant effects on host systems beyond those readily visible (e.g., physiology, cardiology, respiratory, etc.); e.g., the immune system. Significant changes in immune consequences, even if short-lived, may have serious consequences for the exposed host that may impinge affect susceptibility to infectious agents. Major alterations in immune function that are long-lasting may result in an increased likelihood of development and/or progression of cancer, as well as autoimmune diseases. In the current study mice were exposed for 1h/day for 7 days to varying concentrations of aerosolized JP-8 jet fuel to simulate occupational exposures. Twenty-four hours after the last exposure the mice were analyzed for effects on their immune systems. It was observed that even at exposure concentrations as low as 100 mg/m3 detrimental effects on the immune system occurred. Decreases in viable immune cell numbers and immune organ weights were found. Jet fuel exposure resulted in losses of different immune cell subpopulations depending upon the immune organ being examined. Further, JP-8 exposure resulted in significantly decreased immune function, as analyzed by mitogenesis assays. Suppressed immune function could not be overcome by the addition of exogenous growth factors known to stimulate immune function. Thus, short-term, low concentration exposure of mice to JP-8 jet fuel caused significant toxicological effects on the immune system. It appears that the immune system may be the most sensitive indicator of toxicological damage due to JP-8 exposure, as effects were seen at concentrations of jet fuel that did not evidence change in other biological systems. Such changes may have significant effects on the health of the exposed individual.
Age-dependent trade-offs between immunity and male, but not female, reproduction.
McNamara, Kathryn B; van Lieshout, Emile; Jones, Therésa M; Simmons, Leigh W
2013-01-01
Immune function is costly and must be traded off against other life-history traits, such as gamete production. Studies of immune trade-offs typically focus on adult individuals, yet the juvenile stage can be a highly protracted period when reproductive resources are acquired and immune challenges are ubiquitous. Trade-offs during development are likely to be important, yet no studies have considered changes in adult responses to immune challenges imposed at different stages of juvenile development. By manipulating the timing of a bacterial immune challenge to the larvae of the cotton bollworm moth, we examined potential trade-offs between investment into immunity at different stages of juvenile development (early or late) and subsequent adult reproductive investment into sperm or egg production. Our data reveal an age-dependent trade-off between juvenile immune function and adult male reproductive investment. Activation of the immune response during late development resulted in a reduced allocation of resources to eupyrene (fertilizing) sperm production. Immune activation from the injection procedure itself (irrespective of whether individuals were injected with an immune elicitor or a control solution) also caused reproductive trade-offs; males injected early in development produced fewer apyrene (nonfertilizing) sperm. Contrary to many other studies, our study demonstrates these immune trade-offs under ad libitum nutritional conditions. No trade-offs were observed between female immune activation and adult reproductive investment. We suggest the differences in trade-offs observed between male sperm types and the absence of reproductive trade-offs in females may be the result of ontogenetic differences in gamete production in this species. Our data reveal developmental windows when trade-offs between immune function and gametic investment are made, and highlight the importance of considering multiple developmental periods when making inferences regarding the fundamental trade-offs expected between immune function and reproduction. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Ren, Chunli; Finkel, Steven E; Tower, John
2009-03-01
Immune function declines with age in Drosophila and humans, and autophagy is implicated in immune function. In addition, autophagy genes are required for life span extension caused by reduced insulin/IGF1-like signaling and dietary restriction in Caenorhabditiselegans. To test if the autophagy pathway might be limiting for immunity and/or life span in adult Drosophila, the Geneswitch system was used to cause conditional inactivation of the autophagy genes Atg5, Atg7 and Atg12 by RNAi. Conditional inhibition of Atg genes in adult flies reduced lysotracker staining of adult tissues, and reduced resistance to injected Escherichia coli, as evidenced by increased bacterial titers and reduced fly survival. However, survival of uninjected flies was unaffected by Atg gene inactivation. The data indicate that Atg gene activity is required for normal immune function in adult flies, and suggest that neither autophagy nor immune function are limiting for adult life span under typical laboratory conditions.
A Mechanistic Understanding of Allosteric Immune Escape Pathways in the HIV-1 Envelope Glycoprotein
Sethi, Anurag; Tian, Jianhui; Derdeyn, Cynthia A.; Korber, Bette; Gnanakaran, S.
2013-01-01
The HIV-1 envelope (Env) spike, which consists of a compact, heterodimeric trimer of the glycoproteins gp120 and gp41, is the target of neutralizing antibodies. However, the high mutation rate of HIV-1 and plasticity of Env facilitates viral evasion from neutralizing antibodies through various mechanisms. Mutations that are distant from the antibody binding site can lead to escape, probably by changing the conformation or dynamics of Env; however, these changes are difficult to identify and define mechanistically. Here we describe a network analysis-based approach to identify potential allosteric immune evasion mechanisms using three known HIV-1 Env gp120 protein structures from two different clades, B and C. First, correlation and principal component analyses of molecular dynamics (MD) simulations identified a high degree of long-distance coupled motions that exist between functionally distant regions within the intrinsic dynamics of the gp120 core, supporting the presence of long-distance communication in the protein. Then, by integrating MD simulations with network theory, we identified the optimal and suboptimal communication pathways and modules within the gp120 core. The results unveil both strain-dependent and -independent characteristics of the communication pathways in gp120. We show that within the context of three structurally homologous gp120 cores, the optimal pathway for communication is sequence sensitive, i.e. a suboptimal pathway in one strain becomes the optimal pathway in another strain. Yet the identification of conserved elements within these communication pathways, termed inter-modular hotspots, could present a new opportunity for immunogen design, as this could be an additional mechanism that HIV-1 uses to shield vulnerable antibody targets in Env that induce neutralizing antibody breadth. PMID:23696718
The Functional Impact of the Intestinal Microbiome on Mucosal Immunity and Systemic Autoimmunity
Longman, Randy S.; Littman, Dan R.
2016-01-01
Purpose of Review This review will highlight recent advances functionally linking the gut microbiome with mucosal and systemic immune cell activation potentially underlying autoimmunity. Recent Findings Dynamic interactions between the gut microbiome and environmental cues (including diet and medicines) shape the effector potential of the microbial organ. Key bacteria and viruses have emerged, that, in defined microenvironments, play a critical role in regulating effector lymphocyte functions. The coordinated interactions between these different microbial kingdoms—including bacteria, helminths, and viruses (termed transkingdom interactions)—play a critical role in shaping immunity. Emerging strategies to identify immunologically-relevant microbes with the potential to regulate immune cell functions both at mucosal sites and systemically will likely define key diagnostic and therapeutic targets. Summary The microbiome constitutes a critical microbial organ with coordinated interactions that shape host immunity. PMID:26002030
Xu, Zhijing; Zu, Zhenghu; Zheng, Tao; Zhang, Wendou; Xu, Qing; Liu, Jinjie
2014-01-01
The high incidence of emerging infectious diseases has highlighted the importance of effective immunization strategies, especially the stochastic algorithms based on local available network information. Present stochastic strategies are mainly evaluated based on classical network models, such as scale-free networks and small-world networks, and thus are insufficient. Three frequently referred stochastic immunization strategies-acquaintance immunization, community-bridge immunization, and ring vaccination-were analyzed in this work. The optimal immunization ratios for acquaintance immunization and community-bridge immunization strategies were investigated, and the effectiveness of these three strategies in controlling the spreading of epidemics were analyzed based on realistic social contact networks. The results show all the strategies have decreased the coverage of the epidemics compared to baseline scenario (no control measures). However the effectiveness of acquaintance immunization and community-bridge immunization are very limited, with acquaintance immunization slightly outperforming community-bridge immunization. Ring vaccination significantly outperforms acquaintance immunization and community-bridge immunization, and the sensitivity analysis shows it could be applied to controlling the epidemics with a wide infectivity spectrum. The effectiveness of several classical stochastic immunization strategies was evaluated based on realistic contact networks for the first time in this study. These results could have important significance for epidemic control research and practice.
Diotallevi, Marina; Checconi, Paola; Palamara, Anna Teresa; Celestino, Ignacio; Coppo, Lucia; Holmgren, Arne; Abbas, Kahina; Peyrot, Fabienne; Mengozzi, Manuela; Ghezzi, Pietro
2017-01-01
Glutathione (GSH), a major cellular antioxidant, is considered an inhibitor of the inflammatory response involving reactive oxygen species (ROS). However, evidence is largely based on experiments with exogenously added antioxidants/reducing agents or pro-oxidants. We show that depleting macrophages of 99% of GSH does not exacerbate the inflammatory gene expression profile in the RAW264 macrophage cell line or increase expression of inflammatory cytokines in response to the toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS); only two small patterns of LPS-induced genes were sensitive to GSH depletion. One group, mapping to innate immunity and antiviral responses (Oas2, Oas3, Mx2, Irf7, Irf9, STAT1, il1b), required GSH for optimal induction. Consequently, GSH depletion prevented the LPS-induced activation of antiviral response and its inhibition of influenza virus infection. LPS induction of a second group of genes (Prdx1, Srxn1, Hmox1, GSH synthase, cysteine transporters), mapping to nrf2 and the oxidative stress response, was increased by GSH depletion. We conclude that the main function of endogenous GSH is not to limit inflammation but to fine-tune the innate immune response to infection. PMID:29033950
General and Virus-Specific Immune Cell Reconstitution Following Double Cord Blood Transplantation
Saliba, Rima M.; Rezvani, Katayoun; Leen, Ann; Jorgensen, Jeffrey; Shah, Nina; Hosing, Chitra; Parmar, Simrit; Oran, Betul; Olson, Amanda; Mehta, Rohtesh S.; Chemaly, Roy F.; Saunders, Ila M.; Bollard, Catherine M.; Shpall, Elizabeth J.
2015-01-01
Cord blood transplantation (CBT) is curative for many patients with hematologic malignancies but is associated with delayed immune recovery and an increased risk of viral infections compared to human leukocyte antigen (HLA) matched bone marrow or peripheral blood progenitor cell transplantation. In this study we evaluated the significance of lymphocyte recovery in 125 consecutive patients with hematologic malignancies who underwent double-unit CBT (DUCBT) with an anti-thymocyte globulin-containing regimen at our institution. A subset of 65 patients were prospectively evaluated for recovery of T, natural killer (NK) and B cells and in 46 patients we also examined viral-specific T cell recovery against Adenovirus, Epstein-Barr virus, cytomegalovirus, BK virus, respiratory syncytial virus and Influenza antigen. Our results indicate that in recipients of DUCBT, the day 30 absolute lymphocyte count is highly predictive of non-relapse mortality (NRM) and overall survival (OS). Immune recovery post-DUCBT was characterized by prolonged CD8+ and CD4+ T lymphopenia associated with preferential expansion of B and NK cells. We also observed profound delays in quantitative and functional recovery of viral-specific CD4+ and CD8+ T-cell responses for the first year post-CBT. Taken together, our data support efforts aimed at optimizing viral-specific T cell recovery to improve outcomes post-CBT. PMID:25708219
An NKG2D-mediated human lymphoid stress-surveillance response with high inter-individual variation*
Wallace, Graham; Antoun, Ayman; Vaughan, Robert; Stanford, Miles; Hayday, Adrian
2014-01-01
Microbes and viruses provoke immune responses because certain of their molecular determinants engage and activate dendritic cells (DC). However, evidence is growing for lymphocyte activation by tissue dysregulation. Thus, murine γδ T cells and NK cells can respond rapidly in vivo to Major Histocompatibility Complex (MHC) class I–related “stress-antigens” displayed by cells experiencing DNA damage and/or other physico-chemical stress. Such “lymphoid stress-surveillance” (LSS) can limit tumor formation, but may also promote immunopathology. MICA is a highly polymorphic human stress-antigen implicated in tumor-surveillance, inflammation, and transplant rejection. However, neither the generality of LSS in humans, nor a functional context for MICA polymorphism has been established. Here we show that MICA coding-sequence polymorphisms substantially affect RNA and protein expression. All donors tested showed LSS responses of γδ T and NK cells, but unexpectedly each was individually “tuned”. Hence, some responded optimally to high MICA expression, while others responded better to poorly-expressed MICA alleles, challenging the orthodoxy that higher stress-antigen levels promote greater responsiveness. The routine clinical monitoring of individual tuning should provide practical insight into individual variation in tumor immune-surveillance, transplant rejection and inflammation, and introduce new perspectives on immuno-evasion and immune-suppression in these scenarios. PMID:22133594
Anders, Sherry; Kinney, Dennis K
2015-08-18
Extensive research implicates disturbed immune function and development in the etiology and pathology of schizophrenia. In addition to reviewing evidence for immunological factors in schizophrenia, this paper discusses how an emerging model of atypical immune function and development helps explain a wide variety of well-established - but puzzling - findings about schizophrenia. A number of theorists have presented hypotheses that early immune system programming, disrupted by pre- and perinatal adversity, often combines with abnormal brain development to produce schizophrenia. The present paper focuses on the hypothesis that disruption of early immune system development produces a latent immune vulnerability that manifests more fully after puberty, when changes in immune function and the thymus leave individuals more susceptible to infections and immune dysfunctions that contribute to schizophrenia. Complementing neurodevelopmental models, this hypothesis integrates findings on many contributing factors to schizophrenia, including prenatal adversity, genes, climate, migration, infections, and stress, among others. It helps explain, for example, why (a) schizophrenia onset is typically delayed until years after prenatal adversity, (b) individual risk factors alone often do not lead to schizophrenia, and (c) schizophrenia prevalence rates actually tend to be higher in economically advantaged countries. Here we discuss how the hypothesis explains 10 key findings, and suggests new, potentially highly cost-effective, strategies for treatment and prevention of schizophrenia. Moreover, while most human research linking immune factors to schizophrenia has been correlational, these strategies provide ethical ways to experimentally test in humans theories about immune function and schizophrenia. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease. Copyright © 2015 Elsevier B.V. All rights reserved.
Riether, Carsten; Doenlen, Raphaël; Pacheco-López, Gustavo; Niemi, Maj-Britt; Engler, Andrea; Engler, Harald; Schedlowski, Manfred
2008-01-01
During the last 30 years of psychoneuroimmunology research the intense bi-directional communication between the central nervous system (CNS) and the immune system has been demonstrated in studies on the interaction between the nervous-endocrine-immune systems. One of the most intriguing examples of such interaction is the capability of the CNS to associate an immune status with specific environmental stimuli. In this review, we systematically summarize experimental evidence demonstrating the behavioural conditioning of peripheral immune functions. In particular, we focus on the mechanisms underlying the behavioural conditioning process and provide a theoretical framework that indicates the potential feasibility of behaviourally conditioned immune changes in clinical situations.
Ginaldi, Lia; De Martinis, Massimo
2016-01-01
Abstract: Objective Osteoimmunology investigates interactions between skeleton and immune system. In the light of recent discoveries in this field, a new reading register of osteoporosis is actually emerging, in which bone and immune cells are strictly interconnected. Osteoporosis could therefore be considered a chronic immune mediated disease which shares with other age related disorders a common inflammatory background. Here, we highlight these recent discoveries and the new landscape that is emerging. Method Extensive literature search in PubMed central. Results While the inflammatory nature of osteoporosis has been clearly recognized, other interesting aspects of osteoimmunology are currently emerging. In addition, mounting evidence indicates that the immunoskeletal interface is involved in the regulation of important body functions beyond bone remodeling. Bone cells take part with cells of the immune system in various immunological functions, configuring a real expanded immune system, and are therefore variously involved not only as target but also as main actors in various pathological conditions affecting primarily the immune system, such as autoimmunity and immune deficiencies, as well as in aging, menopause and other diseases sharing an inflammatory background. Conclusion The review highlights the complexity of interwoven pathways and shared mechanisms of the crosstalk between the immune and bone systems. More interestingly, the interdisciplinary field of osteoimmunology is now expanding beyond bone and immune cells, defining new homeostatic networks in which other organs and systems are functionally interconnected. Therefore, the correct skeletal integrity maintenance may be also relevant to other functions outside its involvement in bone mineral homeostasis, hemopoiesis and immunity. PMID:27604089
Minet, V; Baudar, J; Bailly, N; Douxfils, J; Laloy, J; Lessire, S; Gourdin, M; Devalet, B; Chatelain, B; Dogné, J M; Mullier, F
2014-06-01
Accurate diagnosis of heparin-induced thrombocytopenia (HIT) is essential but remains challenging. We have previously demonstrated, in a retrospective study, the usefulness of the combination of the 4Ts score, AcuStar HIT and heparin-induced multiple electrode aggregometry (HIMEA) with optimized thresholds. We aimed at exploring prospectively the performances of our optimized diagnostic algorithm on suspected HIT patients. The secondary objective is to evaluate performances of AcuStar HIT-Ab (PF4-H) in comparison with the clinical outcome. 116 inpatients with clinically suspected immune HIT were included. Our optimized diagnostic algorithm was applied to each patient. Sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV) of the overall diagnostic strategy as well as AcuStar HIT-Ab (at manufacturer's thresholds and at our thresholds) were calculated using clinical diagnosis as the reference. Among 116 patients, 2 patients had clinically-diagnosed HIT. These 2 patients were positive on AcuStar HIT-Ab, AcuStar HIT-IgG and HIMEA. Using our optimized algorithm, all patients were correctly diagnosed. AcuStar HIT-Ab at our cut-off (>9.41 U/mL) and at manufacturer's cut-off (>1.00 U/mL) showed both a sensitivity of 100.0% and a specificity of 99.1% and 90.4%, respectively. The combination of the 4Ts score, the HemosIL® AcuStar HIT and HIMEA with optimized thresholds may be useful for the rapid and accurate exclusion of the diagnosis of immune HIT. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cytokines in Drosophila immunity.
