Sample records for optimal kernel size

  1. Effect of kernel size and mill type on protein, milling yield, and baking quality of hard red spring wheat

    USDA-ARS?s Scientific Manuscript database

    Optimization of flour yield and quality is important in the milling industry. The objective of this study was to determine the effect of kernel size and mill type on flour yield and end-use quality. A hard red spring wheat composite sample was segregated, based on kernel size, into large, medium, ...

  2. Gradient-based adaptation of general gaussian kernels.

    PubMed

    Glasmachers, Tobias; Igel, Christian

    2005-10-01

    Gradient-based optimizing of gaussian kernel functions is considered. The gradient for the adaptation of scaling and rotation of the input space is computed to achieve invariance against linear transformations. This is done by using the exponential map as a parameterization of the kernel parameter manifold. By restricting the optimization to a constant trace subspace, the kernel size can be controlled. This is, for example, useful to prevent overfitting when minimizing radius-margin generalization performance measures. The concepts are demonstrated by training hard margin support vector machines on toy data.

  3. Combining kernel matrix optimization and regularization to improve particle size distribution retrieval

    NASA Astrophysics Data System (ADS)

    Ma, Qian; Xia, Houping; Xu, Qiang; Zhao, Lei

    2018-05-01

    A new method combining Tikhonov regularization and kernel matrix optimization by multi-wavelength incidence is proposed for retrieving particle size distribution (PSD) in an independent model with improved accuracy and stability. In comparison to individual regularization or multi-wavelength least squares, the proposed method exhibited better anti-noise capability, higher accuracy and stability. While standard regularization typically makes use of the unit matrix, it is not universal for different PSDs, particularly for Junge distributions. Thus, a suitable regularization matrix was chosen by numerical simulation, with the second-order differential matrix found to be appropriate for most PSD types.

  4. Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment

    NASA Astrophysics Data System (ADS)

    Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty

    2017-12-01

    Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.

  5. Optimization of light source parameters in the photodynamic therapy of heterogeneous prostate

    NASA Astrophysics Data System (ADS)

    Li, Jun; Altschuler, Martin D.; Hahn, Stephen M.; Zhu, Timothy C.

    2008-08-01

    The three-dimensional (3D) heterogeneous distributions of optical properties in a patient prostate can now be measured in vivo. Such data can be used to obtain a more accurate light-fluence kernel. (For specified sources and points, the kernel gives the fluence delivered to a point by a source of unit strength.) In turn, the kernel can be used to solve the inverse problem that determines the source strengths needed to deliver a prescribed photodynamic therapy (PDT) dose (or light-fluence) distribution within the prostate (assuming uniform drug concentration). We have developed and tested computational procedures to use the new heterogeneous data to optimize delivered light-fluence. New problems arise, however, in quickly obtaining an accurate kernel following the insertion of interstitial light sources and data acquisition. (1) The light-fluence kernel must be calculated in 3D and separately for each light source, which increases kernel size. (2) An accurate kernel for light scattering in a heterogeneous medium requires ray tracing and volume partitioning, thus significant calculation time. To address these problems, two different kernels were examined and compared for speed of creation and accuracy of dose. Kernels derived more quickly involve simpler algorithms. Our goal is to achieve optimal dose planning with patient-specific heterogeneous optical data applied through accurate kernels, all within clinical times. The optimization process is restricted to accepting the given (interstitially inserted) sources, and determining the best source strengths with which to obtain a prescribed dose. The Cimmino feasibility algorithm is used for this purpose. The dose distribution and source weights obtained for each kernel are analyzed. In clinical use, optimization will also be performed prior to source insertion to obtain initial source positions, source lengths and source weights, but with the assumption of homogeneous optical properties. For this reason, we compare the results from heterogeneous optical data with those obtained from average homogeneous optical properties. The optimized treatment plans are also compared with the reference clinical plan, defined as the plan with sources of equal strength, distributed regularly in space, which delivers a mean value of prescribed fluence at detector locations within the treatment region. The study suggests that comprehensive optimization of source parameters (i.e. strengths, lengths and locations) is feasible, thus allowing acceptable dose coverage in a heterogeneous prostate PDT within the time constraints of the PDT procedure.

  6. SU-F-T-428: An Optimization-Based Commissioning Tool for Finite Size Pencil Beam Dose Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; Tian, Z; Song, T

    Purpose: Finite size pencil beam (FSPB) algorithms are commonly used to pre-calculate the beamlet dose distribution for IMRT treatment planning. FSPB commissioning, which usually requires fine tuning of the FSPB kernel parameters, is crucial to the dose calculation accuracy and hence the plan quality. Yet due to the large number of beamlets, FSPB commissioning could be very tedious. This abstract reports an optimization-based FSPB commissioning tool we have developed in MatLab to facilitate the commissioning. Methods: A FSPB dose kernel generally contains two types of parameters: the profile parameters determining the dose kernel shape, and a 2D scaling factors accountingmore » for the longitudinal and off-axis corrections. The former were fitted using the penumbra of a reference broad beam’s dose profile with Levenberg-Marquardt algorithm. Since the dose distribution of a broad beam is simply a linear superposition of the dose kernel of each beamlet calculated with the fitted profile parameters and scaled using the scaling factors, these factors could be determined by solving an optimization problem which minimizes the discrepancies between the calculated dose of broad beams and the reference dose. Results: We have commissioned a FSPB algorithm for three linac photon beams (6MV, 15MV and 6MVFFF). Dose of four field sizes (6*6cm2, 10*10cm2, 15*15cm2 and 20*20cm2) were calculated and compared with the reference dose exported from Eclipse TPS system. For depth dose curves, the differences are less than 1% of maximum dose after maximum dose depth for most cases. For lateral dose profiles, the differences are less than 2% of central dose at inner-beam regions. The differences of the output factors are within 1% for all the three beams. Conclusion: We have developed an optimization-based commissioning tool for FSPB algorithms to facilitate the commissioning, providing sufficient accuracy of beamlet dose calculation for IMRT optimization.« less

  7. Bayesian Optimization for Neuroimaging Pre-processing in Brain Age Classification and Prediction

    PubMed Central

    Lancaster, Jenessa; Lorenz, Romy; Leech, Rob; Cole, James H.

    2018-01-01

    Neuroimaging-based age prediction using machine learning is proposed as a biomarker of brain aging, relating to cognitive performance, health outcomes and progression of neurodegenerative disease. However, even leading age-prediction algorithms contain measurement error, motivating efforts to improve experimental pipelines. T1-weighted MRI is commonly used for age prediction, and the pre-processing of these scans involves normalization to a common template and resampling to a common voxel size, followed by spatial smoothing. Resampling parameters are often selected arbitrarily. Here, we sought to improve brain-age prediction accuracy by optimizing resampling parameters using Bayesian optimization. Using data on N = 2003 healthy individuals (aged 16–90 years) we trained support vector machines to (i) distinguish between young (<22 years) and old (>50 years) brains (classification) and (ii) predict chronological age (regression). We also evaluated generalisability of the age-regression model to an independent dataset (CamCAN, N = 648, aged 18–88 years). Bayesian optimization was used to identify optimal voxel size and smoothing kernel size for each task. This procedure adaptively samples the parameter space to evaluate accuracy across a range of possible parameters, using independent sub-samples to iteratively assess different parameter combinations to arrive at optimal values. When distinguishing between young and old brains a classification accuracy of 88.1% was achieved, (optimal voxel size = 11.5 mm3, smoothing kernel = 2.3 mm). For predicting chronological age, a mean absolute error (MAE) of 5.08 years was achieved, (optimal voxel size = 3.73 mm3, smoothing kernel = 3.68 mm). This was compared to performance using default values of 1.5 mm3 and 4mm respectively, resulting in MAE = 5.48 years, though this 7.3% improvement was not statistically significant. When assessing generalisability, best performance was achieved when applying the entire Bayesian optimization framework to the new dataset, out-performing the parameters optimized for the initial training dataset. Our study outlines the proof-of-principle that neuroimaging models for brain-age prediction can use Bayesian optimization to derive case-specific pre-processing parameters. Our results suggest that different pre-processing parameters are selected when optimization is conducted in specific contexts. This potentially motivates use of optimization techniques at many different points during the experimental process, which may improve statistical sensitivity and reduce opportunities for experimenter-led bias. PMID:29483870

  8. Spatial Variability of Organic Carbon in a Fractured Mudstone and Its Effect on the Retention and Release of Trichloroethene (TCE)

    NASA Astrophysics Data System (ADS)

    Sole-Mari, G.; Fernandez-Garcia, D.

    2016-12-01

    Random Walk Particle Tracking (RWPT) coupled with Kernel Density Estimation (KDE) has been recently proposed to simulate reactive transport in porous media. KDE provides an optimal estimation of the area of influence of particles which is a key element to simulate nonlinear chemical reactions. However, several important drawbacks can be identified: (1) the optimal KDE method is computationally intensive and thereby cannot be used at each time step of the simulation; (2) it does not take advantage of the prior information about the physical system and the previous history of the solute plume; (3) even if the kernel is optimal, the relative error in RWPT simulations typically increases over time as the particle density diminishes by dilution. To overcome these problems, we propose an adaptive branching random walk methodology that incorporates the physics, the particle history and maintains accuracy with time. The method allows particles to efficiently split and merge when necessary as well as to optimally adapt their local kernel shape without having to recalculate the kernel size. We illustrate the advantage of the method by simulating complex reactive transport problems in randomly heterogeneous porous media.

  9. Locally adaptive methods for KDE-based random walk models of reactive transport in porous media

    NASA Astrophysics Data System (ADS)

    Sole-Mari, G.; Fernandez-Garcia, D.

    2017-12-01

    Random Walk Particle Tracking (RWPT) coupled with Kernel Density Estimation (KDE) has been recently proposed to simulate reactive transport in porous media. KDE provides an optimal estimation of the area of influence of particles which is a key element to simulate nonlinear chemical reactions. However, several important drawbacks can be identified: (1) the optimal KDE method is computationally intensive and thereby cannot be used at each time step of the simulation; (2) it does not take advantage of the prior information about the physical system and the previous history of the solute plume; (3) even if the kernel is optimal, the relative error in RWPT simulations typically increases over time as the particle density diminishes by dilution. To overcome these problems, we propose an adaptive branching random walk methodology that incorporates the physics, the particle history and maintains accuracy with time. The method allows particles to efficiently split and merge when necessary as well as to optimally adapt their local kernel shape without having to recalculate the kernel size. We illustrate the advantage of the method by simulating complex reactive transport problems in randomly heterogeneous porous media.

  10. Multineuron spike train analysis with R-convolution linear combination kernel.

    PubMed

    Tezuka, Taro

    2018-06-01

    A spike train kernel provides an effective way of decoding information represented by a spike train. Some spike train kernels have been extended to multineuron spike trains, which are simultaneously recorded spike trains obtained from multiple neurons. However, most of these multineuron extensions were carried out in a kernel-specific manner. In this paper, a general framework is proposed for extending any single-neuron spike train kernel to multineuron spike trains, based on the R-convolution kernel. Special subclasses of the proposed R-convolution linear combination kernel are explored. These subclasses have a smaller number of parameters and make optimization tractable when the size of data is limited. The proposed kernel was evaluated using Gaussian process regression for multineuron spike trains recorded from an animal brain. It was compared with the sum kernel and the population Spikernel, which are existing ways of decoding multineuron spike trains using kernels. The results showed that the proposed approach performs better than these kernels and also other commonly used neural decoding methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Agile convolutional neural network for pulmonary nodule classification using CT images.

    PubMed

    Zhao, Xinzhuo; Liu, Liyao; Qi, Shouliang; Teng, Yueyang; Li, Jianhua; Qian, Wei

    2018-04-01

    To distinguish benign from malignant pulmonary nodules using CT images is critical for their precise diagnosis and treatment. A new Agile convolutional neural network (CNN) framework is proposed to conquer the challenges of a small-scale medical image database and the small size of the nodules, and it improves the performance of pulmonary nodule classification using CT images. A hybrid CNN of LeNet and AlexNet is constructed through combining the layer settings of LeNet and the parameter settings of AlexNet. A dataset with 743 CT image nodule samples is built up based on the 1018 CT scans of LIDC to train and evaluate the Agile CNN model. Through adjusting the parameters of the kernel size, learning rate, and other factors, the effect of these parameters on the performance of the CNN model is investigated, and an optimized setting of the CNN is obtained finally. After finely optimizing the settings of the CNN, the estimation accuracy and the area under the curve can reach 0.822 and 0.877, respectively. The accuracy of the CNN is significantly dependent on the kernel size, learning rate, training batch size, dropout, and weight initializations. The best performance is achieved when the kernel size is set to [Formula: see text], the learning rate is 0.005, the batch size is 32, and dropout and Gaussian initialization are used. This competitive performance demonstrates that our proposed CNN framework and the optimization strategy of the CNN parameters are suitable for pulmonary nodule classification characterized by small medical datasets and small targets. The classification model might help diagnose and treat pulmonary nodules effectively.

  12. The Genetic Basis of Natural Variation in Kernel Size and Related Traits Using a Four-Way Cross Population in Maize.

    PubMed

    Chen, Jiafa; Zhang, Luyan; Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang

    2016-01-01

    Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed.

  13. The Genetic Basis of Natural Variation in Kernel Size and Related Traits Using a Four-Way Cross Population in Maize

    PubMed Central

    Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang

    2016-01-01

    Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed. PMID:27070143

  14. Generation and optimization of superpixels as image processing kernels for Jones matrix optical coherence tomography

    PubMed Central

    Miyazawa, Arata; Hong, Young-Joo; Makita, Shuichi; Kasaragod, Deepa; Yasuno, Yoshiaki

    2017-01-01

    Jones matrix-based polarization sensitive optical coherence tomography (JM-OCT) simultaneously measures optical intensity, birefringence, degree of polarization uniformity, and OCT angiography. The statistics of the optical features in a local region, such as the local mean of the OCT intensity, are frequently used for image processing and the quantitative analysis of JM-OCT. Conventionally, local statistics have been computed with fixed-size rectangular kernels. However, this results in a trade-off between image sharpness and statistical accuracy. We introduce a superpixel method to JM-OCT for generating the flexible kernels of local statistics. A superpixel is a cluster of image pixels that is formed by the pixels’ spatial and signal value proximities. An algorithm for superpixel generation specialized for JM-OCT and its optimization methods are presented in this paper. The spatial proximity is in two-dimensional cross-sectional space and the signal values are the four optical features. Hence, the superpixel method is a six-dimensional clustering technique for JM-OCT pixels. The performance of the JM-OCT superpixels and its optimization methods are evaluated in detail using JM-OCT datasets of posterior eyes. The superpixels were found to well preserve tissue structures, such as layer structures, sclera, vessels, and retinal pigment epithelium. And hence, they are more suitable for local statistics kernels than conventional uniform rectangular kernels. PMID:29082073

  15. Optimal focal-plane restoration

    NASA Technical Reports Server (NTRS)

    Reichenbach, Stephen E.; Park, Stephen K.

    1989-01-01

    Image restoration can be implemented efficiently by calculating the convolution of the digital image and a small kernel during image acquisition. Processing the image in the focal-plane in this way requires less computation than traditional Fourier-transform-based techniques such as the Wiener filter and constrained least-squares filter. Here, the values of the convolution kernel that yield the restoration with minimum expected mean-square error are determined using a frequency analysis of the end-to-end imaging system. This development accounts for constraints on the size and shape of the spatial kernel and all the components of the imaging system. Simulation results indicate the technique is effective and efficient.

  16. Joint and collaborative representation with local Volterra kernels convolution feature for face recognition

    NASA Astrophysics Data System (ADS)

    Feng, Guang; Li, Hengjian; Dong, Jiwen; Chen, Xi; Yang, Huiru

    2018-04-01

    In this paper, we proposed a joint and collaborative representation with Volterra kernel convolution feature (JCRVK) for face recognition. Firstly, the candidate face images are divided into sub-blocks in the equal size. The blocks are extracted feature using the two-dimensional Voltera kernels discriminant analysis, which can better capture the discrimination information from the different faces. Next, the proposed joint and collaborative representation is employed to optimize and classify the local Volterra kernels features (JCR-VK) individually. JCR-VK is very efficiently for its implementation only depending on matrix multiplication. Finally, recognition is completed by using the majority voting principle. Extensive experiments on the Extended Yale B and AR face databases are conducted, and the results show that the proposed approach can outperform other recently presented similar dictionary algorithms on recognition accuracy.

  17. Optimal projection method determination by Logdet Divergence and perturbed von-Neumann Divergence.

    PubMed

    Jiang, Hao; Ching, Wai-Ki; Qiu, Yushan; Cheng, Xiao-Qing

    2017-12-14

    Positive semi-definiteness is a critical property in kernel methods for Support Vector Machine (SVM) by which efficient solutions can be guaranteed through convex quadratic programming. However, a lot of similarity functions in applications do not produce positive semi-definite kernels. We propose projection method by constructing projection matrix on indefinite kernels. As a generalization of the spectrum method (denoising method and flipping method), the projection method shows better or comparable performance comparing to the corresponding indefinite kernel methods on a number of real world data sets. Under the Bregman matrix divergence theory, we can find suggested optimal λ in projection method using unconstrained optimization in kernel learning. In this paper we focus on optimal λ determination, in the pursuit of precise optimal λ determination method in unconstrained optimization framework. We developed a perturbed von-Neumann divergence to measure kernel relationships. We compared optimal λ determination with Logdet Divergence and perturbed von-Neumann Divergence, aiming at finding better λ in projection method. Results on a number of real world data sets show that projection method with optimal λ by Logdet divergence demonstrate near optimal performance. And the perturbed von-Neumann Divergence can help determine a relatively better optimal projection method. Projection method ia easy to use for dealing with indefinite kernels. And the parameter embedded in the method can be determined through unconstrained optimization under Bregman matrix divergence theory. This may provide a new way in kernel SVMs for varied objectives.

  18. Optimized Kernel Entropy Components.

    PubMed

    Izquierdo-Verdiguier, Emma; Laparra, Valero; Jenssen, Robert; Gomez-Chova, Luis; Camps-Valls, Gustau

    2017-06-01

    This brief addresses two main issues of the standard kernel entropy component analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of variance, as in the kernel principal components analysis. In this brief, we propose an extension of the KECA method, named optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular, it is based on the independent component analysis framework, and introduces an extra rotation to the eigen decomposition, which is optimized via gradient-ascent search. This maximum entropy preservation suggests that OKECA features are more efficient than KECA features for density estimation. In addition, a critical issue in both the methods is the selection of the kernel parameter, since it critically affects the resulting performance. Here, we analyze the most common kernel length-scale selection criteria. The results of both the methods are illustrated in different synthetic and real problems. Results show that OKECA returns projections with more expressive power than KECA, the most successful rule for estimating the kernel parameter is based on maximum likelihood, and OKECA is more robust to the selection of the length-scale parameter in kernel density estimation.

  19. Coupling individual kernel-filling processes with source-sink interactions into GREENLAB-Maize.

    PubMed

    Ma, Yuntao; Chen, Youjia; Zhu, Jinyu; Meng, Lei; Guo, Yan; Li, Baoguo; Hoogenboom, Gerrit

    2018-02-13

    Failure to account for the variation of kernel growth in a cereal crop simulation model may cause serious deviations in the estimates of crop yield. The goal of this research was to revise the GREENLAB-Maize model to incorporate source- and sink-limited allocation approaches to simulate the dry matter accumulation of individual kernels of an ear (GREENLAB-Maize-Kernel). The model used potential individual kernel growth rates to characterize the individual potential sink demand. The remobilization of non-structural carbohydrates from reserve organs to kernels was also incorporated. Two years of field experiments were conducted to determine the model parameter values and to evaluate the model using two maize hybrids with different plant densities and pollination treatments. Detailed observations were made on the dimensions and dry weights of individual kernels and other above-ground plant organs throughout the seasons. Three basic traits characterizing an individual kernel were compared on simulated and measured individual kernels: (1) final kernel size; (2) kernel growth rate; and (3) duration of kernel filling. Simulations of individual kernel growth closely corresponded to experimental data. The model was able to reproduce the observed dry weight of plant organs well. Then, the source-sink dynamics and the remobilization of carbohydrates for kernel growth were quantified to show that remobilization processes accompanied source-sink dynamics during the kernel-filling process. We conclude that the model may be used to explore options for optimizing plant kernel yield by matching maize management to the environment, taking into account responses at the level of individual kernels. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Gaussian mass optimization for kernel PCA parameters

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Wang, Zulin

    2011-10-01

    This paper proposes a novel kernel parameter optimization method based on Gaussian mass, which aims to overcome the current brute force parameter optimization method in a heuristic way. Generally speaking, the choice of kernel parameter should be tightly related to the target objects while the variance between the samples, the most commonly used kernel parameter, doesn't possess much features of the target, which gives birth to Gaussian mass. Gaussian mass defined in this paper has the property of the invariance of rotation and translation and is capable of depicting the edge, topology and shape information. Simulation results show that Gaussian mass leads a promising heuristic optimization boost up for kernel method. In MNIST handwriting database, the recognition rate improves by 1.6% compared with common kernel method without Gaussian mass optimization. Several promising other directions which Gaussian mass might help are also proposed at the end of the paper.

  1. Novel characterization method of impedance cardiography signals using time-frequency distributions.

    PubMed

    Escrivá Muñoz, Jesús; Pan, Y; Ge, S; Jensen, E W; Vallverdú, M

    2018-03-16

    The purpose of this document is to describe a methodology to select the most adequate time-frequency distribution (TFD) kernel for the characterization of impedance cardiography signals (ICG). The predominant ICG beat was extracted from a patient and was synthetized using time-frequency variant Fourier approximations. These synthetized signals were used to optimize several TFD kernels according to a performance maximization. The optimized kernels were tested for noise resistance on a clinical database. The resulting optimized TFD kernels are presented with their performance calculated using newly proposed methods. The procedure explained in this work showcases a new method to select an appropriate kernel for ICG signals and compares the performance of different time-frequency kernels found in the literature for the case of ICG signals. We conclude that, for ICG signals, the performance (P) of the spectrogram with either Hanning or Hamming windows (P = 0.780) and the extended modified beta distribution (P = 0.765) provided similar results, higher than the rest of analyzed kernels. Graphical abstract Flowchart for the optimization of time-frequency distribution kernels for impedance cardiography signals.

  2. MO-G-17A-05: PET Image Deblurring Using Adaptive Dictionary Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valiollahzadeh, S; Clark, J; Mawlawi, O

    2014-06-15

    Purpose: The aim of this work is to deblur PET images while suppressing Poisson noise effects using adaptive dictionary learning (DL) techniques. Methods: The model that relates a blurred and noisy PET image to the desired image is described as a linear transform y=Hm+n where m is the desired image, H is a blur kernel, n is Poisson noise and y is the blurred image. The approach we follow to recover m involves the sparse representation of y over a learned dictionary, since the image has lots of repeated patterns, edges, textures and smooth regions. The recovery is based onmore » an optimization of a cost function having four major terms: adaptive dictionary learning term, sparsity term, regularization term, and MLEM Poisson noise estimation term. The optimization is solved by a variable splitting method that introduces additional variables. We simulated a 128×128 Hoffman brain PET image (baseline) with varying kernel types and sizes (Gaussian 9×9, σ=5.4mm; Uniform 5×5, σ=2.9mm) with additive Poisson noise (Blurred). Image recovery was performed once when the kernel type was included in the model optimization and once with the model blinded to kernel type. The recovered image was compared to the baseline as well as another recovery algorithm PIDSPLIT+ (Setzer et. al.) by calculating PSNR (Peak SNR) and normalized average differences in pixel intensities (NADPI) of line profiles across the images. Results: For known kernel types, the PSNR of the Gaussian (Uniform) was 28.73 (25.1) and 25.18 (23.4) for DL and PIDSPLIT+ respectively. For blinded deblurring the PSNRs were 25.32 and 22.86 for DL and PIDSPLIT+ respectively. NADPI between baseline and DL, and baseline and blurred for the Gaussian kernel was 2.5 and 10.8 respectively. Conclusion: PET image deblurring using dictionary learning seems to be a good approach to restore image resolution in presence of Poisson noise. GE Health Care.« less

  3. Generation of a novel phase-space-based cylindrical dose kernel for IMRT optimization.

    PubMed

    Zhong, Hualiang; Chetty, Indrin J

    2012-05-01

    Improving dose calculation accuracy is crucial in intensity-modulated radiation therapy (IMRT). We have developed a method for generating a phase-space-based dose kernel for IMRT planning of lung cancer patients. Particle transport in the linear accelerator treatment head of a 21EX, 6 MV photon beam (Varian Medical Systems, Palo Alto, CA) was simulated using the EGSnrc/BEAMnrc code system. The phase space information was recorded under the secondary jaws. Each particle in the phase space file was associated with a beamlet whose index was calculated and saved in the particle's LATCH variable. The DOSXYZnrc code was modified to accumulate the energy deposited by each particle based on its beamlet index. Furthermore, the central axis of each beamlet was calculated from the orientation of all the particles in this beamlet. A cylinder was then defined around the central axis so that only the energy deposited within the cylinder was counted. A look-up table was established for each cylinder during the tallying process. The efficiency and accuracy of the cylindrical beamlet energy deposition approach was evaluated using a treatment plan developed on a simulated lung phantom. Profile and percentage depth doses computed in a water phantom for an open, square field size were within 1.5% of measurements. Dose optimized with the cylindrical dose kernel was found to be within 0.6% of that computed with the nontruncated 3D kernel. The cylindrical truncation reduced optimization time by approximately 80%. A method for generating a phase-space-based dose kernel, using a truncated cylinder for scoring dose, in beamlet-based optimization of lung treatment planning was developed and found to be in good agreement with the standard, nontruncated scoring approach. Compared to previous techniques, our method significantly reduces computational time and memory requirements, which may be useful for Monte-Carlo-based 4D IMRT or IMAT treatment planning.

