Flight Test Validation of Optimal Input Design and Comparison to Conventional Inputs
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1997-01-01
A technique for designing optimal inputs for aerodynamic parameter estimation was flight tested on the F-18 High Angle of Attack Research Vehicle (HARV). Model parameter accuracies calculated from flight test data were compared on an equal basis for optimal input designs and conventional inputs at the same flight condition. In spite of errors in the a priori input design models and distortions of the input form by the feedback control system, the optimal inputs increased estimated parameter accuracies compared to conventional 3-2-1-1 and doublet inputs. In addition, the tests using optimal input designs demonstrated enhanced design flexibility, allowing the optimal input design technique to use a larger input amplitude to achieve further increases in estimated parameter accuracy without departing from the desired flight test condition. This work validated the analysis used to develop the optimal input designs, and demonstrated the feasibility and practical utility of the optimal input design technique.
Robust input design for nonlinear dynamic modeling of AUV.
Nouri, Nowrouz Mohammad; Valadi, Mehrdad
2017-09-01
Input design has a dominant role in developing the dynamic model of autonomous underwater vehicles (AUVs) through system identification. Optimal input design is the process of generating informative inputs that can be used to generate the good quality dynamic model of AUVs. In a problem with optimal input design, the desired input signal depends on the unknown system which is intended to be identified. In this paper, the input design approach which is robust to uncertainties in model parameters is used. The Bayesian robust design strategy is applied to design input signals for dynamic modeling of AUVs. The employed approach can design multiple inputs and apply constraints on an AUV system's inputs and outputs. Particle swarm optimization (PSO) is employed to solve the constraint robust optimization problem. The presented algorithm is used for designing the input signals for an AUV, and the estimate obtained by robust input design is compared with that of the optimal input design. According to the results, proposed input design can satisfy both robustness of constraints and optimality. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Optimization Under Uncertainty for Electronics Cooling Design
NASA Astrophysics Data System (ADS)
Bodla, Karthik K.; Murthy, Jayathi Y.; Garimella, Suresh V.
Optimization under uncertainty is a powerful methodology used in design and optimization to produce robust, reliable designs. Such an optimization methodology, employed when the input quantities of interest are uncertain, produces output uncertainties, helping the designer choose input parameters that would result in satisfactory thermal solutions. Apart from providing basic statistical information such as mean and standard deviation in the output quantities, auxiliary data from an uncertainty based optimization, such as local and global sensitivities, help the designer decide the input parameter(s) to which the output quantity of interest is most sensitive. This helps the design of experiments based on the most sensitive input parameter(s). A further crucial output of such a methodology is the solution to the inverse problem - finding the allowable uncertainty range in the input parameter(s), given an acceptable uncertainty range in the output quantity of interest...
Practical input optimization for aircraft parameter estimation experiments. Ph.D. Thesis, 1990
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1993-01-01
The object of this research was to develop an algorithm for the design of practical, optimal flight test inputs for aircraft parameter estimation experiments. A general, single pass technique was developed which allows global optimization of the flight test input design for parameter estimation using the principles of dynamic programming with the input forms limited to square waves only. Provision was made for practical constraints on the input, including amplitude constraints, control system dynamics, and selected input frequency range exclusions. In addition, the input design was accomplished while imposing output amplitude constraints required by model validity and considerations of safety during the flight test. The algorithm has multiple input design capability, with optional inclusion of a constraint that only one control move at a time, so that a human pilot can implement the inputs. It is shown that the technique can be used to design experiments for estimation of open loop model parameters from closed loop flight test data. The report includes a new formulation of the optimal input design problem, a description of a new approach to the solution, and a summary of the characteristics of the algorithm, followed by three example applications of the new technique which demonstrate the quality and expanded capabilities of the input designs produced by the new technique. In all cases, the new input design approach showed significant improvement over previous input design methods in terms of achievable parameter accuracies.
NASA Technical Reports Server (NTRS)
Meyn, Larry A.
2018-01-01
One of the goals of NASA's Revolutionary Vertical Lift Technology Project (RVLT) is to provide validated tools for multidisciplinary design, analysis and optimization (MDAO) of vertical lift vehicles. As part of this effort, the software package, RotorCraft Optimization Tools (RCOTOOLS), is being developed to facilitate incorporating key rotorcraft conceptual design codes into optimizations using the OpenMDAO multi-disciplinary optimization framework written in Python. RCOTOOLS, also written in Python, currently supports the incorporation of the NASA Design and Analysis of RotorCraft (NDARC) vehicle sizing tool and the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics II (CAMRAD II) analysis tool into OpenMDAO-driven optimizations. Both of these tools use detailed, file-based inputs and outputs, so RCOTOOLS provides software wrappers to update input files with new design variable values, execute these codes and then extract specific response variable values from the file outputs. These wrappers are designed to be flexible and easy to use. RCOTOOLS also provides several utilities to aid in optimization model development, including Graphical User Interface (GUI) tools for browsing input and output files in order to identify text strings that are used to identify specific variables as optimization input and response variables. This paper provides an overview of RCOTOOLS and its use
NASA Astrophysics Data System (ADS)
Ebrahimzadeh, Faezeh; Tsai, Jason Sheng-Hong; Chung, Min-Ching; Liao, Ying Ting; Guo, Shu-Mei; Shieh, Leang-San; Wang, Li
2017-01-01
Contrastive to Part 1, Part 2 presents a generalised optimal linear quadratic digital tracker (LQDT) with universal applications for the discrete-time (DT) systems. This includes (1) a generalised optimal LQDT design for the system with the pre-specified trajectories of the output and the control input and additionally with both the input-to-output direct-feedthrough term and known/estimated system disturbances or extra input/output signals; (2) a new optimal filter-shaped proportional plus integral state-feedback LQDT design for non-square non-minimum phase DT systems to achieve a minimum-phase-like tracking performance; (3) a new approach for computing the control zeros of the given non-square DT systems; and (4) a one-learning-epoch input-constrained iterative learning LQDT design for the repetitive DT systems.
Maximize, minimize or target - optimization for a fitted response from a designed experiment
Anderson-Cook, Christine Michaela; Cao, Yongtao; Lu, Lu
2016-04-01
One of the common goals of running and analyzing a designed experiment is to find a location in the design space that optimizes the response of interest. Depending on the goal of the experiment, we may seek to maximize or minimize the response, or set the process to hit a particular target value. After the designed experiment, a response model is fitted and the optimal settings of the input factors are obtained based on the estimated response model. Furthermore, the suggested optimal settings of the input factors are then used in the production environment.
Integrated controls design optimization
Lou, Xinsheng; Neuschaefer, Carl H.
2015-09-01
A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.
NASA Astrophysics Data System (ADS)
Cai, Xiushan; Meng, Lingxin; Zhang, Wei; Liu, Leipo
2018-03-01
We establish robustness of the predictor feedback control law to perturbations appearing at the system input for affine nonlinear systems with time-varying input delay and additive disturbances. Furthermore, it is shown that it is inverse optimal with respect to a differential game problem. All of the stability and inverse optimality proofs are based on the infinite-dimensional backstepping transformation and an appropriate Lyapunov functional. A single-link manipulator subject to input delays and disturbances is given to illustrate the validity of the proposed method.
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1995-01-01
Flight test maneuvers are specified for the F-18 High Alpha Research Vehicle (HARV). The maneuvers were designed for open loop parameter identification purposes, specifically for optimal input design validation at 5 degrees angle of attack, identification of individual strake effectiveness at 40 and 50 degrees angle of attack, and study of lateral dynamics and lateral control effectiveness at 40 and 50 degrees angle of attack. Each maneuver is to be realized by applying square wave inputs to specific control effectors using the On-Board Excitation System (OBES). Maneuver descriptions and complete specifications of the time/amplitude points define each input are included, along with plots of the input time histories.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan
2017-01-01
This paper presents a new adaptive control approach that involves a performance optimization objective. The problem is cast as a multi-objective optimal control. The control synthesis involves the design of a performance optimizing controller from a subset of control inputs. The effect of the performance optimizing controller is to introduce an uncertainty into the system that can degrade tracking of the reference model. An adaptive controller from the remaining control inputs is designed to reduce the effect of the uncertainty while maintaining a notion of performance optimization in the adaptive control system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frazier, Christopher Rawls; Durfee, Justin David; Bandlow, Alisa
The Contingency Contractor Optimization Tool – Prototype (CCOT-P) database is used to store input and output data for the linear program model described in [1]. The database allows queries to retrieve this data and updating and inserting new input data.
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Mukhopadhyay, V.
1983-01-01
A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two-input/two-output drone flight control system.
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
This paper presents a study on the optimization of systems with structured uncertainties, whose inputs and outputs can be exhaustively described in the probabilistic sense. By propagating the uncertainty from the input to the output in the space of the probability density functions and the moments, optimization problems that pursue performance, robustness and reliability based designs are studied. Be specifying the desired outputs in terms of desired probability density functions and then in terms of meaningful probabilistic indices, we settle a computationally viable framework for solving practical optimization problems. Applications to static optimization and stability control are used to illustrate the relevance of incorporating uncertainty in the early stages of the design. Several examples that admit a full probabilistic description of the output in terms of the design variables and the uncertain inputs are used to elucidate the main features of the generic problem and its solution. Extensions to problems that do not admit closed form solutions are also evaluated. Concrete evidence of the importance of using a consistent probabilistic formulation of the optimization problem and a meaningful probabilistic description of its solution is provided in the examples. In the stability control problem the analysis shows that standard deterministic approaches lead to designs with high probability of running into instability. The implementation of such designs can indeed have catastrophic consequences.
Real-time PCR probe optimization using design of experiments approach.
Wadle, S; Lehnert, M; Rubenwolf, S; Zengerle, R; von Stetten, F
2016-03-01
Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3-14 target copies/10 μl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7-11 copies/10 μl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times.
A Measure Approximation for Distributionally Robust PDE-Constrained Optimization Problems
Kouri, Drew Philip
2017-12-19
In numerous applications, scientists and engineers acquire varied forms of data that partially characterize the inputs to an underlying physical system. This data is then used to inform decisions such as controls and designs. Consequently, it is critical that the resulting control or design is robust to the inherent uncertainties associated with the unknown probabilistic characterization of the model inputs. Here in this work, we consider optimal control and design problems constrained by partial differential equations with uncertain inputs. We do not assume a known probabilistic model for the inputs, but rather we formulate the problem as a distributionally robustmore » optimization problem where the outer minimization problem determines the control or design, while the inner maximization problem determines the worst-case probability measure that matches desired characteristics of the data. We analyze the inner maximization problem in the space of measures and introduce a novel measure approximation technique, based on the approximation of continuous functions, to discretize the unknown probability measure. Finally, we prove consistency of our approximated min-max problem and conclude with numerical results.« less
Computer simulation and design of a three degree-of-freedom shoulder module
NASA Technical Reports Server (NTRS)
Marco, David; Torfason, L.; Tesar, Delbert
1989-01-01
An in-depth kinematic analysis of a three degree of freedom fully-parallel robotic shoulder module is presented. The major goal of the analysis is to determine appropriate link dimensions which will provide a maximized workspace along with desirable input to output velocity and torque amplification. First order kinematic influence coefficients which describe the output velocity properties in terms of actuator motions provide a means to determine suitable geometric dimensions for the device. Through the use of computer simulation, optimal or near optimal link dimensions based on predetermined design criteria are provided for two different structural designs of the mechanism. The first uses three rotational inputs to control the output motion. The second design involves the use of four inputs, actuating any three inputs for a given position of the output link. Alternative actuator placements are examined to determine the most effective approach to control the output motion.
NASA Technical Reports Server (NTRS)
Perri, Todd A.; Mckillip, R. M., Jr.; Curtiss, H. C., Jr.
1987-01-01
The development and methodology is presented for development of full-authority implicit model-following and explicit model-following optimal controllers for use on helicopters operating in the Nap-of-the Earth (NOE) environment. Pole placement, input-output frequency response, and step input response were used to evaluate handling qualities performance. The pilot was equipped with velocity-command inputs. A mathematical/computational trajectory optimization method was employed to evaluate the ability of each controller to fly NOE maneuvers. The method determines the optimal swashplate and thruster input histories from the helicopter's dynamics and the prescribed geometry and desired flying qualities of the maneuver. Three maneuvers were investigated for both the implicit and explicit controllers with and without auxiliary propulsion installed: pop-up/dash/descent, bob-up at 40 knots, and glideslope. The explicit controller proved to be superior to the implicit controller in performance and ease of design.
Optimized mode-field adapter for low-loss fused fiber bundle signal and pump combiners
NASA Astrophysics Data System (ADS)
Koška, Pavel; Baravets, Yauhen; Peterka, Pavel; Písařík, Michael; Bohata, Jan
2015-03-01
In our contribution we report novel mode field adapter incorporated inside bundled tapered pump and signal combiner. Pump and signal combiners are crucial component of contemporary double clad high power fiber lasers. Proposed combiner allows simultaneous matching to single mode core on input and output. We used advanced optimization techniques to match the combiner to a single mode core simultaneously on input and output and to minimalize losses of the combiner signal branch. We designed two arrangements of combiners' mode field adapters. Our numerical simulations estimates losses in signal branches of optimized combiners of 0.23 dB for the first design and 0.16 dB for the second design for SMF-28 input fiber and SMF-28 matched output double clad fiber for the wavelength of 2000 nm. The splice losses of the actual combiner are expected to be even lower thanks to dopant diffusion during the splicing process.
Šiljić Tomić, Aleksandra; Antanasijević, Davor; Ristić, Mirjana; Perić-Grujić, Aleksandra; Pocajt, Viktor
2018-04-01
This paper presents an application of experimental design for the optimization of artificial neural network (ANN) for the prediction of dissolved oxygen (DO) content in the Danube River. The aim of this research was to obtain a more reliable ANN model that uses fewer monitoring records, by simultaneous optimization of the following model parameters: number of monitoring sites, number of historical monitoring data (expressed in years), and number of input water quality parameters used. Box-Behnken three-factor at three levels experimental design was applied for simultaneous spatial, temporal, and input variables optimization of the ANN model. The prediction of DO was performed using a feed-forward back-propagation neural network (BPNN), while the selection of most important inputs was done off-model using multi-filter approach that combines a chi-square ranking in the first step with a correlation-based elimination in the second step. The contour plots of absolute and relative error response surfaces were utilized to determine the optimal values of design factors. From the contour plots, two BPNN models that cover entire Danube flow through Serbia are proposed: an upstream model (BPNN-UP) that covers 8 monitoring sites prior to Belgrade and uses 12 inputs measured in the 7-year period and a downstream model (BPNN-DOWN) which covers 9 monitoring sites and uses 11 input parameters measured in the 6-year period. The main difference between the two models is that BPNN-UP utilizes inputs such as BOD, P, and PO 4 3- , which is in accordance with the fact that this model covers northern part of Serbia (Vojvodina Autonomous Province) which is well-known for agricultural production and extensive use of fertilizers. Both models have shown very good agreement between measured and predicted DO (with R 2 ≥ 0.86) and demonstrated that they can effectively forecast DO content in the Danube River.
NASA Astrophysics Data System (ADS)
Whitehead, James Joshua
The analysis documented herein provides an integrated approach for the conduct of optimization under uncertainty (OUU) using Monte Carlo Simulation (MCS) techniques coupled with response surface-based methods for characterization of mixture-dependent variables. This novel methodology provides an innovative means of conducting optimization studies under uncertainty in propulsion system design. Analytic inputs are based upon empirical regression rate information obtained from design of experiments (DOE) mixture studies utilizing a mixed oxidizer hybrid rocket concept. Hybrid fuel regression rate was selected as the target response variable for optimization under uncertainty, with maximization of regression rate chosen as the driving objective. Characteristic operational conditions and propellant mixture compositions from experimental efforts conducted during previous foundational work were combined with elemental uncertainty estimates as input variables. Response surfaces for mixture-dependent variables and their associated uncertainty levels were developed using quadratic response equations incorporating single and two-factor interactions. These analysis inputs, response surface equations and associated uncertainty contributions were applied to a probabilistic MCS to develop dispersed regression rates as a function of operational and mixture input conditions within design space. Illustrative case scenarios were developed and assessed using this analytic approach including fully and partially constrained operational condition sets over all of design mixture space. In addition, optimization sets were performed across an operationally representative region in operational space and across all investigated mixture combinations. These scenarios were selected as representative examples relevant to propulsion system optimization, particularly for hybrid and solid rocket platforms. Ternary diagrams, including contour and surface plots, were developed and utilized to aid in visualization. The concept of Expanded-Durov diagrams was also adopted and adapted to this study to aid in visualization of uncertainty bounds. Regions of maximum regression rate and associated uncertainties were determined for each set of case scenarios. Application of response surface methodology coupled with probabilistic-based MCS allowed for flexible and comprehensive interrogation of mixture and operating design space during optimization cases. Analyses were also conducted to assess sensitivity of uncertainty to variations in key elemental uncertainty estimates. The methodology developed during this research provides an innovative optimization tool for future propulsion design efforts.
Aerospace engineering design by systematic decomposition and multilevel optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Barthelemy, J. F. M.; Giles, G. L.
1984-01-01
A method for systematic analysis and optimization of large engineering systems, by decomposition of a large task into a set of smaller subtasks that is solved concurrently is described. The subtasks may be arranged in hierarchical levels. Analyses are carried out in each subtask using inputs received from other subtasks, and are followed by optimizations carried out from the bottom up. Each optimization at the lower levels is augmented by analysis of its sensitivity to the inputs received from other subtasks to account for the couplings among the subtasks in a formal manner. The analysis and optimization operations alternate iteratively until they converge to a system design whose performance is maximized with all constraints satisfied. The method, which is still under development, is tentatively validated by test cases in structural applications and an aircraft configuration optimization.
NASA Astrophysics Data System (ADS)
Clark, P. E.; Rilee, M. L.; Curtis, S. A.; Bailin, S.
2012-03-01
We are developing Frontier, a highly adaptable, stably reconfigurable, web-accessible intelligent decision engine capable of optimizing design as well as the simulating operation of complex systems in response to evolving needs and environment.
Robustness-Based Design Optimization Under Data Uncertainty
NASA Technical Reports Server (NTRS)
Zaman, Kais; McDonald, Mark; Mahadevan, Sankaran; Green, Lawrence
2010-01-01
This paper proposes formulations and algorithms for design optimization under both aleatory (i.e., natural or physical variability) and epistemic uncertainty (i.e., imprecise probabilistic information), from the perspective of system robustness. The proposed formulations deal with epistemic uncertainty arising from both sparse and interval data without any assumption about the probability distributions of the random variables. A decoupled approach is proposed in this paper to un-nest the robustness-based design from the analysis of non-design epistemic variables to achieve computational efficiency. The proposed methods are illustrated for the upper stage design problem of a two-stage-to-orbit (TSTO) vehicle, where the information on the random design inputs are only available as sparse point and/or interval data. As collecting more data reduces uncertainty but increases cost, the effect of sample size on the optimality and robustness of the solution is also studied. A method is developed to determine the optimal sample size for sparse point data that leads to the solutions of the design problem that are least sensitive to variations in the input random variables.
The Development and Use of a Flight Optimization System Model of a C-130E Transport Aircraft
NASA Technical Reports Server (NTRS)
Desch, Jeremy D.
1995-01-01
The Systems Analysis Branch at NASA Langley Research Center conducts a variety of aircraft design and analyses studies. These studies include the prediction of characteristics of a particular conceptual design, analyses of designs that already exist, and assessments of the impact of technology on current and future aircraft. The FLight OPtimization System (FLOPS) is a tool used for aircraft systems analysis and design. A baseline input model of a Lockheed C-130E was generated for the Flight Optimization System. This FLOPS model can be used to conduct design-trade studies and technology impact assessments. The input model was generated using standard input data such as basic geometries and mission specifications. All of the other data needed to determine the airplane performance is computed internally by FLOPS. The model was then calibrated to reproduce the actual airplane performance from flight test data. This allows a systems analyzer to change a specific item of geometry or mission definition in the FLOPS input file and evaluate the resulting change in performance from the output file. The baseline model of the C-130E was used to analyze the effects of implementing upper wing surface blowing on the airplane. This involved removing the turboprop engines that were on the C-130E and replacing them with turbofan engines. An investigation of the improvements in airplane performance with the new engines could be conducted within the Flight Optimization System. Although a thorough analysis was not completed, the impact of this change on basic mission performance was investigated.
Wireless Sensor Network Optimization: Multi-Objective Paradigm.
Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad
2015-07-20
Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.
Thermal/structural Tailoring of Engine Blades (T/STAEBL) User's Manual
NASA Technical Reports Server (NTRS)
Brown, K. W.; Clevenger, W. B.; Arel, J. D.
1994-01-01
The Thermal/Structural Tailoring of Engine Blades (T/STAEBL) system is a family of computer programs executed by a control program. The T/STAEBL system performs design optimizations of cooled, hollow turbine blades and vanes. This manual contains an overview of the system, fundamentals of the data block structure, and detailed descriptions of the inputs required by the optimizer. Additionally, the thermal analysis input requirements are described as well as the inputs required to perform a finite element blade vibrations analysis.
Zhang, Huaguang; Cui, Lili; Zhang, Xin; Luo, Yanhong
2011-12-01
In this paper, a novel data-driven robust approximate optimal tracking control scheme is proposed for unknown general nonlinear systems by using the adaptive dynamic programming (ADP) method. In the design of the controller, only available input-output data is required instead of known system dynamics. A data-driven model is established by a recurrent neural network (NN) to reconstruct the unknown system dynamics using available input-output data. By adding a novel adjustable term related to the modeling error, the resultant modeling error is first guaranteed to converge to zero. Then, based on the obtained data-driven model, the ADP method is utilized to design the approximate optimal tracking controller, which consists of the steady-state controller and the optimal feedback controller. Further, a robustifying term is developed to compensate for the NN approximation errors introduced by implementing the ADP method. Based on Lyapunov approach, stability analysis of the closed-loop system is performed to show that the proposed controller guarantees the system state asymptotically tracking the desired trajectory. Additionally, the obtained control input is proven to be close to the optimal control input within a small bound. Finally, two numerical examples are used to demonstrate the effectiveness of the proposed control scheme.
Processor design optimization methodology for synthetic vision systems
NASA Astrophysics Data System (ADS)
Wren, Bill; Tarleton, Norman G.; Symosek, Peter F.
1997-06-01
Architecture optimization requires numerous inputs from hardware to software specifications. The task of varying these input parameters to obtain an optimal system architecture with regard to cost, specified performance and method of upgrade considerably increases the development cost due to the infinitude of events, most of which cannot even be defined by any simple enumeration or set of inequalities. We shall address the use of a PC-based tool using genetic algorithms to optimize the architecture for an avionics synthetic vision system, specifically passive millimeter wave system implementation.
CometBoards Users Manual Release 1.0
NASA Technical Reports Server (NTRS)
Guptill, James D.; Coroneos, Rula M.; Patnaik, Surya N.; Hopkins, Dale A.; Berke, Lazlo
1996-01-01
Several nonlinear mathematical programming algorithms for structural design applications are available at present. These include the sequence of unconstrained minimizations technique, the method of feasible directions, and the sequential quadratic programming technique. The optimality criteria technique and the fully utilized design concept are two other structural design methods. A project was undertaken to bring all these design methods under a common computer environment so that a designer can select any one of these tools that may be suitable for his/her application. To facilitate selection of a design algorithm, to validate and check out the computer code, and to ascertain the relative merits of the design tools, modest finite element structural analysis programs based on the concept of stiffness and integrated force methods have been coupled to each design method. The code that contains both these design and analysis tools, by reading input information from analysis and design data files, can cast the design of a structure as a minimum-weight optimization problem. The code can then solve it with a user-specified optimization technique and a user-specified analysis method. This design code is called CometBoards, which is an acronym for Comparative Evaluation Test Bed of Optimization and Analysis Routines for the Design of Structures. This manual describes for the user a step-by-step procedure for setting up the input data files and executing CometBoards to solve a structural design problem. The manual includes the organization of CometBoards; instructions for preparing input data files; the procedure for submitting a problem; illustrative examples; and several demonstration problems. A set of 29 structural design problems have been solved by using all the optimization methods available in CometBoards. A summary of the optimum results obtained for these problems is appended to this users manual. CometBoards, at present, is available for Posix-based Cray and Convex computers, Iris and Sun workstations, and the VM/CMS system.
NASA Astrophysics Data System (ADS)
Chen, Jing; Qiu, Xiaojie; Yin, Cunyi; Jiang, Hao
2018-02-01
An efficient method to design the broadband gain-flattened Raman fiber amplifier with multiple pumps is proposed based on least squares support vector regression (LS-SVR). A multi-input multi-output LS-SVR model is introduced to replace the complicated solving process of the nonlinear coupled Raman amplification equation. The proposed approach contains two stages: offline training stage and online optimization stage. During the offline stage, the LS-SVR model is trained. Owing to the good generalization capability of LS-SVR, the net gain spectrum can be directly and accurately obtained when inputting any combination of the pump wavelength and power to the well-trained model. During the online stage, we incorporate the LS-SVR model into the particle swarm optimization algorithm to find the optimal pump configuration. The design results demonstrate that the proposed method greatly shortens the computation time and enhances the efficiency of the pump parameter optimization for Raman fiber amplifier design.
NASA Technical Reports Server (NTRS)
Broussard, J. R.; Halyo, N.
1984-01-01
This report contains the development of a digital outer-loop three dimensional radio navigation (3-D RNAV) flight control system for a small commercial jet transport. The outer-loop control system is designed using optimal stochastic limited state feedback techniques. Options investigated using the optimal limited state feedback approach include integrated versus hierarchical control loop designs, 20 samples per second versus 5 samples per second outer-loop operation and alternative Type 1 integration command errors. Command generator tracking techniques used in the digital control design enable the jet transport to automatically track arbitrary curved flight paths generated by waypoints. The performance of the design is demonstrated using detailed nonlinear aircraft simulations in the terminal area, frequency domain multi-input sigma plots, frequency domain single-input Bode plots and closed-loop poles. The response of the system to a severe wind shear during a landing approach is also presented.
On the use of ANN interconnection weights in optimal structural design
NASA Technical Reports Server (NTRS)
Hajela, P.; Szewczyk, Z.
1992-01-01
The present paper describes the use of interconnection weights of a multilayer, feedforward network, to extract information pertinent to the mapping space that the network is assumed to represent. In particular, these weights can be used to determine an appropriate network architecture, and an adequate number of training patterns (input-output pairs) have been used for network training. The weight analysis also provides an approach to assess the influence of each input parameter on a selected output component. The paper shows the significance of this information in decomposition driven optimal design.
Approach for Input Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives
NASA Technical Reports Server (NTRS)
Putko, Michele M.; Taylor, Arthur C., III; Newman, Perry A.; Green, Lawrence L.
2002-01-01
An implementation of the approximate statistical moment method for uncertainty propagation and robust optimization for quasi 3-D Euler CFD code is presented. Given uncertainties in statistically independent, random, normally distributed input variables, first- and second-order statistical moment procedures are performed to approximate the uncertainty in the CFD output. Efficient calculation of both first- and second-order sensitivity derivatives is required. In order to assess the validity of the approximations, these moments are compared with statistical moments generated through Monte Carlo simulations. The uncertainties in the CFD input variables are also incorporated into a robust optimization procedure. For this optimization, statistical moments involving first-order sensitivity derivatives appear in the objective function and system constraints. Second-order sensitivity derivatives are used in a gradient-based search to successfully execute a robust optimization. The approximate methods used throughout the analyses are found to be valid when considering robustness about input parameter mean values.
Liu, Derong; Yang, Xiong; Wang, Ding; Wei, Qinglai
2015-07-01
The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the inability to identify accurately the uncertainties motivates the design of stabilizing controller based on reinforcement-learning (RL) methods. In this paper, a novel RL-based robust adaptive control algorithm is developed for a class of continuous-time uncertain nonlinear systems subject to input constraints. The robust control problem is converted to the constrained optimal control problem with appropriately selecting value functions for the nominal system. Distinct from typical action-critic dual networks employed in RL, only one critic neural network (NN) is constructed to derive the approximate optimal control. Meanwhile, unlike initial stabilizing control often indispensable in RL, there is no special requirement imposed on the initial control. By utilizing Lyapunov's direct method, the closed-loop optimal control system and the estimated weights of the critic NN are proved to be uniformly ultimately bounded. In addition, the derived approximate optimal control is verified to guarantee the uncertain nonlinear system to be stable in the sense of uniform ultimate boundedness. Two simulation examples are provided to illustrate the effectiveness and applicability of the present approach.
A new design approach to innovative spectrometers. Case study: TROPOLITE
NASA Astrophysics Data System (ADS)
Volatier, Jean-Baptiste; Baümer, Stefan; Kruizinga, Bob; Vink, Rob
2014-05-01
Designing a novel optical system is a nested iterative process. The optimization loop, from a starting point to final system is already mostly automated. However this loop is part of a wider loop which is not. This wider loop starts with an optical specification and ends with a manufacturability assessment. When designing a new spectrometer with emphasis on weight and cost, numerous iterations between the optical- and mechanical designer are inevitable. The optical designer must then be able to reliably produce optical designs based on new input gained from multidisciplinary studies. This paper presents a procedure that can automatically generate new starting points based on any kind of input or new constraint that might arise. These starting points can then be handed over to a generic optimization routine to make the design tasks extremely efficient. The optical designer job is then not to design optical systems, but to meta-design a procedure that produces optical systems paving the way for system level optimization. We present here this procedure and its application to the design of TROPOLITE a lightweight push broom imaging spectrometer.
NASA Technical Reports Server (NTRS)
Stewart, Elwood C.
1961-01-01
The determination of optimum filtering characteristics for guidance system design is generally a tedious process which cannot usually be carried out in general terms. In this report a simple explicit solution is given which is applicable to many different types of problems. It is shown to be applicable to problems which involve optimization of constant-coefficient guidance systems and time-varying homing type systems for several stationary and nonstationary inputs. The solution is also applicable to off-design performance, that is, the evaluation of system performance for inputs for which the system was not specifically optimized. The solution is given in generalized form in terms of the minimum theoretical error, the optimum transfer functions, and the optimum transient response. The effects of input signal, contaminating noise, and limitations on the response are included. From the results given, it is possible in an interception problem, for example, to rapidly assess the effects on minimum theoretical error of such factors as target noise and missile acceleration. It is also possible to answer important questions regarding the effect of type of target maneuver on optimum performance.
Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary Algorithm
NASA Technical Reports Server (NTRS)
Oyama, Akira; Liou, Meng-Sing
2001-01-01
A design optimization method for turbopumps of cryogenic rocket engines has been developed. Multiobjective Evolutionary Algorithm (MOEA) is used for multiobjective pump design optimizations. Performances of design candidates are evaluated by using the meanline pump flow modeling method based on the Euler turbine equation coupled with empirical correlations for rotor efficiency. To demonstrate the feasibility of the present approach, a single stage centrifugal pump design and multistage pump design optimizations are presented. In both cases, the present method obtains very reasonable Pareto-optimal solutions that include some designs outperforming the original design in total head while reducing input power by one percent. Detailed observation of the design results also reveals some important design criteria for turbopumps in cryogenic rocket engines. These results demonstrate the feasibility of the EA-based design optimization method in this field.
Liu, Yan-Jun; Tong, Shaocheng
2016-11-01
In this paper, we propose an optimal control scheme-based adaptive neural network design for a class of unknown nonlinear discrete-time systems. The controlled systems are in a block-triangular multi-input-multi-output pure-feedback structure, i.e., there are both state and input couplings and nonaffine functions to be included in every equation of each subsystem. The design objective is to provide a control scheme, which not only guarantees the stability of the systems, but also achieves optimal control performance. The main contribution of this paper is that it is for the first time to achieve the optimal performance for such a class of systems. Owing to the interactions among subsystems, making an optimal control signal is a difficult task. The design ideas are that: 1) the systems are transformed into an output predictor form; 2) for the output predictor, the ideal control signal and the strategic utility function can be approximated by using an action network and a critic network, respectively; and 3) an optimal control signal is constructed with the weight update rules to be designed based on a gradient descent method. The stability of the systems can be proved based on the difference Lyapunov method. Finally, a numerical simulation is given to illustrate the performance of the proposed scheme.
Toward a More Efficient Implementation of Antifibrillation Pacing
Wilson, Dan; Moehlis, Jeff
2016-01-01
We devise a methodology to determine an optimal pattern of inputs to synchronize firing patterns of cardiac cells which only requires the ability to measure action potential durations in individual cells. In numerical bidomain simulations, the resulting synchronizing inputs are shown to terminate spiral waves with a higher probability than comparable inputs that do not synchronize the cells as strongly. These results suggest that designing stimuli which promote synchronization in cardiac tissue could improve the success rate of defibrillation, and point towards novel strategies for optimizing antifibrillation pacing. PMID:27391010
NASA Technical Reports Server (NTRS)
Generazio, Edward R. (Inventor)
2012-01-01
A method of validating a probability of detection (POD) testing system using directed design of experiments (DOE) includes recording an input data set of observed hit and miss or analog data for sample components as a function of size of a flaw in the components. The method also includes processing the input data set to generate an output data set having an optimal class width, assigning a case number to the output data set, and generating validation instructions based on the assigned case number. An apparatus includes a host machine for receiving the input data set from the testing system and an algorithm for executing DOE to validate the test system. The algorithm applies DOE to the input data set to determine a data set having an optimal class width, assigns a case number to that data set, and generates validation instructions based on the case number.
Wireless Sensor Network Optimization: Multi-Objective Paradigm
Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad
2015-01-01
Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271
TRANDESNF: A computer program for transonic airfoil design and analysis in nonuniform flow
NASA Technical Reports Server (NTRS)
Chang, J. F.; Lan, C. Edward
1987-01-01
The use of a transonic airfoil code for analysis, inverse design, and direct optimization of an airfoil immersed in propfan slipstream is described. A summary of the theoretical method, program capabilities, input format, output variables, and program execution are described. Input data of sample test cases and the corresponding output are given.
A Neural Network Aero Design System for Advanced Turbo-Engines
NASA Technical Reports Server (NTRS)
Sanz, Jose M.
1999-01-01
An inverse design method calculates the blade shape that produces a prescribed input pressure distribution. By controlling this input pressure distribution the aerodynamic design objectives can easily be met. Because of the intrinsic relationship between pressure distribution and airfoil physical properties, a Neural Network can be trained to choose the optimal pressure distribution that would meet a set of physical requirements. Neural network systems have been attempted in the context of direct design methods. From properties ascribed to a set of blades the neural network is trained to infer the properties of an 'interpolated' blade shape. The problem is that, especially in transonic regimes where we deal with intrinsically non linear and ill posed problems, small perturbations of the blade shape can produce very large variations of the flow parameters. It is very unlikely that, under these circumstances, a neural network will be able to find the proper solution. The unique situation in the present method is that the neural network can be trained to extract the required input pressure distribution from a database of pressure distributions while the inverse method will still compute the exact blade shape that corresponds to this 'interpolated' input pressure distribution. In other words, the interpolation process is transferred to a smoother problem, namely, finding what pressure distribution would produce the required flow conditions and, once this is done, the inverse method will compute the exact solution for this problem. The use of neural network is, in this context, highly related to the use of proper optimization techniques. The optimization is used essentially as an automation procedure to force the input pressure distributions to achieve the required aero and structural design parameters. A multilayered feed forward network with back-propagation is used to train the system for pattern association and classification.
Radac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M
2015-11-01
This paper proposes a novel model-free trajectory tracking of multiple-input multiple-output (MIMO) systems by the combination of iterative learning control (ILC) and primitives. The optimal trajectory tracking solution is obtained in terms of previously learned solutions to simple tasks called primitives. The library of primitives that are stored in memory consists of pairs of reference input/controlled output signals. The reference input primitives are optimized in a model-free ILC framework without using knowledge of the controlled process. The guaranteed convergence of the learning scheme is built upon a model-free virtual reference feedback tuning design of the feedback decoupling controller. Each new complex trajectory to be tracked is decomposed into the output primitives regarded as basis functions. The optimal reference input for the control system to track the desired trajectory is next recomposed from the reference input primitives. This is advantageous because the optimal reference input is computed straightforward without the need to learn from repeated executions of the tracking task. In addition, the optimization problem specific to trajectory tracking of square MIMO systems is decomposed in a set of optimization problems assigned to each separate single-input single-output control channel that ensures a convenient model-free decoupling. The new model-free primitive-based ILC approach is capable of planning, reasoning, and learning. A case study dealing with the model-free control tuning for a nonlinear aerodynamic system is included to validate the new approach. The experimental results are given.
Control design methods for floating wind turbines for optimal disturbance rejection
NASA Astrophysics Data System (ADS)
Lemmer, Frank; Schlipf, David; Cheng, Po Wen
2016-09-01
An analysis of the floating wind turbine as a multi-input-multi-output system investigating the effect of the control inputs on the system outputs is shown. These effects are compared to the ones of the disturbances from wind and waves in order to give insights for the selection of the control layout. The frequencies with the largest impact on the outputs due to limited effect of the controlled variables are identified. Finally, an optimal controller is designed as a benchmark and compared to a conventional PI-controller using only the rotor speed as input. Here, the previously found system properties, especially the difficulties to damp responses to wave excitation, are confirmed and verified through a spectral analysis with realistic environmental conditions. This comparison also assesses the quality of the employed simplified linear simulation model compared to the nonlinear model and shows that such an efficient frequency-domain evaluation for control design is feasible.
Topology and boundary shape optimization as an integrated design tool
NASA Technical Reports Server (NTRS)
Bendsoe, Martin Philip; Rodrigues, Helder Carrico
1990-01-01
The optimal topology of a two dimensional linear elastic body can be computed by regarding the body as a domain of the plane with a high density of material. Such an optimal topology can then be used as the basis for a shape optimization method that computes the optimal form of the boundary curves of the body. This results in an efficient and reliable design tool, which can be implemented via common FEM mesh generator and CAD type input-output facilities.
Bayesian cross-entropy methodology for optimal design of validation experiments
NASA Astrophysics Data System (ADS)
Jiang, X.; Mahadevan, S.
2006-07-01
An important concern in the design of validation experiments is how to incorporate the mathematical model in the design in order to allow conclusive comparisons of model prediction with experimental output in model assessment. The classical experimental design methods are more suitable for phenomena discovery and may result in a subjective, expensive, time-consuming and ineffective design that may adversely impact these comparisons. In this paper, an integrated Bayesian cross-entropy methodology is proposed to perform the optimal design of validation experiments incorporating the computational model. The expected cross entropy, an information-theoretic distance between the distributions of model prediction and experimental observation, is defined as a utility function to measure the similarity of two distributions. A simulated annealing algorithm is used to find optimal values of input variables through minimizing or maximizing the expected cross entropy. The measured data after testing with the optimum input values are used to update the distribution of the experimental output using Bayes theorem. The procedure is repeated to adaptively design the required number of experiments for model assessment, each time ensuring that the experiment provides effective comparison for validation. The methodology is illustrated for the optimal design of validation experiments for a three-leg bolted joint structure and a composite helicopter rotor hub component.
Aero/structural tailoring of engine blades (AERO/STAEBL)
NASA Technical Reports Server (NTRS)
Brown, K. W.
1988-01-01
This report describes the Aero/Structural Tailoring of Engine Blades (AERO/STAEBL) program, which is a computer code used to perform engine fan and compressor blade aero/structural numerical optimizations. These optimizations seek a blade design of minimum operating cost that satisfies realistic blade design constraints. This report documents the overall program (i.e., input, optimization procedures, approximate analyses) and also provides a detailed description of the validation test cases.
Robust Controller for Turbulent and Convective Boundary Layers
2006-08-01
filter and an optimal regulator. The Kalman filter equation and the optimal regulator equation corresponding to the state-space equations, (2.20), are...separate steady-state algebraic Riccati equations. The Kalman filter is used here as a state observer rather than as an estimator since no noises are...2001) which will not be repeated here. For robustness, in the design, the Kalman filter input matrix G has been set equal to the control input
Design of off-statistics axial-flow fans by means of vortex law optimization
NASA Astrophysics Data System (ADS)
Lazari, Andrea; Cattanei, Andrea
2014-12-01
Off-statistics input data sets are common in axial-flow fans design and may easily result in some violation of the requirements of a good aerodynamic blade design. In order to circumvent this problem, in the present paper, a solution to the radial equilibrium equation is found which minimizes the outlet kinetic energy and fulfills the aerodynamic constraints, thus ensuring that the resulting blade has acceptable aerodynamic performance. The presented method is based on the optimization of a three-parameters vortex law and of the meridional channel size. The aerodynamic quantities to be employed as constraints are individuated and their suitable ranges of variation are proposed. The method is validated by means of a design with critical input data values and CFD analysis. Then, by means of systematic computations with different input data sets, some correlations and charts are obtained which are analogous to classic correlations based on statistical investigations on existing machines. Such new correlations help size a fan of given characteristics as well as study the feasibility of a given design.
Overview and Software Architecture of the Copernicus Trajectory Design and Optimization System
NASA Technical Reports Server (NTRS)
Williams, Jacob; Senent, Juan S.; Ocampo, Cesar; Mathur, Ravi; Davis, Elizabeth C.
2010-01-01
The Copernicus Trajectory Design and Optimization System represents an innovative and comprehensive approach to on-orbit mission design, trajectory analysis and optimization. Copernicus integrates state of the art algorithms in optimization, interactive visualization, spacecraft state propagation, and data input-output interfaces, allowing the analyst to design spacecraft missions to all possible Solar System destinations. All of these features are incorporated within a single architecture that can be used interactively via a comprehensive GUI interface, or passively via external interfaces that execute batch processes. This paper describes the Copernicus software architecture together with the challenges associated with its implementation. Additionally, future development and planned new capabilities are discussed. Key words: Copernicus, Spacecraft Trajectory Optimization Software.
Mdluli, Thembi; Buzzard, Gregery T; Rundell, Ann E
2015-09-01
This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm's scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements.
Mdluli, Thembi; Buzzard, Gregery T.; Rundell, Ann E.
2015-01-01
This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm’s scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements. PMID:26379275
Improving stability margins in discrete-time LQG controllers
NASA Technical Reports Server (NTRS)
Oranc, B. Tarik; Phillips, Charles L.
1987-01-01
Some of the problems are discussed which are encountered in the design of discrete-time stochastic controllers for problems that may adequately be described by the Linear Quadratic Gaussian (LQG) assumptions; namely, the problems of obtaining acceptable relative stability, robustness, and disturbance rejection properties. A dynamic compensator is proposed to replace the optimal full state feedback regulator gains at steady state, provided that all states are measurable. The compensator increases the stability margins at the plant input, which may possibly be inadequate in practical applications. Though the optimal regulator has desirable properties the observer based controller as implemented with a Kalman filter, in a noisy environment, has inadequate stability margins. The proposed compensator is designed to match the return difference matrix at the plant input to that of the optimal regulator while maintaining the optimality of the state estimates as directed by the measurement noise characteristics.
Shape Optimization by Bayesian-Validated Computer-Simulation Surrogates
NASA Technical Reports Server (NTRS)
Patera, Anthony T.
1997-01-01
A nonparametric-validated, surrogate approach to optimization has been applied to the computational optimization of eddy-promoter heat exchangers and to the experimental optimization of a multielement airfoil. In addition to the baseline surrogate framework, a surrogate-Pareto framework has been applied to the two-criteria, eddy-promoter design problem. The Pareto analysis improves the predictability of the surrogate results, preserves generality, and provides a means to rapidly determine design trade-offs. Significant contributions have been made in the geometric description used for the eddy-promoter inclusions as well as to the surrogate framework itself. A level-set based, geometric description has been developed to define the shape of the eddy-promoter inclusions. The level-set technique allows for topology changes (from single-body,eddy-promoter configurations to two-body configurations) without requiring any additional logic. The continuity of the output responses for input variations that cross the boundary between topologies has been demonstrated. Input-output continuity is required for the straightforward application of surrogate techniques in which simplified, interpolative models are fitted through a construction set of data. The surrogate framework developed previously has been extended in a number of ways. First, the formulation for a general, two-output, two-performance metric problem is presented. Surrogates are constructed and validated for the outputs. The performance metrics can be functions of both outputs, as well as explicitly of the inputs, and serve to characterize the design preferences. By segregating the outputs and the performance metrics, an additional level of flexibility is provided to the designer. The validated outputs can be used in future design studies and the error estimates provided by the output validation step still apply, and require no additional appeals to the expensive analysis. Second, a candidate-based a posteriori error analysis capability has been developed which provides probabilistic error estimates on the true performance for a design randomly selected near the surrogate-predicted optimal design.
Optimal design and uncertainty quantification in blood flow simulations for congenital heart disease
NASA Astrophysics Data System (ADS)
Marsden, Alison
2009-11-01
Recent work has demonstrated substantial progress in capabilities for patient-specific cardiovascular flow simulations. Recent advances include increasingly complex geometries, physiological flow conditions, and fluid structure interaction. However inputs to these simulations, including medical image data, catheter-derived pressures and material properties, can have significant uncertainties associated with them. For simulations to predict clinically useful and reliable output information, it is necessary to quantify the effects of input uncertainties on outputs of interest. In addition, blood flow simulation tools can now be efficiently coupled to shape optimization algorithms for surgery design applications, and these tools should incorporate uncertainty information. We present a unified framework to systematically and efficient account for uncertainties in simulations using adaptive stochastic collocation. In addition, we present a framework for derivative-free optimization of cardiovascular geometries, and layer these tools to perform optimization under uncertainty. These methods are demonstrated using simulations and surgery optimization to improve hemodynamics in pediatric cardiology applications.
Consideration of plant behaviour in optimal servo-compensator design
NASA Astrophysics Data System (ADS)
Moase, W. H.; Manzie, C.
2016-07-01
Where the most prevalent optimal servo-compensator formulations penalise the behaviour of an error system, this paper considers the problem of additionally penalising the actual states and inputs of the plant. Doing so has the advantage of enabling the penalty function to better resemble an economic cost. This is especially true of problems where control effort needs to be sensibly allocated across weakly redundant inputs or where one wishes to use penalties to soft-constrain certain states or inputs. It is shown that, although the resulting cost function grows unbounded as its horizon approaches infinity, it is possible to formulate an equivalent optimisation problem with a bounded cost. The resulting optimisation problem is similar to those in earlier studies but has an additional 'correction term' in the cost function, and a set of equality constraints that arise when there are redundant inputs. A numerical approach to solve the resulting optimisation problem is presented, followed by simulations on a micro-macro positioner that illustrate the benefits of the proposed servo-compensator design approach.
cycle inventories Economic and environmentally extended input-output analysis Sustainable design and models for sustainable design and optimization of processes, supply chains and life cycles Interactions engineering design and assessment." Doctoral dissertation, The Ohio State University, 2015. Hanes
NASA Technical Reports Server (NTRS)
Reichel, R. H.; Hague, D. S.; Jones, R. T.; Glatt, C. R.
1973-01-01
This computer program manual describes in two parts the automated combustor design optimization code AUTOCOM. The program code is written in the FORTRAN 4 language. The input data setup and the program outputs are described, and a sample engine case is discussed. The program structure and programming techniques are also described, along with AUTOCOM program analysis.
Noise in Charge Amplifiers— A gm/ID Approach
NASA Astrophysics Data System (ADS)
Alvarez, Enrique; Avila, Diego; Campillo, Hernan; Dragone, Angelo; Abusleme, Angel
2012-10-01
Charge amplifiers represent the standard solution to amplify signals from capacitive detectors in high energy physics experiments. In a typical front-end, the noise due to the charge amplifier, and particularly from its input transistor, limits the achievable resolution. The classic approach to attenuate noise effects in MOSFET charge amplifiers is to use the maximum power available, to use a minimum-length input device, and to establish the input transistor width in order to achieve the optimal capacitive matching at the input node. These conclusions, reached by analysis based on simple noise models, lead to sub-optimal results. In this work, a new approach on noise analysis for charge amplifiers based on an extension of the gm/ID methodology is presented. This method combines circuit equations and results from SPICE simulations, both valid for all operation regions and including all noise sources. The method, which allows to find the optimal operation point of the charge amplifier input device for maximum resolution, shows that the minimum device length is not necessarily the optimal, that flicker noise is responsible for the non-monotonic noise versus current function, and provides a deeper insight on the noise limits mechanism from an alternative and more design-oriented point of view.
Optimal control of nonlinear continuous-time systems in strict-feedback form.
Zargarzadeh, Hassan; Dierks, Travis; Jagannathan, Sarangapani
2015-10-01
This paper proposes a novel optimal tracking control scheme for nonlinear continuous-time systems in strict-feedback form with uncertain dynamics. The optimal tracking problem is transformed into an equivalent optimal regulation problem through a feedforward adaptive control input that is generated by modifying the standard backstepping technique. Subsequently, a neural network-based optimal control scheme is introduced to estimate the cost, or value function, over an infinite horizon for the resulting nonlinear continuous-time systems in affine form when the internal dynamics are unknown. The estimated cost function is then used to obtain the optimal feedback control input; therefore, the overall optimal control input for the nonlinear continuous-time system in strict-feedback form includes the feedforward plus the optimal feedback terms. It is shown that the estimated cost function minimizes the Hamilton-Jacobi-Bellman estimation error in a forward-in-time manner without using any value or policy iterations. Finally, optimal output feedback control is introduced through the design of a suitable observer. Lyapunov theory is utilized to show the overall stability of the proposed schemes without requiring an initial admissible controller. Simulation examples are provided to validate the theoretical results.
Xue, Dingyü; Li, Tingxue
2017-04-27
The parameter optimization method for multivariable systems is extended to the controller design problems for multiple input multiple output (MIMO) square fractional-order plants. The algorithm can be applied to search for the optimal parameters of integer-order controllers for fractional-order plants with or without time delays. Two examples are given to present the controller design procedures for MIMO fractional-order systems. Simulation studies show that the integer-order controllers designed are robust to plant gain variations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Input filter compensation for switching regulators
NASA Technical Reports Server (NTRS)
Kelkar, S. S.; Lee, F. C.
1983-01-01
A novel input filter compensation scheme for a buck regulator that eliminates the interaction between the input filter output impedance and the regulator control loop is presented. The scheme is implemented using a feedforward loop that senses the input filter state variables and uses this information to modulate the duty cycle signal. The feedforward design process presented is seen to be straightforward and the feedforward easy to implement. Extensive experimental data supported by analytical results show that significant performance improvement is achieved with the use of feedforward in the following performance categories: loop stability, audiosusceptibility, output impedance and transient response. The use of feedforward results in isolating the switching regulator from its power source thus eliminating all interaction between the regulator and equipment upstream. In addition the use of feedforward removes some of the input filter design constraints and makes the input filter design process simpler thus making it possible to optimize the input filter. The concept of feedforward compensation can also be extended to other types of switching regulators.
Automation of POST Cases via External Optimizer and "Artificial p2" Calculation
NASA Technical Reports Server (NTRS)
Dees, Patrick D.; Zwack, Mathew R.
2017-01-01
During early conceptual design of complex systems, speed and accuracy are often at odds with one another. While many characteristics of the design are fluctuating rapidly during this phase there is nonetheless a need to acquire accurate data from which to down-select designs as these decisions will have a large impact upon program life-cycle cost. Therefore enabling the conceptual designer to produce accurate data in a timely manner is tantamount to program viability. For conceptual design of launch vehicles, trajectory analysis and optimization is a large hurdle. Tools such as the industry standard Program to Optimize Simulated Trajectories (POST) have traditionally required an expert in the loop for setting up inputs, running the program, and analyzing the output. The solution space for trajectory analysis is in general non-linear and multi-modal requiring an experienced analyst to weed out sub-optimal designs in pursuit of the global optimum. While an experienced analyst presented with a vehicle similar to one which they have already worked on can likely produce optimal performance figures in a timely manner, as soon as the "experienced" or "similar" adjectives are invalid the process can become lengthy. In addition, an experienced analyst working on a similar vehicle may go into the analysis with preconceived ideas about what the vehicle's trajectory should look like which can result in sub-optimal performance being recorded. Thus, in any case but the ideal either time or accuracy can be sacrificed. In the authors' previous work a tool called multiPOST was created which captures the heuristics of a human analyst over the process of executing trajectory analysis with POST. However without the instincts of a human in the loop, this method relied upon Monte Carlo simulation to find successful trajectories. Overall the method has mixed results, and in the context of optimizing multiple vehicles it is inefficient in comparison to the method presented POST's internal optimizer functions like any other gradient-based optimizer. It has a specified variable to optimize whose value is represented as optval, a set of dependent constraints to meet with associated forms and tolerances whose value is represented as p2, and a set of independent variables known as the u-vector to modify in pursuit of optimality. Each of these quantities are calculated or manipulated at a certain phase within the trajectory. The optimizer is further constrained by the requirement that the input u-vector must result in a trajectory which proceeds through each of the prescribed events in the input file. For example, if the input u-vector causes the vehicle to crash before it can achieve the orbital parameters required for a parking orbit, then the run will fail without engaging the optimizer, and a p2 value of exactly zero is returned. This poses a problem, as this "non-connecting" region of the u-vector space is far larger than the "connecting" region which returns a non-zero value of p2 and can be worked on by the internal optimizer. Finding this connecting region and more specifically the global optimum within this region has traditionally required the use of an expert analyst.
Aerospace engineering design by systematic decomposition and multilevel optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Giles, G. L.; Barthelemy, J.-F. M.
1984-01-01
This paper describes a method for systematic analysis and optimization of large engineering systems, e.g., aircraft, by decomposition of a large task into a set of smaller, self-contained subtasks that can be solved concurrently. The subtasks may be arranged in many hierarchical levels with the assembled system at the top level. Analyses are carried out in each subtask using inputs received from other subtasks, and are followed by optimizations carried out from the bottom up. Each optimization at the lower levels is augmented by analysis of its sensitivity to the inputs received from other subtasks to account for the couplings among the subtasks in a formal manner. The analysis and optimization operations alternate iteratively until they converge to a system design whose performance is maximized with all constraints satisfied. The method, which is still under development, is tentatively validated by test cases in structural applications and an aircraft configuration optimization. It is pointed out that the method is intended to be compatible with the typical engineering organization and the modern technology of distributed computing.
A Neural Network Aero Design System for Advanced Turbo-Engines
NASA Technical Reports Server (NTRS)
Sanz, Jose M.
1999-01-01
An inverse design method calculates the blade shape that produces a prescribed input pressure distribution. By controlling this input pressure distribution the aerodynamic design objectives can easily be met. Because of the intrinsic relationship between pressure distribution and airfoil physical properties, a neural network can be trained to choose the optimal pressure distribution that would meet a set of physical requirements. The neural network technique works well not only as an interpolating device but also as an extrapolating device to achieve blade designs from a given database. Two validating test cases are discussed.
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.; Newsom, J. R.; Abel, I.
1981-01-01
A method of synthesizing reduced-order optimal feedback control laws for a high-order system is developed. A nonlinear programming algorithm is employed to search for the control law design variables that minimize a performance index defined by a weighted sum of mean-square steady-state responses and control inputs. An analogy with the linear quadractic Gaussian solution is utilized to select a set of design variables and their initial values. To improve the stability margins of the system, an input-noise adjustment procedure is used in the design algorithm. The method is applied to the synthesis of an active flutter-suppression control law for a wind tunnel model of an aeroelastic wing. The reduced-order controller is compared with the corresponding full-order controller and found to provide nearly optimal performance. The performance of the present method appeared to be superior to that of two other control law order-reduction methods. It is concluded that by using the present algorithm, nearly optimal low-order control laws with good stability margins can be synthesized.
Cryogenic Tank Structure Sizing With Structural Optimization Method
NASA Technical Reports Server (NTRS)
Wang, J. T.; Johnson, T. F.; Sleight, D. W.; Saether, E.
2001-01-01
Structural optimization methods in MSC /NASTRAN are used to size substructures and to reduce the weight of a composite sandwich cryogenic tank for future launch vehicles. Because the feasible design space of this problem is non-convex, many local minima are found. This non-convex problem is investigated in detail by conducting a series of analyses along a design line connecting two feasible designs. Strain constraint violations occur for some design points along the design line. Since MSC/NASTRAN uses gradient-based optimization procedures. it does not guarantee that the lowest weight design can be found. In this study, a simple procedure is introduced to create a new starting point based on design variable values from previous optimization analyses. Optimization analysis using this new starting point can produce a lower weight design. Detailed inputs for setting up the MSC/NASTRAN optimization analysis and final tank design results are presented in this paper. Approaches for obtaining further weight reductions are also discussed.
Chasin, Marshall; Russo, Frank A
2004-01-01
Historically, the primary concern for hearing aid design and fitting is optimization for speech inputs. However, increasingly other types of inputs are being investigated and this is certainly the case for music. Whether the hearing aid wearer is a musician or merely someone who likes to listen to music, the electronic and electro-acoustic parameters described can be optimized for music as well as for speech. That is, a hearing aid optimally set for music can be optimally set for speech, even though the converse is not necessarily true. Similarities and differences between speech and music as inputs to a hearing aid are described. Many of these lead to the specification of a set of optimal electro-acoustic characteristics. Parameters such as the peak input-limiting level, compression issues-both compression ratio and knee-points-and number of channels all can deleteriously affect music perception through hearing aids. In other cases, it is not clear how to set other parameters such as noise reduction and feedback control mechanisms. Regardless of the existence of a "music program,'' unless the various electro-acoustic parameters are available in a hearing aid, music fidelity will almost always be less than optimal. There are many unanswered questions and hypotheses in this area. Future research by engineers, researchers, clinicians, and musicians will aid in the clarification of these questions and their ultimate solutions.
Variational theory of the tapered impedance transformer
NASA Astrophysics Data System (ADS)
Erickson, Robert P.
2018-02-01
Superconducting amplifiers are key components of modern quantum information circuits. To minimize information loss and reduce oscillations, a tapered impedance transformer of new design is needed at the input/output for compliance with other 50 Ω components. We show that an optimal tapered transformer of length ℓ, joining the amplifier to the input line, can be constructed using a variational principle applied to the linearized Riccati equation describing the voltage reflection coefficient of the taper. For an incident signal of frequency ωo, the variational solution results in an infinite set of equivalent optimal transformers, each with the same form for the reflection coefficient, each able to eliminate input-line reflections. For the special case of optimal lossless transformers, the group velocity vg is shown to be constant, with characteristic impedance dependent on frequency ωc = πvg/ℓ. While these solutions inhibit input-line reflections only for frequency ωo, a subset of optimal lossless transformers with ωo significantly detuned from ωc does exhibit a wide bandpass. Specifically, by choosing ωo → 0 (ωo → ∞), we obtain a subset of optimal low-pass (high-pass) lossless tapers with bandwidth (0, ˜ ωc) [(˜ωc, ∞)]. From the subset of solutions, we derive both the wide-band low-pass and high-pass transformers, and we discuss the extent to which they can be realized given fabrication constraints. In particular, we demonstrate the superior reflection response of our high-pass transformer when compared to other taper designs. Our results have application to amplifiers, transceivers, and other components sensitive to impedance mismatch.