Vanha-Aho, Leena-Maija; Valanne, Susanna; Rämet, Mika
2016-02-01
Cytokines are a large and diverse group of small proteins that can affect many biological processes, but most commonly cytokines are known as mediators of the immune response. In the event of an infection, cytokines are produced in response to an immune stimulus, and they function as key regulators of the immune response. Cytokines come in many shapes and sizes, and although they vary greatly in structure, their functions have been well conserved in evolution. The immune signaling pathways that respond to cytokines are remarkably conserved from fly to man. Therefore, Drosophila melanogaster, provides an excellent platform for studying the biology and function of cytokines. In this review, we will describe the cytokines and cytokine-like molecules found in the fly and discuss their roles in host immunity. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
The zinc pool is involved in the immune-reconstituting effect of melatonin in pinealectomized mice.
Mocchegiani, E; Bulian, D; Santarelli, L; Tibaldi, A; Muzzioli, M; Lesnikov, V; Pierpaoli, W; Fabris, N
1996-06-01
Melatonin (MEL) affects the immune system by direct or indirect mechanisms. An involvement of the zinc pool in the immune-reconstituting effect of MEL in old mice has recently been documented. An altered zinc turnover and impaired immune functions are also evident in pinealectomized (px) mice. The present work investigates further the effect of "physiological" doses of MEL on the zinc pool and on thymic and peripheral immune functions in px mice. Daily injections of MEL (100 micrograms/mouse) for 1 month in px mice restored the crude zinc balance from negative to positive values. Thymic and peripheral immune functions, including plasma levels of interleukin-2, also recovered. The nontoxic effect of MEL on immune functions was observed in sham-operated mice. Because the half-life of MEL is very short (12 min), interruption of MEL treatment in px mice resulted, after 1 month, in a renewed negative crude zinc balance and a regression of immune functions. Both the zinc pool and immunological parameters were restored by 30 further days of MEL treatment. The existence of a significant correlation between zinc and thymic hormone after both cycles of MEL treatment clearly shows an involvement of the zinc pool in the immunoenhancing effects of MEL and thus suggests an inter-relationship between zinc and MEL in px mice. Moreover, the existence of significant positive correlations between zinc or thymulin and interleukin-2 suggests that interleukin-2 may participate in the action of MEL, via zinc, on thymic functions in px MEL-treated mice.
Dynamic two-photon imaging of the immune response to Toxoplasma gondii infection.
Luu, L; Coombes, J L
2015-03-01
Toxoplasma gondii is a highly successful parasite that can manipulate host immune responses to optimize its persistence and spread. As a result, a highly complex relationship exists between T. gondii and the immune system of the host. Advances in imaging techniques, and in particular, the application of two-photon microscopy to mouse infection models, have made it possible to directly visualize interactions between parasites and the host immune system as they occur in living tissues. Here, we will discuss how dynamic imaging techniques have provided unexpected new insight into (i) how immune responses are dynamically regulated by cells and structures in the local tissue environment, (ii) how protective responses to T. gondii are generated and (iii) how the parasite exploits the immune system for its own benefit. © 2014 John Wiley & Sons Ltd.
2016-01-01
Photodynamic therapy (PDT) is a minimally invasive therapeutic strategy for cancer treatment, which can destroy local tumor cells and induce systemic antitumor immune response, whereas, focusing on improving direct cytotoxicity to tumor cells treated by PDT, there is growing interest in developing approaches to further explore the immune stimulatory properties of PDT. In this review we summarize the current knowledge of the innate and adaptive immune responses induced by PDT against tumors, providing evidence showing PDT facilitated-antitumor immunity. Various immunotherapeutic approaches on different cells are reviewed for their effectiveness in improving the treatment efficiency in concert with PDT. Future perspectives are discussed for further enhancing PDT efficiency via intracellular targetable drug delivery as well as optimized experimental model development associated with the study of antitumor immune response. PMID:27672421
Fighting cancers from within: augmenting tumor immunity with cytokine therapy.
Pellegrini, Marc; Mak, Tak W; Ohashi, Pamela S
2010-08-01
The human immune system has successfully evolved to fight many pathogens. Through vaccination, we can harness and improve immune responses to eradicate infections. Despite this success, we are only now beginning to understand the natural tumor immune surveillance mechanisms and why, in some instances, our immune system fails to abrogate the development and growth of tumors. Encouraging results with the latest immunotherapies have renewed enthusiasm in the field. A central component of these therapies is the contribution of cytokines. Here we review our expanding knowledge of cytokine-induced effects as well as preclinical and clinical data that indicate adjuvant cytokine therapies may hold much promise in improving anti-tumor immunity. Further studies on optimal synergistic combinations, timing, duration and additional adjuvant therapies are required to realize the full potential of cytokines as immunotherapeutic agents. 2010 Elsevier Ltd. All rights reserved.
Positive regulation of plasmacytoid dendritic cell function via Ly49Q recognition of class I MHC
Tai, Lee-Hwa; Goulet, Marie-Line; Belanger, Simon; Toyama-Sorimachi, Noriko; Fodil-Cornu, Nassima; Vidal, Silvia M.; Troke, Angela D.; McVicar, Daniel W.; Makrigiannis, Andrew P.
2008-01-01
Plasmacytoid dendritic cells (pDCs) are an important source of type I interferon (IFN) during initial immune responses to viral infections. In mice, pDCs are uniquely characterized by high-level expression of Ly49Q, a C-type lectin-like receptor specific for class I major histocompatibility complex (MHC) molecules. Despite having a cytoplasmic immunoreceptor tyrosine-based inhibitory motif, Ly49Q was found to enhance pDC function in vitro, as pDC cytokine production in response to the Toll-like receptor (TLR) 9 agonist CpG-oligonucleotide (ODN) could be blocked using soluble monoclonal antibody (mAb) to Ly49Q or H-2Kb. Conversely, CpG-ODN–dependent IFN-α production by pDCs was greatly augmented upon receptor cross-linking using immobilized anti-Ly49Q mAb or recombinant H-2Kb ligand. Accordingly, Ly49Q-deficient pDCs displayed a severely reduced capacity to produce cytokines in response to TLR7 and TLR9 stimulation both in vitro and in vivo. Finally, TLR9-dependent antiviral responses were compromised in Ly49Q-null mice infected with mouse cytomegalovirus. Thus, class I MHC recognition by Ly49Q on pDCs is necessary for optimal activation of innate immune responses in vivo. PMID:19075287
Nguyen-Pham, Thanh-Nhan; Yang, Deok-Hwan; Nguyen, Truc-Anh Thi; Lim, Mi-Seon; Hong, Cheol Yi; Kim, Mi-Hyun; Lee, Hyun Ju; Lee, Youn-Kyung; Cho, Duck; Bae, Soo-Young; Ahn, Jae-Sook; Kim, Yeo-Kyeoung; Chung, Ik-Joo; Kim, Hyeoung-Joon; Lee, Je-Jung
2012-01-01
Dendritic cell (DC)-based vaccines continue to be considered an attractive tool for cancer immunotherapy. DCs require an additional signal from the environment or other immune cells to polarize the development of immune responses toward T helper 1 (Th1) or Th2 responses. DCs play a role in natural killer (NK) cell activation, and NK cells are also able to activate and induce the maturation of DCs. We investigated the types of NK cells that can induce the maturation and enhanced function of DCs and the conditions under which these interactions occur. DCs that were activated by resting NK cells in the presence of inflammatory cytokines exhibited increased expression of several costimulatory molecules and an enhanced ability to produce IL-12p70. NK cell-stimulated DCs potently induced Th1 polarization and exhibited the ability to generate tumor antigen-specific cytotoxic T lymphocyte responses. Our data demonstrate that functional DCs can be generated by coculturing immature DCs with freshly isolated resting NK cells in the presence of Toll-like receptor agonists and proinflammatory cytokines and that the resulting DCs effectively present antigens to induce tumor-specific T-cell responses, which suggests that these cells may be useful for cancer immunotherapy.
[Advances in the research of effects of glutamine on immune function of burn patients].
Liu, Y H; Guo, P F; Chen, G Y; Bo, Y C; Ma, Y; Cui, Z J
2018-04-20
Glutamine is the most abundant amino acid found in plasma and cells. It is the preferred fuel for enterocytes in the small intestine, macrophages, and lymphocytes. After serious burn, increased requirement of glutamine by the gastrointestinal tract, kidney and lymphocytes, and relatively insufficient self synthesis likely contribute to the rapid decline of glutamine in circulation and cells. Glutamine supplementation can not only protect intestinal mucosa, maintain normal intestinal barrier function, reduce bacterial translocation, and enhance the intestinal immune function, but also increase the number of lymphocytes, enhance the phagocytic function of macrophage, promote the synthesis of immunoglobulin, and reduce the body's inflammatory response, so as to enhance the immune function. Therefore, glutamine supplementation can improve and enhance the immune function, reduce complications and promote the prognosis of severely burned patients.
Cancer Clonal Theory, Immune Escape, and Their Evolving Roles in Cancer Multi-Agent Therapeutics.
Messerschmidt, Jonathan L; Bhattacharya, Prianka; Messerschmidt, Gerald L
2017-08-12
The knowledge base of malignant cell growth and resulting targets is rapidly increasing every day. Clonal theory is essential to understand the changes required for a cell to become malignant. These changes are then clues to therapeutic intervention strategies. Immune system optimization is a critical piece to find, recognize, and eliminate all cancer cells from the host. Only by administering (1) multiple therapies that counteract the cancer cell's mutational and externally induced survival traits and (2) by augmenting the immune system to combat immune suppression processes and by enhancing specific tumor trait recognition can cancer begin to be treated with a truly targeted focus. Since the sequencing of the human genome during the 1990s, steady progress in understanding genetic alterations and gene product functions are being unraveled. In cancer, this is proceeding very fast and demonstrates that genetic mutations occur very rapidly to allow for selection of survival traits within various cancer clones. Hundreds of mutations have been identified in single individual cancers, but spread across many clones in the patient's body. Precision oncology will require accurate measurement of these cancer survival-benefiting mutations to develop strategies for effective therapy. Inhibiting these cellular mechanisms is a first step, but these malignant cells need to be eliminated by the host's mechanisms, which we are learning to direct more specifically. Cancer is one of the most complicated cellular aberrations humans have encountered. Rapidly developing significant survival traits require prompt, repeated, and total body measurements of these attributes to effectively develop multi-agent treatment of the individual's malignancy. Focused drug development to inhibit these beneficial mutations is critical to slowing cancer cell growth and, perhaps, triggering apoptosis. In many cases, activation and targeting of the immune system to kill the remaining malignant cells is essential to a cure.
Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells.
Van Acker, Heleen H; Beretta, Ottavio; Anguille, Sébastien; De Caluwé, Lien; Papagna, Angela; Van den Bergh, Johan M; Willemen, Yannick; Goossens, Herman; Berneman, Zwi N; Van Tendeloo, Viggo F; Smits, Evelien L; Foti, Maria; Lion, Eva
2017-02-21
Success of dendritic cell (DC) therapy in treating malignancies is depending on the DC capacity to attract immune effector cells, considering their reciprocal crosstalk is partially regulated by cell-contact-dependent mechanisms. Although critical for therapeutic efficacy, immune cell recruitment is a largely overlooked aspect regarding optimization of DC vaccination. In this paper we have made a head-to-head comparison of interleukin (IL)-15-cultured DCs and conventional IL-4-cultured DCs with regard to their proficiency in the recruitment of (innate) immune effector cells. Here, we demonstrate that IL-4 DCs are suboptimal in attracting effector lymphocytes, while IL15 DCs provide a favorable chemokine milieu for recruiting CD8+ T cells, natural killer (NK) cells and gamma delta (γδ) T cells. Gene expression analysis revealed that IL-15 DCs exhibit a high expression of chemokines involved in antitumor immune effector cell attraction, while IL-4 DCs display a more immunoregulatory profile characterized by the expression of Th2 and regulatory T cell-attracting chemokines. This is confirmed by functional data indicating an enhanced recruitment of granzyme B+ effector lymphocytes by IL-15 DCs, as compared to IL-4 DCs, and subsequent superior killing of tumor cells by the migrated lymphocytes. Elevated CCL4 gene expression in IL-15 DCs and lowered CCR5 expression on both migrated γδ T cells and NK cells, led to validation of increased CCL4 secretion by IL15 DCs. Moreover, neutralization of CCR5 prior to migration resulted in an important inhibition of γδ T cell and NK cell recruitment by IL-15 DCs. These findings further underscore the strong immunotherapeutic potential of IL-15 DCs.
Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation.
Koymans, Kirsten J; Vrieling, Manouk; Gorham, Ronald D; van Strijp, Jos A G
2017-01-01
Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.
Gamma-delta (γδ) T cells: friend or foe in cancer development?
Zhao, Yijing; Niu, Chao; Cui, Jiuwei
2018-01-10
γδ T cells are a distinct subgroup of T cells containing T cell receptors (TCRs) γ and TCR δ chains with diverse structural and functional heterogeneity. As a bridge between the innate and adaptive immune systems, γδ T cells participate in various immune responses during cancer progression. Because of their direct/indirect antitumor cytotoxicity and strong cytokine production ability, the use of γδ T cells in cancer immunotherapy has received a lot of attention over the past decade. Despite the promising potential of γδ T cells, the efficacy of γδ T cell immunotherapy is limited, with an average response ratio of only 21%. In addition, research over the past 2 years has shown that γδ T cells could also promote cancer progression by inhibiting antitumor responses, and enhancing cancer angiogenesis. As a result, γδ T cells have a dual effect and can therefore be considered as being both "friends" and "foes" of cancer. In order to solve the sub-optimal efficiency problem of γδ T cell immunotherapy, we review recent observations regarding the antitumor and protumor activities of major structural and functional subsets of human γδ T cells, describing how these subsets are activated and polarized, and how these events relate to subsequent effects in cancer immunity. A mixture of both antitumor or protumor γδ T cells used in adoptive immunotherapy, coupled with the fact that γδ T cells can be polarized from antitumor cells to protumor cells appear to be the likely reasons for the mild efficacy seen with γδ T cells. The future holds the promise of depleting the specific protumor γδ T cell subgroup before therapy, choosing multi-immunocyte adoptive therapy, modifying the cytokine balance in the cancer microenvironment, and using a combination of γδ T cells adoptive immunotherapy with immune checkpoint inhibitors.
Jayaraman, Padmini; Alfarano, Matthew G; Svider, Peter F; Parikh, Falguni; Lu, Geming; Kidwai, Sarah; Xiong, Huabao; Sikora, Andrew G
2014-12-15
Expression of inducible nitric oxide synthase (iNOS) in different cellular compartments may have divergent effects on immune function. We used a syngeneic tumor model to functionally characterize the role of iNOS in regulation of CD4(+)FOXP3(+) regulatory T cells (Treg), and optimize the beneficial effects of iNOS inhibition on antitumor immunity. Wild-type (WT) or iNOS knockout mice bearing established MT-RET-1 melanoma were treated with the small-molecule iNOS inhibitor L-NIL and/or cyclophosphamide alone or in combination. The effect of iNOS inhibition or knockout on induction of Treg from mouse and human CD4(+) T cells in ex vivo culture was determined in parallel in the presence or absence of TGFβ1-depleting antibodies, and TGFβ1 levels were assessed by ELISA. Whereas intratumoral myeloid-derived suppressor cells (MDSC) were suppressed by iNOS inhibition or knockout, systemic and intratumoral FOXP3(+) Treg levels increased in tumor-bearing mice. iNOS inhibition or knockout similarly enhanced induction of Treg from activated cultured mouse splenocytes or purified human or mouse CD4(+) T cells in a TGFβ1-dependent manner. Although either iNOS inhibition or Treg depletion with low-dose cyclophosphamide alone had little effect on growth of established MT-RET1 melanoma, combination treatment potently inhibited MDSC and Treg, boosted tumor-infiltrating CD8(+) T-cell levels, and arrested tumor growth in an immune-dependent fashion. iNOS expression in CD4(+) T cells suppresses Treg induction by inhibiting TGFβ1 production. Our data suggest that iNOS expression has divergent effects on induction of myeloid and lymphoid-derived regulatory populations, and strongly support development of combinatorial treatment approaches that target these populations simultaneously. ©2014 American Association for Cancer Research.
Molecular control of steady-state dendritic cell maturation and immune homeostasis.
Hammer, Gianna Elena; Ma, Averil
2013-01-01
Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.
Martin, Thomas E.; Arriero, Elena; Majewska, Ania
2011-01-01
Long embryonic periods are assumed to reflect slower intrinsic development that are thought to trade off to allow enhanced physiological systems, such as immune function. Yet, the relatively rare studies of this trade-off in avian offspring have not found the expected trade-off. Theory and tests have not taken into account the strong extrinsic effects of temperature on embryonic periods of birds. Here, we show that length of the embryonic period did not explain variation in two measures of immune function when temperature was ignored, based on studies of 34 Passerine species in tropical Venezuela (23 species) and north temperate Arizona (11 species). Variation in immune function was explained when embryonic periods were corrected for average embryonic temperature, in order to better estimate intrinsic rates of development. Immune function of offspring trades off with intrinsic rates of embryonic development once the extrinsic effects of embryonic temperatures are taken into account.
Does Exercise Alter Immune Function and Respiratory Infections?
ERIC Educational Resources Information Center
Nieman, David C.
2001-01-01
This paper examines whether physical activity influences immune function as a consequence risk of infection from the common cold and other upper respiratory tract infections (URTI) and whether the immune system responds differently to moderate versus intense physical exertion. Research indicates that people who participate in regular moderate…
Ageing and the immune system: focus on macrophages.