  4. Parameterized Micro-benchmarking: An Auto-tuning Approach for Complex Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Wenjing; Krishnamoorthy, Sriram; Agrawal, Gagan

    2012-05-15

    Auto-tuning has emerged as an important practical method for creating highly optimized implementations of key computational kernels and applications. However, the growing complexity of architectures and applications is creating new challenges for auto-tuning. Complex applications can involve a prohibitively large search space that precludes empirical auto-tuning. Similarly, architectures are becoming increasingly complicated, making it hard to model performance. In this paper, we focus on the challenge to auto-tuning presented by applications with a large number of kernels and kernel instantiations. While these kernels may share a somewhat similar pattern, they differ considerably in problem sizes and the exact computation performed.more » We propose and evaluate a new approach to auto-tuning which we refer to as parameterized micro-benchmarking. It is an alternative to the two existing classes of approaches to auto-tuning: analytical model-based and empirical search-based. Particularly, we argue that the former may not be able to capture all the architectural features that impact performance, whereas the latter might be too expensive for an application that has several different kernels. In our approach, different expressions in the application, different possible implementations of each expression, and the key architectural features, are used to derive a simple micro-benchmark and a small parameter space. This allows us to learn the most significant features of the architecture that can impact the choice of implementation for each kernel. We have evaluated our approach in the context of GPU implementations of tensor contraction expressions encountered in excited state calculations in quantum chemistry. We have focused on two aspects of GPUs that affect tensor contraction execution: memory access patterns and kernel consolidation. Using our parameterized micro-benchmarking approach, we obtain a speedup of up to 2 over the version that used default optimizations, but no auto-tuning. We demonstrate that observations made from microbenchmarks match the behavior seen from real expressions. In the process, we make important observations about the memory hierarchy of two of the most recent NVIDIA GPUs, which can be used in other optimization frameworks as well.« less

  5. Optimization method of superpixel analysis for multi-contrast Jones matrix tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Miyazawa, Arata; Hong, Young-Joo; Makita, Shuichi; Kasaragod, Deepa K.; Miura, Masahiro; Yasuno, Yoshiaki

    2017-02-01

    Local statistics are widely utilized for quantification and image processing of OCT. For example, local mean is used to reduce speckle, local variation of polarization state (degree-of-polarization-uniformity (DOPU)) is used to visualize melanin. Conventionally, these statistics are calculated in a rectangle kernel whose size is uniform over the image. However, the fixed size and shape of the kernel result in a tradeoff between image sharpness and statistical accuracy. Superpixel is a cluster of pixels which is generated by grouping image pixels based on the spatial proximity and similarity of signal values. Superpixels have variant size and flexible shapes which preserve the tissue structure. Here we demonstrate a new superpixel method which is tailored for multifunctional Jones matrix OCT (JM-OCT). This new method forms the superpixels by clustering image pixels in a 6-dimensional (6-D) feature space (spatial two dimensions and four dimensions of optical features). All image pixels were clustered based on their spatial proximity and optical feature similarity. The optical features are scattering, OCT-A, birefringence and DOPU. The method is applied to retinal OCT. Generated superpixels preserve the tissue structures such as retinal layers, sclera, vessels, and retinal pigment epithelium. Hence, superpixel can be utilized as a local statistics kernel which would be more suitable than a uniform rectangle kernel. Superpixelized image also can be used for further image processing and analysis. Since it reduces the number of pixels to be analyzed, it reduce the computational cost of such image processing.

  6. Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize.

    PubMed

    Chen, Lin; Li, Yong-xiang; Li, Chunhui; Wu, Xun; Qin, Weiwei; Li, Xin; Jiao, Fuchao; Zhang, Xiaojing; Zhang, Dengfeng; Shi, Yunsu; Song, Yanchun; Li, Yu; Wang, Tianyu

    2016-04-12

    Kernel weight and size are important components of grain yield in cereals. Although some information is available concerning the map positions of quantitative trait loci (QTL) for kernel weight and size in maize, little is known about the molecular mechanisms of these QTLs. qGW4.05 is a major QTL that is associated with kernel weight and size in maize. We combined linkage analysis and association mapping to fine-map and identify candidate gene(s) at qGW4.05. QTL qGW4.05 was fine-mapped to a 279.6-kb interval in a segregating population derived from a cross of Huangzaosi with LV28. By combining the results of regional association mapping and linkage analysis, we identified GRMZM2G039934 as a candidate gene responsible for qGW4.05. Candidate gene-based association mapping was conducted using a panel of 184 inbred lines with variable kernel weights and kernel sizes. Six polymorphic sites in the gene GRMZM2G039934 were significantly associated with kernel weight and kernel size. The results of linkage analysis and association mapping revealed that GRMZM2G039934 is the most likely candidate gene for qGW4.05. These results will improve our understanding of the genetic architecture and molecular mechanisms underlying kernel development in maize.

  7. Optimized data fusion for K-means Laplacian clustering

    PubMed Central

    Yu, Shi; Liu, Xinhai; Tranchevent, Léon-Charles; Glänzel, Wolfgang; Suykens, Johan A. K.; De Moor, Bart; Moreau, Yves

    2011-01-01

    Motivation: We propose a novel algorithm to combine multiple kernels and Laplacians for clustering analysis. The new algorithm is formulated on a Rayleigh quotient objective function and is solved as a bi-level alternating minimization procedure. Using the proposed algorithm, the coefficients of kernels and Laplacians can be optimized automatically. Results: Three variants of the algorithm are proposed. The performance is systematically validated on two real-life data fusion applications. The proposed Optimized Kernel Laplacian Clustering (OKLC) algorithms perform significantly better than other methods. Moreover, the coefficients of kernels and Laplacians optimized by OKLC show some correlation with the rank of performance of individual data source. Though in our evaluation the K values are predefined, in practical studies, the optimal cluster number can be consistently estimated from the eigenspectrum of the combined kernel Laplacian matrix. Availability: The MATLAB code of algorithms implemented in this paper is downloadable from http://homes.esat.kuleuven.be/~sistawww/bioi/syu/oklc.html. Contact: shiyu@uchicago.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20980271

  8. Optimisation of quantitative lung SPECT applied to mild COPD: a software phantom simulation study.

    PubMed

    Norberg, Pernilla; Olsson, Anna; Alm Carlsson, Gudrun; Sandborg, Michael; Gustafsson, Agnetha

    2015-01-01

    The amount of inhomogeneities in a (99m)Tc Technegas single-photon emission computed tomography (SPECT) lung image, caused by reduced ventilation in lung regions affected by chronic obstructive pulmonary disease (COPD), is correlated to disease advancement. A quantitative analysis method, the CVT method, measuring these inhomogeneities was proposed in earlier work. To detect mild COPD, which is a difficult task, optimised parameter values are needed. In this work, the CVT method was optimised with respect to the parameter values of acquisition, reconstruction and analysis. The ordered subset expectation maximisation (OSEM) algorithm was used for reconstructing the lung SPECT images. As a first step towards clinical application of the CVT method in detecting mild COPD, this study was based on simulated SPECT images of an advanced anthropomorphic lung software phantom including respiratory and cardiac motion, where the mild COPD lung had an overall ventilation reduction of 5%. The best separation between healthy and mild COPD lung images as determined using the CVT measure of ventilation inhomogeneity and 125 MBq (99m)Tc was obtained using a low-energy high-resolution collimator (LEHR) and a power 6 Butterworth post-filter with a cutoff frequency of 0.6 to 0.7 cm(-1). Sixty-four reconstruction updates and a small kernel size should be used when the whole lung is analysed, and for the reduced lung a greater number of updates and a larger kernel size are needed. A LEHR collimator and 125 (99m)Tc MBq together with an optimal combination of cutoff frequency, number of updates and kernel size, gave the best result. Suboptimal selections of either cutoff frequency, number of updates and kernel size will reduce the imaging system's ability to detect mild COPD in the lung phantom.

  9. Gaussian processes with optimal kernel construction for neuro-degenerative clinical onset prediction

    NASA Astrophysics Data System (ADS)

    Canas, Liane S.; Yvernault, Benjamin; Cash, David M.; Molteni, Erika; Veale, Tom; Benzinger, Tammie; Ourselin, Sébastien; Mead, Simon; Modat, Marc

    2018-02-01

    Gaussian Processes (GP) are a powerful tool to capture the complex time-variations of a dataset. In the context of medical imaging analysis, they allow a robust modelling even in case of highly uncertain or incomplete datasets. Predictions from GP are dependent of the covariance kernel function selected to explain the data variance. To overcome this limitation, we propose a framework to identify the optimal covariance kernel function to model the data.The optimal kernel is defined as a composition of base kernel functions used to identify correlation patterns between data points. Our approach includes a modified version of the Compositional Kernel Learning (CKL) algorithm, in which we score the kernel families using a new energy function that depends both the Bayesian Information Criterion (BIC) and the explained variance score. We applied the proposed framework to model the progression of neurodegenerative diseases over time, in particular the progression of autosomal dominantly-inherited Alzheimer's disease, and use it to predict the time to clinical onset of subjects carrying genetic mutation.

  10. The Conserved and Unique Genetic Architecture of Kernel Size and Weight in Maize and Rice1[OPEN

    PubMed Central

    Lan, Liu; Wang, Hongze; Xu, Yuancheng; Yang, Xiaohong; Li, Wenqiang; Tong, Hao; Xiao, Yingjie; Pan, Qingchun; Qiao, Feng; Raihan, Mohammad Sharif; Liu, Haijun; Yang, Ning; Wang, Xiaqing; Deng, Min; Jin, Minliang; Zhao, Lijun; Luo, Xin; Zhan, Wei; Liu, Nannan; Wang, Hong; Chen, Gengshen

    2017-01-01

    Maize (Zea mays) is a major staple crop. Maize kernel size and weight are important contributors to its yield. Here, we measured kernel length, kernel width, kernel thickness, hundred kernel weight, and kernel test weight in 10 recombinant inbred line populations and dissected their genetic architecture using three statistical models. In total, 729 quantitative trait loci (QTLs) were identified, many of which were identified in all three models, including 22 major QTLs that each can explain more than 10% of phenotypic variation. To provide candidate genes for these QTLs, we identified 30 maize genes that are orthologs of 18 rice (Oryza sativa) genes reported to affect rice seed size or weight. Interestingly, 24 of these 30 genes are located in the identified QTLs or within 1 Mb of the significant single-nucleotide polymorphisms. We further confirmed the effects of five genes on maize kernel size/weight in an independent association mapping panel with 540 lines by candidate gene association analysis. Lastly, the function of ZmINCW1, a homolog of rice GRAIN INCOMPLETE FILLING1 that affects seed size and weight, was characterized in detail. ZmINCW1 is close to QTL peaks for kernel size/weight (less than 1 Mb) and contains significant single-nucleotide polymorphisms affecting kernel size/weight in the association panel. Overexpression of this gene can rescue the reduced weight of the Arabidopsis (Arabidopsis thaliana) homozygous mutant line in the AtcwINV2 gene (Arabidopsis ortholog of ZmINCW1). These results indicate that the molecular mechanisms affecting seed development are conserved in maize, rice, and possibly Arabidopsis. PMID:28811335

  11. The Conserved and Unique Genetic Architecture of Kernel Size and Weight in Maize and Rice.

    PubMed

    Liu, Jie; Huang, Juan; Guo, Huan; Lan, Liu; Wang, Hongze; Xu, Yuancheng; Yang, Xiaohong; Li, Wenqiang; Tong, Hao; Xiao, Yingjie; Pan, Qingchun; Qiao, Feng; Raihan, Mohammad Sharif; Liu, Haijun; Zhang, Xuehai; Yang, Ning; Wang, Xiaqing; Deng, Min; Jin, Minliang; Zhao, Lijun; Luo, Xin; Zhou, Yang; Li, Xiang; Zhan, Wei; Liu, Nannan; Wang, Hong; Chen, Gengshen; Li, Qing; Yan, Jianbing

    2017-10-01

    Maize ( Zea mays ) is a major staple crop. Maize kernel size and weight are important contributors to its yield. Here, we measured kernel length, kernel width, kernel thickness, hundred kernel weight, and kernel test weight in 10 recombinant inbred line populations and dissected their genetic architecture using three statistical models. In total, 729 quantitative trait loci (QTLs) were identified, many of which were identified in all three models, including 22 major QTLs that each can explain more than 10% of phenotypic variation. To provide candidate genes for these QTLs, we identified 30 maize genes that are orthologs of 18 rice ( Oryza sativa ) genes reported to affect rice seed size or weight. Interestingly, 24 of these 30 genes are located in the identified QTLs or within 1 Mb of the significant single-nucleotide polymorphisms. We further confirmed the effects of five genes on maize kernel size/weight in an independent association mapping panel with 540 lines by candidate gene association analysis. Lastly, the function of ZmINCW1 , a homolog of rice GRAIN INCOMPLETE FILLING1 that affects seed size and weight, was characterized in detail. ZmINCW1 is close to QTL peaks for kernel size/weight (less than 1 Mb) and contains significant single-nucleotide polymorphisms affecting kernel size/weight in the association panel. Overexpression of this gene can rescue the reduced weight of the Arabidopsis ( Arabidopsis thaliana ) homozygous mutant line in the AtcwINV2 gene (Arabidopsis ortholog of ZmINCW1 ). These results indicate that the molecular mechanisms affecting seed development are conserved in maize, rice, and possibly Arabidopsis. © 2017 American Society of Plant Biologists. All Rights Reserved.

  12. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach.

    PubMed

    Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong

    2017-06-19

    A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.

  13. Efficient nonparametric n -body force fields from machine learning

    NASA Astrophysics Data System (ADS)

    Glielmo, Aldo; Zeni, Claudio; De Vita, Alessandro

    2018-05-01

    We provide a definition and explicit expressions for n -body Gaussian process (GP) kernels, which can learn any interatomic interaction occurring in a physical system, up to n -body contributions, for any value of n . The series is complete, as it can be shown that the "universal approximator" squared exponential kernel can be written as a sum of n -body kernels. These recipes enable the choice of optimally efficient force models for each target system, as confirmed by extensive testing on various materials. We furthermore describe how the n -body kernels can be "mapped" on equivalent representations that provide database-size-independent predictions and are thus crucially more efficient. We explicitly carry out this mapping procedure for the first nontrivial (three-body) kernel of the series, and we show that this reproduces the GP-predicted forces with meV /Å accuracy while being orders of magnitude faster. These results pave the way to using novel force models (here named "M-FFs") that are computationally as fast as their corresponding standard parametrized n -body force fields, while retaining the nonparametric character, the ease of training and validation, and the accuracy of the best recently proposed machine-learning potentials.

  14. Benchmarking NWP Kernels on Multi- and Many-core Processors

    NASA Astrophysics Data System (ADS)

    Michalakes, J.; Vachharajani, M.

    2008-12-01

    Increased computing power for weather, climate, and atmospheric science has provided direct benefits for defense, agriculture, the economy, the environment, and public welfare and convenience. Today, very large clusters with many thousands of processors are allowing scientists to move forward with simulations of unprecedented size. But time-critical applications such as real-time forecasting or climate prediction need strong scaling: faster nodes and processors, not more of them. Moreover, the need for good cost- performance has never been greater, both in terms of performance per watt and per dollar. For these reasons, the new generations of multi- and many-core processors being mass produced for commercial IT and "graphical computing" (video games) are being scrutinized for their ability to exploit the abundant fine- grain parallelism in atmospheric models. We present results of our work to date identifying key computational kernels within the dynamics and physics of a large community NWP model, the Weather Research and Forecast (WRF) model. We benchmark and optimize these kernels on several different multi- and many-core processors. The goals are to (1) characterize and model performance of the kernels in terms of computational intensity, data parallelism, memory bandwidth pressure, memory footprint, etc. (2) enumerate and classify effective strategies for coding and optimizing for these new processors, (3) assess difficulties and opportunities for tool or higher-level language support, and (4) establish a continuing set of kernel benchmarks that can be used to measure and compare effectiveness of current and future designs of multi- and many-core processors for weather and climate applications.

  15. Gaussian process regression for geometry optimization

    NASA Astrophysics Data System (ADS)

    Denzel, Alexander; Kästner, Johannes

    2018-03-01

    We implemented a geometry optimizer based on Gaussian process regression (GPR) to find minimum structures on potential energy surfaces. We tested both a two times differentiable form of the Matérn kernel and the squared exponential kernel. The Matérn kernel performs much better. We give a detailed description of the optimization procedures. These include overshooting the step resulting from GPR in order to obtain a higher degree of interpolation vs. extrapolation. In a benchmark against the Limited-memory Broyden-Fletcher-Goldfarb-Shanno optimizer of the DL-FIND library on 26 test systems, we found the new optimizer to generally reduce the number of required optimization steps.

  16. Weighted graph cuts without eigenvectors a multilevel approach.

    PubMed

    Dhillon, Inderjit S; Guan, Yuqiang; Kulis, Brian

    2007-11-01

    A variety of clustering algorithms have recently been proposed to handle data that is not linearly separable; spectral clustering and kernel k-means are two of the main methods. In this paper, we discuss an equivalence between the objective functions used in these seemingly different methods--in particular, a general weighted kernel k-means objective is mathematically equivalent to a weighted graph clustering objective. We exploit this equivalence to develop a fast, high-quality multilevel algorithm that directly optimizes various weighted graph clustering objectives, such as the popular ratio cut, normalized cut, and ratio association criteria. This eliminates the need for any eigenvector computation for graph clustering problems, which can be prohibitive for very large graphs. Previous multilevel graph partitioning methods, such as Metis, have suffered from the restriction of equal-sized clusters; our multilevel algorithm removes this restriction by using kernel k-means to optimize weighted graph cuts. Experimental results show that our multilevel algorithm outperforms a state-of-the-art spectral clustering algorithm in terms of speed, memory usage, and quality. We demonstrate that our algorithm is applicable to large-scale clustering tasks such as image segmentation, social network analysis and gene network analysis.

  17. A framework for optimal kernel-based manifold embedding of medical image data.

    PubMed

    Zimmer, Veronika A; Lekadir, Karim; Hoogendoorn, Corné; Frangi, Alejandro F; Piella, Gemma

    2015-04-01

    Kernel-based dimensionality reduction is a widely used technique in medical image analysis. To fully unravel the underlying nonlinear manifold the selection of an adequate kernel function and of its free parameters is critical. In practice, however, the kernel function is generally chosen as Gaussian or polynomial and such standard kernels might not always be optimal for a given image dataset or application. In this paper, we present a study on the effect of the kernel functions in nonlinear manifold embedding of medical image data. To this end, we first carry out a literature review on existing advanced kernels developed in the statistics, machine learning, and signal processing communities. In addition, we implement kernel-based formulations of well-known nonlinear dimensional reduction techniques such as Isomap and Locally Linear Embedding, thus obtaining a unified framework for manifold embedding using kernels. Subsequently, we present a method to automatically choose a kernel function and its associated parameters from a pool of kernel candidates, with the aim to generate the most optimal manifold embeddings. Furthermore, we show how the calculated selection measures can be extended to take into account the spatial relationships in images, or used to combine several kernels to further improve the embedding results. Experiments are then carried out on various synthetic and phantom datasets for numerical assessment of the methods. Furthermore, the workflow is applied to real data that include brain manifolds and multispectral images to demonstrate the importance of the kernel selection in the analysis of high-dimensional medical images. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. SOME ENGINEERING PROPERTIES OF SHELLED AND KERNEL TEA (Camellia sinensis) SEEDS.

    PubMed

    Altuntas, Ebubekir; Yildiz, Merve

    2017-01-01

    Camellia sinensis is the source of tea leaves and it is an economic crop now grown around the World. Tea seed oil has been used for cooking in China and other Asian countries for more than a thousand years. Tea is the most widely consumed beverages after water in the world. It is mainly produced in Asia, central Africa, and exported throughout the World. Some engineering properties (size dimensions, sphericity, volume, bulk and true densities, friction coefficient, colour characteristics and mechanical behaviour as rupture force of shelled and kernel tea ( Camellia sinensis ) seeds were determined in this study. This research was carried out for shelled and kernel tea seeds. The shelled tea seeds used in this study were obtained from East-Black Sea Tea Cooperative Institution in Rize city of Turkey. Shelled and kernel tea seeds were characterized as large and small sizes. The average geometric mean diameter and seed mass of the shelled tea seeds were 15.8 mm, 10.7 mm (large size); 1.47 g, 0.49 g (small size); while the average geometric mean diameter and seed mass of the kernel tea seeds were 11.8 mm, 8 mm for large size; 0.97 g, 0.31 g for small size, respectively. The sphericity, surface area and volume values were found to be higher in a larger size than small size for the shelled and kernel tea samples. The shelled tea seed's colour intensity (Chroma) were found between 59.31 and 64.22 for large size, while the kernel tea seed's chroma values were found between 56.04 68.34 for large size, respectively. The rupture force values of kernel tea seeds were higher than shelled tea seeds for the large size along X axis; whereas, the rupture force values of along X axis were higher than Y axis for large size of shelled tea seeds. The static coefficients of friction of shelled and kernel tea seeds for the large and small sizes higher values for rubber than the other friction surfaces. Some engineering properties, such as geometric mean diameter, sphericity, volume, bulk and true densities, the coefficient of friction, L*, a*, b* colour characteristics and rupture force of shelled and kernel tea ( Camellia sinensis ) seeds will serve to design the equipment used in postharvest treatments.

  19. Fast Gaussian kernel learning for classification tasks based on specially structured global optimization.

    PubMed

    Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen

    2014-09-01

    For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Leptokurtic portfolio theory

    NASA Astrophysics Data System (ADS)

    Kitt, R.; Kalda, J.

    2006-03-01

    The question of optimal portfolio is addressed. The conventional Markowitz portfolio optimisation is discussed and the shortcomings due to non-Gaussian security returns are outlined. A method is proposed to minimise the likelihood of extreme non-Gaussian drawdowns of the portfolio value. The theory is called Leptokurtic, because it minimises the effects from “fat tails” of returns. The leptokurtic portfolio theory provides an optimal portfolio for investors, who define their risk-aversion as unwillingness to experience sharp drawdowns in asset prices. Two types of risks in asset returns are defined: a fluctuation risk, that has Gaussian distribution, and a drawdown risk, that deals with distribution tails. These risks are quantitatively measured by defining the “noise kernel” — an ellipsoidal cloud of points in the space of asset returns. The size of the ellipse is controlled with the threshold parameter: the larger the threshold parameter, the larger return are accepted for investors as normal fluctuations. The return vectors falling into the kernel are used for calculation of fluctuation risk. Analogously, the data points falling outside the kernel are used for the calculation of drawdown risks. As a result the portfolio optimisation problem becomes three-dimensional: in addition to the return, there are two types of risks involved. Optimal portfolio for drawdown-averse investors is the portfolio minimising variance outside the noise kernel. The theory has been tested with MSCI North America, Europe and Pacific total return stock indices.

  1. 7 CFR 51.2284 - Size classification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: “Halves”, “Pieces and Halves”, “Pieces” or “Small Pieces”. The size of portions of kernels in the lot... consists of 85 percent or more, by weight, half kernels, and the remainder three-fourths half kernels. (See § 51.2285.) (b) Pieces and halves. Lot consists of 20 percent or more, by weight, half kernels, and the...

  2. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach

    PubMed Central

    Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong

    2017-01-01

    A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification. PMID:28629202

  3. A Kernel-based Lagrangian method for imperfectly-mixed chemical reactions

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael J.; Pankavich, Stephen; Benson, David A.

    2017-05-01

    Current Lagrangian (particle-tracking) algorithms used to simulate diffusion-reaction equations must employ a certain number of particles to properly emulate the system dynamics-particularly for imperfectly-mixed systems. The number of particles is tied to the statistics of the initial concentration fields of the system at hand. Systems with shorter-range correlation and/or smaller concentration variance require more particles, potentially limiting the computational feasibility of the method. For the well-known problem of bimolecular reaction, we show that using kernel-based, rather than Dirac delta, particles can significantly reduce the required number of particles. We derive the fixed width of a Gaussian kernel for a given reduced number of particles that analytically eliminates the error between kernel and Dirac solutions at any specified time. We also show how to solve for the fixed kernel size by minimizing the squared differences between solutions over any given time interval. Numerical results show that the width of the kernel should be kept below about 12% of the domain size, and that the analytic equations used to derive kernel width suffer significantly from the neglect of higher-order moments. The simulations with a kernel width given by least squares minimization perform better than those made to match at one specific time. A heuristic time-variable kernel size, based on the previous results, performs on par with the least squares fixed kernel size.

  4. QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress.

    PubMed

    Cui, Fa; Fan, Xiaoli; Chen, Mei; Zhang, Na; Zhao, Chunhua; Zhang, Wei; Han, Jie; Ji, Jun; Zhao, Xueqiang; Yang, Lijuan; Zhao, Zongwu; Tong, Yiping; Wang, Tao; Li, Junming

    2016-03-01

    QTLs for kernel characteristics and tolerance to N stress were identified, and the functions of ten known genes with regard to these traits were specified. Kernel size and quality characteristics in wheat (Triticum aestivum L.) ultimately determine the end use of the grain and affect its commodity price, both of which are influenced by the application of nitrogen (N) fertilizer. This study characterized quantitative trait loci (QTLs) for kernel size and quality and examined the responses of these traits to low-N stress using a recombinant inbred line population derived from Kenong 9204 × Jing 411. Phenotypic analyses were conducted in five trials that each included low- and high-N treatments. We identified 109 putative additive QTLs for 11 kernel size and quality characteristics and 49 QTLs for tolerance to N stress, 27 and 14 of which were stable across the tested environments, respectively. These QTLs were distributed across all wheat chromosomes except for chromosomes 3A, 4D, 6D, and 7B. Eleven QTL clusters that simultaneously affected kernel size- and quality-related traits were identified. At nine locations, 25 of the 49 QTLs for N deficiency tolerance coincided with the QTLs for kernel characteristics, indicating their genetic independence. The feasibility of indirect selection of a superior genotype for kernel size and quality under high-N conditions in breeding programs designed for a lower input management system are discussed. In addition, we specified the functions of Glu-A1, Glu-B1, Glu-A3, Glu-B3, TaCwi-A1, TaSus2, TaGS2-D1, PPO-D1, Rht-B1, and Ha with regard to kernel characteristics and the sensitivities of these characteristics to N stress. This study provides useful information for the genetic improvement of wheat kernel size, quality, and resistance to N stress.

  5. The site, size, spatial stability, and energetics of an X-ray flare kernel

    NASA Technical Reports Server (NTRS)

    Petrasso, R.; Gerassimenko, M.; Nolte, J.

    1979-01-01

    The site, size evolution, and energetics of an X-ray kernel that dominated a solar flare during its rise and somewhat during its peak are investigated. The position of the kernel remained stationary to within about 3 arc sec over the 30-min interval of observations, despite pulsations in the kernel X-ray brightness in excess of a factor of 10. This suggests a tightly bound, deeply rooted magnetic structure, more plausibly associated with the near chromosphere or low corona rather than with the high corona. The H-alpha flare onset coincided with the appearance of the kernel, again suggesting a close spatial and temporal coupling between the chromospheric H-alpha event and the X-ray kernel. At the first kernel brightness peak its size was no larger than about 2 arc sec, when it accounted for about 40% of the total flare flux. In the second rise phase of the kernel, a source power input of order 2 times 10 to the 24th ergs/sec is minimally required.

  6. Helium: lifting high-performance stencil kernels from stripped x86 binaries to halide DSL code

    DOE PAGES

    Mendis, Charith; Bosboom, Jeffrey; Wu, Kevin; ...