Stored program concept for analog computers
NASA Technical Reports Server (NTRS)
Hannauer, G., III; Patmore, J. R.
1971-01-01
Optimization of three-stage matrices, modularization, and black boxes design techniques provides for automatically interconnecting computing component inputs and outputs in general purpose analog computer. Design also produces relatively inexpensive and less complex automatic patching system.
Validation of a new modal performance measure for flexible controllers design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simo, J.B.; Tahan, S.A.; Kamwa, I.
1996-05-01
A new modal performance measure for power system stabilizer (PSS) optimization is proposed in this paper. The new method is based on modifying the square envelopes of oscillating modes, in order to take into account their damping ratios while minimizing the performance index. This criteria is applied to flexible controllers optimal design, on a multi-input-multi-output (MIMO) reduced-order model of a prototype power system. The multivariable model includes four generators, each having one input and one output. Linear time-response simulation and transient stability analysis with a nonlinear package confirm the superiority of the proposed criteria and illustrate its effectiveness in decentralizedmore » control.« less
Inverse problems in the design, modeling and testing of engineering systems
NASA Technical Reports Server (NTRS)
Alifanov, Oleg M.
1991-01-01
Formulations, classification, areas of application, and approaches to solving different inverse problems are considered for the design of structures, modeling, and experimental data processing. Problems in the practical implementation of theoretical-experimental methods based on solving inverse problems are analyzed in order to identify mathematical models of physical processes, aid in input data preparation for design parameter optimization, help in design parameter optimization itself, and to model experiments, large-scale tests, and real tests of engineering systems.
A new high dynamic range ROIC with smart light intensity control unit
NASA Astrophysics Data System (ADS)
Yazici, Melik; Ceylan, Omer; Shafique, Atia; Abbasi, Shahbaz; Galioglu, Arman; Gurbuz, Yasar
2017-05-01
This journal presents a new high dynamic range ROIC with smart pixel which consists of two pre-amplifiers that are controlled by a circuit inside the pixel. Each pixel automatically decides which pre-amplifier is used according to the incoming illumination level. Instead of using single pre-amplifier, two input pre-amplifiers, which are optimized for different signal levels, are placed inside each pixel. The smart circuit mechanism, which decides the best input circuit according to the incoming light level, is also designed for each pixel. In short, an individual pixel has the ability to select the best input amplifier circuit that performs the best/highest SNR for the incoming signal level. A 32 × 32 ROIC prototype chip is designed to demonstrate the concept in 0.18 μ m CMOS technology. The prototype is optimized for NIR and SWIR bands. Instead of a detector, process variation optimized current sources are placed inside the ROIC. The chip achieves minimum 8.6 e- input referred noise and 98.9 dB dynamic range. It has the highest dynamic range in the literature in terms of analog ROICs for SWIR band. It is operating in room temperature and power consumption is 2.8 μ W per pixel.
IsoDesign: a software for optimizing the design of 13C-metabolic flux analysis experiments.
Millard, Pierre; Sokol, Serguei; Letisse, Fabien; Portais, Jean-Charles
2014-01-01
The growing demand for (13) C-metabolic flux analysis ((13) C-MFA) in the field of metabolic engineering and systems biology is driving the need to rationalize expensive and time-consuming (13) C-labeling experiments. Experimental design is a key step in improving both the number of fluxes that can be calculated from a set of isotopic data and the precision of flux values. We present IsoDesign, a software that enables these parameters to be maximized by optimizing the isotopic composition of the label input. It can be applied to (13) C-MFA investigations using a broad panel of analytical tools (MS, MS/MS, (1) H NMR, (13) C NMR, etc.) individually or in combination. It includes a visualization module to intuitively select the optimal label input depending on the biological question to be addressed. Applications of IsoDesign are described, with an example of the entire (13) C-MFA workflow from the experimental design to the flux map including important practical considerations. IsoDesign makes the experimental design of (13) C-MFA experiments more accessible to a wider biological community. IsoDesign is distributed under an open source license at http://metasys.insa-toulouse.fr/software/isodes/ © 2013 Wiley Periodicals, Inc.
Turbomachinery Airfoil Design Optimization Using Differential Evolution
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
An aerodynamic design optimization procedure that is based on a evolutionary algorithm known at Differential Evolution is described. Differential Evolution is a simple, fast, and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems, including highly nonlinear systems with discontinuities and multiple local optima. The method is combined with a Navier-Stokes solver that evaluates the various intermediate designs and provides inputs to the optimization procedure. An efficient constraint handling mechanism is also incorporated. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated. Substantial reductions in the overall computing time requirements are achieved by using the algorithm in conjunction with neural networks.
Design Studies for a Far Infrared Absolute Spectrometer for the Cosmic Background Explorer
NASA Technical Reports Server (NTRS)
Johnson, N. J. E.
1980-01-01
Unrelenting symmetry of design is required to assure the thermal balance of a cryogenically cooled, rapid scan interferometer spectrometer to be mounted in vacuum with the Cosmic Background Explorer liquid helium dewar. The instrument receives inputs from Winston cone optical flux collectors, one open to space and a second coupled to a black body reference source. A differential instrument, the spectrometer produces outputs corresponding to the Fourier transform of the spectral radiance difference between the two inputs. The two outputs are sensed by four detectors, two optimized for shorter wavelength response, and two optimized for longer wavelengths. The optical design, detector and signal channel, system sensitivity, mechanics, thermal control and cryogenics, electronics and power systems, command and control, calibration, system test requirements, and the instrument interface are discussed. Recommendations for continued work are indicated for the superconducting reflective horns, the motor bearing and drive, and design detail.
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Mukhopadhyay, V.
1983-01-01
A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two output drone flight control system.
An optimal control model approach to the design of compensators for simulator delay
NASA Technical Reports Server (NTRS)
Baron, S.; Lancraft, R.; Caglayan, A.
1982-01-01
The effects of display delay on pilot performance and workload and of the design of the filters to ameliorate these effects were investigated. The optimal control model for pilot/vehicle analysis was used both to determine the potential delay effects and to design the compensators. The model was applied to a simple roll tracking task and to a complex hover task. The results confirm that even small delays can degrade performance and impose a workload penalty. A time-domain compensator designed by using the optimal control model directly appears capable of providing extensive compensation for these effects even in multi-input, multi-output problems.
Thermal/Structural Tailoring of Engine Blades (T/STAEBL) User's manual
NASA Technical Reports Server (NTRS)
Brown, K. W.
1994-01-01
The Thermal/Structural Tailoring of Engine Blades (T/STAEBL) system is a computer code that is able to perform numerical optimizations of cooled jet engine turbine blades and vanes. These optimizations seek an airfoil design of minimum operating cost that satisfies realistic design constraints. This report documents the organization of the T/STAEBL computer program, its design and analysis procedure, its optimization procedure, and provides an overview of the input required to run the program, as well as the computer resources required for its effective use. Additionally, usage of the program is demonstrated through a validation test case.
Thermal/Structural Tailoring of Engine Blades (T/STAEBL): User's manual
NASA Astrophysics Data System (ADS)
Brown, K. W.
1994-03-01
The Thermal/Structural Tailoring of Engine Blades (T/STAEBL) system is a computer code that is able to perform numerical optimizations of cooled jet engine turbine blades and vanes. These optimizations seek an airfoil design of minimum operating cost that satisfies realistic design constraints. This report documents the organization of the T/STAEBL computer program, its design and analysis procedure, its optimization procedure, and provides an overview of the input required to run the program, as well as the computer resources required for its effective use. Additionally, usage of the program is demonstrated through a validation test case.
Approach for Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives
NASA Technical Reports Server (NTRS)
Putko, Michele M.; Newman, Perry A.; Taylor, Arthur C., III; Green, Lawrence L.
2001-01-01
This paper presents an implementation of the approximate statistical moment method for uncertainty propagation and robust optimization for a quasi 1-D Euler CFD (computational fluid dynamics) code. Given uncertainties in statistically independent, random, normally distributed input variables, a first- and second-order statistical moment matching procedure is performed to approximate the uncertainty in the CFD output. Efficient calculation of both first- and second-order sensitivity derivatives is required. In order to assess the validity of the approximations, the moments are compared with statistical moments generated through Monte Carlo simulations. The uncertainties in the CFD input variables are also incorporated into a robust optimization procedure. For this optimization, statistical moments involving first-order sensitivity derivatives appear in the objective function and system constraints. Second-order sensitivity derivatives are used in a gradient-based search to successfully execute a robust optimization. The approximate methods used throughout the analyses are found to be valid when considering robustness about input parameter mean values.
The ITER ICRF Antenna Design with TOPICA
NASA Astrophysics Data System (ADS)
Milanesio, Daniele; Maggiora, Riccardo; Meneghini, Orso; Vecchi, Giuseppe
2007-11-01
TOPICA (Torino Polytechnic Ion Cyclotron Antenna) code is an innovative tool for the 3D/1D simulation of Ion Cyclotron Radio Frequency (ICRF), i.e. accounting for antennas in a realistic 3D geometry and with an accurate 1D plasma model [1]. The TOPICA code has been deeply parallelized and has been already proved to be a reliable tool for antennas design and performance prediction. A detailed analysis of the 24 straps ITER ICRF antenna geometry has been carried out, underlining the strong dependence and asymmetries of the antenna input parameters due to the ITER plasma response. We optimized the antenna array geometry dimensions to maximize loading, lower mutual couplings and mitigate sheath effects. The calculated antenna input impedance matrices are TOPICA results of a paramount importance for the tuning and matching system design. Electric field distributions have been also calculated and they are used as the main input for the power flux estimation tool. The designed optimized antenna is capable of coupling 20 MW of power to plasma in the 40 -- 55 MHz frequency range with a maximum voltage of 45 kV in the feeding coaxial cables. [1] V. Lancellotti et al., Nuclear Fusion, 46 (2006) S476-S499
SEEK: A FORTRAN optimization program using a feasible directions gradient search
NASA Technical Reports Server (NTRS)
Savage, M.
1995-01-01
This report describes the use of computer program 'SEEK' which works in conjunction with two user-written subroutines and an input data file to perform an optimization procedure on a user's problem. The optimization method uses a modified feasible directions gradient technique. SEEK is written in ANSI standard Fortran 77, has an object size of about 46K bytes, and can be used on a personal computer running DOS. This report describes the use of the program and discusses the optimizing method. The program use is illustrated with four example problems: a bushing design, a helical coil spring design, a gear mesh design, and a two-parameter Weibull life-reliability curve fit.
Interdicting an Adversary’s Economy Viewed As a Trade Sanction Inoperability Input Output Model
2017-03-01
set of sectors. The design of an economic sanction, in the context of this thesis, is the selection of the sector or set of sectors to sanction...We propose two optimization models. The first, the Trade Sanction Inoperability Input-output Model (TS-IIM), selects the sector or set of sectors that...Interdependency analysis: Extensions to demand reduction inoperability input-output modeling and portfolio selection . Unpublished doctoral dissertation
Chasin, Marshall; Russo, Frank A.
2004-01-01
Historically, the primary concern for hearing aid design and fitting is optimization for speech inputs. However, increasingly other types of inputs are being investigated and this is certainly the case for music. Whether the hearing aid wearer is a musician or merely someone who likes to listen to music, the electronic and electro-acoustic parameters described can be optimized for music as well as for speech. That is, a hearing aid optimally set for music can be optimally set for speech, even though the converse is not necessarily true. Similarities and differences between speech and music as inputs to a hearing aid are described. Many of these lead to the specification of a set of optimal electro-acoustic characteristics. Parameters such as the peak input-limiting level, compression issues—both compression ratio and knee-points—and number of channels all can deleteriously affect music perception through hearing aids. In other cases, it is not clear how to set other parameters such as noise reduction and feedback control mechanisms. Regardless of the existence of a “music program,” unless the various electro-acoustic parameters are available in a hearing aid, music fidelity will almost always be less than optimal. There are many unanswered questions and hypotheses in this area. Future research by engineers, researchers, clinicians, and musicians will aid in the clarification of these questions and their ultimate solutions. PMID:15497032
Zhang, Huaguang; Qu, Qiuxia; Xiao, Geyang; Cui, Yang
2018-06-01
Based on integral sliding mode and approximate dynamic programming (ADP) theory, a novel optimal guaranteed cost sliding mode control is designed for constrained-input nonlinear systems with matched and unmatched disturbances. When the system moves on the sliding surface, the optimal guaranteed cost control problem of sliding mode dynamics is transformed into the optimal control problem of a reformulated auxiliary system with a modified cost function. The ADP algorithm based on single critic neural network (NN) is applied to obtain the approximate optimal control law for the auxiliary system. Lyapunov techniques are used to demonstrate the convergence of the NN weight errors. In addition, the derived approximate optimal control is verified to guarantee the sliding mode dynamics system to be stable in the sense of uniform ultimate boundedness. Some simulation results are presented to verify the feasibility of the proposed control scheme.
Optimizing Force Deployment and Force Structure for the Rapid Deployment Force
1984-03-01
Analysis . . . . .. .. ... ... 97 Experimental Design . . . . . .. .. .. ... 99 IX. Use of a Flexible Response Surface ........ 10.2 Selection of a...setS . ere designe . arun, programming methodology , where the require: s.stem re..r is input and the model optimizes the num=er. :::pe, cargo. an...to obtain new computer outputs" (Ref 38:23). The methodology can be used with any decision model, linear or nonlinear. Experimental Desion Since the
Aerodynamic Shape Optimization Using Hybridized Differential Evolution
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2003-01-01
An aerodynamic shape optimization method that uses an evolutionary algorithm known at Differential Evolution (DE) in conjunction with various hybridization strategies is described. DE is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Various hybridization strategies for DE are explored, including the use of neural networks as well as traditional local search methods. A Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the hybrid DE optimizer. The method is implemented on distributed parallel computers so that new designs can be obtained within reasonable turnaround times. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. (The final paper will include at least one other aerodynamic design application). The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated.
Distributed Optimal Consensus Control for Multiagent Systems With Input Delay.
Zhang, Huaipin; Yue, Dong; Zhao, Wei; Hu, Songlin; Dou, Chunxia; Huaipin Zhang; Dong Yue; Wei Zhao; Songlin Hu; Chunxia Dou; Hu, Songlin; Zhang, Huaipin; Dou, Chunxia; Yue, Dong; Zhao, Wei
2018-06-01
This paper addresses the problem of distributed optimal consensus control for a continuous-time heterogeneous linear multiagent system subject to time varying input delays. First, by discretization and model transformation, the continuous-time input-delayed system is converted into a discrete-time delay-free system. Two delicate performance index functions are defined for these two systems. It is shown that the performance index functions are equivalent and the optimal consensus control problem of the input-delayed system can be cast into that of the delay-free system. Second, by virtue of the Hamilton-Jacobi-Bellman (HJB) equations, an optimal control policy for each agent is designed based on the delay-free system and a novel value iteration algorithm is proposed to learn the solutions to the HJB equations online. The proposed adaptive dynamic programming algorithm is implemented on the basis of a critic-action neural network (NN) structure. Third, it is proved that local consensus errors of the two systems and weight estimation errors of the critic-action NNs are uniformly ultimately bounded while the approximated control policies converge to their target values. Finally, two simulation examples are presented to illustrate the effectiveness of the developed method.
Design and optimization of input shapers for liquid slosh suppression
NASA Astrophysics Data System (ADS)
Aboel-Hassan, Ameen; Arafa, Mustafa; Nassef, Ashraf
2009-02-01
The need for fast maneuvering and accurate positioning of flexible structures poses a control challenge. The inherent flexibility in these lightly damped systems creates large undesirable residual vibrations in response to rapid excitations. Several control approaches have been proposed to tackle this class of problems, of which the input shaping technique is appealing in many aspects. While input shaping has been widely investigated to attenuate residual vibrations in flexible structures, less attention was granted to expand its viability in further applications. The aim of this work is to develop a methodology for applying input shaping techniques to suppress sloshing effects in open moving containers to facilitate safe and fast point-to-point movements. The liquid behavior is modeled using finite element analysis. The input shaper parameters are optimized to find the commands that would result in minimum residual vibration. Other objectives, such as improved robustness, and motion constraints such as deflection limiting are also addressed in the optimization scheme. Numerical results are verified on an experimental setup consisting of a small motor-driven water tank undergoing rectilinear motion, while measuring both the tank motion and free surface displacement of the water. The results obtained suggest that input shaping is an effective method for liquid slosh suppression.
Analytical Model-Based Design Optimization of a Transverse Flux Machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Iftekhar; Husain, Tausif; Sozer, Yilmaz
This paper proposes an analytical machine design tool using magnetic equivalent circuit (MEC)-based particle swarm optimization (PSO) for a double-sided, flux-concentrating transverse flux machine (TFM). The magnetic equivalent circuit method is applied to analytically establish the relationship between the design objective and the input variables of prospective TFM designs. This is computationally less intensive and more time efficient than finite element solvers. A PSO algorithm is then used to design a machine with the highest torque density within the specified power range along with some geometric design constraints. The stator pole length, magnet length, and rotor thickness are the variablesmore » that define the optimization search space. Finite element analysis (FEA) was carried out to verify the performance of the MEC-PSO optimized machine. The proposed analytical design tool helps save computation time by at least 50% when compared to commercial FEA-based optimization programs, with results found to be in agreement with less than 5% error.« less
Konstantinidis, Spyridon; Titchener-Hooker, Nigel; Velayudhan, Ajoy
2017-08-01
Bioprocess development studies often involve the investigation of numerical and categorical inputs via the adoption of Design of Experiments (DoE) techniques. An attractive alternative is the deployment of a grid compatible Simplex variant which has been shown to yield optima rapidly and consistently. In this work, the method is combined with dummy variables and it is deployed in three case studies wherein spaces are comprised of both categorical and numerical inputs, a situation intractable by traditional Simplex methods. The first study employs in silico data and lays out the dummy variable methodology. The latter two employ experimental data from chromatography based studies performed with the filter-plate and miniature column High Throughput (HT) techniques. The solute of interest in the former case study was a monoclonal antibody whereas the latter dealt with the separation of a binary system of model proteins. The implemented approach prevented the stranding of the Simplex method at local optima, due to the arbitrary handling of the categorical inputs, and allowed for the concurrent optimization of numerical and categorical, multilevel and/or dichotomous, inputs. The deployment of the Simplex method, combined with dummy variables, was therefore entirely successful in identifying and characterizing global optima in all three case studies. The Simplex-based method was further shown to be of equivalent efficiency to a DoE-based approach, represented here by D-Optimal designs. Such an approach failed, however, to both capture trends and identify optima, and led to poor operating conditions. It is suggested that the Simplex-variant is suited to development activities involving numerical and categorical inputs in early bioprocess development. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimization of an integrated wavelength monitor device
NASA Astrophysics Data System (ADS)
Wang, Pengfei; Brambilla, Gilberto; Semenova, Yuliya; Wu, Qiang; Farrell, Gerald
2011-05-01
In this paper an edge filter based on multimode interference in an integrated waveguide is optimized for a wavelength monitoring application. This can also be used as a demodulation element in a fibre Bragg grating sensing system. A global optimization algorithm is presented for the optimum design of the multimode interference device, including a range of parameters of the multimode waveguide, such as length, width and position of the input and output waveguides. The designed structure demonstrates the desired spectral response for wavelength measurements. Fabrication tolerance is also analysed numerically for this structure.
A grid generation system for multi-disciplinary design optimization
NASA Technical Reports Server (NTRS)
Jones, William T.; Samareh-Abolhassani, Jamshid
1995-01-01
A general multi-block three-dimensional volume grid generator is presented which is suitable for Multi-Disciplinary Design Optimization. The code is timely, robust, highly automated, and written in ANSI 'C' for platform independence. Algebraic techniques are used to generate and/or modify block face and volume grids to reflect geometric changes resulting from design optimization. Volume grids are generated/modified in a batch environment and controlled via an ASCII user input deck. This allows the code to be incorporated directly into the design loop. Generated volume grids are presented for a High Speed Civil Transport (HSCT) Wing/Body geometry as well a complex HSCT configuration including horizontal and vertical tails, engine nacelles and pylons, and canard surfaces.
Full-order optimal compensators for flow control: the multiple inputs case
NASA Astrophysics Data System (ADS)
Semeraro, Onofrio; Pralits, Jan O.
2018-03-01
Flow control has been the subject of numerous experimental and theoretical works. We analyze full-order, optimal controllers for large dynamical systems in the presence of multiple actuators and sensors. The full-order controllers do not require any preliminary model reduction or low-order approximation: this feature allows us to assess the optimal performance of an actuated flow without relying on any estimation process or further hypothesis on the disturbances. We start from the original technique proposed by Bewley et al. (Meccanica 51(12):2997-3014, 2016. https://doi.org/10.1007/s11012-016-0547-3), the adjoint of the direct-adjoint (ADA) algorithm. The algorithm is iterative and allows bypassing the solution of the algebraic Riccati equation associated with the optimal control problem, typically infeasible for large systems. In this numerical work, we extend the ADA iteration into a more general framework that includes the design of controllers with multiple, coupled inputs and robust controllers (H_{∞} methods). First, we demonstrate our results by showing the analytical equivalence between the full Riccati solutions and the ADA approximations in the multiple inputs case. In the second part of the article, we analyze the performance of the algorithm in terms of convergence of the solution, by comparing it with analogous techniques. We find an excellent scalability with the number of inputs (actuators), making the method a viable way for full-order control design in complex settings. Finally, the applicability of the algorithm to fluid mechanics problems is shown using the linearized Kuramoto-Sivashinsky equation and the Kármán vortex street past a two-dimensional cylinder.
Optimal Design of a Thermoelectric Cooling/Heating System for Car Seat Climate Control (CSCC)
NASA Astrophysics Data System (ADS)
Elarusi, Abdulmunaem; Attar, Alaa; Lee, Hosung
2017-04-01
In the present work, the optimum design of thermoelectric car seat climate control (CSCC) is studied analytically in an attempt to achieve high system efficiency. Optimal design of a thermoelectric device (element length, cross-section area and number of thermocouples) is carried out using our newly developed optimization method based on the ideal thermoelectric equations and dimensional analysis to improve the performance of the thermoelectric device in terms of the heating/cooling power and the coefficient of performance (COP). Then, a new innovative system design is introduced which also includes the optimum input current for the initial (transient) startup warming and cooling before the car heating ventilation and air conditioner (HVAC) is active in the cabin. The air-to-air heat exchanger's configuration was taken into account to investigate the optimal design of the CSCC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delcamp, E.; Lagarde, B.; Polack, F.
Though optimization softwares are commonly used in visible optical design, none seems to exist for soft X-ray optics. It is shown here that optimization techniques can be applied with some advantages to X-UV monochromator design. A merit function, suitable for minimizing the aberrations is proposed, and the general method of computation is described. Samples of the software inputs and outputs are presented, and compared to reference data. As an example of application to soft X-ray monochromator design, the optimization of the soft X-ray monochromator of the ESRF microscopy beamline is presented. Good agreement between the predicted resolution of a modifiedmore » PGM monochromator and experimental measurements is reported.« less
Modeling and Analysis of Power Processing Systems (MAPPS). Volume 2: Appendices
NASA Technical Reports Server (NTRS)
Lee, F. C.; Radman, S.; Carter, R. A.; Wu, C. H.; Yu, Y.; Chang, R.
1980-01-01
The computer programs and derivations generated in support of the modeling and design optimization program are presented. Programs for the buck regulator, boost regulator, and buck-boost regulator are described. The computer program for the design optimization calculations is presented. Constraints for the boost and buck-boost converter were derived. Derivations of state-space equations and transfer functions are presented. Computer lists for the converters are presented, and the input parameters justified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Iftekhar; Husain, Tausif; Sozer, Yilmaz
This paper proposes an analytical machine design tool using magnetic equivalent circuit (MEC)-based particle swarm optimization (PSO) for a double-sided, flux-concentrating transverse flux machine (TFM). The magnetic equivalent circuit method is applied to analytically establish the relationship between the design objective and the input variables of prospective TFM designs. This is computationally less intensive and more time efficient than finite element solvers. A PSO algorithm is then used to design a machine with the highest torque density within the specified power range along with some geometric design constraints. The stator pole length, magnet length, and rotor thickness are the variablesmore » that define the optimization search space. Finite element analysis (FEA) was carried out to verify the performance of the MEC-PSO optimized machine. The proposed analytical design tool helps save computation time by at least 50% when compared to commercial FEA-based optimization programs, with results found to be in agreement with less than 5% error.« less
Primal-dual techniques for online algorithms and mechanisms
NASA Astrophysics Data System (ADS)
Liaghat, Vahid
An offline algorithm is one that knows the entire input in advance. An online algorithm, however, processes its input in a serial fashion. In contrast to offline algorithms, an online algorithm works in a local fashion and has to make irrevocable decisions without having the entire input. Online algorithms are often not optimal since their irrevocable decisions may turn out to be inefficient after receiving the rest of the input. For a given online problem, the goal is to design algorithms which are competitive against the offline optimal solutions. In a classical offline scenario, it is often common to see a dual analysis of problems that can be formulated as a linear or convex program. Primal-dual and dual-fitting techniques have been successfully applied to many such problems. Unfortunately, the usual tricks come short in an online setting since an online algorithm should make decisions without knowing even the whole program. In this thesis, we study the competitive analysis of fundamental problems in the literature such as different variants of online matching and online Steiner connectivity, via online dual techniques. Although there are many generic tools for solving an optimization problem in the offline paradigm, in comparison, much less is known for tackling online problems. The main focus of this work is to design generic techniques for solving integral linear optimization problems where the solution space is restricted via a set of linear constraints. A general family of these problems are online packing/covering problems. Our work shows that for several seemingly unrelated problems, primal-dual techniques can be successfully applied as a unifying approach for analyzing these problems. We believe this leads to generic algorithmic frameworks for solving online problems. In the first part of the thesis, we show the effectiveness of our techniques in the stochastic settings and their applications in Bayesian mechanism design. In particular, we introduce new techniques for solving a fundamental linear optimization problem, namely, the stochastic generalized assignment problem (GAP). This packing problem generalizes various problems such as online matching, ad allocation, bin packing, etc. We furthermore show applications of such results in the mechanism design by introducing Prophet Secretary, a novel Bayesian model for online auctions. In the second part of the thesis, we focus on the covering problems. We develop the framework of "Disk Painting" for a general class of network design problems that can be characterized by proper functions. This class generalizes the node-weighted and edge-weighted variants of several well-known Steiner connectivity problems. We furthermore design a generic technique for solving the prize-collecting variants of these problems when there exists a dual analysis for the non-prize-collecting counterparts. Hence, we solve the online prize-collecting variants of several network design problems for the first time. Finally we focus on designing techniques for online problems with mixed packing/covering constraints. We initiate the study of degree-bounded graph optimization problems in the online setting by designing an online algorithm with a tight competitive ratio for the degree-bounded Steiner forest problem. We hope these techniques establishes a starting point for the analysis of the important class of online degree-bounded optimization on graphs.
DOT National Transportation Integrated Search
2000-02-01
This training manual describes the fuzzy logic ramp metering algorithm in detail, as implemented system-wide in the greater Seattle area. The method of defining the inputs to the controller and optimizing the performance of the algorithm is explained...
Reduced-order modeling for hyperthermia control.
Potocki, J K; Tharp, H S
1992-12-01
This paper analyzes the feasibility of using reduced-order modeling techniques in the design of multiple-input, multiple-output (MIMO) hyperthermia temperature controllers. State space thermal models are created based upon a finite difference expansion of the bioheat transfer equation model of a scanned focused ultrasound system (SFUS). These thermal state space models are reduced using the balanced realization technique, and an order reduction criterion is tabulated. Results show that a drastic reduction in model dimension can be achieved using the balanced realization. The reduced-order model is then used to design a reduced-order optimal servomechanism controller for a two-scan input, two thermocouple output tissue model. In addition, a full-order optimal servomechanism controller is designed for comparison and validation purposes. These two controllers are applied to a variety of perturbed tissue thermal models to test the robust nature of the reduced-order controller. A comparison of the two controllers validates the use of open-loop balanced reduced-order models in the design of MIMO hyperthermia controllers.
NASA Technical Reports Server (NTRS)
Lucas, S. H.; Davis, R. C.
1992-01-01
A user's manual is presented for MacPASCO, which is an interactive, graphic, preprocessor for panel design. MacPASCO creates input for PASCO, an existing computer code for structural analysis and sizing of longitudinally stiffened composite panels. MacPASCO provides a graphical user interface which simplifies the specification of panel geometry and reduces user input errors. The user draws the initial structural geometry and reduces user input errors. The user draws the initial structural geometry on the computer screen, then uses a combination of graphic and text inputs to: refine the structural geometry; specify information required for analysis such as panel load and boundary conditions; and define design variables and constraints for minimum mass optimization. Only the use of MacPASCO is described, since the use of PASCO has been documented elsewhere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Y.; Edwards, R.M.; Lee, K.Y.
1997-03-01
In this paper, a simplified model with a lower order is first developed for a nuclear steam generator system and verified against some realistic environments. Based on this simplified model, a hybrid multi-input and multi-out (MIMO) control system, consisting of feedforward control (FFC) and feedback control (FBC), is designed for wide range conditions by using the genetic algorithm (GA) technique. The FFC control, obtained by the GA optimization method, injects an a priori command input into the system to achieve an optimal performance for the designed system, while the GA-based FBC control provides the necessary compensation for any disturbances ormore » uncertainties in a real steam generator. The FBC control is an optimal design of a PI-based control system which would be more acceptable for industrial practices and power plant control system upgrades. The designed hybrid MIMO FFC/FBC control system is first applied to the simplified model and then to a more complicated model with a higher order which is used as a substitute of the real system to test the efficacy of the designed control system. Results from computer simulations show that the designed GA-based hybrid MIMO FFC/FBC control can achieve good responses and robust performances. Hence, it can be considered as a viable alternative to the current control system upgrade.« less
Choi, Du Hyung; Lim, Jun Yeul; Shin, Sangmun; Choi, Won Jun; Jeong, Seong Hoon; Lee, Sangkil
2014-10-01
To investigate the effects of hydrophilic polymers on the matrix system, an experimental design method was developed to integrate response surface methodology and the time series modeling. Moreover, the relationships among polymers on the matrix system were studied with the evaluation of physical properties including water uptake, mass loss, diffusion, and gelling index. A mixture simplex lattice design was proposed while considering eight input control factors: Polyethylene glycol 6000 (x1 ), polyethylene oxide (PEO) N-10 (x2 ), PEO 301 (x3 ), PEO coagulant (x4 ), PEO 303 (x5 ), hydroxypropyl methylcellulose (HPMC) 100SR (x6 ), HPMC 4000SR (x7 ), and HPMC 10(5) SR (x8 ). With the modeling, optimal formulations were obtained depending on the four types of targets. The optimal formulations showed the four significant factors (x1 , x2 , x3 , and x8 ) and other four input factors (x4 , x5 , x6 , and x7 ) were not significant based on drug release profiles. Moreover, the optimization results were analyzed with estimated values, targets values, absolute biases, and relative biases based on observed times for the drug release rates with four different targets. The result showed that optimal solutions and target values had consistent patterns with small biases. On the basis of the physical properties of the optimal solutions, the type and ratio of the hydrophilic polymer and the relationships between polymers significantly influenced the physical properties of the system and drug release. This experimental design method is very useful in formulating a matrix system with optimal drug release. Moreover, it can distinctly confirm the relationships between excipients and the effects on the system with extensive and intensive evaluations. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Maximum life spiral bevel reduction design
NASA Technical Reports Server (NTRS)
Savage, M.; Prasanna, M. G.; Coe, H. H.
1992-01-01
Optimization is applied to the design of a spiral bevel gear reduction for maximum life at a given size. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial values. Gear tooth bending strength and minimum contact ratio under load are included in the active constraints. The optimal design of the spiral bevel gear reduction includes the selection of bearing and shaft proportions in addition to gear mesh parameters. System life is maximized subject to a fixed back-cone distance of the spiral bevel gear set for a specified speed ratio, shaft angle, input torque, and power. Significant parameters in the design are: the spiral angle, the pressure angle, the numbers of teeth on the pinion and gear, and the location and size of the four support bearings. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for gradient optimization. After finding the continuous optimum, a designer can analyze near optimal designs for comparison and selection. Design examples show the influence of the bearing lives on the gear parameters in the optimal configurations. For a fixed back-cone distance, optimal designs with larger shaft angles have larger service lives.
Structural tailoring of engine blades (STAEBL) user's manual
NASA Technical Reports Server (NTRS)
Brown, K. W.
1985-01-01
This User's Manual contains instructions and demonstration case to prepare input data, run, and modify the Structural Tailoring of Engine Blades (STAEBL) computer code. STAEBL was developed to perform engine fan and compressor blade numerical optimizations. This blade optimization seeks a minimum weight or cost design that satisfies realistic blade design constraints, by tuning one to twenty design variables. The STAEBL constraint analyses include blade stresses, vibratory response, flutter, and foreign object damage. Blade design variables include airfoil thickness at several locations, blade chord, and construction variables: hole size for hollow blades, and composite material layup for composite blades.
Optimized distributed computing environment for mask data preparation
NASA Astrophysics Data System (ADS)
Ahn, Byoung-Sup; Bang, Ju-Mi; Ji, Min-Kyu; Kang, Sun; Jang, Sung-Hoon; Choi, Yo-Han; Ki, Won-Tai; Choi, Seong-Woon; Han, Woo-Sung
2005-11-01
As the critical dimension (CD) becomes smaller, various resolution enhancement techniques (RET) are widely adopted. In developing sub-100nm devices, the complexity of optical proximity correction (OPC) is severely increased and applied OPC layers are expanded to non-critical layers. The transformation of designed pattern data by OPC operation causes complexity, which cause runtime overheads to following steps such as mask data preparation (MDP), and collapse of existing design hierarchy. Therefore, many mask shops exploit the distributed computing method in order to reduce the runtime of mask data preparation rather than exploit the design hierarchy. Distributed computing uses a cluster of computers that are connected to local network system. However, there are two things to limit the benefit of the distributing computing method in MDP. First, every sequential MDP job, which uses maximum number of available CPUs, is not efficient compared to parallel MDP job execution due to the input data characteristics. Second, the runtime enhancement over input cost is not sufficient enough since the scalability of fracturing tools is limited. In this paper, we will discuss optimum load balancing environment that is useful in increasing the uptime of distributed computing system by assigning appropriate number of CPUs for each input design data. We will also describe the distributed processing (DP) parameter optimization to obtain maximum throughput in MDP job processing.
Surrogates for numerical simulations; optimization of eddy-promoter heat exchangers
NASA Technical Reports Server (NTRS)
Patera, Anthony T.; Patera, Anthony
1993-01-01
Although the advent of fast and inexpensive parallel computers has rendered numerous previously intractable calculations feasible, many numerical simulations remain too resource-intensive to be directly inserted in engineering optimization efforts. An attractive alternative to direct insertion considers models for computational systems: the expensive simulation is evoked only to construct and validate a simplified, input-output model; this simplified input-output model then serves as a simulation surrogate in subsequent engineering optimization studies. A simple 'Bayesian-validated' statistical framework for the construction, validation, and purposive application of static computer simulation surrogates is presented. As an example, dissipation-transport optimization of laminar-flow eddy-promoter heat exchangers are considered: parallel spectral element Navier-Stokes calculations serve to construct and validate surrogates for the flowrate and Nusselt number; these surrogates then represent the originating Navier-Stokes equations in the ensuing design process.
NASA Astrophysics Data System (ADS)
Smith, Joshua; Hinterberger, Michael; Hable, Peter; Koehler, Juergen
2014-12-01
Extended battery system lifetime and reduced costs are essential to the success of electric vehicles. An effective thermal management strategy is one method of enhancing system lifetime increasing vehicle range. Vehicle-typical space restrictions favor the minimization of battery thermal management system (BTMS) size and weight, making their production and subsequent vehicle integration extremely difficult and complex. Due to these space requirements, a cooling plate as part of a water-glycerol cooling circuit is commonly implemented. This paper presents a computational fluid dynamics (CFD) model and multi-objective analysis technique for determining the thermal effect of coolant flow rate and inlet temperature in a cooling plate-at a range of vehicle operating conditions-on a battery system, thereby providing a dynamic input for one-dimensional models. Traditionally, one-dimensional vehicular thermal management system models assume a static heat input from components such as a battery system: as a result, the components are designed for a set coolant input (flow rate and inlet temperature). Such a design method is insufficient for dynamic thermal management models and control strategies, thereby compromising system efficiency. The presented approach allows for optimal BMTS design and integration in the vehicular coolant circuit.
Fan, Quan-Yong; Yang, Guang-Hong
2016-01-01
This paper is concerned with the problem of integral sliding-mode control for a class of nonlinear systems with input disturbances and unknown nonlinear terms through the adaptive actor-critic (AC) control method. The main objective is to design a sliding-mode control methodology based on the adaptive dynamic programming (ADP) method, so that the closed-loop system with time-varying disturbances is stable and the nearly optimal performance of the sliding-mode dynamics can be guaranteed. In the first step, a neural network (NN)-based observer and a disturbance observer are designed to approximate the unknown nonlinear terms and estimate the input disturbances, respectively. Based on the NN approximations and disturbance estimations, the discontinuous part of the sliding-mode control is constructed to eliminate the effect of the disturbances and attain the expected equivalent sliding-mode dynamics. Then, the ADP method with AC structure is presented to learn the optimal control for the sliding-mode dynamics online. Reconstructed tuning laws are developed to guarantee the stability of the sliding-mode dynamics and the convergence of the weights of critic and actor NNs. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method.
Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai
2016-01-01
This paper presents a simplified analytical model and balanced design approach for modeling lightweight wood-based structural panels in bending. Because many design parameters are required to input for the model of finite element analysis (FEA) during the preliminary design process and optimization, the equivalent method was developed to analyze the mechanical...
Optimization of a hardware implementation for pulse coupled neural networks for image applications
NASA Astrophysics Data System (ADS)
Gimeno Sarciada, Jesús; Lamela Rivera, Horacio; Warde, Cardinal
2010-04-01
Pulse Coupled Neural Networks are a very useful tool for image processing and visual applications, since it has the advantages of being invariant to image changes as rotation, scale, or certain distortion. Among other characteristics, the PCNN changes a given image input into a temporal representation which can be easily later analyzed for pattern recognition. The structure of a PCNN though, makes it necessary to determine all of its parameters very carefully in order to function optimally, so that the responses to the kind of inputs it will be subjected are clearly discriminated allowing for an easy and fast post-processing yielding useful results. This tweaking of the system is a taxing process. In this paper we analyze and compare two methods for modeling PCNNs. A purely mathematical model is programmed and a similar circuital model is also designed. Both are then used to determine the optimal values of the several parameters of a PCNN: gain, threshold, time constants for feed-in and threshold and linking leading to an optimal design for image recognition. The results are compared for usefulness, accuracy and speed, as well as the performance and time requirements for fast and easy design, thus providing a tool for future ease of management of a PCNN for different tasks.
Designable DNA-binding domains enable construction of logic circuits in mammalian cells.
Gaber, Rok; Lebar, Tina; Majerle, Andreja; Šter, Branko; Dobnikar, Andrej; Benčina, Mojca; Jerala, Roman
2014-03-01
Electronic computer circuits consisting of a large number of connected logic gates of the same type, such as NOR, can be easily fabricated and can implement any logic function. In contrast, designed genetic circuits must employ orthogonal information mediators owing to free diffusion within the cell. Combinatorial diversity and orthogonality can be provided by designable DNA- binding domains. Here, we employed the transcription activator-like repressors to optimize the construction of orthogonal functionally complete NOR gates to construct logic circuits. We used transient transfection to implement all 16 two-input logic functions from combinations of the same type of NOR gates within mammalian cells. Additionally, we present a genetic logic circuit where one input is used to select between an AND and OR function to process the data input using the same circuit. This demonstrates the potential of designable modular transcription factors for the construction of complex biological information-processing devices.
Overview and example application of the Landscape Treatment Designer
Alan A. Ager; Nicole M. Vaillant; David E. Owens; Stuart Brittain; Jeff Hamann
2012-01-01
The Landscape Treatment Designer (LTD) is a multicriteria spatial prioritization and optimization system to help design and explore landscape fuel treatment scenarios. The program fills a gap between fire model programs such as FlamMap, and planning systems such as ArcFuels, in the fuel treatment planning process. The LTD uses inputs on spatial treatment objectives,...
Optimization of a GO2/GH2 Swirl Coaxial Injector Element
NASA Technical Reports Server (NTRS)
Tucker, P. Kevin; Shyy, Wei; Vaidyanathan, Rajkumar
1999-01-01
An injector optimization methodology, method i, is used to investigate optimal design points for a gaseous oxygen/gaseous hydrogen (GO2/GH2) swirl coaxial injector element. The element is optimized in terms of design variables such as fuel pressure drop, DELTA P(sub f), oxidizer pressure drop, DELTA P(sub 0) combustor length, L(sub comb), and full cone swirl angle, theta, for a given mixture ratio and chamber pressure. Dependent variables such as energy release efficiency, ERE, wall heat flux, Q(sub w) injector heat flux, Q(sub inj), relative combustor weight, W(sub rel), and relative injector cost, C(sub rel), are calculated and then correlated with the design variables. An empirical design methodology is used to generate these responses for 180 combinations of input variables. Method i is then used to generate response surfaces for each dependent variable. Desirability functions based on dependent variable constraints are created and used to facilitate development of composite response surfaces representing some, or all, of the five dependent variables in terms of the input variables. Two examples illustrating the utility and flexibility of method i are discussed in detail. First, joint response surfaces are constructed by sequentially adding dependent variables. Optimum designs are identified after addition of each variable and the effect each variable has on the design is shown. This stepwise demonstration also highlights the importance of including variables such as weight and cost early in the design process. Secondly, using the composite response surface that includes all five dependent variables, unequal weights are assigned to emphasize certain variables relative to others. Here, method i is used to enable objective trade studies on design issues such as component life and thrust to weight ratio.
Mechanical System Analysis/Design Tool (MSAT) Quick Guide
NASA Technical Reports Server (NTRS)
Lee, HauHua; Kolb, Mark; Madelone, Jack
1998-01-01
MSAT is a unique multi-component multi-disciplinary tool that organizes design analysis tasks around object-oriented representations of configuration components, analysis programs and modules, and data transfer links between them. This creative modular architecture enables rapid generation of input stream for trade-off studies of various engine configurations. The data transfer links automatically transport output from one application as relevant input to the next application once the sequence is set up by the user. The computations are managed via constraint propagation - the constraints supplied by the user as part of any optimization module. The software can be used in the preliminary design stage as well as during the detail design of product development process.
NASA Astrophysics Data System (ADS)
Rantz, Robert; Roundy, Shad
2016-04-01
A tremendous amount of research has been performed on the design and analysis of vibration energy harvester architectures with the goal of optimizing power output; most studies assume idealized input vibrations without paying much attention to whether such idealizations are broadly representative of real sources. These "idealized input signals" are typically derived from the expected nature of the vibrations produced from a given source. Little work has been done on corroborating these expectations by virtue of compiling a comprehensive list of vibration signals organized by detailed classifications. Vibration data representing 333 signals were collected from the NiPS Laboratory "Real Vibration" database, processed, and categorized according to the source of the signal (e.g. animal, machine, etc.), the number of dominant frequencies, the nature of the dominant frequencies (e.g. stationary, band-limited noise, etc.), and other metrics. By categorizing signals in this way, the set of idealized vibration inputs commonly assumed for harvester input can be corroborated and refined, and heretofore overlooked vibration input types have motivation for investigation. An initial qualitative analysis of vibration signals has been undertaken with the goal of determining how often a standard linear oscillator based harvester is likely the optimal architecture, and how often a nonlinear harvester with a cubic stiffness function might provide improvement. Although preliminary, the analysis indicates that in at least 23% of cases, a linear harvester is likely optimal and in no more than 53% of cases would a nonlinear cubic stiffness based harvester provide improvement.
The Noise Level Optimization for Induction Magnetometer of SEP System
NASA Astrophysics Data System (ADS)
Zhu, W.; Fang, G.
2011-12-01
The Surface Electromagnetic Penetration (SEP) System, subsidized by the SinoProbe Plan in China, is designed for 3D conductivity imaging in geophysical mineral exploration, underground water distribution exploration, oil and gas reservoir exploration. Both the Controlled Source Audio Magnetotellurics (CSAMT) method and Magnetotellurics (MT) method can be surveyed by SEP system. In this article, an optimization design is introduced, which can minimize the noise level of the induction magnetometer for SEP system magnetic field's acquisition. The induction magnetometer transfers the rate of the magnetic field's change to voltage signal by induction coil, and amplified it by Low Noise Amplifier The noise parts contributed to the magnetometer are: the coil's thermal noise, the equivalent input voltage and current noise of the pre-amplifier. The coil's thermal noise is decided by coil's DC resistance. The equivalent input voltage and current noise of the pre-amplifier depend on the amplifier's type and DC operation condition. The design here optimized the DC operation point of pre-amplifier, adjusted the DC current source, and realized the minimum of total noise level of magnetometer. The calculation and test results show that: the total noise is about 1pT/√Hz, the thermal noise of coils is 1.7nV/√Hz, the preamplifier equivalent input voltage and current noise is 3nV/ √Hz and 0.1pA/√Hz, the weight of the magnetometer is 4.5kg and meet the requirement of SEP system.
2012-08-01
It suggests that a smart use of some a-priori information about the operating environment, when processing the received signal and designing the...random variable with the same variance of the backscattering target amplitude αT , and D ( αT , α G T ) is the Kullback − Leibler divergence, see [65...MI . Proof. See Appendix 3.6.6. Thus, we can use the optimization procedure of Algorithm 4 to optimize the Mutual Information between the target
Optimum dry-cooling sub-systems for a solar air conditioner
NASA Technical Reports Server (NTRS)
Chen, J. L. S.; Namkoong, D.
1978-01-01
Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.
DAKOTA Design Analysis Kit for Optimization and Terascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Dalbey, Keith R.; Eldred, Michael S.
2010-02-24
The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes (computational models) and iterative analysis methods. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and analysis of computational models on high performance computers.A user provides a set of DAKOTA commands in an input file and launches DAKOTA. DAKOTA invokes instances of the computational models, collects their results, and performs systems analyses. DAKOTA contains algorithms for optimization with gradient and nongradient-basedmore » methods; uncertainty quantification with sampling, reliability, polynomial chaos, stochastic collocation, and epistemic methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as hybrid optimization, surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. Services for parallel computing, simulation interfacing, approximation modeling, fault tolerance, restart, and graphics are also included.« less
NASA Astrophysics Data System (ADS)
Maghsoudi, Mohammad Javad; Mohamed, Z.; Sudin, S.; Buyamin, S.; Jaafar, H. I.; Ahmad, S. M.
2017-08-01
This paper proposes an improved input shaping scheme for an efficient sway control of a nonlinear three dimensional (3D) overhead crane with friction using the particle swarm optimization (PSO) algorithm. Using this approach, a higher payload sway reduction is obtained as the input shaper is designed based on a complete nonlinear model, as compared to the analytical-based input shaping scheme derived using a linear second order model. Zero Vibration (ZV) and Distributed Zero Vibration (DZV) shapers are designed using both analytical and PSO approaches for sway control of rail and trolley movements. To test the effectiveness of the proposed approach, MATLAB simulations and experiments on a laboratory 3D overhead crane are performed under various conditions involving different cable lengths and sway frequencies. Their performances are studied based on a maximum residual of payload sway and Integrated Absolute Error (IAE) values which indicate total payload sway of the crane. With experiments, the superiority of the proposed approach over the analytical-based is shown by 30-50% reductions of the IAE values for rail and trolley movements, for both ZV and DZV shapers. In addition, simulations results show higher sway reductions with the proposed approach. It is revealed that the proposed PSO-based input shaping design provides higher payload sway reductions of a 3D overhead crane with friction as compared to the commonly designed input shapers.
Derated ion thruster design issues
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Rawlin, Vincent K.
1991-01-01
Preliminary activities to develop and refine a lightweight 30 cm engineering model ion thruster are discussed. The approach is to develop a 'derated' ion thruster capable of performing both auxiliary and primary propulsion roles over an input power range of at least 0.5 to 5.0 kilo-W. Design modifications to a baseline thruster to reduce mass and volume are discussed. Performance data over an order of magnitude input power range are presented, with emphasis on the performance impact of engine throttling. Thruster design modifications to optimize performance over specific power envelopes are discussed. Additionally, lifetime estimates based on wear test measurements are made for the operation envelope of the engine.
Power supply standardization and optimization study
NASA Technical Reports Server (NTRS)
Ware, C. L.; Ragusa, E. V.
1972-01-01
A comprehensive design study of a power supply for use in the space shuttle and other space flight applications is presented. The design specifications are established for a power supply capable of supplying over 90 percent of the anticipated voltage requirements for future spacecraft avionics systems. Analyses and tradeoff studies were performed on several alternative design approaches to assure that the selected design would provide near optimum performance of the planned applications. The selected design uses a dc-to-dc converter incorporating regenerative current feedback with a time-ratio controlled duty cycle to achieve high efficiency over a wide variation in input voltage and output loads. The packaging concept uses an expandable mainframe capable of accommodating up to six inverter/regulator modules with one common input filter module.
Power and Efficiency Optimized in Traveling-Wave Tubes Over a Broad Frequency Bandwidth
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.
2001-01-01
A traveling-wave tube (TWT) is an electron beam device that is used to amplify electromagnetic communication waves at radio and microwave frequencies. TWT's are critical components in deep space probes, communication satellites, and high-power radar systems. Power conversion efficiency is of paramount importance for TWT's employed in deep space probes and communication satellites. A previous effort was very successful in increasing efficiency and power at a single frequency (ref. 1). Such an algorithm is sufficient for narrow bandwidth designs, but for optimal designs in applications that require high radiofrequency power over a wide bandwidth, such as high-density communications or high-resolution radar, the variation of the circuit response with respect to frequency must be considered. This work at the NASA Glenn Research Center is the first to develop techniques for optimizing TWT efficiency and output power over a broad frequency bandwidth (ref. 2). The techniques are based on simulated annealing, which has the advantage over conventional optimization techniques in that it enables the best possible solution to be obtained (ref. 3). Two new broadband simulated annealing algorithms were developed that optimize (1) minimum saturated power efficiency over a frequency bandwidth and (2) simultaneous bandwidth and minimum power efficiency over the frequency band with constant input power. The algorithms were incorporated into the NASA coupled-cavity TWT computer model (ref. 4) and used to design optimal phase velocity tapers using the 59- to 64-GHz Hughes 961HA coupled-cavity TWT as a baseline model. In comparison to the baseline design, the computational results of the first broad-band design algorithm show an improvement of 73.9 percent in minimum saturated efficiency (see the top graph). The second broadband design algorithm (see the bottom graph) improves minimum radiofrequency efficiency with constant input power drive by a factor of 2.7 at the high band edge (64 GHz) and increases simultaneous bandwidth by 500 MHz.
Genetics-based control of a mimo boiler-turbine plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimeo, R.M.; Lee, K.Y.
1994-12-31
A genetic algorithm is used to develop an optimal controller for a non-linear, multi-input/multi-output boiler-turbine plant. The algorithm is used to train a control system for the plant over a wide operating range in an effort to obtain better performance. The results of the genetic algorithm`s controller designed from the linearized plant model at a nominal operating point. Because the genetic algorithm is well-suited to solving traditionally difficult optimization problems it is found that the algorithm is capable of developing the controller based on input/output information only. This controller achieves a performance comparable to the standard linear quadratic regulator.
Schubert, M; Fey, A; Ihssen, J; Civardi, C; Schwarze, F W M R; Mourad, S
2015-01-10
An artificial neural network (ANN) and genetic algorithm (GA) were applied to improve the laccase-mediated oxidation of iodide (I(-)) to elemental iodine (I2). Biosynthesis of iodine (I2) was studied with a 5-level-4-factor central composite design (CCD). The generated ANN network was mathematically evaluated by several statistical indices and revealed better results than a classical quadratic response surface (RS) model. Determination of the relative significance of model input parameters, ranking the process parameters in order of importance (pH>laccase>mediator>iodide), was performed by sensitivity analysis. ANN-GA methodology was used to optimize the input space of the neural network model to find optimal settings for the laccase-mediated synthesis of iodine. ANN-GA optimized parameters resulted in a 9.9% increase in the conversion rate. Copyright © 2014 Elsevier B.V. All rights reserved.
Dynamic optimization and adaptive controller design
NASA Astrophysics Data System (ADS)
Inamdar, S. R.
2010-10-01
In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.
NASA Technical Reports Server (NTRS)
1971-01-01
Computational techniques were developed and assimilated for the design optimization. The resulting computer program was then used to perform initial optimization and sensitivity studies on a typical thermal protection system (TPS) to demonstrate its application to the space shuttle TPS design. The program was developed in Fortran IV for the CDC 6400 but was subsequently converted to the Fortran V language to be used on the Univac 1108. The program allows for improvement and update of the performance prediction techniques. The program logic involves subroutines which handle the following basic functions: (1) a driver which calls for input, output, and communication between program and user and between the subroutines themselves; (2) thermodynamic analysis; (3) thermal stress analysis; (4) acoustic fatigue analysis; and (5) weights/cost analysis. In addition, a system total cost is predicted based on system weight and historical cost data of similar systems. Two basic types of input are provided, both of which are based on trajectory data. These are vehicle attitude (altitude, velocity, and angles of attack and sideslip), for external heat and pressure loads calculation, and heating rates and pressure loads as a function of time.
New multirate sampled-data control law structure and synthesis algorithm
NASA Technical Reports Server (NTRS)
Berg, Martin C.; Mason, Gregory S.; Yang, Gen-Sheng
1992-01-01
A new multirate sampled-data control law structure is defined and a new parameter-optimization-based synthesis algorithm for that structure is introduced. The synthesis algorithm can be applied to multirate, multiple-input/multiple-output, sampled-data control laws having a prescribed dynamic order and structure, and a priori specified sampling/update rates for all sensors, processor states, and control inputs. The synthesis algorithm is applied to design two-input, two-output tip position controllers of various dynamic orders for a sixth-order, two-link robot arm model.
Application of optimization techniques to vehicle design: A review
NASA Technical Reports Server (NTRS)
Prasad, B.; Magee, C. L.
1984-01-01
The work that has been done in the last decade or so in the application of optimization techniques to vehicle design is discussed. Much of the work reviewed deals with the design of body or suspension (chassis) components for reduced weight. Also reviewed are studies dealing with system optimization problems for improved functional performance, such as ride or handling. In reviewing the work on the use of optimization techniques, one notes the transition from the rare mention of the methods in the 70's to an increased effort in the early 80's. Efficient and convenient optimization and analysis tools still need to be developed so that they can be regularly applied in the early design stage of the vehicle development cycle to be most effective. Based on the reported applications, an attempt is made to assess the potential for automotive application of optimization techniques. The major issue involved remains the creation of quantifiable means of analysis to be used in vehicle design. The conventional process of vehicle design still contains much experience-based input because it has not yet proven possible to quantify all important constraints. This restraint on the part of the analysis will continue to be a major limiting factor in application of optimization to vehicle design.
Optimization-Based Robust Nonlinear Control
2006-08-01
ABSTRACT New control algorithms were developed for robust stabilization of nonlinear dynamical systems . Novel, linear matrix inequality-based synthesis...was to further advance optimization-based robust nonlinear control design, for general nonlinear systems (especially in discrete time ), for linear...Teel, IEEE Transactions on Control Systems Technology, vol. 14, no. 3, p. 398-407, May 2006. 3. "A unified framework for input-to-state stability in
NASA Astrophysics Data System (ADS)
Liu, Yang; Zhang, Jian; Pang, Zhicong; Wu, Weihui
2018-04-01
Selective laser melting (SLM) provides a feasible way for manufacturing of complex thin-walled parts directly, however, the energy input during SLM process, namely derived from the laser power, scanning speed, layer thickness and scanning space, etc. has great influence on the thin wall's qualities. The aim of this work is to relate the thin wall's parameters (responses), namely track width, surface roughness and hardness to the process parameters considered in this research (laser power, scanning speed and layer thickness) and to find out the optimal manufacturing conditions. Design of experiment (DoE) was used by implementing composite central design to achieve better manufacturing qualities. Mathematical models derived from the statistical analysis were used to establish the relationships between the process parameters and the responses. Also, the effects of process parameters on each response were determined. Then, a numerical optimization was performed to find out the optimal process set at which the quality features are at their desired values. Based on this study, the relationship between process parameters and SLMed thin-walled structure was revealed and thus, the corresponding optimal process parameters can be used to manufactured thin-walled parts with high quality.
OPDOT: A computer program for the optimum preliminary design of a transport airplane
NASA Technical Reports Server (NTRS)
Sliwa, S. M.; Arbuckle, P. D.
1980-01-01
A description of a computer program, OPDOT, for the optimal preliminary design of transport aircraft is given. OPDOT utilizes constrained parameter optimization to minimize a performance index (e.g., direct operating cost per block hour) while satisfying operating constraints. The approach in OPDOT uses geometric descriptors as independent design variables. The independent design variables are systematically iterated to find the optimum design. The technical development of the program is provided and a program listing with sample input and output are utilized to illustrate its use in preliminary design. It is not meant to be a user's guide, but rather a description of a useful design tool developed for studying the application of new technologies to transport airplanes.
Ahmed, Ashik; Al-Amin, Rasheduzzaman; Amin, Ruhul
2014-01-01
This paper proposes designing of Static Synchronous Series Compensator (SSSC) based damping controller to enhance the stability of a Single Machine Infinite Bus (SMIB) system by means of Invasive Weed Optimization (IWO) technique. Conventional PI controller is used as the SSSC damping controller which takes rotor speed deviation as the input. The damping controller parameters are tuned based on time integral of absolute error based cost function using IWO. Performance of IWO based controller is compared to that of Particle Swarm Optimization (PSO) based controller. Time domain based simulation results are presented and performance of the controllers under different loading conditions and fault scenarios is studied in order to illustrate the effectiveness of the IWO based design approach.
Optimizing micromixer design for enhancing dielectrophoretic microconcentrator performance.
Lee, Hsu-Yi; Voldman, Joel
2007-03-01
We present an investigation into optimizing micromixer design for enhancing dielectrophoretic (DEP) microconcentrator performance. DEP-based microconcentrators use the dielectrophoretic force to collect particles on electrodes. Because the DEP force generated by electrodes decays rapidly away from the electrodes, DEP-based microconcentrators are only effective at capturing particles from a limited cross section of the input liquid stream. Adding a mixer can circulate the input liquid, increasing the probability that particles will drift near the electrodes for capture. Because mixers for DEP-based microconcentrators aim to circulate particles, rather than mix two species, design specifications for such mixers may be significantly different from that for conventional mixers. Here we investigated the performance of patterned-groove micromixers on particle trapping efficiency in DEP-based microconcentrators numerically and experimentally. We used modeling software to simulate the particle motion due to various forces on the particle (DEP, hydrodynamic, etc.), allowing us to predict trapping efficiency. We also conducted trapping experiments and measured the capture efficiency of different micromixer configurations, including the slanted groove, staggered herringbone, and herringbone mixers. Finally, we used these analyses to illustrate the design principles of mixers for DEP-based concentrators.