Linehan, E; Fitzgerald, D C
2015-03-01
A fully functioning immune system is essential in order to maintain good health. However, the immune system deteriorates with advancing age, and this contributes to increased susceptibility to infection, autoimmunity, and cancer in the older population. Progress has been made in identifying age-related defects in the adaptive immune system. In contrast, relatively little research has been carried out on the impact of ageing on the innate immune response. This area requires further research as the innate immune system plays a crucial role in protection against infection and represents a first line of defence. Macrophages are central effector cells of the innate immune system and have many diverse functions. As a result, age-related impairments in macrophage function are likely to have important consequences for the health of the older population. It has been reported that ageing in macrophages impacts on many processes including toll-like receptor signalling, polarisation, phagocytosis, and wound repair. A detailed understanding of the impact of ageing on macrophages is required in order to develop therapeutics that will boost immune responses in the older population.
Garay, Paula A.; McAllister, A. Kimberley
2010-01-01
Although the brain has classically been considered “immune-privileged”, current research suggests an extensive communication between the immune and nervous systems in both health and disease. Recent studies demonstrate that immune molecules are present at the right place and time to modulate the development and function of the healthy and diseased central nervous system (CNS). Indeed, immune molecules play integral roles in the CNS throughout neural development, including affecting neurogenesis, neuronal migration, axon guidance, synapse formation, activity-dependent refinement of circuits, and synaptic plasticity. Moreover, the roles of individual immune molecules in the nervous system may change over development. This review focuses on the effects of immune molecules on neuronal connections in the mammalian central nervous system – specifically the roles for MHCI and its receptors, complement, and cytokines on the function, refinement, and plasticity of geniculate, cortical and hippocampal synapses, and their relationship to neurodevelopmental disorders. These functions for immune molecules during neural development suggest that they could also mediate pathological responses to chronic elevations of cytokines in neurodevelopmental disorders, including autism spectrum disorders (ASD) and schizophrenia. PMID:21423522
Toskala, Elina
2014-09-01
Knowledge of our immune system functions is critical for understanding allergic airway disease development as well as for selection of appropriate diagnostic and therapeutic options for patients with respiratory allergies. This review explains the current understanding of the basic immunology of the upper airways and the pathophysiology of allergic responses, including the mechanisms behind allergic rhinitis. The immune system can be divided to 2 main defense systems that function differently-innate immunity and adaptive immunity. Innate immunity includes several defensive mechanisms such as anatomic or physical barriers, physiological barriers, phagocytosis, and inflammation. The adaptive immune response is activated in an antigen-specific way to provide for the elimination of antigen and induce lasting protection. Hypersensitivity reactions occur when an exaggerated adaptive immune response is activated. Allergic rhinitis is an example of a type I, immunoglobulin E, mediated hypersensitivity reaction. Today we have several immunomodulatory treatment options for patients with allergic airway diseases, such as subcutaneous and sublingual immunotherapy. An understanding of the basics of our immune system and its method of functions is key for using these therapies appropriately. © 2014 ARS-AAOA, LLC.
Innate immune reconstitution with suppression of HIV-1.
Scully, Eileen P; Lockhart, Ainsley; Garcia-Beltran, Wilfredo; Palmer, Christine D; Musante, Chelsey; Rosenberg, Eric; Allen, Todd M; Chang, J Judy; Bosch, Ronald J; Altfeld, Marcus
2016-03-17
Progressive HIV-1 infection leads to both profound immune suppression and pathologic inflammation in the majority of infected individuals. While adaptive immune dysfunction, as evidenced by CD4 + T cell depletion and exhaustion, has been extensively studied, less is known about the functional capacity of innate immune cell populations in the context of HIV-1 infection. Given the broad susceptibility to opportunistic infections and the dysregulated inflammation observed in progressive disease, we hypothesized that there would be significant changes in the innate cellular responses. Using a cohort of patients with multiple samplings before and after antiretroviral therapy (ART) initiation, we demonstrated increased responses to innate immune stimuli following viral suppression, as measured by the production of inflammatory cytokines. Plasma viral load itself had the strongest association with this change in innate functional capacity. We further identified epigenetic modifications in the TNFA promoter locus in monocytes that are associated with viremia, suggesting a molecular mechanism for the observed changes in innate immune function following initiation of ART. These data indicate that suppression of HIV-1 viremia is associated with changes in innate cellular function that may in part determine the restoration of protective immune responses.
Innate immune reconstitution with suppression of HIV-1
Scully, Eileen P.; Garcia-Beltran, Wilfredo; Palmer, Christine D.; Musante, Chelsey; Rosenberg, Eric; Allen, Todd M.; Bosch, Ronald J.
2016-01-01
Progressive HIV-1 infection leads to both profound immune suppression and pathologic inflammation in the majority of infected individuals. While adaptive immune dysfunction, as evidenced by CD4+ T cell depletion and exhaustion, has been extensively studied, less is known about the functional capacity of innate immune cell populations in the context of HIV-1 infection. Given the broad susceptibility to opportunistic infections and the dysregulated inflammation observed in progressive disease, we hypothesized that there would be significant changes in the innate cellular responses. Using a cohort of patients with multiple samplings before and after antiretroviral therapy (ART) initiation, we demonstrated increased responses to innate immune stimuli following viral suppression, as measured by the production of inflammatory cytokines. Plasma viral load itself had the strongest association with this change in innate functional capacity. We further identified epigenetic modifications in the TNFA promoter locus in monocytes that are associated with viremia, suggesting a molecular mechanism for the observed changes in innate immune function following initiation of ART. These data indicate that suppression of HIV-1 viremia is associated with changes in innate cellular function that may in part determine the restoration of protective immune responses. PMID:27158667
[Relationships between venomous function and innate immune function].
Goyffon, Max; Saul, Frederick; Faure, Grazyna
2015-01-01
Venomous function is investigated in relation to innate immune function in two cases selected from scorpion venom and serpent venom. In the first case, structural analysis of scorpion toxins and defensins reveals a close interrelation between both functions (toxic and innate immune system function). In the second case, structural and functional studies of natural inhibitors of toxic snake venom phospholipases A2 reveal homology with components of the innate immune system, leading to a similar conclusion. Although there is a clear functional distinction between neurotoxins, which act by targeting membrane ion channels, and the circulating defensins which protect the organism from pathogens, the scorpion short toxins and defensins share a common protein folding scaffold with a conserved cysteine-stabilized alpha-beta motif of three disulfide bridges linking a short alpha helix and an antiparallel beta sheet. Genomic analysis suggests that these proteins share a common ancestor (long venom toxins were separated from an early gene family which gave rise to separate short toxin and defensin families). Furthermore, a scorpion toxin has been experimentally synthetized from an insect defensin, and an antibacterial scorpion peptide, androctonin (whose structure is similar to that of a cone snail venom toxin), was shown to have a similar high affinity for the postsynaptic acetylcholine receptor of Torpedo sp. Natural inhibitors of phospholipase A2 found in the blood of snakes are associated with the resistance of venomous snakes to their own highly neurotoxic venom proteins. Three classes of phospholipases A2 inhibitors (PLI-α, PLI-β, PLI-γ) have been identified. These inhibitors display diverse structural motifs related to innate immune proteins including carbohydrate recognition domains (CRD), leucine rich repeat domains (found in Toll-like receptors) and three finger domains, which clearly differentiate them from components of the adaptive immune system. Thus, in structure, function and phylogeny, venomous function in both vertebrates and invertebrates are clearly interrelated with innate immune function. © Société de Biologie, 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorka, K. M.; Copeland, E. K.; Winterhalter, W. E.
To improve thermoregulation in colder environments, insects are expected to darken their cuticles with melanin via the phenoloxidase cascade, a phenomenon predicted by the thermal melanin hypothesis. However, the phenoloxidase cascade also plays a significant role in insect immunity, leading to the additional hypothesis that the thermal environment indirectly shapes immune function via direct selection on cuticle color. Support for the latter hypothesis comes from the cricket Allonemobius socius, where cuticle darkness and immune-related phenoloxidase activity increase with latitude. However, thermal environments vary seasonally as well as geographically, suggesting that seasonal plasticity in immunity may also exist. Although seasonal fluctuationsmore » in vertebrate immune function are common (because of flux in breeding or resource abundance), seasonality in invertebrate immunity has not been widely explored. We addressed this possibility by rearing crickets in simulated summer and fall environments and assayed their cuticle color and immune function. Prior to estimating immunity, crickets were placed in a common environment to minimize metabolic rate differences. Individuals reared under fall-like conditions exhibited darker cuticles, greater phenoloxidase activity and greater resistance to the bacteria Serratia marcescens. These data support the hypothesis that changes in the thermal environment modify cuticle color, which indirectly shapes immune investment through pleiotropy. This hypothesis may represent a widespread mechanism governing immunity in numerous systems, considering that most insects operate in seasonally and geographically variable thermal environments.« less
Socioecological predictors of immune defences in wild spotted hyenas
Flies, Andrew S.; Mansfield, Linda S.; Flies, Emily J.; Grant, Chris K.; Holekamp, Kay E.
2016-01-01
Summary Social rank can profoundly affect many aspects of mammalian reproduction and stress physiology, but little is known about how immune function is affected by rank and other socio-ecological factors in free-living animals.In this study we examine the effects of sex, social rank, and reproductive status on immune function in long-lived carnivores that are routinely exposed to a plethora of pathogens, yet rarely show signs of disease.Here we show that two types of immune defenses, complement-mediated bacterial killing capacity (BKC) and total IgM, are positively correlated with social rank in wild hyenas, but that a third type, total IgG, does not vary with rank.Female spotted hyenas, which are socially dominant to males in this species, have higher BKC, and higher IgG and IgM concentrations, than do males.Immune defenses are lower in lactating than pregnant females, suggesting the immune defenses may be energetically costly.Serum cortisol and testosterone concentrations are not reliable predictors of basic immune defenses in wild female spotted hyenas.These results suggest that immune defenses are costly and multiple socioecological variables are important determinants of basic immune defenses among wild hyenas. Effects of these variables should be accounted for when attempting to understand disease ecology and immune function. PMID:27833242
Advances in the Knowledge about Kidney Decellularization and Repopulation
Destefani, Afrânio Côgo; Sirtoli, Gabriela Modenesi; Nogueira, Breno Valentim
2017-01-01
End-stage renal disease (ESRD) is characterized by the progressive deterioration of renal function that may compromise different tissues and organs. The major treatment indicated for patients with ESRD is kidney transplantation. However, the shortage of available organs, as well as the high rate of organ rejection, supports the need for new therapies. Thus, the implementation of tissue bioengineering to organ regeneration has emerged as an alternative to traditional organ transplantation. Decellularization of organs with chemical, physical, and/or biological agents generates natural scaffolds, which can serve as basis for tissue reconstruction. The recellularization of these scaffolds with different cell sources, such as stem cells or adult differentiated cells, can provide an organ with functionality and no immune response after in vivo transplantation on the host. Several studies have focused on improving these techniques, but until now, there is no optimal decellularization method for the kidney available yet. Herein, an overview of the current literature for kidney decellularization and whole-organ recellularization is presented, addressing the pros and cons of the actual techniques already developed, the methods adopted to evaluate the efficacy of the procedures, and the challenges to be overcome in order to achieve an optimal protocol. PMID:28620603
Dhabhar, Firdaus S
2018-03-26
Our group has proposed that in contrast to chronic stress that can have harmful effects, the short-term (fight-or-flight) stress response (lasting for minutes to hours) is nature's fundamental survival mechanism that enhances protection and performance under conditions involving threat/challenge/opportunity. Short-term stress enhances innate/primary, adaptive/secondary, vaccine-induced, and anti-tumor immune responses, and post-surgical recovery. Mechanisms and mediators include stress hormones, dendritic cell, neutrophil, macrophage, and lymphocyte trafficking/function and local/systemic chemokine and cytokine production. Short-term stress may also enhance mental/cognitive and physical performance through effects on brain, musculo-skeletal, and cardiovascular function, reappraisal of threat/anxiety, and training-induced stress-optimization. Therefore, short-term stress psychology/physiology could be harnessed to enhance immuno-protection, as well as mental and physical performance. This review aims to provide a conceptual framework and targets for further investigation of mechanisms and conditions under which the protective/adaptive aspects of short-term stress/exercise can be optimized/harnessed, and for developing pharmacological/biobehavioral interventions to enhance health/healing, and mental/cognitive/physical performance. Copyright © 2018 Elsevier Inc. All rights reserved.
Modulating the function of the immune system by thyroid hormones and thyrotropin.
Jara, Evelyn L; Muñoz-Durango, Natalia; Llanos, Carolina; Fardella, Carlos; González, Pablo A; Bueno, Susan M; Kalergis, Alexis M; Riedel, Claudia A
2017-04-01
Accumulating evidence suggests a close bidirectional communication and regulation between the neuroendocrine and immune systems. Thyroid hormones (THs) can exert responses in various immune cells, e.g., monocytes, macrophages, natural killer cells, and lymphocytes, affecting several inflammation-related processes (such as, chemotaxis, phagocytosis, reactive oxygen species generation, and cytokines production). The interactions between the endocrine and immune systems have been shown to contribute to pathophysiological conditions, including sepsis, inflammation, autoimmune diseases and viral infections. Under these conditions, TH therapy could contribute to restoring normal physiological functions. Here we discuss the effects of THs and thyroid stimulating hormone (TSH) on the immune system and the contribution to inflammation and pathogen clearance, as well as the consequences of thyroid pathologies over the function of the immune system. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Virgin, Herbert W; Levine, Beth
2009-01-01
In its classical form, autophagy is a pathway by which cytoplasmic constituents, including intracellular pathogens, are sequestered in a double-membrane–bound autophagosome and delivered to the lysosome for degradation. This pathway has been linked to diverse aspects of innate and adaptive immunity, including pathogen resistance, production of type I interferon, antigen presentation, tolerance and lymphocyte development, as well as the negative regulation of cytokine signaling and inflammation. Most of these links have emerged from studies in which genes encoding molecules involved in autophagy are inactivated in immune effector cells. However, it is not yet known whether all of the critical functions of such genes in immunity represent ‘classical autophagy’ or possible as-yet-undefined autophagolysosome-independent functions of these genes. This review summarizes phenotypes that result from the inactivation of autophagy genes in the immune system and discusses the pleiotropic functions of autophagy genes in immunity. PMID:19381141
Role of Chemokines and Trafficking of Immune Cells in Parasitic Infections
McGovern, Kathryn E.; Wilson, Emma H.
2014-01-01
Parasites are diverse eukaryotic pathogens that can have complex life cycles. Their clearance, or control within a mammalian host requires the coordinated effort of the immune system. The cell types recruited to areas of infection can combat the disease, promote parasite replication and survival, or contribute to disease pathology. Location and timing of cell recruitment can be crucial. In this review, we explore the role chemokines play in orchestrating and balancing the immune response to achieve optimal control of parasite replication without promoting pathology. PMID:25383073
Wang, Haiyang; Yu, Xiaoqing; Fan, Yun
2017-06-20
With the breakthroughs achieved of programmed death-1 (PD-1)/PD-L1 inhibitors monotherapy as first-line and second-line treatment in advanced non-small cell lung cancer (NSCLC), the treatment strategy is gradually evolving and optimizing. Immune combination therapy expands the benefit population and improves the curative effect. A series of randomized phase III trials are ongoing. In this review, we discuss the prospect and current situation of immune checkpoint inhibitors in first-line treatment in advanced NSCLC patients.
Developmental origins of inflammatory and immune diseases
Chen, Ting; Liu, Han-xiao; Yan, Hui-yi; Wu, Dong-mei; Ping, Jie
2016-01-01
Epidemiological and experimental animal studies show that suboptimal environments in fetal and neonatal life exert a profound influence on physiological function and risk of diseases in adult life. The concepts of the ‘developmental programming’ and Developmental Origins of Health and Diseases (DOHaD) have become well accepted and have been applied across almost all fields of medicine. Adverse intrauterine environments may have programming effects on the crucial functions of the immune system during critical periods of fetal development, which can permanently alter the immune function of offspring. Immune dysfunction may in turn lead offspring to be susceptible to inflammatory and immune diseases in adulthood. These facts suggest that inflammatory and immune disorders might have developmental origins. In recent years, inflammatory and immune disorders have become a growing health problem worldwide. However, there is no systematic report in the literature on the developmental origins of inflammatory and immune diseases and the potential mechanisms involved. Here, we review the impacts of adverse intrauterine environments on the immune function in offspring. This review shows the results from human and different animal species and highlights the underlying mechanisms, including damaged development of cells in the thymus, helper T cell 1/helper T cell 2 balance disturbance, abnormal epigenetic modification, effects of maternal glucocorticoid overexposure on fetal lymphocytes and effects of the fetal hypothalamic–pituitary–adrenal axis on the immune system. Although the phenomena have already been clearly implicated in epidemiologic and experimental studies, new studies investigating the mechanisms of these effects may provide new avenues for exploiting these pathways for disease prevention. PMID:27226490
Rational combinations of immunotherapy for pancreatic ductal adenocarcinoma.
Blair, Alex B; Zheng, Lei
2017-06-01
The complex interaction between the immune system, the tumor and the microenvironment in pancreatic ductal adenocarcinoma (PDA) leads to the resistance of PDA to immunotherapy. To overcome this resistance, combination immunotherapy is being proposed. However, rational combinations that target multiple aspects of the complex anti-tumor immune response are warranted. Novel clinical trials will investigate and optimize the combination immunotherapy for PDA.
Airway disease: anatomopathologic patterns and functional correlations.