    2015-06-03

    Highly optimized programs are prone to bit rot, where performance quickly becomes suboptimal in the face of new hardware and compiler techniques. In this paper we show how to automatically lift performance-critical stencil kernels from a stripped x86 binary and generate the corresponding code in the high-level domain-specific language Halide. Using Halide's state-of-the-art optimizations targeting current hardware, we show that new optimized versions of these kernels can replace the originals to rejuvenate the application for newer hardware. The original optimized code for kernels in stripped binaries is nearly impossible to analyze statically. Instead, we rely on dynamic traces to regeneratemore » the kernels. We perform buffer structure reconstruction to identify input, intermediate and output buffer shapes. Here, we abstract from a forest of concrete dependency trees which contain absolute memory addresses to symbolic trees suitable for high-level code generation. This is done by canonicalizing trees, clustering them based on structure, inferring higher-dimensional buffer accesses and finally by solving a set of linear equations based on buffer accesses to lift them up to simple, high-level expressions. Helium can handle highly optimized, complex stencil kernels with input-dependent conditionals. We lift seven kernels from Adobe Photoshop giving a 75 % performance improvement, four kernels from Irfan View, leading to 4.97 x performance, and one stencil from the mini GMG multigrid benchmark netting a 4.25 x improvement in performance. We manually rejuvenated Photoshop by replacing eleven of Photoshop's filters with our lifted implementations, giving 1.12 x speedup without affecting the user experience.« less

  7. Effect of solid fat content on structure in ice creams containing palm kernel oil and high-oleic sunflower oil.

    PubMed

    Sung, Kristine K; Goff, H Douglas

    2010-04-01

    The development of a structural fat network in ice cream as influenced by the solid:liquid fat ratio at the time of freezing/whipping was investigated. The solid fat content was varied with blends of a hard fraction of palm kernel oil (PKO) and high-oleic sunflower oil ranging from 40% to 100% PKO. Fat globule size and adsorbed protein levels in mix and overrun, fat destabilization, meltdown resistance, and air bubble size in ice cream were measured. It was found that blends comprising 60% to 80% solid fat produced the highest rates of fat destabilization that could be described as partial coalescence (as opposed to coalescence), lowest rates of meltdown, and smallest air bubble sizes. Lower levels of solid fat produced fat destabilization that was better characterized as coalescence, leading to loss of structural integrity, whereas higher levels of solid fat led to lower levels of fat network formation and thus also to reduced structural integrity. Blends of highly saturated palm kernel oil and monounsaturated high-oleic sunflower oil were used to modify the solid:liquid ratio of fat blends used for ice cream manufacture. Blends that contained 60% to 80% solid fat at freezing/whipping temperatures produced optimal structures leading to low rates of meltdown. This provides a useful reference for manufacturers to help in the selection of appropriate fat blends for nondairy-fat ice cream.

  8. Performance analysis and kernel size study of the Lynx real-time operating system

    NASA Technical Reports Server (NTRS)

    Liu, Yuan-Kwei; Gibson, James S.; Fernquist, Alan R.

    1993-01-01

    This paper analyzes the Lynx real-time operating system (LynxOS), which has been selected as the operating system for the Space Station Freedom Data Management System (DMS). The features of LynxOS are compared to other Unix-based operating system (OS). The tools for measuring the performance of LynxOS, which include a high-speed digital timer/counter board, a device driver program, and an application program, are analyzed. The timings for interrupt response, process creation and deletion, threads, semaphores, shared memory, and signals are measured. The memory size of the DMS Embedded Data Processor (EDP) is limited. Besides, virtual memory is not suitable for real-time applications because page swap timing may not be deterministic. Therefore, the DMS software, including LynxOS, has to fit in the main memory of an EDP. To reduce the LynxOS kernel size, the following steps are taken: analyzing the factors that influence the kernel size; identifying the modules of LynxOS that may not be needed in an EDP; adjusting the system parameters of LynxOS; reconfiguring the device drivers used in the LynxOS; and analyzing the symbol table. The reductions in kernel disk size, kernel memory size and total kernel size reduction from each step mentioned above are listed and analyzed.

  9. Kernels, Degrees of Freedom, and Power Properties of Quadratic Distance Goodness-of-Fit Tests

    PubMed Central

    Lindsay, Bruce G.; Markatou, Marianthi; Ray, Surajit

    2014-01-01

    In this article, we study the power properties of quadratic-distance-based goodness-of-fit tests. First, we introduce the concept of a root kernel and discuss the considerations that enter the selection of this kernel. We derive an easy to use normal approximation to the power of quadratic distance goodness-of-fit tests and base the construction of a noncentrality index, an analogue of the traditional noncentrality parameter, on it. This leads to a method akin to the Neyman-Pearson lemma for constructing optimal kernels for specific alternatives. We then introduce a midpower analysis as a device for choosing optimal degrees of freedom for a family of alternatives of interest. Finally, we introduce a new diffusion kernel, called the Pearson-normal kernel, and study the extent to which the normal approximation to the power of tests based on this kernel is valid. Supplementary materials for this article are available online. PMID:24764609

  10. Relationship between processing score and kernel-fraction particle size in whole-plant corn silage.

    PubMed

    Dias Junior, G S; Ferraretto, L F; Salvati, G G S; de Resende, L C; Hoffman, P C; Pereira, M N; Shaver, R D

    2016-04-01

    Kernel processing increases starch digestibility in whole-plant corn silage (WPCS). Corn silage processing score (CSPS), the percentage of starch passing through a 4.75-mm sieve, is widely used to assess degree of kernel breakage in WPCS. However, the geometric mean particle size (GMPS) of the kernel-fraction that passes through the 4.75-mm sieve has not been well described. Therefore, the objectives of this study were (1) to evaluate particle size distribution and digestibility of kernels cut in varied particle sizes; (2) to propose a method to measure GMPS in WPCS kernels; and (3) to evaluate the relationship between CSPS and GMPS of the kernel fraction in WPCS. Composite samples of unfermented, dried kernels from 110 corn hybrids commonly used for silage production were kept whole (WH) or manually cut in 2, 4, 8, 16, 32 or 64 pieces (2P, 4P, 8P, 16P, 32P, and 64P, respectively). Dry sieving to determine GMPS, surface area, and particle size distribution using 9 sieves with nominal square apertures of 9.50, 6.70, 4.75, 3.35, 2.36, 1.70, 1.18, and 0.59 mm and pan, as well as ruminal in situ dry matter (DM) digestibilities were performed for each kernel particle number treatment. Incubation times were 0, 3, 6, 12, and 24 h. The ruminal in situ DM disappearance of unfermented kernels increased with the reduction in particle size of corn kernels. Kernels kept whole had the lowest ruminal DM disappearance for all time points with maximum DM disappearance of 6.9% at 24 h and the greatest disappearance was observed for 64P, followed by 32P and 16P. Samples of WPCS (n=80) from 3 studies representing varied theoretical length of cut settings and processor types and settings were also evaluated. Each WPCS sample was divided in 2 and then dried at 60 °C for 48 h. The CSPS was determined in duplicate on 1 of the split samples, whereas on the other split sample the kernel and stover fractions were separated using a hydrodynamic separation procedure. After separation, the kernel fraction was redried at 60°C for 48 h in a forced-air oven and dry sieved to determine GMPS and surface area. Linear relationships between CSPS from WPCS (n=80) and kernel fraction GMPS, surface area, and proportion passing through the 4.75-mm screen were poor. Strong quadratic relationships between proportion of kernel fraction passing through the 4.75-mm screen and kernel fraction GMPS and surface area were observed. These findings suggest that hydrodynamic separation and dry sieving of the kernel fraction may provide a better assessment of kernel breakage in WPCS than CSPS. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Dissection of Genetic Factors underlying Wheat Kernel Shape and Size in an Elite × Nonadapted Cross using a High Density SNP Linkage Map.

    PubMed

    Kumar, Ajay; Mantovani, E E; Seetan, R; Soltani, A; Echeverry-Solarte, M; Jain, S; Simsek, S; Doehlert, D; Alamri, M S; Elias, E M; Kianian, S F; Mergoum, M

    2016-03-01

    Wheat kernel shape and size has been under selection since early domestication. Kernel morphology is a major consideration in wheat breeding, as it impacts grain yield and quality. A population of 160 recombinant inbred lines (RIL), developed using an elite (ND 705) and a nonadapted genotype (PI 414566), was extensively phenotyped in replicated field trials and genotyped using Infinium iSelect 90K assay to gain insight into the genetic architecture of kernel shape and size. A high density genetic map consisting of 10,172 single nucleotide polymorphism (SNP) markers, with an average marker density of 0.39 cM/marker, identified a total of 29 genomic regions associated with six grain shape and size traits; ∼80% of these regions were associated with multiple traits. The analyses showed that kernel length (KL) and width (KW) are genetically independent, while a large number (∼59%) of the quantitative trait loci (QTL) for kernel shape traits were in common with genomic regions associated with kernel size traits. The most significant QTL was identified on chromosome 4B, and could be an ortholog of major rice grain size and shape gene or . Major and stable loci also were identified on the homeologous regions of Group 5 chromosomes, and in the regions of (6A) and (7A) genes. Both parental genotypes contributed equivalent positive QTL alleles, suggesting that the nonadapted germplasm has a great potential for enhancing the gene pool for grain shape and size. This study provides new knowledge on the genetic dissection of kernel morphology, with a much higher resolution, which may aid further improvement in wheat yield and quality using genomic tools. Copyright © 2016 Crop Science Society of America.

  12. Understanding and optimizing the dual excipient functionality of sodium lauryl sulfate in tablet formulation of poorly water soluble drug: wetting and lubrication.

    PubMed

    Aljaberi, Ahmad; Chatterji, Ashish; Dong, Zedong; Shah, Navnit H; Malick, Waseem; Singhal, Dharmendra; Sandhu, Harpreet K

    2013-01-01

    To evaluate and optimize sodium lauryl sulfate (SLS) and magnesium stearate (Mg.St) levels, with respect to dissolution and compaction, in a high dose, poorly soluble drug tablet formulation. A model poorly soluble drug was formulated using high shear aqueous granulation. A D-optimal design was used to evaluate and model the effect of granulation conditions, size of milling screen, SLS and Mg.St levels on tablet compaction and ejection. The compaction profiles were generated using a Presster(©) compaction simulator. Dissolution of the kernels was performed using a USP dissolution apparatus II and intrinsic dissolution was determined using a stationary disk system. Unlike kernels dissolution which failed to discriminate between tablets prepared with various SLS contents, the intrinsic dissolution rate showed that a SLS level of 0.57% was sufficient to achieve the required release profile while having minimal effect on compaction. The formulation factors that affect tablet compaction and ejection were identified and satisfactorily modeled. The design space of best factor setting to achieve optimal compaction and ejection properties was successfully constructed by RSM analysis. A systematic study design helped identify the critical factors and provided means to optimize the functionality of key excipient to design robust drug product.

  13. Technical Note: Dose gradients and prescription isodose in orthovoltage stereotactic radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fagerstrom, Jessica M., E-mail: fagerstrom@wisc.edu; Bender, Edward T.; Culberson, Wesley S.

    Purpose: The purpose of this work is to examine the trade-off between prescription isodose and dose gradients in orthovoltage stereotactic radiosurgery. Methods: Point energy deposition kernels (EDKs) describing photon and electron transport were calculated using Monte Carlo methods. EDKs were generated from 10  to 250 keV, in 10 keV increments. The EDKs were converted to pencil beam kernels and used to calculate dose profiles through isocenter from a 4π isotropic delivery from all angles of circularly collimated beams. Monoenergetic beams and an orthovoltage polyenergetic spectrum were analyzed. The dose gradient index (DGI) is the ratio of the 50% prescription isodosemore » volume to the 100% prescription isodose volume and represents a metric by which dose gradients in stereotactic radiosurgery (SRS) may be evaluated. Results: Using the 4π dose profiles calculated using pencil beam kernels, the relationship between DGI and prescription isodose was examined for circular cones ranging from 4 to 18 mm in diameter and monoenergetic photon beams with energies ranging from 20 to 250 keV. Values were found to exist for prescription isodose that optimize DGI. Conclusions: The relationship between DGI and prescription isodose was found to be dependent on both field size and energy. Examining this trade-off is an important consideration for designing optimal SRS systems.« less

  14. Effects of sample size on KERNEL home range estimates

    USGS Publications Warehouse

    Seaman, D.E.; Millspaugh, J.J.; Kernohan, Brian J.; Brundige, Gary C.; Raedeke, Kenneth J.; Gitzen, Robert A.

    1999-01-01

    Kernel methods for estimating home range are being used increasingly in wildlife research, but the effect of sample size on their accuracy is not known. We used computer simulations of 10-200 points/home range and compared accuracy of home range estimates produced by fixed and adaptive kernels with the reference (REF) and least-squares cross-validation (LSCV) methods for determining the amount of smoothing. Simulated home ranges varied from simple to complex shapes created by mixing bivariate normal distributions. We used the size of the 95% home range area and the relative mean squared error of the surface fit to assess the accuracy of the kernel home range estimates. For both measures, the bias and variance approached an asymptote at about 50 observations/home range. The fixed kernel with smoothing selected by LSCV provided the least-biased estimates of the 95% home range area. All kernel methods produced similar surface fit for most simulations, but the fixed kernel with LSCV had the lowest frequency and magnitude of very poor estimates. We reviewed 101 papers published in The Journal of Wildlife Management (JWM) between 1980 and 1997 that estimated animal home ranges. A minority of these papers used nonparametric utilization distribution (UD) estimators, and most did not adequately report sample sizes. We recommend that home range studies using kernel estimates use LSCV to determine the amount of smoothing, obtain a minimum of 30 observations per animal (but preferably a?Y50), and report sample sizes in published results.

  15. Data-Driven Hierarchical Structure Kernel for Multiscale Part-Based Object Recognition

    PubMed Central

    Wang, Botao; Xiong, Hongkai; Jiang, Xiaoqian; Zheng, Yuan F.

    2017-01-01

    Detecting generic object categories in images and videos are a fundamental issue in computer vision. However, it faces the challenges from inter and intraclass diversity, as well as distortions caused by viewpoints, poses, deformations, and so on. To solve object variations, this paper constructs a structure kernel and proposes a multiscale part-based model incorporating the discriminative power of kernels. The structure kernel would measure the resemblance of part-based objects in three aspects: 1) the global similarity term to measure the resemblance of the global visual appearance of relevant objects; 2) the part similarity term to measure the resemblance of the visual appearance of distinctive parts; and 3) the spatial similarity term to measure the resemblance of the spatial layout of parts. In essence, the deformation of parts in the structure kernel is penalized in a multiscale space with respect to horizontal displacement, vertical displacement, and scale difference. Part similarities are combined with different weights, which are optimized efficiently to maximize the intraclass similarities and minimize the interclass similarities by the normalized stochastic gradient ascent algorithm. In addition, the parameters of the structure kernel are learned during the training process with regard to the distribution of the data in a more discriminative way. With flexible part sizes on scale and displacement, it can be more robust to the intraclass variations, poses, and viewpoints. Theoretical analysis and experimental evaluations demonstrate that the proposed multiscale part-based representation model with structure kernel exhibits accurate and robust performance, and outperforms state-of-the-art object classification approaches. PMID:24808345

  16. 7 CFR 51.2559 - Size classifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Size classifications. 51.2559 Section 51.2559....2559 Size classifications. (a) The size of pistachio kernels may be specified in connection with the grade in accordance with one of the following size classifications. (1) Jumbo Whole Kernels: 80 percent...

  17. 7 CFR 51.2559 - Size classifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Size classifications. 51.2559 Section 51.2559....2559 Size classifications. (a) The size of pistachio kernels may be specified in connection with the grade in accordance with one of the following size classifications. (1) Jumbo Whole Kernels: 80 percent...

  18. Simultaneous spectrophotometric determination of four metals by two kinds of partial least squares methods

    NASA Astrophysics Data System (ADS)

    Gao, Ling; Ren, Shouxin

    2005-10-01

    Simultaneous determination of Ni(II), Cd(II), Cu(II) and Zn(II) was studied by two methods, kernel partial least squares (KPLS) and wavelet packet transform partial least squares (WPTPLS), with xylenol orange and cetyltrimethyl ammonium bromide as reagents in the medium pH = 9.22 borax-hydrochloric acid buffer solution. Two programs, PKPLS and PWPTPLS, were designed to perform the calculations. Data reduction was performed using kernel matrices and wavelet packet transform, respectively. In the KPLS method, the size of the kernel matrix is only dependent on the number of samples, thus the method was suitable for the data matrix with many wavelengths and fewer samples. Wavelet packet representations of signals provide a local time-frequency description, thus in the wavelet packet domain, the quality of the noise removal can be improved. In the WPTPLS by optimization, wavelet function and decomposition level were selected as Daubeches 12 and 5, respectively. Experimental results showed both methods to be successful even where there was severe overlap of spectra.

  19. On the Computation of Optimal Designs for Certain Time Series Models with Applications to Optimal Quantile Selection for Location or Scale Parameter Estimation.

    DTIC Science & Technology

    1981-07-01

    process is observed over all of (0,1], the reproducing kernel Hilbert space (RKHS) techniques developed by Parzen (1961a, 1961b) 2 may be used to construct...covariance kernel,R, for the process (1.1) is the reproducing kernel for a reproducing kernel Hilbert space (RKHS) which will be denoted as H(R) (c.f...2.6), it is known that (c.f. Eubank, Smith and Smith (1981a, 1981b)), i) H(R) is a Hilbert function space consisting of functions which satisfy for fEH

  20. Kernel reconstruction methods for Doppler broadening - Temperature interpolation by linear combination of reference cross sections at optimally chosen temperatures

    NASA Astrophysics Data System (ADS)

    Ducru, Pablo; Josey, Colin; Dibert, Karia; Sobes, Vladimir; Forget, Benoit; Smith, Kord

    2017-04-01

    This article establishes a new family of methods to perform temperature interpolation of nuclear interactions cross sections, reaction rates, or cross sections times the energy. One of these quantities at temperature T is approximated as a linear combination of quantities at reference temperatures (Tj). The problem is formalized in a cross section independent fashion by considering the kernels of the different operators that convert cross section related quantities from a temperature T0 to a higher temperature T - namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus here performed by reconstructing the kernel of the operation at a given temperature T by means of linear combination of kernels at reference temperatures (Tj). The choice of the L2 metric yields optimal linear interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization of the choice of reference temperatures (Tj) is then undertaken so as to best reconstruct, in the L∞ sense, the kernels over a given temperature range [Tmin ,Tmax ]. The performance of these kernel reconstruction methods is then assessed in light of previous temperature interpolation methods by testing them upon isotope 238U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous interpolation-based methods, achieving 0.1% relative error on temperature interpolation of 238U total cross section over the temperature range [ 300 K , 3000 K ] with only 9 reference temperatures.

  1. 7 CFR 51.2113 - Size requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of range in count of whole almond kernels per ounce or in terms of minimum, or minimum and maximum diameter. When a range in count is specified, the whole kernels shall be fairly uniform in size, and the average count per ounce shall be within the range specified. Doubles and broken kernels shall not be used...

  2. Selection and evaluation of optimal two-dimensional CAIPIRINHA kernels applied to time-resolved three-dimensional CE-MRA.

    PubMed

    Weavers, Paul T; Borisch, Eric A; Riederer, Stephen J

    2015-06-01

    To develop and validate a method for choosing the optimal two-dimensional CAIPIRINHA kernel for subtraction contrast-enhanced MR angiography (CE-MRA) and estimate the degree of image quality improvement versus that of some reference acceleration parameter set at R ≥ 8. A metric based on patient-specific coil calibration information was defined for evaluating optimality of CAIPIRINHA kernels as applied to subtraction CE-MRA. Evaluation in retrospective studies using archived coil calibration data from abdomen, calf, foot, and hand CE-MRA exams was accomplished with an evaluation metric comparing the geometry factor (g-factor) histograms. Prospective calf, foot, and hand CE-MRA studies were evaluated with vessel signal-to-noise ratio (SNR). Retrospective studies show g-factor improvement for the selected CAIPIRINHA kernels was significant in the feet, moderate in the abdomen, and modest in the calves and hands. Prospective CE-MRA studies using optimal CAIPIRINHA show reduced noise amplification with identical acquisition time in studies of the feet, with minor improvements in the hands and calves. A method for selection of the optimal CAIPIRINHA kernel for high (R ≥ 8) acceleration CE-MRA exams given a specific patient and receiver array was demonstrated. CAIPIRINHA optimization appears valuable in accelerated CE-MRA of the feet and to a lesser extent in the abdomen. © 2014 Wiley Periodicals, Inc.

  3. High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging.

    PubMed

    Makanza, R; Zaman-Allah, M; Cairns, J E; Eyre, J; Burgueño, J; Pacheco, Ángela; Diepenbrock, C; Magorokosho, C; Tarekegne, A; Olsen, M; Prasanna, B M

    2018-01-01

    Grain yield, ear and kernel attributes can assist to understand the performance of maize plant under different environmental conditions and can be used in the variety development process to address farmer's preferences. These parameters are however still laborious and expensive to measure. A low-cost ear digital imaging method was developed that provides estimates of ear and kernel attributes i.e., ear number and size, kernel number and size as well as kernel weight from photos of ears harvested from field trial plots. The image processing method uses a script that runs in a batch mode on ImageJ; an open source software. Kernel weight was estimated using the total kernel number derived from the number of kernels visible on the image and the average kernel size. Data showed a good agreement in terms of accuracy and precision between ground truth measurements and data generated through image processing. Broad-sense heritability of the estimated parameters was in the range or higher than that for measured grain weight. Limitation of the method for kernel weight estimation is discussed. The method developed in this work provides an opportunity to significantly reduce the cost of selection in the breeding process, especially for resource constrained crop improvement programs and can be used to learn more about the genetic bases of grain yield determinants.

  4. Increasing accuracy of dispersal kernels in grid-based population models

    USGS Publications Warehouse

    Slone, D.H.

    2011-01-01

    Dispersal kernels in grid-based population models specify the proportion, distance and direction of movements within the model landscape. Spatial errors in dispersal kernels can have large compounding effects on model accuracy. Circular Gaussian and Laplacian dispersal kernels at a range of spatial resolutions were investigated, and methods for minimizing errors caused by the discretizing process were explored. Kernels of progressively smaller sizes relative to the landscape grid size were calculated using cell-integration and cell-center methods. These kernels were convolved repeatedly, and the final distribution was compared with a reference analytical solution. For large Gaussian kernels (σ > 10 cells), the total kernel error was <10 &sup-11; compared to analytical results. Using an invasion model that tracked the time a population took to reach a defined goal, the discrete model results were comparable to the analytical reference. With Gaussian kernels that had σ ≤ 0.12 using the cell integration method, or σ ≤ 0.22 using the cell center method, the kernel error was greater than 10%, which resulted in invasion times that were orders of magnitude different than theoretical results. A goal-seeking routine was developed to adjust the kernels to minimize overall error. With this, corrections for small kernels were found that decreased overall kernel error to <10-11 and invasion time error to <5%.

  5. Dissection of genetic factors underlying wheat kernel shape and size in an elite x nonadapted cross using a high density SNP linkage map

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel shape and size has been under selection since early domestication. Kernel morphology is a major consideration in wheat breeding, as it impacts grain yield and quality. A population of 160 recombinant inbred lines (RIL), developed using an elite (ND 705) and a nonadapted genotype (PI 414...

  6. Increasing the Size of a Piece of Popcorn

    NASA Astrophysics Data System (ADS)

    Quinn, Paul; Hong, Daniel C.; Both, Joseph

    2003-03-01

    Popcorn is an extremely popular snack food in the world today. Thermodynamics can be used to analyze how popcorn is produced. By treating the popping mechanism of the corn as a thermodynamic expansion, a method of increasing the volume or size of a kernel of popcorn can be studied. By lowering the pressure surrounding the unpopped kernel, one can use a thermodynamic argument to show that the expanded volume of the kernel when it pops must increase. In this project, a variety of experiments are run to test the validity of this theory. The results show that there is a significant increase in the average kernel size when the pressure of the surroundings is reduced.

  7. Increasing the size of a piece of popcorn

    NASA Astrophysics Data System (ADS)

    Quinn, Paul V.; Hong, Daniel C.; Both, J. A.

    2005-08-01

    Popcorn is an extremely popular snack food in the world today. Thermodynamics can be used to analyze how popcorn is produced. By treating the popping mechanism of the corn as a thermodynamic expansion, a method of increasing the volume or size of a kernel of popcorn can be studied. By lowering the pressure surrounding the unpopped kernel, one can use a thermodynamic argument to show that the expanded volume of the kernel when it pops must increase. In this project, a variety of experiments are run to test the qualitative validity of this theory. The results show that there is a significant increase in the average kernel size when the pressure of the surroundings is reduced.

  8. Oecophylla longinoda (Hymenoptera: Formicidae) Lead to Increased Cashew Kernel Size and Kernel Quality.

    PubMed

    Anato, F M; Sinzogan, A A C; Offenberg, J; Adandonon, A; Wargui, R B; Deguenon, J M; Ayelo, P M; Vayssières, J-F; Kossou, D K

    2017-06-01

    Weaver ants, Oecophylla spp., are known to positively affect cashew, Anacardium occidentale L., raw nut yield, but their effects on the kernels have not been reported. We compared nut size and the proportion of marketable kernels between raw nuts collected from trees with and without ants. Raw nuts collected from trees with weaver ants were 2.9% larger than nuts from control trees (i.e., without weaver ants), leading to 14% higher proportion of marketable kernels. On trees with ants, the kernel: raw nut ratio from nuts damaged by formic acid was 4.8% lower compared with nondamaged nuts from the same trees. Weaver ants provided three benefits to cashew production by increasing yields, yielding larger nuts, and by producing greater proportions of marketable kernel mass. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Effect of finite sample size on feature selection and classification: a simulation study.

    PubMed

    Way, Ted W; Sahiner, Berkman; Hadjiiski, Lubomir M; Chan, Heang-Ping

    2010-02-01

    The small number of samples available for training and testing is often the limiting factor in finding the most effective features and designing an optimal computer-aided diagnosis (CAD) system. Training on a limited set of samples introduces bias and variance in the performance of a CAD system relative to that trained with an infinite sample size. In this work, the authors conducted a simulation study to evaluate the performances of various combinations of classifiers and feature selection techniques and their dependence on the class distribution, dimensionality, and the training sample size. The understanding of these relationships will facilitate development of effective CAD systems under the constraint of limited available samples. Three feature selection techniques, the stepwise feature selection (SFS), sequential floating forward search (SFFS), and principal component analysis (PCA), and two commonly used classifiers, Fisher's linear discriminant analysis (LDA) and support vector machine (SVM), were investigated. Samples were drawn from multidimensional feature spaces of multivariate Gaussian distributions with equal or unequal covariance matrices and unequal means, and with equal covariance matrices and unequal means estimated from a clinical data set. Classifier performance was quantified by the area under the receiver operating characteristic curve Az. The mean Az values obtained by resubstitution and hold-out methods were evaluated for training sample sizes ranging from 15 to 100 per class. The number of simulated features available for selection was chosen to be 50, 100, and 200. It was found that the relative performance of the different combinations of classifier and feature selection method depends on the feature space distributions, the dimensionality, and the available training sample sizes. The LDA and SVM with radial kernel performed similarly for most of the conditions evaluated in this study, although the SVM classifier showed a slightly higher hold-out performance than LDA for some conditions and vice versa for other conditions. PCA was comparable to or better than SFS and SFFS for LDA at small samples sizes, but inferior for SVM with polynomial kernel. For the class distributions simulated from clinical data, PCA did not show advantages over the other two feature selection methods. Under this condition, the SVM with radial kernel performed better than the LDA when few training samples were available, while LDA performed better when a large number of training samples were available. None of the investigated feature selection-classifier combinations provided consistently superior performance under the studied conditions for different sample sizes and feature space distributions. In general, the SFFS method was comparable to the SFS method while PCA may have an advantage for Gaussian feature spaces with unequal covariance matrices. The performance of the SVM with radial kernel was better than, or comparable to, that of the SVM with polynomial kernel under most conditions studied.