Design of an rf quadrupole for Landau damping
NASA Astrophysics Data System (ADS)
Papke, K.; Grudiev, A.
2017-08-01
The recently proposed superconducting quadrupole resonator for Landau damping in accelerators is subjected to a detailed design study. The optimization process of two different cavity types is presented following the requirements of the High Luminosity Large Hadron Collider (HL-LHC) with the main focus on quadrupolar strength, surface peak fields, and impedance. The lower order and higher order mode (LOM and HOM) spectrum of the optimized cavities is investigated and different approaches for their damping are proposed. On the basis of an example the first two higher order multipole errors are calculated. Likewise on this example the required rf power and optimal external quality factor for the input coupler is derived.
Control and optimization system
Xinsheng, Lou
2013-02-12
A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Resonant-Type Smooth Impact Drive Mechanism Actuator Operating at Lower Input Voltages
NASA Astrophysics Data System (ADS)
Morita, Takeshi; Nishimura, Takuma; Yoshida, Ryuichi; Hosaka, Hiroshi
2013-07-01
We report on the design and fabrication of a resonant-type smooth impact drive mechanism (SIDM) actuator based on a multilayered piezoelectric ceramic transducer. Conventional SIDMs use off-resonant sawtooth-shaped displacement in developing stick-slip motion of a slider, but require large input voltages for high-speed operation. In contrast, in resonant-type SIDMs, a quasi-sawtooth-shaped displacement is obtained by combining two resonant vibrational modes. This driving principle enables low input voltage operations. In combining the modes, their frequency ratio must be 1:2. To design and optimize the stator transducer to generate sawtooth-shaped displacements, a transfer matrix method was adopted. With a preload of 270 mN, the no-load speed was 40 mm/s under a driving voltage of 1.6 V (peak to peak). This input voltage was one-sixth that of previous SIDMs for the same performance. Concurrently, heat generation was significantly reduced because dielectric losses were suppressed under the lower input voltage operation.
An Optimization Framework for Dynamic Hybrid Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenbo Du; Humberto E Garcia; Christiaan J.J. Paredis
A computational framework for the efficient analysis and optimization of dynamic hybrid energy systems (HES) is developed. A microgrid system with multiple inputs and multiple outputs (MIMO) is modeled using the Modelica language in the Dymola environment. The optimization loop is implemented in MATLAB, with the FMI Toolbox serving as the interface between the computational platforms. Two characteristic optimization problems are selected to demonstrate the methodology and gain insight into the system performance. The first is an unconstrained optimization problem that optimizes the dynamic properties of the battery, reactor and generator to minimize variability in the HES. The second problemmore » takes operating and capital costs into consideration by imposing linear and nonlinear constraints on the design variables. The preliminary optimization results obtained in this study provide an essential step towards the development of a comprehensive framework for designing HES.« less
Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan
2015-01-01
Based on the neural network (NN) approximator, an online reinforcement learning algorithm is proposed for a class of affine multiple input and multiple output (MIMO) nonlinear discrete-time systems with unknown functions and disturbances. In the design procedure, two networks are provided where one is an action network to generate an optimal control signal and the other is a critic network to approximate the cost function. An optimal control signal and adaptation laws can be generated based on two NNs. In the previous approaches, the weights of critic and action networks are updated based on the gradient descent rule and the estimations of optimal weight vectors are directly adjusted in the design. Consequently, compared with the existing results, the main contributions of this paper are: 1) only two parameters are needed to be adjusted, and thus the number of the adaptation laws is smaller than the previous results and 2) the updating parameters do not depend on the number of the subsystems for MIMO systems and the tuning rules are replaced by adjusting the norms on optimal weight vectors in both action and critic networks. It is proven that the tracking errors, the adaptation laws, and the control inputs are uniformly bounded using Lyapunov analysis method. The simulation examples are employed to illustrate the effectiveness of the proposed algorithm.
Optimal Design of Calibration Signals in Space-Borne Gravitational Wave Detectors
NASA Technical Reports Server (NTRS)
Nofrarias, Miquel; Karnesis, Nikolaos; Gibert, Ferran; Armano, Michele; Audley, Heather; Danzmann, Karsten; Diepholz, Ingo; Dolesi, Rita; Ferraioli, Luigi; Ferroni, Valerio;
2016-01-01
Future space borne gravitational wave detectors will require a precise definition of calibration signals to ensure the achievement of their design sensitivity. The careful design of the test signals plays a key role in the correct understanding and characterisation of these instruments. In that sense, methods achieving optimal experiment designs must be considered as complementary to the parameter estimation methods being used to determine the parameters describing the system. The relevance of experiment design is particularly significant for the LISA Pathfinder mission, which will spend most of its operation time performing experiments to characterize key technologies for future space borne gravitational wave observatories. Here we propose a framework to derive the optimal signals in terms of minimum parameter uncertainty to be injected to these instruments during its calibration phase. We compare our results with an alternative numerical algorithm which achieves an optimal input signal by iteratively improving an initial guess. We show agreement of both approaches when applied to the LISA Pathfinder case.
Optimal Design of Calibration Signals in Space Borne Gravitational Wave Detectors
NASA Technical Reports Server (NTRS)
Nofrarias, Miquel; Karnesis, Nikolaos; Gibert, Ferran; Armano, Michele; Audley, Heather; Danzmann, Karsten; Diepholz, Ingo; Dolesi, Rita; Ferraioli, Luigi; Thorpe, James I.
2014-01-01
Future space borne gravitational wave detectors will require a precise definition of calibration signals to ensure the achievement of their design sensitivity. The careful design of the test signals plays a key role in the correct understanding and characterization of these instruments. In that sense, methods achieving optimal experiment designs must be considered as complementary to the parameter estimation methods being used to determine the parameters describing the system. The relevance of experiment design is particularly significant for the LISA Pathfinder mission, which will spend most of its operation time performing experiments to characterize key technologies for future space borne gravitational wave observatories. Here we propose a framework to derive the optimal signals in terms of minimum parameter uncertainty to be injected to these instruments during its calibration phase. We compare our results with an alternative numerical algorithm which achieves an optimal input signal by iteratively improving an initial guess. We show agreement of both approaches when applied to the LISA Pathfinder case.
NASA Astrophysics Data System (ADS)
Wang, Tian; Cui, Xiaoxin; Ni, Yewen; Liao, Kai; Liao, Nan; Yu, Dunshan; Cui, Xiaole
2017-04-01
With shrinking transistor feature size, the fin-type field-effect transistor (FinFET) has become the most promising option in low-power circuit design due to its superior capability to suppress leakage. To support the VLSI digital system flow based on logic synthesis, we have designed an optimized high-performance low-power FinFET standard cell library based on employing the mixed FBB/RBB technique in the existing stacked structure of each cell. This paper presents the reliability evaluation of the optimized cells under process and operating environment variations based on Monte Carlo analysis. The variations are modelled with Gaussian distribution of the device parameters and 10000 sweeps are conducted in the simulation to obtain the statistical properties of the worst-case delay and input-dependent leakage for each cell. For comparison, a set of non-optimal cells that adopt the same topology without employing the mixed biasing technique is also generated. Experimental results show that the optimized cells achieve standard deviation reduction of 39.1% and 30.7% at most in worst-case delay and input-dependent leakage respectively while the normalized deviation shrinking in worst-case delay and input-dependent leakage can be up to 98.37% and 24.13%, respectively, which demonstrates that our optimized cells are less sensitive to variability and exhibit more reliability. Project supported by the National Natural Science Foundation of China (No. 61306040), the State Key Development Program for Basic Research of China (No. 2015CB057201), the Beijing Natural Science Foundation (No. 4152020), and Natural Science Foundation of Guangdong Province, China (No. 2015A030313147).
Systematic Propulsion Optimization Tools (SPOT)
NASA Technical Reports Server (NTRS)
Bower, Mark; Celestian, John
1992-01-01
This paper describes a computer program written by senior-level Mechanical Engineering students at the University of Alabama in Huntsville which is capable of optimizing user-defined delivery systems for carrying payloads into orbit. The custom propulsion system is designed by the user through the input of configuration, payload, and orbital parameters. The primary advantages of the software, called Systematic Propulsion Optimization Tools (SPOT), are a user-friendly interface and a modular FORTRAN 77 code designed for ease of modification. The optimization of variables in an orbital delivery system is of critical concern in the propulsion environment. The mass of the overall system must be minimized within the maximum stress, force, and pressure constraints. SPOT utilizes the Design Optimization Tools (DOT) program for the optimization techniques. The SPOT program is divided into a main program and five modules: aerodynamic losses, orbital parameters, liquid engines, solid engines, and nozzles. The program is designed to be upgraded easily and expanded to meet specific user needs. A user's manual and a programmer's manual are currently being developed to facilitate implementation and modification.
Sensitivity, optimal scaling and minimum roundoff errors in flexible structure models
NASA Technical Reports Server (NTRS)
Skelton, Robert E.
1987-01-01
Traditional modeling notions presume the existence of a truth model that relates the input to the output, without advanced knowledge of the input. This has led to the evolution of education and research approaches (including the available control and robustness theories) that treat the modeling and control design as separate problems. The paper explores the subtleties of this presumption that the modeling and control problems are separable. A detailed study of the nature of modeling errors is useful to gain insight into the limitations of traditional control and identification points of view. Modeling errors need not be small but simply appropriate for control design. Furthermore, the modeling and control design processes are inevitably iterative in nature.
Design optimum frac jobs using virtual intelligence techniques
NASA Astrophysics Data System (ADS)
Mohaghegh, Shahab; Popa, Andrei; Ameri, Sam
2000-10-01
Designing optimal frac jobs is a complex and time-consuming process. It usually involves the use of a two- or three-dimensional computer model. For the computer models to perform as intended, a wealth of input data is required. The input data includes wellbore configuration and reservoir characteristics such as porosity, permeability, stress and thickness profiles of the pay layers as well as the overburden layers. Among other essential information required for the design process is fracturing fluid type and volume, proppant type and volume, injection rate, proppant concentration and frac job schedule. Some of the parameters such as fluid and proppant types have discrete possible choices. Other parameters such as fluid and proppant volume, on the other hand, assume values from within a range of minimum and maximum values. A potential frac design for a particular pay zone is a combination of all of these parameters. Finding the optimum combination is not a trivial process. It usually requires an experienced engineer and a considerable amount of time to tune the parameters in order to achieve desirable outcome. This paper introduces a new methodology that integrates two virtual intelligence techniques, namely, artificial neural networks and genetic algorithms to automate and simplify the optimum frac job design process. This methodology requires little input from the engineer beyond the reservoir characterizations and wellbore configuration. The software tool that has been developed based on this methodology uses the reservoir characteristics and an optimization criteria indicated by the engineer, for example a certain propped frac length, and provides the detail of the optimum frac design that will result in the specified criteria. An ensemble of neural networks is trained to mimic the two- or three-dimensional frac simulator. Once successfully trained, these networks are capable of providing instantaneous results in response to any set of input parameters. These networks will be used as the fitness function for a genetic algorithm routine that will search for the best combination of the design parameters for the frac job. The genetic algorithm will search through the entire solution space and identify the optimal combination of parameters to be used in the design process. Considering the complexity of this task this methodology converges relatively fast, providing the engineer with several near-optimum scenarios for the frac job design. These scenarios, which can be achieved in just a minute or two, can be valuable initial points for the engineer to start his/her design job and save him/her hours of runs on the simulator.
Optimal inverse functions created via population-based optimization.
Jennings, Alan L; Ordóñez, Raúl
2014-06-01
Finding optimal inputs for a multiple-input, single-output system is taxing for a system operator. Population-based optimization is used to create sets of functions that produce a locally optimal input based on a desired output. An operator or higher level planner could use one of the functions in real time. For the optimization, each agent in the population uses the cost and output gradients to take steps lowering the cost while maintaining their current output. When an agent reaches an optimal input for its current output, additional agents are generated in the output gradient directions. The new agents then settle to the local optima for the new output values. The set of associated optimal points forms an inverse function, via spline interpolation, from a desired output to an optimal input. In this manner, multiple locally optimal functions can be created. These functions are naturally clustered in input and output spaces allowing for a continuous inverse function. The operator selects the best cluster over the anticipated range of desired outputs and adjusts the set point (desired output) while maintaining optimality. This reduces the demand from controlling multiple inputs, to controlling a single set point with no loss in performance. Results are demonstrated on a sample set of functions and on a robot control problem.
Global optimization of multimode interference structure for ratiometric wavelength measurement
NASA Astrophysics Data System (ADS)
Wang, Qian; Farrell, Gerald; Hatta, Agus Muhamad
2007-07-01
The multimode interference structure is conventionally used as a splitter/combiner. In this paper, it is optimised as an edge filter for ratiometric wavelength measurement, which can be used in demodulation of fiber Bragg grating sensing. The global optimization algorithm-adaptive simulated annealing is introduced in the design of multimode interference structure including the length and width of the multimode waveguide section, and positions of the input and output waveguides. The designed structure shows a suitable spectral response for wavelength measurement and a good fabrication tolerance.
PATENTS AND RESEARCH INVESTMENTS: ASSESSING THE EMPIRICAL EVIDENCE.
Budish, Eric; Roin, Benjamin N; Williams, Heidi L
2016-05-01
A well-developed theoretical literature - dating back at least to Nordhaus (1969) - has analyzed optimal patent policy design. We re-present the core trade-off of the Nordhaus model and highlight an empirical question which emerges from the Nordhaus framework as a key input into optimal patent policy design: namely, what is the elasticity of R&D investment with respect to the patent term? We then review the - surprisingly small - body of empirical evidence that has been developed on this question over the nearly half century since the publication of Nordhaus's book.
NASA Astrophysics Data System (ADS)
Seo, Junyeong; Sung, Youngchul
2018-06-01
In this paper, an efficient transmit beam design and user scheduling method is proposed for multi-user (MU) multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) downlink, based on Pareto-optimality. The proposed beam design and user scheduling method groups simultaneously-served users into multiple clusters with practical two users in each cluster, and then applies spatical zeroforcing (ZF) across clusters to control inter-cluster interference (ICI) and Pareto-optimal beam design with successive interference cancellation (SIC) to two users in each cluster to remove interference to strong users and leverage signal-to-interference-plus-noise ratios (SINRs) of interference-experiencing weak users. The proposed method has flexibility to control the rates of strong and weak users and numerical results show that the proposed method yields good performance.
Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope.
Chang, Cheng-Yang; Chen, Tsung-Lin
2017-10-31
Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT) material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the "open loop sensitivity" of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.
NASA Astrophysics Data System (ADS)
Chrismianto, Deddy; Zakki, Ahmad Fauzan; Arswendo, Berlian; Kim, Dong Joon
2015-12-01
Optimization analysis and computational fluid dynamics (CFDs) have been applied simultaneously, in which a parametric model plays an important role in finding the optimal solution. However, it is difficult to create a parametric model for a complex shape with irregular curves, such as a submarine hull form. In this study, the cubic Bezier curve and curve-plane intersection method are used to generate a solid model of a parametric submarine hull form taking three input parameters into account: nose radius, tail radius, and length-height hull ratio ( L/ H). Application program interface (API) scripting is also used to write code in the ANSYS design modeler. The results show that the submarine shape can be generated with some variation of the input parameters. An example is given that shows how the proposed method can be applied successfully to a hull resistance optimization case. The parametric design of the middle submarine type was chosen to be modified. First, the original submarine model was analyzed, in advance, using CFD. Then, using the response surface graph, some candidate optimal designs with a minimum hull resistance coefficient were obtained. Further, the optimization method in goal-driven optimization (GDO) was implemented to find the submarine hull form with the minimum hull resistance coefficient ( C t ). The minimum C t was obtained. The calculated difference in C t values between the initial submarine and the optimum submarine is around 0.26%, with the C t of the initial submarine and the optimum submarine being 0.001 508 26 and 0.001 504 29, respectively. The results show that the optimum submarine hull form shows a higher nose radius ( r n ) and higher L/ H than those of the initial submarine shape, while the radius of the tail ( r t ) is smaller than that of the initial shape.
A new optimal seam method for seamless image stitching
NASA Astrophysics Data System (ADS)
Xue, Jiale; Chen, Shengyong; Cheng, Xu; Han, Ying; Zhao, Meng
2017-07-01
A novel optimal seam method which aims to stitch those images with overlapping area more seamlessly has been propos ed. Considering the traditional gradient domain optimal seam method and fusion algorithm result in bad color difference measurement and taking a long time respectively, the input images would be converted to HSV space and a new energy function is designed to seek optimal stitching path. To smooth the optimal stitching path, a simplified pixel correction and weighted average method are utilized individually. The proposed methods exhibit performance in eliminating the stitching seam compared with the traditional gradient optimal seam and high efficiency with multi-band blending algorithm.
A single-layer platform for Boolean logic and arithmetic through DNA excision in mammalian cells
Weinberg, Benjamin H.; Hang Pham, N. T.; Caraballo, Leidy D.; Lozanoski, Thomas; Engel, Adrien; Bhatia, Swapnil; Wong, Wilson W.
2017-01-01
Genetic circuits engineered for mammalian cells often require extensive fine-tuning to perform their intended functions. To overcome this problem, we present a generalizable biocomputing platform that can engineer genetic circuits which function in human cells with minimal optimization. We used our Boolean Logic and Arithmetic through DNA Excision (BLADE) platform to build more than 100 multi-input-multi-output circuits. We devised a quantitative metric to evaluate the performance of the circuits in human embryonic kidney and Jurkat T cells. Of 113 circuits analysed, 109 functioned (96.5%) with the correct specified behavior without any optimization. We used our platform to build a three-input, two-output Full Adder and six-input, one-output Boolean Logic Look Up Table. We also used BLADE to design circuits with temporal small molecule-mediated inducible control and circuits that incorporate CRISPR/Cas9 to regulate endogenous mammalian genes. PMID:28346402
Telecommunications network optimization
NASA Technical Reports Server (NTRS)
Lee, J.
1979-01-01
Analysis discusses STACOM (state criminal justic communication) network topology program used to design and evaluate digital telecommunications networks STACOM employs ESAU-WILLIAMS technique to search for direct links between system terminations and regional switching center. Inputs include traffic data, terminal locations, and functional requirements.
Ring rolling process simulation for microstructure optimization
NASA Astrophysics Data System (ADS)
Franchi, Rodolfo; Del Prete, Antonio; Donatiello, Iolanda; Calabrese, Maurizio
2017-10-01
Metal undergoes complicated microstructural evolution during Hot Ring Rolling (HRR), which determines the quality, mechanical properties and life of the ring formed. One of the principal microstructure properties which mostly influences the structural performances of forged components, is the value of the average grain size. In the present paper a ring rolling process has been studied and optimized in order to obtain anular components to be used in aerospace applications. In particular, the influence of process input parameters (feed rate of the mandrel and angular velocity of driver roll) on microstructural and on geometrical features of the final ring has been evaluated. For this purpose, a three-dimensional finite element model for HRR has been developed in SFTC DEFORM V11, taking into account also microstructural development of the material used (the nickel superalloy Waspalloy). The Finite Element (FE) model has been used to formulate a proper optimization problem. The optimization procedure has been developed in order to find the combination of process parameters which allows to minimize the average grain size. The Response Surface Methodology (RSM) has been used to find the relationship between input and output parameters, by using the exact values of output parameters in the control points of a design space explored through FEM simulation. Once this relationship is known, the values of the output parameters can be calculated for each combination of the input parameters. Then, an optimization procedure based on Genetic Algorithms has been applied. At the end, the minimum value of average grain size with respect to the input parameters has been found.
Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit
Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed
2017-01-01
This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for −4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz. PMID:28763043
Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit.
Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed; Kanaya, Haruichi
2017-08-01
This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for -4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz.
Optimum design of hybrid phase locked loops
NASA Technical Reports Server (NTRS)
Lee, P.; Yan, T.
1981-01-01
The design procedure of phase locked loops is described in which the analog loop filter is replaced by a digital computer. Specific design curves are given for the step and ramp input changes in phase. It is shown that the designed digital filter depends explicitly on the product of the sampling time and the noise bandwidth of the phase locked loop. This technique of optimization can be applied to the design of digital analog loops for other applications.
Neural network-based optimal adaptive output feedback control of a helicopter UAV.
Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani
2013-07-01
Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.
NASA Technical Reports Server (NTRS)
Pilkey, W. D.; Wang, B. P.; Yoo, Y.; Clark, B.
1973-01-01
A description and applications of a computer capability for determining the ultimate optimal behavior of a dynamically loaded structural-mechanical system are presented. This capability provides characteristics of the theoretically best, or limiting, design concept according to response criteria dictated by design requirements. Equations of motion of the system in first or second order form include incompletely specified elements whose characteristics are determined in the optimization of one or more performance indices subject to the response criteria in the form of constraints. The system is subject to deterministic transient inputs, and the computer capability is designed to operate with a large linear programming on-the-shelf software package which performs the desired optimization. The report contains user-oriented program documentation in engineering, problem-oriented form. Applications cover a wide variety of dynamics problems including those associated with such diverse configurations as a missile-silo system, impacting freight cars, and an aircraft ride control system.
PopED lite: An optimal design software for preclinical pharmacokinetic and pharmacodynamic studies.
Aoki, Yasunori; Sundqvist, Monika; Hooker, Andrew C; Gennemark, Peter
2016-04-01
Optimal experimental design approaches are seldom used in preclinical drug discovery. The objective is to develop an optimal design software tool specifically designed for preclinical applications in order to increase the efficiency of drug discovery in vivo studies. Several realistic experimental design case studies were collected and many preclinical experimental teams were consulted to determine the design goal of the software tool. The tool obtains an optimized experimental design by solving a constrained optimization problem, where each experimental design is evaluated using some function of the Fisher Information Matrix. The software was implemented in C++ using the Qt framework to assure a responsive user-software interaction through a rich graphical user interface, and at the same time, achieving the desired computational speed. In addition, a discrete global optimization algorithm was developed and implemented. The software design goals were simplicity, speed and intuition. Based on these design goals, we have developed the publicly available software PopED lite (http://www.bluetree.me/PopED_lite). Optimization computation was on average, over 14 test problems, 30 times faster in PopED lite compared to an already existing optimal design software tool. PopED lite is now used in real drug discovery projects and a few of these case studies are presented in this paper. PopED lite is designed to be simple, fast and intuitive. Simple, to give many users access to basic optimal design calculations. Fast, to fit a short design-execution cycle and allow interactive experimental design (test one design, discuss proposed design, test another design, etc). Intuitive, so that the input to and output from the software tool can easily be understood by users without knowledge of the theory of optimal design. In this way, PopED lite is highly useful in practice and complements existing tools. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Trajectory Optimization of an Interstellar Mission Using Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Kluever, Craig A.
1996-01-01
This paper presents several mission designs for heliospheric boundary exploration using spacecraft with low-thrust ion engines as the primary mode of propulsion The mission design goal is to transfer a 200-kg spacecraft to the heliospheric boundary in minimum time. The mission design is a combined trajectory and propulsion system optimization problem. Trajectory design variables include launch date, launch energy, burn and coast arc switch times, thrust steering direction, and planetary flyby conditions. Propulsion system design parameters include input power and specific impulse. Both SEP and NEP spacecraft arc considered and a wide range of launch vehicle options are investigated. Numerical results are presented and comparisons with the all chemical heliospheric missions from Ref 9 are made.
Optimal control theory investigation of proprotor/wing response to vertical gust
NASA Technical Reports Server (NTRS)
Frick, J. K. D.; Johnson, W.
1974-01-01
Optimal control theory is used to design linear state variable feedback to improve the dynamic characteristics of a rotor and cantilever wing representing the tilting proprotor aircraft in cruise flight. The response to a vertical gust and system damping are used as criteria for the open and closed loop performance. The improvement in the dynamic characteristics achievable is examined for a gimballed rotor and for a hingeless rotor design. Several features of the design process are examined, including: (1) using only the wing or only the rotor dynamics in the control system design; (2) the use of a wing flap as well as the rotor controls for inputs; (3) and the performance of the system designed for one velocity at other forward speeds.
A homotopy algorithm for digital optimal projection control GASD-HADOC
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; Richter, Stephen; Davis, Lawrence D.
1993-01-01
The linear-quadratic-gaussian (LQG) compensator was developed to facilitate the design of control laws for multi-input, multi-output (MIMO) systems. The compensator is computed by solving two algebraic equations for which standard closed-loop solutions exist. Unfortunately, the minimal dimension of an LQG compensator is almost always equal to the dimension of the plant and can thus often violate practical implementation constraints on controller order. This deficiency is especially highlighted when considering control-design for high-order systems such as flexible space structures. This deficiency motivated the development of techniques that enable the design of optimal controllers whose dimension is less than that of the design plant. A homotopy approach based on the optimal projection equations that characterize the necessary conditions for optimal reduced-order control. Homotopy algorithms have global convergence properties and hence do not require that the initializing reduced-order controller be close to the optimal reduced-order controller to guarantee convergence. However, the homotopy algorithm previously developed for solving the optimal projection equations has sublinear convergence properties and the convergence slows at higher authority levels and may fail. A new homotopy algorithm for synthesizing optimal reduced-order controllers for discrete-time systems is described. Unlike the previous homotopy approach, the new algorithm is a gradient-based, parameter optimization formulation and was implemented in MATLAB. The results reported may offer the foundation for a reliable approach to optimal, reduced-order controller design.
Fuzzy logic control and optimization system
Lou, Xinsheng [West Hartford, CT
2012-04-17
A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
NASA Astrophysics Data System (ADS)
Meriyanti, Su'ud, Zaki; Rijal, K.; Zuhair, Ferhat, A.; Sekimoto, H.
2010-06-01
In this study a fesibility design study of medium sized (1000 MWt) gas cooled fast reactors which can utilize natural uranium as fuel cycle input has been conducted. Gas Cooled Fast Reactor (GFR) is among six types of Generation IV Nuclear Power Plants. GFR with its hard neuron spectrum is superior for closed fuel cycle, and its ability to be operated in high temperature (850° C) makes various options of utilizations become possible. To obtain the capability of consuming natural uranium as fuel cycle input, modified CANDLE burn-up scheme[1-6] is adopted this GFR system by dividing the core into 10 parts of equal volume axially. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. As an optimization results, a design of 1000 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input is discussed. The average discharge burn-up is about 280 GWd/ton HM. Enough margin for criticallity was obtained for this reactor.
Neural Net-Based Redesign of Transonic Turbines for Improved Unsteady Aerodynamic Performance
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Rai, Man Mohan; Huber, Frank W.
1998-01-01
A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology (RSM) and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The optimization procedure yields a modified design that improves the aerodynamic performance through small changes to the reference design geometry. The computed results demonstrate the capabilities of the neural net-based design procedure, and also show the tremendous advantages that can be gained by including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.
Design and Implementation of RF Energy Harvesting System for Low-Power Electronic Devices
NASA Astrophysics Data System (ADS)
Uzun, Yunus
2016-08-01
Radio frequency (RF) energy harvester systems are a good alternative for energizing of low-power electronics devices. In this work, an RF energy harvester is presented to obtain energy from Global System for Mobile Communications (GSM) 900 MHz signals. The energy harvester, consisting of a two-stage Dickson voltage multiplier circuit and L-type impedance matching circuits, was designed, simulated, fabricated and tested experimentally in terms of its performance. Simulation and experimental works were carried out for various input power levels, load resistances and input frequencies. Both simulation and experimental works have been carried out for this frequency band. An efficiency of 45% is obtained from the system at 0 dBm input power level using the impedance matching circuit. This corresponds to the power of 450 μW and this value is sufficient for many low-power devices. The most important parameters affecting the efficiency of the RF energy harvester are the input power level, frequency band, impedance matching and voltage multiplier circuits, load resistance and the selection of diodes. RF energy harvester designs should be optimized in terms of these parameters.
Computer program optimizes design of nuclear radiation shields
NASA Technical Reports Server (NTRS)
Lahti, G. P.
1971-01-01
Computer program, OPEX 2, determines minimum weight, volume, or cost for shields. Program incorporates improved coding, simplified data input, spherical geometry, and an expanded output. Method is capable of altering dose-thickness relationship when a shield layer has been removed.
Modified optimal control pilot model for computer-aided design and analysis
NASA Technical Reports Server (NTRS)
Davidson, John B.; Schmidt, David K.
1992-01-01
This paper presents the theoretical development of a modified optimal control pilot model based upon the optimal control model (OCM) of the human operator developed by Kleinman, Baron, and Levison. This model is input compatible with the OCM and retains other key aspects of the OCM, such as a linear quadratic solution for the pilot gains with inclusion of control rate in the cost function, a Kalman estimator, and the ability to account for attention allocation and perception threshold effects. An algorithm designed for each implementation in current dynamic systems analysis and design software is presented. Example results based upon the analysis of a tracking task using three basic dynamic systems are compared with measured results and with similar analyses performed with the OCM and two previously proposed simplified optimal pilot models. The pilot frequency responses and error statistics obtained with this modified optimal control model are shown to compare more favorably to the measured experimental results than the other previously proposed simplified models evaluated.
NASA Astrophysics Data System (ADS)
Wang, Hongyan
2017-04-01
This paper addresses the waveform optimization problem for improving the detection performance of multi-input multioutput (MIMO) orthogonal frequency division multiplexing (OFDM) radar-based space-time adaptive processing (STAP) in the complex environment. By maximizing the output signal-to-interference-and-noise-ratio (SINR) criterion, the waveform optimization problem for improving the detection performance of STAP, which is subjected to the constant modulus constraint, is derived. To tackle the resultant nonlinear and complicated optimization issue, a diagonal loading-based method is proposed to reformulate the issue as a semidefinite programming one; thereby, this problem can be solved very efficiently. In what follows, the optimized waveform can be obtained to maximize the output SINR of MIMO-OFDM such that the detection performance of STAP can be improved. The simulation results show that the proposed method can improve the output SINR detection performance considerably as compared with that of uncorrelated waveforms and the existing MIMO-based STAP method.
NASA Technical Reports Server (NTRS)
Jaunky, N.; Ambur, D. R.; Knight, N. F., Jr.
1998-01-01
A design strategy for optimal design of composite grid-stiffened cylinders subjected to global and local buckling constraints and strength constraints was developed using a discrete optimizer based on a genetic algorithm. An improved smeared stiffener theory was used for the global analysis. Local buckling of skin segments were assessed using a Rayleigh-Ritz method that accounts for material anisotropy. The local buckling of stiffener segments were also assessed. Constraints on the axial membrane strain in the skin and stiffener segments were imposed to include strength criteria in the grid-stiffened cylinder design. Design variables used in this study were the axial and transverse stiffener spacings, stiffener height and thickness, skin laminate stacking sequence and stiffening configuration, where stiffening configuration is a design variable that indicates the combination of axial, transverse and diagonal stiffener in the grid-stiffened cylinder. The design optimization process was adapted to identify the best suited stiffening configurations and stiffener spacings for grid-stiffened composite cylinder with the length and radius of the cylinder, the design in-plane loads and material properties as inputs. The effect of having axial membrane strain constraints in the skin and stiffener segments in the optimization process is also studied for selected stiffening configurations.
NASA Technical Reports Server (NTRS)
Jaunky, Navin; Knight, Norman F., Jr.; Ambur, Damodar R.
1998-01-01
A design strategy for optimal design of composite grid-stiffened cylinders subjected to global and local buckling constraints and, strength constraints is developed using a discrete optimizer based on a genetic algorithm. An improved smeared stiffener theory is used for the global analysis. Local buckling of skin segments are assessed using a Rayleigh-Ritz method that accounts for material anisotropy. The local buckling of stiffener segments are also assessed. Constraints on the axial membrane strain in the skin and stiffener segments are imposed to include strength criteria in the grid-stiffened cylinder design. Design variables used in this study are the axial and transverse stiffener spacings, stiffener height and thickness, skin laminate stacking sequence, and stiffening configuration, where herein stiffening configuration is a design variable that indicates the combination of axial, transverse, and diagonal stiffener in the grid-stiffened cylinder. The design optimization process is adapted to identify the best suited stiffening configurations and stiffener spacings for grid-stiffened composite cylinder with the length and radius of the cylinder, the design in-plane loads, and material properties as inputs. The effect of having axial membrane strain constraints in the skin and stiffener segments in the optimization process is also studied for selected stiffening configuration.
Analysis and Design of Complex Network Environments
2012-03-01
and J. Lowe, “The myths and facts behind cyber security risks for industrial control systems ,” in the Proceedings of the VDE Kongress, VDE Congress...questions about 1) how to model them, 2) the design of experiments necessary to discover their structure (and thus adapt system inputs to optimize the...theoretical work that clarifies fundamental limitations of complex networks with network engineering and systems biology to implement specific designs and
Optimization of a GO2/GH2 Impinging Injector Element
NASA Technical Reports Server (NTRS)
Tucker, P. Kevin; Shyy, Wei; Vaidyanathan, Rajkumar
2001-01-01
An injector optimization methodology, method i, is used to investigate optimal design points for a gaseous oxygen/gaseous hydrogen (GO2/GH2) impinging injector element. The unlike impinging element, a fuel-oxidizer- fuel (F-O-F) triplet, is optimized in terms of design variables such as fuel pressure drop, (Delta)P(sub f), oxidizer pressure drop, (Delta)P(sub o), combustor length, L(sub comb), and impingement half-angle, alpha, for a given mixture ratio and chamber pressure. Dependent variables such as energy release efficiency, ERE, wall heat flux, Q(sub w), injector heat flux, Q(sub inj), relative combustor weight, W(sub rel), and relative injector cost, C(sub rel), are calculated and then correlated with the design variables. An empirical design methodology is used to generate these responses for 163 combinations of input variables. Method i is then used to generate response surfaces for each dependent variable. Desirability functions based on dependent variable constraints are created and used to facilitate development of composite response surfaces representing some, or all, of the five dependent variables in terms of the input variables. Three examples illustrating the utility and flexibility of method i are discussed in detail. First, joint response surfaces are constructed by sequentially adding dependent variables. Optimum designs are identified after addition of each variable and the effect each variable has on the design is shown. This stepwise demonstration also highlights the importance of including variables such as weight and cost early in the design process. Secondly, using the composite response surface which includes all five dependent variables, unequal weights are assigned to emphasize certain variables relative to others. Here, method i is used to enable objective trade studies on design issues such as component life and thrust to weight ratio. Finally, specific variable weights are further increased to illustrate the high marginal cost of realizing the last increment of injector performance and thruster weight.
Database Management in Design Optimization.
1983-10-30
processing program(s) engaged in the task of preparing input data for the (finite-element) analysis and optimization phases primary storage the main...and extraction of data from the database for further processing . It can be divided into two phases: a) The process of selection and identification of ...user wishes to stop the reading or the writing process . The meaning of END depends on the method specified for retrieving data: a) Row-wise - then
The determination of the operating range of a twin-grip control yoke through biomechanical means
NASA Technical Reports Server (NTRS)
Gaertner, K. P.
1978-01-01
A twin-grip control yoke was designed as an ergonomic case study that allows dual axis control inputs, both axes being rotational. Inputs are effected by rotating the grips. How the handles were designed with respect to their shape and size and how the angular range of the control yoke in both rotational axes was evaluated. The control yoke which requires two-hand operation was tested to determine its operating range. The intention of this investigation was to find out the optimal form of the control yoke and the maximum permissible range in both rotating axes. In these experiments controls had no spring resistance.
NASA Astrophysics Data System (ADS)
Abdeh-Kolahchi, A.; Satish, M.; Datta, B.
2004-05-01
A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of monitoring network design.
Optimal Implementations for Reliable Circadian Clocks
NASA Astrophysics Data System (ADS)
Hasegawa, Yoshihiko; Arita, Masanori
2014-09-01
Circadian rhythms are acquired through evolution to increase the chances for survival through synchronizing with the daylight cycle. Reliable synchronization is realized through two trade-off properties: regularity to keep time precisely, and entrainability to synchronize the internal time with daylight. We find by using a phase model with multiple inputs that achieving the maximal limit of regularity and entrainability entails many inherent features of the circadian mechanism. At the molecular level, we demonstrate the role sharing of two light inputs, phase advance and delay, as is well observed in mammals. At the behavioral level, the optimal phase-response curve inevitably contains a dead zone, a time during which light pulses neither advance nor delay the clock. We reproduce the results of phase-controlling experiments entrained by two types of periodic light pulses. Our results indicate that circadian clocks are designed optimally for reliable clockwork through evolution.
On optimal control of linear systems in the presence of multiplicative noise
NASA Technical Reports Server (NTRS)
Joshi, S. M.
1976-01-01
This correspondence considers the problem of optimal regulator design for discrete time linear systems subjected to white state-dependent and control-dependent noise in addition to additive white noise in the input and the observations. A pseudo-deterministic problem is first defined in which multiplicative and additive input disturbances are present, but noise-free measurements of the complete state vector are available. This problem is solved via discrete dynamic programming. Next is formulated the problem in which the number of measurements is less than that of the state variables and the measurements are contaminated with state-dependent noise. The inseparability of control and estimation is brought into focus, and an 'enforced separation' solution is obtained via heuristic reasoning in which the control gains are shown to be the same as those in the pseudo-deterministic problem. An optimal linear state estimator is given in order to implement the controller.
Foight, Glenna Wink; Chen, T. Scott; Richman, Daniel; Keating, Amy E.
2017-01-01
Peptide reagents with high affinity or specificity for their target protein interaction partner are of utility for many important applications. Optimization of peptide binding by screening large libraries is a proven and powerful approach. Libraries designed to be enriched in peptide sequences that are predicted to have desired affinity or specificity characteristics are more likely to yield success than random mutagenesis. We present a library optimization method in which the choice of amino acids to encode at each peptide position can be guided by available experimental data or structure-based predictions. We discuss how to use analysis of predicted library performance to inform rounds of library design. Finally, we include protocols for more complex library design procedures that consider the chemical diversity of the amino acids at each peptide position and optimize a library score based on a user-specified input model. PMID:28236241
Foight, Glenna Wink; Chen, T Scott; Richman, Daniel; Keating, Amy E
2017-01-01
Peptide reagents with high affinity or specificity for their target protein interaction partner are of utility for many important applications. Optimization of peptide binding by screening large libraries is a proven and powerful approach. Libraries designed to be enriched in peptide sequences that are predicted to have desired affinity or specificity characteristics are more likely to yield success than random mutagenesis. We present a library optimization method in which the choice of amino acids to encode at each peptide position can be guided by available experimental data or structure-based predictions. We discuss how to use analysis of predicted library performance to inform rounds of library design. Finally, we include protocols for more complex library design procedures that consider the chemical diversity of the amino acids at each peptide position and optimize a library score based on a user-specified input model.
Improving engineering system design by formal decomposition, sensitivity analysis, and optimization
NASA Technical Reports Server (NTRS)
Sobieski, J.; Barthelemy, J. F. M.
1985-01-01
A method for use in the design of a complex engineering system by decomposing the problem into a set of smaller subproblems is presented. Coupling of the subproblems is preserved by means of the sensitivity derivatives of the subproblem solution to the inputs received from the system. The method allows for the division of work among many people and computers.
NASA Astrophysics Data System (ADS)
Werner, E.
In 1876, Alexander Graham Bell described his first telephone with a microphone using magnetic induction to convert the voice input into an electric output signal. The basic principle led to a variety of designs optimized for different needs, from hearing impaired users to singers or broadcast announcers. From the various sound pressure versions, only the moving coil design is still in mass production for speech and music application.
ERIC Educational Resources Information Center
Meckler, Gershon
Comments on the need for integrated design of lighting, heating, and cooling systems. In order to eliminate the penalty of refrigerating the lighting heat, minimize the building non-usable space, and optimize the total energy input, a "systems approach" is recommended. This system would employ heat-recovery techniques based on the ability of the…
NASA Technical Reports Server (NTRS)
Berke, Laszlo; Patnaik, Surya N.; Murthy, Pappu L. N.
1993-01-01
The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated by using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network with the code NETS. Optimum designs for new design conditions were predicted by using the trained network. Neural net prediction of optimum designs was found to be satisfactory for most of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.
DAKOTA JAGUAR 3.0 user's manual.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Bauman, Lara E; Chan, Ethan
2013-05-01
JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the features necessary to use JAGUAR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Ethan
2011-06-01
JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the technical background necessary for a developer to understand JAGUAR.
CORSS: Cylinder Optimization of Rings, Skin, and Stringers
NASA Technical Reports Server (NTRS)
Finckenor, J.; Rogers, P.; Otte, N.
1994-01-01
Launch vehicle designs typically make extensive use of cylindrical skin stringer construction. Structural analysis methods are well developed for preliminary design of this type of construction. This report describes an automated, iterative method to obtain a minimum weight preliminary design. Structural optimization has been researched extensively, and various programs have been written for this purpose. Their complexity and ease of use depends on their generality, the failure modes considered, the methodology used, and the rigor of the analysis performed. This computer program employs closed-form solutions from a variety of well-known structural analysis references and joins them with a commercially available numerical optimizer called the 'Design Optimization Tool' (DOT). Any ring and stringer stiffened shell structure of isotropic materials that has beam type loading can be analyzed. Plasticity effects are not included. It performs a more limited analysis than programs such as PANDA, but it provides an easy and useful preliminary design tool for a large class of structures. This report briefly describes the optimization theory, outlines the development and use of the program, and describes the analysis techniques that are used. Examples of program input and output, as well as the listing of the analysis routines, are included.
Simulation Research on Vehicle Active Suspension Controller Based on G1 Method
NASA Astrophysics Data System (ADS)
Li, Gen; Li, Hang; Zhang, Shuaiyang; Luo, Qiuhui
2017-09-01
Based on the order relation analysis method (G1 method), the optimal linear controller of vehicle active suspension is designed. The system of the main and passive suspension of the single wheel vehicle is modeled and the system input signal model is determined. Secondly, the system motion state space equation is established by the kinetic knowledge and the optimal linear controller design is completed with the optimal control theory. The weighting coefficient of the performance index coefficients of the main passive suspension is determined by the relational analysis method. Finally, the model is simulated in Simulink. The simulation results show that: the optimal weight value is determined by using the sequence relation analysis method under the condition of given road conditions, and the vehicle acceleration, suspension stroke and tire motion displacement are optimized to improve the comprehensive performance of the vehicle, and the active control is controlled within the requirements.
Demonstration of a High-Order Mode Input Coupler for a 220-GHz Confocal Gyrotron Traveling Wave Tube
NASA Astrophysics Data System (ADS)
Guan, Xiaotong; Fu, Wenjie; Yan, Yang
2018-02-01
A design of high-order mode input coupler for 220-GHz confocal gyrotron travelling wave tube is proposed, simulated, and demonstrated by experimental tests. This input coupler is designed to excite confocal TE 06 mode from rectangle waveguide TE 10 mode over a broadband frequency range. Simulation results predict that the optimized conversion loss is about 2.72 dB with a mode purity excess of 99%. Considering of the gyrotron interaction theory, an effective bandwidth of 5 GHz is obtained, in which the beam-wave coupling efficiency is higher than half of maximum. The field pattern under low power demonstrates that TE 06 mode is successfully excited in confocal waveguide at 220 GHz. Cold test results from the vector network analyzer perform good agreements with simulation results. Both simulation and experimental results illustrate that the reflection at input port S11 is sensitive to the perpendicular separation of two mirrors. It provides an engineering possibility for estimating the assembly precision.
Digital transceiver design for two-way AF-MIMO relay systems with imperfect CSI
NASA Astrophysics Data System (ADS)
Hu, Chia-Chang; Chou, Yu-Fei; Chen, Kui-He
2013-09-01
In the paper, combined optimization of the terminal precoders/equalizers and single-relay precoder is proposed for an amplify-and-forward (AF) multiple-input multiple-output (MIMO) two-way single-relay system with correlated channel uncertainties. Both terminal transceivers and relay precoding matrix are designed based on the minimum mean square error (MMSE) criterion when terminals are unable to erase completely self-interference due to imperfect correlated channel state information (CSI). This robust joint optimization problem of beamforming and precoding matrices under power constraints belongs to neither concave nor convex so that a nonlinear matrix-form conjugate gradient (MCG) algorithm is applied to explore local optimal solutions. Simulation results show that the robust transceiver design is able to overcome effectively the loss of bit-error-rate (BER) due to inclusion of correlated channel uncertainties and residual self-interference.
NASA Technical Reports Server (NTRS)
Stepner, D. E.; Mehra, R. K.
1973-01-01
A new method of extracting aircraft stability and control derivatives from flight test data is developed based on the maximum likelihood cirterion. It is shown that this new method is capable of processing data from both linear and nonlinear models, both with and without process noise and includes output error and equation error methods as special cases. The first application of this method to flight test data is reported for lateral maneuvers of the HL-10 and M2/F3 lifting bodies, including the extraction of stability and control derivatives in the presence of wind gusts. All the problems encountered in this identification study are discussed. Several different methods (including a priori weighting, parameter fixing and constrained parameter values) for dealing with identifiability and uniqueness problems are introduced and the results given. The method for the design of optimal inputs for identifying the parameters of linear dynamic systems is also given. The criterion used for the optimization is the sensitivity of the system output to the unknown parameters. Several simple examples are first given and then the results of an extensive stability and control dervative identification simulation for a C-8 aircraft are detailed.
A new implementation of the programming system for structural synthesis (PROSSS-2)
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.
1984-01-01
This new implementation of the PROgramming System for Structural Synthesis (PROSSS-2) combines a general-purpose finite element computer program for structural analysis, a state-of-the-art optimization program, and several user-supplied, problem-dependent computer programs. The results are flexibility of the optimization procedure, organization, and versatility of the formulation of constraints and design variables. The analysis-optimization process results in a minimized objective function, typically the mass. The analysis and optimization programs are executed repeatedly by looping through the system until the process is stopped by a user-defined termination criterion. However, some of the analysis, such as model definition, need only be one time and the results are saved for future use. The user must write some small, simple FORTRAN programs to interface between the analysis and optimization programs. One of these programs, the front processor, converts the design variables output from the optimizer into the suitable format for input into the analyzer. Another, the end processor, retrieves the behavior variables and, optionally, their gradients from the analysis program and evaluates the objective function and constraints and optionally their gradients. These quantities are output in a format suitable for input into the optimizer. These user-supplied programs are problem-dependent because they depend primarily upon which finite elements are being used in the model. PROSSS-2 differs from the original PROSSS in that the optimizer and front and end processors have been integrated into the finite element computer program. This was done to reduce the complexity and increase portability of the system, and to take advantage of the data handling features found in the finite element program.
Gain-adaptive vector quantization for medium-rate speech coding
NASA Technical Reports Server (NTRS)
Chen, J.-H.; Gersho, A.
1985-01-01
A class of adaptive vector quantizers (VQs) that can dynamically adjust the 'gain' of codevectors according to the input signal level is introduced. The encoder uses a gain estimator to determine a suitable normalization of each input vector prior to VQ coding. The normalized vectors have reduced dynamic range and can then be more efficiently coded. At the receiver, the VQ decoder output is multiplied by the estimated gain. Both forward and backward adaptation are considered and several different gain estimators are compared and evaluated. An approach to optimizing the design of gain estimators is introduced. Some of the more obvious techniques for achieving gain adaptation are substantially less effective than the use of optimized gain estimators. A novel design technique that is needed to generate the appropriate gain-normalized codebook for the vector quantizer is introduced. Experimental results show that a significant gain in segmental SNR can be obtained over nonadaptive VQ with a negligible increase in complexity.
Optimal pulse design for communication-oriented slow-light pulse detection.
Stenner, Michael D; Neifeld, Mark A
2008-01-21
We present techniques for designing pulses for linear slow-light delay systems which are optimal in the sense that they maximize the signal-to-noise ratio (SNR) and signal-to-noise-plus-interference ratio (SNIR) of the detected pulse energy. Given a communication model in which input pulses are created in a finite temporal window and output pulse energy in measured in a temporally-offset output window, the SNIR-optimal pulses achieve typical improvements of 10 dB compared to traditional pulse shapes for a given output window offset. Alternatively, for fixed SNR or SNIR, window offset (detection delay) can be increased by 0.3 times the window width. This approach also invites a communication-based model for delay and signal fidelity.
Runway Exit Designs for Capacity Improvement Demonstrations. Phase 1: Algorithm Development
NASA Technical Reports Server (NTRS)
Trani, A. A.; Hobeika, A. G.; Sherali, H.; Kim, B. J.; Sadam, C. K.
1990-01-01
A description and results are presented of a study to locate and design rapid runway exits under realistic airport conditions. The study developed a PC-based computer simulation-optimization program called REDIM (runway exit design interactive model) to help future airport designers and planners to locate optimal exits under various airport conditions. The model addresses three sets of problems typically arising during runway exit design evaluations. These are the evaluations of existing runway configurations, addition of new rapid runway turnoffs, and the design of new runway facilities. The model is highly interactive and allows a quick estimation of the expected value of runway occupancy time. Aircraft populations and airport environmental conditions are among the multiple inputs to the model to execute a viable runway location and geometric design solution. The results presented suggest that possible reductions on runway occupancy time (ROT) can be achieved with the use of optimally tailored rapid runway designs for a given aircraft population. Reductions of up to 9 to 6 seconds are possible with the implementation of 30 m/sec variable geometry exits.
NASA Astrophysics Data System (ADS)
Jokar, Ali; Godarzi, Ali Abbasi; Saber, Mohammad; Shafii, Mohammad Behshad
2016-11-01
In this paper, a novel approach has been presented to simulate and optimize the pulsating heat pipes (PHPs). The used pulsating heat pipe setup was designed and constructed for this study. Due to the lack of a general mathematical model for exact analysis of the PHPs, a method has been applied for simulation and optimization using the natural algorithms. In this way, the simulator consists of a kind of multilayer perceptron neural network, which is trained by experimental results obtained from our PHP setup. The results show that the complex behavior of PHPs can be successfully described by the non-linear structure of this simulator. The input variables of the neural network are input heat flux to evaporator (q″), filling ratio (FR) and inclined angle (IA) and its output is thermal resistance of PHP. Finally, based upon the simulation results and considering the heat pipe's operating constraints, the optimum operating point of the system is obtained by using genetic algorithm (GA). The experimental results show that the optimum FR (38.25 %), input heat flux to evaporator (39.93 W) and IA (55°) that obtained from GA are acceptable.
ANALYSIS OF DESIGN RANGE FOR A STROKING SEAT ON A STROKING FLOOR TO MITIGATE BLAST LOADING EFFECTS
2017-05-16
and the optimal design points that can mitigate the occupant injury to a range of input parameters. One key conclusion from the study is that blast...stroking) in another case . The results from this study are shown in Figure 10. The original two baseline design points explored in the previous...this study , occupant is positioned with feet on the foot-rest attached to the seat system. However, a particular vehicle design may have the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontaxis, C; Bol, G; Lagendijk, J
2016-06-15
Purpose: To develop a new IMRT treatment planning methodology suitable for the new generation of MR-linear accelerator machines. The pipeline is able to deliver Pareto-optimal plans and can be utilized for conventional treatments as well as for inter- and intrafraction plan adaptation based on real-time MR-data. Methods: A Pareto-optimal plan is generated using the automated multicriterial optimization approach Erasmus-iCycle. The resulting dose distribution is used as input to the second part of the pipeline, an iterative process which generates deliverable segments that target the latest anatomical state and gradually converges to the prescribed dose. This process continues until a certainmore » percentage of the dose has been delivered. Under a conventional treatment, a Segment Weight Optimization (SWO) is then performed to ensure convergence to the prescribed dose. In the case of inter- and intrafraction adaptation, post-processing steps like SWO cannot be employed due to the changing anatomy. This is instead addressed by transferring the missing/excess dose to the input of the subsequent fraction. In this work, the resulting plans were delivered on a Delta4 phantom as a final Quality Assurance test. Results: A conventional static SWO IMRT plan was generated for two prostate cases. The sequencer faithfully reproduced the input dose for all volumes of interest. For the two cases the mean relative dose difference of the PTV between the ideal input and sequenced dose was 0.1% and −0.02% respectively. Both plans were delivered on a Delta4 phantom and passed the clinical Quality Assurance procedures by achieving 100% pass rate at a 3%/3mm gamma analysis. Conclusion: We have developed a new sequencing methodology capable of online plan adaptation. In this work, we extended the pipeline to support Pareto-optimal input and clinically validated that it can accurately achieve these ideal distributions, while its flexible design enables inter- and intrafraction plan adaptation. This research is financially supported by Elekta AB, Stockholm, Sweden.« less
Multi Objective Controller Design for Linear System via Optimal Interpolation
NASA Technical Reports Server (NTRS)
Ozbay, Hitay
1996-01-01
We propose a methodology for the design of a controller which satisfies a set of closed-loop objectives simultaneously. The set of objectives consists of: (1) pole placement, (2) decoupled command tracking of step inputs at steady-state, and (3) minimization of step response transients with respect to envelope specifications. We first obtain a characterization of all controllers placing the closed-loop poles in a prescribed region of the complex plane. In this characterization, the free parameter matrix Q(s) is to be determined to attain objectives (2) and (3). Objective (2) is expressed as determining a Pareto optimal solution to a vector valued optimization problem. The solution of this problem is obtained by transforming it to a scalar convex optimization problem. This solution determines Q(O) and the remaining freedom in choosing Q(s) is used to satisfy objective (3). We write Q(s) = (l/v(s))bar-Q(s) for a prescribed polynomial v(s). Bar-Q(s) is a polynomial matrix which is arbitrary except that Q(O) and the order of bar-Q(s) are fixed. Obeying these constraints bar-Q(s) is now to be 'shaped' to minimize the step response characteristics of specific input/output pairs according to the maximum envelope violations. This problem is expressed as a vector valued optimization problem using the concept of Pareto optimality. We then investigate a scalar optimization problem associated with this vector valued problem and show that it is convex. The organization of the report is as follows. The next section includes some definitions and preliminary lemmas. We then give the problem statement which is followed by a section including a detailed development of the design procedure. We then consider an aircraft control example. The last section gives some concluding remarks. The Appendix includes the proofs of technical lemmas, printouts of computer programs, and figures.
Design Optimization Tool for Synthetic Jet Actuators Using Lumped Element Modeling
NASA Technical Reports Server (NTRS)
Gallas, Quentin; Sheplak, Mark; Cattafesta, Louis N., III; Gorton, Susan A. (Technical Monitor)
2005-01-01
The performance specifications of any actuator are quantified in terms of an exhaustive list of parameters such as bandwidth, output control authority, etc. Flow-control applications benefit from a known actuator frequency response function that relates the input voltage to the output property of interest (e.g., maximum velocity, volumetric flow rate, momentum flux, etc.). Clearly, the required performance metrics are application specific, and methods are needed to achieve the optimal design of these devices. Design and optimization studies have been conducted for piezoelectric cantilever-type flow control actuators, but the modeling issues are simpler compared to synthetic jets. Here, lumped element modeling (LEM) is combined with equivalent circuit representations to estimate the nonlinear dynamic response of a synthetic jet as a function of device dimensions, material properties, and external flow conditions. These models provide reasonable agreement between predicted and measured frequency response functions and thus are suitable for use as design tools. In this work, we have developed a Matlab-based design optimization tool for piezoelectric synthetic jet actuators based on the lumped element models mentioned above. Significant improvements were achieved by optimizing the piezoceramic diaphragm dimensions. Synthetic-jet actuators were fabricated and benchtop tested to fully document their behavior and validate a companion optimization effort. It is hoped that the tool developed from this investigation will assist in the design and deployment of these actuators.
Techniques for designing rotorcraft control systems
NASA Technical Reports Server (NTRS)
Levine, William S.; Barlow, Jewel
1993-01-01
This report summarizes the work that was done on the project from 1 Apr. 1992 to 31 Mar. 1993. The main goal of this research is to develop a practical tool for rotorcraft control system design based on interactive optimization tools (CONSOL-OPTCAD) and classical rotorcraft design considerations (ADOCS). This approach enables the designer to combine engineering intuition and experience with parametric optimization. The combination should make it possible to produce a better design faster than would be possible using either pure optimization or pure intuition and experience. We emphasize that the goal of this project is not to develop an algorithm. It is to develop a tool. We want to keep the human designer in the design process to take advantage of his or her experience and creativity. The role of the computer is to perform the calculation necessary to improve and to display the performance of the nominal design. Briefly, during the first year we have connected CONSOL-OPTCAD, an existing software package for optimizing parameters with respect to multiple performance criteria, to a simplified nonlinear simulation of the UH-60 rotorcraft. We have also created mathematical approximations to the Mil-specs for rotorcraft handling qualities and input them into CONSOL-OPTCAD. Finally, we have developed the additional software necessary to use CONSOL-OPTCAD for the design of rotorcraft controllers.
Robust predictive control with optimal load tracking for critical applications. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tse, J.; Bentsman, J.; Miller, N.
1994-09-01
This report derives a multi-input multi-output (MIMO) version of a two-degree-of-freedom receding-horizon control law based on mixed H{sub 2}/H{infinity} minimization. First, the integrand in the frequency domain representation of the MIMO performance criterion is decomposed into disturbance and reference spectra. Then the controller is derived which minimizes the peak of the disturbance spectrum and the integral of the reference spectrum on the unit circle. The resulting two-degree-of-freedom MIMO control strategy, referred to as the minimax predictive multivariable control (MPC), is shown to have worst-case-disturbance-rejection and robust-stability properties superior to those of purely H{sub 2}-optimal controllers, such as Generalized Predictive Controlmore » (GPC), for identical horizons. An attractive feature of the receding horizon structure of MPC is that it can, in ways similar to GPC, directly incorporate input constraints and pre-programmed reference inputs, which are nontrivial tasks in the standard H{infinity} design.« less
Simulator for multilevel optimization research
NASA Technical Reports Server (NTRS)
Padula, S. L.; Young, K. C.
1986-01-01
A computer program designed to simulate and improve multilevel optimization techniques is described. By using simple analytic functions to represent complex engineering analyses, the simulator can generate and test a large variety of multilevel decomposition strategies in a relatively short time. This type of research is an essential step toward routine optimization of large aerospace systems. The paper discusses the types of optimization problems handled by the simulator and gives input and output listings and plots for a sample problem. It also describes multilevel implementation techniques which have value beyond the present computer program. Thus, this document serves as a user's manual for the simulator and as a guide for building future multilevel optimization applications.
Neural architecture design based on extreme learning machine.
Bueno-Crespo, Andrés; García-Laencina, Pedro J; Sancho-Gómez, José-Luis
2013-12-01
Selection of the optimal neural architecture to solve a pattern classification problem entails to choose the relevant input units, the number of hidden neurons and its corresponding interconnection weights. This problem has been widely studied in many research works but their solutions usually involve excessive computational cost in most of the problems and they do not provide a unique solution. This paper proposes a new technique to efficiently design the MultiLayer Perceptron (MLP) architecture for classification using the Extreme Learning Machine (ELM) algorithm. The proposed method provides a high generalization capability and a unique solution for the architecture design. Moreover, the selected final network only retains those input connections that are relevant for the classification task. Experimental results show these advantages. Copyright © 2013 Elsevier Ltd. All rights reserved.