Mormile, F; Ciappi, G
1997-01-01
Airways represent a serial and parallel branched system, through which the alveoli are connected with the external air. They participate in the mechanical and immune defense against noxious agents, regional flow regulation to optimize the perfusion/ventilation ratio and provide lung mechanical support. Functional exploration of central airways is based on resistance measurement, flow-volume curve or spirometry, while peripheral airways influence parameters as the upstream resistance, the slope of phase III nitrogen washout and the residual volume. Bronchodynamic tests supply important information on airway reversibility and nonspecific reactivity. Anatomopathologic alterations of obstructive chronic bronchitis, pulmonary emphysema and bronchial asthma account for their specific functional and bronchodynamic alterations. There is a growing interest for bronchiolitis in the clinical, radiologic and functional field. This type of lesion, always present in COPD, asthma and interstitial disease, becomes relevant when isolated or predominant. The most useful anatomofunctional classification separates the "constrictive" forms, the cause of obstruction and hyperinflation, from "proliferative" forms where an intraluminal proliferation more or less extended to alveolar air spaces as in BOOP (bronchiolitis obliterans organizing pneumonia) results in restrictive dysfunction. Constrictive bronchiolitis obliterans represents a severe and frequent complication of lung and bone marrow transplantation. Idiopathic BOOP may occur with cough or flue-like symptoms. In other cases, constrictive and proliferative forms may have a toxic (gases or drugs), postinfective or immune etiology (rheumatoid arthritis, LES, etc). Respiratory bronchiolitis or smokers' bronchiolitis, an often asymptomatic lesion, rarely associated to an interstitial lung disease, should be considered separately. The relationships between respiratory bronchiolitis, COPD and initial centriacinar emphysema is still to be elucidated. The diagnostic combination of the more sensitive functional tests with HRCT will allow a better understanding of the natural history of the various forms of bronchiolitis.
Targeting the Tumor Microenvironment with Immunotherapy for Genitourinary Malignancies.
Marciscano, Ariel E; Madan, Ravi A
2018-03-08
Bacillus Calmette-Guérin in urothelial carcinoma, high-dose interleukin-2 in renal cell carcinoma, and sipuleucel-T in prostate cancer serve as enduring examples that the host immune response can be harnessed to promote effective anti-tumor immunity in genitourinary malignancies. Recently, cancer immunotherapy with immune checkpoint inhibitors has transformed the prognostic landscape leading to durable responses in a subset of urothelial carcinoma and renal cell carcinoma patients with traditionally poor prognosis. Despite this success, many patients fail to respond to immune checkpoint inhibitors and progression/relapse remains common. Furthermore, modest clinical activity has been observed with ICIs as a monotherapy in advanced PCa. As such, novel treatment approaches are warranted and improved biomarkers for patient selection and treatment response are desperately needed. Future efforts should focus on exploring synergistic and rational combinations that safely and effectively boost response rates and survival in genitourinary malignancies. Specific areas of interest include (1) evaluating the optimal sequencing, disease burden, and timing of immuno-oncology agents with other anti-cancer therapeutics and (2) validating novel biomarkers of response to immunotherapy to optimize patient selection and to identify individuals most likely to benefit from immunotherapy across the heterogenous spectrum of genitourinary malignancies.
A Candidate H1N1 Pandemic Influenza Vaccine Elicits Protective Immunity in Mice
Steitz, Julia; Barlow, Peter G.; Hossain, Jaber; Kim, Eun; Okada, Kaori; Kenniston, Tom; Rea, Sheri; Donis, Ruben O.; Gambotto, Andrea
2010-01-01
Background In 2009 a new pandemic disease appeared and spread globally. The recent emergence of the pandemic influenza virus H1N1 first isolated in Mexico and USA raised concerns about vaccine availability. We here report our development of an adenovirus-based influenza H1N1 vaccine tested for immunogenicity and efficacy to confer protection in animal model. Methods We generated two adenovirus(Ad5)-based influenza vaccine candidates encoding the wildtype or a codon-optimized hemagglutinin antigen (HA) from the recently emerged swine influenza isolate A/California/04/2009 (H1N1)pdm. After verification of antigen expression, immunogenicity of the vaccine candidates were tested in a mouse model using dose escalations for subcutaneous immunization. Sera of immunized animals were tested in microneutalization and hemagglutination inhibition assays for the presence of HA-specific antibodies. HA-specific T-cells were measured in IFNγ Elispot assays. The efficiency of the influenza vaccine candidates were evaluated in a challenge model by measuring viral titer in lung and nasal turbinate 3 days after inoculation of a homologous H1N1 virus. Conclusions/Significance A single immunization resulted in robust cellular and humoral immune response. Remarkably, the intensity of the immune response was substantially enhanced with codon-optimized antigen, indicating the benefit of manipulating the genetic code of HA antigens in the context of recombinant influenza vaccine design. These results highlight the value of advanced technologies in vaccine development and deployment in response to infections with pandemic potential. Our study emphasizes the potential of an adenoviral-based influenza vaccine platform with the benefits of speed of manufacture and efficacy of a single dose immunization. PMID:20463955
Complement anaphylatoxins as immune regulators in cancer.
Sayegh, Eli T; Bloch, Orin; Parsa, Andrew T
2014-08-01
The role of the complement system in innate immunity is well characterized. However, a recent body of research implicates the complement anaphylatoxins C3a and C5a as insidious propagators of tumor growth and progression. It is now recognized that certain tumors elaborate C3a and C5a and that complement, as a mediator of chronic inflammation and regulator of immune function, may in fact foster rather than defend against tumor growth. A putative mechanism for this function is complement-mediated suppression of immune effector cells responsible for immunosurveillance within the tumor microenvironment. This paradigm accords with models of immune dysregulation, such as autoimmunity and infectious disease, which have defined a pathophysiological role for abnormal complement signaling. Several types of immune cells express the cognate receptors for the complement anaphylatoxins, C3aR and C5aR, and demonstrate functional modulation in response to complement stimulation. In turn, impairment of antitumor immunity has been intimately tied to tumor progression in animal models of cancer. In this article, the literature was systematically reviewed to identify studies that have characterized the effects of the complement anaphylatoxins on the composition and function of immune cells within the tumor microenvironment. The search identified six studies based upon models of lymphoma and ovarian, cervical, lung, breast, and mammary cancer, which collectively support the paradigm of complement as an immune regulator in the tumor microenvironment. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Impact of aging on antigen presentation cell function of dendritic cells.
Wong, Christine; Goldstein, Daniel R
2013-08-01
Older people exhibit increased mortality to infections and cancer as compared to younger people, indicating that aging impairs immunity. Dendritic cells (DCs) are key for bridging the innate and adaptive arms of the immune system by priming antigen specific T cells. Discerning how aging impacts DC function to initiate adaptive immune responses is of great biomedical importance as this could lead to the development of novel therapeutics to enhance immunity with aging. This review details reports indicating that aging impairs the antigen presenting function of DCs but highlights other studies indicating preserved DC function with aging. How aging impacts antigen presentation by DCs is complex and without a clear unifying biological underpinning. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Sastry, Jagannadha K.
1998-01-01
We conducted a series of experiments using mouse immune-precursor cells, and observed that bioreactor culturing results in the loss of antigen-specific cytotoxic T lymphocyte (CTL) function. The reason for the abrogation of CTL function is microgravity conditions in the bioreactor, but not the antigen per se or its MHC restriction. Similarly, we observed that allostimulation of human PBMC in the bioreactor, but not in the T flask, resulted in the blunting of both allo-CTL function and the NK activity, indicating that the microgravity-associated functional defects are not unique to the mouse system. These results provide further confirmation to the microgravity-associated immune dysfunction, and constitute ground-based confirmatory data for those related to space-travel.
Weinstein, Alyona; Gordon, Ruth-Ann; Kasler, Mary Kate; Burke, Matthew; Ranjan, Smita; Hodgetts, Jackie; Reed, Vanessa; Shames, Yelena; Prempeh-Keteku, Nana; Lingard, Karla
2017-01-01
The immune checkpoint inhibitors ipilimumab, nivolumab, and pembrolizumab represent a substantial improvement in treating advanced melanoma but are associated with adverse events (AEs) likely related to general immunologic enhancement. To ensure that patients receive optimal benefit from these agents, prompt assessment and treatment of AEs are essential. We review the efficacy and safety profiles of these immune checkpoint inhibitors and describe guidelines for managing immune-related AEs. We also present case studies describing the management of toxicities in patients receiving immune checkpoint inhibitor therapy. These cases illustrate the importance of collecting a detailed medical history when administering immunotherapy, as this information is necessary to establish baseline, inform monitoring, and determine the etiology of symptoms. Advanced practice nurses and physician assistants are uniquely positioned to educate patients on the early recognition of AEs and have an important role in establishing appropriate monitoring and open dialogue among services. PMID:29900017
Endocannabinoids and the Immune System in Health and Disease.
Cabral, Guy A; Ferreira, Gabriela A; Jamerson, Melissa J
2015-01-01
Endocannabinoids are bioactive lipids that have the potential to signal through cannabinoid receptors to modulate the functional activities of a variety of immune cells. Their activation of these seven-transmembranal, G protein-coupled receptors sets in motion a series of signal transductional events that converge at the transcriptional level to regulate cell migration and the production of cytokines and chemokines. There is a large body of data that supports a functional relevance for 2-arachidonoylglycerol (2-AG) as acting through the cannabinoid receptor type 2 (CB2R) to inhibit migratory activities for a diverse array of immune cell types. However, unequivocal data that supports a functional linkage of anandamide (AEA) to a cannabinoid receptor in immune modulation remains to be obtained. Endocannabinoids, as typical bioactive lipids, have a short half-life and appear to act in an autocrine and paracrine fashion. Their immediate effective action on immune function may be at localized sites in the periphery and within the central nervous system. It is speculated that endocannabinoids play an important role in maintaining the overall "fine-tuning" of the immune homeostatic balance within the host.
Zilker, Claudia; Kozlova, Diana; Sokolova, Viktoriya; Yan, Huimin; Epple, Matthias; Überla, Klaus; Temchura, Vladimir
2017-01-01
Induction of an appropriate type of humoral immune response during vaccination is essential for protection against viral and bacterial infections. We recently observed that biodegradable calcium phosphate (CaP) nanoparticles coated with proteins efficiently targeted and activated naïve antigen-specific B-cells in vitro. We now compared different administration routes for CaP-nanoparticles and demonstrated that intramuscular immunization with such CaP-nanoparticles induced stronger immune responses than immunization with monovalent antigen. Additional functionalization of the CaP-nanoparticles with TRL-ligands allowed modulating the IgG subtype response and the level of mucosal IgA antibodies. CpG-containing CaP-nanoparticles were as immunogenic as a virus-like particle vaccine. Functionalization of CaP-nanoparticles with T-helper cell epitopes or CpG also allowed overcoming lack of T-cell help. Thus, our results indicate that CaP-nanoparticle-based B-cell targeting vaccines functionalized with TLR-ligands can serve as a versatile platform for efficient induction and modulation of humoral immune responses in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Sketoe, J. G.; Clark, Anthony
2000-01-01
This paper presents a DOD E3 program overview on integrated circuit immunity. The topics include: 1) EMI Immunity Testing; 2) Threshold Definition; 3) Bias Tee Function; 4) Bias Tee Calibration Set-Up; 5) EDM Test Figure; 6) EMI Immunity Levels; 7) NAND vs. and Gate Immunity; 8) TTL vs. LS Immunity Levels; 9) TP vs. OC Immunity Levels; 10) 7805 Volt Reg Immunity; and 11) Seventies Chip Set. This paper is presented in viewgraph form.
In Depth Analysis of Citrulline Specific CD4 T Cells in Rheumatoid Arthritis
2018-01-01
activation of lymphoid , myeloid and mast cells , indicating MALT1’s crucial role in innate and adaptive signaling. Therefore, MALT1 is regarded a...Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell regulation in RA Jane Buckner...IFRA) Program Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell regulation in
In-Depth Analysis of Citrulline-Specific CD4 T-Cells in Rheumatoid Arthritis
2018-01-01
player in the activation of lymphoid , myeloid and mast cells , indicating MALT1’s crucial role in innate and adaptive signaling. Therefore, MALT1 is...for RA (IFRA) Program Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell ...Program Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell regulation in RA
Senescence of T Lymphocytes: Implications for Enhancing Human Immunity.
Akbar, Arne N; Henson, Sian M; Lanna, Alessio
2016-12-01
As humans live longer, a central concern is to find ways to maintain their health as they age. Immunity declines during ageing, as shown by the increased susceptibility to infection by both previously encountered and new pathogens and by the decreased efficacy of vaccination. It is therefore crucial to understand the mechanisms responsible for this decrease in immunity and to develop new strategies to enhance immune function in older humans. We discuss here how the induction of senescence alters leukocyte, and specifically T cell, function. An emerging concept is that senescence and nutrient sensing-signalling pathways within T cells converge to regulate functional responses, and the manipulation of these pathways may offer new ways to enhance immunity during ageing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Microbiota and Mucosal Immunity in Amphibians
Colombo, Bruno M.; Scalvenzi, Thibault; Benlamara, Sarah; Pollet, Nicolas
2015-01-01
We know that animals live in a world dominated by bacteria. In the last 20 years, we have learned that microbes are essential regulators of mucosal immunity. Bacteria, archeas, and viruses influence different aspects of mucosal development and function. Yet, the literature mainly covers findings obtained in mammals. In this review, we focus on two major themes that emerge from the comparative analysis of mammals and amphibians. These themes concern: (i) the structure and functions of lymphoid organs and immune cells in amphibians, with a focus on the gut mucosal immune system; and (ii) the characteristics of the amphibian microbiota and its influence on mucosal immunity. Lastly, we propose to use Xenopus tadpoles as an alternative small-animal model to improve the fundamental knowledge on immunological functions of gut microbiota. PMID:25821449
Nuclear processes associated with plant immunity and pathogen susceptibility
Motion, Graham B.; Amaro, Tiago M.M.M.; Kulagina, Natalja
2015-01-01
Plants are sessile organisms that have evolved exquisite and sophisticated mechanisms to adapt to their biotic and abiotic environment. Plants deploy receptors and vast signalling networks to detect, transmit and respond to a given biotic threat by inducing properly dosed defence responses. Genetic analyses and, more recently, next-generation -omics approaches have allowed unprecedented insights into the mechanisms that drive immunity. Similarly, functional genomics and the emergence of pathogen genomes have allowed reciprocal studies on the mechanisms governing pathogen virulence and host susceptibility, collectively allowing more comprehensive views on the processes that govern disease and resistance. Among others, the identification of secreted pathogen molecules (effectors) that modify immunity-associated processes has changed the plant–microbe interactions conceptual landscape. Effectors are now considered both important factors facilitating disease and novel probes, suited to study immunity in plants. In this review, we will describe the various mechanisms and processes that take place in the nucleus and help regulate immune responses in plants. Based on the premise that any process required for immunity could be targeted by pathogen effectors, we highlight and describe a number of functional assays that should help determine effector functions and their impact on immune-related processes. The identification of new effector functions that modify nuclear processes will help dissect nuclear signalling further and assist us in our bid to bolster immunity in crop plants. PMID:25846755
Nuclear processes associated with plant immunity and pathogen susceptibility.
Motion, Graham B; Amaro, Tiago M M M; Kulagina, Natalja; Huitema, Edgar
2015-07-01
Plants are sessile organisms that have evolved exquisite and sophisticated mechanisms to adapt to their biotic and abiotic environment. Plants deploy receptors and vast signalling networks to detect, transmit and respond to a given biotic threat by inducing properly dosed defence responses. Genetic analyses and, more recently, next-generation -omics approaches have allowed unprecedented insights into the mechanisms that drive immunity. Similarly, functional genomics and the emergence of pathogen genomes have allowed reciprocal studies on the mechanisms governing pathogen virulence and host susceptibility, collectively allowing more comprehensive views on the processes that govern disease and resistance. Among others, the identification of secreted pathogen molecules (effectors) that modify immunity-associated processes has changed the plant-microbe interactions conceptual landscape. Effectors are now considered both important factors facilitating disease and novel probes, suited to study immunity in plants. In this review, we will describe the various mechanisms and processes that take place in the nucleus and help regulate immune responses in plants. Based on the premise that any process required for immunity could be targeted by pathogen effectors, we highlight and describe a number of functional assays that should help determine effector functions and their impact on immune-related processes. The identification of new effector functions that modify nuclear processes will help dissect nuclear signalling further and assist us in our bid to bolster immunity in crop plants. © The Author 2015. Published by Oxford University Press.
Immunity: plants as effective mediators.
Sultan, M Tauseef; Butt, Masood Sadiq; Qayyum, Mir M Nasir; Suleria, Hafiz Ansar Rasul
2014-01-01
In the domain of nutrition, exploring the diet-health linkages is major area of research. The outcomes of such interventions led to widespread acceptance of functional and nutraceutical foods; however, augmenting immunity is a major concern of dietary regimens. Indeed, the immune system is incredible arrangement of specific organs and cells that enabled humans to carry out defense against undesired responses. Its proper functionality is essential to maintain the body homeostasis. Array of plants and their components hold immunomodulating properties. Their possible inclusion in diets could explore new therapeutic avenues to enhanced immunity against diseases. The review intended to highlight the importance of garlic (Allium sativum), green tea (Camellia sinensis), ginger (Zingiber officinale), purple coneflower (Echinacea), black cumin (Nigella sativa), licorice (Glycyrrhiza glabra), Astragalus and St. John's wort (Hypericum perforatum) as natural immune boosters. These plants are bestowed with functional ingredients that may provide protection against various menaces. Modes of their actions include boosting and functioning of immune system, activation and suppression of immune specialized cells, interfering in several pathways that eventually led to improvement in immune responses and defense system. In addition, some of these plants carry free radical scavenging and anti-inflammatory activities that are helpful against cancer insurgence. Nevertheless, interaction between drugs and herbs/botanicals should be well investigated before recommended for their safe use, and such information must be disseminated to the allied stakeholders.
Understanding immune function as a pace of life trait requires environmental context.