  10. PERI - Auto-tuning Memory Intensive Kernels for Multicore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, David H; Williams, Samuel; Datta, Kaushik

    2008-06-24

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to Sparse Matrix Vector Multiplication (SpMV), the explicit heat equation PDE on a regular grid (Stencil), and a lattice Boltzmann application (LBMHD). We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Xeon Clovertown, AMD Opteron Barcelona, Sun Victoria Falls, and the Sony-Toshiba-IBM (STI) Cell. Rather than hand-tuning each kernel for each system, we developmore » a code generator for each kernel that allows us to identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned kernel applications often achieve a better than 4X improvement compared with the original code. Additionally, we analyze a Roofline performance model for each platform to reveal hardware bottlenecks and software challenges for future multicore systems and applications.« less

  11. Occurrence of 'super soft' wheat kernel texture in hexaploid and tetraploid wheats

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture is a key trait that governs milling performance, flour starch damage, flour particle size, flour hydration properties, and baking quality. Kernel texture is commonly measured using the Perten Single Kernel Characterization System (SKCS). The SKCS returns texture values (Hardness...

  12. Insights from Classifying Visual Concepts with Multiple Kernel Learning

    PubMed Central

    Binder, Alexander; Nakajima, Shinichi; Kloft, Marius; Müller, Christina; Samek, Wojciech; Brefeld, Ulf; Müller, Klaus-Robert; Kawanabe, Motoaki

    2012-01-01

    Combining information from various image features has become a standard technique in concept recognition tasks. However, the optimal way of fusing the resulting kernel functions is usually unknown in practical applications. Multiple kernel learning (MKL) techniques allow to determine an optimal linear combination of such similarity matrices. Classical approaches to MKL promote sparse mixtures. Unfortunately, 1-norm regularized MKL variants are often observed to be outperformed by an unweighted sum kernel. The main contributions of this paper are the following: we apply a recently developed non-sparse MKL variant to state-of-the-art concept recognition tasks from the application domain of computer vision. We provide insights on benefits and limits of non-sparse MKL and compare it against its direct competitors, the sum-kernel SVM and sparse MKL. We report empirical results for the PASCAL VOC 2009 Classification and ImageCLEF2010 Photo Annotation challenge data sets. Data sets (kernel matrices) as well as further information are available at http://doc.ml.tu-berlin.de/image_mkl/(Accessed 2012 Jun 25). PMID:22936970

  13. Enhancement of encapsulation efficiency of nanoemulsion-containing aripiprazole for the treatment of schizophrenia using mixture experimental design.

    PubMed

    Masoumi, Hamid Reza Fard; Basri, Mahiran; Samiun, Wan Sarah; Izadiyan, Zahra; Lim, Chaw Jiang

    2015-01-01

    Aripiprazole is considered as a third-generation antipsychotic drug with excellent therapeutic efficacy in controlling schizophrenia symptoms and was the first atypical anti-psychotic agent to be approved by the US Food and Drug Administration. Formulation of nanoemulsion-containing aripiprazole was carried out using high shear and high pressure homogenizers. Mixture experimental design was selected to optimize the composition of nanoemulsion. A very small droplet size of emulsion can provide an effective encapsulation for delivery system in the body. The effects of palm kernel oil ester (3-6 wt%), lecithin (2-3 wt%), Tween 80 (0.5-1 wt%), glycerol (1.5-3 wt%), and water (87-93 wt%) on the droplet size of aripiprazole nanoemulsions were investigated. The mathematical model showed that the optimum formulation for preparation of aripiprazole nanoemulsion having the desirable criteria was 3.00% of palm kernel oil ester, 2.00% of lecithin, 1.00% of Tween 80, 2.25% of glycerol, and 91.75% of water. Under optimum formulation, the corresponding predicted response value for droplet size was 64.24 nm, which showed an excellent agreement with the actual value (62.23 nm) with residual standard error <3.2%.

  14. Pollen source effects on growth of kernel structures and embryo chemical compounds in maize.

    PubMed

    Tanaka, W; Mantese, A I; Maddonni, G A

    2009-08-01

    Previous studies have reported effects of pollen source on the oil concentration of maize (Zea mays) kernels through modifications to both the embryo/kernel ratio and embryo oil concentration. The present study expands upon previous analyses by addressing pollen source effects on the growth of kernel structures (i.e. pericarp, endosperm and embryo), allocation of embryo chemical constituents (i.e. oil, protein, starch and soluble sugars), and the anatomy and histology of the embryos. Maize kernels with different oil concentration were obtained from pollinations with two parental genotypes of contrasting oil concentration. The dynamics of the growth of kernel structures and allocation of embryo chemical constituents were analysed during the post-flowering period. Mature kernels were dissected to study the anatomy (embryonic axis and scutellum) and histology [cell number and cell size of the scutellums, presence of sub-cellular structures in scutellum tissue (starch granules, oil and protein bodies)] of the embryos. Plants of all crosses exhibited a similar kernel number and kernel weight. Pollen source modified neither the growth period of kernel structures, nor pericarp growth rate. By contrast, pollen source determined a trade-off between embryo and endosperm growth rates, which impacted on the embryo/kernel ratio of mature kernels. Modifications to the embryo size were mediated by scutellum cell number. Pollen source also affected (P < 0.01) allocation of embryo chemical compounds. Negative correlations among embryo oil concentration and those of starch (r = 0.98, P < 0.01) and soluble sugars (r = 0.95, P < 0.05) were found. Coincidently, embryos with low oil concentration had an increased (P < 0.05-0.10) scutellum cell area occupied by starch granules and fewer oil bodies. The effects of pollen source on both embryo/kernel ratio and allocation of embryo chemicals seems to be related to the early established sink strength (i.e. sink size and sink activity) of the embryos.

  15. Wilson Dslash Kernel From Lattice QCD Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joo, Balint; Smelyanskiy, Mikhail; Kalamkar, Dhiraj D.

    2015-07-01

    Lattice Quantum Chromodynamics (LQCD) is a numerical technique used for calculations in Theoretical Nuclear and High Energy Physics. LQCD is traditionally one of the first applications ported to many new high performance computing architectures and indeed LQCD practitioners have been known to design and build custom LQCD computers. Lattice QCD kernels are frequently used as benchmarks (e.g. 168.wupwise in the SPEC suite) and are generally well understood, and as such are ideal to illustrate several optimization techniques. In this chapter we will detail our work in optimizing the Wilson-Dslash kernels for Intel Xeon Phi, however, as we will show themore » technique gives excellent performance on regular Xeon Architecture as well.« less

  16. Detection of Splice Sites Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Varadwaj, Pritish; Purohit, Neetesh; Arora, Bhumika

    Automatic identification and annotation of exon and intron region of gene, from DNA sequences has been an important research area in field of computational biology. Several approaches viz. Hidden Markov Model (HMM), Artificial Intelligence (AI) based machine learning and Digital Signal Processing (DSP) techniques have extensively and independently been used by various researchers to cater this challenging task. In this work, we propose a Support Vector Machine based kernel learning approach for detection of splice sites (the exon-intron boundary) in a gene. Electron-Ion Interaction Potential (EIIP) values of nucleotides have been used for mapping character sequences to corresponding numeric sequences. Radial Basis Function (RBF) SVM kernel is trained using EIIP numeric sequences. Furthermore this was tested on test gene dataset for detection of splice site by window (of 12 residues) shifting. Optimum values of window size, various important parameters of SVM kernel have been optimized for a better accuracy. Receiver Operating Characteristic (ROC) curves have been utilized for displaying the sensitivity rate of the classifier and results showed 94.82% accuracy for splice site detection on test dataset.

  17. An intelligent fault diagnosis method of rolling bearings based on regularized kernel Marginal Fisher analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Shi, Tielin; Xuan, Jianping

    2012-05-01

    Generally, the vibration signals of fault bearings are non-stationary and highly nonlinear under complicated operating conditions. Thus, it's a big challenge to extract optimal features for improving classification and simultaneously decreasing feature dimension. Kernel Marginal Fisher analysis (KMFA) is a novel supervised manifold learning algorithm for feature extraction and dimensionality reduction. In order to avoid the small sample size problem in KMFA, we propose regularized KMFA (RKMFA). A simple and efficient intelligent fault diagnosis method based on RKMFA is put forward and applied to fault recognition of rolling bearings. So as to directly excavate nonlinear features from the original high-dimensional vibration signals, RKMFA constructs two graphs describing the intra-class compactness and the inter-class separability, by combining traditional manifold learning algorithm with fisher criteria. Therefore, the optimal low-dimensional features are obtained for better classification and finally fed into the simplest K-nearest neighbor (KNN) classifier to recognize different fault categories of bearings. The experimental results demonstrate that the proposed approach improves the fault classification performance and outperforms the other conventional approaches.

  18. JANUS: A Compilation System for Balancing Parallelism and Performance in OpenVX

    NASA Astrophysics Data System (ADS)

    Omidian, Hossein; Lemieux, Guy G. F.

    2018-04-01

    Embedded systems typically do not have enough on-chip memory for entire an image buffer. Programming systems like OpenCV operate on entire image frames at each step, making them use excessive memory bandwidth and power. In contrast, the paradigm used by OpenVX is much more efficient; it uses image tiling, and the compilation system is allowed to analyze and optimize the operation sequence, specified as a compute graph, before doing any pixel processing. In this work, we are building a compilation system for OpenVX that can analyze and optimize the compute graph to take advantage of parallel resources in many-core systems or FPGAs. Using a database of prewritten OpenVX kernels, it automatically adjusts the image tile size as well as using kernel duplication and coalescing to meet a defined area (resource) target, or to meet a specified throughput target. This allows a single compute graph to target implementations with a wide range of performance needs or capabilities, e.g. from handheld to datacenter, that use minimal resources and power to reach the performance target.

  19. Data consistency-driven scatter kernel optimization for x-ray cone-beam CT

    NASA Astrophysics Data System (ADS)

    Kim, Changhwan; Park, Miran; Sung, Younghun; Lee, Jaehak; Choi, Jiyoung; Cho, Seungryong

    2015-08-01

    Accurate and efficient scatter correction is essential for acquisition of high-quality x-ray cone-beam CT (CBCT) images for various applications. This study was conducted to demonstrate the feasibility of using the data consistency condition (DCC) as a criterion for scatter kernel optimization in scatter deconvolution methods in CBCT. As in CBCT, data consistency in the mid-plane is primarily challenged by scatter, we utilized data consistency to confirm the degree of scatter correction and to steer the update in iterative kernel optimization. By means of the parallel-beam DCC via fan-parallel rebinning, we iteratively optimized the scatter kernel parameters, using a particle swarm optimization algorithm for its computational efficiency and excellent convergence. The proposed method was validated by a simulation study using the XCAT numerical phantom and also by experimental studies using the ACS head phantom and the pelvic part of the Rando phantom. The results showed that the proposed method can effectively improve the accuracy of deconvolution-based scatter correction. Quantitative assessments of image quality parameters such as contrast and structure similarity (SSIM) revealed that the optimally selected scatter kernel improves the contrast of scatter-free images by up to 99.5%, 94.4%, and 84.4%, and of the SSIM in an XCAT study, an ACS head phantom study, and a pelvis phantom study by up to 96.7%, 90.5%, and 87.8%, respectively. The proposed method can achieve accurate and efficient scatter correction from a single cone-beam scan without need of any auxiliary hardware or additional experimentation.

  20. A Novel Weighted Kernel PCA-Based Method for Optimization and Uncertainty Quantification

    NASA Astrophysics Data System (ADS)

    Thimmisetty, C.; Talbot, C.; Chen, X.; Tong, C. H.

    2016-12-01

    It has been demonstrated that machine learning methods can be successfully applied to uncertainty quantification for geophysical systems through the use of the adjoint method coupled with kernel PCA-based optimization. In addition, it has been shown through weighted linear PCA how optimization with respect to both observation weights and feature space control variables can accelerate convergence of such methods. Linear machine learning methods, however, are inherently limited in their ability to represent features of non-Gaussian stochastic random fields, as they are based on only the first two statistical moments of the original data. Nonlinear spatial relationships and multipoint statistics leading to the tortuosity characteristic of channelized media, for example, are captured only to a limited extent by linear PCA. With the aim of coupling the kernel-based and weighted methods discussed, we present a novel mathematical formulation of kernel PCA, Weighted Kernel Principal Component Analysis (WKPCA), that both captures nonlinear relationships and incorporates the attribution of significance levels to different realizations of the stochastic random field of interest. We also demonstrate how new instantiations retaining defining characteristics of the random field can be generated using Bayesian methods. In particular, we present a novel WKPCA-based optimization method that minimizes a given objective function with respect to both feature space random variables and observation weights through which optimal snapshot significance levels and optimal features are learned. We showcase how WKPCA can be applied to nonlinear optimal control problems involving channelized media, and in particular demonstrate an application of the method to learning the spatial distribution of material parameter values in the context of linear elasticity, and discuss further extensions of the method to stochastic inversion.

  1. [Study on application of SVM in prediction of coronary heart disease].

    PubMed

    Zhu, Yue; Wu, Jianghua; Fang, Ying

    2013-12-01

    Base on the data of blood pressure, plasma lipid, Glu and UA by physical test, Support Vector Machine (SVM) was applied to identify coronary heart disease (CHD) in patients and non-CHD individuals in south China population for guide of further prevention and treatment of the disease. Firstly, the SVM classifier was built using radial basis kernel function, liner kernel function and polynomial kernel function, respectively. Secondly, the SVM penalty factor C and kernel parameter sigma were optimized by particle swarm optimization (PSO) and then employed to diagnose and predict the CHD. By comparison with those from artificial neural network with the back propagation (BP) model, linear discriminant analysis, logistic regression method and non-optimized SVM, the overall results of our calculation demonstrated that the classification performance of optimized RBF-SVM model could be superior to other classifier algorithm with higher accuracy rate, sensitivity and specificity, which were 94.51%, 92.31% and 96.67%, respectively. So, it is well concluded that SVM could be used as a valid method for assisting diagnosis of CHD.

  2. A Temperature Compensation Method for Piezo-Resistive Pressure Sensor Utilizing Chaotic Ions Motion Algorithm Optimized Hybrid Kernel LSSVM.

    PubMed

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir

    2016-10-14

    A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM) optimized by a chaotic ions motion algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid kernel function, constructed by a local kernel as Radial Basis Function (RBF) kernel, and a global kernel as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector Machine. The temperature data from a calibration experiment is conducted to validate the proposed method. With attention on algorithm robustness and engineering applications, the compensation result shows the proposed scheme outperforms other compared methods on several performance measures as maximum absolute relative error, minimum absolute relative error mean and variance of the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach lays a foundation for more extensive research.

  3. Kernel reconstruction methods for Doppler broadening — Temperature interpolation by linear combination of reference cross sections at optimally chosen temperatures

    DOE PAGES

    Ducru, Pablo; Josey, Colin; Dibert, Karia; ...

    2017-01-25

    This paper establishes a new family of methods to perform temperature interpolation of nuclear interactions cross sections, reaction rates, or cross sections times the energy. One of these quantities at temperature T is approximated as a linear combination of quantities at reference temperatures (T j). The problem is formalized in a cross section independent fashion by considering the kernels of the different operators that convert cross section related quantities from a temperature T 0 to a higher temperature T — namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus here performed by reconstructing the kernelmore » of the operation at a given temperature T by means of linear combination of kernels at reference temperatures (T j). The choice of the L 2 metric yields optimal linear interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization of the choice of reference temperatures (T j) is then undertaken so as to best reconstruct, in the L∞ sense, the kernels over a given temperature range [T min,T max]. The performance of these kernel reconstruction methods is then assessed in light of previous temperature interpolation methods by testing them upon isotope 238U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous interpolation-based methods, achieving 0.1% relative error on temperature interpolation of 238U total cross section over the temperature range [300 K,3000 K] with only 9 reference temperatures.« less

  4. Security Tagged Architecture Co-Design (STACD)

    DTIC Science & Technology

    2015-09-01

    components have access to all other system components whether they need it or not. Microkernels [8, 9, 10] seek to reduce the kernel size to improve...does not provide the fine-grained control to allow for formal verification. Microkernels reduce the size of the kernel enough to allow for a formal...verification of the kernel. Tanenbaum [14] documents many of the security virtues of microkernels and argues that the Ring 3 Ring 2 Ring 1

  5. Kernel K-Means Sampling for Nyström Approximation.

    PubMed

    He, Li; Zhang, Hong

    2018-05-01

    A fundamental problem in Nyström-based kernel matrix approximation is the sampling method by which training set is built. In this paper, we suggest to use kernel -means sampling, which is shown in our works to minimize the upper bound of a matrix approximation error. We first propose a unified kernel matrix approximation framework, which is able to describe most existing Nyström approximations under many popular kernels, including Gaussian kernel and polynomial kernel. We then show that, the matrix approximation error upper bound, in terms of the Frobenius norm, is equal to the -means error of data points in kernel space plus a constant. Thus, the -means centers of data in kernel space, or the kernel -means centers, are the optimal representative points with respect to the Frobenius norm error upper bound. Experimental results, with both Gaussian kernel and polynomial kernel, on real-world data sets and image segmentation tasks show the superiority of the proposed method over the state-of-the-art methods.

  6. Experiences in autotuning matrix multiplication for energy minimization on GPUs

    DOE PAGES

    Anzt, Hartwig; Haugen, Blake; Kurzak, Jakub; ...

    2015-05-20

    In this study, we report extensive results and analysis of autotuning the computationally intensive graphics processing units kernel for dense matrix–matrix multiplication in double precision. In contrast to traditional autotuning and/or optimization for runtime performance only, we also take the energy efficiency into account. For kernels achieving equal performance, we show significant differences in their energy balance. We also identify the memory throughput as the most influential metric that trades off performance and energy efficiency. Finally, as a result, the performance optimal case ends up not being the most efficient kernel in overall resource use.

  7. The pre-image problem in kernel methods.

    PubMed

    Kwok, James Tin-yau; Tsang, Ivor Wai-hung

    2004-11-01

    In this paper, we address the problem of finding the pre-image of a feature vector in the feature space induced by a kernel. This is of central importance in some kernel applications, such as on using kernel principal component analysis (PCA) for image denoising. Unlike the traditional method which relies on nonlinear optimization, our proposed method directly finds the location of the pre-image based on distance constraints in the feature space. It is noniterative, involves only linear algebra and does not suffer from numerical instability or local minimum problems. Evaluations on performing kernel PCA and kernel clustering on the USPS data set show much improved performance.

  8. Regularized Embedded Multiple Kernel Dimensionality Reduction for Mine Signal Processing.

    PubMed

    Li, Shuang; Liu, Bing; Zhang, Chen

    2016-01-01

    Traditional multiple kernel dimensionality reduction models are generally based on graph embedding and manifold assumption. But such assumption might be invalid for some high-dimensional or sparse data due to the curse of dimensionality, which has a negative influence on the performance of multiple kernel learning. In addition, some models might be ill-posed if the rank of matrices in their objective functions was not high enough. To address these issues, we extend the traditional graph embedding framework and propose a novel regularized embedded multiple kernel dimensionality reduction method. Different from the conventional convex relaxation technique, the proposed algorithm directly takes advantage of a binary search and an alternative optimization scheme to obtain optimal solutions efficiently. The experimental results demonstrate the effectiveness of the proposed method for supervised, unsupervised, and semisupervised scenarios.

  9. General purpose graphic processing unit implementation of adaptive pulse compression algorithms

    NASA Astrophysics Data System (ADS)

    Cai, Jingxiao; Zhang, Yan

    2017-07-01

    This study introduces a practical approach to implement real-time signal processing algorithms for general surveillance radar based on NVIDIA graphical processing units (GPUs). The pulse compression algorithms are implemented using compute unified device architecture (CUDA) libraries such as CUDA basic linear algebra subroutines and CUDA fast Fourier transform library, which are adopted from open source libraries and optimized for the NVIDIA GPUs. For more advanced, adaptive processing algorithms such as adaptive pulse compression, customized kernel optimization is needed and investigated. A statistical optimization approach is developed for this purpose without needing much knowledge of the physical configurations of the kernels. It was found that the kernel optimization approach can significantly improve the performance. Benchmark performance is compared with the CPU performance in terms of processing accelerations. The proposed implementation framework can be used in various radar systems including ground-based phased array radar, airborne sense and avoid radar, and aerospace surveillance radar.

  10. Optimizing fusion PIC code performance at scale on Cori Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koskela, T. S.; Deslippe, J.

    In this paper we present the results of optimizing the performance of the gyrokinetic full-f fusion PIC code XGC1 on the Cori Phase Two Knights Landing system. The code has undergone substantial development to enable the use of vector instructions in its most expensive kernels within the NERSC Exascale Science Applications Program. We study the single-node performance of the code on an absolute scale using the roofline methodology to guide optimization efforts. We have obtained 2x speedups in single node performance due to enabling vectorization and performing memory layout optimizations. On multiple nodes, the code is shown to scale wellmore » up to 4000 nodes, near half the size of the machine. We discuss some communication bottlenecks that were identified and resolved during the work.« less

  11. Modular Affective Reasoning-Based Versatile Introspective Architecture (MARVIN)

    DTIC Science & Technology

    2008-08-14

    monolithic kernels found in most mass market OSs, where these kinds of system processes run within the kernel , and thus need to be highly optimized as well as...without modifying pre- existing process management elements, we expect the process of transitioning this component from MINIX to monolithic kernels to...necessary to incorporate them into a monolithic kernel . To demonstrate how the APMM would work in practice, we used it as the basis for building a simulated

  12. Optimal Bandwidth Selection in Observed-Score Kernel Equating

    ERIC Educational Resources Information Center

    Häggström, Jenny; Wiberg, Marie

    2014-01-01

    The selection of bandwidth in kernel equating is important because it has a direct impact on the equated test scores. The aim of this article is to examine the use of double smoothing when selecting bandwidths in kernel equating and to compare double smoothing with the commonly used penalty method. This comparison was made using both an equivalent…

  13. Detection of maize kernels breakage rate based on K-means clustering

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Wang, Zhuo; Gao, Lei; Bai, Xiaoping

    2017-04-01

    In order to optimize the recognition accuracy of maize kernels breakage detection and improve the detection efficiency of maize kernels breakage, this paper using computer vision technology and detecting of the maize kernels breakage based on K-means clustering algorithm. First, the collected RGB images are converted into Lab images, then the original images clarity evaluation are evaluated by the energy function of Sobel 8 gradient. Finally, the detection of maize kernels breakage using different pixel acquisition equipments and different shooting angles. In this paper, the broken maize kernels are identified by the color difference between integrity kernels and broken kernels. The original images clarity evaluation and different shooting angles are taken to verify that the clarity and shooting angles of the images have a direct influence on the feature extraction. The results show that K-means clustering algorithm can distinguish the broken maize kernels effectively.

  14. Enhancement of encapsulation efficiency of nanoemulsion-containing aripiprazole for the treatment of schizophrenia using mixture experimental design

    PubMed Central

    Fard Masoumi, Hamid Reza; Basri, Mahiran; Sarah Samiun, Wan; Izadiyan, Zahra; Lim, Chaw Jiang

    2015-01-01

    Aripiprazole is considered as a third-generation antipsychotic drug with excellent therapeutic efficacy in controlling schizophrenia symptoms and was the first atypical anti-psychotic agent to be approved by the US Food and Drug Administration. Formulation of nanoemulsion-containing aripiprazole was carried out using high shear and high pressure homogenizers. Mixture experimental design was selected to optimize the composition of nanoemulsion. A very small droplet size of emulsion can provide an effective encapsulation for delivery system in the body. The effects of palm kernel oil ester (3–6 wt%), lecithin (2–3 wt%), Tween 80 (0.5–1 wt%), glycerol (1.5–3 wt%), and water (87–93 wt%) on the droplet size of aripiprazole nanoemulsions were investigated. The mathematical model showed that the optimum formulation for preparation of aripiprazole nanoemulsion having the desirable criteria was 3.00% of palm kernel oil ester, 2.00% of lecithin, 1.00% of Tween 80, 2.25% of glycerol, and 91.75% of water. Under optimum formulation, the corresponding predicted response value for droplet size was 64.24 nm, which showed an excellent agreement with the actual value (62.23 nm) with residual standard error <3.2%. PMID:26508853

  15. Intraear Compensation of Field Corn, Zea mays, from Simulated and Naturally Occurring Injury by Ear-Feeding Larvae.

    PubMed

    Steckel, S; Stewart, S D

    2015-06-01

    Ear-feeding larvae, such as corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), can be important insect pests of field corn, Zea mays L., by feeding on kernels. Recently introduced, stacked Bacillus thuringiensis (Bt) traits provide improved protection from ear-feeding larvae. Thus, our objective was to evaluate how injury to kernels in the ear tip might affect yield when this injury was inflicted at the blister and milk stages. In 2010, simulated corn earworm injury reduced total kernel weight (i.e., yield) at both the blister and milk stage. In 2011, injury to ear tips at the milk stage affected total kernel weight. No differences in total kernel weight were found in 2013, regardless of when or how much injury was inflicted. Our data suggested that kernels within the same ear could compensate for injury to ear tips by increasing in size, but this increase was not always statistically significant or sufficient to overcome high levels of kernel injury. For naturally occurring injury observed on multiple corn hybrids during 2011 and 2012, our analyses showed either no or a minimal relationship between number of kernels injured by ear-feeding larvae and the total number of kernels per ear, total kernel weight, or the size of individual kernels. The results indicate that intraear compensation for kernel injury to ear tips can occur under at least some conditions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Scalable Nonparametric Low-Rank Kernel Learning Using Block Coordinate Descent.

    PubMed

    Hu, En-Liang; Kwok, James T

    2015-09-01

    Nonparametric kernel learning (NPKL) is a flexible approach to learn the kernel matrix directly without assuming any parametric form. It can be naturally formulated as a semidefinite program (SDP), which, however, is not very scalable. To address this problem, we propose the combined use of low-rank approximation and block coordinate descent (BCD). Low-rank approximation avoids the expensive positive semidefinite constraint in the SDP by replacing the kernel matrix variable with V(T)V, where V is a low-rank matrix. The resultant nonlinear optimization problem is then solved by BCD, which optimizes each column of V sequentially. It can be shown that the proposed algorithm has nice convergence properties and low computational complexities. Experiments on a number of real-world data sets show that the proposed algorithm outperforms state-of-the-art NPKL solvers.