Optimized design of embedded DSP system hardware supporting complex algorithms
NASA Astrophysics Data System (ADS)
Li, Yanhua; Wang, Xiangjun; Zhou, Xinling
2003-09-01
The paper presents an optimized design method for a flexible and economical embedded DSP system that can implement complex processing algorithms as biometric recognition, real-time image processing, etc. It consists of a floating-point DSP, 512 Kbytes data RAM, 1 Mbytes FLASH program memory, a CPLD for achieving flexible logic control of input channel and a RS-485 transceiver for local network communication. Because of employing a high performance-price ratio DSP TMS320C6712 and a large FLASH in the design, this system permits loading and performing complex algorithms with little algorithm optimization and code reduction. The CPLD provides flexible logic control for the whole DSP board, especially in input channel, and allows convenient interface between different sensors and DSP system. The transceiver circuit can transfer data between DSP and host computer. In the paper, some key technologies are also introduced which make the whole system work efficiently. Because of the characters referred above, the hardware is a perfect flat for multi-channel data collection, image processing, and other signal processing with high performance and adaptability. The application section of this paper presents how this hardware is adapted for the biometric identification system with high identification precision. The result reveals that this hardware is easy to interface with a CMOS imager and is capable of carrying out complex biometric identification algorithms, which require real-time process.
RBT-GA: a novel metaheuristic for solving the Multiple Sequence Alignment problem.
Taheri, Javid; Zomaya, Albert Y
2009-07-07
Multiple Sequence Alignment (MSA) has always been an active area of research in Bioinformatics. MSA is mainly focused on discovering biologically meaningful relationships among different sequences or proteins in order to investigate the underlying main characteristics/functions. This information is also used to generate phylogenetic trees. This paper presents a novel approach, namely RBT-GA, to solve the MSA problem using a hybrid solution methodology combining the Rubber Band Technique (RBT) and the Genetic Algorithm (GA) metaheuristic. RBT is inspired by the behavior of an elastic Rubber Band (RB) on a plate with several poles, which is analogues to locations in the input sequences that could potentially be biologically related. A GA attempts to mimic the evolutionary processes of life in order to locate optimal solutions in an often very complex landscape. RBT-GA is a population based optimization algorithm designed to find the optimal alignment for a set of input protein sequences. In this novel technique, each alignment answer is modeled as a chromosome consisting of several poles in the RBT framework. These poles resemble locations in the input sequences that are most likely to be correlated and/or biologically related. A GA-based optimization process improves these chromosomes gradually yielding a set of mostly optimal answers for the MSA problem. RBT-GA is tested with one of the well-known benchmarks suites (BALiBASE 2.0) in this area. The obtained results show that the superiority of the proposed technique even in the case of formidable sequences.
Character Recognition Using Genetically Trained Neural Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diniz, C.; Stantz, K.M.; Trahan, M.W.
1998-10-01
Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfidmore » recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the amount of noise significantly degrades character recognition efficiency, some of which can be overcome by adding noise during training and optimizing the form of the network's activation fimction.« less
JAva GUi for Applied Research (JAGUAR) v 3.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
JAGUAR is a Java software tool for automatically rendering a graphical user interface (GUI) from a structured input specification. It is designed as a plug-in to the Eclipse workbench to enable users to create, edit, and externally execute analysis application input decks and then view the results. JAGUAR serves as a GUI for Sandia's DAKOTA software toolkit for optimization and uncertainty quantification. It will include problem (input deck)set-up, option specification, analysis execution, and results visualization. Through the use of wizards, templates, and views, JAGUAR helps uses navigate the complexity of DAKOTA's complete input specification. JAGUAR is implemented in Java, leveragingmore » Eclipse extension points and Eclipse user interface. JAGUAR parses a DAKOTA NIDR input specification and presents the user with linked graphical and plain text representations of problem set-up and option specification for DAKOTA studies. After the data has been input by the user, JAGUAR generates one or more input files for DAKOTA, executes DAKOTA, and captures and interprets the results« less
Performance Optimizing Adaptive Control with Time-Varying Reference Model Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Hashemi, Kelley E.
2017-01-01
This paper presents a new adaptive control approach that involves a performance optimization objective. The control synthesis involves the design of a performance optimizing adaptive controller from a subset of control inputs. The resulting effect of the performance optimizing adaptive controller is to modify the initial reference model into a time-varying reference model which satisfies the performance optimization requirement obtained from an optimal control problem. The time-varying reference model modification is accomplished by the real-time solutions of the time-varying Riccati and Sylvester equations coupled with the least-squares parameter estimation of the sensitivities of the performance metric. The effectiveness of the proposed method is demonstrated by an application of maneuver load alleviation control for a flexible aircraft.
Aksu, Buket; Paradkar, Anant; de Matas, Marcel; Ozer, Ozgen; Güneri, Tamer; York, Peter
2012-12-01
The publication of the International Conference of Harmonization (ICH) Q8, Q9, and Q10 guidelines paved the way for the standardization of quality after the Food and Drug Administration issued current Good Manufacturing Practices guidelines in 2003. "Quality by Design", mentioned in the ICH Q8 guideline, offers a better scientific understanding of critical process and product qualities using knowledge obtained during the life cycle of a product. In this scope, the "knowledge space" is a summary of all process knowledge obtained during product development, and the "design space" is the area in which a product can be manufactured within acceptable limits. To create the spaces, artificial neural networks (ANNs) can be used to emphasize the multidimensional interactions of input variables and to closely bind these variables to a design space. This helps guide the experimental design process to include interactions among the input variables, along with modeling and optimization of pharmaceutical formulations. The objective of this study was to develop an integrated multivariate approach to obtain a quality product based on an understanding of the cause-effect relationships between formulation ingredients and product properties with ANNs and genetic programming on the ramipril tablets prepared by the direct compression method. In this study, the data are generated through the systematic application of the design of experiments (DoE) principles and optimization studies using artificial neural networks and neurofuzzy logic programs.
Structural tailoring of engine blades (STAEBL)
NASA Technical Reports Server (NTRS)
Platt, C. E.; Pratt, T. K.; Brown, K. W.
1982-01-01
A mathematical optimization procedure was developed for the structural tailoring of engine blades and was used to structurally tailor two engine fan blades constructed of composite materials without midspan shrouds. The first was a solid blade made from superhybrid composites, and the second was a hollow blade with metal matrix composite inlays. Three major computerized functions were needed to complete the procedure: approximate analysis with the established input variables, optimization of an objective function, and refined analysis for design verification.
NASA Astrophysics Data System (ADS)
Bilal, Bisma; Ahmed, Suhaib; Kakkar, Vipan
2018-02-01
The challenges which the CMOS technology is facing toward the end of the technology roadmap calls for an investigation of various logical and technological solutions to CMOS at the nano scale. Two such paradigms which are considered in this paper are the reversible logic and the quantum-dot cellular automata (QCA) nanotechnology. Firstly, a new 3 × 3 reversible and universal gate, RG-QCA, is proposed and implemented in QCA technology using conventional 3-input majority voter based logic. Further the gate is optimized by using explicit interaction of cells and this optimized gate is then used to design an optimized modular full adder in QCA. Another configuration of RG-QCA gate, CRG-QCA, is then proposed which is a 4 × 4 gate and includes the fault tolerant characteristics and parity preserving nature. The proposed CRG-QCA gate is then tested to design a fault tolerant full adder circuit. Extensive comparisons of gate and adder circuits are drawn with the existing literature and it is envisaged that our proposed designs perform better and are cost efficient in QCA technology.
Robust on-off pulse control of flexible space vehicles
NASA Technical Reports Server (NTRS)
Wie, Bong; Sinha, Ravi
1993-01-01
The on-off reaction jet control system is often used for attitude and orbital maneuvering of various spacecraft. Future space vehicles such as the orbital transfer vehicles, orbital maneuvering vehicles, and space station will extensively use reaction jets for orbital maneuvering and attitude stabilization. The proposed robust fuel- and time-optimal control algorithm is used for a three-mass spacing model of flexible spacecraft. A fuel-efficient on-off control logic is developed for robust rest-to-rest maneuver of a flexible vehicle with minimum excitation of structural modes. The first part of this report is concerned with the problem of selecting a proper pair of jets for practical trade-offs among the maneuvering time, fuel consumption, structural mode excitation, and performance robustness. A time-optimal control problem subject to parameter robustness constraints is formulated and solved. The second part of this report deals with obtaining parameter insensitive fuel- and time- optimal control inputs by solving a constrained optimization problem subject to robustness constraints. It is shown that sensitivity to modeling errors can be significantly reduced by the proposed, robustified open-loop control approach. The final part of this report deals with sliding mode control design for uncertain flexible structures. The benchmark problem of a flexible structure is used as an example for the feedback sliding mode controller design with bounded control inputs and robustness to parameter variations is investigated.
Optimum Design of LLC Resonant Converter using Inductance Ratio (Lm/Lr)
NASA Astrophysics Data System (ADS)
Palle, Kowstubha; Krishnaveni, K.; Ramesh Reddy, Kolli
2017-06-01
The main benefits of LLC resonant dc/dc converter over conventional series and parallel resonant converters are its light load regulation, less circulating currents, larger bandwidth for zero voltage switching, and less tuning of switching frequency for controlled output. An unique analytical tool, called fundamental harmonic approximation with peak gain adjustment is used for designing the converter. In this paper, an optimum design of the converter is proposed by considering three different design criterions with different values of inductance ratio (Lm/Lr) to achieve good efficiency at high input voltage. The optimum design includes the analysis in operating range, switching frequency range, primary side losses of a switch and stability. The analysis is carried out with simulation using the software tools like MATLAB and PSIM. The performance of the optimized design is demonstrated for a design specification of 12 V, 5 A output operating with an input voltage range of 300-400 V using FSFR 2100 IC of Texas instruments.
Optimal control of LQR for discrete time-varying systems with input delays
NASA Astrophysics Data System (ADS)
Yin, Yue-Zhu; Yang, Zhong-Lian; Yin, Zhi-Xiang; Xu, Feng
2018-04-01
In this work, we consider the optimal control problem of linear quadratic regulation for discrete time-variant systems with single input and multiple input delays. An innovative and simple method to derive the optimal controller is given. The studied problem is first equivalently converted into a problem subject to a constraint condition. Last, with the established duality, the problem is transformed into a static mathematical optimisation problem without input delays. The optimal control input solution to minimise performance index function is derived by solving this optimisation problem with two methods. A numerical simulation example is carried out and its results show that our two approaches are both feasible and very effective.
Self-organization in neural networks - Applications in structural optimization
NASA Technical Reports Server (NTRS)
Hajela, Prabhat; Fu, B.; Berke, Laszlo
1993-01-01
The present paper discusses the applicability of ART (Adaptive Resonance Theory) networks, and the Hopfield and Elastic networks, in problems of structural analysis and design. A characteristic of these network architectures is the ability to classify patterns presented as inputs into specific categories. The categories may themselves represent distinct procedural solution strategies. The paper shows how this property can be adapted in the structural analysis and design problem. A second application is the use of Hopfield and Elastic networks in optimization problems. Of particular interest are problems characterized by the presence of discrete and integer design variables. The parallel computing architecture that is typical of neural networks is shown to be effective in such problems. Results of preliminary implementations in structural design problems are also included in the paper.
NASA Astrophysics Data System (ADS)
Suganthi, K.; Malarvizhi, S.
2018-03-01
A high gain, low power, low Noise figure (NF) and wide band of milli-meter Wave (mmW) circuits design at 50 GHz are used for Radio Frequency (RF) front end. The fundamental necessity of a receiver front-end includes perfect output and input impedance matching and port-to-port isolation with high gain and low noise over the entire band of interest. In this paper, a design of Cascade-Cascode CMOS LNA circuit at 50 GHz for Q-band application is proposed. The design of Low noise amplifier at 50 GHz using Agilent ADS tool with microstrip lines which provides simplicity in fabrication and less chip area. The low off-leakage current Ioff can be maintained with high K-dielectrics CMOS structure. Nano-scale electronics can be achieved with increased robustness. The design has overall gain of 11.091 dB and noise figure of 2.673 dB for the Q-band of 48.3 GHz to 51.3 GHz. Impedance matching is done by T matching network and the obtained input and output reflection coefficients are S11 = <-10 dB and S22 = <-10 dB. Compared to Silicon (Si) material, Wide Band Gap semiconductor materials used attains higher junction temperatures which is well matched to ceramics used in packaging technology, the protection and reliability also can be achieved with the electronic packaging. The reverse transmission coefficient S21 is less than -21 dB has shown that LNA has better isolation between input and output, Stability factor greater than 1 and Power is also optimized in this design. Layout is designed, power gain of 4.6 dB is achieved and area is optimized which is nearly equal to 502 740 μm2. The observed results show that the proposed Cascade-Cascode LNA design can find its suitability in future milli-meter Wave Radar application.
Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy
NASA Astrophysics Data System (ADS)
Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng
2018-06-01
To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.
NASA Astrophysics Data System (ADS)
Potters, M. G.; Bombois, X.; Mansoori, M.; Hof, Paul M. J. Van den
2016-08-01
Estimation of physical parameters in dynamical systems driven by linear partial differential equations is an important problem. In this paper, we introduce the least costly experiment design framework for these systems. It enables parameter estimation with an accuracy that is specified by the experimenter prior to the identification experiment, while at the same time minimising the cost of the experiment. We show how to adapt the classical framework for these systems and take into account scaling and stability issues. We also introduce a progressive subdivision algorithm that further generalises the experiment design framework in the sense that it returns the lowest cost by finding the optimal input signal, and optimal sensor and actuator locations. Our methodology is then applied to a relevant problem in heat transfer studies: estimation of conductivity and diffusivity parameters in front-face experiments. We find good correspondence between numerical and theoretical results.
NASA Technical Reports Server (NTRS)
Taylor, R. B.; Zwicke, P. E.; Gold, P.; Miao, W.
1980-01-01
An analytical study was conducted to define the basic configuration of an active control system for helicopter vibration and gust response alleviation. The study culminated in a control system design which has two separate systems: narrow band loop for vibration reduction and wider band loop for gust response alleviation. The narrow band vibration loop utilizes the standard swashplate control configuration to input controller for the vibration loop is based on adaptive optimal control theory and is designed to adapt to any flight condition including maneuvers and transients. The prime characteristics of the vibration control system is its real time capability. The gust alleviation control system studied consists of optimal sampled data feedback gains together with an optimal one-step-ahead prediction. The prediction permits the estimation of the gust disturbance which can then be used to minimize the gust effects on the helicopter.
A Systems Model Comparing Australian and Chinese HRM Education
ERIC Educational Resources Information Center
Davidson, Paul; Tsakissiris, Jane; Guo, Yuanyuan
2017-01-01
This paper explores the implications for learning design in HRM education in the 21st century. An open systems perspective is used to argue the importance of establishing productive relationships between academia, professional associations, regulators and industry (resource inputs) to support the creation of optimal learning environments (the…
Multivariable PID controller design tuning using bat algorithm for activated sludge process
NASA Astrophysics Data System (ADS)
Atikah Nor’Azlan, Nur; Asmiza Selamat, Nur; Mat Yahya, Nafrizuan
2018-04-01
The designing of a multivariable PID control for multi input multi output is being concerned with this project by applying four multivariable PID control tuning which is Davison, Penttinen-Koivo, Maciejowski and Proposed Combined method. The determination of this study is to investigate the performance of selected optimization technique to tune the parameter of MPID controller. The selected optimization technique is Bat Algorithm (BA). All the MPID-BA tuning result will be compared and analyzed. Later, the best MPID-BA will be chosen in order to determine which techniques are better based on the system performances in terms of transient response.
WINDOWAC (Wing Design Optimization With Aeroelastic Constraints): Program manual
NASA Technical Reports Server (NTRS)
Haftka, R. T.; Starnes, J. H., Jr.
1974-01-01
User and programer documentation for the WIDOWAC programs is given. WIDOWAC may be used for the design of minimum mass wing structures subjected to flutter, strength, and minimum gage constraints. The wing structure is modeled by finite elements, flutter conditions may be both subsonic and supersonic, and mathematical programing methods are used for the optimization procedure. The user documentation gives general directions on how the programs may be used and describes their limitations; in addition, program input and output are described, and example problems are presented. A discussion of computational algorithms and flow charts of the WIDOWAC programs and major subroutines is also given.
NIF Ignition Target 3D Point Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, O; Marinak, M; Milovich, J
2008-11-05
We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Syntheticmore » diagnostics.« less
A General-Purpose Optimization Engine for Multi-Disciplinary Design Applications
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.; Berke, Laszlo
1996-01-01
A general purpose optimization tool for multidisciplinary applications, which in the literature is known as COMETBOARDS, is being developed at NASA Lewis Research Center. The modular organization of COMETBOARDS includes several analyzers and state-of-the-art optimization algorithms along with their cascading strategy. The code structure allows quick integration of new analyzers and optimizers. The COMETBOARDS code reads input information from a number of data files, formulates a design as a set of multidisciplinary nonlinear programming problems, and then solves the resulting problems. COMETBOARDS can be used to solve a large problem which can be defined through multiple disciplines, each of which can be further broken down into several subproblems. Alternatively, a small portion of a large problem can be optimized in an effort to improve an existing system. Some of the other unique features of COMETBOARDS include design variable formulation, constraint formulation, subproblem coupling strategy, global scaling technique, analysis approximation, use of either sequential or parallel computational modes, and so forth. The special features and unique strengths of COMETBOARDS assist convergence and reduce the amount of CPU time used to solve the difficult optimization problems of aerospace industries. COMETBOARDS has been successfully used to solve a number of problems, including structural design of space station components, design of nozzle components of an air-breathing engine, configuration design of subsonic and supersonic aircraft, mixed flow turbofan engines, wave rotor topped engines, and so forth. This paper introduces the COMETBOARDS design tool and its versatility, which is illustrated by citing examples from structures, aircraft design, and air-breathing propulsion engine design.
Davey, James A; Chica, Roberto A
2015-04-01
Computational protein design (CPD) predictions are highly dependent on the structure of the input template used. However, it is unclear how small differences in template geometry translate to large differences in stability prediction accuracy. Herein, we explored how structural changes to the input template affect the outcome of stability predictions by CPD. To do this, we prepared alternate templates by Rotamer Optimization followed by energy Minimization (ROM) and used them to recapitulate the stability of 84 protein G domain β1 mutant sequences. In the ROM process, side-chain rotamers for wild-type (WT) or mutant sequences are optimized on crystal or nuclear magnetic resonance (NMR) structures prior to template minimization, resulting in alternate structures termed ROM templates. We show that use of ROM templates prepared from sequences known to be stable results predominantly in improved prediction accuracy compared to using the minimized crystal or NMR structures. Conversely, ROM templates prepared from sequences that are less stable than the WT reduce prediction accuracy by increasing the number of false positives. These observed changes in prediction outcomes are attributed to differences in side-chain contacts made by rotamers in ROM templates. Finally, we show that ROM templates prepared from sequences that are unfolded or that adopt a nonnative fold result in the selective enrichment of sequences that are also unfolded or that adopt a nonnative fold, respectively. Our results demonstrate the existence of a rotamer bias caused by the input template that can be harnessed to skew predictions toward sequences displaying desired characteristics. © 2014 The Protein Society.
Low order H∞ optimal control for ACFA blended wing body aircraft
NASA Astrophysics Data System (ADS)
Haniš, T.; Kucera, V.; Hromčík, M.
2013-12-01
Advanced nonconvex nonsmooth optimization techniques for fixed-order H∞ robust control are proposed in this paper for design of flight control systems (FCS) with prescribed structure. Compared to classical techniques - tuning of and successive closures of particular single-input single-output (SISO) loops like dampers, attitude stabilizers, etc. - all loops are designed simultaneously by means of quite intuitive weighting filters selection. In contrast to standard optimization techniques, though (H2, H∞ optimization), the resulting controller respects the prescribed structure in terms of engaged channels and orders (e. g., proportional (P), proportional-integral (PI), and proportional-integralderivative (PID) controllers). In addition, robustness with regard to multimodel uncertainty is also addressed which is of most importance for aerospace applications as well. Such a way, robust controllers for various Mach numbers, altitudes, or mass cases can be obtained directly, based only on particular mathematical models for respective combinations of the §ight parameters.
Hashim, H A; Abido, M A
2015-01-01
This paper presents a comparative study of fuzzy controller design for the twin rotor multi-input multioutput (MIMO) system (TRMS) considering most promising evolutionary techniques. These are gravitational search algorithm (GSA), particle swarm optimization (PSO), artificial bee colony (ABC), and differential evolution (DE). In this study, the gains of four fuzzy proportional derivative (PD) controllers for TRMS have been optimized using the considered techniques. The optimization techniques are developed to identify the optimal control parameters for system stability enhancement, to cancel high nonlinearities in the model, to reduce the coupling effect, and to drive TRMS pitch and yaw angles into the desired tracking trajectory efficiently and accurately. The most effective technique in terms of system response due to different disturbances has been investigated. In this work, it is observed that GSA is the most effective technique in terms of solution quality and convergence speed.
Hashim, H. A.; Abido, M. A.
2015-01-01
This paper presents a comparative study of fuzzy controller design for the twin rotor multi-input multioutput (MIMO) system (TRMS) considering most promising evolutionary techniques. These are gravitational search algorithm (GSA), particle swarm optimization (PSO), artificial bee colony (ABC), and differential evolution (DE). In this study, the gains of four fuzzy proportional derivative (PD) controllers for TRMS have been optimized using the considered techniques. The optimization techniques are developed to identify the optimal control parameters for system stability enhancement, to cancel high nonlinearities in the model, to reduce the coupling effect, and to drive TRMS pitch and yaw angles into the desired tracking trajectory efficiently and accurately. The most effective technique in terms of system response due to different disturbances has been investigated. In this work, it is observed that GSA is the most effective technique in terms of solution quality and convergence speed. PMID:25960738
Optimal control of first order distributed systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Johnson, T. L.
1972-01-01
The problem of characterizing optimal controls for a class of distributed-parameter systems is considered. The system dynamics are characterized mathematically by a finite number of coupled partial differential equations involving first-order time and space derivatives of the state variables, which are constrained at the boundary by a finite number of algebraic relations. Multiple control inputs, extending over the entire spatial region occupied by the system ("distributed controls') are to be designed so that the response of the system is optimal. A major example involving boundary control of an unstable low-density plasma is developed from physical laws.
Structural Tailoring of Advanced Turboprops (STAT)
NASA Technical Reports Server (NTRS)
Brown, Kenneth W.
1988-01-01
This interim report describes the progress achieved in the structural Tailoring of Advanced Turboprops (STAT) program which was developed to perform numerical optimizations on highly swept propfan blades. The optimization procedure seeks to minimize an objective function, defined as either direct operating cost or aeroelastic differences between a blade and its scaled model, by tuning internal and external geometry variables that must satisfy realistic blade design constraints. This report provides a detailed description of the input, optimization procedures, approximate analyses and refined analyses, as well as validation test cases for the STAT program. In addition, conclusions and recommendations are summarized.
Performance optimization for rotors in hover and axial flight
NASA Technical Reports Server (NTRS)
Quackenbush, T. R.; Wachspress, D. A.; Kaufman, A. E.; Bliss, D. B.
1989-01-01
Performance optimization for rotors in hover and axial flight is a topic of continuing importance to rotorcraft designers. The aim of this Phase 1 effort has been to demonstrate that a linear optimization algorithm could be coupled to an existing influence coefficient hover performance code. This code, dubbed EHPIC (Evaluation of Hover Performance using Influence Coefficients), uses a quasi-linear wake relaxation to solve for the rotor performance. The coupling was accomplished by expanding of the matrix of linearized influence coefficients in EHPIC to accommodate design variables and deriving new coefficients for linearized equations governing perturbations in power and thrust. These coefficients formed the input to a linear optimization analysis, which used the flow tangency conditions on the blade and in the wake to impose equality constraints on the expanded system of equations; user-specified inequality contraints were also employed to bound the changes in the design. It was found that this locally linearized analysis could be invoked to predict a design change that would produce a reduction in the power required by the rotor at constant thrust. Thus, an efficient search for improved versions of the baseline design can be carried out while retaining the accuracy inherent in a free wake/lifting surface performance analysis.
NASA Technical Reports Server (NTRS)
Freeman, William T.; Ilcewicz, L. B.; Swanson, G. D.; Gutowski, T.
1992-01-01
A conceptual and preliminary designers' cost prediction model has been initiated. The model will provide a technically sound method for evaluating the relative cost of different composite structural designs, fabrication processes, and assembly methods that can be compared to equivalent metallic parts or assemblies. The feasibility of developing cost prediction software in a modular form for interfacing with state of the art preliminary design tools and computer aided design programs is being evaluated. The goal of this task is to establish theoretical cost functions that relate geometric design features to summed material cost and labor content in terms of process mechanics and physics. The output of the designers' present analytical tools will be input for the designers' cost prediction model to provide the designer with a data base and deterministic cost methodology that allows one to trade and synthesize designs with both cost and weight as objective functions for optimization. The approach, goals, plans, and progress is presented for development of COSTADE (Cost Optimization Software for Transport Aircraft Design Evaluation).
Multiple estimation channel decoupling and optimization method based on inverse system
NASA Astrophysics Data System (ADS)
Wu, Peng; Mu, Rongjun; Zhang, Xin; Deng, Yanpeng
2018-03-01
This paper addressed the intelligent autonomous navigation request of intelligent deformation missile, based on the intelligent deformation missile dynamics and kinematics modeling, navigation subsystem solution method and error modeling, and then focuses on the corresponding data fusion and decision fusion technology, decouples the sensitive channel of the filter input through the inverse system of design dynamics to reduce the influence of sudden change of the measurement information on the filter input. Then carrying out a series of simulation experiments, which verified the feasibility of the inverse system decoupling algorithm effectiveness.
Improving the Unsteady Aerodynamic Performance of Transonic Turbines using Neural Networks
NASA Technical Reports Server (NTRS)
Rai, Man Mohan; Madavan, Nateri K.; Huber, Frank W.
1999-01-01
A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The procedure yielded a modified design that improves the aerodynamic performance through small changes to the reference design geometry. These results demonstrate the capabilities of the neural net-based design procedure, and also show the advantages of including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.
Khan, Muhammad Zia Ullah; Makreski, Petre; Murtaza, Ghulam
2018-05-02
The aim of present explorative study was to prepare and optimize finasteride loaded topical gel formulations by using three factor [propylene glycol (PG), Tween® 80, and sodium lauryl sulphate (SLS)], five level central composite design. Optimized finasteride topical gel formulation (F4), containing PG, Tween® 80, and SLS in a concentration of 0.8 mg, 0.4 mg and 0.2 mg, respectively, showed 6-fold higher values of cumulative drug release, flux, partition coefficient, input rate, lag time, and diffusion coefficient, when compared to control formulation without permeation enhancer. Finally, it can be concluded that finasteride permeation was enhanced by PG, tween® 80 and SLS individually, while in combination only PG along with tween® 80 had synergistic and more pronounced effect on flux, permeability coefficient and input rate while antagonistic effect on lag time and diffusion coefficient was observed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
2015-11-23
realized gain values of−5.0 dBiC and 3.1 dBiC, respectively. Details of the design, optimization, simulation, and the measured results of the fabricated...prototype of this Fig. 4. The measured input VSWR of the antenna prototype shown in Fig. 3. 7 antenna were published in IEEE Transactions on...suppressed. Other prototypes of these types of MEFSSs were also designed and fabricated and characterized. Details of the design and measurement
Illumination system development using design and analysis of computer experiments
NASA Astrophysics Data System (ADS)
Keresztes, Janos C.; De Ketelaere, Bart; Audenaert, Jan; Koshel, R. J.; Saeys, Wouter
2015-09-01
Computer assisted optimal illumination design is crucial when developing cost-effective machine vision systems. Standard local optimization methods, such as downhill simplex optimization (DHSO), often result in an optimal solution that is influenced by the starting point by converging to a local minimum, especially when dealing with high dimensional illumination designs or nonlinear merit spaces. This work presents a novel nonlinear optimization approach, based on design and analysis of computer experiments (DACE). The methodology is first illustrated with a 2D case study of four light sources symmetrically positioned along a fixed arc in order to obtain optimal irradiance uniformity on a flat Lambertian reflecting target at the arc center. The first step consists of choosing angular positions with no overlap between sources using a fast, flexible space filling design. Ray-tracing simulations are then performed at the design points and a merit function is used for each configuration to quantify the homogeneity of the irradiance at the target. The obtained homogeneities at the design points are further used as input to a Gaussian Process (GP), which develops a preliminary distribution for the expected merit space. Global optimization is then performed on the GP more likely providing optimal parameters. Next, the light positioning case study is further investigated by varying the radius of the arc, and by adding two spots symmetrically positioned along an arc diametrically opposed to the first one. The added value of using DACE with regard to the performance in convergence is 6 times faster than the standard simplex method for equal uniformity of 97%. The obtained results were successfully validated experimentally using a short-wavelength infrared (SWIR) hyperspectral imager monitoring a Spectralon panel illuminated by tungsten halogen sources with 10% of relative error.
NASA Astrophysics Data System (ADS)
Martowicz, Adam; Uhl, Tadeusz
2012-10-01
The paper discusses the applicability of a reliability- and performance-based multi-criteria robust design optimization technique for micro-electromechanical systems, considering their technological uncertainties. Nowadays, micro-devices are commonly applied systems, especially in the automotive industry, taking advantage of utilizing both the mechanical structure and electronic control circuit on one board. Their frequent use motivates the elaboration of virtual prototyping tools that can be applied in design optimization with the introduction of technological uncertainties and reliability. The authors present a procedure for the optimization of micro-devices, which is based on the theory of reliability-based robust design optimization. This takes into consideration the performance of a micro-device and its reliability assessed by means of uncertainty analysis. The procedure assumes that, for each checked design configuration, the assessment of uncertainty propagation is performed with the meta-modeling technique. The described procedure is illustrated with an example of the optimization carried out for a finite element model of a micro-mirror. The multi-physics approach allowed the introduction of several physical phenomena to correctly model the electrostatic actuation and the squeezing effect present between electrodes. The optimization was preceded by sensitivity analysis to establish the design and uncertain domains. The genetic algorithms fulfilled the defined optimization task effectively. The best discovered individuals are characterized by a minimized value of the multi-criteria objective function, simultaneously satisfying the constraint on material strength. The restriction of the maximum equivalent stresses was introduced with the conditionally formulated objective function with a penalty component. The yielded results were successfully verified with a global uniform search through the input design domain.
Strategies for Optimal Control Design of Normal Acceleration Command Following on the F-16
1992-12-01
Padd approximation. This approximation has a pole at -40, and introduces a nonminimum phase zero at +40. In deriving the equation for normal acceleration...input signal. The mean not being exactly zero will surface in some simulation plots, but does not alter the point of showing general trends. Also...closer to reality, I will ’know that my goal has been accomplished. My honest belief is that general mixed H2/H.. optimization is the methodology of
Fiber coupled diode laser beam parameter product calculation and rules for optimized design
NASA Astrophysics Data System (ADS)
Wang, Zuolan; Segref, Armin; Koenning, Tobias; Pandey, Rajiv
2011-03-01
The Beam Parameter Product (BPP) of a passive, lossless system is a constant and cannot be improved upon but the beams may be reshaped for enhanced coupling performance. The function of the optical designer of fiber coupled diode lasers is to preserve the brightness of the diode sources while maximizing the coupling efficiency. In coupling diode laser power into fiber output, the symmetrical geometry of the fiber core makes it highly desirable to have symmetrical BPPs at the fiber input surface, but this is not always practical. It is therefore desirable to be able to know the 'diagonal' (fiber) BPP, using the BPPs of the fast and slow axes, before detailed design and simulation processes. A commonly used expression for this purpose, i.e. the square root of the sum of the squares of the BPPs in the fast and slow axes, has been found to consistently under-predict the fiber BPP (i.e. better beam quality is predicted than is actually achievable in practice). In this paper, using a simplified model, we provide the proof of the proper calculation of the diagonal (i.e. the fiber) BPP using BPPs of the fast and slow axes as input. Using the same simplified model, we also offer the proof that the fiber BPP can be shown to have a minimum (optimal) value for given diode BPPs and this optimized condition can be obtained before any detailed design and simulation are carried out. Measured and simulated data confirms satisfactory correlation between the BPPs of the diode and the predicted fiber BPP.
Formal development of a clock synchronization circuit
NASA Technical Reports Server (NTRS)
Miner, Paul S.
1995-01-01
This talk presents the latest stage in formal development of a fault-tolerant clock synchronization circuit. The development spans from a high level specification of the required properties to a circuit realizing the core function of the system. An abstract description of an algorithm has been verified to satisfy the high-level properties using the mechanical verification system EHDM. This abstract description is recast as a behavioral specification input to the Digital Design Derivation system (DDD) developed at Indiana University. DDD provides a formal design algebra for developing correct digital hardware. Using DDD as the principle design environment, a core circuit implementing the clock synchronization algorithm was developed. The design process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the Prototype Verification System (PVS) from SRI International. Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization of the same function. Establishing correctness of this optimization requires reasoning in arithmetic, so a general verification is outside the domain of both DDD transformations and model-checking techniques. DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting a stream bisimulation. DDD was used to isolate the sub-system involved in Torres-Pomales' optimization. The equivalence between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimulation. The verification depended upon type constraints on the input streams and made extensive use of the PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate bisimulation.
Design of a composite filter realizable on practical spatial light modulators
NASA Technical Reports Server (NTRS)
Rajan, P. K.; Ramakrishnan, Ramachandran
1994-01-01
Hybrid optical correlator systems use two spatial light modulators (SLM's), one at the input plane and the other at the filter plane. Currently available SLM's such as the deformable mirror device (DMD) and liquid crystal television (LCTV) SLM's exhibit arbitrarily constrained operating characteristics. The pattern recognition filters designed with the assumption that the SLM's have ideal operating characteristic may not behave as expected when implemented on the DMD or LCTV SLM's. Therefore it is necessary to incorporate the SLM constraints in the design of the filters. In this report, an iterative method is developed for the design of an unconstrained minimum average correlation energy (MACE) filter. Then using this algorithm a new approach for the design of a SLM constrained distortion invariant filter in the presence of input SLM is developed. Two different optimization algorithms are used to maximize the objective function during filter synthesis, one based on the simplex method and the other based on the Hooke and Jeeves method. Also, the simulated annealing based filter design algorithm proposed by Khan and Rajan is refined and improved. The performance of the filter is evaluated in terms of its recognition/discrimination capabilities using computer simulations and the results are compared with a simulated annealing optimization based MACE filter. The filters are designed for different LCTV SLM's operating characteristics and the correlation responses are compared. The distortion tolerance and the false class image discrimination qualities of the filter are comparable to those of the simulated annealing based filter but the new filter design takes about 1/6 of the computer time taken by the simulated annealing filter design.
RBT-GA: a novel metaheuristic for solving the multiple sequence alignment problem
Taheri, Javid; Zomaya, Albert Y
2009-01-01
Background Multiple Sequence Alignment (MSA) has always been an active area of research in Bioinformatics. MSA is mainly focused on discovering biologically meaningful relationships among different sequences or proteins in order to investigate the underlying main characteristics/functions. This information is also used to generate phylogenetic trees. Results This paper presents a novel approach, namely RBT-GA, to solve the MSA problem using a hybrid solution methodology combining the Rubber Band Technique (RBT) and the Genetic Algorithm (GA) metaheuristic. RBT is inspired by the behavior of an elastic Rubber Band (RB) on a plate with several poles, which is analogues to locations in the input sequences that could potentially be biologically related. A GA attempts to mimic the evolutionary processes of life in order to locate optimal solutions in an often very complex landscape. RBT-GA is a population based optimization algorithm designed to find the optimal alignment for a set of input protein sequences. In this novel technique, each alignment answer is modeled as a chromosome consisting of several poles in the RBT framework. These poles resemble locations in the input sequences that are most likely to be correlated and/or biologically related. A GA-based optimization process improves these chromosomes gradually yielding a set of mostly optimal answers for the MSA problem. Conclusion RBT-GA is tested with one of the well-known benchmarks suites (BALiBASE 2.0) in this area. The obtained results show that the superiority of the proposed technique even in the case of formidable sequences. PMID:19594869
Rear wheel torque vectoring model predictive control with velocity regulation for electric vehicles
NASA Astrophysics Data System (ADS)
Siampis, Efstathios; Velenis, Efstathios; Longo, Stefano
2015-11-01
In this paper we propose a constrained optimal control architecture for combined velocity, yaw and sideslip regulation for stabilisation of the vehicle near the limit of lateral acceleration using the rear axle electric torque vectoring configuration of an electric vehicle. A nonlinear vehicle and tyre model are used to find reference steady-state cornering conditions and design two model predictive control (MPC) strategies of different levels of fidelity: one that uses a linearised version of the full vehicle model with the rear wheels' torques as the input, and another one that neglects the wheel dynamics and uses the rear wheels' slips as the input instead. After analysing the relative trade-offs between performance and computational effort, we compare the two MPC strategies against each other and against an unconstrained optimal control strategy in Simulink and Carsim environment.
Design and multi-physics optimization of rotary MRF brakes
NASA Astrophysics Data System (ADS)
Topcu, Okan; Taşcıoğlu, Yiğit; Konukseven, Erhan İlhan
2018-03-01
Particle swarm optimization (PSO) is a popular method to solve the optimization problems. However, calculations for each particle will be excessive when the number of particles and complexity of the problem increases. As a result, the execution speed will be too slow to achieve the optimized solution. Thus, this paper proposes an automated design and optimization method for rotary MRF brakes and similar multi-physics problems. A modified PSO algorithm is developed for solving multi-physics engineering optimization problems. The difference between the proposed method and the conventional PSO is to split up the original single population into several subpopulations according to the division of labor. The distribution of tasks and the transfer of information to the next party have been inspired by behaviors of a hunting party. Simulation results show that the proposed modified PSO algorithm can overcome the problem of heavy computational burden of multi-physics problems while improving the accuracy. Wire type, MR fluid type, magnetic core material, and ideal current inputs have been determined by the optimization process. To the best of the authors' knowledge, this multi-physics approach is novel for optimizing rotary MRF brakes and the developed PSO algorithm is capable of solving other multi-physics engineering optimization problems. The proposed method has showed both better performance compared to the conventional PSO and also has provided small, lightweight, high impedance rotary MRF brake designs.
Multi-objective experimental design for (13)C-based metabolic flux analysis.
Bouvin, Jeroen; Cajot, Simon; D'Huys, Pieter-Jan; Ampofo-Asiama, Jerry; Anné, Jozef; Van Impe, Jan; Geeraerd, Annemie; Bernaerts, Kristel
2015-10-01
(13)C-based metabolic flux analysis is an excellent technique to resolve fluxes in the central carbon metabolism but costs can be significant when using specialized tracers. This work presents a framework for cost-effective design of (13)C-tracer experiments, illustrated on two different networks. Linear and non-linear optimal input mixtures are computed for networks for Streptomyces lividans and a carcinoma cell line. If only glucose tracers are considered as labeled substrate for a carcinoma cell line or S. lividans, the best parameter estimation accuracy is obtained by mixtures containing high amounts of 1,2-(13)C2 glucose combined with uniformly labeled glucose. Experimental designs are evaluated based on a linear (D-criterion) and non-linear approach (S-criterion). Both approaches generate almost the same input mixture, however, the linear approach is favored due to its low computational effort. The high amount of 1,2-(13)C2 glucose in the optimal designs coincides with a high experimental cost, which is further enhanced when labeling is introduced in glutamine and aspartate tracers. Multi-objective optimization gives the possibility to assess experimental quality and cost at the same time and can reveal excellent compromise experiments. For example, the combination of 100% 1,2-(13)C2 glucose with 100% position one labeled glutamine and the combination of 100% 1,2-(13)C2 glucose with 100% uniformly labeled glutamine perform equally well for the carcinoma cell line, but the first mixture offers a decrease in cost of $ 120 per ml-scale cell culture experiment. We demonstrated the validity of a multi-objective linear approach to perform optimal experimental designs for the non-linear problem of (13)C-metabolic flux analysis. Tools and a workflow are provided to perform multi-objective design. The effortless calculation of the D-criterion can be exploited to perform high-throughput screening of possible (13)C-tracers, while the illustrated benefit of multi-objective design should stimulate its application within the field of (13)C-based metabolic flux analysis. Copyright © 2015 Elsevier Inc. All rights reserved.
Minimum energy control for in vitro neurons.
Nabi, Ali; Stigen, Tyler; Moehlis, Jeff; Netoff, Theoden
2013-06-01
To demonstrate the applicability of optimal control theory for designing minimum energy charge-balanced input waveforms for single periodically-firing in vitro neurons from brain slices of Long-Evans rats. The method of control uses the phase model of a neuron and does not require prior knowledge of the neuron's biological details. The phase model of a neuron is a one-dimensional model that is characterized by the neuron's phase response curve (PRC), a sensitivity measure of the neuron to a stimulus applied at different points in its firing cycle. The PRC for each neuron is experimentally obtained by measuring the shift in phase due to a short-duration pulse injected into the periodically-firing neuron at various phase values. Based on the measured PRC, continuous-time, charge-balanced, minimum energy control waveforms have been designed to regulate the next firing time of the neuron upon application at the onset of an action potential. The designed waveforms can achieve the inter-spike-interval regulation for in vitro neurons with energy levels that are lower than those of conventional monophasic pulsatile inputs of past studies by at least an order of magnitude. They also provide the advantage of being charge-balanced. The energy efficiency of these waveforms is also shown by performing several supporting simulations that compare the performance of the designed waveforms against that of phase shuffled surrogate inputs, variants of the minimum energy waveforms obtained from suboptimal PRCs, as well as pulsatile stimuli that are applied at the point of maximum PRC. It was found that the minimum energy waveforms perform better than all other stimuli both in terms of control and in the amount of energy used. Specifically, it was seen that these charge-balanced waveforms use at least an order of magnitude less energy than conventional monophasic pulsatile stimuli. The significance of this work is that it uses concepts from the theory of optimal control and introduces a novel approach in designing minimum energy charge-balanced input waveforms for neurons that are robust to noise and implementable in electrophysiological experiments.
Minimum energy control for in vitro neurons
NASA Astrophysics Data System (ADS)
Nabi, Ali; Stigen, Tyler; Moehlis, Jeff; Netoff, Theoden
2013-06-01
Objective. To demonstrate the applicability of optimal control theory for designing minimum energy charge-balanced input waveforms for single periodically-firing in vitro neurons from brain slices of Long-Evans rats. Approach. The method of control uses the phase model of a neuron and does not require prior knowledge of the neuron’s biological details. The phase model of a neuron is a one-dimensional model that is characterized by the neuron’s phase response curve (PRC), a sensitivity measure of the neuron to a stimulus applied at different points in its firing cycle. The PRC for each neuron is experimentally obtained by measuring the shift in phase due to a short-duration pulse injected into the periodically-firing neuron at various phase values. Based on the measured PRC, continuous-time, charge-balanced, minimum energy control waveforms have been designed to regulate the next firing time of the neuron upon application at the onset of an action potential. Main result. The designed waveforms can achieve the inter-spike-interval regulation for in vitro neurons with energy levels that are lower than those of conventional monophasic pulsatile inputs of past studies by at least an order of magnitude. They also provide the advantage of being charge-balanced. The energy efficiency of these waveforms is also shown by performing several supporting simulations that compare the performance of the designed waveforms against that of phase shuffled surrogate inputs, variants of the minimum energy waveforms obtained from suboptimal PRCs, as well as pulsatile stimuli that are applied at the point of maximum PRC. It was found that the minimum energy waveforms perform better than all other stimuli both in terms of control and in the amount of energy used. Specifically, it was seen that these charge-balanced waveforms use at least an order of magnitude less energy than conventional monophasic pulsatile stimuli. Significance. The significance of this work is that it uses concepts from the theory of optimal control and introduces a novel approach in designing minimum energy charge-balanced input waveforms for neurons that are robust to noise and implementable in electrophysiological experiments.
Application of Adjoint Methodology in Various Aspects of Sonic Boom Design
NASA Technical Reports Server (NTRS)
Rallabhandi, Sriram K.
2014-01-01
One of the advances in computational design has been the development of adjoint methods allowing efficient calculation of sensitivities in gradient-based shape optimization. This paper discusses two new applications of adjoint methodology that have been developed to aid in sonic boom mitigation exercises. In the first, equivalent area targets are generated using adjoint sensitivities of selected boom metrics. These targets may then be used to drive the vehicle shape during optimization. The second application is the computation of adjoint sensitivities of boom metrics on the ground with respect to parameters such as flight conditions, propagation sampling rate, and selected inputs to the propagation algorithms. These sensitivities enable the designer to make more informed selections of flight conditions at which the chosen cost functionals are less sensitive.
Laser Pulse-Stretching Using Multiple Optical Ring-Cavities
NASA Technical Reports Server (NTRS)
Kojima, Jun; Nguyen, Quang-Viet; Lee, Chi-Ming (Technical Monitor)
2002-01-01
We describe a simple and passive nanosecond-long (ns-long) laser 'pulse-stretcher' using multiple optical ring-cavities. We present a model of the pulse-stretching process for an arbitrary number of optical ring-cavities. Using the model, we optimize the design of a pulse-stretcher for use in a spontaneous Raman scattering excitation system that avoids laser-induced plasma spark problems. From the optimized design, we then experimentally demonstrate and verify the model with a 3-cavity pulse-stretcher system that converts a 1000 mJ, 8.4 ns-long input laser pulse into an approximately 75 ns-long (FWHM) output laser pulse with a peak power reduction of 0.10X, and an 83% efficiency.
A methodology for designing robust multivariable nonlinear control systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Grunberg, D. B.
1986-01-01
A new methodology is described for the design of nonlinear dynamic controllers for nonlinear multivariable systems providing guarantees of closed-loop stability, performance, and robustness. The methodology is an extension of the Linear-Quadratic-Gaussian with Loop-Transfer-Recovery (LQG/LTR) methodology for linear systems, thus hinging upon the idea of constructing an approximate inverse operator for the plant. A major feature of the methodology is a unification of both the state-space and input-output formulations. In addition, new results on stability theory, nonlinear state estimation, and optimal nonlinear regulator theory are presented, including the guaranteed global properties of the extended Kalman filter and optimal nonlinear regulators.
Parameters optimization of laser brazing in crimping butt using Taguchi and BPNN-GA
NASA Astrophysics Data System (ADS)
Rong, Youmin; Zhang, Zhen; Zhang, Guojun; Yue, Chen; Gu, Yafei; Huang, Yu; Wang, Chunming; Shao, Xinyu
2015-04-01
The laser brazing (LB) is widely used in the automotive industry due to the advantages of high speed, small heat affected zone, high quality of welding seam, and low heat input. Welding parameters play a significant role in determining the bead geometry and hence quality of the weld joint. This paper addresses the optimization of the seam shape in LB process with welding crimping butt of 0.8 mm thickness using back propagation neural network (BPNN) and genetic algorithm (GA). A 3-factor, 5-level welding experiment is conducted by Taguchi L25 orthogonal array through the statistical design method. Then, the input parameters are considered here including welding speed, wire speed rate, and gap with 5 levels. The output results are efficient connection length of left side and right side, top width (WT) and bottom width (WB) of the weld bead. The experiment results are embed into the BPNN network to establish relationship between the input and output variables. The predicted results of the BPNN are fed to GA algorithm that optimizes the process parameters subjected to the objectives. Then, the effects of welding speed (WS), wire feed rate (WF), and gap (GAP) on the sum values of bead geometry is discussed. Eventually, the confirmation experiments are carried out to demonstrate the optimal values were effective and reliable. On the whole, the proposed hybrid method, BPNN-GA, can be used to guide the actual work and improve the efficiency and stability of LB process.
Menolascina, Filippo; Bellomo, Domenico; Maiwald, Thomas; Bevilacqua, Vitoantonio; Ciminelli, Caterina; Paradiso, Angelo; Tommasi, Stefania
2009-10-15
Mechanistic models are becoming more and more popular in Systems Biology; identification and control of models underlying biochemical pathways of interest in oncology is a primary goal in this field. Unfortunately the scarce availability of data still limits our understanding of the intrinsic characteristics of complex pathologies like cancer: acquiring information for a system understanding of complex reaction networks is time consuming and expensive. Stimulus response experiments (SRE) have been used to gain a deeper insight into the details of biochemical mechanisms underlying cell life and functioning. Optimisation of the input time-profile, however, still remains a major area of research due to the complexity of the problem and its relevance for the task of information retrieval in systems biology-related experiments. We have addressed the problem of quantifying the information associated to an experiment using the Fisher Information Matrix and we have proposed an optimal experimental design strategy based on evolutionary algorithm to cope with the problem of information gathering in Systems Biology. On the basis of the theoretical results obtained in the field of control systems theory, we have studied the dynamical properties of the signals to be used in cell stimulation. The results of this study have been used to develop a microfluidic device for the automation of the process of cell stimulation for system identification. We have applied the proposed approach to the Epidermal Growth Factor Receptor pathway and we observed that it minimises the amount of parametric uncertainty associated to the identified model. A statistical framework based on Monte-Carlo estimations of the uncertainty ellipsoid confirmed the superiority of optimally designed experiments over canonical inputs. The proposed approach can be easily extended to multiobjective formulations that can also take advantage of identifiability analysis. Moreover, the availability of fully automated microfluidic platforms explicitly developed for the task of biochemical model identification will hopefully reduce the effects of the 'data rich--data poor' paradox in Systems Biology.
Diversity-optimal power loading for intensity modulated MIMO optical wireless communications.
Zhang, Yan-Yu; Yu, Hong-Yi; Zhang, Jian-Kang; Zhu, Yi-Jun
2016-04-18
In this paper, we consider the design of space code for an intensity modulated direct detection multi-input-multi-output optical wireless communication (IM/DD MIMO-OWC) system, in which channel coefficients are independent and non-identically log-normal distributed, with variances and means known at the transmitter and channel state information available at the receiver. Utilizing the existing space code design criterion for IM/DD MIMO-OWC with a maximum likelihood (ML) detector, we design a diversity-optimal space code (DOSC) that maximizes both large-scale diversity and small-scale diversity gains and prove that the spatial repetition code (RC) with a diversity-optimized power allocation is diversity-optimal among all the high dimensional nonnegative space code schemes under a commonly used optical power constraint. In addition, we show that one of significant advantages of the DOSC is to allow low-complexity ML detection. Simulation results indicate that in high signal-to-noise ratio (SNR) regimes, our proposed DOSC significantly outperforms RC, which is the best space code currently available for such system.
A Response Surface Methodology for Bi-Level Integrated System Synthesis (BLISS)
NASA Technical Reports Server (NTRS)
Altus, Troy David; Sobieski, Jaroslaw (Technical Monitor)
2002-01-01
The report describes a new method for optimization of engineering systems such as aerospace vehicles whose design must harmonize a number of subsystems and various physical phenomena, each represented by a separate computer code, e.g., aerodynamics, structures, propulsion, performance, etc. To represent the system internal couplings, the codes receive output from other codes as part of their inputs. The system analysis and optimization task is decomposed into subtasks that can be executed concurrently, each subtask conducted using local state and design variables and holding constant a set of the system-level design variables. The subtasks results are stored in form of the Response Surfaces (RS) fitted in the space of the system-level variables to be used as the subtask surrogates in a system-level optimization whose purpose is to optimize the system objective(s) and to reconcile the system internal couplings. By virtue of decomposition and execution concurrency, the method enables a broad workfront in organization of an engineering project involving a number of specialty groups that might be geographically dispersed, and it exploits the contemporary computing technology of massively concurrent and distributed processing. The report includes a demonstration test case of supersonic business jet design.
NASA Technical Reports Server (NTRS)
Patniak, Surya N.; Guptill, James D.; Hopkins, Dale A.; Lavelle, Thomas M.
1998-01-01
Nonlinear mathematical-programming-based design optimization can be an elegant method. However, the calculations required to generate the merit function, constraints, and their gradients, which are frequently required, can make the process computational intensive. The computational burden can be greatly reduced by using approximating analyzers derived from an original analyzer utilizing neural networks and linear regression methods. The experience gained from using both of these approximation methods in the design optimization of a high speed civil transport aircraft is the subject of this paper. The Langley Research Center's Flight Optimization System was selected for the aircraft analysis. This software was exercised to generate a set of training data with which a neural network and a regression method were trained, thereby producing the two approximating analyzers. The derived analyzers were coupled to the Lewis Research Center's CometBoards test bed to provide the optimization capability. With the combined software, both approximation methods were examined for use in aircraft design optimization, and both performed satisfactorily. The CPU time for solution of the problem, which had been measured in hours, was reduced to minutes with the neural network approximation and to seconds with the regression method. Instability encountered in the aircraft analysis software at certain design points was also eliminated. On the other hand, there were costs and difficulties associated with training the approximating analyzers. The CPU time required to generate the input-output pairs and to train the approximating analyzers was seven times that required for solution of the problem.
NASA Technical Reports Server (NTRS)
Martini, William R.
1989-01-01
A FORTRAN computer code is described that could be used to design and optimize a free-displacer, free-piston Stirling engine similar to the RE-1000 engine made by Sunpower. The code contains options for specifying displacer and power piston motion or for allowing these motions to be calculated by a force balance. The engine load may be a dashpot, inertial compressor, hydraulic pump or linear alternator. Cycle analysis may be done by isothermal analysis or adiabatic analysis. Adiabatic analysis may be done using the Martini moving gas node analysis or the Rios second-order Runge-Kutta analysis. Flow loss and heat loss equations are included. Graphical display of engine motions and pressures and temperatures are included. Programming for optimizing up to 15 independent dimensions is included. Sample performance results are shown for both specified and unconstrained piston motions; these results are shown as generated by each of the two Martini analyses. Two sample optimization searches are shown using specified piston motion isothermal analysis. One is for three adjustable input and one is for four. Also, two optimization searches for calculated piston motion are presented for three and for four adjustable inputs. The effect of leakage is evaluated. Suggestions for further work are given.
Abdelkarim, Noha; Mohamed, Amr E; El-Garhy, Ahmed M; Dorrah, Hassen T
2016-01-01
The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller.
Mohamed, Amr E.; Dorrah, Hassen T.
2016-01-01
The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller. PMID:27807444
Sahoo, Avimanyu; Xu, Hao; Jagannathan, Sarangapani
2016-09-01
This paper presents an event-triggered near optimal control of uncertain nonlinear discrete-time systems. Event-driven neurodynamic programming (NDP) is utilized to design the control policy. A neural network (NN)-based identifier, with event-based state and input vectors, is utilized to learn the system dynamics. An actor-critic framework is used to learn the cost function and the optimal control input. The NN weights of the identifier, the critic, and the actor NNs are tuned aperiodically once every triggered instant. An adaptive event-trigger condition to decide the trigger instants is derived. Thus, a suitable number of events are generated to ensure a desired accuracy of approximation. A near optimal performance is achieved without using value and/or policy iterations. A detailed analysis of nontrivial inter-event times with an explicit formula to show the reduction in computation is also derived. The Lyapunov technique is used in conjunction with the event-trigger condition to guarantee the ultimate boundedness of the closed-loop system. The simulation results are included to verify the performance of the controller. The net result is the development of event-driven NDP.
Low-complexity piecewise-affine virtual sensors: theory and design
NASA Astrophysics Data System (ADS)
Rubagotti, Matteo; Poggi, Tomaso; Oliveri, Alberto; Pascucci, Carlo Alberto; Bemporad, Alberto; Storace, Marco
2014-03-01
This paper is focused on the theoretical development and the hardware implementation of low-complexity piecewise-affine direct virtual sensors for the estimation of unmeasured variables of interest of nonlinear systems. The direct virtual sensor is designed directly from measured inputs and outputs of the system and does not require a dynamical model. The proposed approach allows one to design estimators which mitigate the effect of the so-called 'curse of dimensionality' of simplicial piecewise-affine functions, and can be therefore applied to relatively high-order systems, enjoying convergence and optimality properties. An automatic toolchain is also presented to generate the VHDL code describing the digital circuit implementing the virtual sensor, starting from the set of measured input and output data. The proposed methodology is applied to generate an FPGA implementation of the virtual sensor for the estimation of vehicle lateral velocity, using a hardware-in-the-loop setting.
Power optimization in logic isomers
NASA Technical Reports Server (NTRS)
Panwar, Ramesh; Rennels, David; Alkalaj, Leon
1993-01-01
Logic isomers are labeled, 2-isomorphic graphs that implement the same logic function. Logic isomers may have significantly different power requirements even though they have the same number of transistors in the implementation. The power requirements of the isomers depend on the transition activity of the input signals. The power requirements of isomorphic graph isomers of n-input NAND and NOR gates are shown. Choosing the less power-consuming isomer instead of the others can yield significant power savings. Experimental results on a ripple-carry adder are presented to show that the implementation using the least power-consuming isomers requires approximately 10 percent less power than the implementation using the most power-consuming isomers. Simulations of other random logic designs also confirm that designs using less power-consuming isomers can reduce the logic power demand by approximately 10 percent as compared to designs using more power-consuming isomers.
Loss resilience for two-qubit state transmission using distributed phase sensitive amplification
Dailey, James; Agarwal, Anjali; Toliver, Paul; ...
2015-11-12
We transmit phase-encoded non-orthogonal quantum states through a 5-km long fibre-based distributed optical phase-sensitive amplifier (OPSA) using telecom-wavelength photonic qubit pairs. The gain is set to equal the transmission loss to probabilistically preserve input states during transmission. While neither state is optimally aligned to the OPSA, each input state is equally amplified with no measurable degradation in state quality. These results promise a new approach to reduce the effects of loss by encoding quantum information in a two-qubit Hilbert space which is designed to benefit from transmission through an OPSA.
Loss resilience for two-qubit state transmission using distributed phase sensitive amplification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dailey, James; Agarwal, Anjali; Toliver, Paul
We transmit phase-encoded non-orthogonal quantum states through a 5-km long fibre-based distributed optical phase-sensitive amplifier (OPSA) using telecom-wavelength photonic qubit pairs. The gain is set to equal the transmission loss to probabilistically preserve input states during transmission. While neither state is optimally aligned to the OPSA, each input state is equally amplified with no measurable degradation in state quality. These results promise a new approach to reduce the effects of loss by encoding quantum information in a two-qubit Hilbert space which is designed to benefit from transmission through an OPSA.