Tieleman, B Irene
2018-01-01
This article provides a brief historical perspective on the integration of physiology into the concept of the pace of life of birds, evaluates the fit of immune function into this framework, and asks what it will take to fruitfully understand immune functioning of birds in pace of life studies in the future. In the late 1970s, physiology started to seriously enter avian life history ecology, with energy as the main currency of interest, inspired by David Lack's work in the preceding decades emphasizing how food availability explained life history variation. In an effort to understand the trade-off between survival and reproduction, and specifically the mortality costs associated with hard work, in the 1980s and 1990s, other physiological phenomena entered the realm of animal ecologists, including endocrinology, oxidative stress, and immunology. Reviewing studies thus far to evaluate the role of immune function in a life history context and particularly to address the questions whether immune function (1) consistently varies with life history variation among free-living bird species and (2) mediates life history trade-offs in experiments with free-living bird species; I conclude that, unlike energy metabolism, the immune system does not closely covary with life history among species nor mediates the classical trade-offs within individuals. Instead, I propose that understanding the tremendous immunological variation uncovered among free-living birds over the past 25 years requires a paradigm shift. The paradigm should shift from viewing immune function as a costly trait involved in life history trade-offs to explicitly including the benefits of the immune system and placing it firmly in an environmental and ecological context. A first step forward will be to quantify the immunobiotic pressures presented by diverse environmental circumstances that both shape and challenge the immune system of free-living animals. Current developments in the fields of infectious wildlife diseases and host-microbe interactions provide promising steps in this direction.
Sleep and immune function: glial contributions and consequences of aging
Ingiosi, Ashley M.; Opp, Mark R.; Krueger, James M.
2013-01-01
The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5′-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. PMID:23452941
Jung, Bock-Gie; Lee, Jin-A; Lee, Bong-Joo
2012-12-01
It has been considered that drinking oxygenated water improves oxygen availability, which may increase vitality and improve immune functions. The present study evaluated the effects of oxygenated drinking water on immune function in pigs. Continuous drinking of oxygenated water markedly increased peripheral blood mononuclear cell proliferation, interleukin-1β expression level and the CD4(+):CD8(+) cell ratio in pigs. During Salmonella Typhimurium infection, total leukocytes and relative cytokines expression levels were significantly increased in pigs consuming oxygenated water compared with pigs consuming tap water. These findings suggest that oxygenated drinking water enhances immune activity in pigs and increases immune responses of pigs during S. Typhimurium Infection.
Melatonin: Buffering the Immune System
Carrillo-Vico, Antonio; Lardone, Patricia J.; Álvarez-Sánchez, Nuria; Rodríguez-Rodríguez, Ana; Guerrero, Juan M.
2013-01-01
Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed. PMID:23609496
Sleep and immune function: glial contributions and consequences of aging.
Ingiosi, Ashley M; Opp, Mark R; Krueger, James M
2013-10-01
The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5'-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. Copyright © 2013. Published by Elsevier Ltd.
Exploring a regulatory role for mast cells: 'MCregs'?
Frossi, Barbara; Gri, Giorgia; Tripodo, Claudio; Pucillo, Carlo
2010-03-01
Regulatory cells can mould the fate of the immune response by direct suppression of specific subsets of effector cells, or by redirecting effectors against invading pathogens and infected or neoplastic cells. These functions have been classically, although not exclusively, ascribed to different subsets of T cells. Recently, mast cells have been shown to regulate physiological and pathological immune responses, and thus to act at the interface between innate and adaptive immunity assuming different functions and behaviors at discrete stages of the immune response. Here, we focus on these poorly defined, and sometimes apparently conflicting, functions of mast cells. Copyright 2010 Elsevier Ltd. All rights reserved.
A new synthesis for antibody-mediated immunity
Casadevall, Arturo; Pirofski, Liise-anne
2013-01-01
The view that immunoglobulins function largely by potentiating neutralization, cytotoxicity or phagocytosis is being replaced by a new synthesis whereby antibodies participate in all aspects of the immune response, from protecting the host at the earliest time of encounter with a microbe to later challenges. Perhaps the most transformative concept is that immunoglobulins manifest emergent properties, from their structure and function as individual molecules to their interactions with microbial targets and the host immune system. Given that emergent properties are neither reducible to first principles nor predictable, there is a need for new conceptual approaches for understanding antibody function and mechanisms of antibody immunity. PMID:22179281
Littwitz-Salomon, Elisabeth; Dittmer, Ulf; Sutter, Kathrin
2016-11-08
Natural killer (NK) cells belong to the innate immune system and protect against cancers and a variety of viruses including retroviruses by killing transformed or infected cells. They express activating and inhibitory receptors on their cell surface and often become activated after recognizing virus-infected cells. They have diverse antiviral effector functions like the release of cytotoxic granules, cytokine production and antibody dependent cellular cytotoxicity. The importance of NK cell activity in retroviral infections became evident due to the discovery of several viral strategies to escape recognition and elimination by NK cells. Mutational sequence polymorphisms as well as modulation of surface receptors and their ligands are mechanisms of the human immunodeficiency virus-1 to evade NK cell-mediated immune pressure. In Friend retrovirus infected mice the virus can manipulate molecular or cellular immune factors that in turn suppress the NK cell response. In this model NK cells lack cytokines for optimal activation and can be functionally suppressed by regulatory T cells. However, these inhibitory pathways can be overcome therapeutically to achieve full activation of NK cell responses and ultimately control dissemination of retroviral infection. One effective approach is to modulate the crosstalk between NK cells and dendritic cells, which produce NK cell-stimulating cytokines like type I interferons (IFN), IL-12, IL-15, and IL-18 upon retrovirus sensing or infection. Therapeutic administration of IFNα directly increases NK cell killing of retrovirus-infected cells. In addition, IL-2/anti-IL-2 complexes that direct IL-2 to NK cells have been shown to significantly improve control of retroviral infection by NK cells in vivo. In this review, we describe novel approaches to improve NK cell effector functions in retroviral infections. Immunotherapies that target NK cells of patients suffering from viral infections might be a promising treatment option for the future.
The interplay between the immune system and chemotherapy: emerging methods for optimizing therapy.
Ghiringhelli, François; Apetoh, Lionel
2014-01-01
Preclinical studies have revealed an unexpected ability of the immune system to contribute to the success of chemotherapy and radiotherapy. Anticancer therapies can trigger immune system activation by promoting the release of danger signals from dying tumor cells and/or the elimination of immunosuppressive cells. We have, however, recently discovered that some chemotherapies, such as 5-fluorouracil and gemcitabine, exert conflicting effects on anticancer immune responses. Although 5-fluorouracil and Gem selectively eliminated myeloid-derived suppressive cells in tumor-bearing rodents, these chemotherapies promoted the release of IL-1β and the development of pro-angiogenic IL-17-producing CD4 T cells. The ambivalent effects of chemotherapy on immune responses should thus be carefully considered to design effective combination therapies based on chemotherapy and immune modulators. Herein, we discuss how the initial findings underscoring the key role of the immune system in mediating the antitumor efficacy of anticancer agents could begin to translate into effective therapies in humans.
Functional changes in neutrophils and psychoneuroendocrine responses during 105 days of confinement.
Strewe, C; Muckenthaler, F; Feuerecker, M; Yi, B; Rykova, M; Kaufmann, I; Nichiporuk, I; Vassilieva, G; Hörl, M; Matzel, S; Schelling, G; Thiel, M; Morukov, B; Choukèr, A
2015-05-01
The innate immune system as one key element of immunity and a prerequisite for an adequate host defense is of emerging interest in space research to ensure crew health and thus mission success. In ground-based studies, spaceflight-associated specifics such as confinement caused altered immune functions paralleled by changes in stress hormone levels. In this study, six men were confined for 105 days to a space module of ~500 m(3) mimicking conditions of a long-term space mission. Psychic stress was surveyed by different questionnaires. Blood, saliva, and urine samples were taken before, during, and after confinement to determine quantitative and qualitative immune responses by analyzing enumerative assays and quantifying microbicide and phagocytic functions. Additionally, expression and shedding of L-selectin (CD62L) on granulocytes and different plasma cytokine levels were measured. Cortisol and catecholamine levels were analyzed in saliva and urine. Psychic stress or an activation of the psychoneuroendocrine system could not be testified. White blood cell counts were not significantly altered, but innate immune functions showed increased cytotoxic and reduced microbicide capabilities. Furthermore, a significantly enhanced shedding of CD62L might be a hint at increased migratory capabilities. However, this was observed in the absence of any acute inflammatory state, and no rise in plasma cytokine levels was detected. In summary, confinement for 105 days caused changes in innate immune functions. Whether these changes result from an alert immune state in preparation for further immune challenges or from a normal adaptive process during confinement remains to be clarified in future research. Copyright © 2015 the American Physiological Society.
Ageing alters the impact of nutrition on immune function.
Yaqoob, Parveen
2017-08-01
Immunosenescence during ageing is a major challenge which weakens the ability of older individuals to respond to infection or vaccination. There has been much interest in dietary strategies to improve immunity in older people, but there is an assumption that modulation of the immune response in older people will be based on the same principles as for younger adults. Recent evidence suggests that ageing fundamentally alters the impact of nutrition on immune function. As a result, interpretation of data from studies investigating the impact of diet on immune function is highly dependent on subject age. Study design is critically important when investigating the efficacy of dietary components, and most studies involving older people include rigorous inclusion/exclusion criteria based on medical history, laboratory tests, general health status and often nutritional status. However, immunological status is rarely accounted for, but can vary significantly, even amongst healthy older people. There are several clear examples of age-related changes in immune cell composition, phenotype and/or function, which can directly alter the outcome of an intervention. This review uses two case studies to illustrate how the effects of n-3 PUFA and probiotics differ markedly in young v. older subjects. Evidence from both suggests that baseline differences in immunosenescence influence the outcome of an intervention, highlighting the need for detailed immunological characterisation of subjects prior to interventions. Finally, future work elucidating alterations in metabolic regulation within cells of the immune system as a result of ageing may be important in understanding the impact of diet on immune function in older people.
Ruiz, Mayté; French, Susannah S; Demas, Gregory E; Martins, Emília P
2010-02-01
The energetic resources in an organism's environment are essential for executing a wide range of life-history functions, including immunity and reproduction. Most energetic budgets, however, are limited, which can lead to trade-offs among competing functions. Increasing reproductive effort tends to decrease immunity in many cases, and increasing total energy via supplemental feedings can eliminate this effect. Testosterone (T), an important regulator of reproduction, and food availability are thus both potential factors regulating life-history processes, yet they are often tested in isolation of each other. In this study, we considered the effect of both food availability and elevated T on immune function and reproductive behavior in sagebrush lizards, Sceloporus graciosus, to assess how T and energy availability affect these trade-offs. We experimentally manipulated diet (via supplemental feedings) and T (via dermal patches) in males from a natural population. We determined innate immune response by calculating the bacterial killing capability of collected plasma exposed to Escherichia coli ex vivo. We measured reproductive behavior by counting the number of courtship displays produced in a 20-min sampling period. We observed an interactive effect of food availability and T-patch on immune function, with food supplementation increasing immunity in T-patch lizards. Additionally, T increased courtship displays in control food lizards. Lizards with supplemental food had higher circulating T than controls. Collectively, this study shows that the energetic state of the animal plays a critical role in modulating the interactions among T, behavior and immunity in sagebrush lizards and likely other species. Copyright 2009 Elsevier Inc. All rights reserved.
Ruiz, Mayté; French, Susannah S.; Demas, Gregory E.; Martins, Emília P.
2009-01-01
The energetic resources in an organism’s environment are essential for executing a wide range of life history functions, including immunity and reproduction. Most energetic budgets, however, are limited, which can lead to trade-offs among competing functions. Increasing reproductive effort tends to decrease immunity in many cases; and increasing total energy via supplemental feedings can eliminate this effect. Testosterone (T), an important regulator of reproduction, and food availability are thus both potential factors regulating life-history processes, yet they are often tested in isolation of each other. In this study, we considered the effect of both food availability and elevated T on immune function and reproductive behavior in sagebrush lizards, Sceloporus graciosus, to assess how T and energy availability affect these trade-offs. We experimentally manipulated diet (via supplemental feedings) and T (via dermal patches) in males from a natural population. We determined innate immune response by calculating the bacterial killing capability of collected plasma exposed to E. coli ex vivo. We measured reproductive behavior by counting the number of courtship displays produced in a 20-min sampling period. We observed an interactive effect of food availability and T-patch on immune function, with food supplementation increasing immunity in T-patch lizards. Additionally, T increased courtship displays in control food lizards. Lizards with supplemental food had higher circulating T than controls. Collectively, this study shows that the energetic state of the animal plays a critical role in modulating the interactions among T, behavior and immunity in sagebrush lizards and likely other species. PMID:19800885
Guthke, Reinhard; Möller, Ulrich; Hoffmann, Martin; Thies, Frank; Töpfer, Susanne
2005-04-15
The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. Reinhard.Guthke@hki-jena.de.
Multiobjective immune algorithm with nondominated neighbor-based selection.
Gong, Maoguo; Jiao, Licheng; Du, Haifeng; Bo, Liefeng
2008-01-01
Abstract Nondominated Neighbor Immune Algorithm (NNIA) is proposed for multiobjective optimization by using a novel nondominated neighbor-based selection technique, an immune inspired operator, two heuristic search operators, and elitism. The unique selection technique of NNIA only selects minority isolated nondominated individuals in the population. The selected individuals are then cloned proportionally to their crowding-distance values before heuristic search. By using the nondominated neighbor-based selection and proportional cloning, NNIA pays more attention to the less-crowded regions of the current trade-off front. We compare NNIA with NSGA-II, SPEA2, PESA-II, and MISA in solving five DTLZ problems, five ZDT problems, and three low-dimensional problems. The statistical analysis based on three performance metrics including the coverage of two sets, the convergence metric, and the spacing, show that the unique selection method is effective, and NNIA is an effective algorithm for solving multiobjective optimization problems. The empirical study on NNIA's scalability with respect to the number of objectives shows that the new algorithm scales well along the number of objectives.
Constrained minimization problems for the reproduction number in meta-population models.
Poghotanyan, Gayane; Feng, Zhilan; Glasser, John W; Hill, Andrew N
2018-02-14
The basic reproduction number ([Formula: see text]) can be considerably higher in an SIR model with heterogeneous mixing compared to that from a corresponding model with homogeneous mixing. For example, in the case of measles, mumps and rubella in San Diego, CA, Glasser et al. (Lancet Infect Dis 16(5):599-605, 2016. https://doi.org/10.1016/S1473-3099(16)00004-9 ), reported an increase of 70% in [Formula: see text] when heterogeneity was accounted for. Meta-population models with simple heterogeneous mixing functions, e.g., proportionate mixing, have been employed to identify optimal vaccination strategies using an approach based on the gradient of the effective reproduction number ([Formula: see text]), which consists of partial derivatives of [Formula: see text] with respect to the proportions immune [Formula: see text] in sub-groups i (Feng et al. in J Theor Biol 386:177-187, 2015. https://doi.org/10.1016/j.jtbi.2015.09.006 ; Math Biosci 287:93-104, 2017. https://doi.org/10.1016/j.mbs.2016.09.013 ). These papers consider cases in which an optimal vaccination strategy exists. However, in general, the optimal solution identified using the gradient may not be feasible for some parameter values (i.e., vaccination coverages outside the unit interval). In this paper, we derive the analytic conditions under which the optimal solution is feasible. Explicit expressions for the optimal solutions in the case of [Formula: see text] sub-populations are obtained, and the bounds for optimal solutions are derived for [Formula: see text] sub-populations. This is done for general mixing functions and examples of proportionate and preferential mixing are presented. Of special significance is the result that for general mixing schemes, both [Formula: see text] and [Formula: see text] are bounded below and above by their corresponding expressions when mixing is proportionate and isolated, respectively.
Localized Cell and Drug Delivery for Auditory Prostheses
Hendricks, Jeffrey L.; Chikar, Jennifer A.; Crumling, Mark A.; Raphael, Yehoash; Martin, David C.