  17. Scuba: scalable kernel-based gene prioritization.

    PubMed

    Zampieri, Guido; Tran, Dinh Van; Donini, Michele; Navarin, Nicolò; Aiolli, Fabio; Sperduti, Alessandro; Valle, Giorgio

    2018-01-25

    The uncovering of genes linked to human diseases is a pressing challenge in molecular biology and precision medicine. This task is often hindered by the large number of candidate genes and by the heterogeneity of the available information. Computational methods for the prioritization of candidate genes can help to cope with these problems. In particular, kernel-based methods are a powerful resource for the integration of heterogeneous biological knowledge, however, their practical implementation is often precluded by their limited scalability. We propose Scuba, a scalable kernel-based method for gene prioritization. It implements a novel multiple kernel learning approach, based on a semi-supervised perspective and on the optimization of the margin distribution. Scuba is optimized to cope with strongly unbalanced settings where known disease genes are few and large scale predictions are required. Importantly, it is able to efficiently deal both with a large amount of candidate genes and with an arbitrary number of data sources. As a direct consequence of scalability, Scuba integrates also a new efficient strategy to select optimal kernel parameters for each data source. We performed cross-validation experiments and simulated a realistic usage setting, showing that Scuba outperforms a wide range of state-of-the-art methods. Scuba achieves state-of-the-art performance and has enhanced scalability compared to existing kernel-based approaches for genomic data. This method can be useful to prioritize candidate genes, particularly when their number is large or when input data is highly heterogeneous. The code is freely available at https://github.com/gzampieri/Scuba .

  18. Differential evolution algorithm-based kernel parameter selection for Fukunaga-Koontz Transform subspaces construction

    NASA Astrophysics Data System (ADS)

    Binol, Hamidullah; Bal, Abdullah; Cukur, Huseyin

    2015-10-01

    The performance of the kernel based techniques depends on the selection of kernel parameters. That's why; suitable parameter selection is an important problem for many kernel based techniques. This article presents a novel technique to learn the kernel parameters in kernel Fukunaga-Koontz Transform based (KFKT) classifier. The proposed approach determines the appropriate values of kernel parameters through optimizing an objective function constructed based on discrimination ability of KFKT. For this purpose we have utilized differential evolution algorithm (DEA). The new technique overcomes some disadvantages such as high time consumption existing in the traditional cross-validation method, and it can be utilized in any type of data. The experiments for target detection applications on the hyperspectral images verify the effectiveness of the proposed method.

  19. Design of a multiple kernel learning algorithm for LS-SVM by convex programming.

    PubMed

    Jian, Ling; Xia, Zhonghang; Liang, Xijun; Gao, Chuanhou

    2011-06-01

    As a kernel based method, the performance of least squares support vector machine (LS-SVM) depends on the selection of the kernel as well as the regularization parameter (Duan, Keerthi, & Poo, 2003). Cross-validation is efficient in selecting a single kernel and the regularization parameter; however, it suffers from heavy computational cost and is not flexible to deal with multiple kernels. In this paper, we address the issue of multiple kernel learning for LS-SVM by formulating it as semidefinite programming (SDP). Furthermore, we show that the regularization parameter can be optimized in a unified framework with the kernel, which leads to an automatic process for model selection. Extensive experimental validations are performed and analyzed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Novel near-infrared sampling apparatus for single kernel analysis of oil content in maize.

    PubMed

    Janni, James; Weinstock, B André; Hagen, Lisa; Wright, Steve

    2008-04-01

    A method of rapid, nondestructive chemical and physical analysis of individual maize (Zea mays L.) kernels is needed for the development of high value food, feed, and fuel traits. Near-infrared (NIR) spectroscopy offers a robust nondestructive method of trait determination. However, traditional NIR bulk sampling techniques cannot be applied successfully to individual kernels. Obtaining optimized single kernel NIR spectra for applied chemometric predictive analysis requires a novel sampling technique that can account for the heterogeneous forms, morphologies, and opacities exhibited in individual maize kernels. In this study such a novel technique is described and compared to less effective means of single kernel NIR analysis. Results of the application of a partial least squares (PLS) derived model for predictive determination of percent oil content per individual kernel are shown.

  1. Discrete element method as an approach to model the wheat milling process

    USDA-ARS?s Scientific Manuscript database

    It is a well-known phenomenon that break-release, particle size, and size distribution of wheat milling are functions of machine operational parameters and grain properties. Due to the non-uniformity of characteristics and properties of wheat kernels, the kernel physical and mechanical properties af...

  2. Optimization of the acceptance of prebiotic beverage made from cashew nut kernels and passion fruit juice.

    PubMed

    Rebouças, Marina Cabral; Rodrigues, Maria do Carmo Passos; Afonso, Marcos Rodrigues Amorim

    2014-07-01

    The aim of this research was to develop a prebiotic beverage from a hydrosoluble extract of broken cashew nut kernels and passion fruit juice using response surface methodology in order to optimize acceptance of its sensory attributes. A 2(2) central composite rotatable design was used, which produced 9 formulations, which were then evaluated using different concentrations of hydrosoluble cashew nut kernel, passion fruit juice, oligofructose, and 3% sugar. The use of response surface methodology to interpret the sensory data made it possible to obtain a formulation with satisfactory acceptance which met the criteria of bifidogenic action and use of hydrosoluble cashew nut kernels by using 14% oligofructose and 33% passion fruit juice. As a result of this study, it was possible to obtain a new functional prebiotic product, which combined the nutritional and functional properties of cashew nut kernels and oligofructose with the sensory properties of passion fruit juice in a beverage with satisfactory sensory acceptance. This new product emerges as a new alternative for the industrial processing of broken cashew nut kernels, which have very low market value, enabling this sector to increase its profits. © 2014 Institute of Food Technologists®

  3. The effect of relatedness and pack size on territory overlap in African wild dogs.

    PubMed

    Jackson, Craig R; Groom, Rosemary J; Jordan, Neil R; McNutt, J Weldon

    2017-01-01

    Spacing patterns mediate competitive interactions between conspecifics, ultimately increasing fitness. The degree of territorial overlap between neighbouring African wild dog ( Lycaon pictus ) packs varies greatly, yet the role of factors potentially affecting the degree of overlap, such as relatedness and pack size, remain unclear. We used movement data from 21 wild dog packs to calculate the extent of territory overlap (20 dyads). On average, unrelated neighbouring packs had low levels of overlap restricted to the peripheral regions of their 95% utilisation kernels. Related neighbours had significantly greater levels of peripheral overlap. Only one unrelated dyad included overlap between 75%-75% kernels, but no 50%-50% kernels overlapped. However, eight of 12 related dyads overlapped between their respective 75% kernels and six between the frequented 50% kernels. Overlap between these more frequented kernels confers a heightened likelihood of encounter, as the mean utilisation intensity per unit area within the 50% kernels was 4.93 times greater than in the 95% kernels, and 2.34 times greater than in the 75% kernels. Related packs spent significantly more time in their 95% kernel overlap zones than did unrelated packs. Pack size appeared to have little effect on overlap between related dyads, yet among unrelated neighbours larger packs tended to overlap more onto smaller packs' territories. However, the true effect is unclear given that the model's confidence intervals overlapped zero. Evidence suggests that costly intraspecific aggression is greatly reduced between related packs. Consequently, the tendency for dispersing individuals to establish territories alongside relatives, where intensively utilised portions of ranges regularly overlap, may extend kin selection and inclusive fitness benefits from the intra-pack to inter-pack level. This natural spacing system can affect survival parameters and the carrying capacity of protected areas, having important management implications for intensively managed populations of this endangered species.

  4. A particle swarm optimized kernel-based clustering method for crop mapping from multi-temporal polarimetric L-band SAR observations

    NASA Astrophysics Data System (ADS)

    Tamiminia, Haifa; Homayouni, Saeid; McNairn, Heather; Safari, Abdoreza

    2017-06-01

    Polarimetric Synthetic Aperture Radar (PolSAR) data, thanks to their specific characteristics such as high resolution, weather and daylight independence, have become a valuable source of information for environment monitoring and management. The discrimination capability of observations acquired by these sensors can be used for land cover classification and mapping. The aim of this paper is to propose an optimized kernel-based C-means clustering algorithm for agriculture crop mapping from multi-temporal PolSAR data. Firstly, several polarimetric features are extracted from preprocessed data. These features are linear polarization intensities, and several statistical and physical based decompositions such as Cloude-Pottier, Freeman-Durden and Yamaguchi techniques. Then, the kernelized version of hard and fuzzy C-means clustering algorithms are applied to these polarimetric features in order to identify crop types. The kernel function, unlike the conventional partitioning clustering algorithms, simplifies the non-spherical and non-linearly patterns of data structure, to be clustered easily. In addition, in order to enhance the results, Particle Swarm Optimization (PSO) algorithm is used to tune the kernel parameters, cluster centers and to optimize features selection. The efficiency of this method was evaluated by using multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Manitoba, Canada, during June and July in 2012. The results demonstrate more accurate crop maps using the proposed method when compared to the classical approaches, (e.g. 12% improvement in general). In addition, when the optimization technique is used, greater improvement is observed in crop classification, e.g. 5% in overall. Furthermore, a strong relationship between Freeman-Durden volume scattering component, which is related to canopy structure, and phenological growth stages is observed.

  5. Background field removal technique using regularization enabled sophisticated harmonic artifact reduction for phase data with varying kernel sizes.

    PubMed

    Kan, Hirohito; Kasai, Harumasa; Arai, Nobuyuki; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta

    2016-09-01

    An effective background field removal technique is desired for more accurate quantitative susceptibility mapping (QSM) prior to dipole inversion. The aim of this study was to evaluate the accuracy of regularization enabled sophisticated harmonic artifact reduction for phase data with varying spherical kernel sizes (REV-SHARP) method using a three-dimensional head phantom and human brain data. The proposed REV-SHARP method used the spherical mean value operation and Tikhonov regularization in the deconvolution process, with varying 2-14mm kernel sizes. The kernel sizes were gradually reduced, similar to the SHARP with varying spherical kernel (VSHARP) method. We determined the relative errors and relationships between the true local field and estimated local field in REV-SHARP, VSHARP, projection onto dipole fields (PDF), and regularization enabled SHARP (RESHARP). Human experiment was also conducted using REV-SHARP, VSHARP, PDF, and RESHARP. The relative errors in the numerical phantom study were 0.386, 0.448, 0.838, and 0.452 for REV-SHARP, VSHARP, PDF, and RESHARP. REV-SHARP result exhibited the highest correlation between the true local field and estimated local field. The linear regression slopes were 1.005, 1.124, 0.988, and 0.536 for REV-SHARP, VSHARP, PDF, and RESHARP in regions of interest on the three-dimensional head phantom. In human experiments, no obvious errors due to artifacts were present in REV-SHARP. The proposed REV-SHARP is a new method combined with variable spherical kernel size and Tikhonov regularization. This technique might make it possible to be more accurate backgroud field removal and help to achive better accuracy of QSM. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations.

    PubMed

    Liu, Zhengbin; Garcia, Arturo; McMullen, Michael D; Flint-Garcia, Sherry A

    2016-08-09

    Seed traits have been targeted by human selection during the domestication of crop species as a way to increase the caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is most directly related to overall grain yield. Additional seed traits involved in seed shape may have also contributed to larger grain. Maize (Zea mays ssp. mays) kernel weight has increased more than 10-fold in the 9000 years since domestication from its wild ancestor, teosinte (Z. mays ssp. parviglumis). In order to study how size and shape affect kernel weight, we analyzed kernel morphometric traits in a set of 10 maize-teosinte introgression populations using digital imaging software. We identified quantitative trait loci (QTL) for kernel area and length with moderate allelic effects that colocalize with kernel weight QTL. Several genomic regions with strong effects during maize domestication were detected, and a genetic framework for kernel traits was characterized by complex pleiotropic interactions. Our results both confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects, enabling future research into the genetic basis of these traits. Copyright © 2016 Liu et al.

  7. Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations

    PubMed Central

    Liu, Zhengbin; Garcia, Arturo; McMullen, Michael D.; Flint-Garcia, Sherry A.

    2016-01-01

    Seed traits have been targeted by human selection during the domestication of crop species as a way to increase the caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is most directly related to overall grain yield. Additional seed traits involved in seed shape may have also contributed to larger grain. Maize (Zea mays ssp. mays) kernel weight has increased more than 10-fold in the 9000 years since domestication from its wild ancestor, teosinte (Z. mays ssp. parviglumis). In order to study how size and shape affect kernel weight, we analyzed kernel morphometric traits in a set of 10 maize-teosinte introgression populations using digital imaging software. We identified quantitative trait loci (QTL) for kernel area and length with moderate allelic effects that colocalize with kernel weight QTL. Several genomic regions with strong effects during maize domestication were detected, and a genetic framework for kernel traits was characterized by complex pleiotropic interactions. Our results both confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects, enabling future research into the genetic basis of these traits. PMID:27317774

  8. Investigation of various energy deposition kernel refinements for the convolution/superposition method

    PubMed Central

    Huang, Jessie Y.; Eklund, David; Childress, Nathan L.; Howell, Rebecca M.; Mirkovic, Dragan; Followill, David S.; Kry, Stephen F.

    2013-01-01

    Purpose: Several simplifications used in clinical implementations of the convolution/superposition (C/S) method, specifically, density scaling of water kernels for heterogeneous media and use of a single polyenergetic kernel, lead to dose calculation inaccuracies. Although these weaknesses of the C/S method are known, it is not well known which of these simplifications has the largest effect on dose calculation accuracy in clinical situations. The purpose of this study was to generate and characterize high-resolution, polyenergetic, and material-specific energy deposition kernels (EDKs), as well as to investigate the dosimetric impact of implementing spatially variant polyenergetic and material-specific kernels in a collapsed cone C/S algorithm. Methods: High-resolution, monoenergetic water EDKs and various material-specific EDKs were simulated using the EGSnrc Monte Carlo code. Polyenergetic kernels, reflecting the primary spectrum of a clinical 6 MV photon beam at different locations in a water phantom, were calculated for different depths, field sizes, and off-axis distances. To investigate the dosimetric impact of implementing spatially variant polyenergetic kernels, depth dose curves in water were calculated using two different implementations of the collapsed cone C/S method. The first method uses a single polyenergetic kernel, while the second method fully takes into account spectral changes in the convolution calculation. To investigate the dosimetric impact of implementing material-specific kernels, depth dose curves were calculated for a simplified titanium implant geometry using both a traditional C/S implementation that performs density scaling of water kernels and a novel implementation using material-specific kernels. Results: For our high-resolution kernels, we found good agreement with the Mackie et al. kernels, with some differences near the interaction site for low photon energies (<500 keV). For our spatially variant polyenergetic kernels, we found that depth was the most dominant factor affecting the pattern of energy deposition; however, the effects of field size and off-axis distance were not negligible. For the material-specific kernels, we found that as the density of the material increased, more energy was deposited laterally by charged particles, as opposed to in the forward direction. Thus, density scaling of water kernels becomes a worse approximation as the density and the effective atomic number of the material differ more from water. Implementation of spatially variant, polyenergetic kernels increased the percent depth dose value at 25 cm depth by 2.1%–5.8% depending on the field size, while implementation of titanium kernels gave 4.9% higher dose upstream of the metal cavity (i.e., higher backscatter dose) and 8.2% lower dose downstream of the cavity. Conclusions: Of the various kernel refinements investigated, inclusion of depth-dependent and metal-specific kernels into the C/S method has the greatest potential to improve dose calculation accuracy. Implementation of spatially variant polyenergetic kernels resulted in a harder depth dose curve and thus has the potential to affect beam modeling parameters obtained in the commissioning process. For metal implants, the C/S algorithms generally underestimate the dose upstream and overestimate the dose downstream of the implant. Implementation of a metal-specific kernel mitigated both of these errors. PMID:24320507

  9. Graph Kernels for Molecular Similarity.

    PubMed

    Rupp, Matthias; Schneider, Gisbert

    2010-04-12

    Molecular similarity measures are important for many cheminformatics applications like ligand-based virtual screening and quantitative structure-property relationships. Graph kernels are formal similarity measures defined directly on graphs, such as the (annotated) molecular structure graph. Graph kernels are positive semi-definite functions, i.e., they correspond to inner products. This property makes them suitable for use with kernel-based machine learning algorithms such as support vector machines and Gaussian processes. We review the major types of kernels between graphs (based on random walks, subgraphs, and optimal assignments, respectively), and discuss their advantages, limitations, and successful applications in cheminformatics. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Increasing the Size of Microwave Popcorn

    NASA Astrophysics Data System (ADS)

    Smoyer, Justin

    2005-03-01

    Each year Americans consume approximately 17 billion quarts of popcorn. Since the 1940s, microwaves have been the heating source of choice for most. By treating the popcorn mechanism as a thermodynamic system, it has been shown mathematically and experimentally that reducing the surrounding pressure of the unpopped kernels, results in an increased volume of the kernels [Quinn et al, http://xxx.lanl.gov/abs/cond-mat/0409434 v1 2004]. In this project an alternate method of popping with the microwave was used to further test and confirm this hypothesis. Numerous experimental trials where run to test the validity of the theory. The results show that there is a significant increase in the average kernel size as well as a reduction in the number of unpopped kernels.

  11. Optimization of fixture layouts of glass laser optics using multiple kernel regression.

    PubMed

    Su, Jianhua; Cao, Enhua; Qiao, Hong

    2014-05-10

    We aim to build an integrated fixturing model to describe the structural properties and thermal properties of the support frame of glass laser optics. Therefore, (a) a near global optimal set of clamps can be computed to minimize the surface shape error of the glass laser optic based on the proposed model, and (b) a desired surface shape error can be obtained by adjusting the clamping forces under various environmental temperatures based on the model. To construct the model, we develop a new multiple kernel learning method and call it multiple kernel support vector functional regression. The proposed method uses two layer regressions to group and order the data sources by the weights of the kernels and the factors of the layers. Because of that, the influences of the clamps and the temperature can be evaluated by grouping them into different layers.

  12. a Gsa-Svm Hybrid System for Classification of Binary Problems

    NASA Astrophysics Data System (ADS)

    Sarafrazi, Soroor; Nezamabadi-pour, Hossein; Barahman, Mojgan

    2011-06-01

    This paperhybridizesgravitational search algorithm (GSA) with support vector machine (SVM) and made a novel GSA-SVM hybrid system to improve the classification accuracy in binary problems. GSA is an optimization heuristic toolused to optimize the value of SVM kernel parameter (in this paper, radial basis function (RBF) is chosen as the kernel function). The experimental results show that this newapproach can achieve high classification accuracy and is comparable to or better than the particle swarm optimization (PSO)-SVM and genetic algorithm (GA)-SVM, which are two hybrid systems for classification.

  13. Optimized extreme learning machine for urban land cover classification using hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Su, Hongjun; Tian, Shufang; Cai, Yue; Sheng, Yehua; Chen, Chen; Najafian, Maryam

    2017-12-01

    This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficient C and Gaussian kernel σ for kernel ELM. Additionally, effectiveness of spectral features derived from an FA-based band selection algorithm is studied for the proposed classification task. Three sets of hyperspectral databases were recorded using different sensors, namely HYDICE, HyMap, and AVIRIS. Our study shows that the proposed method outperforms traditional classification algorithms such as SVM and reduces computational cost significantly.

  14. Pyramid image codes

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1990-01-01

    All vision systems, both human and machine, transform the spatial image into a coded representation. Particular codes may be optimized for efficiency or to extract useful image features. Researchers explored image codes based on primary visual cortex in man and other primates. Understanding these codes will advance the art in image coding, autonomous vision, and computational human factors. In cortex, imagery is coded by features that vary in size, orientation, and position. Researchers have devised a mathematical model of this transformation, called the Hexagonal oriented Orthogonal quadrature Pyramid (HOP). In a pyramid code, features are segregated by size into layers, with fewer features in the layers devoted to large features. Pyramid schemes provide scale invariance, and are useful for coarse-to-fine searching and for progressive transmission of images. The HOP Pyramid is novel in three respects: (1) it uses a hexagonal pixel lattice, (2) it uses oriented features, and (3) it accurately models most of the prominent aspects of primary visual cortex. The transform uses seven basic features (kernels), which may be regarded as three oriented edges, three oriented bars, and one non-oriented blob. Application of these kernels to non-overlapping seven-pixel neighborhoods yields six oriented, high-pass pyramid layers, and one low-pass (blob) layer.

  15. The use of kernel local Fisher discriminant analysis for the channelization of the Hotelling model observer

    NASA Astrophysics Data System (ADS)

    Wen, Gezheng; Markey, Mia K.

    2015-03-01

    It is resource-intensive to conduct human studies for task-based assessment of medical image quality and system optimization. Thus, numerical model observers have been developed as a surrogate for human observers. The Hotelling observer (HO) is the optimal linear observer for signal-detection tasks, but the high dimensionality of imaging data results in a heavy computational burden. Channelization is often used to approximate the HO through a dimensionality reduction step, but how to produce channelized images without losing significant image information remains a key challenge. Kernel local Fisher discriminant analysis (KLFDA) uses kernel techniques to perform supervised dimensionality reduction, which finds an embedding transformation that maximizes betweenclass separability and preserves within-class local structure in the low-dimensional manifold. It is powerful for classification tasks, especially when the distribution of a class is multimodal. Such multimodality could be observed in many practical clinical tasks. For example, primary and metastatic lesions may both appear in medical imaging studies, but the distributions of their typical characteristics (e.g., size) may be very different. In this study, we propose to use KLFDA as a novel channelization method. The dimension of the embedded manifold (i.e., the result of KLFDA) is a counterpart to the number of channels in the state-of-art linear channelization. We present a simulation study to demonstrate the potential usefulness of KLFDA for building the channelized HOs (CHOs) and generating reliable decision statistics for clinical tasks. We show that the performance of the CHO with KLFDA channels is comparable to that of the benchmark CHOs.

  16. ℓ(p)-Norm multikernel learning approach for stock market price forecasting.

    PubMed

    Shao, Xigao; Wu, Kun; Liao, Bifeng

    2012-01-01

    Linear multiple kernel learning model has been used for predicting financial time series. However, ℓ(1)-norm multiple support vector regression is rarely observed to outperform trivial baselines in practical applications. To allow for robust kernel mixtures that generalize well, we adopt ℓ(p)-norm multiple kernel support vector regression (1 ≤ p < ∞) as a stock price prediction model. The optimization problem is decomposed into smaller subproblems, and the interleaved optimization strategy is employed to solve the regression model. The model is evaluated on forecasting the daily stock closing prices of Shanghai Stock Index in China. Experimental results show that our proposed model performs better than ℓ(1)-norm multiple support vector regression model.

  17. Resource Efficient Hardware Architecture for Fast Computation of Running Max/Min Filters

    PubMed Central

    Torres-Huitzil, Cesar

    2013-01-01

    Running max/min filters on rectangular kernels are widely used in many digital signal and image processing applications. Filtering with a k × k kernel requires of k 2 − 1 comparisons per sample for a direct implementation; thus, performance scales expensively with the kernel size k. Faster computations can be achieved by kernel decomposition and using constant time one-dimensional algorithms on custom hardware. This paper presents a hardware architecture for real-time computation of running max/min filters based on the van Herk/Gil-Werman (HGW) algorithm. The proposed architecture design uses less computation and memory resources than previously reported architectures when targeted to Field Programmable Gate Array (FPGA) devices. Implementation results show that the architecture is able to compute max/min filters, on 1024 × 1024 images with up to 255 × 255 kernels, in around 8.4 milliseconds, 120 frames per second, at a clock frequency of 250 MHz. The implementation is highly scalable for the kernel size with good performance/area tradeoff suitable for embedded applications. The applicability of the architecture is shown for local adaptive image thresholding. PMID:24288456

  18. Quantum Support Vector Machine for Big Data Classification

    NASA Astrophysics Data System (ADS)

    Rebentrost, Patrick; Mohseni, Masoud; Lloyd, Seth

    2014-09-01

    Supervised machine learning is the classification of new data based on already classified training examples. In this work, we show that the support vector machine, an optimized binary classifier, can be implemented on a quantum computer, with complexity logarithmic in the size of the vectors and the number of training examples. In cases where classical sampling algorithms require polynomial time, an exponential speedup is obtained. At the core of this quantum big data algorithm is a nonsparse matrix exponentiation technique for efficiently performing a matrix inversion of the training data inner-product (kernel) matrix.

  19. Winter home-range characteristics of American Marten (Martes americana) in Northern Wisconsin

    Treesearch

    Joseph B. Dumyahn; Patrick A. Zollner

    2007-01-01

    We estimated home-range size for American marten (Martes americana) in northern Wisconsin during the winter months of 2001-2004, and compared the proportion of cover-type selection categories (highly used, neutral and avoided) among home-ranges (95% fixed-kernel), core areas (50% fixed-kernel) and the study area. Average winter homerange size was 3....

  20. Effective Alternating Direction Optimization Methods for Sparsity-Constrained Blind Image Deblurring.

    PubMed

    Xiong, Naixue; Liu, Ryan Wen; Liang, Maohan; Wu, Di; Liu, Zhao; Wu, Huisi

    2017-01-18

    Single-image blind deblurring for imaging sensors in the Internet of Things (IoT) is a challenging ill-conditioned inverse problem, which requires regularization techniques to stabilize the image restoration process. The purpose is to recover the underlying blur kernel and latent sharp image from only one blurred image. Under many degraded imaging conditions, the blur kernel could be considered not only spatially sparse, but also piecewise smooth with the support of a continuous curve. By taking advantage of the hybrid sparse properties of the blur kernel, a hybrid regularization method is proposed in this paper to robustly and accurately estimate the blur kernel. The effectiveness of the proposed blur kernel estimation method is enhanced by incorporating both the L 1 -norm of kernel intensity and the squared L 2 -norm of the intensity derivative. Once the accurate estimation of the blur kernel is obtained, the original blind deblurring can be simplified to the direct deconvolution of blurred images. To guarantee robust non-blind deconvolution, a variational image restoration model is presented based on the L 1 -norm data-fidelity term and the total generalized variation (TGV) regularizer of second-order. All non-smooth optimization problems related to blur kernel estimation and non-blind deconvolution are effectively handled by using the alternating direction method of multipliers (ADMM)-based numerical methods. Comprehensive experiments on both synthetic and realistic datasets have been implemented to compare the proposed method with several state-of-the-art methods. The experimental comparisons have illustrated the satisfactory imaging performance of the proposed method in terms of quantitative and qualitative evaluations.

  1. Small convolution kernels for high-fidelity image restoration

    NASA Technical Reports Server (NTRS)

    Reichenbach, Stephen E.; Park, Stephen K.