Joint Waveform Optimization and Adaptive Processing for Random-Phase Radar Signals
2014-01-01
extended targets,” IEEE Journal of Selected Topics in Signal Processing, vol. 1, no. 1, pp. 42– 55, June 2007. [2] S. Sen and A. Nehorai, “ OFDM mimo ...radar compared to traditional waveforms. I. INTRODUCTION There has been much recent interest in waveform design for multiple-input, multiple-output ( MIMO ...amplitude. When the resolution capability of the MIMO radar system is of interest, the transmit waveform can be designed to sharpen the radar ambiguity
Optimal structural design of the midship of a VLCC based on the strategy integrating SVM and GA
NASA Astrophysics Data System (ADS)
Sun, Li; Wang, Deyu
2012-03-01
In this paper a hybrid process of modeling and optimization, which integrates a support vector machine (SVM) and genetic algorithm (GA), was introduced to reduce the high time cost in structural optimization of ships. SVM, which is rooted in statistical learning theory and an approximate implementation of the method of structural risk minimization, can provide a good generalization performance in metamodeling the input-output relationship of real problems and consequently cuts down on high time cost in the analysis of real problems, such as FEM analysis. The GA, as a powerful optimization technique, possesses remarkable advantages for the problems that can hardly be optimized with common gradient-based optimization methods, which makes it suitable for optimizing models built by SVM. Based on the SVM-GA strategy, optimization of structural scantlings in the midship of a very large crude carrier (VLCC) ship was carried out according to the direct strength assessment method in common structural rules (CSR), which eventually demonstrates the high efficiency of SVM-GA in optimizing the ship structural scantlings under heavy computational complexity. The time cost of this optimization with SVM-GA has been sharply reduced, many more loops have been processed within a small amount of time and the design has been improved remarkably.
Design of a compensation for an ARMA model of a discrete time system. M.S. Thesis
NASA Technical Reports Server (NTRS)
Mainemer, C. I.
1978-01-01
The design of an optimal dynamic compensator for a multivariable discrete time system is studied. Also the design of compensators to achieve minimum variance control strategies for single input single output systems is analyzed. In the first problem the initial conditions of the plant are random variables with known first and second order moments, and the cost is the expected value of the standard cost, quadratic in the states and controls. The compensator is based on the minimum order Luenberger observer and it is found optimally by minimizing a performance index. Necessary and sufficient conditions for optimality of the compensator are derived. The second problem is solved in three different ways; two of them working directly in the frequency domain and one working in the time domain. The first and second order moments of the initial conditions are irrelevant to the solution. Necessary and sufficient conditions are derived for the compensator to minimize the variance of the output.
The art of spacecraft design: A multidisciplinary challenge
NASA Technical Reports Server (NTRS)
Abdi, F.; Ide, H.; Levine, M.; Austel, L.
1989-01-01
Actual design turn-around time has become shorter due to the use of optimization techniques which have been introduced into the design process. It seems that what, how and when to use these optimization techniques may be the key factor for future aircraft engineering operations. Another important aspect of this technique is that complex physical phenomena can be modeled by a simple mathematical equation. The new powerful multilevel methodology reduces time-consuming analysis significantly while maintaining the coupling effects. This simultaneous analysis method stems from the implicit function theorem and system sensitivity derivatives of input variables. Use of the Taylor's series expansion and finite differencing technique for sensitivity derivatives in each discipline makes this approach unique for screening dominant variables from nondominant variables. In this study, the current Computational Fluid Dynamics (CFD) aerodynamic and sensitivity derivative/optimization techniques are applied for a simple cone-type forebody of a high-speed vehicle configuration to understand basic aerodynamic/structure interaction in a hypersonic flight condition.
NASA Technical Reports Server (NTRS)
Olds, John Robert; Walberg, Gerald D.
1993-01-01
Multidisciplinary design optimization (MDO) is an emerging discipline within aerospace engineering. Its goal is to bring structure and efficiency to the complex design process associated with advanced aerospace launch vehicles. Aerospace vehicles generally require input from a variety of traditional aerospace disciplines - aerodynamics, structures, performance, etc. As such, traditional optimization methods cannot always be applied. Several multidisciplinary techniques and methods were proposed as potentially applicable to this class of design problem. Among the candidate options are calculus-based (or gradient-based) optimization schemes and parametric schemes based on design of experiments theory. A brief overview of several applicable multidisciplinary design optimization methods is included. Methods from the calculus-based class and the parametric class are reviewed, but the research application reported focuses on methods from the parametric class. A vehicle of current interest was chosen as a test application for this research. The rocket-based combined-cycle (RBCC) single-stage-to-orbit (SSTO) launch vehicle combines elements of rocket and airbreathing propulsion in an attempt to produce an attractive option for launching medium sized payloads into low earth orbit. The RBCC SSTO presents a particularly difficult problem for traditional one-variable-at-a-time optimization methods because of the lack of an adequate experience base and the highly coupled nature of the design variables. MDO, however, with it's structured approach to design, is well suited to this problem. The result of the application of Taguchi methods, central composite designs, and response surface methods to the design optimization of the RBCC SSTO are presented. Attention is given to the aspect of Taguchi methods that attempts to locate a 'robust' design - that is, a design that is least sensitive to uncontrollable influences on the design. Near-optimum minimum dry weight solutions are determined for the vehicle. A summary and evaluation of the various parametric MDO methods employed in the research are included. Recommendations for additional research are provided.
Active vibration and noise control of vibro-acoustic system by using PID controller
NASA Astrophysics Data System (ADS)
Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping
2015-07-01
Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.
In-Space Radiator Shape Optimization using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Hull, Patrick V.; Kittredge, Ken; Tinker, Michael; SanSoucie, Michael
2006-01-01
Future space exploration missions will require the development of more advanced in-space radiators. These radiators should be highly efficient and lightweight, deployable heat rejection systems. Typical radiators for in-space heat mitigation commonly comprise a substantial portion of the total vehicle mass. A small mass savings of even 5-10% can greatly improve vehicle performance. The objective of this paper is to present the development of detailed tools for the analysis and design of in-space radiators using evolutionary computation techniques. The optimality criterion is defined as a two-dimensional radiator with a shape demonstrating the smallest mass for the greatest overall heat transfer, thus the end result is a set of highly functional radiator designs. This cross-disciplinary work combines topology optimization and thermal analysis design by means of a genetic algorithm The proposed design tool consists of the following steps; design parameterization based on the exterior boundary of the radiator, objective function definition (mass minimization and heat loss maximization), objective function evaluation via finite element analysis (thermal radiation analysis) and optimization based on evolutionary algorithms. The radiator design problem is defined as follows: the input force is a driving temperature and the output reaction is heat loss. Appropriate modeling of the space environment is added to capture its effect on the radiator. The design parameters chosen for this radiator shape optimization problem fall into two classes, variable height along the width of the radiator and a spline curve defining the -material boundary of the radiator. The implementation of multiple design parameter schemes allows the user to have more confidence in the radiator optimization tool upon demonstration of convergence between the two design parameter schemes. This tool easily allows the user to manipulate the driving temperature regions thus permitting detailed design of in-space radiators for unique situations. Preliminary results indicate an optimized shape following that of the temperature distribution regions in the "cooler" portions of the radiator. The results closely follow the expected radiator shape.
WINGDES2 - WING DESIGN AND ANALYSIS CODE
NASA Technical Reports Server (NTRS)
Carlson, H. W.
1994-01-01
This program provides a wing design algorithm based on modified linear theory which takes into account the effects of attainable leading-edge thrust. A primary objective of the WINGDES2 approach is the generation of a camber surface as mild as possible to produce drag levels comparable to those attainable with full theoretical leading-edge thrust. WINGDES2 provides both an analysis and a design capability and is applicable to both subsonic and supersonic flow. The optimization can be carried out for designated wing portions such as leading and trailing edge areas for the design of mission-adaptive surfaces, or for an entire planform such as a supersonic transport wing. This program replaces an earlier wing design code, LAR-13315, designated WINGDES. WINGDES2 incorporates modifications to improve numerical accuracy and provides additional capabilities. A means of accounting for the presence of interference pressure fields from airplane components other than the wing and a direct process for selection of flap surfaces to approach the performance levels of the optimized wing surfaces are included. An increased storage capacity allows better numerical representation of those configurations that have small chord leading-edge or trailing-edge design areas. WINGDES2 determines an optimum combination of a series of candidate surfaces rather than the more commonly used candidate loadings. The objective of the design is the recovery of unrealized theoretical leading-edge thrust of the input flat surface by shaping of the design surface to create a distributed thrust and thus minimize drag. The input consists of airfoil section thickness data, leading and trailing edge planform geometry, and operational parameters such as Mach number, Reynolds number, and design lift coefficient. Output includes optimized camber surface ordinates, pressure coefficient distributions, and theoretical aerodynamic characteristics. WINGDES2 is written in FORTRAN V for batch execution and has been implemented on a CDC CYBER computer operating under NOS 2.7.1 with a central memory requirement of approximately 344K (octal) of 60 bit words. This program was developed in 1984, and last updated in 1990. CDC and CYBER are trademarks of Control Data Corporation.
Xu, Shidong; Sun, Guanghui; Sun, Weichao
2017-01-01
In this paper, the problem of robust dissipative control is investigated for uncertain flexible spacecraft based on Takagi-Sugeno (T-S) fuzzy model with saturated time-delay input. Different from most existing strategies, T-S fuzzy approximation approach is used to model the nonlinear dynamics of flexible spacecraft. Simultaneously, the physical constraints of system, like input delay, input saturation, and parameter uncertainties, are also taken care of in the fuzzy model. By employing Lyapunov-Krasovskii method and convex optimization technique, a novel robust controller is proposed to implement rest-to-rest attitude maneuver for flexible spacecraft, and the guaranteed dissipative performance enables the uncertain closed-loop system to reject the influence of elastic vibrations and external disturbances. Finally, an illustrative design example integrated with simulation results are provided to confirm the applicability and merits of the developed control strategy. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Madi, Mahmoud K; Karameh, Fadi N
2018-05-11
Many physical models of biological processes including neural systems are characterized by parametric nonlinear dynamical relations between driving inputs, internal states, and measured outputs of the process. Fitting such models using experimental data (data assimilation) is a challenging task since the physical process often operates in a noisy, possibly non-stationary environment; moreover, conducting multiple experiments under controlled and repeatable conditions can be impractical, time consuming or costly. The accuracy of model identification, therefore, is dictated principally by the quality and dynamic richness of collected data over single or few experimental sessions. Accordingly, it is highly desirable to design efficient experiments that, by exciting the physical process with smart inputs, yields fast convergence and increased accuracy of the model. We herein introduce an adaptive framework in which optimal input design is integrated with Square root Cubature Kalman Filters (OID-SCKF) to develop an online estimation procedure that first, converges significantly quicker, thereby permitting model fitting over shorter time windows, and second, enhances model accuracy when only few process outputs are accessible. The methodology is demonstrated on common nonlinear models and on a four-area neural mass model with noisy and limited measurements. Estimation quality (speed and accuracy) is benchmarked against high-performance SCKF-based methods that commonly employ dynamically rich informed inputs for accurate model identification. For all the tested models, simulated single-trial and ensemble averages showed that OID-SCKF exhibited (i) faster convergence of parameter estimates and (ii) lower dependence on inter-trial noise variability with gains up to around 1000 msec in speed and 81% increase in variability for the neural mass models. In terms of accuracy, OID-SCKF estimation was superior, and exhibited considerably less variability across experiments, in identifying model parameters of (a) systems with challenging model inversion dynamics and (b) systems with fewer measurable outputs that directly relate to the underlying processes. Fast and accurate identification therefore carries particular promise for modeling of transient (short-lived) neuronal network dynamics using a spatially under-sampled set of noisy measurements, as is commonly encountered in neural engineering applications. © 2018 IOP Publishing Ltd.
Nonlinear model predictive control for chemical looping process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng
A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to amore » CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.« less
New Approaches to Minimum-Energy Design of Integer- and Fractional-Order Perfect Control Algorithms
NASA Astrophysics Data System (ADS)
Hunek, Wojciech P.; Wach, Łukasz
2017-10-01
In this paper the new methods concerning the energy-based minimization of the perfect control inputs is presented. For that reason the multivariable integer- and fractional-order models are applied which can be used for describing a various real world processes. Up to now, the classical approaches have been used in forms of minimum-norm/least squares inverses. Notwithstanding, the above-mentioned tool do not guarantee the optimal control corresponding to optimal input energy. Therefore the new class of inversebased methods has been introduced, in particular the new σ- and H-inverse of nonsquare parameter and polynomial matrices. Thus a proposed solution remarkably outperforms the typical ones in systems where the control runs can be understood in terms of different physical quantities, for example heat and mass transfer, electricity etc. A simulation study performed in Matlab/Simulink environment confirms the big potential of the new energy-based approaches.
Optimisation Of Cutting Parameters Of Composite Material Laser Cutting Process By Taguchi Method
NASA Astrophysics Data System (ADS)
Lokesh, S.; Niresh, J.; Neelakrishnan, S.; Rahul, S. P. Deepak
2018-03-01
The aim of this work is to develop a laser cutting process model that can predict the relationship between the process input parameters and resultant surface roughness, kerf width characteristics. The research conduct is based on the Design of Experiment (DOE) analysis. Response Surface Methodology (RSM) is used in this work. It is one of the most practical and most effective techniques to develop a process model. Even though RSM has been used for the optimization of the laser process, this research investigates laser cutting of materials like Composite wood (veneer)to be best circumstances of laser cutting using RSM process. The input parameters evaluated are focal length, power supply and cutting speed, the output responses being kerf width, surface roughness, temperature. To efficiently optimize and customize the kerf width and surface roughness characteristics, a machine laser cutting process model using Taguchi L9 orthogonal methodology was proposed.
Design of a portable artificial heart drive system based on efficiency analysis.
Kitamura, T
1986-11-01
This paper discusses a computer simulation of a pneumatic portable piston-type artificial heart drive system with a linear d-c-motor. The purpose of the design is to obtain an artificial heart drive system with high efficiency and small dimensions to enhance portability. The design employs two factors contributing the total efficiency of the drive system. First, the dimensions of the pneumatic actuator were optimized under a cost function of the total efficiency. Second, the motor performance was studied in terms of efficiency. More than 50 percent of the input energy of the actuator with practical loads is consumed in the armature circuit in all linear d-c-motors with brushes. An optimal design is: the piston cross-sectional area of 10.5 cm2 cylinder longitudinal length of 10 cm. The total efficiency could be up to 25 percent by improving the gasket to reduce the frictional force.
NASA Astrophysics Data System (ADS)
Wickenheiser, Adam; Garcia, Ephrahim
2010-04-01
In much of the vibration-based energy harvesting literature, devices are modeled, designed, and tested for dissipating energy across a resistive load at a single base excitation frequency. This paper presents several practical scenarios germane to tracking, sensing, and wireless communication on humans and land vehicles. Measured vibrational data from these platforms are used to provide a time-varying, broadband input to the energy harvesting system. Optimal power considerations are given for several circuit topologies, including a passive rectifier circuit and active, switching methods. Under various size and mass constraints, the optimal design is presented for two scenarios: walking and idling a car. The frequency response functions are given alongside time histories of the power harvested using the experimental base accelerations recorded. The issues involved in designing an energy harvester for practical (i.e. timevarying, non-sinusoidal) applications are discussed.
NASA Technical Reports Server (NTRS)
Freeman, W.; Ilcewicz, L.; Swanson, G.; Gutowski, T.
1992-01-01
The Structures Technology Program Office (STPO) at NASA LaRC has initiated development of a conceptual and preliminary designers' cost prediction model. The model will provide a technically sound method for evaluating the relative cost of different composite structural designs, fabrication processes, and assembly methods that can be compared to equivalent metallic parts or assemblies. The feasibility of developing cost prediction software in a modular form for interfacing with state-of-the-art preliminary design tools and computer aided design programs is being evaluated. The goal of this task is to establish theoretical cost functions that relate geometric design features to summed material cost and labor content in terms of process mechanics and physics. The output of the designers' present analytical tools will be input for the designers' cost prediction model to provide the designer with a database and deterministic cost methodology that allows one to trade and synthesize designs with both cost and weight as objective functions for optimization. This paper presents the team members, approach, goals, plans, and progress to date for development of COSTADE (Cost Optimization Software for Transport Aircraft Design Evaluation).
Optimal input shaping for Fisher identifiability of control-oriented lithium-ion battery models
NASA Astrophysics Data System (ADS)
Rothenberger, Michael J.
This dissertation examines the fundamental challenge of optimally shaping input trajectories to maximize parameter identifiability of control-oriented lithium-ion battery models. Identifiability is a property from information theory that determines the solvability of parameter estimation for mathematical models using input-output measurements. This dissertation creates a framework that exploits the Fisher information metric to quantify the level of battery parameter identifiability, optimizes this metric through input shaping, and facilitates faster and more accurate estimation. The popularity of lithium-ion batteries is growing significantly in the energy storage domain, especially for stationary and transportation applications. While these cells have excellent power and energy densities, they are plagued with safety and lifespan concerns. These concerns are often resolved in the industry through conservative current and voltage operating limits, which reduce the overall performance and still lack robustness in detecting catastrophic failure modes. New advances in automotive battery management systems mitigate these challenges through the incorporation of model-based control to increase performance, safety, and lifespan. To achieve these goals, model-based control requires accurate parameterization of the battery model. While many groups in the literature study a variety of methods to perform battery parameter estimation, a fundamental issue of poor parameter identifiability remains apparent for lithium-ion battery models. This fundamental challenge of battery identifiability is studied extensively in the literature, and some groups are even approaching the problem of improving the ability to estimate the model parameters. The first approach is to add additional sensors to the battery to gain more information that is used for estimation. The other main approach is to shape the input trajectories to increase the amount of information that can be gained from input-output measurements, and is the approach used in this dissertation. Research in the literature studies optimal current input shaping for high-order electrochemical battery models and focuses on offline laboratory cycling. While this body of research highlights improvements in identifiability through optimal input shaping, each optimal input is a function of nominal parameters, which creates a tautology. The parameter values must be known a priori to determine the optimal input for maximizing estimation speed and accuracy. The system identification literature presents multiple studies containing methods that avoid the challenges of this tautology, but these methods are absent from the battery parameter estimation domain. The gaps in the above literature are addressed in this dissertation through the following five novel and unique contributions. First, this dissertation optimizes the parameter identifiability of a thermal battery model, which Sergio Mendoza experimentally validates through a close collaboration with this dissertation's author. Second, this dissertation extends input-shaping optimization to a linear and nonlinear equivalent-circuit battery model and illustrates the substantial improvements in Fisher identifiability for a periodic optimal signal when compared against automotive benchmark cycles. Third, this dissertation presents an experimental validation study of the simulation work in the previous contribution. The estimation study shows that the automotive benchmark cycles either converge slower than the optimized cycle, or not at all for certain parameters. Fourth, this dissertation examines how automotive battery packs with additional power electronic components that dynamically route current to individual cells/modules can be used for parameter identifiability optimization. While the user and vehicle supervisory controller dictate the current demand for these packs, the optimized internal allocation of current still improves identifiability. Finally, this dissertation presents a robust Bayesian sequential input shaping optimization study to maximize the conditional Fisher information of the battery model parameters without prior knowledge of the nominal parameter set. This iterative algorithm only requires knowledge of the prior parameter distributions to converge to the optimal input trajectory.
Program to Optimize Simulated Trajectories (POST). Volume 2: Utilization manual
NASA Technical Reports Server (NTRS)
Bauer, G. L.; Cornick, D. E.; Habeger, A. R.; Petersen, F. M.; Stevenson, R.
1975-01-01
Information pertinent to users of the program to optimize simulated trajectories (POST) is presented. The input required and output available is described for each of the trajectory and targeting/optimization options. A sample input listing and resulting output are given.
Reexamination of optimal quantum state estimation of pure states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, A.; Hashimoto, T.; Horibe, M.
2005-09-15
A direct derivation is given for the optimal mean fidelity of quantum state estimation of a d-dimensional unknown pure state with its N copies given as input, which was first obtained by Hayashi in terms of an infinite set of covariant positive operator valued measures (POVM's) and by Bruss and Macchiavello establishing a connection to optimal quantum cloning. An explicit condition for POVM measurement operators for optimal estimators is obtained, by which we construct optimal estimators with finite POVMs using exact quadratures on a hypersphere. These finite optimal estimators are not generally universal, where universality means the fidelity is independentmore » of input states. However, any optimal estimator with finite POVM for M(>N) copies is universal if it is used for N copies as input.« less
Ring rolling process simulation for geometry optimization
NASA Astrophysics Data System (ADS)
Franchi, Rodolfo; Del Prete, Antonio; Donatiello, Iolanda; Calabrese, Maurizio
2017-10-01
Ring Rolling is a complex hot forming process where different rolls are involved in the production of seamless rings. Since each roll must be independently controlled, different speed laws must be set; usually, in the industrial environment, a milling curve is introduced to monitor the shape of the workpiece during the deformation in order to ensure the correct ring production. In the present paper a ring rolling process has been studied and optimized in order to obtain anular components to be used in aerospace applications. In particular, the influence of process input parameters (feed rate of the mandrel and angular speed of main roll) on geometrical features of the final ring has been evaluated. For this purpose, a three-dimensional finite element model for HRR (Hot Ring Rolling) has been implemented in SFTC DEFORM V11. The FEM model has been used to formulate a proper optimization problem. The optimization procedure has been implemented in the commercial software DS ISight in order to find the combination of process parameters which allows to minimize the percentage error of each obtained dimension with respect to its nominal value. The software allows to find the relationship between input and output parameters applying Response Surface Methodology (RSM), by using the exact values of output parameters in the control points of the design space explored through FEM simulation. Once this relationship is known, the values of the output parameters can be calculated for each combination of the input parameters. After the calculation of the response surfaces for the selected output parameters, an optimization procedure based on Genetic Algorithms has been applied. At the end, the error between each obtained dimension and its nominal value has been minimized. The constraints imposed were the maximum values of standard deviations of the dimensions obtained for the final ring.
MIMO-OFDM signal optimization for SAR imaging radar
NASA Astrophysics Data System (ADS)
Baudais, J.-Y.; Méric, S.; Riché, V.; Pottier, É.
2016-12-01
This paper investigates the optimization of the coded orthogonal frequency division multiplexing (OFDM) transmitted signal in a synthetic aperture radar (SAR) context. We propose to design OFDM signals to achieve range ambiguity mitigation. Indeed, range ambiguities are well known to be a limitation for SAR systems which operates with pulsed transmitted signal. The ambiguous reflected signal corresponding to one pulse is then detected when the radar has already transmitted the next pulse. In this paper, we demonstrate that the range ambiguity mitigation is possible by using orthogonal transmitted wave as OFDM pulses. The coded OFDM signal is optimized through genetic optimization procedures based on radar image quality parameters. Moreover, we propose to design a multiple-input multiple-output (MIMO) configuration to enhance the noise robustness of a radar system and this configuration is mainly efficient in the case of using orthogonal waves as OFDM pulses. The results we obtain show that OFDM signals outperform conventional radar chirps for range ambiguity suppression and for robustness enhancement in 2 ×2 MIMO configuration.
Picheny, Victor; Trépos, Ronan; Casadebaig, Pierre
2017-01-01
Accounting for the interannual climatic variations is a well-known issue for simulation-based studies of environmental systems. It often requires intensive sampling (e.g., averaging the simulation outputs over many climatic series), which hinders many sequential processes, in particular optimization algorithms. We propose here an approach based on a subset selection in a large basis of climatic series, using an ad-hoc similarity function and clustering. A non-parametric reconstruction technique is introduced to estimate accurately the distribution of the output of interest using only the subset sampling. The proposed strategy is non-intrusive and generic (i.e. transposable to most models with climatic data inputs), and can be combined to most “off-the-shelf” optimization solvers. We apply our approach to sunflower ideotype design using the crop model SUNFLO. The underlying optimization problem is formulated as a multi-objective one to account for risk-aversion. Our approach achieves good performances even for limited computational budgets, outperforming significantly standard strategies. PMID:28542198
Computational Optimization of a Natural Laminar Flow Experimental Wing Glove
NASA Technical Reports Server (NTRS)
Hartshom, Fletcher
2012-01-01
Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.
Modeling and Optimization of Optical Half Adder in Two Dimensional Photonic Crystals
NASA Astrophysics Data System (ADS)
Sonth, Mahesh V.; Soma, Savita; Gowre, Sanjaykumar C.; Biradar, Nagashettappa
2018-05-01
The output of photonic integrated devices is enhanced using crystal waveguides and cavities but optimization of these devices is a topic of research. In this paper, optimization of the optical half adder in two-dimensional (2-D) linear photonic crystals using four symmetric T-shaped waveguides with 180° phase shift inputs is proposed. The input section of a T-waveguide acts as a beam splitter, and the output section acts as a power combiner. The constructive and destructive interference phenomenon will provide an output optical power. Output port Cout will receive in-phase power through the 180° phase shifter cavity designed near the junction. The optical half adder is modeled in a 2-D photonic crystal using the finite difference time domain method (FDTD). It consists of a cubic lattice with an array of 39 × 43 silicon rods of radius r 0.12 μm and 0.6 μm lattice constant a. The extinction ratio r e of 11.67 dB and 12.51 dB are achieved at output ports using the RSoft FullWAVE-6.1 software package.
NASA Astrophysics Data System (ADS)
Olivieri, Ferdinando; Fazi, Filippo Maria; Nelson, Philip A.; Shin, Mincheol; Fontana, Simone; Yue, Lang
2016-07-01
Methods for beamforming are available that provide the signals used to drive an array of sources for the implementation of systems for the so-called personal audio. In this work, performance of the delay-and-sum (DAS) method and of three widely used methods for optimal beamforming are compared by means of computer simulations and experiments in an anechoic environment using a linear array of sources with given constraints on quality of the reproduced field at the listener's position and limit to input energy to the array. Using the DAS method as a benchmark for performance, the frequency domain responses of the loudspeaker filters can be characterized in three regions. In the first region, at low frequencies, input signals designed with the optimal methods are identical and provide higher directivity performance than that of the DAS. In the second region, performance of the optimal methods are similar to the DAS method. The third region starts above the limit due to spatial aliasing. A method is presented to estimate the boundaries of these regions.
Optimum Design of Aerospace Structural Components Using Neural Networks
NASA Technical Reports Server (NTRS)
Berke, L.; Patnaik, S. N.; Murthy, P. L. N.
1993-01-01
The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires a trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network using the code NETS. Optimum designs for new design conditions were predicted using the trained network. Neural net prediction of optimum designs was found to be satisfactory for the majority of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.
High-Lift Optimization Design Using Neural Networks on a Multi-Element Airfoil
NASA Technical Reports Server (NTRS)
Greenman, Roxana M.; Roth, Karlin R.; Smith, Charles A. (Technical Monitor)
1998-01-01
The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag, and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural networks were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 83% compared with traditional gradient-based optimization procedures for multiple optimization runs.
A Combined Structural and Electromechanical FE Approach for Industrial Ultrasonic Devices Design
NASA Astrophysics Data System (ADS)
Schorderet, Alain; Prenleloup, Alain; Colla, Enrico
2011-05-01
Ultrasonic assistance is widely used in manufacturing, both for conventional (e.g. grinding, drilling) and non-conventional (e.g. EDM) processes. Ultrasonic machining is also used as a stand alone process for instance for micro-drilling. Industrial application of these processes requires increasingly efficient and accurate development tools to predict the performance of the ultrasonic device: the so-called sonotrode and the piezo-transducer. This electromechanical system consists of a structural part and of a piezo-electrical part (actuator). In this paper, we show how to combine two simulation softwares—for stuctures and electromechanical devices—to perform a complete design analysis and optimization of a sonotrode for ultrasonic drilling applications. The usual design criteria are the eigenfrequencies of the desired vibrational modes. In addition, during the optimization phase, one also needs to consider the maximum achievable displacement for a given applied voltage. Therefore, one must be able to predict the electromechanical behavior of the integrated piezo-structure system, in order to define, adapt and optimize the electric power supply as well as the control strategy (search, tracking of the eigenfrequency). In this procedure, numerical modelling follows a two-step approach, by means of a solid mechanics FE code (ABAQUS) and of an electromechanical simulation software (ATILA). The example presented illustrates the approach and describes the obtained results for the development of an industrial sonotrode system dedicated to ultrasonic micro-drilling of ceramics. The 3D model of the sonotrode serves as input for generating the FE mesh in ABAQUS and this mesh is then translated into an input file for ATILA. ABAQUS results are used to perform the first optimization step in order to obtain a sonotrode design leading to the requested modal behaviour—eigen-frequency and corresponding dynamic amplification. The second step aims at evaluating the dynamic mechanical response of the complete sonotrode subjected to an ultrasonic voltage excitation. Piezoelectric properties as well as damping properties are requested to fulfill this step. The obtained electrical results—complex system's impedance and electric current- are used to optimize the sonotrode-power supply complete system.
Analysis of low-offset CTIA amplifier for small-size-pixel infrared focal plane array
NASA Astrophysics Data System (ADS)
Zhang, Xue; Huang, Zhangcheng; Shao, Xiumei
2014-11-01
The design of input stage amplifier becomes more and more difficult as the expansion of format arrays and reduction of pixel size. A design method of low-offset amplifier based on 0.18-μm process used in small-size pixel is analyzed in order to decrease the dark signal of extended wavelength InGaAs infrared focal plane arrays (IRFPA). Based on an example of a cascode operational amplifier (op-amp), the relationship between input offset voltage and size of each transistor is discussed through theoretical analysis and Monte Carlo simulation. The results indicate that input transistors and load transistors have great influence on the input offset voltage while common-gate transistors are negligible. Furthermore, the offset voltage begins to increase slightly when the width and length of transistors decrease along with the diminution of pixel size, and raises rapidly when the size is smaller than a proximate threshold value. The offset voltage of preamplifiers with differential architecture and single-shared architecture in small pitch pixel are studied. After optimization under same conditions, simulation results show that single-shared architecture has smaller offset voltage than differential architecture.
Variable input observer for structural health monitoring of high-rate systems
NASA Astrophysics Data System (ADS)
Hong, Jonathan; Laflamme, Simon; Cao, Liang; Dodson, Jacob
2017-02-01
The development of high-rate structural health monitoring methods is intended to provide damage detection on timescales of 10 µs -10ms where speed of detection is critical to maintain structural integrity. Here, a novel Variable Input Observer (VIO) coupled with an adaptive observer is proposed as a potential solution for complex high-rate problems. The VIO is designed to adapt its input space based on real-time identification of the system's essential dynamics. By selecting appropriate time-delayed coordinates defined by both a time delay and an embedding dimension, the proper input space is chosen which allows more accurate estimations of the current state and a reduction of the convergence rate. The optimal time-delay is estimated based on mutual information, and the embedding dimension is based on false nearest neighbors. A simulation of the VIO is conducted on a two degree-of-freedom system with simulated damage. Results are compared with an adaptive Luenberger observer, a fixed time-delay observer, and a Kalman Filter. Under its preliminary design, the VIO converges significantly faster than the Luenberger and fixed observer. It performed similarly to the Kalman Filter in terms of convergence, but with greater accuracy.
Huang, Wei; Oh, Sung-Kwun; Pedrycz, Witold
2014-12-01
In this study, we propose Hybrid Radial Basis Function Neural Networks (HRBFNNs) realized with the aid of fuzzy clustering method (Fuzzy C-Means, FCM) and polynomial neural networks. Fuzzy clustering used to form information granulation is employed to overcome a possible curse of dimensionality, while the polynomial neural network is utilized to build local models. Furthermore, genetic algorithm (GA) is exploited here to optimize the essential design parameters of the model (including fuzzification coefficient, the number of input polynomial fuzzy neurons (PFNs), and a collection of the specific subset of input PFNs) of the network. To reduce dimensionality of the input space, principal component analysis (PCA) is considered as a sound preprocessing vehicle. The performance of the HRBFNNs is quantified through a series of experiments, in which we use several modeling benchmarks of different levels of complexity (different number of input variables and the number of available data). A comparative analysis reveals that the proposed HRBFNNs exhibit higher accuracy in comparison to the accuracy produced by some models reported previously in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Jia Sheng
2018-06-01
In this paper, we investigate a H∞ memory controller with input limitation minimization (HMCIM) for offshore jacket platforms stabilization. The main objective of this study is to reduce the control consumption as well as protect the actuator when satisfying the requirement of the system performance. First, we introduce a dynamic model of offshore platform with low order main modes based on mode reduction method in numerical analysis. Then, based on H∞ control theory and matrix inequality techniques, we develop a novel H∞ memory controller with input limitation. Furthermore, a non-convex optimization model to minimize input energy consumption is proposed. Since it is difficult to solve this non-convex optimization model by optimization algorithm, we use a relaxation method with matrix operations to transform this non-convex optimization model to be a convex optimization model. Thus, it could be solved by a standard convex optimization solver in MATLAB or CPLEX. Finally, several numerical examples are given to validate the proposed models and methods.
[Application of an artificial neural network in the design of sustained-release dosage forms].
Wei, X H; Wu, J J; Liang, W Q
2001-09-01
To use the artificial neural network (ANN) in Matlab 5.1 tool-boxes to predict the formulations of sustained-release tablets. The solubilities of nine drugs and various ratios of HPMC: Dextrin for 63 tablet formulations were used as the ANN model input, and in vitro accumulation released at 6 sampling times were used as output. The ANN model was constructed by selecting the optimal number of iterations (25) and model structure in which there are one hidden layer and five hidden layer nodes. The optimized ANN model was used for prediction of formulation based on desired target in vitro dissolution-time profiles. ANN predicted profiles based on ANN predicted formulations were closely similar to the target profiles. The ANN could be used for predicting the dissolution profiles of sustained release dosage form and for the design of optimal formulation.
Optimal Design of a Resonance-Based Voltage Boosting Rectifier for Wireless Power Transmission.
Lim, Jaemyung; Lee, Byunghun; Ghovanloo, Maysam
2018-02-01
This paper presents the design procedure for a new multi-cycle resonance-based voltage boosting rectifier (MCRR) capable of delivering a desired amount of power to the load (PDL) at a designated high voltage (HV) through a loosely-coupled inductive link. This is achieved by shorting the receiver (Rx) LC-tank for several cycles to harvest and accumulate the wireless energy in the RX inductor before boosting the voltage by breaking the loop and transferring the energy to the load in a quarter cycle. By optimizing the geometries of the transmitter (Tx) and Rx coils and the number of cycles, N , for energy harvesting, through an iterative design procedure, the MCRR can achieve the highest PDL under a given set of design constraints. Governing equations in the MCRR operation are derived to identify key specifications and the design guidelines. Using an exemplary set of specs, the optimized MCRR was able to generate 20.9 V DC across a 100 kΩ load from a 1.8 V p , 6.78 MHz sinusoid input in the ISM-band at a Tx/Rx coil separation of 1.3 cm, power transfer efficiency (PTE) of 2.2%, and N = 9 cycles. At the same coil distance and loading, coils optimized for a conventional half-wave rectifier (CHWR) were able to reach only 13.6 V DC from the same source.
Intelligent Space Tube Optimization for speeding ground water remedial design.
Kalwij, Ineke M; Peralta, Richard C
2008-01-01
An innovative Intelligent Space Tube Optimization (ISTO) two-stage approach facilitates solving complex nonlinear flow and contaminant transport management problems. It reduces computational effort of designing optimal ground water remediation systems and strategies for an assumed set of wells. ISTO's stage 1 defines an adaptive mobile space tube that lengthens toward the optimal solution. The space tube has overlapping multidimensional subspaces. Stage 1 generates several strategies within the space tube, trains neural surrogate simulators (NSS) using the limited space tube data, and optimizes using an advanced genetic algorithm (AGA) with NSS. Stage 1 speeds evaluating assumed well locations and combinations. For a large complex plume of solvents and explosives, ISTO stage 1 reaches within 10% of the optimal solution 25% faster than an efficient AGA coupled with comprehensive tabu search (AGCT) does by itself. ISTO input parameters include space tube radius and number of strategies used to train NSS per cycle. Larger radii can speed convergence to optimality for optimizations that achieve it but might increase the number of optimizations reaching it. ISTO stage 2 automatically refines the NSS-AGA stage 1 optimal strategy using heuristic optimization (we used AGCT), without using NSS surrogates. Stage 2 explores the entire solution space. ISTO is applicable for many heuristic optimization settings in which the numerical simulator is computationally intensive, and one would like to reduce that burden.
Qiao, Wei; Venayagamoorthy, Ganesh K; Harley, Ronald G
2008-01-01
Wide-area coordinating control is becoming an important issue and a challenging problem in the power industry. This paper proposes a novel optimal wide-area coordinating neurocontrol (WACNC), based on wide-area measurements, for a power system with power system stabilizers, a large wind farm and multiple flexible ac transmission system (FACTS) devices. An optimal wide-area monitor (OWAM), which is a radial basis function neural network (RBFNN), is designed to identify the input-output dynamics of the nonlinear power system. Its parameters are optimized through particle swarm optimization (PSO). Based on the OWAM, the WACNC is then designed by using the dual heuristic programming (DHP) method and RBFNNs, while considering the effect of signal transmission delays. The WACNC operates at a global level to coordinate the actions of local power system controllers. Each local controller communicates with the WACNC, receives remote control signals from the WACNC to enhance its dynamic performance and therefore helps improve system-wide dynamic and transient performance. The proposed control is verified by simulation studies on a multimachine power system.
Energy Productivity of the High Velocity Algae Raceway Integrated Design (ARID-HV)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attalah, Said; Waller, Peter M.; Khawam, George
The original Algae Raceway Integrated Design (ARID) raceway was an effective method to increase algae culture temperature in open raceways. However, the energy input was high and flow mixing was poor. Thus, the High Velocity Algae Raceway Integrated Design (ARID-HV) raceway was developed to reduce energy input requirements and improve flow mixing in a serpentine flow path. A prototype ARID-HV system was installed in Tucson, Arizona. Based on algae growth simulation and hydraulic analysis, an optimal ARID-HV raceway was designed, and the electrical energy input requirement (kWh ha-1 d-1) was calculated. An algae growth model was used to compare themore » productivity of ARIDHV and conventional raceways. The model uses a pond surface energy balance to calculate water temperature as a function of environmental parameters. Algae growth and biomass loss are calculated based on rate constants during day and night, respectively. A 10 year simulation of DOE strain 1412 (Chlorella sorokiniana) showed that the ARID-HV raceway had significantly higher production than a conventional raceway for all months of the year in Tucson, Arizona. It should be noted that this difference is species and climate specific and is not observed in other climates and with other algae species. The algae growth model results and electrical energy input evaluation were used to compare the energy productivity (algae production rate/energy input) of the ARID-HV and conventional raceways for Chlorella sorokiniana in Tucson, Arizona. The energy productivity of the ARID-HV raceway was significantly greater than the energy productivity of a conventional raceway for all months of the year.« less
Optimal input sizes for neural network de-interlacing
NASA Astrophysics Data System (ADS)
Choi, Hyunsoo; Seo, Guiwon; Lee, Chulhee
2009-02-01
Neural network de-interlacing has shown promising results among various de-interlacing methods. In this paper, we investigate the effects of input size for neural networks for various video formats when the neural networks are used for de-interlacing. In particular, we investigate optimal input sizes for CIF, VGA and HD video formats.
A Bernoulli Gaussian Watermark for Detecting Integrity Attacks in Control Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weerakkody, Sean; Ozel, Omur; Sinopoli, Bruno
We examine the merit of Bernoulli packet drops in actively detecting integrity attacks on control systems. The aim is to detect an adversary who delivers fake sensor measurements to a system operator in order to conceal their effect on the plant. Physical watermarks, or noisy additive Gaussian inputs, have been previously used to detect several classes of integrity attacks in control systems. In this paper, we consider the analysis and design of Gaussian physical watermarks in the presence of packet drops at the control input. On one hand, this enables analysis in a more general network setting. On the othermore » hand, we observe that in certain cases, Bernoulli packet drops can improve detection performance relative to a purely Gaussian watermark. This motivates the joint design of a Bernoulli-Gaussian watermark which incorporates both an additive Gaussian input and a Bernoulli drop process. We characterize the effect of such a watermark on system performance as well as attack detectability in two separate design scenarios. Here, we consider a correlation detector for attack recognition. We then propose efficiently solvable optimization problems to intelligently select parameters of the Gaussian input and the Bernoulli drop process while addressing security and performance trade-offs. Finally, we provide numerical results which illustrate that a watermark with packet drops can indeed outperform a Gaussian watermark.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweetser, John David
2013-10-01
This report details Sculpt's implementation from a user's perspective. Sculpt is an automatic hexahedral mesh generation tool developed at Sandia National Labs by Steve Owen. 54 predetermined test cases are studied while varying the input parameters (Laplace iterations, optimization iterations, optimization threshold, number of processors) and measuring the quality of the resultant mesh. This information is used to determine the optimal input parameters to use for an unknown input geometry. The overall characteristics are covered in Chapter 1. The speci c details of every case are then given in Appendix A. Finally, example Sculpt inputs are given in B.1 andmore » B.2.« less
NASA Astrophysics Data System (ADS)
Mousavi, Monireh Sadat; Ashrafi, Khosro; Motlagh, Majid Shafie Pour; Niksokhan, Mohhamad Hosein; Vosoughifar, HamidReza
2018-02-01
In this study, coupled method for simulation of flow pattern based on computational methods for fluid dynamics with optimization technique using genetic algorithms is presented to determine the optimal location and number of sensors in an enclosed residential complex parking in Tehran. The main objective of this research is costs reduction and maximum coverage with regard to distribution of existing concentrations in different scenarios. In this study, considering all the different scenarios for simulation of pollution distribution using CFD simulations has been challenging due to extent of parking and number of cars available. To solve this problem, some scenarios have been selected based on random method. Then, maximum concentrations of scenarios are chosen for performing optimization. CFD simulation outputs are inserted as input in the optimization model using genetic algorithm. The obtained results stated optimal number and location of sensors.
Control law synthesis and optimization software for large order aeroservoelastic systems
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.; Pototzky, A.; Noll, Thomas
1989-01-01
A flexible aircraft or space structure with active control is typically modeled by a large-order state space system of equations in order to accurately represent the rigid and flexible body modes, unsteady aerodynamic forces, actuator dynamics and gust spectra. The control law of this multi-input/multi-output (MIMO) system is expected to satisfy multiple design requirements on the dynamic loads, responses, actuator deflection and rate limitations, as well as maintain certain stability margins, yet should be simple enough to be implemented on an onboard digital microprocessor. A software package for performing an analog or digital control law synthesis for such a system, using optimal control theory and constrained optimization techniques is described.
Active control of transmission loss with smart foams.
Kundu, Abhishek; Berry, Alain
2011-02-01
Smart foams combine the complimentary advantages of passive foam material and spatially distributed piezoelectric actuator embedded in it for active noise control applications. In this paper, the problem of improving the transmission loss of smart foams using active control strategies has been investigated both numerically and experimentally inside a waveguide under the condition of plane wave propagation. The finite element simulation of a coupled noise control system has been undertaken with three different smart foam designs and their effectiveness in cancelling the transmitted wave downstream of the smart foam have been studied. The simulation results provide insight into the physical phenomenon of active noise cancellation and explain the impact of the smart foam designs on the optimal active control results. Experimental studies aimed at implementing the real-time control for transmission loss optimization have been performed using the classical single input/single output filtered-reference least mean squares algorithm. The active control results with broadband and single frequency primary source inputs demonstrate a good improvement in the transmission loss of the smart foams. The study gives a comparative description of the transmission and absorption control problems in light of the modification of the vibration response of the piezoelectric actuator under active control.
Shin, Sangmun; Choi, Du Hyung; Truong, Nguyen Khoa Viet; Kim, Nam Ah; Chu, Kyung Rok; Jeong, Seong Hoon
2011-04-04
A new experimental design methodology was developed by integrating the response surface methodology and the time series modeling. The major purposes were to identify significant factors in determining swelling and release rate from matrix tablets and their relative factor levels for optimizing the experimental responses. Properties of tablet swelling and drug release were assessed with ten factors and two default factors, a hydrophilic model drug (terazosin) and magnesium stearate, and compared with target values. The selected input control factors were arranged in a mixture simplex lattice design with 21 experimental runs. The obtained optimal settings for gelation were PEO, LH-11, Syloid, and Pharmacoat with weight ratios of 215.33 (88.50%), 5.68 (2.33%), 19.27 (7.92%), and 3.04 (1.25%), respectively. The optimal settings for drug release were PEO and citric acid with weight ratios of 191.99 (78.91%) and 51.32 (21.09%), respectively. Based on the results of matrix swelling and drug release, the optimal solutions, target values, and validation experiment results over time were similar and showed consistent patterns with very small biases. The experimental design methodology could be a very promising experimental design method to obtain maximum information with limited time and resources. It could also be very useful in formulation studies by providing a systematic and reliable screening method to characterize significant factors in the sustained release matrix tablet. Copyright © 2011 Elsevier B.V. All rights reserved.
Design Environment for Multifidelity and Multidisciplinary Components
NASA Technical Reports Server (NTRS)
Platt, Michael
2014-01-01
One of the greatest challenges when developing propulsion systems is predicting the interacting effects between the fluid loads, thermal loads, and structural deflection. The interactions between technical disciplines often are not fully analyzed, and the analysis in one discipline often uses a simplified representation of other disciplines as an input or boundary condition. For example, the fluid forces in an engine generate static and dynamic rotor deflection, but the forces themselves are dependent on the rotor position and its orbit. It is important to consider the interaction between the physical phenomena where the outcome of each analysis is heavily dependent on the inputs (e.g., changes in flow due to deflection, changes in deflection due to fluid forces). A rigid design process also lacks the flexibility to employ multiple levels of fidelity in the analysis of each of the components. This project developed and validated an innovative design environment that has the flexibility to simultaneously analyze multiple disciplines and multiple components with multiple levels of model fidelity. Using NASA's open-source multidisciplinary design analysis and optimization (OpenMDAO) framework, this multifaceted system will provide substantially superior capabilities to current design tools.
Automatic design of fiber-reinforced soft actuators for trajectory matching
NASA Astrophysics Data System (ADS)
Connolly, Fionnuala; Walsh, Conor J.; Bertoldi, Katia
2017-01-01
Soft actuators are the components responsible for producing motion in soft robots. Although soft actuators have allowed for a variety of innovative applications, there is a need for design tools that can help to efficiently and systematically design actuators for particular functions. Mathematical modeling of soft actuators is an area that is still in its infancy but has the potential to provide quantitative insights into the response of the actuators. These insights can be used to guide actuator design, thus accelerating the design process. Here, we study fluid-powered fiber-reinforced actuators, because these have previously been shown to be capable of producing a wide range of motions. We present a design strategy that takes a kinematic trajectory as its input and uses analytical modeling based on nonlinear elasticity and optimization to identify the optimal design parameters for an actuator that will follow this trajectory upon pressurization. We experimentally verify our modeling approach, and finally we demonstrate how the strategy works, by designing actuators that replicate the motion of the index finger and thumb.
Automatic design of fiber-reinforced soft actuators for trajectory matching
Connolly, Fionnuala; Walsh, Conor J.; Bertoldi, Katia
2017-01-01
Soft actuators are the components responsible for producing motion in soft robots. Although soft actuators have allowed for a variety of innovative applications, there is a need for design tools that can help to efficiently and systematically design actuators for particular functions. Mathematical modeling of soft actuators is an area that is still in its infancy but has the potential to provide quantitative insights into the response of the actuators. These insights can be used to guide actuator design, thus accelerating the design process. Here, we study fluid-powered fiber-reinforced actuators, because these have previously been shown to be capable of producing a wide range of motions. We present a design strategy that takes a kinematic trajectory as its input and uses analytical modeling based on nonlinear elasticity and optimization to identify the optimal design parameters for an actuator that will follow this trajectory upon pressurization. We experimentally verify our modeling approach, and finally we demonstrate how the strategy works, by designing actuators that replicate the motion of the index finger and thumb. PMID:27994133
Automatic design of fiber-reinforced soft actuators for trajectory matching.
Connolly, Fionnuala; Walsh, Conor J; Bertoldi, Katia
2017-01-03
Soft actuators are the components responsible for producing motion in soft robots. Although soft actuators have allowed for a variety of innovative applications, there is a need for design tools that can help to efficiently and systematically design actuators for particular functions. Mathematical modeling of soft actuators is an area that is still in its infancy but has the potential to provide quantitative insights into the response of the actuators. These insights can be used to guide actuator design, thus accelerating the design process. Here, we study fluid-powered fiber-reinforced actuators, because these have previously been shown to be capable of producing a wide range of motions. We present a design strategy that takes a kinematic trajectory as its input and uses analytical modeling based on nonlinear elasticity and optimization to identify the optimal design parameters for an actuator that will follow this trajectory upon pressurization. We experimentally verify our modeling approach, and finally we demonstrate how the strategy works, by designing actuators that replicate the motion of the index finger and thumb.
Design, Modeling and Performance Optimization of a Novel Rotary Piezoelectric Motor
NASA Technical Reports Server (NTRS)
Duong, Khanh A.; Garcia, Ephrahim
1997-01-01
This work has demonstrated a proof of concept for a torsional inchworm type motor. The prototype motor has shown that piezoelectric stack actuators can be used for rotary inchworm motor. The discrete linear motion of piezoelectric stacks can be converted into rotary stepping motion. The stacks with its high force and displacement output are suitable actuators for use in piezoelectric motor. The designed motor is capable of delivering high torque and speed. Critical issues involving the design and operation of piezoelectric motors were studied. The tolerance between the contact shoes and the rotor has proved to be very critical to the performance of the motor. Based on the prototype motor, a waveform optimization scheme was proposed and implemented to improve the performance of the motor. The motor was successfully modeled in MATLAB. The model closely represents the behavior of the prototype motor. Using the motor model, the input waveforms were successfully optimized to improve the performance of the motor in term of speed, torque, power and precision. These optimized waveforms drastically improve the speed of the motor at different frequencies and loading conditions experimentally. The optimized waveforms also increase the level of precision of the motor. The use of the optimized waveform is a break-away from the traditional use of sinusoidal and square waves as the driving signals. This waveform optimization scheme can be applied to any inchworm motors to improve their performance. The prototype motor in this dissertation as a proof of concept was designed to be robust and large. Future motor can be designed much smaller and more efficient with lessons learned from the prototype motor.
Development of small bore, high speed tapered roller bearing
NASA Technical Reports Server (NTRS)
Morrison, F. R.; Gassel, S. S.; Bovenkerk, R. L.
1981-01-01
The performance of four rolling bearing configurations for use on the input pinion shaft of a proposed commercial helicopter transmission was evaluated. The performance characteristics of a high speed tapered roller bearing operating under conditions comparable to those existing at this input pinion shaft were defined. The tapered roller bearing shaft support configuration was developed for the gearbox using commercially available bearing designings. The configuration was optimized and interactive thermomechanically system analyzed. Automotive pinion quality tapered roller bearings were found to be reliable under load and speed conditions in excess of those anticipated in the helicopter transmission. However, it is indicated that the elastohydrodynamic lubricant films are inadequate.
Nonlinear distortion analysis for single heterojunction GaAs HEMT with frequency and temperature
NASA Astrophysics Data System (ADS)
Alim, Mohammad A.; Ali, Mayahsa M.; Rezazadeh, Ali A.
2018-07-01
Nonlinearity analysis using two-tone intermodulation distortion (IMD) technique for 0.5 μm gate-length AlGaAs/GaAs based high electron mobility transistor have been investigated based on biasing conditions, input power, frequency and temperature. The outcomes indicate a significant modification on the output IMD power and as well as the minimum distortion level. The input IMD power effects the output current and subsequently the threshold voltage reduces, resulting to an increment in the output IMD power. Both frequency and temperature reduces the magnitude of the output IMDs. In addition, the threshold voltage response with temperature alters the notch point of the nonlinear output IMD’s accordingly. The aforementioned investigation will help the circuit designers to evaluate the best biasing option in terms of minimum distortion, maximum gain for future design optimizations.
Teaching and Learning Activity Sequencing System using Distributed Genetic Algorithms
NASA Astrophysics Data System (ADS)
Matsui, Tatsunori; Ishikawa, Tomotake; Okamoto, Toshio
The purpose of this study is development of a supporting system for teacher's design of lesson plan. Especially design of lesson plan which relates to the new subject "Information Study" is supported. In this study, we developed a system which generates teaching and learning activity sequences by interlinking lesson's activities corresponding to the various conditions according to the user's input. Because user's input is multiple information, there will be caused contradiction which the system should solve. This multiobjective optimization problem is resolved by Distributed Genetic Algorithms, in which some fitness functions are defined with reference models on lesson, thinking and teaching style. From results of various experiments, effectivity and validity of the proposed methods and reference models were verified; on the other hand, some future works on reference models and evaluation functions were also pointed out.
Liu, Lei; Wang, Zhanshan; Zhang, Huaguang
2018-04-01
This paper is concerned with the robust optimal tracking control strategy for a class of nonlinear multi-input multi-output discrete-time systems with unknown uncertainty via adaptive critic design (ACD) scheme. The main purpose is to establish an adaptive actor-critic control method, so that the cost function in the procedure of dealing with uncertainty is minimum and the closed-loop system is stable. Based on the neural network approximator, an action network is applied to generate the optimal control signal and a critic network is used to approximate the cost function, respectively. In contrast to the previous methods, the main features of this paper are: 1) the ACD scheme is integrated into the controllers to cope with the uncertainty and 2) a novel cost function, which is not in quadric form, is proposed so that the total cost in the design procedure is reduced. It is proved that the optimal control signals and the tracking errors are uniformly ultimately bounded even when the uncertainty exists. Finally, a numerical simulation is developed to show the effectiveness of the present approach.
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.; Newsom, J. R.; Abel, I.
1980-01-01
A direct method of synthesizing a low-order optimal feedback control law for a high order system is presented. A nonlinear programming algorithm is employed to search for the control law design variables that minimize a performance index defined by a weighted sum of mean square steady state responses and control inputs. The controller is shown to be equivalent to a partial state estimator. The method is applied to the problem of active flutter suppression. Numerical results are presented for a 20th order system representing an aeroelastic wind-tunnel wing model. Low-order controllers (fourth and sixth order) are compared with a full order (20th order) optimal controller and found to provide near optimal performance with adequate stability margins.
Theory of optimal information transmission in E. coli chemotaxis pathway
NASA Astrophysics Data System (ADS)
Micali, Gabriele; Endres, Robert G.
Bacteria live in complex microenvironments where they need to make critical decisions fast and reliably. These decisions are inherently affected by noise at all levels of the signaling pathway, and cells are often modeled as an input-output device that transmits extracellular stimuli (input) to internal proteins (channel), which determine the final behavior (output). Increasing the amount of transmitted information between input and output allows cells to better infer extracellular stimuli and respond accordingly. However, in contrast to electronic devices, the separation into input, channel, and output is not always clear in biological systems. Output might feed back into the input, and the channel, made by proteins, normally interacts with the input. Furthermore, a biological channel is affected by mutations and can change under evolutionary pressure. Here, we present a novel approach to maximize information transmission: given cell-external and internal noise, we analytically identify both input distributions and input-output relations that optimally transmit information. Using E. coli chemotaxis as an example, we conclude that its pathway is compatible with an optimal information transmission device despite the ultrasensitive rotary motors.
A system level model for preliminary design of a space propulsion solid rocket motor
NASA Astrophysics Data System (ADS)
Schumacher, Daniel M.
Preliminary design of space propulsion solid rocket motors entails a combination of components and subsystems. Expert design tools exist to find near optimal performance of subsystems and components. Conversely, there is no system level preliminary design process for space propulsion solid rocket motors that is capable of synthesizing customer requirements into a high utility design for the customer. The preliminary design process for space propulsion solid rocket motors typically builds on existing designs and pursues feasible rather than the most favorable design. Classical optimization is an extremely challenging method when dealing with the complex behavior of an integrated system. The complexity and combinations of system configurations make the number of the design parameters that are traded off unreasonable when manual techniques are used. Existing multi-disciplinary optimization approaches generally address estimating ratios and correlations rather than utilizing mathematical models. The developed system level model utilizes the Genetic Algorithm to perform the necessary population searches to efficiently replace the human iterations required during a typical solid rocket motor preliminary design. This research augments, automates, and increases the fidelity of the existing preliminary design process for space propulsion solid rocket motors. The system level aspect of this preliminary design process, and the ability to synthesize space propulsion solid rocket motor requirements into a near optimal design, is achievable. The process of developing the motor performance estimate and the system level model of a space propulsion solid rocket motor is described in detail. The results of this research indicate that the model is valid for use and able to manage a very large number of variable inputs and constraints towards the pursuit of the best possible design.
NASA Astrophysics Data System (ADS)
Duan, Haoran
1997-12-01
This dissertation presents the concepts, principles, performance, and implementation of input queuing and cell-scheduling modules for the Illinois Pulsar-based Optical INTerconnect (iPOINT) input-buffered Asynchronous Transfer Mode (ATM) testbed. Input queuing (IQ) ATM switches are well suited to meet the requirements of current and future ultra-broadband ATM networks. The IQ structure imposes minimum memory bandwidth requirements for cell buffering, tolerates bursty traffic, and utilizes memory efficiently for multicast traffic. The lack of efficient cell queuing and scheduling solutions has been a major barrier to build high-performance, scalable IQ-based ATM switches. This dissertation proposes a new Three-Dimensional Queue (3DQ) and a novel Matrix Unit Cell Scheduler (MUCS) to remove this barrier. 3DQ uses a linked-list architecture based on Synchronous Random Access Memory (SRAM) to combine the individual advantages of per-virtual-circuit (per-VC) queuing, priority queuing, and N-destination queuing. It avoids Head of Line (HOL) blocking and provides per-VC Quality of Service (QoS) enforcement mechanisms. Computer simulation results verify the QoS capabilities of 3DQ. For multicast traffic, 3DQ provides efficient usage of cell buffering memory by storing multicast cells only once. Further, the multicast mechanism of 3DQ prevents a congested destination port from blocking other less- loaded ports. The 3DQ principle has been prototyped in the Illinois Input Queue (iiQueue) module. Using Field Programmable Gate Array (FPGA) devices, SRAM modules, and integrated on a Printed Circuit Board (PCB), iiQueue can process incoming traffic at 800 Mb/s. Using faster circuit technology, the same design is expected to operate at the OC-48 rate (2.5 Gb/s). MUCS resolves the output contention by evaluating the weight index of each candidate and selecting the heaviest. It achieves near-optimal scheduling and has a very short response time. The algorithm originates from a heuristic strategy that leads to 'socially optimal' solutions, yielding a maximum number of contention-free cells being scheduled. A novel mixed digital-analog circuit has been designed to implement the MUCS core functionality. The MUCS circuit maps the cell scheduling computation to the capacitor charging and discharging procedures that are conducted fully in parallel. The design has a uniform circuit structure, low interconnect counts, and low chip I/O counts. Using 2 μm CMOS technology, the design operates on a 100 MHz clock and finds a near-optimal solution within a linear processing time. The circuit has been verified at the transistor level by HSPICE simulation. During this research, a five-port IQ-based optoelectronic iPOINT ATM switch has been developed and demonstrated. It has been fully functional with an aggregate throughput of 800 Mb/s. The second-generation IQ-based switch is currently under development. Equipped with iiQueue modules and MUCS module, the new switch system will deliver a multi-gigabit aggregate throughput, eliminate HOL blocking, provide per-VC QoS, and achieve near-100% link bandwidth utilization. Complete documentation of input modules and trunk module for the existing testbed, and complete documentation of 3DQ, iiQueue, and MUCS for the second-generation testbed are given in this dissertation.