2011-01-01
Localized cell and drug delivery to the cochlea and central auditory pathway can improve the safety and performance of implanted auditory prostheses (APs). While generally successful, these devices have a number of limitations and adverse effects including limited tonal and dynamic ranges, channel interactions, unwanted stimulation of non-auditory nerves, immune rejection, and infections including meningitis. Many of these limitations are associated with the tissue reactions to implanted auditory prosthetic devices and the gradual degeneration of the auditory system following deafness. Strategies to reduce the insertion trauma, degeneration of target neurons, fibrous and bony tissue encapsulation, and immune activation can improve the viability of tissue required for AP function as well as improve the resolution of stimulation for reduced channel interaction and improved place-pitch and level discrimination. Many pharmaceutical compounds have been identified that promote the viability of auditory tissue and prevent inflammation and infection. Cell delivery and gene therapy have provided promising results for treating hearing loss and reversing degeneration. Currently, many clinical and experimental methods can produce extremely localized and sustained drug delivery to address AP limitations. These methods provide better control over drug concentrations while eliminating the adverse effects of systemic delivery. Many of these drug delivery techniques can be integrated into modern auditory prosthetic devices to optimize the tissue response to the implanted device and reduce the risk of infection or rejection. Together, these methods and pharmaceutical agents can be used to optimize the tissue-device interface for improved AP safety and effectiveness. PMID:18573323
Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery
NASA Astrophysics Data System (ADS)
Heidegger, Simon; Gößl, Dorothée; Schmidt, Alexandra; Niedermayer, Stefan; Argyo, Christian; Endres, Stefan; Bein, Thomas; Bourquin, Carole
2015-12-01
Multifunctional mesoporous silica nanoparticles (MSN) have attracted substantial attention with regard to their high potential for targeted drug delivery. For future clinical applications it is crucial to address safety concerns and understand the potential immunotoxicity of these nanoparticles. In this study, we assess the biocompatibility and functionality of multifunctional MSN in freshly isolated, primary murine immune cells. We show that the functionalized silica nanoparticles are rapidly and efficiently taken up into the endosomal compartment by specialized antigen-presenting cells such as dendritic cells. The silica nanoparticles showed a favorable toxicity profile and did not affect the viability of primary immune cells from the spleen in relevant concentrations. Cargo-free MSN induced only very low immune responses in primary cells as determined by surface expression of activation markers and release of pro-inflammatory cytokines such as Interleukin-6, -12 and -1β. In contrast, when surface-functionalized MSN with a pH-responsive polymer capping were loaded with an immune-activating drug, the synthetic Toll-like receptor 7 agonist R848, a strong immune response was provoked. We thus demonstrate that MSN represent an efficient drug delivery vehicle to primary immune cells that is both non-toxic and non-inflammagenic, which is a prerequisite for the use of these particles in biomedical applications.Multifunctional mesoporous silica nanoparticles (MSN) have attracted substantial attention with regard to their high potential for targeted drug delivery. For future clinical applications it is crucial to address safety concerns and understand the potential immunotoxicity of these nanoparticles. In this study, we assess the biocompatibility and functionality of multifunctional MSN in freshly isolated, primary murine immune cells. We show that the functionalized silica nanoparticles are rapidly and efficiently taken up into the endosomal compartment by specialized antigen-presenting cells such as dendritic cells. The silica nanoparticles showed a favorable toxicity profile and did not affect the viability of primary immune cells from the spleen in relevant concentrations. Cargo-free MSN induced only very low immune responses in primary cells as determined by surface expression of activation markers and release of pro-inflammatory cytokines such as Interleukin-6, -12 and -1β. In contrast, when surface-functionalized MSN with a pH-responsive polymer capping were loaded with an immune-activating drug, the synthetic Toll-like receptor 7 agonist R848, a strong immune response was provoked. We thus demonstrate that MSN represent an efficient drug delivery vehicle to primary immune cells that is both non-toxic and non-inflammagenic, which is a prerequisite for the use of these particles in biomedical applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06122a
Cario, Elke
2008-11-01
Emerging evidence underscores that inappropriate innate immune responses driven by commensals contribute to the pathogenesis of chronic inflammatory bowel diseases in genetically susceptible hosts. The present review focuses on defining the recently described mechanistic functions through which the innate immune signalling apparatus shapes mucosal homeostasis of the intestine in health and disease. Commensal-induced innate immune signalling actively drives at least six major interdependent functions to control homeostasis in the healthy intestinal mucosa: 1) barrier preservation, 2) inhibition of apoptosis and inflammation, 3) acceleration of wound repair and tissue regeneration, 4) exclusion of harmful pathogens through autophagy and other antimicrobial defenses, while 5) maintaining immune tolerance towards harmless commensals, and 6) linkage to adaptive immunity. Any disturbance of this peaceful and mutually beneficial host-commensal relationship may imbalance innate immune signalling, which predisposes to chronic intestinal inflammation and associated tumourigenesis in inflammatory bowel diseases. Recent advances have highlighted the complex mechanistics and functional diversity of innate immunity that paradoxically mediate both protective and destructive responses in the intestinal mucosa. Related signalling targets may offer novel therapeutic approaches in the treatment of inflammatory bowel diseases and inflammation-related cancer.
Incubation period and immune function: A comparative field study among coexisting birds
Palacios, M.G.; Martin, T.E.
2006-01-01
Developmental periods are integral components of life history strategies that can have important fitness consequences and vary enormously among organisms. However, the selection pressures and mechanisms causing variation in length of developmental periods are poorly understood. Particularly puzzling are prolonged developmental periods, because their selective advantage is unclear. Here we tested the hypotheses that immune function is stronger in species that are attacked at a higher rate by parasites and that prolonged embryonic development allows the development of this stronger immune system. Through a comparative field study among 12 coexisting passerine bird species, we show that species with higher blood parasite prevalence mounted stronger cellular immune responses than species with lower prevalence. These results provide support for the hypothesis that species facing greater selection pressure from parasites invest more in immune function. However, species with longer incubation periods mounted weaker cellular immune responses than species with shorter periods. Therefore, cellular immune responses do not support the hypothesis that longer development time enhances immunocompentence. Future studies should assess other components of the immune system and test alternative causes of variation in incubation periods among bird species. ?? Springer-Verlag 2005.
Römgens, Anne M; Bader, Dan L; Bouwstra, Joke A; Oomens, Cees W J
2016-11-01
Microneedle arrays have been developed to deliver a range of biomolecules including vaccines into the skin. These microneedles have been designed with a wide range of geometries and arrangements within an array. However, little is known about the effect of the geometry on the potency of the induced immune response. The aim of this study was to develop a computational model to predict the optimal design of the microneedles and their arrangement within an array. The three-dimensional finite element model described the diffusion and kinetics in the skin following antigen delivery with a microneedle array. The results revealed an optimum distance between microneedles based on the number of activated antigen presenting cells, which was assumed to be related to the induced immune response. This optimum depends on the delivered dose. In addition, the microneedle length affects the number of cells that will be involved in either the epidermis or dermis. By contrast, the radius at the base of the microneedle and release rate only minimally influenced the number of cells that were activated. The model revealed the importance of various geometric parameters to enhance the induced immune response. The model can be developed further to determine the optimal design of an array by adjusting its various parameters to a specific situation.
Martínez, Osmarie; Bravo Cruz, Ariana; Santos, Saritza; Ramírez, Maite; Miranda, Eric; Shisler, Joanna; Otero, Miguel
2017-10-20
Smallpox is a disease caused by Variola virus (VARV). Although eradicated by WHO in 1980, the threat of using VARV on a bioterror attack has increased. The current smallpox vaccine ACAM2000, which consists of live vaccinia virus (VACV), causes complications in individuals with a compromised immune system or with previously reported skin diseases. Thus, a safer and efficacious vaccine needs to be developed. Previously, we reported that our virus-free DNA vaccine formulation, a pVAX1 plasmid encoding codon-optimized VACV A27L gene (pA27LOPT) with and without Imiquimod adjuvant, stimulates A27L-specific production of IFN-γ and increases humoral immunity 7days post-vaccination. Here, we investigated the immune response of our novel vaccine by measuring the frequency of splenocytes producing IFN-γ by ELISPOT, the TH1 and TH2 cytokine profiles, and humoral immune responses two weeks post-vaccination, when animals were challenged with VACV. In all assays, the A27-based DNA vaccine conferred protective immune responses. Specifically, two weeks after vaccination, mice were challenged intranasally with vaccinia virus, and viral titers in mouse lungs and ovaries were significantly lower in groups immunized with pA27LOPT and pA27LOPT+Imiquimod. These results demonstrate that our vaccine formulation decreases viral replication and dissemination in a virus-free DNA vaccine platform, and provides an alternative towards a safer an efficacious vaccine. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Belyakov, I M; Ahlers, J D
2011-01-01
Mucosal tissues are major sites of HIV entry and initial infection. Induction of a local mucosal cytotoxic T lymphocyte response is considered an important goal in developing an effective HIV vaccine. In addition, activation and recruitment of memory CD4(+) and CD8(+) T cells in systemic lymphoid circulation to mucosal effector sites might provide the firewall needed to prevent virus spread. Therefore a vaccine that generates CD4(+) and CD8(+) responses in both mucosal and systemic tissues might be required for protection against HIV. However, optimal routes and number of vaccinations required for the generation of long lasting CD4(+) and CD8(+) CTL effector and memory responses are not well understood especially for mucosal T cells. A number of studies looking at protective immune responses against diverse mucosal pathogens have shown that mucosal vaccination is necessary to induce a compartmentalized immune response including maximum levels of mucosal high-avidity CD8(+) CTL, antigen specific mucosal antibodies titers (especially sIgA), as well as induction of innate anti-viral factors in mucosa tissue. Immune responses are detectable at mucosal sites after systemic delivery of vaccine, and prime boost regimens can amplify the magnitude of immune responses in mucosal sites and in systemic lymphoid tissues. We believe that the most optimal mucosal and systemic HIV/SIV specific protective immune responses and innate factors might best be achieved by simultaneous mucosal and systemic prime and boost vaccinations. Similar principals of vaccination may be applied for vaccine development against cancer and highly invasive pathogens that lead to chronic infection.
Slawin, Kevin M.; Levitt, Jonathan M.; Spencer, David M.
2016-01-01
Therapeutic DNA-based vaccines aim to prime an adaptive host immune response against tumor-associated antigens, eliminating cancer cells primarily through CD8+ cytotoxic T cell-mediated destruction. To be optimally effective, immunological adjuvants are required for the activation of tumor-specific CD8+ T cells responses by DNA vaccination. Here, we describe enhanced anti-tumor efficacy of an in vivo electroporation-delivered DNA vaccine by inclusion of a genetically encoded chimeric MyD88/CD40 (MC) adjuvant, which integrates both innate and adaptive immune signaling pathways. When incorporated into a DNA vaccine, signaling by the MC adjuvant increased antigen-specific CD8+ T cells and promoted elimination of pre-established tumors. Interestingly, MC-enhanced vaccine efficacy did not require direct-expression of either antigen or adjuvant by local antigen-presenting cells, but rather our data supports a key role for MC function in “atypical” antigen-presenting cells of skin. In particular, MC adjuvant-modified keratinocytes increased inflammatory cytokine secretion, upregulated surface MHC class I, and were able to increase in vitro and in vivo priming of antigen-specific CD8+ T cells. Furthermore, in the absence of critical CD8α+/CD103+ cross-priming dendritic cells, MC was still able to promote immune priming in vivo, albeit at a reduced level. Altogether, our data support a mechanism by which MC signaling activates an inflammatory phenotype in atypical antigen-presenting cells within the cutaneous vaccination site, leading to an enhanced CD8+ T cell response against DNA vaccine-encoded antigens, through both CD8α+/CD103+ dendritic cell-dependent and independent pathways. PMID:27741278
Exosomes and nanotubes: control of immune cell communication
McCoy-Simandle, Kessler; Hanna, Samer J.; Cox, Dianne
2015-01-01
Cell-cell communication is critical to coordinate the activity and behavior of a multicellular organism. The cells of the immune system not only must communicate with similar cells, but also with many other cell types in the body. Therefore, the cells of the immune system have evolved multiple ways to communicate. Exosomes and tunneling nanotubes (TNTs) are two means of communication used by immune cells that contribute to immune functions. Exosomes are small membrane vesicles secreted by most cell types that can mediate intercellular communication and in the immune system they are proposed to play a role in antigen presentation and modulation of gene expression. TNTs are membranous structures that mediate direct cell-cell contact over several cell diameters in length (and possibly longer) and facilitate the interaction and/or the transfer of signals, material and other cellular organelles between connected cells. Recent studies have revealed additional, but sometimes conflicting, structural and functional features of both exosomes and TNTs. Despite the new and exciting information in exosome and TNT composition, origin and in vitro function, biologically significant functions are still being investigated and determined. In this review, we discuss the current field regarding exosomes and TNTs in immune cells providing evaluation and perspectives of the current literature. PMID:26704468
Verbsky, James W; Chatila, Talal A
2013-12-01
To summarize recent progress in our understanding of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-related disorders. A number of Mendelian disorders of immune dysregulation and autoimmunity have been noted to result from defects in T regulatory cell, development and function. The best characterized of these is IPEX, resulting from mutations affecting FOXP3. A number of other gene defects that affect T regulatory cell function also give rise to IPEX-related phenotypes, including loss-of-function mutations in CD25, STAT5b and ITCH. Recent progress includes the identification of gain-of-function mutations in STAT1 as a cause of an IPEX-like disease, emerging FOXP3 genotype/phenotype relationships in IPEX, and the elucidation of a role for the microbiota in the immune dysregulation associated with regulatory T cell deficiency. An expanding spectrum of genetic defects that compromise T regulatory cell function underlies human disorders of immune dysregulation and autoimmunity. Collectively, these disorders offer novel insights into pathways of peripheral tolerance and their disruption in autoimmunity.
MiRNAs: dynamic regulators of immune cell functions in inflammation and cancer.
Hirschberger, Simon; Hinske, Ludwig Christian; Kreth, Simone
2018-09-01
MicroRNAs (miRNAs), small noncoding RNA molecules, have emerged as important regulators of almost all cellular processes. By binding to specific sequence motifs within the 3'- untranslated region of their target mRNAs, they induce either mRNA degradation or translational repression. In the human immune system, potent miRNAs and miRNA-clusters have been discovered, that exert pivotal roles in the regulation of gene expression. By targeting cellular signaling hubs, these so-called immuno-miRs have fundamental regulative impact on both innate and adaptive immune cells in health and disease. Importantly, they also act as mediators of tumor immune escape. Secreted by cancer cells and consecutively taken up by immune cells, immuno-miRs are capable to influence immune functions towards a blunted anti-tumor response, thus shaping a permissive tumor environment. This review provides an overview of immuno-miRs and their functional impact on individual immune cell entities. Further, implications of immuno-miRs in the amelioration of tumor surveillance are discussed. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Chu, Edward P F; Elso, Colleen M; Pollock, Abigail H; Alsayb, May A; Mackin, Leanne; Thomas, Helen E; Kay, Thomas W H; Silveira, Pablo A; Mansell, Ashley S; Gaus, Katharina; Brodnicki, Thomas C
2017-02-01
During immune cell activation, serine-derived lipids such as phosphatidylserine and sphingolipids contribute to the formation of protein signaling complexes within the plasma membrane. Altering lipid composition in the cell membrane can subsequently affect immune cell function and the development of autoimmune disease. Serine incorporator 1 (SERINC1) is a putative carrier protein that facilitates synthesis of serine-derived lipids. To determine if SERINC1 has a role in immune cell function and the development of autoimmunity, we characterized a mouse strain in which a retroviral insertion abolishes expression of the Serinc1 transcript. Expression analyses indicated that the Serinc1 transcript is readily detectable and expressed at relatively high levels in wildtype macrophages and lymphocytes. The ablation of Serinc1 expression in these immune cells, however, did not significantly alter serine-derived lipid composition or affect macrophage function and lymphocyte proliferation. Analyses of Serinc1-deficient mice also indicated that systemic ablation of Serinc1 expression did not affect viability, fertility or autoimmune disease susceptibility. These results suggest that Serinc1 is dispensable for certain immune cell functions and does not contribute to previously reported links between lipid composition in immune cells and autoimmunity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Investigation of periodontal tissue during a long space flights
NASA Astrophysics Data System (ADS)
Solovyeva, Zoya; Viacheslav, Ilyin; Skedina, Marina
Previous studies conducted on the International Space Station found that upon completion of the space flight there are significant changes in the local immunity and periodontal microflora of astronauts. Also research in ground-based experiments that simulate space flight factors showed that prolonged hypokinesia antiorthostatic leads to impaired functional indicators of the periodontal vascular system, an unidirectional change from the microbiota and the immune system. That results in the appearance and progressive increase of the parodontial pathogenic bacteria and increase of the content of immunoglobulins in the oral fluid. All these changes are classified as risk factors for the development of inflammatory periodontal diseases in astronauts. However, the studies were unable to determine whether the changes result from a long space flight and the peculiarities of formation the local immunity and periodontal microbiota during the space flight, or they are one of the specific manifestations of the readaptationary post-flight condition of the body. In this regard, the planned research in a long space flight suggests: to use the means of microbial control, which can retain of the anaerobes periodontal microbiota sampling directly in the space flight; to assess the specificity of changes of the periodontal immune status under the influence of the space flight factors, and to assess the state of microcirculation of periodontal tissue in astronauts. A comprehensive study of the reaction of dentition during the space flight will make it possible to study the pathogenesis of changes for developing an adequate prevention aimed at optimizing the state of dentition of the astronauts.
Selenium Supplementation Restores Innate and Humoral Immune Responses in Footrot-Affected Sheep
Hall, Jean A.; Vorachek, William R.; Stewart, Whitney C.; Gorman, M. Elena; Mosher, Wayne D.; Pirelli, Gene J.; Bobe, Gerd
2013-01-01
Dietary selenium (Se) alters whole-blood Se concentrations in sheep, dependent upon Se source and dosage administered, but little is known about effects on immune function. We used footrot (FR) as a disease model to test the effects of supranutritional Se supplementation on immune function. To determine the effect of Se-source (organic Se-yeast, inorganic Na-selenite or Na-selenate) and Se-dosage (1, 3, 5 times FDA-permitted level) on FR severity, 120 ewes with and 120 ewes without FR were drenched weekly for 62 weeks with different Se sources and dosages (30 ewes/treatment group). Innate immunity was evaluated after 62 weeks of supplementation by measuring neutrophil bacterial killing ability. Adaptive immune function was evaluated by immunizing sheep with keyhole limpet hemocyanin (KLH). The antibody titer and delayed-type hypersensitivity skin test to KLH were used to assess humoral immunity and cell-mediated immunity, respectively. At baseline, FR-affected ewes had lower whole-blood and serum-Se concentrations; this difference was not observed after Se supplementation. Se supplementation increased neutrophil bacterial killing percentages in FR-affected sheep to percentages observed in supplemented and non-supplemented healthy sheep. Similarly, Se supplementation increased KLH antibody titers in FR-affected sheep to titers observed in healthy sheep. FR-affected sheep demonstrated suppressed cell-mediated immunity at 24 hours after intradermal KLH challenge, although there was no improvement with Se supplementation. We did not consistently prevent nor improve recovery from FR over the 62 week Se-treatment period. In conclusion, Se supplementation does not prevent FR, but does restore innate and humoral immune functions negatively affected by FR. PMID:24340044
Ehret, Totta; Spork, Simone; Dieterich, Christoph; Lucius, Richard; Heitlinger, Emanuel
2017-09-05
Parasites can either respond to differences in immune defenses that exist between individual hosts plastically or, alternatively, follow a genetically canalized ("hard wired") program of infection. Assuming that large-scale functional plasticity would be discernible in the parasite transcriptome we have performed a dual RNA-seq study of the lifecycle of Eimeria falciformis using infected mice with different immune status as models for coccidian infections. We compared parasite and host transcriptomes (dual transcriptome) between naïve and challenge infected mice, as well as between immune competent and immune deficient ones. Mice with different immune competence show transcriptional differences as well as differences in parasite reproduction (oocyst shedding). Broad gene categories represented by differently abundant host genes indicate enrichments for immune reaction and tissue repair functions. More specifically, TGF-beta, EGF, TNF and IL-1 and IL-6 are examples of functional annotations represented differently depending on host immune status. Much in contrast, parasite transcriptomes were neither different between Coccidia isolated from immune competent and immune deficient mice, nor between those harvested from naïve and challenge infected mice. Instead, parasite transcriptomes have distinct profiles early and late in infection, characterized largely by biosynthesis or motility associated functional gene groups, respectively. Extracellular sporozoite and oocyst stages showed distinct transcriptional profiles and sporozoite transcriptomes were found enriched for species specific genes and likely pathogenicity factors. We propose that the niche and host-specific parasite E. falciformis uses a genetically canalized program of infection. This program is likely fixed in an evolutionary process rather than employing phenotypic plasticity to interact with its host. This in turn might limit the potential of the parasite to adapt to new host species or niches, forcing it to coevolve with its host.