    1991-01-01

    An algorithm is developed for computing the mean-square-optimal values for small, image-restoration kernels. The algorithm is based on a comprehensive, end-to-end imaging system model that accounts for the important components of the imaging process: the statistics of the scene, the point-spread function of the image-gathering device, sampling effects, noise, and display reconstruction. Subject to constraints on the spatial support of the kernel, the algorithm generates the kernel values that restore the image with maximum fidelity, that is, the kernel minimizes the expected mean-square restoration error. The algorithm is consistent with the derivation of the spatially unconstrained Wiener filter, but leads to a small, spatially constrained kernel that, unlike the unconstrained filter, can be efficiently implemented by convolution. Simulation experiments demonstrate that for a wide range of imaging systems these small kernels can restore images with fidelity comparable to images restored with the unconstrained Wiener filter.

  2. KSOS Computer Program Development Specifications (Type B-5). (Kernelized Secure Operating System). I. Security Kernel (CDRL 0002AF). II. UNIX Emulator (CDRL 0002AG). III. Security-Related Software (CDRL 0002AH).

    DTIC Science & Technology

    1980-12-01

    Commun- ications Corporation, Palo Alto, CA (March 1978). g. [Walter at al. 74] Walter, K.G. et al., " Primitive Models for Computer .. Security", ESD-TR...discussion is followed by a presenta- tion of the Kernel primitive operations upon these objects. All Kernel objects shall be referenced by a common...set of sizes. All process segments, regardless of domain, shall be manipulated by the same set of Kernel segment primitives . User domain segments

  3. Optimization of hydrogen and syngas production from PKS gasification by using coal bottom ash.

    PubMed

    Shahbaz, Muhammad; Yusup, Suzana; Inayat, Abrar; Patrick, David Onoja; Pratama, Angga; Ammar, Muhamamd

    2017-10-01

    Catalytic steam gasification of palm kernel shell is investigated to optimize operating parameters for hydrogen and syngas production using TGA-MS setup. RSM is used for experimental design and evaluating the effect of temperature, particle size, CaO/biomass ratio, and coal bottom ash wt% on hydrogen and syngas. Hydrogen production appears highly sensitive to all factors, especially temperature and coal bottom ash wt%. In case of syngas, the order of parametric influence is: CaO/biomass>coal bottom ash wt%>temperature>particle size. The significant catalytic effect of coal bottom ash is due to the presence of Fe 2 O 3 , MgO, Al 2 O 3 , and CaO. A temperature of 692°C, coal bottom ash wt% of 0.07, CaO/biomass of 1.42, and particle size of 0.75mm are the optimum conditions for augmented yield of hydrogen and syngas. The production of hydrogen and syngas is 1.5% higher in the pilot scale gasifier as compared to TGA-MS setup. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. ℓ p-Norm Multikernel Learning Approach for Stock Market Price Forecasting

    PubMed Central

    Shao, Xigao; Wu, Kun; Liao, Bifeng

    2012-01-01

    Linear multiple kernel learning model has been used for predicting financial time series. However, ℓ 1-norm multiple support vector regression is rarely observed to outperform trivial baselines in practical applications. To allow for robust kernel mixtures that generalize well, we adopt ℓ p-norm multiple kernel support vector regression (1 ≤ p < ∞) as a stock price prediction model. The optimization problem is decomposed into smaller subproblems, and the interleaved optimization strategy is employed to solve the regression model. The model is evaluated on forecasting the daily stock closing prices of Shanghai Stock Index in China. Experimental results show that our proposed model performs better than ℓ 1-norm multiple support vector regression model. PMID:23365561

  5. Factorization and the synthesis of optimal feedback kernels for differential-delay systems

    NASA Technical Reports Server (NTRS)

    Milman, Mark M.; Scheid, Robert E.

    1987-01-01

    A combination of ideas from the theories of operator Riccati equations and Volterra factorizations leads to the derivation of a novel, relatively simple set of hyperbolic equations which characterize the optimal feedback kernel for the finite-time regulator problem for autonomous differential-delay systems. Analysis of these equations elucidates the underlying structure of the feedback kernel and leads to the development of fast and accurate numerical methods for its computation. Unlike traditional formulations based on the operator Riccati equation, the gain is characterized by means of classical solutions of the derived set of equations. This leads to the development of approximation schemes which are analogous to what has been accomplished for systems of ordinary differential equations with given initial conditions.

  6. Ranking Support Vector Machine with Kernel Approximation

    PubMed Central

    Dou, Yong

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms. PMID:28293256

  7. Ranking Support Vector Machine with Kernel Approximation.

    PubMed

    Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  8. Deep kernel learning method for SAR image target recognition

    NASA Astrophysics Data System (ADS)

    Chen, Xiuyuan; Peng, Xiyuan; Duan, Ran; Li, Junbao

    2017-10-01

    With the development of deep learning, research on image target recognition has made great progress in recent years. Remote sensing detection urgently requires target recognition for military, geographic, and other scientific research. This paper aims to solve the synthetic aperture radar image target recognition problem by combining deep and kernel learning. The model, which has a multilayer multiple kernel structure, is optimized layer by layer with the parameters of Support Vector Machine and a gradient descent algorithm. This new deep kernel learning method improves accuracy and achieves competitive recognition results compared with other learning methods.

  9. An alternative covariance estimator to investigate genetic heterogeneity in populations.

    PubMed

    Heslot, Nicolas; Jannink, Jean-Luc

    2015-11-26

    For genomic prediction and genome-wide association studies (GWAS) using mixed models, covariance between individuals is estimated using molecular markers. Based on the properties of mixed models, using available molecular data for prediction is optimal if this covariance is known. Under this assumption, adding individuals to the analysis should never be detrimental. However, some empirical studies showed that increasing training population size decreased prediction accuracy. Recently, results from theoretical models indicated that even if marker density is high and the genetic architecture of traits is controlled by many loci with small additive effects, the covariance between individuals, which depends on relationships at causal loci, is not always well estimated by the whole-genome kinship. We propose an alternative covariance estimator named K-kernel, to account for potential genetic heterogeneity between populations that is characterized by a lack of genetic correlation, and to limit the information flow between a priori unknown populations in a trait-specific manner. This is similar to a multi-trait model and parameters are estimated by REML and, in extreme cases, it can allow for an independent genetic architecture between populations. As such, K-kernel is useful to study the problem of the design of training populations. K-kernel was compared to other covariance estimators or kernels to examine its fit to the data, cross-validated accuracy and suitability for GWAS on several datasets. It provides a significantly better fit to the data than the genomic best linear unbiased prediction model and, in some cases it performs better than other kernels such as the Gaussian kernel, as shown by an empirical null distribution. In GWAS simulations, alternative kernels control type I errors as well as or better than the classical whole-genome kinship and increase statistical power. No or small gains were observed in cross-validated prediction accuracy. This alternative covariance estimator can be used to gain insight into trait-specific genetic heterogeneity by identifying relevant sub-populations that lack genetic correlation between them. Genetic correlation can be 0 between identified sub-populations by performing automatic selection of relevant sets of individuals to be included in the training population. It may also increase statistical power in GWAS.

  10. Kernel-based least squares policy iteration for reinforcement learning.

    PubMed

    Xu, Xin; Hu, Dewen; Lu, Xicheng

    2007-07-01

    In this paper, we present a kernel-based least squares policy iteration (KLSPI) algorithm for reinforcement learning (RL) in large or continuous state spaces, which can be used to realize adaptive feedback control of uncertain dynamic systems. By using KLSPI, near-optimal control policies can be obtained without much a priori knowledge on dynamic models of control plants. In KLSPI, Mercer kernels are used in the policy evaluation of a policy iteration process, where a new kernel-based least squares temporal-difference algorithm called KLSTD-Q is proposed for efficient policy evaluation. To keep the sparsity and improve the generalization ability of KLSTD-Q solutions, a kernel sparsification procedure based on approximate linear dependency (ALD) is performed. Compared to the previous works on approximate RL methods, KLSPI makes two progresses to eliminate the main difficulties of existing results. One is the better convergence and (near) optimality guarantee by using the KLSTD-Q algorithm for policy evaluation with high precision. The other is the automatic feature selection using the ALD-based kernel sparsification. Therefore, the KLSPI algorithm provides a general RL method with generalization performance and convergence guarantee for large-scale Markov decision problems (MDPs). Experimental results on a typical RL task for a stochastic chain problem demonstrate that KLSPI can consistently achieve better learning efficiency and policy quality than the previous least squares policy iteration (LSPI) algorithm. Furthermore, the KLSPI method was also evaluated on two nonlinear feedback control problems, including a ship heading control problem and the swing up control of a double-link underactuated pendulum called acrobot. Simulation results illustrate that the proposed method can optimize controller performance using little a priori information of uncertain dynamic systems. It is also demonstrated that KLSPI can be applied to online learning control by incorporating an initial controller to ensure online performance.

  11. CompareSVM: supervised, Support Vector Machine (SVM) inference of gene regularity networks.

    PubMed

    Gillani, Zeeshan; Akash, Muhammad Sajid Hamid; Rahaman, M D Matiur; Chen, Ming

    2014-11-30

    Predication of gene regularity network (GRN) from expression data is a challenging task. There are many methods that have been developed to address this challenge ranging from supervised to unsupervised methods. Most promising methods are based on support vector machine (SVM). There is a need for comprehensive analysis on prediction accuracy of supervised method SVM using different kernels on different biological experimental conditions and network size. We developed a tool (CompareSVM) based on SVM to compare different kernel methods for inference of GRN. Using CompareSVM, we investigated and evaluated different SVM kernel methods on simulated datasets of microarray of different sizes in detail. The results obtained from CompareSVM showed that accuracy of inference method depends upon the nature of experimental condition and size of the network. For network with nodes (<200) and average (over all sizes of networks), SVM Gaussian kernel outperform on knockout, knockdown, and multifactorial datasets compared to all the other inference methods. For network with large number of nodes (~500), choice of inference method depend upon nature of experimental condition. CompareSVM is available at http://bis.zju.edu.cn/CompareSVM/ .

  12. Considering causal genes in the genetic dissection of kernel traits in common wheat.

    PubMed

    Mohler, Volker; Albrecht, Theresa; Castell, Adelheid; Diethelm, Manuela; Schweizer, Günther; Hartl, Lorenz

    2016-11-01

    Genetic factors controlling thousand-kernel weight (TKW) were characterized for their association with other seed traits, including kernel width, kernel length, ratio of kernel width to kernel length (KW/KL), kernel area, and spike number per m 2 (SN). For this purpose, a genetic map was established utilizing a doubled haploid population derived from a cross between German winter wheat cultivars Pamier and Format. Association studies in a diversity panel of elite cultivars supplemented genetic analysis of kernel traits. In both populations, genomic signatures of 13 candidate genes for TKW and kernel size were analyzed. Major quantitative trait loci (QTL) for TKW were identified on chromosomes 1B, 2A, 2D, and 4D, and their locations coincided with major QTL for kernel size traits, supporting the common belief that TKW is a function of other kernel traits. The QTL on chromosome 2A was associated with TKW candidate gene TaCwi-A1 and the QTL on chromosome 4D was associated with dwarfing gene Rht-D1. A minor QTL for TKW on chromosome 6B coincided with TaGW2-6B. The QTL for kernel dimensions that did not affect TKW were detected on eight chromosomes. A major QTL for KW/KL located at the distal tip of chromosome arm 5AS is being reported for the first time. TaSus1-7A and TaSAP-A1, closely linked to each other on chromosome 7A, could be related to a minor QTL for KW/KL. Genetic analysis of SN confirmed its negative correlation with TKW in this cross. In the diversity panel, TaSus1-7A was associated with TKW. Compared to the Pamier/Format bi-parental population where TaCwi-A1a was associated with higher TKW, the same allele reduced grain yield in the diversity panel, suggesting opposite effects of TaCwi-A1 on these two traits.

  13. Many Molecular Properties from One Kernel in Chemical Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole

    We introduce property-independent kernels for machine learning modeling of arbitrarily many molecular properties. The kernels encode molecular structures for training sets of varying size, as well as similarity measures sufficiently diffuse in chemical space to sample over all training molecules. Corresponding molecular reference properties provided, they enable the instantaneous generation of ML models which can systematically be improved through the addition of more data. This idea is exemplified for single kernel based modeling of internal energy, enthalpy, free energy, heat capacity, polarizability, electronic spread, zero-point vibrational energy, energies of frontier orbitals, HOMOLUMO gap, and the highest fundamental vibrational wavenumber. Modelsmore » of these properties are trained and tested using 112 kilo organic molecules of similar size. Resulting models are discussed as well as the kernels’ use for generating and using other property models.« less

  14. Data consistency criterion for selecting parameters for k-space-based reconstruction in parallel imaging.

    PubMed

    Nana, Roger; Hu, Xiaoping

    2010-01-01

    k-space-based reconstruction in parallel imaging depends on the reconstruction kernel setting, including its support. An optimal choice of the kernel depends on the calibration data, coil geometry and signal-to-noise ratio, as well as the criterion used. In this work, data consistency, imposed by the shift invariance requirement of the kernel, is introduced as a goodness measure of k-space-based reconstruction in parallel imaging and demonstrated. Data consistency error (DCE) is calculated as the sum of squared difference between the acquired signals and their estimates obtained based on the interpolation of the estimated missing data. A resemblance between DCE and the mean square error in the reconstructed image was found, demonstrating DCE's potential as a metric for comparing or choosing reconstructions. When used for selecting the kernel support for generalized autocalibrating partially parallel acquisition (GRAPPA) reconstruction and the set of frames for calibration as well as the kernel support in temporal GRAPPA reconstruction, DCE led to improved images over existing methods. Data consistency error is efficient to evaluate, robust for selecting reconstruction parameters and suitable for characterizing and optimizing k-space-based reconstruction in parallel imaging.

  15. Methods for compressible fluid simulation on GPUs using high-order finite differences

    NASA Astrophysics Data System (ADS)

    Pekkilä, Johannes; Väisälä, Miikka S.; Käpylä, Maarit J.; Käpylä, Petri J.; Anjum, Omer

    2017-08-01

    We focus on implementing and optimizing a sixth-order finite-difference solver for simulating compressible fluids on a GPU using third-order Runge-Kutta integration. Since graphics processing units perform well in data-parallel tasks, this makes them an attractive platform for fluid simulation. However, high-order stencil computation is memory-intensive with respect to both main memory and the caches of the GPU. We present two approaches for simulating compressible fluids using 55-point and 19-point stencils. We seek to reduce the requirements for memory bandwidth and cache size in our methods by using cache blocking and decomposing a latency-bound kernel into several bandwidth-bound kernels. Our fastest implementation is bandwidth-bound and integrates 343 million grid points per second on a Tesla K40t GPU, achieving a 3 . 6 × speedup over a comparable hydrodynamics solver benchmarked on two Intel Xeon E5-2690v3 processors. Our alternative GPU implementation is latency-bound and achieves the rate of 168 million updates per second.

  16. An Efficient Method Coupling Kernel Principal Component Analysis with Adjoint-Based Optimal Control and Its Goal-Oriented Extensions

    NASA Astrophysics Data System (ADS)

    Thimmisetty, C.; Talbot, C.; Tong, C. H.; Chen, X.

    2016-12-01

    The representativeness of available data poses a significant fundamental challenge to the quantification of uncertainty in geophysical systems. Furthermore, the successful application of machine learning methods to geophysical problems involving data assimilation is inherently constrained by the extent to which obtainable data represent the problem considered. We show how the adjoint method, coupled with optimization based on methods of machine learning, can facilitate the minimization of an objective function defined on a space of significantly reduced dimension. By considering uncertain parameters as constituting a stochastic process, the Karhunen-Loeve expansion and its nonlinear extensions furnish an optimal basis with respect to which optimization using L-BFGS can be carried out. In particular, we demonstrate that kernel PCA can be coupled with adjoint-based optimal control methods to successfully determine the distribution of material parameter values for problems in the context of channelized deformable media governed by the equations of linear elasticity. Since certain subsets of the original data are characterized by different features, the convergence rate of the method in part depends on, and may be limited by, the observations used to furnish the kernel principal component basis. By determining appropriate weights for realizations of the stochastic random field, then, one may accelerate the convergence of the method. To this end, we present a formulation of Weighted PCA combined with a gradient-based means using automatic differentiation to iteratively re-weight observations concurrent with the determination of an optimal reduced set control variables in the feature space. We demonstrate how improvements in the accuracy and computational efficiency of the weighted linear method can be achieved over existing unweighted kernel methods, and discuss nonlinear extensions of the algorithm.

  17. Link predication based on matrix factorization by fusion of multi class organizations of the network.

    PubMed

    Jiao, Pengfei; Cai, Fei; Feng, Yiding; Wang, Wenjun

    2017-08-21

    Link predication aims at forecasting the latent or unobserved edges in the complex networks and has a wide range of applications in reality. Almost existing methods and models only take advantage of one class organization of the networks, which always lose important information hidden in other organizations of the network. In this paper, we propose a link predication framework which makes the best of the structure of networks in different level of organizations based on nonnegative matrix factorization, which is called NMF 3 here. We first map the observed network into another space by kernel functions, which could get the different order organizations. Then we combine the adjacency matrix of the network with one of other organizations, which makes us obtain the objective function of our framework for link predication based on the nonnegative matrix factorization. Third, we derive an iterative algorithm to optimize the objective function, which converges to a local optimum, and we propose a fast optimization strategy for large networks. Lastly, we test the proposed framework based on two kernel functions on a series of real world networks under different sizes of training set, and the experimental results show the feasibility, effectiveness, and competitiveness of the proposed framework.

  18. L2-norm multiple kernel learning and its application to biomedical data fusion

    PubMed Central

    2010-01-01

    Background This paper introduces the notion of optimizing different norms in the dual problem of support vector machines with multiple kernels. The selection of norms yields different extensions of multiple kernel learning (MKL) such as L∞, L1, and L2 MKL. In particular, L2 MKL is a novel method that leads to non-sparse optimal kernel coefficients, which is different from the sparse kernel coefficients optimized by the existing L∞ MKL method. In real biomedical applications, L2 MKL may have more advantages over sparse integration method for thoroughly combining complementary information in heterogeneous data sources. Results We provide a theoretical analysis of the relationship between the L2 optimization of kernels in the dual problem with the L2 coefficient regularization in the primal problem. Understanding the dual L2 problem grants a unified view on MKL and enables us to extend the L2 method to a wide range of machine learning problems. We implement L2 MKL for ranking and classification problems and compare its performance with the sparse L∞ and the averaging L1 MKL methods. The experiments are carried out on six real biomedical data sets and two large scale UCI data sets. L2 MKL yields better performance on most of the benchmark data sets. In particular, we propose a novel L2 MKL least squares support vector machine (LSSVM) algorithm, which is shown to be an efficient and promising classifier for large scale data sets processing. Conclusions This paper extends the statistical framework of genomic data fusion based on MKL. Allowing non-sparse weights on the data sources is an attractive option in settings where we believe most data sources to be relevant to the problem at hand and want to avoid a "winner-takes-all" effect seen in L∞ MKL, which can be detrimental to the performance in prospective studies. The notion of optimizing L2 kernels can be straightforwardly extended to ranking, classification, regression, and clustering algorithms. To tackle the computational burden of MKL, this paper proposes several novel LSSVM based MKL algorithms. Systematic comparison on real data sets shows that LSSVM MKL has comparable performance as the conventional SVM MKL algorithms. Moreover, large scale numerical experiments indicate that when cast as semi-infinite programming, LSSVM MKL can be solved more efficiently than SVM MKL. Availability The MATLAB code of algorithms implemented in this paper is downloadable from http://homes.esat.kuleuven.be/~sistawww/bioi/syu/l2lssvm.html. PMID:20529363

  19. Combined multi-kernel head computed tomography images optimized for depicting both brain parenchyma and bone.

    PubMed

    Takagi, Satoshi; Nagase, Hiroyuki; Hayashi, Tatsuya; Kita, Tamotsu; Hayashi, Katsumi; Sanada, Shigeru; Koike, Masayuki

    2014-01-01

    The hybrid convolution kernel technique for computed tomography (CT) is known to enable the depiction of an image set using different window settings. Our purpose was to decrease the number of artifacts in the hybrid convolution kernel technique for head CT and to determine whether our improved combined multi-kernel head CT images enabled diagnosis as a substitute for both brain (low-pass kernel-reconstructed) and bone (high-pass kernel-reconstructed) images. Forty-four patients with nondisplaced skull fractures were included. Our improved multi-kernel images were generated so that pixels of >100 Hounsfield unit in both brain and bone images were composed of CT values of bone images and other pixels were composed of CT values of brain images. Three radiologists compared the improved multi-kernel images with bone images. The improved multi-kernel images and brain images were identically displayed on the brain window settings. All three radiologists agreed that the improved multi-kernel images on the bone window settings were sufficient for diagnosing skull fractures in all patients. This improved multi-kernel technique has a simple algorithm and is practical for clinical use. Thus, simplified head CT examinations and fewer images that need to be stored can be expected.

  20. Comparison of spatiotemporal interpolators for 4D image reconstruction from 2D transesophageal ultrasound

    NASA Astrophysics Data System (ADS)

    Haak, Alexander; van Stralen, Marijn; van Burken, Gerard; Klein, Stefan; Pluim, Josien P. W.; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.

    2012-03-01

    °For electrophysiology intervention monitoring, we intend to reconstruct 4D ultrasound (US) of structures in the beating heart from 2D transesophageal US by scanplane rotation. The image acquisition is continuous but unsynchronized to the heart rate, which results in a sparsely and irregularly sampled dataset and a spatiotemporal interpolation method is desired. Previously, we showed the potential of normalized convolution (NC) for interpolating such datasets. We explored 4D interpolation by 3 different methods: NC, nearest neighbor (NN), and temporal binning followed by linear interpolation (LTB). The test datasets were derived by slicing three 4D echocardiography datasets at random rotation angles (θ, range: 0-180) and random normalized cardiac phase (τ, range: 0-1). Four different distributions of rotated 2D images with 600, 900, 1350, and 1800 2D input images were created from all TEE sets. A 2D Gaussian kernel was used for NC and optimal kernel sizes (σθ and στ) were found by performing an exhaustive search. The RMS gray value error (RMSE) of the reconstructed images was computed for all interpolation methods. The estimated optimal kernels were in the range of σθ = 3.24 - 3.69°/ στ = 0.045 - 0.048, σθ = 2.79°/ στ = 0.031 - 0.038, σθ = 2.34°/ στ = 0.023 - 0.026, and σθ = 1.89°/ στ = 0.021 - 0.023 for 600, 900, 1350, and 1800 input images respectively. We showed that NC outperforms NN and LTB. For a small number of input images the advantage of NC is more pronounced.

  1. Searching for efficient Markov chain Monte Carlo proposal kernels

    PubMed Central

    Yang, Ziheng; Rodríguez, Carlos E.

    2013-01-01

    Markov chain Monte Carlo (MCMC) or the Metropolis–Hastings algorithm is a simulation algorithm that has made modern Bayesian statistical inference possible. Nevertheless, the efficiency of different Metropolis–Hastings proposal kernels has rarely been studied except for the Gaussian proposal. Here we propose a unique class of Bactrian kernels, which avoid proposing values that are very close to the current value, and compare their efficiency with a number of proposals for simulating different target distributions, with efficiency measured by the asymptotic variance of a parameter estimate. The uniform kernel is found to be more efficient than the Gaussian kernel, whereas the Bactrian kernel is even better. When optimal scales are used for both, the Bactrian kernel is at least 50% more efficient than the Gaussian. Implementation in a Bayesian program for molecular clock dating confirms the general applicability of our results to generic MCMC algorithms. Our results refute a previous claim that all proposals had nearly identical performance and will prompt further research into efficient MCMC proposals. PMID:24218600

  2. Empirical Performance Model-Driven Data Layout Optimization and Library Call Selection for Tensor Contraction Expressions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Qingda; Gao, Xiaoyang; Krishnamoorthy, Sriram

    Empirical optimizers like ATLAS have been very effective in optimizing computational kernels in libraries. The best choice of parameters such as tile size and degree of loop unrolling is determined by executing different versions of the computation. In contrast, optimizing compilers use a model-driven approach to program transformation. While the model-driven approach of optimizing compilers is generally orders of magnitude faster than ATLAS-like library generators, its effectiveness can be limited by the accuracy of the performance models used. In this paper, we describe an approach where a class of computations is modeled in terms of constituent operations that are empiricallymore » measured, thereby allowing modeling of the overall execution time. The performance model with empirically determined cost components is used to perform data layout optimization together with the selection of library calls and layout transformations in the context of the Tensor Contraction Engine, a compiler for a high-level domain-specific language for expressing computational models in quantum chemistry. The effectiveness of the approach is demonstrated through experimental measurements on representative computations from quantum chemistry.« less

  3. The maximum vector-angular margin classifier and its fast training on large datasets using a core vector machine.

    PubMed

    Hu, Wenjun; Chung, Fu-Lai; Wang, Shitong

    2012-03-01

    Although pattern classification has been extensively studied in the past decades, how to effectively solve the corresponding training on large datasets is a problem that still requires particular attention. Many kernelized classification methods, such as SVM and SVDD, can be formulated as the corresponding quadratic programming (QP) problems, but computing the associated kernel matrices requires O(n2)(or even up to O(n3)) computational complexity, where n is the size of the training patterns, which heavily limits the applicability of these methods for large datasets. In this paper, a new classification method called the maximum vector-angular margin classifier (MAMC) is first proposed based on the vector-angular margin to find an optimal vector c in the pattern feature space, and all the testing patterns can be classified in terms of the maximum vector-angular margin ρ, between the vector c and all the training data points. Accordingly, it is proved that the kernelized MAMC can be equivalently formulated as the kernelized Minimum Enclosing Ball (MEB), which leads to a distinctive merit of MAMC, i.e., it has the flexibility of controlling the sum of support vectors like v-SVC and may be extended to a maximum vector-angular margin core vector machine (MAMCVM) by connecting the core vector machine (CVM) method with MAMC such that the corresponding fast training on large datasets can be effectively achieved. Experimental results on artificial and real datasets are provided to validate the power of the proposed methods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Nonlocal Poisson-Fermi model for ionic solvent.

    PubMed

    Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob

    2016-07-01

    We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.

  5. Manycore Performance-Portability: Kokkos Multidimensional Array Library

    DOE PAGES

    Edwards, H. Carter; Sunderland, Daniel; Porter, Vicki; ...