Fuzzy logic controller optimization
Sepe, Jr., Raymond B; Miller, John Michael
2004-03-23
A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.
A Robust Method to Integrate End-to-End Mission Architecture Optimization Tools
NASA Technical Reports Server (NTRS)
Lugo, Rafael; Litton, Daniel; Qu, Min; Shidner, Jeremy; Powell, Richard
2016-01-01
End-to-end mission simulations include multiple phases of flight. For example, an end-to-end Mars mission simulation may include launch from Earth, interplanetary transit to Mars and entry, descent and landing. Each phase of flight is optimized to meet specified constraints and often depend on and impact subsequent phases. The design and optimization tools and methodologies used to combine different aspects of end-to-end framework and their impact on mission planning are presented. This work focuses on a robust implementation of a Multidisciplinary Design Analysis and Optimization (MDAO) method that offers the flexibility to quickly adapt to changing mission design requirements. Different simulations tailored to the liftoff, ascent, and atmospheric entry phases of a trajectory are integrated and optimized in the MDAO program Isight, which provides the user a graphical interface to link simulation inputs and outputs. This approach provides many advantages to mission planners, as it is easily adapted to different mission scenarios and can improve the understanding of the integrated system performance within a particular mission configuration. A Mars direct entry mission using the Space Launch System (SLS) is presented as a generic end-to-end case study. For the given launch period, the SLS launch performance is traded for improved orbit geometry alignment, resulting in an optimized a net payload that is comparable to that in the SLS Mission Planner's Guide.
Design-Optimization and Material Selection for a Proximal Radius Fracture-Fixation Implant
NASA Astrophysics Data System (ADS)
Grujicic, M.; Xie, X.; Arakere, G.; Grujicic, A.; Wagner, D. W.; Vallejo, A.
2010-11-01
The problem of optimal size, shape, and placement of a proximal radius-fracture fixation-plate is addressed computationally using a combined finite-element/design-optimization procedure. To expand the set of physiological loading conditions experienced by the implant during normal everyday activities of the patient, beyond those typically covered by the pre-clinical implant-evaluation testing procedures, the case of a wheel-chair push exertion is considered. Toward that end, a musculoskeletal multi-body inverse-dynamics analysis is carried out of a human propelling a wheelchair. The results obtained are used as input to a finite-element structural analysis for evaluation of the maximum stress and fatigue life of the parametrically defined implant design. While optimizing the design of the radius-fracture fixation-plate, realistic functional requirements pertaining to the attainment of the required level of the devise safety factor and longevity/lifecycle were considered. It is argued that the type of analyses employed in the present work should be: (a) used to complement the standard experimental pre-clinical implant-evaluation tests (the tests which normally include a limited number of daily-living physiological loading conditions and which rely on single pass/fail outcomes/decisions with respect to a set of lower-bound implant-performance criteria) and (b) integrated early in the implant design and material/manufacturing-route selection process.
Choi, Du Hyung; Shin, Sangmun; Khoa Viet Truong, Nguyen; Jeong, Seong Hoon
2012-09-01
A robust experimental design method was developed with the well-established response surface methodology and time series modeling to facilitate the formulation development process with magnesium stearate incorporated into hydrophilic matrix tablets. Two directional analyses and a time-oriented model were utilized to optimize the experimental responses. Evaluations of tablet gelation and drug release were conducted with two factors x₁ and x₂: one was a formulation factor (the amount of magnesium stearate) and the other was a processing factor (mixing time), respectively. Moreover, different batch sizes (100 and 500 tablet batches) were also evaluated to investigate an effect of batch size. The selected input control factors were arranged in a mixture simplex lattice design with 13 experimental runs. The obtained optimal settings of magnesium stearate for gelation were 0.46 g, 2.76 min (mixing time) for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The optimal settings for drug release were 0.33 g, 7.99 min for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The exact ratio and mixing time of magnesium stearate could be formulated according to the resulting hydrophilic matrix tablet properties. The newly designed experimental method provided very useful information for characterizing significant factors and hence to obtain optimum formulations allowing for a systematic and reliable experimental design method.
Adjoint-Based Aerodynamic Design of Complex Aerospace Configurations
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.
2016-01-01
An overview of twenty years of adjoint-based aerodynamic design research at NASA Langley Research Center is presented. Adjoint-based algorithms provide a powerful tool for efficient sensitivity analysis of complex large-scale computational fluid dynamics (CFD) simulations. Unlike alternative approaches for which computational expense generally scales with the number of design parameters, adjoint techniques yield sensitivity derivatives of a simulation output with respect to all input parameters at the cost of a single additional simulation. With modern large-scale CFD applications often requiring millions of compute hours for a single analysis, the efficiency afforded by adjoint methods is critical in realizing a computationally tractable design optimization capability for such applications.
Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks
NASA Astrophysics Data System (ADS)
Chen, Mingjie; Sun, Yunwei; Fu, Pengcheng; Carrigan, Charles R.; Lu, Zhiming; Tong, Charles H.; Buscheck, Thomas A.
2013-08-01
Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective functions and constraints from forward hydraulic fracturing models, which are computationally expensive and even prohibitive in some situations. Moreover, there are a variety of uncertainties associated with the pre-existing fracture distributions and rock mechanical properties, which affect the optimized decisions for hydraulic fracturing. In this study, a surrogate-based approach is developed for efficient optimization of hydraulic fracturing well design in the presence of natural-system uncertainties. The fractal dimension is derived from the simulated fracturing network as the objective for maximizing energy recovery sweep efficiency. The surrogate model, which is constructed using training data from high-fidelity fracturing models for mapping the relationship between uncertain input parameters and the fractal dimension, provides fast approximation of the objective functions and constraints. A suite of surrogate models constructed using different fitting methods is evaluated and validated for fast predictions. Global sensitivity analysis is conducted to gain insights into the impact of the input variables on the output of interest, and further used for parameter screening. The high efficiency of the surrogate-based approach is demonstrated for three optimization scenarios with different and uncertain ambient conditions. Our results suggest the critical importance of considering uncertain pre-existing fracture networks in optimization studies of hydraulic fracturing.
van der Kruk, E; Veeger, H E J; van der Helm, F C T; Schwab, A L
2017-11-07
Advice about the optimal coordination pattern for an individual speed skater, could be addressed by simulation and optimization of a biomechanical speed skating model. But before getting to this optimization approach one needs a model that can reasonably match observed behaviour. Therefore, the objective of this study is to present a verified three dimensional inverse skater model with minimal complexity, which models the speed skating motion on the straights. The model simulates the upper body transverse translation of the skater together with the forces exerted by the skates on the ice. The input of the model is the changing distance between the upper body and the skate, referred to as the leg extension (Euclidean distance in 3D space). Verification shows that the model mimics the observed forces and motions well. The model is most accurate for the position and velocity estimation (respectively 1.2% and 2.9% maximum residuals) and least accurate for the force estimations (underestimation of 4.5-10%). The model can be used to further investigate variables in the skating motion. For this, the input of the model, the leg extension, can be optimized to obtain a maximal forward velocity of the upper body. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Krenn, Julia; Zangerl, Christian; Mergili, Martin
2017-04-01
r.randomwalk is a GIS-based, multi-functional, conceptual open source model application for forward and backward analyses of the propagation of mass flows. It relies on a set of empirically derived, uncertain input parameters. In contrast to many other tools, r.randomwalk accepts input parameter ranges (or, in case of two or more parameters, spaces) in order to directly account for these uncertainties. Parameter spaces represent a possibility to withdraw from discrete input values which in most cases are likely to be off target. r.randomwalk automatically performs multiple calculations with various parameter combinations in a given parameter space, resulting in the impact indicator index (III) which denotes the fraction of parameter value combinations predicting an impact on a given pixel. Still, there is a need to constrain the parameter space used for a certain process type or magnitude prior to performing forward calculations. This can be done by optimizing the parameter space in terms of bringing the model results in line with well-documented past events. As most existing parameter optimization algorithms are designed for discrete values rather than for ranges or spaces, the necessity for a new and innovative technique arises. The present study aims at developing such a technique and at applying it to derive guiding parameter spaces for the forward calculation of rock avalanches through back-calculation of multiple events. In order to automatize the work flow we have designed r.ranger, an optimization and sensitivity analysis tool for parameter spaces which can be directly coupled to r.randomwalk. With r.ranger we apply a nested approach where the total value range of each parameter is divided into various levels of subranges. All possible combinations of subranges of all parameters are tested for the performance of the associated pattern of III. Performance indicators are the area under the ROC curve (AUROC) and the factor of conservativeness (FoC). This strategy is best demonstrated for two input parameters, but can be extended arbitrarily. We use a set of small rock avalanches from western Austria, and some larger ones from Canada and New Zealand, to optimize the basal friction coefficient and the mass-to-drag ratio of the two-parameter friction model implemented with r.randomwalk. Thereby we repeat the optimization procedure with conservative and non-conservative assumptions of a set of complementary parameters and with different raster cell sizes. Our preliminary results indicate that the model performance in terms of AUROC achieved with broad parameter spaces is hardly surpassed by the performance achieved with narrow parameter spaces. However, broad spaces may result in very conservative or very non-conservative predictions. Therefore, guiding parameter spaces have to be (i) broad enough to avoid the risk of being off target; and (ii) narrow enough to ensure a reasonable level of conservativeness of the results. The next steps will consist in (i) extending the study to other types of mass flow processes in order to support forward calculations using r.randomwalk; and (ii) in applying the same strategy to the more complex, dynamic model r.avaflow.
NASA Astrophysics Data System (ADS)
Ouyang, Huei-Tau
2017-07-01
Three types of model for forecasting inundation levels during typhoons were optimized: the linear autoregressive model with exogenous inputs (LARX), the nonlinear autoregressive model with exogenous inputs with wavelet function (NLARX-W) and the nonlinear autoregressive model with exogenous inputs with sigmoid function (NLARX-S). The forecast performance was evaluated by three indices: coefficient of efficiency, error in peak water level and relative time shift. Historical typhoon data were used to establish water-level forecasting models that satisfy all three objectives. A multi-objective genetic algorithm was employed to search for the Pareto-optimal model set that satisfies all three objectives and select the ideal models for the three indices. Findings showed that the optimized nonlinear models (NLARX-W and NLARX-S) outperformed the linear model (LARX). Among the nonlinear models, the optimized NLARX-W model achieved a more balanced performance on the three indices than the NLARX-S models and is recommended for inundation forecasting during typhoons.
Hybrid NN/SVM Computational System for Optimizing Designs
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2009-01-01
A computational method and system based on a hybrid of an artificial neural network (NN) and a support vector machine (SVM) (see figure) has been conceived as a means of maximizing or minimizing an objective function, optionally subject to one or more constraints. Such maximization or minimization could be performed, for example, to optimize solve a data-regression or data-classification problem or to optimize a design associated with a response function. A response function can be considered as a subset of a response surface, which is a surface in a vector space of design and performance parameters. A typical example of a design problem that the method and system can be used to solve is that of an airfoil, for which a response function could be the spatial distribution of pressure over the airfoil. In this example, the response surface would describe the pressure distribution as a function of the operating conditions and the geometric parameters of the airfoil. The use of NNs to analyze physical objects in order to optimize their responses under specified physical conditions is well known. NN analysis is suitable for multidimensional interpolation of data that lack structure and enables the representation and optimization of a succession of numerical solutions of increasing complexity or increasing fidelity to the real world. NN analysis is especially useful in helping to satisfy multiple design objectives. Feedforward NNs can be used to make estimates based on nonlinear mathematical models. One difficulty associated with use of a feedforward NN arises from the need for nonlinear optimization to determine connection weights among input, intermediate, and output variables. It can be very expensive to train an NN in cases in which it is necessary to model large amounts of information. Less widely known (in comparison with NNs) are support vector machines (SVMs), which were originally applied in statistical learning theory. In terms that are necessarily oversimplified to fit the scope of this article, an SVM can be characterized as an algorithm that (1) effects a nonlinear mapping of input vectors into a higher-dimensional feature space and (2) involves a dual formulation of governing equations and constraints. One advantageous feature of the SVM approach is that an objective function (which one seeks to minimize to obtain coefficients that define an SVM mathematical model) is convex, so that unlike in the cases of many NN models, any local minimum of an SVM model is also a global minimum.
A Practical, Hardware Friendly MMSE Detector for MIMO-OFDM-Based Systems
NASA Astrophysics Data System (ADS)
Kim, Hun Seok; Zhu, Weijun; Bhatia, Jatin; Mohammed, Karim; Shah, Anish; Daneshrad, Babak
2008-12-01
Design and implementation of a highly optimized MIMO (multiple-input multiple-output) detector requires cooptimization of the algorithm with the underlying hardware architecture. Special attention must be paid to application requirements such as throughput, latency, and resource constraints. In this work, we focus on a highly optimized matrix inversion free [InlineEquation not available: see fulltext.] MMSE (minimum mean square error) MIMO detector implementation. The work has resulted in a real-time field-programmable gate array-based implementation (FPGA-) on a Xilinx Virtex-2 6000 using only 9003 logic slices, 66 multipliers, and 24 Block RAMs (less than 33% of the overall resources of this part). The design delivers over 420 Mbps sustained throughput with a small 2.77-microsecond latency. The designed [InlineEquation not available: see fulltext.] linear MMSE MIMO detector is capable of complying with the proposed IEEE 802.11n standard.
SBROME: a scalable optimization and module matching framework for automated biosystems design.
Huynh, Linh; Tsoukalas, Athanasios; Köppe, Matthias; Tagkopoulos, Ilias
2013-05-17
The development of a scalable framework for biodesign automation is a formidable challenge given the expected increase in part availability and the ever-growing complexity of synthetic circuits. To allow for (a) the use of previously constructed and characterized circuits or modules and (b) the implementation of designs that can scale up to hundreds of nodes, we here propose a divide-and-conquer Synthetic Biology Reusable Optimization Methodology (SBROME). An abstract user-defined circuit is first transformed and matched against a module database that incorporates circuits that have previously been experimentally characterized. Then the resulting circuit is decomposed to subcircuits that are populated with the set of parts that best approximate the desired function. Finally, all subcircuits are subsequently characterized and deposited back to the module database for future reuse. We successfully applied SBROME toward two alternative designs of a modular 3-input multiplexer that utilize pre-existing logic gates and characterized biological parts.
The Design of Hand Gestures for Human-Computer Interaction: Lessons from Sign Language Interpreters.
Rempel, David; Camilleri, Matt J; Lee, David L
2015-10-01
The design and selection of 3D modeled hand gestures for human-computer interaction should follow principles of natural language combined with the need to optimize gesture contrast and recognition. The selection should also consider the discomfort and fatigue associated with distinct hand postures and motions, especially for common commands. Sign language interpreters have extensive and unique experience forming hand gestures and many suffer from hand pain while gesturing. Professional sign language interpreters (N=24) rated discomfort for hand gestures associated with 47 characters and words and 33 hand postures. Clear associations of discomfort with hand postures were identified. In a nominal logistic regression model, high discomfort was associated with gestures requiring a flexed wrist, discordant adjacent fingers, or extended fingers. These and other findings should be considered in the design of hand gestures to optimize the relationship between human cognitive and physical processes and computer gesture recognition systems for human-computer input.
Optimization of a Thermodynamic Model Using a Dakota Toolbox Interface
NASA Astrophysics Data System (ADS)
Cyrus, J.; Jafarov, E. E.; Schaefer, K. M.; Wang, K.; Clow, G. D.; Piper, M.; Overeem, I.
2016-12-01
Scientific modeling of the Earth physical processes is an important driver of modern science. The behavior of these scientific models is governed by a set of input parameters. It is crucial to choose accurate input parameters that will also preserve the corresponding physics being simulated in the model. In order to effectively simulate real world processes the models output data must be close to the observed measurements. To achieve this optimal simulation, input parameters are tuned until we have minimized the objective function, which is the error between the simulation model outputs and the observed measurements. We developed an auxiliary package, which serves as a python interface between the user and DAKOTA. The package makes it easy for the user to conduct parameter space explorations, parameter optimizations, as well as sensitivity analysis while tracking and storing results in a database. The ability to perform these analyses via a Python library also allows the users to combine analysis techniques, for example finding an approximate equilibrium with optimization then immediately explore the space around it. We used the interface to calibrate input parameters for the heat flow model, which is commonly used in permafrost science. We performed optimization on the first three layers of the permafrost model, each with two thermal conductivity coefficients input parameters. Results of parameter space explorations indicate that the objective function not always has a unique minimal value. We found that gradient-based optimization works the best for the objective functions with one minimum. Otherwise, we employ more advanced Dakota methods such as genetic optimization and mesh based convergence in order to find the optimal input parameters. We were able to recover 6 initially unknown thermal conductivity parameters within 2% accuracy of their known values. Our initial tests indicate that the developed interface for the Dakota toolbox could be used to perform analysis and optimization on a `black box' scientific model more efficiently than using just Dakota.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peace, Gerald; Goering, Timothy James; Knight, Paul J.
A vegetation study was conducted in Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico in 2003 to assist in the design and optimization of vegetative soil covers for hazardous, radioactive, and mixed waste landfills at Sandia National Laboratories/New Mexico and Kirtland Air Force Base. The objective of the study was to obtain site-specific, vegetative input parameters for the one-dimensional code UNSAT-H and to identify suitable, diverse native plant species for use on vegetative soil covers that will persist indefinitely as a climax ecological community with little or no maintenance. The identification and selection of appropriate native plant speciesmore » is critical to the proper design and long-term performance of vegetative soil covers. Major emphasis was placed on the acquisition of representative, site-specific vegetation data. Vegetative input parameters measured in the field during this study include root depth, root length density, and percent bare area. Site-specific leaf area index was not obtained in the area because there was no suitable platform to measure leaf area during the 2003 growing season due to severe drought that has persisted in New Mexico since 1999. Regional LAI data was obtained from two unique desert biomes in New Mexico, Sevilletta Wildlife Refuge and Jornada Research Station.« less
A novel regenerative shock absorber with a speed doubling mechanism and its Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Zhang, Ran; Wang, Xu; Liu, Zhenwei
2018-03-01
A novel regenerative shock absorber has been designed and fabricated. The novelty of the presented work is the application of the double speed regenerative shock absorber that utilizes the rack and pinion mechanism to increase the magnet speed with respect to the coils for higher power output. The simulation models with parameters identified from finite element analysis and the experiments are developed. The proposed regenerative shock absorber is compared with the regenerative shock absorber without the rack and pinion mechanism, when they are integrated into the same quarter vehicle suspension system. The sinusoidal wave road profile displacement excitation and the random road profile displacement excitation with peak amplitude of 0.035 m are applied as the inputs in the frequency range of 0-25 Hz. It is found that with the sinusoidal and random road profile displacement input, the proposed innovative design can increase the output power by 4 times comparing to the baseline design. The proposed double speed regenerative shock absorber also presents to be more sensitive to the road profile irregularity than the single speed regenerative shock absorber as suggested by Monte Carlo simulation. Lastly the coil mass and amplification factor are studied for sensitivity analysis and performance optimization, which provides a general design method of the regenerative shock absorbers. It shows that for the system power output, the proposed design becomes more sensitive to either the coil mass or amplification factor depending on the amount of the coil mass. With the specifically selected combination of the coil mass and amplification factor, the optimized energy harvesting performance can be achieved.
Data-Driven Modeling and Rendering of Force Responses from Elastic Tool Deformation
Rakhmatov, Ruslan; Ogay, Tatyana; Jeon, Seokhee
2018-01-01
This article presents a new data-driven model design for rendering force responses from elastic tool deformation. The new design incorporates a six-dimensional input describing the initial position of the contact, as well as the state of the tool deformation. The input-output relationship of the model was represented by a radial basis functions network, which was optimized based on training data collected from real tool-surface contact. Since the input space of the model is represented in the local coordinate system of a tool, the model is independent of recording and rendering devices and can be easily deployed to an existing simulator. The model also supports complex interactions, such as self and multi-contact collisions. In order to assess the proposed data-driven model, we built a custom data acquisition setup and developed a proof-of-concept rendering simulator. The simulator was evaluated through numerical and psychophysical experiments with four different real tools. The numerical evaluation demonstrated the perceptual soundness of the proposed model, meanwhile the user study revealed the force feedback of the proposed simulator to be realistic. PMID:29342964
Fully probabilistic control for stochastic nonlinear control systems with input dependent noise.
Herzallah, Randa
2015-03-01
Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained. Copyright © 2014 Elsevier Ltd. All rights reserved.
Establishment and validation for the theoretical model of the vehicle airbag
NASA Astrophysics Data System (ADS)
Zhang, Junyuan; Jin, Yang; Xie, Lizhe; Chen, Chao
2015-05-01
The current design and optimization of the occupant restraint system (ORS) are based on numerous actual tests and mathematic simulations. These two methods are overly time-consuming and complex for the concept design phase of the ORS, though they're quite effective and accurate. Therefore, a fast and directive method of the design and optimization is needed in the concept design phase of the ORS. Since the airbag system is a crucial part of the ORS, in this paper, a theoretical model for the vehicle airbag is established in order to clarify the interaction between occupants and airbags, and further a fast design and optimization method of airbags in the concept design phase is made based on the proposed theoretical model. First, the theoretical expression of the simplified mechanical relationship between the airbag's design parameters and the occupant response is developed based on classical mechanics, then the momentum theorem and the ideal gas state equation are adopted to illustrate the relationship between airbag's design parameters and occupant response. By using MATLAB software, the iterative algorithm method and discrete variables are applied to the solution of the proposed theoretical model with a random input in a certain scope. And validations by MADYMO software prove the validity and accuracy of this theoretical model in two principal design parameters, the inflated gas mass and vent diameter, within a regular range. This research contributes to a deeper comprehension of the relation between occupants and airbags, further a fast design and optimization method for airbags' principal parameters in the concept design phase, and provides the range of the airbag's initial design parameters for the subsequent CAE simulations and actual tests.
Analytical solutions to optimal underactuated spacecraft formation reconfiguration
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang
2015-11-01
Underactuated systems can generally be defined as systems with fewer number of control inputs than that of the degrees of freedom to be controlled. In this paper, analytical solutions to optimal underactuated spacecraft formation reconfiguration without either the radial or the in-track control are derived. By using a linear dynamical model of underactuated spacecraft formation in circular orbits, controllability analysis is conducted for either underactuated case. Indirect optimization methods based on the minimum principle are then introduced to generate analytical solutions to optimal open-loop underactuated reconfiguration problems. Both fixed and free final conditions constraints are considered for either underactuated case and comparisons between these two final conditions indicate that the optimal control strategies with free final conditions require less control efforts than those with the fixed ones. Meanwhile, closed-loop adaptive sliding mode controllers for both underactuated cases are designed to guarantee optimal trajectory tracking in the presence of unmatched external perturbations, linearization errors, and system uncertainties. The adaptation laws are designed via a Lyapunov-based method to ensure the overall stability of the closed-loop system. The explicit expressions of the terminal convergent regions of each system states have also been obtained. Numerical simulations demonstrate the validity and feasibility of the proposed open-loop and closed-loop control schemes for optimal underactuated spacecraft formation reconfiguration in circular orbits.
Fluid management in the optimization of space construction
NASA Technical Reports Server (NTRS)
Snyder, Howard
1990-01-01
Fluid management impacts strongly on the optimization of space construction. Large quantities of liquids are needed for propellants and life support. The mass of propellant liquids is comparable to that required for the structures. There may be a strong dynamic interaction between the stored liquids and the space structure unless the design minimizes the interaction. The constraints of cost and time required optimization of the supply/resupply strategy. The proper selection and design of the fluid management methods for: slosh control; stratification control; acquisition; transfer; gauging; venting; dumping; contamination control; selection of tank configuration and size; the storage state and the control system can improve the entire system performance substantially. Our effort consists of building mathematical/computer models of the various fluid management methods and testing them against the available experimental data. The results of the models are used as inputs to the system operations studies. During the past year, the emphasis has been on modeling: the transfer of cryogens; sloshing and the storage configuration. The work has been intermeshed with ongoing NASA design and development studies to leverage the funds provided by the Center.
Hasanvand, Hamed; Mozafari, Babak; Arvan, Mohammad R; Amraee, Turaj
2015-11-01
This paper addresses the application of a static Var compensator (SVC) to improve the damping of interarea oscillations. Optimal location and size of SVC are defined using bifurcation and modal analysis to satisfy its primary application. Furthermore, the best-input signal for damping controller is selected using Hankel singular values and right half plane-zeros. The proposed approach is aimed to design a robust PI controller based on interval plants and Kharitonov's theorem. The objective here is to determine the stability region to attain robust stability, the desired phase margin, gain margin, and bandwidth. The intersection of the resulting stability regions yields the set of kp-ki parameters. In addition, optimal multiobjective design of PI controller using particle swarm optimization (PSO) algorithm is presented. The effectiveness of the suggested controllers in damping of local and interarea oscillation modes of a multimachine power system, over a wide range of loading conditions and system configurations, is confirmed through eigenvalue analysis and nonlinear time domain simulation. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive learning and control for MIMO system based on adaptive dynamic programming.
Fu, Jian; He, Haibo; Zhou, Xinmin
2011-07-01
Adaptive dynamic programming (ADP) is a promising research field for design of intelligent controllers, which can both learn on-the-fly and exhibit optimal behavior. Over the past decades, several generations of ADP design have been proposed in the literature, which have demonstrated many successful applications in various benchmarks and industrial applications. While many of the existing researches focus on multiple-inputs-single-output system with steepest descent search, in this paper we investigate a generalized multiple-input-multiple-output (GMIMO) ADP design for online learning and control, which is more applicable to a wide range of practical real-world applications. Furthermore, an improved weight-updating algorithm based on recursive Levenberg-Marquardt methods is presented and embodied in the GMIMO approach to improve its performance. Finally, we test the performance of this approach based on a practical complex system, namely, the learning and control of the tension and height of the looper system in a hot strip mill. Experimental results demonstrate that the proposed approach can achieve effective and robust performance.
Transmit Designs for the MIMO Broadcast Channel With Statistical CSI
NASA Astrophysics Data System (ADS)
Wu, Yongpeng; Jin, Shi; Gao, Xiqi; McKay, Matthew R.; Xiao, Chengshan
2014-09-01
We investigate the multiple-input multiple-output broadcast channel with statistical channel state information available at the transmitter. The so-called linear assignment operation is employed, and necessary conditions are derived for the optimal transmit design under general fading conditions. Based on this, we introduce an iterative algorithm to maximize the linear assignment weighted sum-rate by applying a gradient descent method. To reduce complexity, we derive an upper bound of the linear assignment achievable rate of each receiver, from which a simplified closed-form expression for a near-optimal linear assignment matrix is derived. This reveals an interesting construction analogous to that of dirty-paper coding. In light of this, a low complexity transmission scheme is provided. Numerical examples illustrate the significant performance of the proposed low complexity scheme.
Bathymetry Estimations Using Vicariously Calibrated HICO Data
2013-07-16
prototype sensor installed on the International Space Station (ISS) designed to explore the management and capability of a space-borne hyperspectral sensor ...management of the HICO sensor . Bathymetry information is essential for naval operations in coastal regions. However, bathymetry may not be available in... sensors with coarser resolutions. Furthermore, its contiguous hyperspectral range is well suited to be used as input to the Hyperspectral Optimization
A Survey of Reliability, Maintainability, Supportability, and Testability Software Tools
1991-04-01
designs in terms of their contributions toward forced mission termination and vehicle or function loss . Includes the ability to treat failure modes of...ABSTRACT: Inputs: MTBFs, MTTRs, support equipment costs, equipment weights and costs, available targets, military occupational specialty skill level and...US Army CECOM NAME: SPARECOST ABSTRACT: Calculates expected number of failures and performs spares holding optimization based on cost, weight , or
A global design of high power Nd 3+-Yb 3+ co-doped fiber lasers
NASA Astrophysics Data System (ADS)
Fan, Zhang; Chuncan, Wang; Tigang, Ning
2008-09-01
A global optimization method - niche hybrid genetic algorithm (NHGA) based on fitness sharing and elite replacement is applied to optimize Nd3+-Yb3+ co-doped fiber lasers (NYDFLs) for obtaining maximum signal output power. With a objective function and different pumping powers, five critical parameters (the fiber length, L; the proportion of pump power for pumping Nd3+, η; Nd3+ and Yb3+ concentrations, NNd and NYb and output mirror reflectivity, Rout) of the given NYDFLs are optimized by solving the rate and power propagation equations. Results show that dividing equally the input pump power among 808 nm (Nd3+) and 940 nm (Yb3+) is not an optimal choice and the pump power of Nd3+ ions should be kept around 10-13.78% of the total pump power. Three optimal schemes are obtained by NHGA and the highest slope efficiency of the laser is able to reach 80.1%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.
2015-07-01
This paper considers a collection of networked nonlinear dynamical systems, and addresses the synthesis of feedback controllers that seek optimal operating points corresponding to the solution of pertinent network-wide optimization problems. Particular emphasis is placed on the solution of semidefinite programs (SDPs). The design of the feedback controller is grounded on a dual e-subgradient approach, with the dual iterates utilized to dynamically update the dynamical-system reference signals. Global convergence is guaranteed for diminishing stepsize rules, even when the reference inputs are updated at a faster rate than the dynamical-system settling time. The application of the proposed framework to the controlmore » of power-electronic inverters in AC distribution systems is discussed. The objective is to bridge the time-scale separation between real-time inverter control and network-wide optimization. Optimization objectives assume the form of SDP relaxations of prototypical AC optimal power flow problems.« less
NASA Astrophysics Data System (ADS)
Panda, Satyasen
2018-05-01
This paper proposes a modified artificial bee colony optimization (ABC) algorithm based on levy flight swarm intelligence referred as artificial bee colony levy flight stochastic walk (ABC-LFSW) optimization for optical code division multiple access (OCDMA) network. The ABC-LFSW algorithm is used to solve asset assignment problem based on signal to noise ratio (SNR) optimization in OCDM networks with quality of service constraints. The proposed optimization using ABC-LFSW algorithm provides methods for minimizing various noises and interferences, regulating the transmitted power and optimizing the network design for improving the power efficiency of the optical code path (OCP) from source node to destination node. In this regard, an optical system model is proposed for improving the network performance with optimized input parameters. The detailed discussion and simulation results based on transmitted power allocation and power efficiency of OCPs are included. The experimental results prove the superiority of the proposed network in terms of power efficiency and spectral efficiency in comparison to networks without any power allocation approach.
Development of a pump-turbine runner based on multiobjective optimization
NASA Astrophysics Data System (ADS)
Xuhe, W.; Baoshan, Z.; Lei, T.; Jie, Z.; Shuliang, C.
2014-03-01
As a key component of reversible pump-turbine unit, pump-turbine runner rotates at pump or turbine direction according to the demand of power grid, so higher efficiencies under both operating modes have great importance for energy saving. In the present paper, a multiobjective optimization design strategy, which includes 3D inverse design method, CFD calculations, response surface method (RSM) and multiobjective genetic algorithm (MOGA), is introduced to develop a model pump-turbine runner for middle-high head pumped storage plant. Parameters that controlling blade shape, such as blade loading and blade lean angle at high pressure side are chosen as input parameters, while runner efficiencies under both pump and turbine modes are selected as objective functions. In order to validate the availability of the optimization design system, one runner configuration from Pareto front is manufactured for experimental research. Test results show that the highest unit efficiency is 91.0% under turbine mode and 90.8% under pump mode for the designed runner, of which prototype efficiencies are 93.88% and 93.27% respectively. Viscous CFD calculations for full passage model are also conducted, which aim at finding out the hydraulic improvement from internal flow analyses.
NASA Astrophysics Data System (ADS)
Xi, Songnan; Zoltowski, Michael D.
2008-04-01
Multiuser multiple-input multiple-output (MIMO) systems are considered in this paper. We continue our research on uplink transmit beamforming design for multiple users under the assumption that the full multiuser channel state information, which is the collection of the channel state information between each of the users and the base station, is known not only to the receiver but also to all the transmitters. We propose an algorithm for designing optimal beamforming weights in terms of maximizing the signal-to-interference-plus-noise ratio (SINR). Through statistical modeling, we decouple the original mathematically intractable optimization problem and achieved a closed-form solution. As in our previous work, the minimum mean-squared error (MMSE) receiver with successive interference cancellation (SIC) is adopted for multiuser detection. The proposed scheme is compared with an existing jointly optimized transceiver design, referred to as the joint transceiver in this paper, and our previously proposed eigen-beamforming algorithm. Simulation results demonstrate that our algorithm, with much less computational burden, accomplishes almost the same performance as the joint transceiver for spatially independent MIMO channel and even better performance for spatially correlated MIMO channels. And it always works better than our previously proposed eigen beamforming algorithm.
Jenny, Richard M; Jasper, Micah N; Simmons, Otto D; Shatalov, Max; Ducoste, Joel J
2015-10-15
Alternative disinfection sources such as ultraviolet light (UV) are being pursued to inactivate pathogenic microorganisms such as Cryptosporidium and Giardia, while simultaneously reducing the risk of exposure to carcinogenic disinfection by-products (DBPs) in drinking water. UV-LEDs offer a UV disinfecting source that do not contain mercury, have the potential for long lifetimes, are robust, and have a high degree of design flexibility. However, the increased flexibility in design options will add a substantial level of complexity when developing a UV-LED reactor, particularly with regards to reactor shape, size, spatial orientation of light, and germicidal emission wavelength. Anticipating that LEDs are the future of UV disinfection, new methods are needed for designing such reactors. In this research study, the evaluation of a new design paradigm using a point-of-use UV-LED disinfection reactor has been performed. ModeFrontier, a numerical optimization platform, was coupled with COMSOL Multi-physics, a computational fluid dynamics (CFD) software package, to generate an optimized UV-LED continuous flow reactor. Three optimality conditions were considered: 1) single objective analysis minimizing input supply power while achieving at least (2.0) log10 inactivation of Escherichia coli ATCC 11229; and 2) two multi-objective analyses (one of which maximized the log10 inactivation of E. coli ATCC 11229 and minimized the supply power). All tests were completed at a flow rate of 109 mL/min and 92% UVT (measured at 254 nm). The numerical solution for the first objective was validated experimentally using biodosimetry. The optimal design predictions displayed good agreement with the experimental data and contained several non-intuitive features, particularly with the UV-LED spatial arrangement, where the lights were unevenly populated throughout the reactor. The optimal designs may not have been developed from experienced designers due to the increased degrees of freedom offered by using UV-LEDs. The results of this study revealed that the coupled optimization routine with CFD was effective at significantly decreasing the engineer's design decision space and finding a potentially near-optimal UV-LED reactor solution. Published by Elsevier Ltd.
Area/latency optimized early output asynchronous full adders and relative-timed ripple carry adders.
Balasubramanian, P; Yamashita, S
2016-01-01
This article presents two area/latency optimized gate level asynchronous full adder designs which correspond to early output logic. The proposed full adders are constructed using the delay-insensitive dual-rail code and adhere to the four-phase return-to-zero handshaking. For an asynchronous ripple carry adder (RCA) constructed using the proposed early output full adders, the relative-timing assumption becomes necessary and the inherent advantages of the relative-timed RCA are: (1) computation with valid inputs, i.e., forward latency is data-dependent, and (2) computation with spacer inputs involves a bare minimum constant reverse latency of just one full adder delay, thus resulting in the optimal cycle time. With respect to different 32-bit RCA implementations, and in comparison with the optimized strong-indication, weak-indication, and early output full adder designs, one of the proposed early output full adders achieves respective reductions in latency by 67.8, 12.3 and 6.1 %, while the other proposed early output full adder achieves corresponding reductions in area by 32.6, 24.6 and 6.9 %, with practically no power penalty. Further, the proposed early output full adders based asynchronous RCAs enable minimum reductions in cycle time by 83.4, 15, and 8.8 % when considering carry-propagation over the entire RCA width of 32-bits, and maximum reductions in cycle time by 97.5, 27.4, and 22.4 % for the consideration of a typical carry chain length of 4 full adder stages, when compared to the least of the cycle time estimates of various strong-indication, weak-indication, and early output asynchronous RCAs of similar size. All the asynchronous full adders and RCAs were realized using standard cells in a semi-custom design fashion based on a 32/28 nm CMOS process technology.
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang
2014-12-01
The Lorentz force acting on an electrostatically charged spacecraft as it moves through the planetary magnetic field could be utilized as propellantless electromagnetic propulsion for orbital maneuvering, such as spacecraft formation establishment and formation reconfiguration. By assuming that the Earth's magnetic field could be modeled as a tilted dipole located at the center of Earth that corotates with Earth, a dynamical model that describes the relative orbital motion of Lorentz spacecraft is developed. Based on the proposed dynamical model, the energy-optimal open-loop trajectories of control inputs, namely, the required specific charges of Lorentz spacecraft, for Lorentz-propelled spacecraft formation establishment or reconfiguration problems with both fixed and free final conditions constraints are derived via Gauss pseudospectral method. The effect of the magnetic dipole tilt angle on the optimal control inputs and the relative transfer trajectories for formation establishment or reconfiguration is also investigated by comparisons with the results derived from a nontilted dipole model. Furthermore, a closed-loop integral sliding mode controller is designed to guarantee the trajectory tracking in the presence of external disturbances and modeling errors. The stability of the closed-loop system is proved by a Lyapunov-based approach. Numerical simulations are presented to verify the validity of the proposed open-loop control methods and demonstrate the performance of the closed-loop controller. Also, the results indicate the dipole tilt angle should be considered when designing control strategies for Lorentz-propelled spacecraft formation establishment or reconfiguration.
Interacting with notebook input devices: an analysis of motor performance and users' expertise.
Sutter, Christine; Ziefle, Martina
2005-01-01
In the present study the usability of two different types of notebook input devices was examined. The independent variables were input device (touchpad vs. mini-joystick) and user expertise (expert vs. novice state). There were 30 participants, of whom 15 were touchpad experts and the other 15 were mini-joystick experts. The experimental tasks were a point-click task (Experiment 1) and a point-drag-drop task (Experiment 2). Dependent variables were the time and accuracy of cursor control. To assess carryover effects, we had the participants complete both experiments, using not only the input device for which they were experts but also the device for which they were novices. Results showed the touchpad performance to be clearly superior to mini-joystick performance. Overall, experts showed better performance than did novices. The significant interaction of input device and expertise showed that the use of an unknown device is difficult, but only for touchpad experts, who were remarkably slower and less accurate when using a mini-joystick. Actual and potential applications of this research include an evaluation of current notebook input devices. The outcomes allow ergonomic guidelines to be derived for optimized usage and design of the mini-joystick and touchpad devices.
NASA Astrophysics Data System (ADS)
Rudrapati, R.; Sahoo, P.; Bandyopadhyay, A.
2016-09-01
The main aim of the present work is to analyse the significance of turning parameters on surface roughness in computer numerically controlled (CNC) turning operation while machining of aluminium alloy material. Spindle speed, feed rate and depth of cut have been considered as machining parameters. Experimental runs have been conducted as per Box-Behnken design method. After experimentation, surface roughness is measured by using stylus profile meter. Factor effects have been studied through analysis of variance. Mathematical modelling has been done by response surface methodology, to made relationships between the input parameters and output response. Finally, process optimization has been made by teaching learning based optimization (TLBO) algorithm. Predicted turning condition has been validated through confirmatory experiment.
NASA Technical Reports Server (NTRS)
Craun, Robert W.; Acosta, Diana M.; Beard, Steven D.; Leonard, Michael W.; Hardy, Gordon H.; Weinstein, Michael; Yildiz, Yildiray
2013-01-01
This paper describes the maturation of a control allocation technique designed to assist pilots in the recovery from pilot induced oscillations (PIOs). The Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) is designed to enable next generation high efficiency aircraft designs. Energy efficient next generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. One of the common issues flying with actuator rate limits is PIOs caused by the phase lag between the pilot inputs and control surface response. CAPIO utilizes real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a non-linear aircraft simulation in the NASA Ames Vertical Motion Simulator. Results indicate that CAPIO helps reduce oscillatory behavior, including the severity and duration of PIOs, introduced by control surface rate limiting.
Wing optimization for space shuttle orbiter vehicles
NASA Technical Reports Server (NTRS)
Surber, T. E.; Bornemann, W. E.; Miller, W. D.
1972-01-01
The results were presented of a parametric study performed to determine the optimum wing geometry for a proposed space shuttle orbiter. The results of the study establish the minimum weight wing for a series of wing-fuselage combinations subject to constraints on aerodynamic heating, wing trailing edge sweep, and wing over-hang. The study consists of a generalized design evaluation which has the flexibility of arbitrarily varying those wing parameters which influence the vehicle system design and its performance. The study is structured to allow inputs of aerodynamic, weight, aerothermal, structural and material data in a general form so that the influence of these parameters on the design optimization process can be isolated and identified. This procedure displays the sensitivity of the system design of variations in wing geometry. The parameters of interest are varied in a prescribed fashion on a selected fuselage and the effect on the total vehicle weight is determined. The primary variables investigated are: wing loading, aspect ratio, leading edge sweep, thickness ratio, and taper ratio.
Optimal distribution of borehole geophones for monitoring CO2-injection-induced seismicity
NASA Astrophysics Data System (ADS)
Huang, L.; Chen, T.; Foxall, W.; Wagoner, J. L.
2016-12-01
The U.S. DOE initiative, National Risk Assessment Partnership (NRAP), aims to develop quantitative risk assessment methodologies for carbon capture, utilization and storage (CCUS). As part of tasks of the Strategic Monitoring Group of NRAP, we develop a tool for optimal design of a borehole geophones distribution for monitoring CO2-injection-induced seismicity. The tool consists of a number of steps, including building a geophysical model for a given CO2 injection site, defining target monitoring regions within CO2-injection/migration zones, generating synthetic seismic data, giving acceptable uncertainties in input data, and determining the optimal distribution of borehole geophones. We use a synthetic geophysical model as an example to demonstrate the capability our new tool to design an optimal/cost-effective passive seismic monitoring network using borehole geophones. The model is built based on the geologic features found at the Kimberlina CCUS pilot site located in southern San Joaquin Valley, California. This tool can provide CCUS operators with a guideline for cost-effective microseismic monitoring of geologic carbon storage and utilization.
Multi-Objective Design Of Optimal Greenhouse Gas Observation Networks
NASA Astrophysics Data System (ADS)
Lucas, D. D.; Bergmann, D. J.; Cameron-Smith, P. J.; Gard, E.; Guilderson, T. P.; Rotman, D.; Stolaroff, J. K.
2010-12-01
One of the primary scientific functions of a Greenhouse Gas Information System (GHGIS) is to infer GHG source emission rates and their uncertainties by combining measurements from an observational network with atmospheric transport modeling. Certain features of the observational networks that serve as inputs to a GHGIS --for example, sampling location and frequency-- can greatly impact the accuracy of the retrieved GHG emissions. Observation System Simulation Experiments (OSSEs) provide a framework to characterize emission uncertainties associated with a given network configuration. By minimizing these uncertainties, OSSEs can be used to determine optimal sampling strategies. Designing a real-world GHGIS observing network, however, will involve multiple, conflicting objectives; there will be trade-offs between sampling density, coverage and measurement costs. To address these issues, we have added multi-objective optimization capabilities to OSSEs. We demonstrate these capabilities by quantifying the trade-offs between retrieval error and measurement costs for a prototype GHGIS, and deriving GHG observing networks that are Pareto optimal. [LLNL-ABS-452333: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
A 10 deg K triple-expansion Stirling-cycle cryocooler
NASA Technical Reports Server (NTRS)
Newman, W.; Keung, C. S.
1983-01-01
The design of a triple expansion closed cycle Stirling cryocooler optimized for a cooling load of 50 mW at 10 K is described. The cooler was designed with the objectives of low power, low weight, compactness, low mechanical motion, low electromagnetic noise, and low output temperature fluctuations. The design employs a direct drive linear motion piston motor and a triple expansion free displacer. Piston motion is controlled by feedback from an optical position transducer. Mechanical vibrations are attenuated with a passive resonant counterbalance. Electromagnetic noise is attenuated with layered high permeability magnetic shielding. The regenerators move with the displacer within a thin titanium cold finger. The piston and displacer oscillate at 8.33 Hz on bearings and seals of reinforced Teflon. The cooler is designed to provide the desired 50 mW of cooling at 10 K with a power input of less than 100 W. The piston can be driven at a greater stroke to produce up to 200 mW of cooling with an input power of 250 W. A lead and copper cold tip heat exchanger will limit temperature fluctuations to within 0.01 K.
Optimal controller design for high performance aircraft undergoing large disturbance angles
NASA Technical Reports Server (NTRS)
Rhoten, R. P.
1974-01-01
An examination of two aircraft controller structures applicable to on-line implementation was conducted. The two controllers, a linear regulator model follower and an inner-product model follower, were applied to the lateral dynamics of the F8-C aircraft. For the purposes of this research effort, the lateral dynamics of the F8-C aircraft were considered. The controller designs were evaluated for four flight conditions. Additionally, effects of pilot input, rapid variation of flight condition and control surface rate and magnitude deflection limits were considered.
NASA Astrophysics Data System (ADS)
de Waal, V. J.
1983-02-01
The present investigation deals with the design, fabrication, and limitations of very sensitive SQUID (Superconducting Quantum Interference Device) magnetometers. The SQUID magnetometer is based on a utilization of the Josephson effect. A description of the theoretical background is provided, and high performance DC SQUIDs with submicron niobium Josephson junctions are discussed, taking into account design considerations, fabrication, junction characterization, the performance of the SQUID and input coil, and the gradiometer performance. The simulation and optimization of a DC SQUID with finite capacitance is considered, giving attention to the implementation of a simulation procedure on a hybrid computer.
Developments in Sensitivity Methodologies and the Validation of Reactor Physics Calculations
Palmiotti, Giuseppe; Salvatores, Massimo
2012-01-01
The sensitivity methodologies have been a remarkable story when adopted in the reactor physics field. Sensitivity coefficients can be used for different objectives like uncertainty estimates, design optimization, determination of target accuracy requirements, adjustment of input parameters, and evaluations of the representativity of an experiment with respect to a reference design configuration. A review of the methods used is provided, and several examples illustrate the success of the methodology in reactor physics. A new application as the improvement of nuclear basic parameters using integral experiments is also described.
A method to stabilize linear systems using eigenvalue gradient information
NASA Technical Reports Server (NTRS)
Wieseman, C. D.
1985-01-01
Formal optimization methods and eigenvalue gradient information are used to develop a stabilizing control law for a closed loop linear system that is initially unstable. The method was originally formulated by using direct, constrained optimization methods with the constraints being the real parts of the eigenvalues. However, because of problems in trying to achieve stabilizing control laws, the problem was reformulated to be solved differently. The method described uses the Davidon-Fletcher-Powell minimization technique to solve an indirect, constrained minimization problem in which the performance index is the Kreisselmeier-Steinhauser function of the real parts of all the eigenvalues. The method is applied successfully to solve two different problems: the determination of a fourth-order control law stabilizes a single-input single-output active flutter suppression system and the determination of a second-order control law for a multi-input multi-output lateral-directional flight control system. Various sets of design variables and initial starting points were chosen to show the robustness of the method.
NASA Astrophysics Data System (ADS)
Bonakdari, Hossein; Zaji, Amir Hossein
2018-03-01
In many hydraulic structures, side weirs have a critical role. Accurately predicting the discharge coefficient is one of the most important stages in the side weir design process. In the present paper, a new high efficient side weir is investigated. To simulate the discharge coefficient of these side weirs, three novel soft computing methods are used. The process includes modeling the discharge coefficient with the hybrid Adaptive Neuro-Fuzzy Interface System (ANFIS) and three optimization algorithms, namely Differential Evaluation (ANFIS-DE), Genetic Algorithm (ANFIS-GA) and Particle Swarm Optimization (ANFIS-PSO). In addition, sensitivity analysis is done to find the most efficient input variables for modeling the discharge coefficient of these types of side weirs. According to the results, the ANFIS method has higher performance when using simpler input variables. In addition, the ANFIS-DE with RMSE of 0.077 has higher performance than the ANFIS-GA and ANFIS-PSO methods with RMSE of 0.079 and 0.096, respectively.
Gust alleviation for a STOL transport by using elevator, spoilers, and flaps
NASA Technical Reports Server (NTRS)
Lallman, F. J.
1974-01-01
Control laws were developed to investigate methods of alleviating the response of a STOL transport to gusty air. The transport considered in the study had triple-slotted, externally blown jet flaps and a large T-tail. The control devices used were the elevator, spoilers, and flaps. A hybrid computing system was used to simulate linearized longitudinal dynamics of the aircraft and to implement a conjugate gradient optimal search algorithm. The aircraft was simulated in the low-speed approach condition only. Feedback control matrices were found which minimized the average of a quadratic functional involving passenger compartment accelerations, pitch angle and rate, flight path angle and speed variations. The optimization was performed for artificially designed gust inputs in the form of predetermined rectangular waveforms. Results were obtained for elevator, spoilers, and flaps acting singly and in combination. Additional results were obtained for unit sinusoidal gust inputs by using the gain matrices computed for the artificial test gusts. Various sensor configurations were also investigated.
Subsystem design in aircraft power distribution systems using optimization
NASA Astrophysics Data System (ADS)
Chandrasekaran, Sriram
2000-10-01
The research reported in this dissertation focuses on the development of optimization tools for the design of subsystems in a modern aircraft power distribution system. The baseline power distribution system is built around a 270V DC bus. One of the distinguishing features of this power distribution system is the presence of regenerative power from the electrically driven flight control actuators and structurally integrated smart actuators back to the DC bus. The key electrical components of the power distribution system are bidirectional switching power converters, which convert, control and condition electrical power between the sources and the loads. The dissertation is divided into three parts. Part I deals with the formulation of an optimization problem for a sample system consisting of a regulated DC-DC buck converter preceded by an input filter. The individual subsystems are optimized first followed by the integrated optimization of the sample system. It is shown that the integrated optimization provides better results than that obtained by integrating the individually optimized systems. Part II presents a detailed study of piezoelectric actuators. This study includes modeling, optimization of the drive amplifier and the development of a current control law for piezoelectric actuators coupled to a simple mechanical structure. Linear and nonlinear methods to study subsystem interaction and stability are studied in Part III. A multivariable impedance ratio criterion applicable to three phase systems is proposed. Bifurcation methods are used to obtain global stability characteristics of interconnected systems. The application of a nonlinear design methodology, widely used in power systems, to incrementally improve the robustness of a system to Hopf bifurcation instability is discussed.
NASA Astrophysics Data System (ADS)
Bascetin, A.
2007-04-01
The selection of an optimal reclamation method is one of the most important factors in open-pit design and production planning. It also affects economic considerations in open-pit design as a function of plan location and depth. Furthermore, the selection is a complex multi-person, multi-criteria decision problem. The group decision-making process can be improved by applying a systematic and logical approach to assess the priorities based on the inputs of several specialists from different functional areas within the mine company. The analytical hierarchy process (AHP) can be very useful in involving several decision makers with different conflicting objectives to arrive at a consensus decision. In this paper, the selection of an optimal reclamation method using an AHP-based model was evaluated for coal production in an open-pit coal mine located at Seyitomer region in Turkey. The use of the proposed model indicates that it can be applied to improve the group decision making in selecting a reclamation method that satisfies optimal specifications. Also, it is found that the decision process is systematic and using the proposed model can reduce the time taken to select a optimal method.
NASA Astrophysics Data System (ADS)
Goienetxea Uriarte, A.; Ruiz Zúñiga, E.; Urenda Moris, M.; Ng, A. H. C.
2015-05-01
Discrete Event Simulation (DES) is nowadays widely used to support decision makers in system analysis and improvement. However, the use of simulation for improving stochastic logistic processes is not common among healthcare providers. The process of improving healthcare systems involves the necessity to deal with trade-off optimal solutions that take into consideration a multiple number of variables and objectives. Complementing DES with Multi-Objective Optimization (SMO) creates a superior base for finding these solutions and in consequence, facilitates the decision-making process. This paper presents how SMO has been applied for system improvement analysis in a Swedish Emergency Department (ED). A significant number of input variables, constraints and objectives were considered when defining the optimization problem. As a result of the project, the decision makers were provided with a range of optimal solutions which reduces considerably the length of stay and waiting times for the ED patients. SMO has proved to be an appropriate technique to support healthcare system design and improvement processes. A key factor for the success of this project has been the involvement and engagement of the stakeholders during the whole process.
NASA Astrophysics Data System (ADS)
Fattoruso, Grazia; Longobardi, Antonia; Pizzuti, Alfredo; Molinara, Mario; Marocco, Claudio; De Vito, Saverio; Tortorella, Francesco; Di Francia, Girolamo
2017-06-01
Rainfall data collection gathered in continuous by a distributed rain gauge network is instrumental to more effective hydro-geological risk forecasting and management services though the input estimated rainfall fields suffer from prediction uncertainty. Optimal rain gauge networks can generate accurate estimated rainfall fields. In this research work, a methodology has been investigated for evaluating an optimal rain gauges network aimed at robust hydrogeological hazard investigations. The rain gauges of the Sarno River basin (Southern Italy) has been evaluated by optimizing a two-objective function that maximizes the estimated accuracy and minimizes the total metering cost through the variance reduction algorithm along with the climatological variogram (time-invariant). This problem has been solved by using an enumerative search algorithm, evaluating the exact Pareto-front by an efficient computational time.
Optimal second order sliding mode control for linear uncertain systems.
Das, Madhulika; Mahanta, Chitralekha
2014-11-01
In this paper an optimal second order sliding mode controller (OSOSMC) is proposed to track a linear uncertain system. The optimal controller based on the linear quadratic regulator method is designed for the nominal system. An integral sliding mode controller is combined with the optimal controller to ensure robustness of the linear system which is affected by parametric uncertainties and external disturbances. To achieve finite time convergence of the sliding mode, a nonsingular terminal sliding surface is added with the integral sliding surface giving rise to a second order sliding mode controller. The main advantage of the proposed OSOSMC is that the control input is substantially reduced and it becomes chattering free. Simulation results confirm superiority of the proposed OSOSMC over some existing. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Device design and signal processing for multiple-input multiple-output multimode fiber links
NASA Astrophysics Data System (ADS)
Appaiah, Kumar; Vishwanath, Sriram; Bank, Seth R.
2012-01-01
Multimode fibers (MMFs) are limited in data rate capabilities owing to modal dispersion. However, their large core diameter simplifies alignment and packaging, and makes them attractive for short and medium length links. Recent research has shown that the use of signal processing and techniques such as multiple-input multiple-output (MIMO) can greatly improve the data rate capabilities of multimode fibers. In this paper, we review recent experimental work using MIMO and signal processing for multimode fibers, and the improvements in data rates achievable with these techniques. We then present models to design as well as simulate the performance benefits obtainable with arrays of lasers and detectors in conjunction with MIMO, using channel capacity as the metric to optimize. We also discuss some aspects related to complexity of the algorithms needed for signal processing and discuss techniques for low complexity implementation.
HAL/S-FC and HAL/S-360 compiler system program description
NASA Technical Reports Server (NTRS)
1976-01-01
The compiler is a large multi-phase design and can be broken into four phases: Phase 1 inputs the source language and does a syntactic and semantic analysis generating the source listing, a file of instructions in an internal format (HALMAT) and a collection of tables to be used in subsequent phases. Phase 1.5 massages the code produced by Phase 1, performing machine independent optimization. Phase 2 inputs the HALMAT produced by Phase 1 and outputs machine language object modules in a form suitable for the OS-360 or FCOS linkage editor. Phase 3 produces the SDF tables. The four phases described are written in XPL, a language specifically designed for compiler implementation. In addition to the compiler, there is a large library containing all the routines that can be explicitly called by the source language programmer plus a large collection of routines for implementing various facilities of the language.
Fundamental bounds on the operation of Fano nonlinear isolators
NASA Astrophysics Data System (ADS)
Sounas, Dimitrios L.; Alù, Andrea
2018-03-01
Nonlinear isolators have attracted significant attention for their ability to break reciprocity and provide isolation without the need of an external bias. A popular approach for the design of such devices is based on Fano resonators, which, due to their sharp frequency response, can lead to very large isolation for moderate input intensities. Here, we show that, independent of their specific implementation, these devices are subject to fundamental bounds on the transmission coefficient in the forward direction versus their quality factor, input power, and nonreciprocal intensity range. Our analysis quantifies a general tradeoff between forward transmission and these metrics, stemming directly from time-reversal symmetry, and that unitary transmission is only possible for vanishing nonreciprocity. Our results also shed light on the operation of resonant nonlinear isolators, reveal their fundamental limitations, and provide indications on how it is possible to design nonlinear isolators with optimal performance.
The quality estimation of exterior wall’s and window filling’s construction design
NASA Astrophysics Data System (ADS)
Saltykov, Ivan; Bovsunovskaya, Maria
2017-10-01
The article reveals the term of “artificial envelope” in dwelling building. Authors offer a complex multifactorial approach to the design quality estimation of external fencing structures, which is based on various parameters impact. These referred parameters are: functional, exploitation, cost, and also, the environmental index is among them. The quality design index Qк is inputting for the complex characteristic of observed above parameters. The mathematical relation of this index from these parameters is the target function for the quality design estimation. For instance, the article shows the search of optimal variant for wall and window designs in small, middle and large square dwelling premises of economic class buildings. The graphs of target function single parameters are expressed for the three types of residual chamber’s dimensions. As a result of the showing example, there is a choice of window opening’s dimensions, which make the wall’s and window’s constructions properly correspondent to the producible complex requirements. The authors reveal the comparison of recommended window filling’s square in accordance with the building standards, and the square, due to the finding of the optimal variant of the design quality index. The multifactorial approach for optimal design searching, which is mentioned in this article, can be used in consideration of various construction elements of dwelling buildings in accounting of suitable climate, social and economic construction area features.
Energy extraction from atmospheric turbulence to improve flight vehicle performance
NASA Astrophysics Data System (ADS)
Patel, Chinmay Karsandas
Small 'bird-sized' Unmanned Aerial Vehicles (UAVs) have now become practical due to technological advances in embedded electronics, miniature sensors and actuators, and propulsion systems. Birds are known to take advantage of wind currents to conserve energy and fly long distances without flapping their wings. This dissertation explores the possibility of improving the performance of small UAVs by extracting the energy available in atmospheric turbulence. An aircraft can gain energy from vertical gusts by increasing its lift in regions of updraft and reducing its lift in downdrafts - a concept that has been known for decades. Starting with a simple model of a glider flying through a sinusoidal gust, a parametric optimization approach is used to compute the minimum gust amplitude and optimal control input required for the glider to sustain flight without losing energy. For small UAVs using optimal control inputs, sinusoidal gusts with amplitude of 10--15% of the cruise speed are sufficient to keep the aircraft aloft. The method is then modified and extended to include random gusts that are representative of natural turbulence. A procedure to design optimal control laws for energy extraction from realistic gust profiles is developed using a Genetic Algorithm (GA). A feedback control law is designed to perform well over a variety of random gusts, and not be tailored for one particular gust. A small UAV flying in vertical turbulence is shown to obtain average energy savings of 35--40% with the use of a simple control law. The design procedure is also extended to determine optimal control laws for sinusoidal as well as turbulent lateral gusts. The theoretical work is complemented by experimental validation using a small autonomous UAV. The development of a lightweight autopilot and UAV platform is presented. Flight test results show that active control of the lift of an autonomous glider resulted in approximately 46% average energy savings compared to glides with fixed control surfaces. Statistical analysis of test samples shows that 19% of the active control test runs resulted in no energy loss, thus demonstrating the potential of the 'gust soaring' concept to dramatically improve the performance of small UAVs.