Developmental origins of inflammatory and immune diseases.
Chen, Ting; Liu, Han-Xiao; Yan, Hui-Yi; Wu, Dong-Mei; Ping, Jie
2016-08-01
Epidemiological and experimental animal studies show that suboptimal environments in fetal and neonatal life exert a profound influence on physiological function and risk of diseases in adult life. The concepts of the 'developmental programming' and Developmental Origins of Health and Diseases (DOHaD) have become well accepted and have been applied across almost all fields of medicine. Adverse intrauterine environments may have programming effects on the crucial functions of the immune system during critical periods of fetal development, which can permanently alter the immune function of offspring. Immune dysfunction may in turn lead offspring to be susceptible to inflammatory and immune diseases in adulthood. These facts suggest that inflammatory and immune disorders might have developmental origins. In recent years, inflammatory and immune disorders have become a growing health problem worldwide. However, there is no systematic report in the literature on the developmental origins of inflammatory and immune diseases and the potential mechanisms involved. Here, we review the impacts of adverse intrauterine environments on the immune function in offspring. This review shows the results from human and different animal species and highlights the underlying mechanisms, including damaged development of cells in the thymus, helper T cell 1/helper T cell 2 balance disturbance, abnormal epigenetic modification, effects of maternal glucocorticoid overexposure on fetal lymphocytes and effects of the fetal hypothalamic-pituitary-adrenal axis on the immune system. Although the phenomena have already been clearly implicated in epidemiologic and experimental studies, new studies investigating the mechanisms of these effects may provide new avenues for exploiting these pathways for disease prevention. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Campbell, John P; Turner, James E
2018-01-01
Epidemiological evidence indicates that regular physical activity and/or frequent structured exercise reduces the incidence of many chronic diseases in older age, including communicable diseases such as viral and bacterial infections, as well as non-communicable diseases such as cancer and chronic inflammatory disorders. Despite the apparent health benefits achieved by leading an active lifestyle, which imply that regular physical activity and frequent exercise enhance immune competency and regulation, the effect of a single bout of exercise on immune function remains a controversial topic. Indeed, to this day, it is perceived by many that a vigorous bout of exercise can temporarily suppress immune function. In the first part of this review, we deconstruct the key pillars which lay the foundation to this theory-referred to as the "open window" hypothesis-and highlight that: (i) limited reliable evidence exists to support the claim that vigorous exercise heightens risk of opportunistic infections; (ii) purported changes to mucosal immunity, namely salivary IgA levels, after exercise do not signpost a period of immune suppression; and (iii) the dramatic reductions to lymphocyte numbers and function 1-2 h after exercise reflects a transient and time-dependent redistribution of immune cells to peripheral tissues, resulting in a heightened state of immune surveillance and immune regulation, as opposed to immune suppression. In the second part of this review, we provide evidence that frequent exercise enhances-rather than suppresses-immune competency, and highlight key findings from human vaccination studies which show heightened responses to bacterial and viral antigens following bouts of exercise. Finally, in the third part of this review, we highlight that regular physical activity and frequent exercise might limit or delay aging of the immune system, providing further evidence that exercise is beneficial for immunological health. In summary, the over-arching aim of this review is to rebalance opinion over the perceived relationships between exercise and immune function. We emphasize that it is a misconception to label any form of acute exercise as immunosuppressive, and, instead, exercise most likely improves immune competency across the lifespan.
Hicks, Kathryn
2014-09-01
This article examines the influence of emotional and instrumental support on women's immune function, a biomarker of stress, in the city of El Alto, Bolivia. It tests the prediction that instrumental support is protective of immune function for women living in this marginal environment. Qualitative and quantitative ethnographic methods were employed to assess perceived emotional and instrumental support and common sources of support; multiple linear regression analysis was used to model the relationship between social support and antibodies to the Epstein-Barr virus. These analyses provided no evidence that instrumental social support is related to women's health, but there is some evidence that emotional support from compadres helps protect immune function. © 2014 by the American Anthropological Association.
Synthetic Nanovaccines Against Respiratory Pathogens (SYNARP). Addendum
2014-09-01
and c) block ionomer complexes (BIC) for targeted delivery of DNA (or protein) antigen to the antigen presenting cells (APCs) (Platform C). The...immune cells to elicit most efficient immune response. The proposal was focusing on achieving the following specific technical objectives: 1) Develop...muscle in a mouse (Platform B & C). ACCOMPLISHED YEAR 3 Task 1: Determine optimal antigen-containing BPN that activate dendritic cells (DCs
Immunomodulatory Nature and Site Specific Affinity of Mesenchymal Stem Cells: a Hope in Cell Therapy
Lotfinegad, Parisa; Shamsasenjan, karim; Movassaghpour, Aliakbar; Majidi, Jafar; Baradaran, Behzad
2014-01-01
Immunosuppressive ability of mesenchymal stem cells (MSCs), their differentiation properties to various specialized tissue types, ease of in vitro and in vivo expansion and specific migration capacity, make them to be tested in different clinical trials for the treatment of various diseases. The immunomodulatory effects of MSCs are less identified which probably has high clinically significance. The clinical trials based on primary research will cause better understanding the ability of MSCs in immunomodulatory applications and site specific migration in the optimization of therapy. So, this review focus on MSCs functional role in modulating immune responses, their ability in homing to tumor, their potency as delivery vehicle and their medical importance. PMID:24409403
SIRT1 and HIF1α signaling in metabolism and immune responses.
Yu, Qing; Dong, Lin; Li, Yan; Liu, Gaungwei
2018-04-01
SIRT1 and HIF1α are regarded as two key metabolic sensors in cellular metabolism pathways and play vital roles in influencing immune responses. SIRT1 and HIF1α regulate immune responses in metabolism-dependent and -independent ways. Here, we summarized the recent knowledge of SIRT1 and HIF1α signaling in metabolism and immune responses. HIF1α is a direct target of SIRT1. Sometimes, SIRT1 and HIF1α cooperate or act separately to mediate immune responses. In innate immune responses, SIRT1 can regulate the glycolytic activity of myeloid-derived suppressor cells (MDSCs) and influence MDSC functional differentiation. SIRT1 can regulate monocyte function through NF-κB and PGC-1, accompanying an increased NAD + level. The SIRT1-HIF1α axis bridges the innate immune signal to an adaptive immune response by directing cytokine production of dendritic cells in a metabolism-independent manner, promoting the differentiation of CD4 + T cells. For adaptive immune cells, SIRT1 can mediate the differentiation of inflammatory T cell subsets in a NAD + -dependent manner. HIF1α can stimulate some glycolysis-associated genes and regulate the ATP and ROS generations. In addition, SIRT1-and HIF1α-associated metabolism inhibits the activity of mTOR, thus negatively regulating the differentiation and function of Th9 cells. As immune cells are crucial in controlling immune-associated diseases, SIRT1-and HIF1α associated-metabolism is closely linked to immune-associated diseases, including infection, tumors, allergic airway inflammation, and autoimmune diseases. Copyright © 2018 Elsevier B.V. All rights reserved.
Evaluation of the image quality of telescopes using the star test
NASA Astrophysics Data System (ADS)
Vazquez y Monteil, Sergio; Salazar Romero, Marcos A.; Gale, David M.
2004-10-01
The Point Spread Function (PSF) or star test is one of the main criteria to be considered in the quality of the image formed by a telescope. In a real system the distribution of irradiance in the image of a point source is given by the PSF, a function which is highly sensitive to aberrations. The PSF of a telescope may be determined by measuring the intensity distribution in the image of a star. Alternatively, if we already know the aberrations present in the optical system, then we may use diffraction theory to calculate the function. In this paper we propose a method for determining the wavefront aberrations from the PSF, using Genetic Algorithms to perform an optimization process starting from the PSF instead of the more traditional method of adjusting an aberration polynomial. We show that this method of phase recuperation is immune to noise-induced errors arising during image aquisition and registration. Some practical results are shown.
YAP is essential for Treg mediated suppression of anti-tumor immunity.
Ni, Xuhao; Tao, Jinhui; Barbi, Joseph; Chen, Qian; Park, Benjamin V; Li, Zhiguang; Zhang, Nailing; Lebid, Andriana; Ramaswamy, Anjali; Wei, Ping; Zheng, Ying; Zhang, Xuehong; Wu, Xingmei; Vignali, Paolo D A; Yang, Cuiping; Li, Huabin; Pardoll, Drew; Lu, Ling; Pan, Duojia; Pan, Fan
2018-06-15
Regulatory T cells (Tregs) are critical for maintaining self-tolerance and immune homeostasis, but their suppressive function can impede effective anti-tumor immune responses. Foxp3 is a transcription factor expressed in Tregs that is required for their function. However, the pathways and microenvironmental cues governing Foxp3 expression and Treg function are not completely understood. Herein, we report that Yes-associated protein (YAP), a co-activator of the Hippo pathway, is highly expressed in Tregs and bolsters Foxp3 expression and Treg function in vitro and in vivo. This potentiation stemmed from YAP-dependent upregulation of Activin signaling which amplifies TGFβ/SMAD activation in Tregs. YAP-deficiency resulted in dysfunctional Tregs unable to suppress anti-tumor immunity or promote tumor growth in mice. Chemical YAP antagonism and knockout or blockade of the YAP-regulated Activin Receptor similarly improved anti-tumor immunity. Thus we identify YAP as an unexpected amplifier of a Treg-reinforcing pathway with significant potential as an anti-cancer immunotherapeutic target. Copyright ©2018, American Association for Cancer Research.
ZFP36 RNA-binding proteins restrain T-cell activation and anti-viral immunity.
Moore, Michael J; Blachere, Nathalie E; Fak, John J; Park, Christopher Y; Sawicka, Kirsty; Parveen, Salina; Zucker-Scharff, Ilana; Moltedo, Bruno; Rudensky, Alexander Y; Darnell, Robert B
2018-05-31
Dynamic post-transcriptional control of RNA expression by RNA-binding proteins (RBPs) is critical during immune response. ZFP36 RBPs are prominent inflammatory regulators linked to autoimmunity and cancer, but functions in adaptive immunity are less clear. We used HITS-CLIP to define ZFP36 targets in mouse T cells, revealing unanticipated actions in regulating T cell activation, proliferation, and effector functions. Transcriptome and ribosome profiling showed that ZFP36 represses mRNA target abundance and translation, notably through novel AU-rich sites in coding sequence. Functional studies revealed that ZFP36 regulates early T cell activation kinetics cell autonomously, by attenuating activation marker expression, limiting T cell expansion, and promoting apoptosis. Strikingly, loss of ZFP36 in vivo accelerated T cell responses to acute viral infection and enhanced anti-viral immunity. These findings uncover a critical role for ZFP36 RBPs in restraining T cell expansion and effector functions, and suggest ZFP36 inhibition as a strategy to enhance immune-based therapies. © 2018, Moore et al.
Bonardi, Vera; Tang, Saijun; Stallmann, Anna; Roberts, Melinda; Cherkis, Karen; Dangl, Jeffery L.
2011-01-01
Plants and animals deploy intracellular immune receptors that perceive specific pathogen effector proteins and microbial products delivered into the host cell. We demonstrate that the ADR1 family of Arabidopsis nucleotide-binding leucine-rich repeat (NB-LRR) receptors regulates accumulation of the defense hormone salicylic acid during three different types of immune response: (i) ADRs are required as “helper NB-LRRs” to transduce signals downstream of specific NB-LRR receptor activation during effector-triggered immunity; (ii) ADRs are required for basal defense against virulent pathogens; and (iii) ADRs regulate microbial-associated molecular pattern-dependent salicylic acid accumulation induced by infection with a disarmed pathogen. Remarkably, these functions do not require an intact P-loop motif for at least one ADR1 family member. Our results suggest that some NB-LRR proteins can serve additional functions beyond canonical, P-loop–dependent activation by specific virulence effectors, extending analogies between intracellular innate immune receptor function from plants and animals. PMID:21911370
Vaccine responsiveness in premature infants.
Baxter, David
2010-06-01
The purpose of this review is to document adaptive immune responses in premature infants with a gestational age ≤32 weeks to the different vaccines used in the primary immunisation programme in the UK. Evidence suggests that these infants have impaired immune functioning that is consequent on maturational status and which resolve at variable time periods after birth - this impacts both on their risk of infection and response to vaccination. Assessing vaccine responsiveness can help establish whether the administration of additional vaccines is appropriate for a premature infant, and this may be determined either by vaccine immunogenicity or efficacy studies. The focus of the paper is immunogenicity studies for the following vaccines: tetanus, and diphtheria (toxoid vaccines), Haemophilus influenzae type b (Hib), meningococcal C (Men C) and pneumococcal (PnC) (subunit glycoconjugate vaccines), pertussis (subunit vaccine) and polio (inactivated vaccine). Data show that immunogenicity in premature infants is vaccine specific and whilst highly protective for the toxoid and inactivated preparations, responses to the subunit preparations are less optimal and consequently additional vaccinations or serology testing for ≤32 week gestation infants be considered.
Gentsch, George E; Spruce, Thomas; Monteiro, Rita S; Owens, Nick D L; Martin, Stephen R; Smith, James C
2018-03-12
Antisense morpholino oligomers (MOs) have been indispensable tools for developmental biologists to transiently knock down (KD) genes rather than to knock them out (KO). Here we report on the implications of genetic KO versus MO-mediated KD of the mesoderm-specifying Brachyury paralogs in the frog Xenopus tropicalis. While both KO and KD embryos fail to activate the same core gene regulatory network, resulting in virtually identical morphological defects, embryos injected with control or target MOs also show a systemic GC content-dependent immune response and many off-target splicing defects. Optimization of MO dosage and increasing incubation temperatures can mitigate, but not eliminate, these MO side effects, which are consistent with the high affinity measured between MO and off-target sequence in vitro. We conclude that while MOs can be useful to profile loss-of-function phenotypes at a molecular level, careful attention must be paid to their immunogenic and off-target side effects. Copyright © 2018 The Francis Crick Institute. Published by Elsevier Inc. All rights reserved.
[Human milk, immune responses and health effects].
Løland, Beate Fossum; Baerug, Anne B; Nylander, Gro
2007-09-20
Besides providing optimal nutrition to infants, human milk contains a multitude of immunological components. These components are important for protection against infections and also support the development and maturation of the infant's own immune system. This review focuses on the function of some classical immunocomponents of human milk. Relevant studies are presented that describe health benefits of human milk for the child and of lactation for the mother. Relevant articles were found mainly by searching PubMed. Humoral and cellular components of human milk confer protection against infections in the respiratory--, gastrointestinal--and urinary tract. Human milk also protects premature children from neonatal sepsis and necrotizing enterocolitis. There is evidence that human milk may confer long-term benefits such as lower risk of certain autoimmune diseases, inflammatory bowel disease and probably some malignancies. Human milk possibly affects components of the metabolic syndrome. Recent studies demonstrate long-term health benefits of lactation also for the mother. A reduced incidence of breast cancer is best documented. An increasing number of studies indicate protection against ovarian cancer, rheumatoid arthritis and type II diabetes.
Wang, Guoshun
2016-09-01
Phagocytes, such as neutrophils and macrophages, engulf microbes into phagosomes and launch chemical attacks to kill and degrade them. Such a critical innate immune function necessitates ion participation. Chloride, the most abundant anion in the human body, is an indispensable constituent of the myeloperoxidase (MPO)-H2 O2 -halide system that produces the potent microbicide hypochlorous acid (HOCl). It also serves as a balancing ion to set membrane potentials, optimize cytosolic and phagosomal pH, and regulate phagosomal enzymatic activities. Deficient supply of this anion to or defective attainment of this anion by phagocytes is linked to innate immune defects. However, how phagocytes acquire chloride from their residing environment especially when they are deployed to epithelium-lined lumens, and how chloride is intracellularly transported to phagosomes remain largely unknown. This review article will provide an overview of chloride protein carriers, potential mechanisms for phagocytic chloride preservation and acquisition, intracellular chloride supply to phagosomes for oxidant production, and methods to measure chloride levels in phagocytes and their phagosomes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The effects of laser immunotherapy on cancer cell migration
NASA Astrophysics Data System (ADS)
Bahavar, Cody F.; Zhou, Feifan; Hasanjee, Aamr M.; Layton, Elivia; Lam, Anh; Chen, Wei R.; Vaughan, Melville B.