    2012-01-01

    Large, complex scientific and engineering application code have a significant investment in computational kernels to implement their mathematical models. Porting these computational kernels to the collection of modern manycore accelerator devices is a major challenge in that these devices have diverse programming models, application programming interfaces (APIs), and performance requirements. The Kokkos Array programming model provides library-based approach to implement computational kernels that are performance-portable to CPU-multicore and GPGPU accelerator devices. This programming model is based upon three fundamental concepts: (1) manycore compute devices each with its own memory space, (2) data parallel kernels and (3) multidimensional arrays. Kernel executionmore » performance is, especially for NVIDIA® devices, extremely dependent on data access patterns. Optimal data access pattern can be different for different manycore devices – potentially leading to different implementations of computational kernels specialized for different devices. The Kokkos Array programming model supports performance-portable kernels by (1) separating data access patterns from computational kernels through a multidimensional array API and (2) introduce device-specific data access mappings when a kernel is compiled. An implementation of Kokkos Array is available through Trilinos [Trilinos website, http://trilinos.sandia.gov/, August 2011].« less

  6. Adaptive kernel regression for freehand 3D ultrasound reconstruction

    NASA Astrophysics Data System (ADS)

    Alshalalfah, Abdel-Latif; Daoud, Mohammad I.; Al-Najar, Mahasen

    2017-03-01

    Freehand three-dimensional (3D) ultrasound imaging enables low-cost and flexible 3D scanning of arbitrary-shaped organs, where the operator can freely move a two-dimensional (2D) ultrasound probe to acquire a sequence of tracked cross-sectional images of the anatomy. Often, the acquired 2D ultrasound images are irregularly and sparsely distributed in the 3D space. Several 3D reconstruction algorithms have been proposed to synthesize 3D ultrasound volumes based on the acquired 2D images. A challenging task during the reconstruction process is to preserve the texture patterns in the synthesized volume and ensure that all gaps in the volume are correctly filled. This paper presents an adaptive kernel regression algorithm that can effectively reconstruct high-quality freehand 3D ultrasound volumes. The algorithm employs a kernel regression model that enables nonparametric interpolation of the voxel gray-level values. The kernel size of the regression model is adaptively adjusted based on the characteristics of the voxel that is being interpolated. In particular, when the algorithm is employed to interpolate a voxel located in a region with dense ultrasound data samples, the size of the kernel is reduced to preserve the texture patterns. On the other hand, the size of the kernel is increased in areas that include large gaps to enable effective gap filling. The performance of the proposed algorithm was compared with seven previous interpolation approaches by synthesizing freehand 3D ultrasound volumes of a benign breast tumor. The experimental results show that the proposed algorithm outperforms the other interpolation approaches.

  7. Strong consistency of nonparametric Bayes density estimation on compact metric spaces with applications to specific manifolds

    PubMed Central

    Bhattacharya, Abhishek; Dunson, David B.

    2012-01-01

    This article considers a broad class of kernel mixture density models on compact metric spaces and manifolds. Following a Bayesian approach with a nonparametric prior on the location mixing distribution, sufficient conditions are obtained on the kernel, prior and the underlying space for strong posterior consistency at any continuous density. The prior is also allowed to depend on the sample size n and sufficient conditions are obtained for weak and strong consistency. These conditions are verified on compact Euclidean spaces using multivariate Gaussian kernels, on the hypersphere using a von Mises-Fisher kernel and on the planar shape space using complex Watson kernels. PMID:22984295

  8. A graphical approach to optimizing variable-kernel smoothing parameters for improved deformable registration of CT and cone beam CT images

    NASA Astrophysics Data System (ADS)

    Hart, Vern; Burrow, Damon; Li, X. Allen

    2017-08-01

    A systematic method is presented for determining optimal parameters in variable-kernel deformable image registration of cone beam CT and CT images, in order to improve accuracy and convergence for potential use in online adaptive radiotherapy. Assessed conditions included the noise constant (symmetric force demons), the kernel reduction rate, the kernel reduction percentage, and the kernel adjustment criteria. Four such parameters were tested in conjunction with reductions of 5, 10, 15, 20, 30, and 40%. Noise constants ranged from 1.0 to 1.9 for pelvic images in ten prostate cancer patients. A total of 516 tests were performed and assessed using the structural similarity index. Registration accuracy was plotted as a function of iteration number and a least-squares regression line was calculated, which implied an average improvement of 0.0236% per iteration. This baseline was used to determine if a given set of parameters under- or over-performed. The most accurate parameters within this range were applied to contoured images. The mean Dice similarity coefficient was calculated for bladder, prostate, and rectum with mean values of 98.26%, 97.58%, and 96.73%, respectively; corresponding to improvements of 2.3%, 9.8%, and 1.2% over previously reported values for the same organ contours. This graphical approach to registration analysis could aid in determining optimal parameters for Demons-based algorithms. It also establishes expectation values for convergence rates and could serve as an indicator of non-physical warping, which often occurred in cases  >0.6% from the regression line.

  9. Study on Temperature and Synthetic Compensation of Piezo-Resistive Differential Pressure Sensors by Coupled Simulated Annealing and Simplex Optimized Kernel Extreme Learning Machine

    PubMed Central

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam SM, Jahangir

    2017-01-01

    As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems. PMID:28422080

  10. Study on Temperature and Synthetic Compensation of Piezo-Resistive Differential Pressure Sensors by Coupled Simulated Annealing and Simplex Optimized Kernel Extreme Learning Machine.

    PubMed

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir

    2017-04-19

    As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems.

  11. L1-norm kernel discriminant analysis via Bayes error bound optimization for robust feature extraction.

    PubMed

    Zheng, Wenming; Lin, Zhouchen; Wang, Haixian

    2014-04-01

    A novel discriminant analysis criterion is derived in this paper under the theoretical framework of Bayes optimality. In contrast to the conventional Fisher's discriminant criterion, the major novelty of the proposed one is the use of L1 norm rather than L2 norm, which makes it less sensitive to the outliers. With the L1-norm discriminant criterion, we propose a new linear discriminant analysis (L1-LDA) method for linear feature extraction problem. To solve the L1-LDA optimization problem, we propose an efficient iterative algorithm, in which a novel surrogate convex function is introduced such that the optimization problem in each iteration is to simply solve a convex programming problem and a close-form solution is guaranteed to this problem. Moreover, we also generalize the L1-LDA method to deal with the nonlinear robust feature extraction problems via the use of kernel trick, and hereafter proposed the L1-norm kernel discriminant analysis (L1-KDA) method. Extensive experiments on simulated and real data sets are conducted to evaluate the effectiveness of the proposed method in comparing with the state-of-the-art methods.

  12. A Reduced Order Model of the Linearized Incompressible Navier-Strokes Equations for the Sensor/Actuator Placement Problem

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.

    2000-01-01

    A reduced order modeling approach of the Navier-Stokes equations is presented for the design of a distributed optimal feedback kernel. This approach is based oil a Krylov subspace method where significant modes of the flow are captured in the model This model is then used in all optimal feedback control design where sensing and actuation is performed oil tile entire flow field. This control design approach yields all optimal feedback kernel which provides insight into the placement of sensors and actuators in the flow field. As all evaluation of this approach, a two-dimensional shear layer and driven cavity flow are investigated.

  13. A ℓ2, 1 norm regularized multi-kernel learning for false positive reduction in Lung nodule CAD.

    PubMed

    Cao, Peng; Liu, Xiaoli; Zhang, Jian; Li, Wei; Zhao, Dazhe; Huang, Min; Zaiane, Osmar

    2017-03-01

    The aim of this paper is to describe a novel algorithm for False Positive Reduction in lung nodule Computer Aided Detection(CAD). In this paper, we describes a new CT lung CAD method which aims to detect solid nodules. Specially, we proposed a multi-kernel classifier with a ℓ 2, 1 norm regularizer for heterogeneous feature fusion and selection from the feature subset level, and designed two efficient strategies to optimize the parameters of kernel weights in non-smooth ℓ 2, 1 regularized multiple kernel learning algorithm. The first optimization algorithm adapts a proximal gradient method for solving the ℓ 2, 1 norm of kernel weights, and use an accelerated method based on FISTA; the second one employs an iterative scheme based on an approximate gradient descent method. The results demonstrates that the FISTA-style accelerated proximal descent method is efficient for the ℓ 2, 1 norm formulation of multiple kernel learning with the theoretical guarantee of the convergence rate. Moreover, the experimental results demonstrate the effectiveness of the proposed methods in terms of Geometric mean (G-mean) and Area under the ROC curve (AUC), and significantly outperforms the competing methods. The proposed approach exhibits some remarkable advantages both in heterogeneous feature subsets fusion and classification phases. Compared with the fusion strategies of feature-level and decision level, the proposed ℓ 2, 1 norm multi-kernel learning algorithm is able to accurately fuse the complementary and heterogeneous feature sets, and automatically prune the irrelevant and redundant feature subsets to form a more discriminative feature set, leading a promising classification performance. Moreover, the proposed algorithm consistently outperforms the comparable classification approaches in the literature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Pure endmember extraction using robust kernel archetypoid analysis for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Sun, Weiwei; Yang, Gang; Wu, Ke; Li, Weiyue; Zhang, Dianfa

    2017-09-01

    A robust kernel archetypoid analysis (RKADA) method is proposed to extract pure endmembers from hyperspectral imagery (HSI). The RKADA assumes that each pixel is a sparse linear mixture of all endmembers and each endmember corresponds to a real pixel in the image scene. First, it improves the re8gular archetypal analysis with a new binary sparse constraint, and the adoption of the kernel function constructs the principal convex hull in an infinite Hilbert space and enlarges the divergences between pairwise pixels. Second, the RKADA transfers the pure endmember extraction problem into an optimization problem by minimizing residual errors with the Huber loss function. The Huber loss function reduces the effects from big noises and outliers in the convergence procedure of RKADA and enhances the robustness of the optimization function. Third, the random kernel sinks for fast kernel matrix approximation and the two-stage algorithm for optimizing initial pure endmembers are utilized to improve its computational efficiency in realistic implementations of RKADA, respectively. The optimization equation of RKADA is solved by using the block coordinate descend scheme and the desired pure endmembers are finally obtained. Six state-of-the-art pure endmember extraction methods are employed to make comparisons with the RKADA on both synthetic and real Cuprite HSI datasets, including three geometrical algorithms vertex component analysis (VCA), alternative volume maximization (AVMAX) and orthogonal subspace projection (OSP), and three matrix factorization algorithms the preconditioning for successive projection algorithm (PreSPA), hierarchical clustering based on rank-two nonnegative matrix factorization (H2NMF) and self-dictionary multiple measurement vector (SDMMV). Experimental results show that the RKADA outperforms all the six methods in terms of spectral angle distance (SAD) and root-mean-square-error (RMSE). Moreover, the RKADA has short computational times in offline operations and shows significant improvement in identifying pure endmembers for ground objects with smaller spectrum differences. Therefore, the RKADA could be an alternative for pure endmember extraction from hyperspectral images.

  15. Modeling the spread and control of foot-and-mouth disease in Pennsylvania following its discovery and options for control

    PubMed Central

    Tildesley, Michael J.; Smith, Gary; Keeling, Matt J.

    2013-01-01

    In this paper, we simulate outbreaks of foot-and-mouth disease in the Commonwealth of Pennsylvania, USA – after the introduction of a state-wide movement ban – as they might unfold in the presence of mitigation strategies. We have adapted a model previously used to investigate FMD control policies in the UK to examine the potential for disease spread given an infection seeded in each county in Pennsylvania. The results are highly dependent upon the county of introduction and the spatial scale of transmission. Should the transmission kernel be identical to that for the UK, the epidemic impact is limited to fewer than 20 premises, regardless of the county of introduction. However, for wider kernels where infection can spread further, outbreaks seeded in or near the county with highest density of premises and animals result in large epidemics (>150 premises). Ring culling and vaccination reduce epidemic size, with the optimal radius of the rings being dependent upon the county of introduction. Should the kernel width exceed a given county-dependent threshold, ring culling is unable to control the epidemic. We find that a vaccinate-to-live policy is generally preferred to ring culling (in terms of reducing the overall number of premises culled), indicating that well-targeted control can dramatically reduce the risk of large scale outbreaks of foot-and-mouth disease occurring in Pennsylvania. PMID:22169708

  16. An Efficient Implementation of Deep Convolutional Neural Networks for MRI Segmentation.

    PubMed

    Hoseini, Farnaz; Shahbahrami, Asadollah; Bayat, Peyman

    2018-02-27

    Image segmentation is one of the most common steps in digital image processing, classifying a digital image into different segments. The main goal of this paper is to segment brain tumors in magnetic resonance images (MRI) using deep learning. Tumors having different shapes, sizes, brightness and textures can appear anywhere in the brain. These complexities are the reasons to choose a high-capacity Deep Convolutional Neural Network (DCNN) containing more than one layer. The proposed DCNN contains two parts: architecture and learning algorithms. The architecture and the learning algorithms are used to design a network model and to optimize parameters for the network training phase, respectively. The architecture contains five convolutional layers, all using 3 × 3 kernels, and one fully connected layer. Due to the advantage of using small kernels with fold, it allows making the effect of larger kernels with smaller number of parameters and fewer computations. Using the Dice Similarity Coefficient metric, we report accuracy results on the BRATS 2016, brain tumor segmentation challenge dataset, for the complete, core, and enhancing regions as 0.90, 0.85, and 0.84 respectively. The learning algorithm includes the task-level parallelism. All the pixels of an MR image are classified using a patch-based approach for segmentation. We attain a good performance and the experimental results show that the proposed DCNN increases the segmentation accuracy compared to previous techniques.

  17. Inter-slice Leakage Artifact Reduction Technique for Simultaneous Multi-Slice Acquisitions

    PubMed Central

    Cauley, Stephen F.; Polimeni, Jonathan R.; Bhat, Himanshu; Wang, Dingxin; Wald, Lawrence L.; Setsompop, Kawin

    2015-01-01

    Purpose Controlled aliasing techniques for simultaneously acquired EPI slices have been shown to significantly increase the temporal efficiency for both diffusion-weighted imaging (DWI) and fMRI studies. The “slice-GRAPPA” (SG) method has been widely used to reconstruct such data. We investigate robust optimization techniques for SG to ensure image reconstruction accuracy through a reduction of leakage artifacts. Methods Split slice-GRAPPA (SP-SG) is proposed as an alternative kernel optimization method. The performance of SP-SG is compared to standard SG using data collected on a spherical phantom and in-vivo on two subjects at 3T. Slice accelerated and non-accelerated data were collected for a spin-echo diffusion weighted acquisition. Signal leakage metrics and time-series SNR were used to quantify the performance of the kernel fitting approaches. Results The SP-SG optimization strategy significantly reduces leakage artifacts for both phantom and in-vivo acquisitions. In addition, a significant boost in time-series SNR for in-vivo diffusion weighted acquisitions with in-plane 2× and slice 3× accelerations was observed with the SP-SG approach. Conclusion By minimizing the influence of leakage artifacts during the training of slice-GRAPPA kernels, we have significantly improved reconstruction accuracy. Our robust kernel fitting strategy should enable better reconstruction accuracy and higher slice-acceleration across many applications. PMID:23963964

  18. Ranking support vector machine for multiple kernels output combination in protein-protein interaction extraction from biomedical literature.

    PubMed

    Yang, Zhihao; Lin, Yuan; Wu, Jiajin; Tang, Nan; Lin, Hongfei; Li, Yanpeng

    2011-10-01

    Knowledge about protein-protein interactions (PPIs) unveils the molecular mechanisms of biological processes. However, the volume and content of published biomedical literature on protein interactions is expanding rapidly, making it increasingly difficult for interaction database curators to detect and curate protein interaction information manually. We present a multiple kernel learning-based approach for automatic PPI extraction from biomedical literature. The approach combines the following kernels: feature-based, tree, and graph and combines their output with Ranking support vector machine (SVM). Experimental evaluations show that the features in individual kernels are complementary and the kernel combined with Ranking SVM achieves better performance than those of the individual kernels, equal weight combination and optimal weight combination. Our approach can achieve state-of-the-art performance with respect to the comparable evaluations, with 64.88% F-score and 88.02% AUC on the AImed corpus. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Support Vector Data Description Model to Map Specific Land Cover with Optimal Parameters Determined from a Window-Based Validation Set.

    PubMed

    Zhang, Jinshui; Yuan, Zhoumiqi; Shuai, Guanyuan; Pan, Yaozhong; Zhu, Xiufang

    2017-04-26

    This paper developed an approach, the window-based validation set for support vector data description (WVS-SVDD), to determine optimal parameters for support vector data description (SVDD) model to map specific land cover by integrating training and window-based validation sets. Compared to the conventional approach where the validation set included target and outlier pixels selected visually and randomly, the validation set derived from WVS-SVDD constructed a tightened hypersphere because of the compact constraint by the outlier pixels which were located neighboring to the target class in the spectral feature space. The overall accuracies for wheat and bare land achieved were as high as 89.25% and 83.65%, respectively. However, target class was underestimated because the validation set covers only a small fraction of the heterogeneous spectra of the target class. The different window sizes were then tested to acquire more wheat pixels for validation set. The results showed that classification accuracy increased with the increasing window size and the overall accuracies were higher than 88% at all window size scales. Moreover, WVS-SVDD showed much less sensitivity to the untrained classes than the multi-class support vector machine (SVM) method. Therefore, the developed method showed its merits using the optimal parameters, tradeoff coefficient ( C ) and kernel width ( s ), in mapping homogeneous specific land cover.

  20. Modeling end-use quality in U. S. soft wheat germplasm

    USDA-ARS?s Scientific Manuscript database

    End-use quality in soft wheat (Triticum aestivum L.) can be assessed by a wide array of measurements, generally categorized into grain, milling, and baking characteristics. Samples were obtained from four regional nurseries. Selected parameters included: test weight, kernel hardness, kernel size, ke...

  1. Extracting physicochemical features to predict protein secondary structure.

    PubMed

    Huang, Yin-Fu; Chen, Shu-Ying

    2013-01-01

    We propose a protein secondary structure prediction method based on position-specific scoring matrix (PSSM) profiles and four physicochemical features including conformation parameters, net charges, hydrophobic, and side chain mass. First, the SVM with the optimal window size and the optimal parameters of the kernel function is found. Then, we train the SVM using the PSSM profiles generated from PSI-BLAST and the physicochemical features extracted from the CB513 data set. Finally, we use the filter to refine the predicted results from the trained SVM. For all the performance measures of our method, Q 3 reaches 79.52, SOV94 reaches 86.10, and SOV99 reaches 74.60; all the measures are higher than those of the SVMpsi method and the SVMfreq method. This validates that considering these physicochemical features in predicting protein secondary structure would exhibit better performances.

  2. Extracting Physicochemical Features to Predict Protein Secondary Structure

    PubMed Central

    Chen, Shu-Ying

    2013-01-01

    We propose a protein secondary structure prediction method based on position-specific scoring matrix (PSSM) profiles and four physicochemical features including conformation parameters, net charges, hydrophobic, and side chain mass. First, the SVM with the optimal window size and the optimal parameters of the kernel function is found. Then, we train the SVM using the PSSM profiles generated from PSI-BLAST and the physicochemical features extracted from the CB513 data set. Finally, we use the filter to refine the predicted results from the trained SVM. For all the performance measures of our method, Q 3 reaches 79.52, SOV94 reaches 86.10, and SOV99 reaches 74.60; all the measures are higher than those of the SVMpsi method and the SVMfreq method. This validates that considering these physicochemical features in predicting protein secondary structure would exhibit better performances. PMID:23766688

  3. Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system

    NASA Astrophysics Data System (ADS)

    Wu, Qi

    2010-03-01

    Demand forecasts play a crucial role in supply chain management. The future demand for a certain product is the basis for the respective replenishment systems. Aiming at demand series with small samples, seasonal character, nonlinearity, randomicity and fuzziness, the existing support vector kernel does not approach the random curve of the sales time series in the space (quadratic continuous integral space). In this paper, we present a hybrid intelligent system combining the wavelet kernel support vector machine and particle swarm optimization for demand forecasting. The results of application in car sale series forecasting show that the forecasting approach based on the hybrid PSOWv-SVM model is effective and feasible, the comparison between the method proposed in this paper and other ones is also given, which proves that this method is, for the discussed example, better than hybrid PSOv-SVM and other traditional methods.

  4. Reformulation of Possio's kernel with application to unsteady wind tunnel interference

    NASA Technical Reports Server (NTRS)

    Fromme, J. A.; Golberg, M. A.

    1980-01-01

    An efficient method for computing the Possio kernel has remained elusive up to the present time. In this paper the Possio is reformulated so that it can be computed accurately using existing high precision numerical quadrature techniques. Convergence to the correct values is demonstrated and optimization of the integration procedures is discussed. Since more general kernels such as those associated with unsteady flows in ventilated wind tunnels are analytic perturbations of the Possio free air kernel, a more accurate evaluation of their collocation matrices results with an exponential improvement in convergence. An application to predicting frequency response of an airfoil-trailing edge control system in a wind tunnel compared with that in free air is given showing strong interference effects.

  5. Influence of wheat kernel physical properties on the pulverizing process.

    PubMed

    Dziki, Dariusz; Cacak-Pietrzak, Grażyna; Miś, Antoni; Jończyk, Krzysztof; Gawlik-Dziki, Urszula

    2014-10-01

    The physical properties of wheat kernel were determined and related to pulverizing performance by correlation analysis. Nineteen samples of wheat cultivars about similar level of protein content (11.2-12.8 % w.b.) and obtained from organic farming system were used for analysis. The kernel (moisture content 10 % w.b.) was pulverized by using the laboratory hammer mill equipped with round holes 1.0 mm screen. The specific grinding energy ranged from 120 kJkg(-1) to 159 kJkg(-1). On the basis of data obtained many of significant correlations (p < 0.05) were found between wheat kernel physical properties and pulverizing process of wheat kernel, especially wheat kernel hardness index (obtained on the basis of Single Kernel Characterization System) and vitreousness significantly and positively correlated with the grinding energy indices and the mass fraction of coarse particles (> 0.5 mm). Among the kernel mechanical properties determined on the basis of uniaxial compression test only the rapture force was correlated with the impact grinding results. The results showed also positive and significant relationships between kernel ash content and grinding energy requirements. On the basis of wheat physical properties the multiple linear regression was proposed for predicting the average particle size of pulverized kernel.

  6. Scalable and Power Efficient Data Analytics for Hybrid Exascale Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Alok; Samatova, Nagiza; Wu, Kesheng

    This project developed a generic and optimized set of core data analytics functions. These functions organically consolidate a broad constellation of high performance analytical pipelines. As the architectures of emerging HPC systems become inherently heterogeneous, there is a need to design algorithms for data analysis kernels accelerated on hybrid multi-node, multi-core HPC architectures comprised of a mix of CPUs, GPUs, and SSDs. Furthermore, the power-aware trend drives the advances in our performance-energy tradeoff analysis framework which enables our data analysis kernels algorithms and software to be parameterized so that users can choose the right power-performance optimizations.

  7. Forecasting landslide activations by means of GA-SAKe. An example of application to three case studies in Calabria (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Iovine, Giulio G. R.; De Rango, Alessio; Gariano, Stefano L.; Terranova, Oreste G.

    2016-04-01

    GA-SAKe - the Genetic-Algorithm based release of the hydrological model SAKe (Self Adaptive Kernel) - allows to forecast the timing of activation of landslides [1, 2], based on dates of landslide activations and rainfall series. The model can be applied to either single or set of similar landslides in a homogeneous context. Calibration of the model is performed through Genetic-Algorithm, and provides families of optimal, discretized solutions (kernels) that maximize the fitness function. The mobility functions are obtained through convolution of the optimal kernels with rain series. The shape of the kernel, including its base time, is related to magnitude of the landslide and hydro-geological complexity of the slope. Once validated, the model can be applied to estimate the timing of future landslide activations in the same study area, by employing measured or forecasted rainfall. GA-SAKe is here employed to analyse the historical activations of three rock slides in Calabria (Southern Italy), threatening villages and main infrastructures. In particular: 1) the Acri-Serra di Buda case, developed within a Sackung, involving weathered crystalline and metamorphic rocks; for this case study, 6 dates of activation are available; 2) the San Fili-Uncino case, developed in clay and conglomerate overlaying gneiss and biotitic schist; for this case study, 7 dates of activation are available [2]; 3) the San Benedetto Ullano-San Rocco case, developed in weathered metamorphic rocks; for this case study, 3 dates of activation are available [1, 3, 4, 5]. The obtained results are quite promising, given the high performance of the model against slope movements characterized by numerous historical activations. Obtained results, in terms of shape and base time of the kernels, are compared by taking into account types and sizes of the considered case studies, and involved rock types. References [1] Terranova O.G., Iaquinta P., Gariano S.L., Greco R. & Iovine G. (2013) In: Landslide Science and Practice, Margottini, Canuti, Sassa (Eds.), Vol. 3, pp.73-79. [2] Terranova O.G., Gariano S.L., Iaquinta P. & Iovine G.G.R. (2015). Geosci. Model Dev., 8, 1955-1978. [3] Iovine G., Iaquinta P. & Terranova O. (2009). In Anderssen, Braddock & Newham (Eds.), Proc. 18th World IMACS Congr. and MODSIM09 Int. Congr. on Modelling and Simulation, pp. 2686-2693. [4] Iovine G., Lollino P., Gariano S.L. & Terranova O.G. (2010). NHESS, 10, 2341-2354. [5] Capparelli G., Iaquinta P., Iovine G., Terranova O.G. & Versace P. (2012). Natural Hazards, 61(1), pp.247-256.

  8. A Non-Local, Energy-Optimized Kernel: Recovering Second-Order Exchange and Beyond in Extended Systems

    NASA Astrophysics Data System (ADS)

    Bates, Jefferson; Laricchia, Savio; Ruzsinszky, Adrienn

    The Random Phase Approximation (RPA) is quickly becoming a standard method beyond semi-local Density Functional Theory that naturally incorporates weak interactions and eliminates self-interaction error. RPA is not perfect, however, and suffers from self-correlation error as well as an incorrect description of short-ranged correlation typically leading to underbinding. To improve upon RPA we introduce a short-ranged, exchange-like kernel that is one-electron self-correlation free for one and two electron systems in the high-density limit. By tuning the one free parameter in our model to recover an exact limit of the homogeneous electron gas correlation energy we obtain a non-local, energy-optimized kernel that reduces the errors of RPA for both homogeneous and inhomogeneous solids. To reduce the computational cost of the standard kernel-corrected RPA, we also implement RPA renormalized perturbation theory for extended systems, and demonstrate its capability to describe the dominant correlation effects with a low-order expansion in both metallic and non-metallic systems. Furthermore we stress that for norm-conserving implementations the accuracy of RPA and beyond RPA structural properties compared to experiment is inherently limited by the choice of pseudopotential. Current affiliation: King's College London.

  9. Towards smart energy systems: application of kernel machine regression for medium term electricity load forecasting.

    PubMed

    Alamaniotis, Miltiadis; Bargiotas, Dimitrios; Tsoukalas, Lefteri H

    2016-01-01

    Integration of energy systems with information technologies has facilitated the realization of smart energy systems that utilize information to optimize system operation. To that end, crucial in optimizing energy system operation is the accurate, ahead-of-time forecasting of load demand. In particular, load forecasting allows planning of system expansion, and decision making for enhancing system safety and reliability. In this paper, the application of two types of kernel machines for medium term load forecasting (MTLF) is presented and their performance is recorded based on a set of historical electricity load demand data. The two kernel machine models and more specifically Gaussian process regression (GPR) and relevance vector regression (RVR) are utilized for making predictions over future load demand. Both models, i.e., GPR and RVR, are equipped with a Gaussian kernel and are tested on daily predictions for a 30-day-ahead horizon taken from the New England Area. Furthermore, their performance is compared to the ARMA(2,2) model with respect to mean average percentage error and squared correlation coefficient. Results demonstrate the superiority of RVR over the other forecasting models in performing MTLF.