Dumont, Cyrielle; Lestini, Giulia; Le Nagard, Hervé; Mentré, France; Comets, Emmanuelle; Nguyen, Thu Thuy; Group, For The Pfim
2018-03-01
Nonlinear mixed-effect models (NLMEMs) are increasingly used for the analysis of longitudinal studies during drug development. When designing these studies, the expected Fisher information matrix (FIM) can be used instead of performing time-consuming clinical trial simulations. The function PFIM is the first tool for design evaluation and optimization that has been developed in R. In this article, we present an extended version, PFIM 4.0, which includes several new features. Compared with version 3.0, PFIM 4.0 includes a more complete pharmacokinetic/pharmacodynamic library of models and accommodates models including additional random effects for inter-occasion variability as well as discrete covariates. A new input method has been added to specify user-defined models through an R function. Optimization can be performed assuming some fixed parameters or some fixed sampling times. New outputs have been added regarding the FIM such as eigenvalues, conditional numbers, and the option of saving the matrix obtained after evaluation or optimization. Previously obtained results, which are summarized in a FIM, can be taken into account in evaluation or optimization of one-group protocols. This feature enables the use of PFIM for adaptive designs. The Bayesian individual FIM has been implemented, taking into account a priori distribution of random effects. Designs for maximum a posteriori Bayesian estimation of individual parameters can now be evaluated or optimized and the predicted shrinkage is also reported. It is also possible to visualize the graphs of the model and the sensitivity functions without performing evaluation or optimization. The usefulness of these approaches and the simplicity of use of PFIM 4.0 are illustrated by two examples: (i) an example of designing a population pharmacokinetic study accounting for previous results, which highlights the advantage of adaptive designs; (ii) an example of Bayesian individual design optimization for a pharmacodynamic study, showing that the Bayesian individual FIM can be a useful tool in therapeutic drug monitoring, allowing efficient prediction of estimation precision and shrinkage for individual parameters. PFIM 4.0 is a useful tool for design evaluation and optimization of longitudinal studies in pharmacometrics and is freely available at http://www.pfim.biostat.fr. Copyright © 2018 Elsevier B.V. All rights reserved.
Epigraph: A Vaccine Design Tool Applied to an HIV Therapeutic Vaccine and a Pan-Filovirus Vaccine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theiler, James; Yoon, Hyejin; Yusim, Karina
Epigraph is an efficient graph-based algorithm for designing vaccine antigens to optimize potential T-cell epitope (PTE) coverage. Functionally, epigraph vaccine antigens are similar to Mosaic vaccines, which have demonstrated effectiveness in preliminary HIV non-human primate studies. In contrast to the Mosaic algorithm, Epigraph is substantially faster, and in restricted cases, provides a mathematically optimal solution. Furthermore, epigraph has new features that enable enhanced vaccine design flexibility. These features include the ability to exclude rare epitopes from a design, to optimize population coverage based on inexact epitope matches, and to apply the code to both aligned and unaligned input sequences. Epigraphmore » was developed to provide practical design solutions for two outstanding vaccine problems. The first of these is a personalized approach to a therapeutic T-cell HIV vaccine that would provide antigens with an excellent match to an individual’s infecting strain, intended to contain or clear a chronic infection. The second is a pan-filovirus vaccine, with the potential to protect against all known viruses in the Filoviradae family, including ebolaviruses. A web-based interface to run the Epigraph tool suite is available (http://www.hiv.lanl.gov/content/sequence/EPIGRAPH/epigraph.html).« less
Epigraph: A Vaccine Design Tool Applied to an HIV Therapeutic Vaccine and a Pan-Filovirus Vaccine
Theiler, James; Yoon, Hyejin; Yusim, Karina; ...
2016-10-05
Epigraph is an efficient graph-based algorithm for designing vaccine antigens to optimize potential T-cell epitope (PTE) coverage. Functionally, epigraph vaccine antigens are similar to Mosaic vaccines, which have demonstrated effectiveness in preliminary HIV non-human primate studies. In contrast to the Mosaic algorithm, Epigraph is substantially faster, and in restricted cases, provides a mathematically optimal solution. Furthermore, epigraph has new features that enable enhanced vaccine design flexibility. These features include the ability to exclude rare epitopes from a design, to optimize population coverage based on inexact epitope matches, and to apply the code to both aligned and unaligned input sequences. Epigraphmore » was developed to provide practical design solutions for two outstanding vaccine problems. The first of these is a personalized approach to a therapeutic T-cell HIV vaccine that would provide antigens with an excellent match to an individual’s infecting strain, intended to contain or clear a chronic infection. The second is a pan-filovirus vaccine, with the potential to protect against all known viruses in the Filoviradae family, including ebolaviruses. A web-based interface to run the Epigraph tool suite is available (http://www.hiv.lanl.gov/content/sequence/EPIGRAPH/epigraph.html).« less
Design and optimization of a modal- independent linear ultrasonic motor.
Zhou, Shengli; Yao, Zhiyuan
2014-03-01
To simplify the design of the linear ultrasonic motor (LUSM) and improve its output performance, a method of modal decoupling for LUSMs is proposed in this paper. The specific embodiment of this method is decoupling of the traditional LUSM stator's complex vibration into two simple vibrations, with each vibration implemented by one vibrator. Because the two vibrators are designed independently, their frequencies can be tuned independently and frequency consistency is easy to achieve. Thus, the method can simplify the design of the LUSM. Based on this method, a prototype modal- independent LUSM is designed and fabricated. The motor reaches its maximum thrust force of 47 N, maximum unloaded speed of 0.43 m/s, and maximum power of 7.85 W at applied voltage of 200 Vpp. The motor's structure is then optimized by controlling the difference between the two vibrators' resonance frequencies to reach larger output speed, thrust, and power. The optimized results show that when the frequency difference is 73 Hz, the output force, speed, and power reach their maximum values. At the input voltage of 200 Vpp, the motor reaches its maximum thrust force of 64.2 N, maximum unloaded speed of 0.76 m/s, maximum power of 17.4 W, maximum thrust-weight ratio of 23.7, and maximum efficiency of 39.6%.
Fusion of Hard and Soft Information in Nonparametric Density Estimation
2015-06-10
and stochastic optimization models, in analysis of simulation output, and when instantiating probability models. We adopt a constrained maximum...particular, density estimation is needed for generation of input densities to simulation and stochastic optimization models, in analysis of simulation output...an essential step in simulation analysis and stochastic optimization is the generation of probability densities for input random variables; see for
Feedforward/feedback control synthesis for performance and robustness
NASA Technical Reports Server (NTRS)
Wie, Bong; Liu, Qiang
1990-01-01
Both feedforward and feedback control approaches for uncertain dynamical systems are investigated. The control design objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant modeling uncertainty. Preshapong of an ideal, time-optimal control input using a 'tapped-delay' filter is shown to provide a rapid maneuver with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. The proposed feedforward/feedback control approach is robust for a certain class of uncertain dynamical systems, since the control input command computed for a given desired output does not depend on the plant parameters.
Design and Development of Turbodrill Blade Used in Crystallized Section
Yu, Wang; Jianyi, Yao; Zhijun, Li
2014-01-01
Turbodrill is a type of hydraulic axial turbomachinery which has a multistage blade consisting of stators and rotors. In this paper, a turbodrill blade that can be applied in crystallized section under high temperature and pressure conditions is developed. On the basis of Euler equations, the law of energy transfer is analyzed and the output characteristics of turbodrill blade are proposed. Moreover, considering the properties of the layer and the bole-hole conditions, the radical size, the geometrical dimension, and the blade profile are optimized. A computational model of a single-stage blade is built on the ANSYS CFD into which the three-dimensional model of turbodrill is input. In light of the distribution law of the pressure and flow field, the functions of the turbodrill blade are improved and optimized. The turbodrill blade optimization model was verified based on laboratory experiments. The results show that the design meets the deep hard rock mineral exploration application and provides good references for further study. PMID:25276857
Effects of Planetary Gear Ratio on Mean Service Life
NASA Technical Reports Server (NTRS)
Savage, M.; Rubadeux, K. L.; Coe, H. H.
1996-01-01
Planetary gear transmissions are compact, high-power speed reductions which use parallel load paths. The range of possible reduction ratios is bounded from below and above by limits on the relative size of the planet gears. For a single plane transmission, the planet gear has no size at a ratio of two. As the ratio increases, so does the size of the planets relative to the sizes of the sun and ring. Which ratio is best for a planetary reduction can be resolved by studying a series of optimal designs. In this series, each design is obtained by maximizing the service life for a planetary with a fixed size, gear ratio, input speed power and materials. The planetary gear reduction service life is modeled as a function of the two-parameter Weibull distributed service lives of the bearings and gears in the reduction. Planet bearing life strongly influences the optimal reduction lives which point to an optimal planetary reduction ratio in the neighborhood of four to five.
Experimental Optimization of a Free-to-Rotate Wing for Small UAS
NASA Technical Reports Server (NTRS)
Logan, Michael J.; DeLoach, Richard; Copeland, Tiwana; Vo, Steven
2014-01-01
This paper discusses an experimental investigation conducted to optimize a free-to-rotate wing for use on a small unmanned aircraft system (UAS). Although free-to-rotate wings have been used for decades on various small UAS and small manned aircraft, little is known about how to optimize these unusual wings for a specific application. The paper discusses some of the design rationale of the basic wing. In addition, three main parameters were selected for "optimization", wing camber, wing pivot location, and wing center of gravity (c.g.) location. A small apparatus was constructed to enable some simple experimental analysis of these parameters. A design-of-experiment series of tests were first conducted to discern which of the main optimization parameters were most likely to have the greatest impact on the outputs of interest, namely, some measure of "stability", some measure of the lift being generated at the neutral position, and how quickly the wing "recovers" from an upset. A second set of tests were conducted to develop a response-surface numerical representation of these outputs as functions of the three primary inputs. The response surface numerical representations are then used to develop an "optimum" within the trade space investigated. The results of the optimization are then tested experimentally to validate the predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loflin, Leonard
Through this grant, the U.S. Department of Energy (DOE) will review several functional areas within a nuclear power plant, including fire protection, operations and operations support, refueling, training, procurement, maintenance, site engineering, and others. Several functional areas need to be examined since there appears to be no single staffing area or approach that alone has the potential for significant staff optimization at new nuclear power plants. Several of the functional areas will require a review of technology options such as automation, remote monitoring, fleet wide monitoring, new and specialized instrumentation, human factors engineering, risk informed analysis and PRAs, component andmore » system condition monitoring and reporting, just in time training, electronic and automated procedures, electronic tools for configuration management and license and design basis information, etc., that may be applied to support optimization. Additionally, the project will require a review key regulatory issues that affect staffing and could be optimized with additional technology input. Opportunities to further optimize staffing levels and staffing functions by selection of design attributes of physical systems and structures need also be identified. A goal of this project is to develop a prioritized assessment of the functional areas, and R&D actions needed for those functional areas, to provide the best optimization« less
Tahmasbi, Vahid; Ghoreishi, Majid; Zolfaghari, Mojtaba
2017-11-01
The bone drilling process is very prominent in orthopedic surgeries and in the repair of bone fractures. It is also very common in dentistry and bone sampling operations. Due to the complexity of bone and the sensitivity of the process, bone drilling is one of the most important and sensitive processes in biomedical engineering. Orthopedic surgeries can be improved using robotic systems and mechatronic tools. The most crucial problem during drilling is an unwanted increase in process temperature (higher than 47 °C), which causes thermal osteonecrosis or cell death and local burning of the bone tissue. Moreover, imposing higher forces to the bone may lead to breaking or cracking and consequently cause serious damage. In this study, a mathematical second-order linear regression model as a function of tool drilling speed, feed rate, tool diameter, and their effective interactions is introduced to predict temperature and force during the bone drilling process. This model can determine the maximum speed of surgery that remains within an acceptable temperature range. Moreover, for the first time, using designed experiments, the bone drilling process was modeled, and the drilling speed, feed rate, and tool diameter were optimized. Then, using response surface methodology and applying a multi-objective optimization, drilling force was minimized to sustain an acceptable temperature range without damaging the bone or the surrounding tissue. In addition, for the first time, Sobol statistical sensitivity analysis is used to ascertain the effect of process input parameters on process temperature and force. The results show that among all effective input parameters, tool rotational speed, feed rate, and tool diameter have the highest influence on process temperature and force, respectively. The behavior of each output parameters with variation in each input parameter is further investigated. Finally, a multi-objective optimization has been performed considering all the aforementioned parameters. This optimization yielded a set of data that can considerably improve orthopedic osteosynthesis outcomes.
Jointly Optimal Design for MIMO Radar Frequency-Hopping Waveforms Using Game Theory
2016-04-01
Washington University in St . Louis St . Louis, MO, USA Using a colocated multiple input/multiple output (MIMO) radar system, we consider the problem of...Authors’ address: Preston M. Green Department of Electrical and Systems Engineering, Washington University in St . Louis, St . Louis, MO, 63130...engineering from Washington University in St . Louis, under the guidance of Dr. Arye Nehorai, in 2012 and 2015, respectively. His research interests
Electrochemical model based charge optimization for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Pramanik, Sourav; Anwar, Sohel
2016-05-01
In this paper, we propose the design of a novel optimal strategy for charging the lithium-ion battery based on electrochemical battery model that is aimed at improved performance. A performance index that aims at minimizing the charging effort along with a minimum deviation from the rated maximum thresholds for cell temperature and charging current has been defined. The method proposed in this paper aims at achieving a faster charging rate while maintaining safe limits for various battery parameters. Safe operation of the battery is achieved by including the battery bulk temperature as a control component in the performance index which is of critical importance for electric vehicles. Another important aspect of the performance objective proposed here is the efficiency of the algorithm that would allow higher charging rates without compromising the internal electrochemical kinetics of the battery which would prevent abusive conditions, thereby improving the long term durability. A more realistic model, based on battery electro-chemistry has been used for the design of the optimal algorithm as opposed to the conventional equivalent circuit models. To solve the optimization problem, Pontryagins principle has been used which is very effective for constrained optimization problems with both state and input constraints. Simulation results show that the proposed optimal charging algorithm is capable of shortening the charging time of a lithium ion cell while maintaining the temperature constraint when compared with the standard constant current charging. The designed method also maintains the internal states within limits that can avoid abusive operating conditions.
Vibration suppression of a piezo-equipped cylindrical shell in a broad-band frequency domain
NASA Astrophysics Data System (ADS)
Loghmani, Ali; Danesh, Mohammad; Kwak, Moon K.; Keshmiri, Mehdi
2017-12-01
This paper focuses on the dynamic modeling of a cylindrical shell equipped with piezoceramic sensors and actuators, as well as the design of a broad band multi-input and multi-output linear quadratic Gaussian controller for the suppression of vibrations. The optimal locations of actuators are derived by Genetic Algorithm (GA) to effectively control the specific structural modes of the cylinder. The dynamic model is derived based on the Sanders shell theory and the energy approach for both the cylinder and the piezoelectric transducers, all of which reflect the piezoelectric effect. The natural vibration characteristics of the cylindrical shell are investigated both theoretically and experimentally. The theoretical predictions are in good agreement with the experimental results. Then, the broad band multi-input and multi-output linear quadratic Gaussian controller was designed and applied to the test article. An active vibration control experiment is carried out on the cylindrical shell and the digital control system is used to implement the proposed control algorithm. The experimental results show that vibrations of the cylindrical shell can be suppressed by the piezoceramic sensors and actuators along with the proposed controller. The optimal location of the actuators makes the proposed control system more efficient than other configurations.
Intelligent vehicle safety control strategy in various driving situations
NASA Astrophysics Data System (ADS)
Moon, Seungwuk; Cho, Wanki; Yi, Kyongsu
2010-12-01
This paper describes a safety control strategy for intelligent vehicles with the objective of optimally coordinating the throttle, brake, and active front steering actuator inputs to obtain both lateral stability and longitudinal safety. The control system consists of a supervisor, control algorithms, and a coordinator. From the measurement and estimation signals, the supervisor determines the active control modes among normal driving, longitudinal safety, lateral stability, and integrated safety control mode. The control algorithms consist of longitudinal and lateral stability controllers. The longitudinal controller is designed to improve the driver's comfort during normal, safe-driving situations, and to avoid rear-end collision in vehicle-following situations. The lateral stability controller is designed to obtain the required manoeuvrability and to limit the vehicle body's side-slip angle. To obtain both longitudinal safety and lateral stability control in various driving situations, the coordinator optimally determines the throttle, brake, and active front steering inputs based on the current status of the subject vehicle. Closed-loop simulations with the driver-vehicle-controller system are conducted to investigate the performance of the proposed control strategy. From these simulation results, it is shown that the proposed control algorithm assists the driver in combined severe braking/large steering manoeuvring so that the driver can maintain good manoeuvrability and prevent the vehicle from crashing in vehicle-following situations.
VISIR-I: small vessels, least-time nautical routes using wave forecasts
NASA Astrophysics Data System (ADS)
Mannarini, G.; Pinardi, N.; Coppini, G.; Oddo, P.; Iafrati, A.
2015-09-01
A new numerical model for the on-demand computation of optimal ship routes based on sea-state forecasts has been developed. The model, named VISIR (discoVerIng Safe and effIcient Routes) is designed to support decision-makers when planning a marine voyage. The first version of the system, VISIR-I, considers medium and small motor vessels with lengths of up to a few tens of meters and a displacement hull. The model is made up of three components: the route optimization algorithm, the mechanical model of the ship, and the environmental fields. The optimization algorithm is based on a graph-search method with time-dependent edge weights. The algorithm is also able to compute a voluntary ship speed reduction. The ship model accounts for calm water and added wave resistance by making use of just the principal particulars of the vessel as input parameters. The system also checks the optimal route for parametric roll, pure loss of stability, and surfriding/broaching-to hazard conditions. Significant wave height, wave spectrum peak period, and wave direction forecast fields are employed as an input. Examples of VISIR-I routes in the Mediterranean Sea are provided. The optimal route may be longer in terms of miles sailed and yet it is faster and safer than the geodetic route between the same departure and arrival locations. Route diversions result from the safety constraints and the fact that the algorithm takes into account the full temporal evolution and spatial variability of the environmental fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Junhwan; Hwang, Sungui; Park, Kyihwan, E-mail: khpark@gist.ac.kr
To utilize a time-of-flight-based laser scanner as a distance measurement sensor, the measurable distance and accuracy are the most important performance parameters to consider. For these purposes, the optical system and electronic signal processing of the laser scanner should be optimally designed in order to reduce a distance error caused by the optical crosstalk and wide dynamic range input. Optical system design for removing optical crosstalk problem is proposed in this work. Intensity control is also considered to solve the problem of a phase-shift variation in the signal processing circuit caused by object reflectivity. The experimental results for optical systemmore » and signal processing design are performed using 3D measurements.« less
Amasya, Gulin; Badilli, Ulya; Aksu, Buket; Tarimci, Nilufer
2016-03-10
With Quality by Design (QbD), a systematic approach involving design and development of all production processes to achieve the final product with a predetermined quality, you work within a design space that determines the critical formulation and process parameters. Verification of the quality of the final product is no longer necessary. In the current study, the QbD approach was used in the preparation of lipid nanoparticle formulations to improve skin penetration of 5-Fluorouracil, a widely-used compound for treating non-melanoma skin cancer. 5-Fluorouracil-loaded lipid nanoparticles were prepared by the W/O/W double emulsion - solvent evaporation method. Artificial neural network software was used to evaluate the data obtained from the lipid nanoparticle formulations, to establish the design space, and to optimize the formulations. Two different artificial neural network models were developed. The limit values of the design space of the inputs and outputs obtained by both models were found to be within the knowledge space. The optimal formulations recommended by the models were prepared and the critical quality attributes belonging to those formulations were assigned. The experimental results remained within the design space limit values. Consequently, optimal formulations with the critical quality attributes determined to achieve the Quality Target Product Profile were successfully obtained within the design space by following the QbD steps. Copyright © 2016 Elsevier B.V. All rights reserved.
Optimization of neural network architecture for classification of radar jamming FM signals
NASA Astrophysics Data System (ADS)
Soto, Alberto; Mendoza, Ariadna; Flores, Benjamin C.
2017-05-01
The purpose of this study is to investigate several artificial Neural Network (NN) architectures in order to design a cognitive radar system capable of optimally distinguishing linear Frequency-Modulated (FM) signals from bandlimited Additive White Gaussian Noise (AWGN). The goal is to create a theoretical framework to determine an optimal NN architecture to achieve a Probability of Detection (PD) of 95% or higher and a Probability of False Alarm (PFA) of 1.5% or lower at 5 dB Signal to Noise Ratio (SNR). Literature research reveals that the frequency-domain power spectral densities characterize a signal more efficiently than its time-domain counterparts. Therefore, the input data is preprocessed by calculating the magnitude square of the Discrete Fourier Transform of the digitally sampled bandlimited AWGN and linear FM signals to populate a matrix containing N number of samples and M number of spectra. This matrix is used as input for the NN, and the spectra are divided as follows: 70% for training, 15% for validation, and 15% for testing. The study begins by experimentally deducing the optimal number of hidden neurons (1-40 neurons), then the optimal number of hidden layers (1-5 layers), and lastly, the most efficient learning algorithm. The training algorithms examined are: Resilient Backpropagation, Scaled Conjugate Gradient, Conjugate Gradient with Powell/Beale Restarts, Polak-Ribiére Conjugate Gradient, and Variable Learning Rate Backpropagation. We determine that an architecture with ten hidden neurons (or higher), one hidden layer, and a Scaled Conjugate Gradient for training algorithm encapsulates an optimal architecture for our application.
NASA Astrophysics Data System (ADS)
Kypraios, Ioannis; Young, Rupert C. D.; Chatwin, Chris R.
2009-08-01
Motivated by the non-linear interpolation and generalization abilities of the hybrid optical neural network filter between the reference and non-reference images of the true-class object we designed the modifiedhybrid optical neural network filter. We applied an optical mask to the hybrid optical neural network's filter input. The mask was built with the constant weight connections of a randomly chosen image included in the training set. The resulted design of the modified-hybrid optical neural network filter is optimized for performing best in cluttered scenes of the true-class object. Due to the shift invariance properties inherited by its correlator unit the filter can accommodate multiple objects of the same class to be detected within an input cluttered image. Additionally, the architecture of the neural network unit of the general hybrid optical neural network filter allows the recognition of multiple objects of different classes within the input cluttered image by modifying the output layer of the unit. We test the modified-hybrid optical neural network filter for multiple objects of the same and of different classes' recognition within cluttered input images and video sequences of cluttered scenes. The filter is shown to exhibit with a single pass over the input data simultaneously out-of-plane rotation, shift invariance and good clutter tolerance. It is able to successfully detect and classify correctly the true-class objects within background clutter for which there has been no previous training.
Optimal Output Trajectory Redesign for Invertible Systems
NASA Technical Reports Server (NTRS)
Devasia, S.
1996-01-01
Given a desired output trajectory, inversion-based techniques find input-state trajectories required to exactly track the output. These inversion-based techniques have been successfully applied to the endpoint tracking control of multijoint flexible manipulators and to aircraft control. The specified output trajectory uniquely determines the required input and state trajectories that are found through inversion. These input-state trajectories exactly track the desired output; however, they might not meet acceptable performance requirements. For example, during slewing maneuvers of flexible structures, the structural deformations, which depend on the required state trajectories, may be unacceptably large. Further, the required inputs might cause actuator saturation during an exact tracking maneuver, for example, in the flight control of conventional takeoff and landing aircraft. In such situations, a compromise is desired between the tracking requirement and other goals such as reduction of internal vibrations and prevention of actuator saturation; the desired output trajectory needs to redesigned. Here, we pose the trajectory redesign problem as an optimization of a general quadratic cost function and solve it in the context of linear systems. The solution is obtained as an off-line prefilter of the desired output trajectory. An advantage of our technique is that the prefilter is independent of the particular trajectory. The prefilter can therefore be precomputed, which is a major advantage over other optimization approaches. Previous works have addressed the issue of preshaping inputs to minimize residual and in-maneuver vibrations for flexible structures; Since the command preshaping is computed off-line. Further minimization of optimal quadratic cost functions has also been previously use to preshape command inputs for disturbance rejection. All of these approaches are applicable when the inputs to the system are known a priori. Typically, outputs (not inputs) are specified in tracking problems, and hence the input trajectories have to be computed. The inputs to the system are however, difficult to determine for non-minimum phase systems like flexible structures. One approach to solve this problem is to (1) choose a tracking controller (the desired output trajectory is now an input to the closed-loop system and (2) redesign this input to the closed-loop system. Thus we effectively perform output redesign. These redesigns are however, dependent on the choice of the tracking controllers. Thus the controller optimization and trajectory redesign problems become coupled; this coupled optimization is still an open problem. In contrast, we decouple the trajectory redesign problem from the choice of feedback-based tracking controller. It is noted that our approach remains valid when a particular tracking controller is chosen. In addition, the formulation of our problem not only allows for the minimization of residual vibration as in available techniques but also allows for the optimal reduction fo vibrations during the maneuver, e.g., the altitude control of flexible spacecraft. We begin by formulating the optimal output trajectory redesign problem and then solve it in the context of general linear systems. This theory is then applied to an example flexible structure, and simulation results are provided.
Dimitrov, I. K.; Zhang, X.; Solovyov, V. F.; ...
2015-07-07
Recent advances in second-generation (YBCO) high-temperature superconducting wire could potentially enable the design of super high performance energy storage devices that combine the high energy density of chemical storage with the high power of superconducting magnetic storage. However, the high aspect ratio and the considerable filament size of these wires require the concomitant development of dedicated optimization methods that account for the critical current density in type-II superconductors. In this study, we report on the novel application and results of a CPU-efficient semianalytical computer code based on the Radia 3-D magnetostatics software package. Our algorithm is used to simulate andmore » optimize the energy density of a superconducting magnetic energy storage device model, based on design constraints, such as overall size and number of coils. The rapid performance of the code is pivoted on analytical calculations of the magnetic field based on an efficient implementation of the Biot-Savart law for a large variety of 3-D “base” geometries in the Radia package. The significantly reduced CPU time and simple data input in conjunction with the consideration of realistic input variables, such as material-specific, temperature, and magnetic-field-dependent critical current densities, have enabled the Radia-based algorithm to outperform finite-element approaches in CPU time at the same accuracy levels. Comparative simulations of MgB 2 and YBCO-based devices are performed at 4.2 K, in order to ascertain the realistic efficiency of the design configurations.« less
Automatic Design of Digital Synthetic Gene Circuits
Marchisio, Mario A.; Stelling, Jörg
2011-01-01
De novo computational design of synthetic gene circuits that achieve well-defined target functions is a hard task. Existing, brute-force approaches run optimization algorithms on the structure and on the kinetic parameter values of the network. However, more direct rational methods for automatic circuit design are lacking. Focusing on digital synthetic gene circuits, we developed a methodology and a corresponding tool for in silico automatic design. For a given truth table that specifies a circuit's input–output relations, our algorithm generates and ranks several possible circuit schemes without the need for any optimization. Logic behavior is reproduced by the action of regulatory factors and chemicals on the promoters and on the ribosome binding sites of biological Boolean gates. Simulations of circuits with up to four inputs show a faithful and unequivocal truth table representation, even under parametric perturbations and stochastic noise. A comparison with already implemented circuits, in addition, reveals the potential for simpler designs with the same function. Therefore, we expect the method to help both in devising new circuits and in simplifying existing solutions. PMID:21399700
Arteaga-Sierra, F R; Milián, C; Torres-Gómez, I; Torres-Cisneros, M; Moltó, G; Ferrando, A
2014-09-22
We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during supercontinuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed.
Mode-field adapter for tapered-fiber-bundle signal and pump combiners.
Koška, Pavel; Baravets, Yauhen; Peterka, Pavel; Bohata, Jan; Písařík, Michael
2015-02-01
We report on a novel mode-field adapter that is proposed to be incorporated inside tapered fused-fiber-bundle pump and signal combiners for high-power double-clad fiber lasers. Such an adapter allows optimization of signal-mode-field matching on the input and output fibers. Correspondingly, losses of the combiner signal branch are significantly reduced. The mode-field adapter optimization procedure is demonstrated on a combiner based on commercially available fibers. Signal wavelengths of 1.55 and 2 μm are considered. The losses can be further improved by using specially designed intermediate fiber and by dopant diffusion during splicing as confirmed by preliminary experimental results.
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.
1976-01-01
A FORTRAN program is presented for preliminary analysis and design of multilayered composite panels subjected to inplane loads. All plys are of the same material. The composite is assumed symmetric about the midplane, but need not be balanced. Failure criterion includes limit ply strains and lower bounds on composite inplane stiffnesses. Multiple load conditions are considered. The required input data is defined and examples are provided to aid the use in making the program operational. Average panel design times are two seconds on an IBM 360/67 computer. Results are compared with published literature. A complete FORTRAN listing of program COMAND is provided. In addition, the optimization program CONMIN is required for design.
NASA Astrophysics Data System (ADS)
Taha, Ahmad Fayez
Transportation networks, wearable devices, energy systems, and the book you are reading now are all ubiquitous cyber-physical systems (CPS). These inherently uncertain systems combine physical phenomena with communication, data processing, control and optimization. Many CPSs are controlled and monitored by real-time control systems that use communication networks to transmit and receive data from systems modeled by physical processes. Existing studies have addressed a breadth of challenges related to the design of CPSs. However, there is a lack of studies on uncertain CPSs subject to dynamic unknown inputs and cyber-attacks---an artifact of the insertion of communication networks and the growing complexity of CPSs. The objective of this dissertation is to create secure, computational foundations for uncertain CPSs by establishing a framework to control, estimate and optimize the operation of these systems. With major emphasis on power networks, the dissertation deals with the design of secure computational methods for uncertain CPSs, focusing on three crucial issues---(1) cyber-security and risk-mitigation, (2) network-induced time-delays and perturbations and (3) the encompassed extreme time-scales. The dissertation consists of four parts. In the first part, we investigate dynamic state estimation (DSE) methods and rigorously examine the strengths and weaknesses of the proposed routines under dynamic attack-vectors and unknown inputs. In the second part, and utilizing high-frequency measurements in smart grids and the developed DSE methods in the first part, we present a risk mitigation strategy that minimizes the encountered threat levels, while ensuring the continual observability of the system through available, safe measurements. The developed methods in the first two parts rely on the assumption that the uncertain CPS is not experiencing time-delays, an assumption that might fail under certain conditions. To overcome this challenge, networked unknown input observers---observers/estimators for uncertain CPSs---are designed such that the effect of time-delays and cyber-induced perturbations are minimized, enabling secure DSE and risk mitigation in the first two parts. The final part deals with the extreme time-scales encompassed in CPSs, generally, and smart grids, specifically. Operational decisions for long time-scales can adversely affect the security of CPSs for faster time-scales. We present a model that jointly describes steady-state operation and transient stability by combining convex optimal power flow with semidefinite programming formulations of an optimal control problem. This approach can be jointly utilized with the aforementioned parts of the dissertation work, considering time-delays and DSE. The research contributions of this dissertation furnish CPS stakeholders with insights on the design and operation of uncertain CPSs, whilst guaranteeing the system's real-time safety. Finally, although many of the results of this dissertation are tailored to power systems, the results are general enough to be applied for a variety of uncertain CPSs.
NASA Technical Reports Server (NTRS)
Rogers, James L.; Feyock, Stefan; Sobieszczanski-Sobieski, Jaroslaw
1988-01-01
The purpose of this research effort is to investigate the benefits that might be derived from applying artificial intelligence tools in the area of conceptual design. Therefore, the emphasis is on the artificial intelligence aspects of conceptual design rather than structural and optimization aspects. A prototype knowledge-based system, called STRUTEX, was developed to initially configure a structure to support point loads in two dimensions. This system combines numerical and symbolic processing by the computer with interactive problem solving aided by the vision of the user by integrating a knowledge base interface and inference engine, a data base interface, and graphics while keeping the knowledge base and data base files separate. The system writes a file which can be input into a structural synthesis system, which combines structural analysis and optimization.
NASA Astrophysics Data System (ADS)
Bashiri, Mahdi; Farshbaf-Geranmayeh, Amir; Mogouie, Hamed
2013-11-01
In this paper, a new method is proposed to optimize a multi-response optimization problem based on the Taguchi method for the processes where controllable factors are the smaller-the-better (STB)-type variables and the analyzer desires to find an optimal solution with smaller amount of controllable factors. In such processes, the overall output quality of the product should be maximized while the usage of the process inputs, the controllable factors, should be minimized. Since all possible combinations of factors' levels, are not considered in the Taguchi method, the response values of the possible unpracticed treatments are estimated using the artificial neural network (ANN). The neural network is tuned by the central composite design (CCD) and the genetic algorithm (GA). Then data envelopment analysis (DEA) is applied for determining the efficiency of each treatment. Although the important issue for implementation of DEA is its philosophy, which is maximization of outputs versus minimization of inputs, this important issue has been neglected in previous similar studies in multi-response problems. Finally, the most efficient treatment is determined using the maximin weight model approach. The performance of the proposed method is verified in a plastic molding process. Moreover a sensitivity analysis has been done by an efficiency estimator neural network. The results show efficiency of the proposed approach.
Juang, Chia-Feng; Hsu, Chia-Hung
2009-12-01
This paper proposes a new reinforcement-learning method using online rule generation and Q-value-aided ant colony optimization (ORGQACO) for fuzzy controller design. The fuzzy controller is based on an interval type-2 fuzzy system (IT2FS). The antecedent part in the designed IT2FS uses interval type-2 fuzzy sets to improve controller robustness to noise. There are initially no fuzzy rules in the IT2FS. The ORGQACO concurrently designs both the structure and parameters of an IT2FS. We propose an online interval type-2 rule generation method for the evolution of system structure and flexible partitioning of the input space. Consequent part parameters in an IT2FS are designed using Q -values and the reinforcement local-global ant colony optimization algorithm. This algorithm selects the consequent part from a set of candidate actions according to ant pheromone trails and Q-values, both of which are updated using reinforcement signals. The ORGQACO design method is applied to the following three control problems: 1) truck-backing control; 2) magnetic-levitation control; and 3) chaotic-system control. The ORGQACO is compared with other reinforcement-learning methods to verify its efficiency and effectiveness. Comparisons with type-1 fuzzy systems verify the noise robustness property of using an IT2FS.
Zeng, Xiaozheng; McGough, Robert J.
2009-01-01
The angular spectrum approach is evaluated for the simulation of focused ultrasound fields produced by large thermal therapy arrays. For an input pressure or normal particle velocity distribution in a plane, the angular spectrum approach rapidly computes the output pressure field in a three dimensional volume. To determine the optimal combination of simulation parameters for angular spectrum calculations, the effect of the size, location, and the numerical accuracy of the input plane on the computed output pressure is evaluated. Simulation results demonstrate that angular spectrum calculations performed with an input pressure plane are more accurate than calculations with an input velocity plane. Results also indicate that when the input pressure plane is slightly larger than the array aperture and is located approximately one wavelength from the array, angular spectrum simulations have very small numerical errors for two dimensional planar arrays. Furthermore, the root mean squared error from angular spectrum simulations asymptotically approaches a nonzero lower limit as the error in the input plane decreases. Overall, the angular spectrum approach is an accurate and robust method for thermal therapy simulations of large ultrasound phased arrays when the input pressure plane is computed with the fast nearfield method and an optimal combination of input parameters. PMID:19425640
NASA Astrophysics Data System (ADS)
Torabi, Amir; Kolahan, Farhad
2018-07-01
Pulsed laser welding is a powerful technique especially suitable for joining thin sheet metals. In this study, based on experimental data, pulsed laser welding of thin AISI316L austenitic stainless steel sheet has been modeled and optimized. The experimental data required for modeling are gathered as per Central Composite Design matrix in Response Surface Methodology (RSM) with full replication of 31 runs. Ultimate Tensile Strength (UTS) is considered as the main quality measure in laser welding. Furthermore, the important process parameters including peak power, pulse duration, pulse frequency and welding speed are selected as input process parameters. The relation between input parameters and the output response is established via full quadratic response surface regression with confidence level of 95%. The adequacy of the regression model was verified using Analysis of Variance technique results. The main effects of each factor and the interactions effects with other factors were analyzed graphically in contour and surface plot. Next, to maximum joint UTS, the best combinations of parameters levels were specified using RSM. Moreover, the mathematical model is implanted into a Simulated Annealing (SA) optimization algorithm to determine the optimal values of process parameters. The results obtained by both SA and RSM optimization techniques are in good agreement. The optimal parameters settings for peak power of 1800 W, pulse duration of 4.5 ms, frequency of 4.2 Hz and welding speed of 0.5 mm/s would result in a welded joint with 96% of the base metal UTS. Computational results clearly demonstrate that the proposed modeling and optimization procedures perform quite well for pulsed laser welding process.
NASA Astrophysics Data System (ADS)
Gunduz, Mustafa Emre
Many government agencies and corporations around the world have found the unique capabilities of rotorcraft indispensable. Incorporating such capabilities into rotorcraft design poses extra challenges because it is a complicated multidisciplinary process. The concept of applying several disciplines to the design and optimization processes may not be new, but it does not currently seem to be widely accepted in industry. The reason for this might be the lack of well-known tools for realizing a complete multidisciplinary design and analysis of a product. This study aims to propose a method that enables engineers in some design disciplines to perform a fairly detailed analysis and optimization of a design using commercially available software as well as codes developed at Georgia Tech. The ultimate goal is when the system is set up properly, the CAD model of the design, including all subsystems, will be automatically updated as soon as a new part or assembly is added to the design; or it will be updated when an analysis and/or an optimization is performed and the geometry needs to be modified. Designers and engineers will be involved in only checking the latest design for errors or adding/removing features. Such a design process will take dramatically less time to complete; therefore, it should reduce development time and costs. The optimization method is demonstrated on an existing helicopter rotor originally designed in the 1960's. The rotor is already an effective design with novel features. However, application of the optimization principles together with high-speed computing resulted in an even better design. The objective function to be minimized is related to the vibrations of the rotor system under gusty wind conditions. The design parameters are all continuous variables. Optimization is performed in a number of steps. First, the most crucial design variables of the objective function are identified. With these variables, Latin Hypercube Sampling method is used to probe the design space of several local minima and maxima. After analysis of numerous samples, an optimum configuration of the design that is more stable than that of the initial design is reached. The above process requires several software tools: CATIA as the CAD tool, ANSYS as the FEA tool, VABS for obtaining the cross-sectional structural properties, and DYMORE for the frequency and dynamic analysis of the rotor. MATLAB codes are also employed to generate input files and read output files of DYMORE. All these tools are connected using ModelCenter.
Recent developments of axial flow compressors under transonic flow conditions
NASA Astrophysics Data System (ADS)
Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.
2017-05-01
The objective of this paper is to give a holistic view of the most advanced technology and procedures that are practiced in the field of turbomachinery design. Compressor flow solver is the turbulence model used in the CFD to solve viscous problems. The popular techniques like Jameson’s rotated difference scheme was used to solve potential flow equation in transonic condition for two dimensional aero foils and later three dimensional wings. The gradient base method is also a popular method especially for compressor blade shape optimization. Various other types of optimization techniques available are Evolutionary algorithms (EAs) and Response surface methodology (RSM). It is observed that in order to improve compressor flow solver and to get agreeable results careful attention need to be paid towards viscous relations, grid resolution, turbulent modeling and artificial viscosity, in CFD. The advanced techniques like Jameson’s rotated difference had most substantial impact on wing design and aero foil. For compressor blade shape optimization, Evolutionary algorithm is quite simple than gradient based technique because it can solve the parameters simultaneously by searching from multiple points in the given design space. Response surface methodology (RSM) is a method basically used to design empirical models of the response that were observed and to study systematically the experimental data. This methodology analyses the correct relationship between expected responses (output) and design variables (input). RSM solves the function systematically in a series of mathematical and statistical processes. For turbomachinery blade optimization recently RSM has been implemented successfully. The well-designed high performance axial flow compressors finds its application in any air-breathing jet engines.
NASA Technical Reports Server (NTRS)
Shuler, Robert L.; Balasubramanian, Anupama; Narasimham, Balaji; Bhuva, Bharat; O'Neill, Patrick M.; Kouba, Coy
2006-01-01
Design options for decreasing the susceptibility of integrated circuits to Single Event Upset (SEU) fall into two categories: (1) increasing the critical charge to cause an upset at a particular node, and (2) employing redundancy to mask or correct errors. With decreasing device sizes on an Integrated Circuit (IC), the amount of charge required to represent a logic state has steadily reduced. Critical charge methods such as increasing drive strength or increasing the time required to change state as in capacitive or resistive hardening or delay based approaches extract a steadily increasing penalty as a percentage of device resources and performance. Dual redundancy is commonly assumed only to provide error detection with Triple Modular Redundancy (TMR) required for correction, but less well known methods employ dual redundancy to achieve full error correction by voting two inputs with a prior state to resolve ambiguity. This requires special circuits such as the Whitaker latch [1], or the guard-gate [2] which some of us have called a Transition AND Gate (TAG) [3]. A 2-input guard gate is shown in Figure 1. It is similar to a Muller Completion Element [4] and relies on capacitance at node "out" to retain the prior state when inputs disagree, while eliminating any output buffer which would be susceptible to radiation strikes. This paper experimentally compares delay based and dual rail flip-flop designs wherein both types of circuits employ guard-gates to optimize layout and performance, and draws conclusions about design criteria and suitability of each option. In both cases a design goal is protection against Single Event Transients (SET) in combinational logic as well as SEU in the storage elements. For the delay based design, it is also a goal to allow asynchronous clear or preset inputs on the storage elements, which are often not available in radiation tolerant designs.
CBM First-level Event Selector Input Interface Demonstrator
NASA Astrophysics Data System (ADS)
Hutter, Dirk; de Cuveland, Jan; Lindenstruth, Volker
2017-10-01
CBM is a heavy-ion experiment at the future FAIR facility in Darmstadt, Germany. Featuring self-triggered front-end electronics and free-streaming read-out, event selection will exclusively be done by the First Level Event Selector (FLES). Designed as an HPC cluster with several hundred nodes its task is an online analysis and selection of the physics data at a total input data rate exceeding 1 TByte/s. To allow efficient event selection, the FLES performs timeslice building, which combines the data from all given input links to self-contained, potentially overlapping processing intervals and distributes them to compute nodes. Partitioning the input data streams into specialized containers allows performing this task very efficiently. The FLES Input Interface defines the linkage between the FEE and the FLES data transport framework. A custom FPGA PCIe board, the FLES Interface Board (FLIB), is used to receive data via optical links and transfer them via DMA to the host’s memory. The current prototype of the FLIB features a Kintex-7 FPGA and provides up to eight 10 GBit/s optical links. A custom FPGA design has been developed for this board. DMA transfers and data structures are optimized for subsequent timeslice building. Index tables generated by the FPGA enable fast random access to the written data containers. In addition the DMA target buffers can directly serve as InfiniBand RDMA source buffers without copying the data. The usage of POSIX shared memory for these buffers allows data access from multiple processes. An accompanying HDL module has been developed to integrate the FLES link into the front-end FPGA designs. It implements the front-end logic interface as well as the link protocol. Prototypes of all Input Interface components have been implemented and integrated into the FLES test framework. This allows the implementation and evaluation of the foreseen CBM read-out chain.
Ocean power technology design optimization
van Rij, Jennifer; Yu, Yi -Hsiang; Edwards, Kathleen; ...
2017-07-18
For this study, the National Renewable Energy Laboratory and Ocean Power Technologies (OPT) conducted a collaborative code validation and design optimization study for OPT's PowerBuoy wave energy converter (WEC). NREL utilized WEC-Sim, an open-source WEC simulator, to compare four design variations of OPT's PowerBuoy. As an input to the WEC-Sim models, viscous drag coefficients for the PowerBuoy floats were first evaluated using computational fluid dynamics. The resulting WEC-Sim PowerBuoy models were then validated with experimental power output and fatigue load data provided by OPT. The validated WEC-Sim models were then used to simulate the power performance and loads for operationalmore » conditions, extreme conditions, and directional waves, for each of the four PowerBuoy design variations, assuming the wave environment of Humboldt Bay, California. And finally, ratios of power-to-weight, power-to-fatigue-load, power-to-maximum-extreme-load, power-to-water-plane-area, and power-to-wetted-surface-area were used to make a final comparison of the potential PowerBuoy WEC designs. Lastly, the design comparison methodologies developed and presented in this study are applicable to other WEC devices and may be useful as a framework for future WEC design development projects.« less
Ocean power technology design optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Rij, Jennifer; Yu, Yi -Hsiang; Edwards, Kathleen
For this study, the National Renewable Energy Laboratory and Ocean Power Technologies (OPT) conducted a collaborative code validation and design optimization study for OPT's PowerBuoy wave energy converter (WEC). NREL utilized WEC-Sim, an open-source WEC simulator, to compare four design variations of OPT's PowerBuoy. As an input to the WEC-Sim models, viscous drag coefficients for the PowerBuoy floats were first evaluated using computational fluid dynamics. The resulting WEC-Sim PowerBuoy models were then validated with experimental power output and fatigue load data provided by OPT. The validated WEC-Sim models were then used to simulate the power performance and loads for operationalmore » conditions, extreme conditions, and directional waves, for each of the four PowerBuoy design variations, assuming the wave environment of Humboldt Bay, California. And finally, ratios of power-to-weight, power-to-fatigue-load, power-to-maximum-extreme-load, power-to-water-plane-area, and power-to-wetted-surface-area were used to make a final comparison of the potential PowerBuoy WEC designs. Lastly, the design comparison methodologies developed and presented in this study are applicable to other WEC devices and may be useful as a framework for future WEC design development projects.« less
Influence of operating conditions on the optimum design of electric vehicle battery cooling plates
NASA Astrophysics Data System (ADS)
Jarrett, Anthony; Kim, Il Yong
2014-01-01
The efficiency of cooling plates for electric vehicle batteries can be improved by optimizing the geometry of internal fluid channels. In practical operation, a cooling plate is exposed to a range of operating conditions dictated by the battery, environment, and driving behaviour. To formulate an efficient cooling plate design process, the optimum design sensitivity with respect to each boundary condition is desired. This determines which operating conditions must be represented in the design process, and therefore the complexity of designing for multiple operating conditions. The objective of this study is to determine the influence of different operating conditions on the optimum cooling plate design. Three important performance measures were considered: temperature uniformity, mean temperature, and pressure drop. It was found that of these three, temperature uniformity was most sensitive to the operating conditions, especially with respect to the distribution of the input heat flux, and also to the coolant flow rate. An additional focus of the study was the distribution of heat generated by the battery cell: while it is easier to assume that heat is generated uniformly, by using an accurate distribution for design optimization, this study found that cooling plate performance could be significantly improved.
Self-Learning Variable Structure Control for a Class of Sensor-Actuator Systems
Chen, Sanfeng; Li, Shuai; Liu, Bo; Lou, Yuesheng; Liang, Yongsheng
2012-01-01
Variable structure strategy is widely used for the control of sensor-actuator systems modeled by Euler-Lagrange equations. However, accurate knowledge on the model structure and model parameters are often required for the control design. In this paper, we consider model-free variable structure control of a class of sensor-actuator systems, where only the online input and output of the system are available while the mathematic model of the system is unknown. The problem is formulated from an optimal control perspective and the implicit form of the control law are analytically obtained by using the principle of optimality. The control law and the optimal cost function are explicitly solved iteratively. Simulations demonstrate the effectiveness and the efficiency of the proposed method. PMID:22778633
Quality Tetrahedral Mesh Smoothing via Boundary-Optimized Delaunay Triangulation
Gao, Zhanheng; Yu, Zeyun; Holst, Michael
2012-01-01
Despite its great success in improving the quality of a tetrahedral mesh, the original optimal Delaunay triangulation (ODT) is designed to move only inner vertices and thus cannot handle input meshes containing “bad” triangles on boundaries. In the current work, we present an integrated approach called boundary-optimized Delaunay triangulation (B-ODT) to smooth (improve) a tetrahedral mesh. In our method, both inner and boundary vertices are repositioned by analytically minimizing the error between a paraboloid function and its piecewise linear interpolation over the neighborhood of each vertex. In addition to the guaranteed volume-preserving property, the proposed algorithm can be readily adapted to preserve sharp features in the original mesh. A number of experiments are included to demonstrate the performance of our method. PMID:23144522
NASA Technical Reports Server (NTRS)
Jacob, H. G.
1972-01-01
An optimization method has been developed that computes the optimal open loop inputs for a dynamical system by observing only its output. The method reduces to static optimization by expressing the inputs as series of functions with parameters to be optimized. Since the method is not concerned with the details of the dynamical system to be optimized, it works for both linear and nonlinear systems. The method and the application to optimizing longitudinal landing paths for a STOL aircraft with an augmented wing are discussed. Noise, fuel, time, and path deviation minimizations are considered with and without angle of attack, acceleration excursion, flight path, endpoint, and other constraints.
Predictive optimized adaptive PSS in a single machine infinite bus.
Milla, Freddy; Duarte-Mermoud, Manuel A
2016-07-01
Power System Stabilizer (PSS) devices are responsible for providing a damping torque component to generators for reducing fluctuations in the system caused by small perturbations. A Predictive Optimized Adaptive PSS (POA-PSS) to improve the oscillations in a Single Machine Infinite Bus (SMIB) power system is discussed in this paper. POA-PSS provides the optimal design parameters for the classic PSS using an optimization predictive algorithm, which adapts to changes in the inputs of the system. This approach is part of small signal stability analysis, which uses equations in an incremental form around an operating point. Simulation studies on the SMIB power system illustrate that the proposed POA-PSS approach has better performance than the classical PSS. In addition, the effort in the control action of the POA-PSS is much less than that of other approaches considered for comparison. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Deformable Image Registration based on Similarity-Steered CNN Regression.
Cao, Xiaohuan; Yang, Jianhua; Zhang, Jun; Nie, Dong; Kim, Min-Jeong; Wang, Qian; Shen, Dinggang
2017-09-01
Existing deformable registration methods require exhaustively iterative optimization, along with careful parameter tuning, to estimate the deformation field between images. Although some learning-based methods have been proposed for initiating deformation estimation, they are often template-specific and not flexible in practical use. In this paper, we propose a convolutional neural network (CNN) based regression model to directly learn the complex mapping from the input image pair (i.e., a pair of template and subject) to their corresponding deformation field. Specifically, our CNN architecture is designed in a patch-based manner to learn the complex mapping from the input patch pairs to their respective deformation field. First, the equalized active-points guided sampling strategy is introduced to facilitate accurate CNN model learning upon a limited image dataset. Then, the similarity-steered CNN architecture is designed, where we propose to add the auxiliary contextual cue, i.e., the similarity between input patches, to more directly guide the learning process. Experiments on different brain image datasets demonstrate promising registration performance based on our CNN model. Furthermore, it is found that the trained CNN model from one dataset can be successfully transferred to another dataset, although brain appearances across datasets are quite variable.
NASA Astrophysics Data System (ADS)
Lee, Keun
Renewable energy in different forms has been used in various applications for survival since the beginning of human existence. However, there is a new dire need to reevaluate and recalibrate the overall energy issue both nationally and globally. This includes, but is not limited to, the finite availability of fossil fuel, energy sustainability with an increasing demand, escalating energy costs, environmental impact such as global warming and green-house gases, to name a few. This dissertation is primarily focused and related to the production and usage of electricity from non-hydro renewable sources. Among non-hydro renewable energy sources, electricity generation from wind and solar energy are the fastest-growing technologies in the United States and in the world. However, due to the intermittent nature of such renewable sources, energy storage devices are required to maintain proper operation of the grid system and in order to increase reliability. A hybrid system, as the name suggests, is a combination of different forms of non-renewable and renewable energy generation, with or without storage devices. Hybrid systems, when applied properly, are able to improve reliability and enhance stability, reduce emissions and noise pollution, provide continuous power, increase operation life, reduce cost, and efficiently use all available energy. In the United States (U.S.), buildings consume approximately 40% of the total primary energy and 74% of the total electricity. Therefore, reduction of energy consumption and improved energy efficiency in U.S. buildings will play a vital role in the overall energy picture. Electrical energy usage for any such building varies widely depending on age (construction technique), electricity and natural gas usage, appearance, location and climate. In this research, a hybrid system including non-renewable and renewable energy generation with storage devices specifically for building applications, is studied in detail. This research deals with the optimization of the hybrid system design (which consists of PV panels and/or wind turbines and/or storage devices for building applications) by developing an algorithm designed to make the system cost effective and energy efficient. Input data includes electrical load demand profile of the buildings, buildings' structural and geographical characteristics, real time pricing of electricity, and the costs of hybrid systems and storage devices. When the electrical load demand profile of a building that is being studied is available, a measured demand profile is directly used as input data. However, if that information is not available, a building's electric load demand is estimated using a developed algorithm based on three large data sources from a public domain, and used as input data. Using the acquired input data, the algorithm of this research is designed and programmed in order to determine the size of renewable components and to minimize the total yearly net cost. This dissertation also addresses the parametric sensitivity analysis to determine which factors are more significant and are expected to produce useful guidelines in the decision making process. An engineered and more practical, simplified solution has been provided for the optimized design process.
SciDAC-Data, A Project to Enabling Data Driven Modeling of Exascale Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mubarak, M.; Ding, P.; Aliaga, L.
The SciDAC-Data project is a DOE funded initiative to analyze and exploit two decades of information and analytics that have been collected by the Fermilab Data Center on the organization, movement, and consumption of High Energy Physics data. The project will analyze the analysis patterns and data organization that have been used by the NOvA, MicroBooNE, MINERvA and other experiments, to develop realistic models of HEP analysis workflows and data processing. The SciDAC-Data project aims to provide both realistic input vectors and corresponding output data that can be used to optimize and validate simulations of HEP analysis. These simulations aremore » designed to address questions of data handling, cache optimization and workflow structures that are the prerequisites for modern HEP analysis chains to be mapped and optimized to run on the next generation of leadership class exascale computing facilities. We will address the use of the SciDAC-Data distributions acquired from Fermilab Data Center’s analysis workflows and corresponding to around 71,000 HEP jobs, as the input to detailed queuing simulations that model the expected data consumption and caching behaviors of the work running in HPC environments. In particular we describe in detail how the Sequential Access via Metadata (SAM) data handling system in combination with the dCache/Enstore based data archive facilities have been analyzed to develop the radically different models of the analysis of HEP data. We present how the simulation may be used to analyze the impact of design choices in archive facilities.« less
Processing Oscillatory Signals by Incoherent Feedforward Loops
Zhang, Carolyn; You, Lingchong
2016-01-01
From the timing of amoeba development to the maintenance of stem cell pluripotency, many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression. While the networks underlying this signal decoding are diverse, many are built around a common motif, the incoherent feedforward loop (IFFL), where an input simultaneously activates an output and an inhibitor of the output. With appropriate parameters, this motif can exhibit temporal adaptation, where the system is desensitized to a sustained input. This property serves as the foundation for distinguishing input signals with varying temporal profiles. Here, we use quantitative modeling to examine another property of IFFLs—the ability to process oscillatory signals. Our results indicate that the system’s ability to translate pulsatile dynamics is limited by two constraints. The kinetics of the IFFL components dictate the input range for which the network is able to decode pulsatile dynamics. In addition, a match between the network parameters and input signal characteristics is required for optimal “counting”. We elucidate one potential mechanism by which information processing occurs in natural networks, and our work has implications in the design of synthetic gene circuits for this purpose. PMID:27623175
Modelling and Simulation in the Design Process of Armored Vehicles
2003-03-01
trackway conditions is a demanding optimization task. Basically, a high level of ride comfort requires soft suspension tuning, whereas driving safety relies...The maximum off-road speed is generally limited by traction, input torque, driving safety and ride comfort. When obstacles are to be negotiated, the...wheel travel was defined during the mobility simulation runs. Figure 14: Ramp 1.5m at 40 kph; virtual and physical prototype Driving safety and ride
Design principles and operating principles: the yin and yang of optimal functioning.
Voit, Eberhard O
2003-03-01
Metabolic engineering has as a goal the improvement of yield of desired products from microorganisms and cell lines. This goal has traditionally been approached with experimental biotechnological methods, but it is becoming increasingly popular to precede the experimental phase by a mathematical modeling step that allows objective pre-screening of possible improvement strategies. The models are either linear and represent the stoichiometry and flux distribution in pathways or they are non-linear and account for the full kinetic behavior of the pathway, which is often significantly effected by regulatory signals. Linear flux analysis is simpler and requires less input information than a full kinetic analysis, and the question arises whether the consideration of non-linearities is really necessary for devising optimal strategies for yield improvements. The article analyzes this question with a generic, representative pathway. It shows that flux split ratios, which are the key criterion for linear flux analysis, are essentially sufficient for unregulated, but not for regulated branch points. The interrelationships between regulatory design on one hand and optimal patterns of operation on the other suggest the investigation of operating principles that complement design principles, like a user's manual complements the hardwiring of electronic equipment.
Directional hearing by linear summation of binaural inputs at the medial superior olive
van der Heijden, Marcel; Lorteije, Jeannette A. M.; Plauška, Andrius; Roberts, Michael T.; Golding, Nace L.; Borst, J. Gerard G.
2013-01-01
SUMMARY Neurons in the medial superior olive (MSO) enable sound localization by their remarkable sensitivity to submillisecond interaural time differences (ITDs). Each MSO neuron has its own “best ITD” to which it responds optimally. A difference in physical path length of the excitatory inputs from both ears cannot fully account for the ITD tuning of MSO neurons. As a result, it is still debated how these inputs interact and whether the segregation of inputs to opposite dendrites, well-timed synaptic inhibition, or asymmetries in synaptic potentials or cellular morphology further optimize coincidence detection or ITD tuning. Using in vivo whole-cell and juxtacellular recordings, we show here that ITD tuning of MSO neurons is determined by the timing of their excitatory inputs. The inputs from both ears sum linearly, whereas spike probability depends nonlinearly on the size of synaptic inputs. This simple coincidence detection scheme thus makes accurate sound localization possible. PMID:23764292
Actor-critic-based optimal tracking for partially unknown nonlinear discrete-time systems.