2016-03-01
Laser immunotherapy (LIT) uses laser irradiation and immunological stimulation to target all types of metastases and creates a long-term tumor resistance. Glycated chitosan (GC) is the immunological stimulant used in LIT. Interestingly, GC can act as a surfactant for single-walled carbon nanotubes (SWNTs) to immunologically modify SWNTs. SWNT-GC retains the optical properties of SWNTs and the immunological functions of GC to help increase the selectivity of the laser and create a more optimal immune response. One essential aspect of understanding this immune response is knowing how laser irradiation affects cancer cells' ability to metastasize. In this experiment, a cell migration assay was performed. A 2mm circular elastomer plugs were placed at the bottom of multi-well dishes. Pre-cancerous keratinocytes, different tumor cells, and fibroblasts were then plated separately in treated wells. Once the cells reached 100% confluence, they were irradiated by either a 980nm or 805nm wavelength laser. The goal was to determine the effects of laser irradiation and immunological stimulation on cancer cell migration in vitro, paying the way to understand the mechanism of LIT in treating metastatic tumors in cancer patients.
2005-01-01
Summary: Living systems operate under interactive selective pressures. Populations have the ability to anticipate the future by generating a repertoire of elements that cope with new selective pressures. If the repertoire of such elements were transcendental, natural selection could not operate because any one of them would be too rare. This is the problem that vertebrates faced in order to deal with a vast number of pathogens. The solution was to invent an immune system that underwent somatic evolution. This required a random repertoire that was generated somatically and divided the antigenic universe into combinatorials of determinants. As a result, it became virtually impossible for pathogens to escape recognition but the functioning of such a repertoire required two new regulatory mechanisms: 1) a somatic discriminator between Not-To-Be-Ridded (‘Self’) and To-Be-Ridded (‘Non-self’) antigens, and 2) a way to optimize the magnitude and choice of the class of the effector response. The principles governing this dual regulation are analyzed in the light of natural selection. PMID:12190919
Rol, Mary-Luz; Venet, Fabienne; Rimmele, Thomas; Moucadel, Virginie; Cortez, Pierre; Quemeneur, Laurence; Gardiner, David; Griffiths, Andrew; Pachot, Alexandre; Textoris, Julien; Monneret, Guillaume
2017-06-21
The host response to septic shock is dynamic and complex. A sepsis-induced immunosuppression phase has recently been acknowledged and linked to bad outcomes and increased healthcare costs. Moreover, a marked suppression of the immune response has also been partially described in patients hospitalized in intensive care unit (ICU) for severe trauma or burns. It has been hypothesized that immune monitoring could enable identification of patients who might most benefit from novel, adjunctive immune-stimulating therapies. However, there is currently neither a clear definition for such injury-induced immunosuppression nor a stratification biomarker compatible with clinical constraints. We set up a prospective, longitudinal single-centre clinical study to determine the incidence, severity and persistency of innate and adaptive immune alterations in ICU patients. We optimized a workflow to describe and follow the immunoinflammatory status of 550 patients (septic shock, severe trauma/burn and major surgery) during the first 2 months after their initial injury. On each time point, two immune functional tests will be performed to determine whole-blood TNF-α production in response to ex vivo lipopolysaccharide stimulation and the T lymphocyte proliferation in response to phytohaemagglutinin. In addition, a complete immunophenotyping using flow cytometry including monocyte HLA-DR expression and lymphocyte subsets will be obtained. New markers (ie, levels of expression of host mRNA and viral reactivation) will be also evaluated. Reference intervals will be determined from a cohort of 150 age-matched healthy volunteers. This clinical study will provide, for the first time, data describing the immune status of severe ICU patients over time. Ethical approval has been obtained from the institutional review board (no 69HCL15_0379) and the French National Security agency for drugs and health-related products. Results will be disseminated through presentations at scientific meetings and publications in peer-reviewed journals. Clinicaltrials.gov Registration number: NCT02638779. Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Systemic bacterial infection and immune defense phenotypes in Drosophila melanogaster.
Khalil, Sarah; Jacobson, Eliana; Chambers, Moria C; Lazzaro, Brian P
2015-05-13
The fruit fly Drosophila melanogaster is one of the premier model organisms for studying the function and evolution of immune defense. Many aspects of innate immunity are conserved between insects and mammals, and since Drosophila can readily be genetically and experimentally manipulated, they are powerful for studying immune system function and the physiological consequences of disease. The procedure demonstrated here allows infection of flies by introduction of bacteria directly into the body cavity, bypassing epithelial barriers and more passive forms of defense and allowing focus on systemic infection. The procedure includes protocols for the measuring rates of host mortality, systemic pathogen load, and degree of induction of the host immune system. This infection procedure is inexpensive, robust and quantitatively repeatable, and can be used in studies of functional genetics, evolutionary life history, and physiology.
High-level expression of Camelid nanobodies in Nicotiana benthamiana.
Teh, Yi-Hui Audrey; Kavanagh, Tony A
2010-08-01
Nanobodies (or VHHs) are single-domain antigen-binding fragments derived from Camelid heavy chain-only antibodies. Their small size, monomeric behaviour, high stability and solubility, and ability to bind epitopes not accessible to conventional antibodies make them especially suitable for many therapeutic and biotechnological applications. Here we describe high-level expression, in Nicotiana benthamiana, of three versions of an anti-hen egg white lysozyme (HEWL) nanobody which include the original VHH from an immunized library (cAbLys3), a codon-optimized derivative, and a codon-optimized hybrid nanobody comprising the CDRs of cAbLys3 grafted onto an alternative 'universal' nanobody framework. His6- and StrepII-tagged derivatives of each nanobody were targeted for accumulation in the cytoplasm, chloroplast and apoplast using different pre-sequences. When targeted to the apoplast, intact functional nanobodies accumulated at an exceptionally high level (up to 30% total leaf protein), demonstrating the great potential of plants as a nanobody production system.
Song, Shang; Roy, Shuvo
2018-01-01
Macroencapsulation technology has been an attractive topic in the field of treatment for Type 1 diabetes due to mechanical stability, versatility, and retrievability of the macrocapsule design. Macro-capsules can be categorized into extravascular and intravascular devices, in which solute transport relies either on diffusion or convection, respectively. Failure of macroencapsulation strategies can be due to limited regenerative capacity of the encased insulin-producing cells, sub-optimal performance of encapsulation biomaterials, insufficient immunoisolation, excessive blood thrombosis for vascular perfusion devices, and inadequate modes of mass transfer to support cell viability and function. However, significant technical advancements have been achieved in macroencapsulation technology, namely reducing diffusion distance for oxygen and nutrients, using pro-angiogenic factors to increase vascularization for islet engraftment, and optimizing membrane permeability and selectivity to prevent immune attacks from host’s body. This review presents an overview of existing macroencapsulation devices and discusses the advances based on tissue-engineering approaches that will stimulate future research and development of macroencapsulation technology. PMID:26615050
Innate immunity, insulin resistance and type 2 diabetes.
Fernández-Real, José Manuel; Pickup, John C
2008-01-01
Recent evidence has disclosed previously unrecognized links among insulin resistance, obesity, circulating immune markers, immunogenetic susceptibility, macrophage function and chronic infection. Genetic variations leading to altered production or function of circulating innate immune proteins, cellular pattern-recognition receptors and inflammatory cytokines have been linked with insulin resistance, type 2 diabetes, obesity and atherosclerosis. Cellular innate immune associations with obesity and insulin resistance include increased white blood cell count and adipose tissue macrophage numbers. The innate immune response is modulated possibly by both predisposition (genetic or fetal programming), perhaps owing to evolutionary pressures caused by acute infections at the population level (pandemics), and chronic low exposure to environmental products or infectious agents. The common characteristics shared among innate immunity activation, obesity and insulin resistance are summarized.
Commensal-innate immune miscommunication in IBD pathogenesis.
Cario, Elke
2012-01-01
Commensal microbiota plays a key role in the health and disease of the host. The innate immune system comprises an essential functional component of the intestinal mucosal barrier, maintaining hyporesponsiveness to omnipresent harmless commensals in the lumen, but rapidly recognizing and combating invading bacteria through diverse antimicrobial mechanisms. Interactions between commensals and innate immune cells are constant, multidimensional and entirely context-dependent. Environment, genetics and host defense differentially modulate commensal-innate immune effects and functions in the intestinal mucosa. In IBD, dysbiosis, mucus layer disruption, impairment in bacterial clearance, intestinal epithelial cell barrier dysfunction and/or immune cell deregulation may lead to commensal-innate immune miscommunication, which critically drives mucosal inflammation and associated cancer. Copyright © 2012 S. Karger AG, Basel.
Immune Dysregulation and Chronic Stress Among Older Adults: A Review
Gouin, Jean-Philippe; Hantsoo, Liisa; Kiecolt-Glaser, Janice K.
2009-01-01
Aging is associated with a natural dysregulation in immune functioning which may be amplified when it occurs in the context of chronic stress. Family dementia caregiving provides an excellent model to study the impact of chronic stress on immune functioning among older individuals. Empirical data suggest that the stress of caregiving dysregulate multiple components of innate and adaptive immunity. Elderly caregivers have poorer responses to vaccines, impaired control of latent viruses, exaggerated production of inflammatory mediators, and accelerated cellular aging, compared to noncaregiving older adults. The chronic stress-induced immune dysregulation observed among older caregivers appear to be of sufficient magnitude to impact health. Furthermore, evidence suggests that chronic stress lead to premature aging of the immune system. PMID:19047802
Sex-specific consequences of an induced immune response on reproduction in a moth.
Barthel, Andrea; Staudacher, Heike; Schmaltz, Antje; Heckel, David G; Groot, Astrid T
2015-12-16
Immune response induction benefits insects in combatting infection by pathogens. However, organisms have a limited amount of resources available and face the dilemma of partitioning resources between immunity and other life-history traits. Since males and females differ in their life histories, sex-specific resource investment strategies to achieve an optimal immune response following an infection can be expected. We investigated immune response induction of females and males of Heliothis virescens in response to the entomopathogenic bacterium Serratia entomophila, and its effects on mating success and the female sexual signal. We found that females had higher expression levels of immune-related genes after bacterial challenge than males. However, males maintained a higher baseline expression of immune-related genes than females. The increased investment in immunity of female moths was negatively correlated with mating success and the female sexual signal. Male mating success was unaffected by bacterial challenge. Our results show that the sexes differed in their investment strategies: females invested in immune defense after a bacterial challenge, indicating facultative immune deployment, whereas males had higher baseline immunity than females, indicating immune maintenance. Interestingly, these differences in investment were reflected in the mate choice assays. As female moths are the sexual signallers, females need to invest resources in their attractiveness. However, female moths appeared to invest in immunity at the cost of reproductive effort.
Influence of Physical Activity and Nutrition on Obesity-Related Immune Function
Zourdos, Michael C.; Jo, Edward; Ormsbee, Michael J.
2013-01-01
Research examining immune function during obesity suggests that excessive adiposity is linked to impaired immune responses leading to pathology. The deleterious effects of obesity on immunity have been associated with the systemic proinflammatory profile generated by the secretory molecules derived from adipose cells. These include inflammatory peptides, such as TNF-α, CRP, and IL-6. Consequently, obesity is now characterized as a state of chronic low-grade systemic inflammation, a condition considerably linked to the development of comorbidity. Given the critical role of adipose tissue in the inflammatory process, especially in obese individuals, it becomes an important clinical objective to identify lifestyle factors that may affect the obesity-immune system relationship. For instance, stress, physical activity, and nutrition have each shown to be a significant lifestyle factor influencing the inflammatory profile associated with the state of obesity. Therefore, the purpose of this review is to comprehensively evaluate the impact of lifestyle factors, in particular psychological stress, physical activity, and nutrition, on obesity-related immune function with specific focus on inflammation. PMID:24324381
Sexual dimorphism in immune function changes during the annual cycle in house sparrows
NASA Astrophysics Data System (ADS)
Pap, Péter László; Czirják, Gábor Árpád; Vágási, Csongor István; Barta, Zoltán; Hasselquist, Dennis
2010-10-01
Difference between sexes in parasitism is a common phenomenon among birds, which may be related to differences between males and females in their investment into immune functions or as a consequence of differential exposure to parasites. Because life-history strategies change sex specifically during the annual cycle, immunological responses of the host aiming to reduce the impact of parasites may be sexually dimorphic. Despite the great complexity of the immune system, studies on immunoecology generally characterise the immune status through a few variables, often overlooking potentially important seasonal and gender effects. However, because of the differences in physiological and defence mechanisms among different arms of the immune system, we expect divergent responses of immune components to environmental seasonality. In male and female house sparrows ( Passer domesticus), we measured the major components of the immune system (innate, acquired, cellular and humoral) during four important life-history stages across the year: (1) mating, (2) breeding, (3) moulting and (4) during the winter capture and also following introduction to captivity in aviary. Different individuals were sampled from the same population during the four life cycle stages. We found that three out of eight immune variables showed a significant life cycle stage × sex interaction. The difference in immune response between the sexes was significant in five immune variables during the mating stage, when females had consistently stronger immune function than males, while variables varied generally non-significantly with sex during the remaining three life cycle stages. Our results show that the immune system is highly variable between life cycle stages and sexes, highlighting the potential fine tuning of the immune system to specific physiological states and environmental conditions.
Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance.
Yamada, Akiko; Arakaki, Rieko; Saito, Masako; Kudo, Yasusei; Ishimaru, Naozumi
2017-01-01
Fas-mediated apoptosis contributes to physiological and pathological cellular processes, such as differentiation and survival. In particular, the roles of Fas in immune cells are complex and critical for the maintenance of immune tolerance. The precise pathways and unique functions associated with Fas/FasL-mediated signaling in the immune system are known. The dual character of Fas/FasL-mediated immune regulation that induces beneficial or harmful effects is associated with the onset or development of immune disorders. Studies on mutations in genes encoding Fas and FasL gene of humans and mice contributed to our understanding of the pathogenesis of autoimmune diseases. Here, we review the opposing functions of Fas/FasL-mediated signaling, bilateral effects of Fas/FasL on in immune cells, and complex pathogenesis of autoimmunity mediated by Fas/FasL.
Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance
Yamada, Akiko; Arakaki, Rieko; Saito, Masako; Kudo, Yasusei; Ishimaru, Naozumi
2017-01-01
Fas-mediated apoptosis contributes to physiological and pathological cellular processes, such as differentiation and survival. In particular, the roles of Fas in immune cells are complex and critical for the maintenance of immune tolerance. The precise pathways and unique functions associated with Fas/FasL-mediated signaling in the immune system are known. The dual character of Fas/FasL-mediated immune regulation that induces beneficial or harmful effects is associated with the onset or development of immune disorders. Studies on mutations in genes encoding Fas and FasL gene of humans and mice contributed to our understanding of the pathogenesis of autoimmune diseases. Here, we review the opposing functions of Fas/FasL-mediated signaling, bilateral effects of Fas/FasL on in immune cells, and complex pathogenesis of autoimmunity mediated by Fas/FasL. PMID:28424702
Mitochondrial function, ornamentation, and immunocompetence.
Koch, Rebecca E; Josefson, Chloe C; Hill, Geoffrey E
2017-08-01
Understanding the mechanisms that link ornamental displays and individual condition is key to understanding the evolution and function of ornaments. Immune function is an aspect of individual quality that is often associated with the expression of ornamentation, but a general explanation for why the expression of some ornaments seems to be consistently linked to immunocompetence remains elusive. We propose that condition-dependent ornaments may be linked to key aspects of immunocompetence through co-dependence on mitochondrial function. Mitochondrial involvement in immune function is rarely considered outside of the biomedical literature, but the role of mitochondria as the primary energy producers of the cell and the centres of biosynthesis, the oxidative stress response, and cellular signalling place them at the hub of a variety of immune pathways. A promising new mechanistic explanation for correlations between a wide range of ornamental traits and the properties of individual quality is that mitochondrial function may be the 'shared pathway' responsible for links between ornament production and individual condition. Herein, we first review the role of mitochondria as both signal transducers and metabolic regulators of immune function. We then describe connections between hormonal pathways and mitochondria, with implications for both immune function and the expression of ornamentation. Finally, we explore the possibility that ornament expression may link directly to mitochondrial function. Considering condition-dependent traits within the framework of mitochondrial function has the potential to unify central tenets within the study of sexual selection, eco-immunology, oxidative stress ecology, stress and reproductive hormone biology, and animal physiology. © 2016 Cambridge Philosophical Society.
Sitaras, Ioannis; Rousou, Xanthoula; Peeters, Ben; de Jong, Mart C M
2016-11-04
Transmission of highly pathogenic avian influenza (HPAI) viruses in poultry flocks is associated with huge economic losses, culling of millions of birds, as well as human infections and deaths. In the cases where vaccination against avian influenza is used as a control measure, it has been found to be ineffective in preventing transmission of field strains. Reports suggest that one of the reasons for this is the use of vaccine doses much lower than the ones recommended by the manufacturer, resulting in very low levels of immunity. In a previous study, we selected for immune escape mutants using homologous polyclonal sera and used them as vaccines in transmission experiments. We concluded that provided a threshold of immunity is reached, antigenic distance between vaccine and challenge strains due to selection need not result in vaccine escape. Here, we evaluate the effect that the mutations in the haemagglutinin protein of our most antigenically-distant mutant may have in the transmission efficiency of this mutant to chickens vaccinated against the parent strain, under sub-optimal vaccination conditions resembling those often found in the field. In this study we employed reverse genetics techniques and transmission experiments to examine if the HA mutations of our most antigenically-distant mutant affect its efficiency to transmit to vaccinated chickens. In addition, we simulated sub-optimal vaccination conditions in the field, by using a very low vaccine dose. We find that the mutations in the HA protein of our most antigenically-distant mutant are not enough to allow it to evade even low levels of vaccination-induced immunity. Our results suggest that - for the antigenic distances we investigated - vaccination can reduce transmission of an antigenically-distant strain compared to the unvaccinated groups, even when low vaccine doses are used, resulting in low levels of immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.