Kiumarsi, Bahare; Lewis, Frank L
2015-01-01
This paper presents a partially model-free adaptive optimal control solution to the deterministic nonlinear discrete-time (DT) tracking control problem in the presence of input constraints. The tracking error dynamics and reference trajectory dynamics are first combined to form an augmented system. Then, a new discounted performance function based on the augmented system is presented for the optimal nonlinear tracking problem. In contrast to the standard solution, which finds the feedforward and feedback terms of the control input separately, the minimization of the proposed discounted performance function gives both feedback and feedforward parts of the control input simultaneously. This enables us to encode the input constraints into the optimization problem using a nonquadratic performance function. The DT tracking Bellman equation and tracking Hamilton-Jacobi-Bellman (HJB) are derived. An actor-critic-based reinforcement learning algorithm is used to learn the solution to the tracking HJB equation online without requiring knowledge of the system drift dynamics. That is, two neural networks (NNs), namely, actor NN and critic NN, are tuned online and simultaneously to generate the optimal bounded control policy. A simulation example is given to show the effectiveness of the proposed method.
The Study on Network Examinational Database based on ASP Technology
NASA Astrophysics Data System (ADS)
Zhang, Yanfu; Han, Yuexiao; Zhou, Yanshuang
This article introduces the structure of the general test base system based on .NET technology, discussing the design of the function modules and its implementation methods. It focuses on key technology of the system, proposing utilizing the WEB online editor control to solve the input problem and regular expression to solve the problem HTML code, making use of genetic algorithm to optimize test paper and the automated tools of WORD to solve the problem of exporting papers and others. Practical effective design and implementation technology can be used as reference for the development of similar systems.
Fitting Nonlinear Curves by use of Optimization Techniques
NASA Technical Reports Server (NTRS)
Hill, Scott A.
2005-01-01
MULTIVAR is a FORTRAN 77 computer program that fits one of the members of a set of six multivariable mathematical models (five of which are nonlinear) to a multivariable set of data. The inputs to MULTIVAR include the data for the independent and dependent variables plus the user s choice of one of the models, one of the three optimization engines, and convergence criteria. By use of the chosen optimization engine, MULTIVAR finds values for the parameters of the chosen model so as to minimize the sum of squares of the residuals. One of the optimization engines implements a routine, developed in 1982, that utilizes the Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable-metric method for unconstrained minimization in conjunction with a one-dimensional search technique that finds the minimum of an unconstrained function by polynomial interpolation and extrapolation without first finding bounds on the solution. The second optimization engine is a faster and more robust commercially available code, denoted Design Optimization Tool, that also uses the BFGS method. The third optimization engine is a robust and relatively fast routine that implements the Levenberg-Marquardt algorithm.
A data driven control method for structure vibration suppression
NASA Astrophysics Data System (ADS)
Xie, Yangmin; Wang, Chao; Shi, Hang; Shi, Junwei
2018-02-01
High radio-frequency space applications have motivated continuous research on vibration suppression of large space structures both in academia and industry. This paper introduces a novel data driven control method to suppress vibrations of flexible structures and experimentally validates the suppression performance. Unlike model-based control approaches, the data driven control method designs a controller directly from the input-output test data of the structure, without requiring parametric dynamics and hence free of system modeling. It utilizes the discrete frequency response via spectral analysis technique and formulates a non-convex optimization problem to obtain optimized controller parameters with a predefined controller structure. Such approach is then experimentally applied on an end-driving flexible beam-mass structure. The experiment results show that the presented method can achieve competitive disturbance rejections compared to a model-based mixed sensitivity controller under the same design criterion but with much less orders and design efforts, demonstrating the proposed data driven control is an effective approach for vibration suppression of flexible structures.
The Design of Hand Gestures for Human-Computer Interaction: Lessons from Sign Language Interpreters
Rempel, David; Camilleri, Matt J.; Lee, David L.
2015-01-01
The design and selection of 3D modeled hand gestures for human-computer interaction should follow principles of natural language combined with the need to optimize gesture contrast and recognition. The selection should also consider the discomfort and fatigue associated with distinct hand postures and motions, especially for common commands. Sign language interpreters have extensive and unique experience forming hand gestures and many suffer from hand pain while gesturing. Professional sign language interpreters (N=24) rated discomfort for hand gestures associated with 47 characters and words and 33 hand postures. Clear associations of discomfort with hand postures were identified. In a nominal logistic regression model, high discomfort was associated with gestures requiring a flexed wrist, discordant adjacent fingers, or extended fingers. These and other findings should be considered in the design of hand gestures to optimize the relationship between human cognitive and physical processes and computer gesture recognition systems for human-computer input. PMID:26028955
Studies of HZE particle interactions and transport for space radiation protection purposes
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.; Wilson, John W.; Schimmerling, Walter; Wong, Mervyn
1987-01-01
The main emphasis is on developing general methods for accurately predicting high-energy heavy ion (HZE) particle interactions and transport for use by researchers in mission planning studies, in evaluating astronaut self-shielding factors, and in spacecraft shield design and optimization studies. The two research tasks are: (1) to develop computationally fast and accurate solutions to the Boltzmann (transport) equation; and (2) to develop accurate HZE interaction models, from fundamental physical considerations, for use as inputs into these transport codes. Accurate solutions to the HZE transport problem have been formulated through a combination of analytical and numerical techniques. In addition, theoretical models for the input interaction parameters are under development: stopping powers, nuclear absorption cross sections, and fragmentation parameters.
Optimization of cell seeding in a 2D bio-scaffold system using computational models.
Ho, Nicholas; Chua, Matthew; Chui, Chee-Kong
2017-05-01
The cell expansion process is a crucial part of generating cells on a large-scale level in a bioreactor system. Hence, it is important to set operating conditions (e.g. initial cell seeding distribution, culture medium flow rate) to an optimal level. Often, the initial cell seeding distribution factor is neglected and/or overlooked in the design of a bioreactor using conventional seeding distribution methods. This paper proposes a novel seeding distribution method that aims to maximize cell growth and minimize production time/cost. The proposed method utilizes two computational models; the first model represents cell growth patterns whereas the second model determines optimal initial cell seeding positions for adherent cell expansions. Cell growth simulation from the first model demonstrates that the model can be a representation of various cell types with known probabilities. The second model involves a combination of combinatorial optimization, Monte Carlo and concepts of the first model, and is used to design a multi-layer 2D bio-scaffold system that increases cell production efficiency in bioreactor applications. Simulation results have shown that the recommended input configurations obtained from the proposed optimization method are the most optimal configurations. The results have also illustrated the effectiveness of the proposed optimization method. The potential of the proposed seeding distribution method as a useful tool to optimize the cell expansion process in modern bioreactor system applications is highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.
As₂S₃-silica double-nanospike waveguide for mid-infrared supercontinuum generation.
Xie, Shangran; Tani, Francesco; Travers, John C; Uebel, Patrick; Caillaud, Celine; Troles, Johann; Schmidt, Markus A; Russell, Philip St J
2014-09-01
A double-nanospike As2S3-silica hybrid waveguide structure is reported. The structure comprises nanotapers at input and output ends of a step-index waveguide with a subwavelength core (1 μm in diameter), with the aim of increasing the in-coupling and out-coupling efficiency. The design of the input nanospike is numerically optimized to match both the diameter and divergence of the input beam, resulting in efficient excitation of the fundamental mode of the waveguide. The output nanospike is introduced to reduce the output beam divergence and the strong endface Fresnel reflection. The insertion loss of the waveguide is measured to be ∼2 dB at 1550 nm in the case of free-space in-coupling, which is ∼7 dB lower than the previously reported single-nanospike waveguide. By pumping a 3-mm-long waveguide at 1550 nm using a 60-fs fiber laser, an octave-spanning supercontinuum (from 0.8 to beyond 2.5 μm) is generated at 38 pJ input energy.
Tian, Zhen; Yuan, Jingqi; Zhang, Xiang; Kong, Lei; Wang, Jingcheng
2018-05-01
The coordinated control system (CCS) serves as an important role in load regulation, efficiency optimization and pollutant reduction for coal-fired power plants. The CCS faces with tough challenges, such as the wide-range load variation, various uncertainties and constraints. This paper aims to improve the load tacking ability and robustness for boiler-turbine units under wide-range operation. To capture the key dynamics of the ultra-supercritical boiler-turbine system, a nonlinear control-oriented model is developed based on mechanism analysis and model reduction techniques, which is validated with the history operation data of a real 1000 MW unit. To simultaneously address the issues of uncertainties and input constraints, a discrete-time sliding mode predictive controller (SMPC) is designed with the dual-mode control law. Moreover, the input-to-state stability and robustness of the closed-loop system are proved. Simulation results are presented to illustrate the effectiveness of the proposed control scheme, which achieves good tracking performance, disturbance rejection ability and compatibility to input constraints. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Model predictive controller design for boost DC-DC converter using T-S fuzzy cost function
NASA Astrophysics Data System (ADS)
Seo, Sang-Wha; Kim, Yong; Choi, Han Ho
2017-11-01
This paper proposes a Takagi-Sugeno (T-S) fuzzy method to select cost function weights of finite control set model predictive DC-DC converter control algorithms. The proposed method updates the cost function weights at every sample time by using T-S type fuzzy rules derived from the common optimal control engineering knowledge that a state or input variable with an excessively large magnitude can be penalised by increasing the weight corresponding to the variable. The best control input is determined via the online optimisation of the T-S fuzzy cost function for all the possible control input sequences. This paper implements the proposed model predictive control algorithm in real time on a Texas Instruments TMS320F28335 floating-point Digital Signal Processor (DSP). Some experimental results are given to illuminate the practicality and effectiveness of the proposed control system under several operating conditions. The results verify that our method can yield not only good transient and steady-state responses (fast recovery time, small overshoot, zero steady-state error, etc.) but also insensitiveness to abrupt load or input voltage parameter variations.
Online image classification under monotonic decision boundary constraint
NASA Astrophysics Data System (ADS)
Lu, Cheng; Allebach, Jan; Wagner, Jerry; Pitta, Brandi; Larson, David; Guo, Yandong
2015-01-01
Image classification is a prerequisite for copy quality enhancement in all-in-one (AIO) device that comprises a printer and scanner, and which can be used to scan, copy and print. Different processing pipelines are provided in an AIO printer. Each of the processing pipelines is designed specifically for one type of input image to achieve the optimal output image quality. A typical approach to this problem is to apply Support Vector Machine to classify the input image and feed it to its corresponding processing pipeline. The online training SVM can help users to improve the performance of classification as input images accumulate. At the same time, we want to make quick decision on the input image to speed up the classification which means sometimes the AIO device does not need to scan the entire image to make a final decision. These two constraints, online SVM and quick decision, raise questions regarding: 1) what features are suitable for classification; 2) how we should control the decision boundary in online SVM training. This paper will discuss the compatibility of online SVM and quick decision capability.
NASA Astrophysics Data System (ADS)
Wu, Jiang; Liao, Fucheng; Tomizuka, Masayoshi
2017-01-01
This paper discusses the design of the optimal preview controller for a linear continuous-time stochastic control system in finite-time horizon, using the method of augmented error system. First, an assistant system is introduced for state shifting. Then, in order to overcome the difficulty of the state equation of the stochastic control system being unable to be differentiated because of Brownian motion, the integrator is introduced. Thus, the augmented error system which contains the integrator vector, control input, reference signal, error vector and state of the system is reconstructed. This leads to the tracking problem of the optimal preview control of the linear stochastic control system being transformed into the optimal output tracking problem of the augmented error system. With the method of dynamic programming in the theory of stochastic control, the optimal controller with previewable signals of the augmented error system being equal to the controller of the original system is obtained. Finally, numerical simulations show the effectiveness of the controller.
Speech coding at low to medium bit rates
NASA Astrophysics Data System (ADS)
Leblanc, Wilfred Paul
1992-09-01
Improved search techniques coupled with improved codebook design methodologies are proposed to improve the performance of conventional code-excited linear predictive coders for speech. Improved methods for quantizing the short term filter are developed by employing a tree search algorithm and joint codebook design to multistage vector quantization. Joint codebook design procedures are developed to design locally optimal multistage codebooks. Weighting during centroid computation is introduced to improve the outlier performance of the multistage vector quantizer. Multistage vector quantization is shown to be both robust against input characteristics and in the presence of channel errors. Spectral distortions of about 1 dB are obtained at rates of 22-28 bits/frame. Structured codebook design procedures for excitation in code-excited linear predictive coders are compared to general codebook design procedures. Little is lost using significant structure in the excitation codebooks while greatly reducing the search complexity. Sparse multistage configurations are proposed for reducing computational complexity and memory size. Improved search procedures are applied to code-excited linear prediction which attempt joint optimization of the short term filter, the adaptive codebook, and the excitation. Improvements in signal to noise ratio of 1-2 dB are realized in practice.
NASA Astrophysics Data System (ADS)
Xu, Xibao; Zhang, Jianming; Zhou, Xiaojian
2006-10-01
This paper presents a model integrating GIS, cellular automata (CA) and genetic algorithm (GA) in urban spatial optimization. The model involves three objectives of the maximization of land-use efficiency, the maximization of urban spatial harmony and appropriate proportion of each land-use type. CA submodel is designed with standard Moore neighbor and three transition rules to maximize the land-use efficiency and urban spatial harmony, according to the land-use suitability and spatial harmony index. GA submodel is designed with four constraints and seven steps for the maximization of urban spatial harmony and appropriate proportion of each land-use type, including encoding, initializing, calculating fitness, selection, crossover, mutation and elitism. GIS is used to prepare for the input data sets for the model and perform spatial analysis on the results, while CA and GA are integrated to optimize urban spatial structure, programmed with Matlab 7 and coupled with GIS loosely. Lanzhou, a typical valley-basin city with fast urban development, is chosen as the case study. At the end, a detail analysis and evaluation of the spatial optimization with the model are made, and it proves to be a powerful tool in optimizing urban spatial structure and make supplement for urban planning and policy-makers.
Meena, Yogesh Kumar; Cecotti, Hubert; Wong-Lin, Kongfatt; Dutta, Ashish; Prasad, Girijesh
2018-04-01
Virtual keyboard applications and alternative communication devices provide new means of communication to assist disabled people. To date, virtual keyboard optimization schemes based on script-specific information, along with multimodal input access facility, are limited. In this paper, we propose a novel method for optimizing the position of the displayed items for gaze-controlled tree-based menu selection systems by considering a combination of letter frequency and command selection time. The optimized graphical user interface layout has been designed for a Hindi language virtual keyboard based on a menu wherein 10 commands provide access to type 88 different characters, along with additional text editing commands. The system can be controlled in two different modes: eye-tracking alone and eye-tracking with an access soft-switch. Five different keyboard layouts have been presented and evaluated with ten healthy participants. Furthermore, the two best performing keyboard layouts have been evaluated with eye-tracking alone on ten stroke patients. The overall performance analysis demonstrated significantly superior typing performance, high usability (87% SUS score), and low workload (NASA TLX with 17 scores) for the letter frequency and time-based organization with script specific arrangement design. This paper represents the first optimized gaze-controlled Hindi virtual keyboard, which can be extended to other languages.
Next-Generation Lightweight Mirror Modeling Software
NASA Technical Reports Server (NTRS)
Arnold, William R., Sr.; Fitzgerald, Mathew; Rosa, Rubin Jaca; Stahl, Phil
2013-01-01
The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models possible
Next Generation Lightweight Mirror Modeling Software
NASA Technical Reports Server (NTRS)
Arnold, William; Fitzgerald, Matthew; Stahl, Philip
2013-01-01
The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models possible.
Next Generation Lightweight Mirror Modeling Software
NASA Technical Reports Server (NTRS)
Arnold, William R., Sr.; Fitzgerald, Mathew; Rosa, Rubin Jaca; Stahl, H. Philip
2013-01-01
The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models easier.
Analyse et design aerodynamique haute-fidelite de l'integration moteur sur un avion BWB
NASA Astrophysics Data System (ADS)
Mirzaei Amirabad, Mojtaba
BWB (Blended Wing Body) is an innovative type of aircraft based on the flying wing concept. In this configuration, the wing and the fuselage are blended together smoothly. BWB offers economical and environmental advantages by reducing fuel consumption through improving aerodynamic performance. In this project, the goal is to improve the aerodynamic performance by optimizing the main body of BWB that comes from conceptual design. The high fidelity methods applied in this project have been less frequently addressed in the literature. This research develops an automatic optimization procedure in order to reduce the drag force on the main body. The optimization is carried out in two main stages: before and after engine installation. Our objective is to minimize the drag by taking into account several constraints in high fidelity optimization. The commercial software, Isight is chosen as an optimizer in which MATLAB software is called to start the optimization process. Geometry is generated using ANSYS-DesignModeler, unstructured mesh is created by ANSYS-Mesh and CFD calculations are done with the help of ANSYS-Fluent. All of these software are coupled together in ANSYS-Workbench environment which is called by MATLAB. The high fidelity methods are used during optimization by solving Navier-Stokes equations. For verifying the results, a finer structured mesh is created by ICEM software to be used in each stage of optimization. The first stage includes a 3D optimization on the surface of the main body, before adding the engine. The optimized case is then used as an input for the second stage in which the nacelle is added. It could be concluded that this study leads us to obtain appropriate reduction in drag coefficient for BWB without nacelle. In the second stage (adding the nacelle) a drag minimization is also achieved by performing a local optimization. Furthermore, the flow separation, created in the main body-nacelle zone, is reduced.
Simulation technique for modeling flow on floodplains and in coastal wetlands
Schaffranek, Raymond W.; Baltzer, Robert A.
1988-01-01
The system design is premised on a proven, areal two-dimensional, finite-difference flow/transport model which is supported by an operational set of computer programs for input data management and model output interpretation. The purposes of the project are (1) to demonstrate the utility of the model for providing useful highway design information, (2) to develop guidelines and procedures for using the simulation system for evaluation, analysis, and optimal design of highway crossings of floodplain and coastal wetland areas, and (3) to identify improvements which can be effected in the simulation system to better serve the needs of highway design engineers. Two case study model implementations, being conducted to demonstrate the simulation system and modeling procedure, are presented and discussed briefly.
NASA Astrophysics Data System (ADS)
Atkinson, J. E.; Barker, G. G.; Feltham, S. J.; Gabrielson, S.; Lane, P. C.; Matthews, V. J.; Perring, D.; Randall, J. P.; Saunders, J. W.; Tuck, R. A.
1982-05-01
An electrical model klystron amplifier was designed. Its features include a gridded gun, a single stage depressed collector, a rare earth permanent magnet focusing system, an input loop, six rugged tuners and a coaxial line output section incorporating a coaxial-to-waveguide transducer and a pillbox window. At each stage of the design, the thermal and mechanical aspects were investigated and optimized within the framework of the RF specification. Extensive use was made of data from the preliminary design study and from RF measurements on the breadboard model. In an additional study, a comprehensive draft tube specification has been produced. Great emphasis has been laid on a second additional study on space-qualified materials and processes.
Optimizing structure of complex technical system by heterogeneous vector criterion in interval form
NASA Astrophysics Data System (ADS)
Lysenko, A. V.; Kochegarov, I. I.; Yurkov, N. K.; Grishko, A. K.
2018-05-01
The article examines the methods of development and multi-criteria choice of the preferred structural variant of the complex technical system at the early stages of its life cycle in the absence of sufficient knowledge of parameters and variables for optimizing this structure. The suggested methods takes into consideration the various fuzzy input data connected with the heterogeneous quality criteria of the designed system and the parameters set by their variation range. The suggested approach is based on the complex use of methods of interval analysis, fuzzy sets theory, and the decision-making theory. As a result, the method for normalizing heterogeneous quality criteria has been developed on the basis of establishing preference relations in the interval form. The method of building preferential relations in the interval form on the basis of the vector of heterogeneous quality criteria suggest the use of membership functions instead of the coefficients considering the criteria value. The former show the degree of proximity of the realization of the designed system to the efficient or Pareto optimal variants. The study analyzes the example of choosing the optimal variant for the complex system using heterogeneous quality criteria.
Performance metric comparison study for non-magnetic bi-stable energy harvesters
NASA Astrophysics Data System (ADS)
Udani, Janav P.; Wrigley, Cailin; Arrieta, Andres F.
2017-04-01
Energy harvesting employing non-linear systems offers considerable advantages over linear systems given the broadband resonant response which is favorable for applications involving diverse input vibrations. In this respect, the rich dynamics of bi-stable systems present a promising means for harvesting vibrational energy from ambient sources. Harvesters deriving their bi-stability from thermally induced stresses as opposed to magnetic forces are receiving significant attention as it reduces the need for ancillary components and allows for bio- compatible constructions. However, the design of these bi-stable harvesters still requires further optimization to completely exploit the dynamic behavior of these systems. This study presents a comparison of the harvesting capabilities of non-magnetic, bi-stable composite laminates under variations in the design parameters as evaluated utilizing established power metrics. Energy output characteristics of two bi-stable composite laminate plates with a piezoelectric patch bonded on the top surface are experimentally investigated for variations in the thickness ratio and inertial mass positions for multiple load conditions. A particular design configuration is found to perform better over the entire range of testing conditions which include single and multiple frequency excitation, thus indicating that design optimization over the geometry of the harvester yields robust performance. The experimental analysis further highlights the need for appropriate design guidelines for optimization and holistic performance metrics to account for the range of operational conditions.
Design of a 0.13 µm SiGe Limiting Amplifier with 14.6 THz Gain-Bandwidth-Product
NASA Astrophysics Data System (ADS)
Park, Sehoon; Du, Xuan-Quang; Grözing, Markus; Berroth, Manfred
2017-09-01
This paper presents the design of a limiting amplifier with 1-to-3 fan-out implementation in a 0.13 µm SiGe BiCMOS technology and gives a detailed guideline to determine the circuit parameters of the amplifier for optimum high-frequency performance based on simplified gain estimations. The proposed design uses a Cherry-Hooper topology for bandwidth enhancement and is optimized for maximum group delay flatness to minimize phase distortion of the input signal. With regard to a high integration density and a small chip area, the design employs no passive inductors which might be used to boost the circuit bandwidth with inductive peaking. On a RLC-extracted post-layout simulation level, the limiting amplifier exhibits a gain-bandwidth-product of 14.6 THz with 56.6 dB voltage gain and 21.5 GHz 3 dB bandwidth at a peak-to-peak input voltage of 1.5 mV. The group delay variation within the 3 dB bandwidth is less than 0.5 ps and the power dissipation at a power supply voltage of 3 V including output drivers is 837 mW.
Computational Design of Animated Mechanical Characters
NASA Astrophysics Data System (ADS)
Coros, Stelian; Thomaszewski, Bernhard; DRZ Team Team
2014-03-01
A factor key to the appeal of modern CG movies and video-games is that the virtual worlds they portray place no bounds on what can be imagined. Rapid manufacturing devices hold the promise of bringing this type of freedom to our own world, by enabling the fabrication of physical objects whose appearance, deformation behaviors and motions can be precisely specified. In order to unleash the full potential of this technology however, computational design methods that create digital content suitable for fabrication need to be developed. In recent work, we presented a computational design system that allows casual users to create animated mechanical characters. Given an articulated character as input, the user designs the animated character by sketching motion curves indicating how they should move. For each motion curve, our framework creates an optimized mechanism that reproduces it as closely as possible. The resulting mechanisms are attached to the character and then connected to each other using gear trains, which are created in a semi-automated fashion. The mechanical assemblies generated with our system can be driven with a single input driver, such as a hand-operated crank or an electric motor, and they can be fabricated using rapid prototyping devices.
Prototype color field sequential television lens assembly
NASA Technical Reports Server (NTRS)
1974-01-01
The design, development, and evaluation of a prototype modular lens assembly with a self-contained field sequential color wheel is presented. The design of a color wheel of maximum efficiency, the selection of spectral filters, and the design of a quiet, efficient wheel drive system are included. Design tradeoffs considered for each aspect of the modular assembly are discussed. Emphasis is placed on achieving a design which can be attached directly to an unmodified camera, thus permitting use of the assembly in evaluating various candidate camera and sensor designs. A technique is described which permits maintaining high optical efficiency with an unmodified camera. A motor synchronization system is developed which requires only the vertical synchronization signal as a reference frequency input. Equations and tradeoff curves are developed to permit optimizing the filter wheel aperture shapes for a variety of different design conditions.
Salgado, Iván; Mera-Hernández, Manuel; Chairez, Isaac
2017-11-01
This study addresses the problem of designing an output-based controller to stabilize multi-input multi-output (MIMO) systems in the presence of parametric disturbances as well as uncertainties in the state model and output noise measurements. The controller design includes a linear state transformation which separates uncertainties matched to the control input and the unmatched ones. A differential neural network (DNN) observer produces a nonlinear approximation of the matched perturbation and the unknown states simultaneously in the transformed coordinates. This study proposes the use of the Attractive Ellipsoid Method (AEM) to optimize the gains of the controller and the gain observer in the DNN structure. As a consequence, the obtained control input minimizes the convergence zone for the estimation error. Moreover, the control design uses the estimated disturbance provided by the DNN to obtain a better performance in the stabilization task in comparison with a quasi-minimal output feedback controller based on a Luenberger observer and a sliding mode controller. Numerical results pointed out the advantages obtained by the nonlinear control based on the DNN observer. The first example deals with the stabilization of an academic linear MIMO perturbed system and the second example stabilizes the trajectories of a DC-motor into a predefined operation point. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klymenko, M. V.; Remacle, F., E-mail: fremacle@ulg.ac.be
2014-10-28
A methodology is proposed for designing a low-energy consuming ternary-valued full adder based on a quantum dot (QD) electrostatically coupled with a single electron transistor operating as a charge sensor. The methodology is based on design optimization: the values of the physical parameters of the system required for implementing the logic operations are optimized using a multiobjective genetic algorithm. The searching space is determined by elements of the capacitance matrix describing the electrostatic couplings in the entire device. The objective functions are defined as the maximal absolute error over actual device logic outputs relative to the ideal truth tables formore » the sum and the carry-out in base 3. The logic units are implemented on the same device: a single dual-gate quantum dot and a charge sensor. Their physical parameters are optimized to compute either the sum or the carry out outputs and are compatible with current experimental capabilities. The outputs are encoded in the value of the electric current passing through the charge sensor, while the logic inputs are supplied by the voltage levels on the two gate electrodes attached to the QD. The complex logic ternary operations are directly implemented on an extremely simple device, characterized by small sizes and low-energy consumption compared to devices based on switching single-electron transistors. The design methodology is general and provides a rational approach for realizing non-switching logic operations on QD devices.« less
Utility of coupling nonlinear optimization methods with numerical modeling software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, M.J.
1996-08-05
Results of using GLO (Global Local Optimizer), a general purpose nonlinear optimization software package for investigating multi-parameter problems in science and engineering is discussed. The package consists of the modular optimization control system (GLO), a graphical user interface (GLO-GUI), a pre-processor (GLO-PUT), a post-processor (GLO-GET), and nonlinear optimization software modules, GLOBAL & LOCAL. GLO is designed for controlling and easy coupling to any scientific software application. GLO runs the optimization module and scientific software application in an iterative loop. At each iteration, the optimization module defines new values for the set of parameters being optimized. GLO-PUT inserts the new parametermore » values into the input file of the scientific application. GLO runs the application with the new parameter values. GLO-GET determines the value of the objective function by extracting the results of the analysis and comparing to the desired result. GLO continues to run the scientific application over and over until it finds the ``best`` set of parameters by minimizing (or maximizing) the objective function. An example problem showing the optimization of material model is presented (Taylor cylinder impact test).« less
PepComposer: computational design of peptides binding to a given protein surface
Obarska-Kosinska, Agnieszka; Iacoangeli, Alfredo; Lepore, Rosalba; Tramontano, Anna
2016-01-01
There is a wide interest in designing peptides able to bind to a specific region of a protein with the aim of interfering with a known interaction or as starting point for the design of inhibitors. Here we describe PepComposer, a new pipeline for the computational design of peptides binding to a given protein surface. PepComposer only requires the target protein structure and an approximate definition of the binding site as input. We first retrieve a set of peptide backbone scaffolds from monomeric proteins that harbor the same backbone arrangement as the binding site of the protein of interest. Next, we design optimal sequences for the identified peptide scaffolds. The method is fully automatic and available as a web server at http://biocomputing.it/pepcomposer/webserver. PMID:27131789
Xiao, Chuncai; Hao, Kuangrong; Ding, Yongsheng
2014-12-30
This paper creates a bi-directional prediction model to predict the performance of carbon fiber and the productive parameters based on a support vector machine (SVM) and improved particle swarm optimization (IPSO) algorithm (SVM-IPSO). In the SVM, it is crucial to select the parameters that have an important impact on the performance of prediction. The IPSO is proposed to optimize them, and then the SVM-IPSO model is applied to the bi-directional prediction of carbon fiber production. The predictive accuracy of SVM is mainly dependent on its parameters, and IPSO is thus exploited to seek the optimal parameters for SVM in order to improve its prediction capability. Inspired by a cell communication mechanism, we propose IPSO by incorporating information of the global best solution into the search strategy to improve exploitation, and we employ IPSO to establish the bi-directional prediction model: in the direction of the forward prediction, we consider productive parameters as input and property indexes as output; in the direction of the backward prediction, we consider property indexes as input and productive parameters as output, and in this case, the model becomes a scheme design for novel style carbon fibers. The results from a set of the experimental data show that the proposed model can outperform the radial basis function neural network (RNN), the basic particle swarm optimization (PSO) method and the hybrid approach of genetic algorithm and improved particle swarm optimization (GA-IPSO) method in most of the experiments. In other words, simulation results demonstrate the effectiveness and advantages of the SVM-IPSO model in dealing with the problem of forecasting.
Current fluctuations in quantum absorption refrigerators
NASA Astrophysics Data System (ADS)
Segal, Dvira
2018-05-01
Absorption refrigerators transfer thermal energy from a cold bath to a hot bath without input power by utilizing heat from an additional "work" reservoir. Particularly interesting is a three-level design for a quantum absorption refrigerator, which can be optimized to reach the maximal (Carnot) cooling efficiency. Previous studies of three-level chillers focused on the behavior of the averaged cooling current. Here, we go beyond that and study the full counting statistics of heat exchange in a three-level chiller model. We explain how to obtain the complete cumulant generating function of the refrigerator in a steady state, then derive a partial cumulant generating function, which yields closed-form expressions for both the averaged cooling current and its noise. Our analytical results and simulations are beneficial for the design of nanoscale engines and cooling systems far from equilibrium, with their performance optimized according to different criteria, efficiency, power, fluctuations, and dissipation.
NASA Astrophysics Data System (ADS)
Diez, Matteo; Iemma, Umberto
2012-05-01
The article presents a novel approach to include community noise considerations based on sound quality in the Multidisciplinary Conceptual Design Optimization (MCDO) of civil transportation aircraft. The novelty stems from the use of an unconventional objective function, defined as a measure of the difference between the noise emission of the aircraft under analysis and a reference 'weakly annoying' noise, the target sound. The minimization of such a merit factor yields an aircraft concept with a noise signature as close as possible to the given target. The reference sound is one of the outcomes of the European Research Project SEFA (Sound Engineering For Aircraft, VI Framework Programme, 2004-2007), and used here as an external input. The aim of the present work is to address the definition and the inclusion of the sound-matching-based objective function in the MCDO of aircraft.
NASA Technical Reports Server (NTRS)
Jenkins, R. M.
1983-01-01
The present effort represents an extension of previous work wherein a calculation model for performing rapid pitchline optimization of axial gas turbine geometry, including blade profiles, is developed. The model requires no specification of geometric constraints. Output includes aerodynamic performance (adiabatic efficiency), hub-tip flow-path geometry, blade chords, and estimates of blade shape. Presented herein is a verification of the aerodynamic performance portion of the model, whereby detailed turbine test-rig data, including rig geometry, is input to the model to determine whether tested performance can be predicted. An array of seven (7) NASA single-stage axial gas turbine configurations is investigated, ranging in size from 0.6 kg/s to 63.8 kg/s mass flow and in specific work output from 153 J/g to 558 J/g at design (hot) conditions; stage loading factor ranges from 1.15 to 4.66.
NASA Astrophysics Data System (ADS)
Flores, Jorge L.; García-Torales, G.; Ponce Ávila, Cristina
2006-08-01
This paper describes an in situ image recognition system designed to inspect the quality standards of the chocolate pops during their production. The essence of the recognition system is the localization of the events (i.e., defects) in the input images that affect the quality standards of pops. To this end, processing modules, based on correlation filter, and segmentation of images are employed with the objective of measuring the quality standards. Therefore, we designed the correlation filter and defined a set of features from the correlation plane. The desired values for these parameters are obtained by exploiting information about objects to be rejected in order to find the optimal discrimination capability of the system. Regarding this set of features, the pop can be correctly classified. The efficacy of the system has been tested thoroughly under laboratory conditions using at least 50 images, containing 3 different types of possible defects.
Process Design and Techno-economic Analysis for Materials to Treat Produced Waters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heimer, Brandon Walter; Paap, Scott M; Sasan, Koroush
Significant quantities of water are produced during enhanced oil recovery making these “produced water” streams attractive candidates for treatment and reuse. However, high concentrations of dissolved silica raise the propensity for fouling. In this paper, we report the design and economic analysis for a new ion exchange process using calcined hydrotalcite (HTC) to remove silica from water. This process improves upon known technologies by minimizing sludge product, reducing process fouling, and lowering energy use. Process modeling outputs included raw material requirements, energy use, and the minimum water treatment price (MWTP). Monte Carlo simulations quantified the impact of uncertainty and variabilitymore » in process inputs on MWTP. These analyses showed that cost can be significantly reduced if the HTC materials are optimized. Specifically, R&D improving HTC reusability, silica binding capacity, and raw material price can reduce MWTP by 40%, 13%, and 20%, respectively. Optimizing geographic deployment further improves cost competitiveness.« less
NASA Astrophysics Data System (ADS)
Sumesh, A.; Sai Ramnadh, L. V.; Manish, P.; Harnath, V.; Lakshman, V.
2016-09-01
Welding is one of the most common metal joining techniques used in industry for decades. As in the global manufacturing scenario the products should be more cost effective. Therefore the selection of right process with optimal parameters will help the industry in minimizing their cost of production. SA 106 Grade B steel has a wide application in Automobile chassis structure, Boiler tubes and pressure vessels industries. Employing central composite design the process parameters for Gas Tungsten Arc Welding was optimized. The input parameters chosen were weld current, peak current and frequency. The joint tensile strength was the response considered in this study. Analysis of variance was performed to determine the statistical significance of the parameters and a Regression analysis was performed to determine the effect of input parameters over the response. From the experiment the maximum tensile strength obtained was 95 KN reported for a weld current of 95 Amp, frequency of 50 Hz and peak current of 100 Amp. With an aim of maximizing the joint strength using Response optimizer a target value of 100 KN is selected and regression models were optimized. The output results are achievable with a Weld current of 62.6148 Amp, Frequency of 23.1821 Hz, and Peak current of 65.9104 Amp. Using Die penetration test the weld joints were also classified in to 2 categories as good weld and weld with defect. This will also help in getting a defect free joint when welding is performed using GTAW process.
Planning for robust reserve networks using uncertainty analysis
Moilanen, A.; Runge, M.C.; Elith, Jane; Tyre, A.; Carmel, Y.; Fegraus, E.; Wintle, B.A.; Burgman, M.; Ben-Haim, Y.
2006-01-01
Planning land-use for biodiversity conservation frequently involves computer-assisted reserve selection algorithms. Typically such algorithms operate on matrices of species presence?absence in sites, or on species-specific distributions of model predicted probabilities of occurrence in grid cells. There are practically always errors in input data?erroneous species presence?absence data, structural and parametric uncertainty in predictive habitat models, and lack of correspondence between temporal presence and long-run persistence. Despite these uncertainties, typical reserve selection methods proceed as if there is no uncertainty in the data or models. Having two conservation options of apparently equal biological value, one would prefer the option whose value is relatively insensitive to errors in planning inputs. In this work we show how uncertainty analysis for reserve planning can be implemented within a framework of information-gap decision theory, generating reserve designs that are robust to uncertainty. Consideration of uncertainty involves modifications to the typical objective functions used in reserve selection. Search for robust-optimal reserve structures can still be implemented via typical reserve selection optimization techniques, including stepwise heuristics, integer-programming and stochastic global search.
Lefmann, Kim; Klenø, Kaspar H; Birk, Jonas Okkels; Hansen, Britt R; Holm, Sonja L; Knudsen, Erik; Lieutenant, Klaus; von Moos, Lars; Sales, Morten; Willendrup, Peter K; Andersen, Ken H
2013-05-01
We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.
Conceptual Design and Optimal Power Control Strategy for AN Eco-Friendly Hybrid Vehicle
NASA Astrophysics Data System (ADS)
Nasiri, N. Mir; Chieng, Frederick T. A.
2011-06-01
This paper presents a new concept for a hybrid vehicle using a torque and speed splitting technique. It is implemented by the newly developed controller in combination with a two degree of freedom epicyclic gear transmission. This approach enables optimization of the power split between the less powerful electrical motor and more powerful engine while driving a car load. The power split is fundamentally a dual-energy integration mechanism as it is implemented by using the epicyclic gear transmission that has two inputs and one output for a proper power distribution. The developed power split control system manages the operation of both the inputs to have a known output with the condition of maintaining optimum operating efficiency of the internal combustion engine and electrical motor. This system has a huge potential as it is possible to integrate all the features of hybrid vehicle known to-date such as the regenerative braking system, series hybrid, parallel hybrid, series/parallel hybrid, and even complex hybrid (bidirectional). By using the new power split system it is possible to further reduce fuel consumption and increase overall efficiency.
Compact Packaging of Photonic Millimeter-Wave Receiver
NASA Technical Reports Server (NTRS)
Nguyen, Hung; Pouch, John; Miranda, Felix; Levi, Anthony F.
2007-01-01
A carrier structure made from a single silicon substrate is the basis of a compact, lightweight, relatively inexpensive package that holds the main optical/electronic coupling components of a photonic millimeter-wave receiver based on a lithium niobate resonator disk. The design of the package is simple and provides for precise relative placement of optical components, eliminating the need for complex, bulky positioning mechanisms like those commonly used to align optical components to optimize focus and coupling. Although a prototype of the package was fabricated as a discrete unit, the design is amenable to integration of the package into a larger photonic and/or electronic receiver system. The components (see figure) include a lithium niobate optical resonator disk of 5-mm diameter and .200- m thickness, positioned adjacent to a millimeter- wave resonator electrode. Other components include input and output coupling prisms and input and output optical fibers tipped with ball lenses for focusing and collimation, respectively. Laser light is introduced via the input optical fiber and focused into the input coupling prism. The input coupling prism is positioned near (but not in contact with) the resonator disk so that by means of evanescent-wave coupling, the input laser light in the prism gives rise to laser light propagating circumferentially in guided modes in the resonator disk. Similarly, a portion of the circumferentially propagating optical power is extracted from the disk by evanescent-wave coupling from the disk to the output coupling prism, from whence the light passes through the collimating ball lens into the output optical fiber. The lens-tipped optical fibers must be positioned at a specified focal distance from the prisms. The optical fibers and the prisms must be correctly positioned relative to the resonator disk and must be oriented to obtain the angle of incidence (55 in the prototype) required for evanescent-wave coupling of light into and out of the desired guided modes in the resonator disk. To satisfy all these requirements, precise alignment features are formed in the silicon substrate by use of a conventional wet-etching process. These features include a 5-mm-diameter, 50- m-deep cavity that holds the disk; two trapezoidal-cross-section recesses for the prisms; and two grooves that hold the optical fibers at the correct positions and angles relative to the prisms and disk. The fiber grooves contain abrupt tapers, near the prisms, that serve as hard stops for positioning the lenses at the focal distance from the prisms. There are also two grooves for prismadjusting rods. The design provides a little slack in the prism recesses for adjusting the positions of the prisms by means of these rods to optimize the optical coupling.
NASA Astrophysics Data System (ADS)
Rajabi, Mohammad Mahdi; Ataie-Ashtiani, Behzad; Janssen, Hans
2015-02-01
The majority of literature regarding optimized Latin hypercube sampling (OLHS) is devoted to increasing the efficiency of these sampling strategies through the development of new algorithms based on the combination of innovative space-filling criteria and specialized optimization schemes. However, little attention has been given to the impact of the initial design that is fed into the optimization algorithm, on the efficiency of OLHS strategies. Previous studies, as well as codes developed for OLHS, have relied on one of the following two approaches for the selection of the initial design in OLHS: (1) the use of random points in the hypercube intervals (random LHS), and (2) the use of midpoints in the hypercube intervals (midpoint LHS). Both approaches have been extensively used, but no attempt has been previously made to compare the efficiency and robustness of their resulting sample designs. In this study we compare the two approaches and show that the space-filling characteristics of OLHS designs are sensitive to the initial design that is fed into the optimization algorithm. It is also illustrated that the space-filling characteristics of OLHS designs based on midpoint LHS are significantly better those based on random LHS. The two approaches are compared by incorporating their resulting sample designs in Monte Carlo simulation (MCS) for uncertainty propagation analysis, and then, by employing the sample designs in the selection of the training set for constructing non-intrusive polynomial chaos expansion (NIPCE) meta-models which subsequently replace the original full model in MCSs. The analysis is based on two case studies involving numerical simulation of density dependent flow and solute transport in porous media within the context of seawater intrusion in coastal aquifers. We show that the use of midpoint LHS as the initial design increases the efficiency and robustness of the resulting MCSs and NIPCE meta-models. The study also illustrates that this relative improvement decreases with increasing number of sample points and input parameter dimensions. Since the computational time and efforts for generating the sample designs in the two approaches are identical, the use of midpoint LHS as the initial design in OLHS is thus recommended.
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.
1996-01-01
This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA-High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high order characteristics of the system. In this paper, only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles at attack : 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.
1999-01-01
This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.
Larsen, T; Doll, J C; Loizeau, F; Hosseini, N; Peng, A W; Fantner, G; Ricci, A J; Pruitt, B L
2017-01-01
Electrothermal actuators have many advantages compared to other actuators used in Micro-Electro-Mechanical Systems (MEMS). They are simple to design, easy to fabricate and provide large displacements at low voltages. Low voltages enable less stringent passivation requirements for operation in liquid. Despite these advantages, thermal actuation is typically limited to a few kHz bandwidth when using step inputs due to its intrinsic thermal time constant. However, the use of pre-shaped input signals offers a route for reducing the rise time of these actuators by orders of magnitude. We started with an electrothermally actuated cantilever having an initial 10-90% rise time of 85 μs in air and 234 μs in water for a standard open-loop step input. We experimentally characterized the linearity and frequency response of the cantilever when operated in air and water, allowing us to obtain transfer functions for the two cases. We used these transfer functions, along with functions describing desired reduced rise-time system responses, to numerically simulate the required input signals. Using these pre-shaped input signals, we improved the open-loop 10-90% rise time from 85 μs to 3 μs in air and from 234 μs to 5 μs in water, an improvement by a factor of 28 and 47, respectively. Using this simple control strategy for MEMS electrothermal actuators makes them an attractive alternative to other high speed micromechanical actuators such as piezoelectric stacks or electrostatic comb structures which are more complex to design, fabricate, or operate.
Hamdan, Sadeque; Cheaitou, Ali
2017-08-01
This data article provides detailed optimization input and output datasets and optimization code for the published research work titled "Dynamic green supplier selection and order allocation with quantity discounts and varying supplier availability" (Hamdan and Cheaitou, 2017, In press) [1]. Researchers may use these datasets as a baseline for future comparison and extensive analysis of the green supplier selection and order allocation problem with all-unit quantity discount and varying number of suppliers. More particularly, the datasets presented in this article allow researchers to generate the exact optimization outputs obtained by the authors of Hamdan and Cheaitou (2017, In press) [1] using the provided optimization code and then to use them for comparison with the outputs of other techniques or methodologies such as heuristic approaches. Moreover, this article includes the randomly generated optimization input data and the related outputs that are used as input data for the statistical analysis presented in Hamdan and Cheaitou (2017 In press) [1] in which two different approaches for ranking potential suppliers are compared. This article also provides the time analysis data used in (Hamdan and Cheaitou (2017, In press) [1] to study the effect of the problem size on the computation time as well as an additional time analysis dataset. The input data for the time study are generated randomly, in which the problem size is changed, and then are used by the optimization problem to obtain the corresponding optimal outputs as well as the corresponding computation time.
Aeroelastic Optimization of Generalized Tube and Wing Aircraft Concepts Using HCDstruct Version 2.0
NASA Technical Reports Server (NTRS)
Quinlan, Jesse R.; Gern, Frank H.
2017-01-01
Major enhancements were made to the Higher-fidelity Conceptual Design and structural optimization (HCDstruct) tool developed at NASA Langley Research Center (LaRC). Whereas previous versions were limited to hybrid wing body (HWB) configurations, the current version of HCDstruct now supports the analysis of generalized tube and wing (TW) aircraft concepts. Along with significantly enhanced user input options for all air- craft configurations, these enhancements represent HCDstruct version 2.0. Validation was performed using a Boeing 737-200 aircraft model, for which primary structure weight estimates agreed well with available data. Additionally, preliminary analysis of the NASA D8 (ND8) aircraft concept was performed, highlighting several new features of the tool.
The Avoidance of Saturation Limits in Magnetic Bearing Systems During Transient Excitation
NASA Technical Reports Server (NTRS)
Rutland, Neil K.; Keogh, Patrick S.; Burrows, Clifford R.
1996-01-01
When a transient event, such as mass loss, occurs in a rotor/magnetic bearing system, optimal vibration control forces may exceed bearing capabilities. This will be inevitable when the mass loss is sufficiently large and a conditionally unstable dynamic system could result if the bearing characteristic become non-linear. This paper provides a controller design procedure to suppress, where possible, bearing force demands below saturation levels while maintaining vibration control. It utilizes H(sub infinity) optimization with appropriate input and output weightings. Simulation of transient behavior following mass loss from a flexible rotor is used to demonstrate the avoidance of conditional instability. A compromise between transient control force and vibration levels was achieved.
Chen, Zhe; Rau, Pei-Luen Patrick
2017-03-01
This study presented two experiments on Chinese handwriting performance (time, accuracy, the number of protruding strokes and number of rewritings) and subjective ratings (mental workload, satisfaction, and preference) on mobile devices. Experiment 1 evaluated the effects of size of the input box, input method and display size on Chinese handwriting performance and preference. It was indicated that the optimal input sizes were 30.8 × 30.8 mm, 46.6 × 46.6 mm, 58.9 × 58.9 mm and 84.6 × 84.6 mm for devices with 3.5-inch, 5.5-inch, 7.0-inch and 9.7-inch display sizes, respectively. Experiment 2 proved the significant effects of location of the input box, input method and display size on Chinese handwriting performance and subjective ratings. It was suggested that the optimal location was central regardless of display size and input method. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Framework for Preliminary Design of Aircraft Structures Based on Process Information. Part 1
NASA Technical Reports Server (NTRS)
Rais-Rohani, Masoud
1998-01-01
This report discusses the general framework and development of a computational tool for preliminary design of aircraft structures based on process information. The described methodology is suitable for multidisciplinary design optimization (MDO) activities associated with integrated product and process development (IPPD). The framework consists of three parts: (1) product and process definitions; (2) engineering synthesis, and (3) optimization. The product and process definitions are part of input information provided by the design team. The backbone of the system is its ability to analyze a given structural design for performance as well as manufacturability and cost assessment. The system uses a database on material systems and manufacturing processes. Based on the identified set of design variables and an objective function, the system is capable of performing optimization subject to manufacturability, cost, and performance constraints. The accuracy of the manufacturability measures and cost models discussed here depend largely on the available data on specific methods of manufacture and assembly and associated labor requirements. As such, our focus in this research has been on the methodology itself and not so much on its accurate implementation in an industrial setting. A three-tier approach is presented for an IPPD-MDO based design of aircraft structures. The variable-complexity cost estimation methodology and an approach for integrating manufacturing cost assessment into design process are also discussed. This report is presented in two parts. In the first part, the design methodology is presented, and the computational design tool is described. In the second part, a prototype model of the preliminary design Tool for Aircraft Structures based on Process Information (TASPI) is described. Part two also contains an example problem that applies the methodology described here for evaluation of six different design concepts for a wing spar.
Davari, S; Lichayee, M J
2003-01-01
In steam thermal power plants (TPP) with open re-circulating wet cooling towers, elimination of water hardness and suspended solids (SS) is performed in clarifiers. Most of these clarifiers are of high efficiency sludge re-circulating type (SRC) with capacity between 500-1,500 m3/hr. Improper design and/or mal-operation of clarifiers in TPPs results in working conditions below design capacity or production of soft water with improper quality (hardness and S.S.). This causes accumulation of deposits in heat exchangers, condenser tubes, cooling and service water pipes and boiler tubes as well as increasing the ionic load of water at the demineralizing system inlet. It also increases the amount of chemical consumptions and produces more liquid and solid waste. In this regard, a software program for optimal design and simulation of SRCs has been developed. Then design parameters of existing SRCs in four TPPs in Iran were used as inputs to developed software program and resulting technical specifications were compared with existing ones. In some cases improper design was the main cause of poor outlet water quality. In order to achieve proper efficiency, further investigations were made to obtain control parameters as well as design parameters for both mal-designed and/or mal-operated SRCs.
Diagnostics and Optimization of a Miniature High Frequency Pulse Tube Cryocooler
NASA Astrophysics Data System (ADS)
Garaway, I.; Veprik, A.; Radebaugh, R.
2010-04-01
A miniature, high energy density, pulse tube cryocooler with an inertance tube and reservoir has been developed, tested, diagnosed and optimized to provide appropriate cooling for size-limited cryogenic applications demanding fast cool down. This cryocooler, originally designed using REGEN 3.2 for 80 K, an operating frequency of 150 Hz and an average pressure of 5.0 MPa, has regenerator dimensions of 4.4 mm inside diameter and 27 mm length and is filled with ♯635 mesh stainless steel screen. Various design features, such as the use of compact heat exchangers and a miniature linear compressor, resulted in a remarkably compact pulse tube cryocooler. In this report, we present the preliminary test results and the subsequent diagnostic and optimization sequence performed to improve the overall design and operation of the complete cryocooler. These experimentally determined optimal parameters, though slightly different from those proposed in the initial numerical model, yielded 530 mW of gross cooling power at 120 K with an input electrical power of only 25 W. This study highlights the need to further establish our understanding of miniature, high frequency, regenerative cryocoolers, not only as a collection of independent subcomponents, but as one single working unit. It has also led to a list of additional improvements that may yet be made to even further improve the operating characteristics of such a complete miniature cryocooler.
NASA Astrophysics Data System (ADS)
Huang, Darong; Bai, Xing-Rong
Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.
NASA Technical Reports Server (NTRS)
Johannsen, G.; Govindaraj, T.
1980-01-01
The influence of different types of predictor displays in a longitudinal vertical takeoff and landing (VTOL) hover task is analyzed in a theoretical study. Several cases with differing amounts of predictive and rate information are compared. The optimal control model of the human operator is used to estimate human and system performance in terms of root-mean-square (rms) values and to compute optimized attention allocation. The only part of the model which is varied to predict these data is the observation matrix. Typical cases are selected for a subsequent experimental validation. The rms values as well as eye-movement data are recorded. The results agree favorably with those of the theoretical study in terms of relative differences. Better matching is achieved by revised model input data.
Photovoltaic Inverter Controllers Seeking AC Optimal Power Flow Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.
This paper considers future distribution networks featuring inverter-interfaced photovoltaic (PV) systems, and addresses the synthesis of feedback controllers that seek real- and reactive-power inverter setpoints corresponding to AC optimal power flow (OPF) solutions. The objective is to bridge the temporal gap between long-term system optimization and real-time inverter control, and enable seamless PV-owner participation without compromising system efficiency and stability. The design of the controllers is grounded on a dual ..epsilon..-subgradient method, while semidefinite programming relaxations are advocated to bypass the non-convexity of AC OPF formulations. Global convergence of inverter output powers is analytically established for diminishing stepsize rules formore » cases where: i) computational limits dictate asynchronous updates of the controller signals, and ii) inverter reference inputs may be updated at a faster rate than the power-output settling time.« less
NASA Technical Reports Server (NTRS)
Arnold, W.; Bowen, S.; Cohen, S.; Fine, K.; Kaplan, D.; Kolm, M.; Kolm, H.; Newman, J.; Oneill, G. K.; Snow, W.
1979-01-01
The last of a series of three papers by the Mass-Driver Group of the 1977 Ames Summer Study is presented. It develops the engineering principles required to implement the basic mass-driver. Optimum component mass trade-offs are derived from a set of four input parameters, and the program used to design a lunar launcher. The mass optimization procedures is then incorporated into a more comprehensive mission optimization program called OPT-4, which evaluates an optimized mass-driver reaction engine and its performance in a range of specified missions. Finally, this paper discusses, to the extent that time permitted, certain peripheral problems: heating effects in buckets due to magnetic field ripple; an approximate derivation of guide force profiles; the mechanics of inserting and releasing payloads; the reaction mass orbits; and a proposed research and development plan for implementing mass drivers.
Clutch pressure estimation for a power-split hybrid transmission using nonlinear robust observer
NASA Astrophysics Data System (ADS)
Zhou, Bin; Zhang, Jianwu; Gao, Ji; Yu, Haisheng; Liu, Dong
2018-06-01
For a power-split hybrid transmission, using the brake clutch to realize the transition from electric drive mode to hybrid drive mode is an available strategy. Since the pressure information of the brake clutch is essential for the mode transition control, this research designs a nonlinear robust reduced-order observer to estimate the brake clutch pressure. Model uncertainties or disturbances are considered as additional inputs, thus the observer is designed in order that the error dynamics is input-to-state stable. The nonlinear characteristics of the system are expressed as the lookup tables in the observer. Moreover, the gain matrix of the observer is solved by two optimization procedures under the constraints of the linear matrix inequalities. The proposed observer is validated by offline simulation and online test, the results have shown that the observer achieves significant performance during the mode transition, as the estimation error is within a reasonable range, more importantly, it is asymptotically stable.
Solar energy system economic evaluation for IBM System 3, Glendo, Wyoming
NASA Technical Reports Server (NTRS)
1980-01-01
This analysis was based on the technical and economic models in f-chart design procedures with inputs based on the characteristics of the parameters of present worth of system cost over a projected twenty year life: life cycle savings, year of positive savings, and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables was also investigated.
A Report on Applying EEGnet to Discriminate Human State Effects on Task Performance
2018-01-01
whether we could identify what task the participant was performing from differences in the recorded brain time series . We modeled the relationship...between input data (brain time series ) and output labels (task A and task B) as an unknown function, and we found an optimal approximation of that...this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. Citation of
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Hague, D. S.; Reiners, S. J.
1975-01-01
A computerized procedure for predicting sonic boom from experimental near-field overpressure data has been developed. The procedure extrapolates near-field pressure signatures for a specified flight condition to the ground by the Thomas method. Near-field pressure signatures are interpolated from a data base of experimental pressure signatures. The program is an independently operated ODIN (Optimal Design Integration) program which obtains flight path information from other ODIN programs or from input.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seyong; Kim, Jungwon; Vetter, Jeffrey S
This paper presents a directive-based, high-level programming framework for high-performance reconfigurable computing. It takes a standard, portable OpenACC C program as input and generates a hardware configuration file for execution on FPGAs. We implemented this prototype system using our open-source OpenARC compiler; it performs source-to-source translation and optimization of the input OpenACC program into an OpenCL code, which is further compiled into a FPGA program by the backend Altera Offline OpenCL compiler. Internally, the design of OpenARC uses a high- level intermediate representation that separates concerns of program representation from underlying architectures, which facilitates portability of OpenARC. In fact, thismore » design allowed us to create the OpenACC-to-FPGA translation framework with minimal extensions to our existing system. In addition, we show that our proposed FPGA-specific compiler optimizations and novel OpenACC pragma extensions assist the compiler in generating more efficient FPGA hardware configuration files. Our empirical evaluation on an Altera Stratix V FPGA with eight OpenACC benchmarks demonstrate the benefits of our strategy. To demonstrate the portability of OpenARC, we show results for the same benchmarks executing on other heterogeneous platforms, including NVIDIA GPUs, AMD GPUs, and Intel Xeon Phis. This initial evidence helps support the goal of using a directive-based, high-level programming strategy for performance portability across heterogeneous HPC architectures.« less
On the Design of a Fuzzy Logic-Based Control System for Freeze-Drying Processes.
Fissore, Davide
2016-12-01
This article is focused on the design of a fuzzy logic-based control system to optimize a drug freeze-drying process. The goal of the system is to keep product temperature as close as possible to the threshold value of the formulation being processed, without trespassing it, in such a way that product quality is not jeopardized and the sublimation flux is maximized. The method involves the measurement of product temperature and a set of rules that have been obtained through process simulation with the goal to obtain a unique set of rules for products with very different characteristics. Input variables are the difference between the temperature of the product and the threshold value, the difference between the temperature of the heating fluid and that of the product, and the rate of change of product temperature. The output variables are the variation of the temperature of the heating fluid and the pressure in the drying chamber. The effect of the starting value of the input variables and of the control interval has been investigated, thus resulting in the optimal configuration of the control system. Experimental investigation carried out in a pilot-scale freeze-dryer has been carried out to validate the proposed system. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Minimum energy control for a two-compartment neuron to extracellular electric fields
NASA Astrophysics Data System (ADS)
Yi, Guo-Sheng; Wang, Jiang; Li, Hui-Yan; Wei, Xi-Le; Deng, Bin
2016-11-01
The energy optimization of extracellular electric field (EF) stimulus for a neuron is considered in this paper. We employ the optimal control theory to design a low energy EF input for a reduced two-compartment model. It works by driving the neuron to closely track a prescriptive spike train. A cost function is introduced to balance the contradictory objectives, i.e., tracking errors and EF stimulus energy. By using the calculus of variations, we transform the minimization of cost function to a six-dimensional two-point boundary value problem (BVP). Through solving the obtained BVP in the cases of three fundamental bifurcations, it is shown that the control method is able to provide an optimal EF stimulus of reduced energy for the neuron to effectively track a prescriptive spike train. Further, the feasibility of the adopted method is interpreted from the point of view of the biophysical basis of spike initiation. These investigations are conducive to designing stimulating dose for extracellular neural stimulation, which are also helpful to interpret the effects of extracellular field on neural activity.
Optimal control of the gear shifting process for shift smoothness in dual-clutch transmissions
NASA Astrophysics Data System (ADS)
Li, Guoqiang; Görges, Daniel
2018-03-01
The control of the transmission system in vehicles is significant for the driving comfort. In order to design a controller for smooth shifting and comfortable driving, a dynamic model of a dual-clutch transmission is presented in this paper. A finite-time linear quadratic regulator is proposed for the optimal control of the two friction clutches in the torque phase for the upshift process. An integral linear quadratic regulator is introduced to regulate the relative speed difference between the engine and the slipping clutch under the optimization of the input torque during the inertia phase. The control objective focuses on smoothing the upshift process so as to improve the driving comfort. Considering the available sensors in vehicles for feedback control, an observer design is presented to track the immeasurable variables. Simulation results show that the jerk can be reduced both in the torque phase and inertia phase, indicating good shift performance. Furthermore, compared with conventional controllers for the upshift process, the proposed control method can reduce shift jerk and improve shift quality.