  10. Optimal number of features as a function of sample size for various classification rules.

    PubMed

    Hua, Jianping; Xiong, Zixiang; Lowey, James; Suh, Edward; Dougherty, Edward R

    2005-04-15

    Given the joint feature-label distribution, increasing the number of features always results in decreased classification error; however, this is not the case when a classifier is designed via a classification rule from sample data. Typically (but not always), for fixed sample size, the error of a designed classifier decreases and then increases as the number of features grows. The potential downside of using too many features is most critical for small samples, which are commonplace for gene-expression-based classifiers for phenotype discrimination. For fixed sample size and feature-label distribution, the issue is to find an optimal number of features. Since only in rare cases is there a known distribution of the error as a function of the number of features and sample size, this study employs simulation for various feature-label distributions and classification rules, and across a wide range of sample and feature-set sizes. To achieve the desired end, finding the optimal number of features as a function of sample size, it employs massively parallel computation. Seven classifiers are treated: 3-nearest-neighbor, Gaussian kernel, linear support vector machine, polynomial support vector machine, perceptron, regular histogram and linear discriminant analysis. Three Gaussian-based models are considered: linear, nonlinear and bimodal. In addition, real patient data from a large breast-cancer study is considered. To mitigate the combinatorial search for finding optimal feature sets, and to model the situation in which subsets of genes are co-regulated and correlation is internal to these subsets, we assume that the covariance matrix of the features is blocked, with each block corresponding to a group of correlated features. Altogether there are a large number of error surfaces for the many cases. These are provided in full on a companion website, which is meant to serve as resource for those working with small-sample classification. For the companion website, please visit http://public.tgen.org/tamu/ofs/ e-dougherty@ee.tamu.edu.

  11. Computed tomography coronary stent imaging with iterative reconstruction: a trade-off study between medium kernel and sharp kernel.

    PubMed

    Zhou, Qijing; Jiang, Biao; Dong, Fei; Huang, Peiyu; Liu, Hongtao; Zhang, Minming

    2014-01-01

    To evaluate the improvement of iterative reconstruction in image space (IRIS) technique in computed tomographic (CT) coronary stent imaging with sharp kernel, and to make a trade-off analysis. Fifty-six patients with 105 stents were examined by 128-slice dual-source CT coronary angiography (CTCA). Images were reconstructed using standard filtered back projection (FBP) and IRIS with both medium kernel and sharp kernel applied. Image noise and the stent diameter were investigated. Image noise was measured both in background vessel and in-stent lumen as objective image evaluation. Image noise score and stent score were performed as subjective image evaluation. The CTCA images reconstructed with IRIS were associated with significant noise reduction compared to that of CTCA images reconstructed using FBP technique in both of background vessel and in-stent lumen (the background noise decreased by approximately 25.4% ± 8.2% in medium kernel (P

  12. Multiple Kernel Sparse Representation based Orthogonal Discriminative Projection and Its Cost-Sensitive Extension.

    PubMed

    Zhang, Guoqing; Sun, Huaijiang; Xia, Guiyu; Sun, Quansen

    2016-07-07

    Sparse representation based classification (SRC) has been developed and shown great potential for real-world application. Based on SRC, Yang et al. [10] devised a SRC steered discriminative projection (SRC-DP) method. However, as a linear algorithm, SRC-DP cannot handle the data with highly nonlinear distribution. Kernel sparse representation-based classifier (KSRC) is a non-linear extension of SRC and can remedy the drawback of SRC. KSRC requires the use of a predetermined kernel function and selection of the kernel function and its parameters is difficult. Recently, multiple kernel learning for SRC (MKL-SRC) [22] has been proposed to learn a kernel from a set of base kernels. However, MKL-SRC only considers the within-class reconstruction residual while ignoring the between-class relationship, when learning the kernel weights. In this paper, we propose a novel multiple kernel sparse representation-based classifier (MKSRC), and then we use it as a criterion to design a multiple kernel sparse representation based orthogonal discriminative projection method (MK-SR-ODP). The proposed algorithm aims at learning a projection matrix and a corresponding kernel from the given base kernels such that in the low dimension subspace the between-class reconstruction residual is maximized and the within-class reconstruction residual is minimized. Furthermore, to achieve a minimum overall loss by performing recognition in the learned low-dimensional subspace, we introduce cost information into the dimensionality reduction method. The solutions for the proposed method can be efficiently found based on trace ratio optimization method [33]. Extensive experimental results demonstrate the superiority of the proposed algorithm when compared with the state-of-the-art methods.

  13. ASIC-based architecture for the real-time computation of 2D convolution with large kernel size

    NASA Astrophysics Data System (ADS)

    Shao, Rui; Zhong, Sheng; Yan, Luxin

    2015-12-01

    Bidimensional convolution is a low-level processing algorithm of interest in many areas, but its high computational cost constrains the size of the kernels, especially in real-time embedded systems. This paper presents a hardware architecture for the ASIC-based implementation of 2-D convolution with medium-large kernels. Aiming to improve the efficiency of storage resources on-chip, reducing off-chip bandwidth of these two issues, proposed construction of a data cache reuse. Multi-block SPRAM to cross cached images and the on-chip ping-pong operation takes full advantage of the data convolution calculation reuse, design a new ASIC data scheduling scheme and overall architecture. Experimental results show that the structure can achieve 40× 32 size of template real-time convolution operations, and improve the utilization of on-chip memory bandwidth and on-chip memory resources, the experimental results show that the structure satisfies the conditions to maximize data throughput output , reducing the need for off-chip memory bandwidth.

  14. 7 CFR 51.2559 - Size classifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS) United States Standards for Grades of Shelled Pistachio Nuts § 51.2559 Size classifications. (a) The size of pistachio kernels may be specified in connection with the grade in accordance with one of...

  15. Examining Potential Boundary Bias Effects in Kernel Smoothing on Equating: An Introduction for the Adaptive and Epanechnikov Kernels.

    PubMed

    Cid, Jaime A; von Davier, Alina A

    2015-05-01

    Test equating is a method of making the test scores from different test forms of the same assessment comparable. In the equating process, an important step involves continuizing the discrete score distributions. In traditional observed-score equating, this step is achieved using linear interpolation (or an unscaled uniform kernel). In the kernel equating (KE) process, this continuization process involves Gaussian kernel smoothing. It has been suggested that the choice of bandwidth in kernel smoothing controls the trade-off between variance and bias. In the literature on estimating density functions using kernels, it has also been suggested that the weight of the kernel depends on the sample size, and therefore, the resulting continuous distribution exhibits bias at the endpoints, where the samples are usually smaller. The purpose of this article is (a) to explore the potential effects of atypical scores (spikes) at the extreme ends (high and low) on the KE method in distributions with different degrees of asymmetry using the randomly equivalent groups equating design (Study I), and (b) to introduce the Epanechnikov and adaptive kernels as potential alternative approaches to reducing boundary bias in smoothing (Study II). The beta-binomial model is used to simulate observed scores reflecting a range of different skewed shapes.

  16. Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies

    PubMed Central

    Manitz, Juliane; Burger, Patricia; Amos, Christopher I.; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike

    2017-01-01

    The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility. PMID:28785300

  17. Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies.

    PubMed

    Friedrichs, Stefanie; Manitz, Juliane; Burger, Patricia; Amos, Christopher I; Risch, Angela; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike; Hofner, Benjamin

    2017-01-01

    The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility.

  18. Bands selection and classification of hyperspectral images based on hybrid kernels SVM by evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Yan-Yan; Li, Dong-Sheng

    2016-01-01

    The hyperspectral images(HSI) consist of many closely spaced bands carrying the most object information. While due to its high dimensionality and high volume nature, it is hard to get satisfactory classification performance. In order to reduce HSI data dimensionality preparation for high classification accuracy, it is proposed to combine a band selection method of artificial immune systems (AIS) with a hybrid kernels support vector machine (SVM-HK) algorithm. In fact, after comparing different kernels for hyperspectral analysis, the approach mixed radial basis function kernel (RBF-K) with sigmoid kernel (Sig-K) and applied the optimized hybrid kernels in SVM classifiers. Then the SVM-HK algorithm used to induce the bands selection of an improved version of AIS. The AIS was composed of clonal selection and elite antibody mutation, including evaluation process with optional index factor (OIF). Experimental classification performance was on a San Diego Naval Base acquired by AVIRIS, the HRS dataset shows that the method is able to efficiently achieve bands redundancy removal while outperforming the traditional SVM classifier.

  19. GPU-accelerated Kernel Regression Reconstruction for Freehand 3D Ultrasound Imaging.

    PubMed

    Wen, Tiexiang; Li, Ling; Zhu, Qingsong; Qin, Wenjian; Gu, Jia; Yang, Feng; Xie, Yaoqin

    2017-07-01

    Volume reconstruction method plays an important role in improving reconstructed volumetric image quality for freehand three-dimensional (3D) ultrasound imaging. By utilizing the capability of programmable graphics processing unit (GPU), we can achieve a real-time incremental volume reconstruction at a speed of 25-50 frames per second (fps). After incremental reconstruction and visualization, hole-filling is performed on GPU to fill remaining empty voxels. However, traditional pixel nearest neighbor-based hole-filling fails to reconstruct volume with high image quality. On the contrary, the kernel regression provides an accurate volume reconstruction method for 3D ultrasound imaging but with the cost of heavy computational complexity. In this paper, a GPU-based fast kernel regression method is proposed for high-quality volume after the incremental reconstruction of freehand ultrasound. The experimental results show that improved image quality for speckle reduction and details preservation can be obtained with the parameter setting of kernel window size of [Formula: see text] and kernel bandwidth of 1.0. The computational performance of the proposed GPU-based method can be over 200 times faster than that on central processing unit (CPU), and the volume with size of 50 million voxels in our experiment can be reconstructed within 10 seconds.

  20. Quantum kernel applications in medicinal chemistry.

    PubMed

    Huang, Lulu; Massa, Lou

    2012-07-01

    Progress in the quantum mechanics of biological molecules is being driven by computational advances. The notion of quantum kernels can be introduced to simplify the formalism of quantum mechanics, making it especially suitable for parallel computation of very large biological molecules. The essential idea is to mathematically break large biological molecules into smaller kernels that are calculationally tractable, and then to represent the full molecule by a summation over the kernels. The accuracy of the kernel energy method (KEM) is shown by systematic application to a great variety of molecular types found in biology. These include peptides, proteins, DNA and RNA. Examples are given that explore the KEM across a variety of chemical models, and to the outer limits of energy accuracy and molecular size. KEM represents an advance in quantum biology applicable to problems in medicine and drug design.

  1. An Optimal Bahadur-Efficient Method in Detection of Sparse Signals with Applications to Pathway Analysis in Sequencing Association Studies.

    PubMed

    Dai, Hongying; Wu, Guodong; Wu, Michael; Zhi, Degui

    2016-01-01

    Next-generation sequencing data pose a severe curse of dimensionality, complicating traditional "single marker-single trait" analysis. We propose a two-stage combined p-value method for pathway analysis. The first stage is at the gene level, where we integrate effects within a gene using the Sequence Kernel Association Test (SKAT). The second stage is at the pathway level, where we perform a correlated Lancaster procedure to detect joint effects from multiple genes within a pathway. We show that the Lancaster procedure is optimal in Bahadur efficiency among all combined p-value methods. The Bahadur efficiency,[Formula: see text], compares sample sizes among different statistical tests when signals become sparse in sequencing data, i.e. ε →0. The optimal Bahadur efficiency ensures that the Lancaster procedure asymptotically requires a minimal sample size to detect sparse signals ([Formula: see text]). The Lancaster procedure can also be applied to meta-analysis. Extensive empirical assessments of exome sequencing data show that the proposed method outperforms Gene Set Enrichment Analysis (GSEA). We applied the competitive Lancaster procedure to meta-analysis data generated by the Global Lipids Genetics Consortium to identify pathways significantly associated with high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol.

  2. A fast and objective multidimensional kernel density estimation method: fastKDE

    DOE PAGES

    O'Brien, Travis A.; Kashinath, Karthik; Cavanaugh, Nicholas R.; ...

    2016-03-07

    Numerous facets of scientific research implicitly or explicitly call for the estimation of probability densities. Histograms and kernel density estimates (KDEs) are two commonly used techniques for estimating such information, with the KDE generally providing a higher fidelity representation of the probability density function (PDF). Both methods require specification of either a bin width or a kernel bandwidth. While techniques exist for choosing the kernel bandwidth optimally and objectively, they are computationally intensive, since they require repeated calculation of the KDE. A solution for objectively and optimally choosing both the kernel shape and width has recently been developed by Bernacchiamore » and Pigolotti (2011). While this solution theoretically applies to multidimensional KDEs, it has not been clear how to practically do so. A method for practically extending the Bernacchia-Pigolotti KDE to multidimensions is introduced. This multidimensional extension is combined with a recently-developed computational improvement to their method that makes it computationally efficient: a 2D KDE on 10 5 samples only takes 1 s on a modern workstation. This fast and objective KDE method, called the fastKDE method, retains the excellent statistical convergence properties that have been demonstrated for univariate samples. The fastKDE method exhibits statistical accuracy that is comparable to state-of-the-science KDE methods publicly available in R, and it produces kernel density estimates several orders of magnitude faster. The fastKDE method does an excellent job of encoding covariance information for bivariate samples. This property allows for direct calculation of conditional PDFs with fastKDE. It is demonstrated how this capability might be leveraged for detecting non-trivial relationships between quantities in physical systems, such as transitional behavior.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krueger, Jens; Micikevicius, Paulius; Williams, Samuel

    Reverse Time Migration (RTM) is one of the main approaches in the seismic processing industry for imaging the subsurface structure of the Earth. While RTM provides qualitative advantages over its predecessors, it has a high computational cost warranting implementation on HPC architectures. We focus on three progressively more complex kernels extracted from RTM: for isotropic (ISO), vertical transverse isotropic (VTI) and tilted transverse isotropic (TTI) media. In this work, we examine performance optimization of forward wave modeling, which describes the computational kernels used in RTM, on emerging multi- and manycore processors and introduce a novel common subexpression elimination optimization formore » TTI kernels. We compare attained performance and energy efficiency in both the single-node and distributed memory environments in order to satisfy industry’s demands for fidelity, performance, and energy efficiency. Moreover, we discuss the interplay between architecture (chip and system) and optimizations (both on-node computation) highlighting the importance of NUMA-aware approaches to MPI communication. Ultimately, our results show we can improve CPU energy efficiency by more than 10× on Magny Cours nodes while acceleration via multiple GPUs can surpass the energy-efficient Intel Sandy Bridge by as much as 3.6×.« less

  4. Aggressiveness of loose kernel smut isolate from Johnson grass on sorghum line BTx643

    USDA-ARS?s Scientific Manuscript database

    An isolate of loose kernel smut obtained from Johnson grass was inoculated unto six BTx643 sorghum plants in the greenhouse to determine its aggressiveness. All the BTx643 sorghum plants inoculated with the Johnson grass isolate were infected. Mean size of the teliospores from the Johnson grass, i...

  5. A Fast Reduced Kernel Extreme Learning Machine.

    PubMed

    Deng, Wan-Yu; Ong, Yew-Soon; Zheng, Qing-Hua

    2016-04-01

    In this paper, we present a fast and accurate kernel-based supervised algorithm referred to as the Reduced Kernel Extreme Learning Machine (RKELM). In contrast to the work on Support Vector Machine (SVM) or Least Square SVM (LS-SVM), which identifies the support vectors or weight vectors iteratively, the proposed RKELM randomly selects a subset of the available data samples as support vectors (or mapping samples). By avoiding the iterative steps of SVM, significant cost savings in the training process can be readily attained, especially on Big datasets. RKELM is established based on the rigorous proof of universal learning involving reduced kernel-based SLFN. In particular, we prove that RKELM can approximate any nonlinear functions accurately under the condition of support vectors sufficiency. Experimental results on a wide variety of real world small instance size and large instance size applications in the context of binary classification, multi-class problem and regression are then reported to show that RKELM can perform at competitive level of generalized performance as the SVM/LS-SVM at only a fraction of the computational effort incurred. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Mathematical theory of exchange-driven growth

    NASA Astrophysics Data System (ADS)

    Esenturk, Emre

    2018-07-01

    Exchange-driven growth is a process in which pairs of clusters interact by exchanging single unit of mass at a time. The rate of exchange is given by an interaction kernel which depends on the masses of the two interacting clusters. In this paper we establish the fundamental mathematical properties of the mean field rate equations of this process for the first time. We find two different classes of behavior depending on whether is symmetric or not. For the non-symmetric case, we prove global existence and uniqueness of solutions for kernels satisfying . This result is optimal in the sense that we show for a large class of initial conditions and kernels satisfying the solutions cannot exist. On the other hand, for symmetric kernels, we prove global existence of solutions for ( while existence is lost for ( In the intermediate regime we can only show local existence. We conjecture that the intermediate regime exhibits finite-time gelation in accordance with the heuristic results obtained for particular kernels.

  7. An algorithm of improving speech emotional perception for hearing aid

    NASA Astrophysics Data System (ADS)

    Xi, Ji; Liang, Ruiyu; Fei, Xianju

    2017-07-01

    In this paper, a speech emotion recognition (SER) algorithm was proposed to improve the emotional perception of hearing-impaired people. The algorithm utilizes multiple kernel technology to overcome the drawback of SVM: slow training speed. Firstly, in order to improve the adaptive performance of Gaussian Radial Basis Function (RBF), the parameter determining the nonlinear mapping was optimized on the basis of Kernel target alignment. Then, the obtained Kernel Function was used as the basis kernel of Multiple Kernel Learning (MKL) with slack variable that could solve the over-fitting problem. However, the slack variable also brings the error into the result. Therefore, a soft-margin MKL was proposed to balance the margin against the error. Moreover, the relatively iterative algorithm was used to solve the combination coefficients and hyper-plane equations. Experimental results show that the proposed algorithm can acquire an accuracy of 90% for five kinds of emotions including happiness, sadness, anger, fear and neutral. Compared with KPCA+CCA and PIM-FSVM, the proposed algorithm has the highest accuracy.

  8. Putting Priors in Mixture Density Mercer Kernels

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd

    2004-01-01

    This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly infinite dimensional feature space. We describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using predefined kernels. These data adaptive kernels can en- code prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS). The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains template for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic- algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code. The results show that the Mixture Density Mercer-Kernel described here outperforms tree-based classification in distinguishing high-redshift galaxies from low- redshift galaxies by approximately 16% on test data, bagged trees by approximately 7%, and bagged trees built on a much larger sample of data by approximately 2%.

  9. Optimization of soxhlet extraction and physicochemical analysis of crop oil from seed kernel of Feun Kase (Thevetia peruviana)

    NASA Astrophysics Data System (ADS)

    Suwari, Kotta, Herry Z.; Buang, Yohanes

    2017-12-01

    Optimizing the soxhlet extraction of oil from seed kernel of Feun Kase (Thevetia peruviana) for biodiesel production was carried out in this study. The solvent used was petroleum ether and methanol, as well as their combinations. The effect of three factors namely different solvent combinations (polarity), extraction time and extraction temperature were investigated for achieving maximum oil yield. Each experiment was conducted in 250 mL soxhlet apparatus. The physicochemical properties of the oil yield (density, kinematic viscosity, acid value, iodine value, saponification value, and water content) were also analyzed. The optimum conditions were found after 4.5 h with extraction time, extraction temperature at 65 oC and petroleum ether to methanol ratio of 90 : 10 (polarity index 0.6). The oil extract was found to be 51.88 ± 3.18%. These results revealed that the crop oil from seed kernel of Feun Kase (Thevetia peruviana) is a potential feedstock for biodiesel production.

  10. OPC modeling by genetic algorithm

    NASA Astrophysics Data System (ADS)

    Huang, W. C.; Lai, C. M.; Luo, B.; Tsai, C. K.; Tsay, C. S.; Lai, C. W.; Kuo, C. C.; Liu, R. G.; Lin, H. T.; Lin, B. J.

    2005-05-01

    Optical proximity correction (OPC) is usually used to pre-distort mask layouts to make the printed patterns as close to the desired shapes as possible. For model-based OPC, a lithographic model to predict critical dimensions after lithographic processing is needed. The model is usually obtained via a regression of parameters based on experimental data containing optical proximity effects. When the parameters involve a mix of the continuous (optical and resist models) and the discrete (kernel numbers) sets, the traditional numerical optimization method may have difficulty handling model fitting. In this study, an artificial-intelligent optimization method was used to regress the parameters of the lithographic models for OPC. The implemented phenomenological models were constant-threshold models that combine diffused aerial image models with loading effects. Optical kernels decomposed from Hopkin"s equation were used to calculate aerial images on the wafer. Similarly, the numbers of optical kernels were treated as regression parameters. This way, good regression results were obtained with different sets of optical proximity effect data.

  11. Lesion contrast and detection using sonoelastographic shear velocity imaging: preliminary results

    NASA Astrophysics Data System (ADS)

    Hoyt, Kenneth; Parker, Kevin J.

    2007-03-01

    This paper assesses lesion contrast and detection using sonoelastographic shear velocity imaging. Shear wave interference patterns, termed crawling waves, for a two phase medium were simulated assuming plane wave conditions. Shear velocity estimates were computed using a spatial autocorrelation algorithm that operates in the direction of shear wave propagation for a given kernel size. Contrast was determined by analyzing shear velocity estimate transition between mediums. Experimental results were obtained using heterogeneous phantoms with spherical inclusions (5 or 10 mm in diameter) characterized by elevated shear velocities. Two vibration sources were applied to opposing phantom edges and scanned (orthogonal to shear wave propagation) with an ultrasound scanner equipped for sonoelastography. Demodulated data was saved and transferred to an external computer for processing shear velocity images. Simulation results demonstrate shear velocity transition between contrasting mediums is governed by both estimator kernel size and source vibration frequency. Experimental results from phantoms further indicates that decreasing estimator kernel size produces corresponding decrease in shear velocity estimate transition between background and inclusion material albeit with an increase in estimator noise. Overall, results demonstrate the ability to generate high contrast shear velocity images using sonoelastographic techniques and detect millimeter-sized lesions.

  12. An Ensemble Approach to Building Mercer Kernels with Prior Information

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd

    2005-01-01

    This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly dimensional feature space. we describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using pre-defined kernels. These data adaptive kernels can encode prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. Specifically, we demonstrate the use of the algorithm in situations with extremely small samples of data. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS) and demonstrate the method's superior performance against standard methods. The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains templates for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic-algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code.

  13. SPLICER - A GENETIC ALGORITHM TOOL FOR SEARCH AND OPTIMIZATION, VERSION 1.0 (MACINTOSH VERSION)

    NASA Technical Reports Server (NTRS)

    Wang, L.

    1994-01-01

    SPLICER is a genetic algorithm tool which can be used to solve search and optimization problems. Genetic algorithms are adaptive search procedures (i.e. problem solving methods) based loosely on the processes of natural selection and Darwinian "survival of the fittest." SPLICER provides the underlying framework and structure for building a genetic algorithm application. These algorithms apply genetically-inspired operators to populations of potential solutions in an iterative fashion, creating new populations while searching for an optimal or near-optimal solution to the problem at hand. SPLICER 1.0 was created using a modular architecture that includes a Genetic Algorithm Kernel, interchangeable Representation Libraries, Fitness Modules and User Interface Libraries, and well-defined interfaces between these components. The architecture supports portability, flexibility, and extensibility. SPLICER comes with all source code and several examples. For instance, a "traveling salesperson" example searches for the minimum distance through a number of cities visiting each city only once. Stand-alone SPLICER applications can be used without any programming knowledge. However, to fully utilize SPLICER within new problem domains, familiarity with C language programming is essential. SPLICER's genetic algorithm (GA) kernel was developed independent of representation (i.e. problem encoding), fitness function or user interface type. The GA kernel comprises all functions necessary for the manipulation of populations. These functions include the creation of populations and population members, the iterative population model, fitness scaling, parent selection and sampling, and the generation of population statistics. In addition, miscellaneous functions are included in the kernel (e.g., random number generators). Different problem-encoding schemes and functions are defined and stored in interchangeable representation libraries. This allows the GA kernel to be used with any representation scheme. The SPLICER tool provides representation libraries for binary strings and for permutations. These libraries contain functions for the definition, creation, and decoding of genetic strings, as well as multiple crossover and mutation operators. Furthermore, the SPLICER tool defines the appropriate interfaces to allow users to create new representation libraries. Fitness modules are the only component of the SPLICER system a user will normally need to create or alter to solve a particular problem. Fitness functions are defined and stored in interchangeable fitness modules which must be created using C language. Within a fitness module, a user can create a fitness (or scoring) function, set the initial values for various SPLICER control parameters (e.g., population size), create a function which graphically displays the best solutions as they are found, and provide descriptive information about the problem. The tool comes with several example fitness modules, while the process of developing a fitness module is fully discussed in the accompanying documentation. The user interface is event-driven and provides graphic output in windows. SPLICER is written in Think C for Apple Macintosh computers running System 6.0.3 or later and Sun series workstations running SunOS. The UNIX version is easily ported to other UNIX platforms and requires MIT's X Window System, Version 11 Revision 4 or 5, MIT's Athena Widget Set, and the Xw Widget Set. Example executables and source code are included for each machine version. The standard distribution media for the Macintosh version is a set of three 3.5 inch Macintosh format diskettes. The standard distribution medium for the UNIX version is a .25 inch streaming magnetic tape cartridge in UNIX tar format. For the UNIX version, alternate distribution media and formats are available upon request. SPLICER was developed in 1991.

  14. Recursive inverse factorization.

    PubMed

    Rubensson, Emanuel H; Bock, Nicolas; Holmström, Erik; Niklasson, Anders M N

    2008-03-14

    A recursive algorithm for the inverse factorization S(-1)=ZZ(*) of Hermitian positive definite matrices S is proposed. The inverse factorization is based on iterative refinement [A.M.N. Niklasson, Phys. Rev. B 70, 193102 (2004)] combined with a recursive decomposition of S. As the computational kernel is matrix-matrix multiplication, the algorithm can be parallelized and the computational effort increases linearly with system size for systems with sufficiently sparse matrices. Recent advances in network theory are used to find appropriate recursive decompositions. We show that optimization of the so-called network modularity results in an improved partitioning compared to other approaches. In particular, when the recursive inverse factorization is applied to overlap matrices of irregularly structured three-dimensional molecules.

  15. How bandwidth selection algorithms impact exploratory data analysis using kernel density estimation.

    PubMed

    Harpole, Jared K; Woods, Carol M; Rodebaugh, Thomas L; Levinson, Cheri A; Lenze, Eric J

    2014-09-01

    Exploratory data analysis (EDA) can reveal important features of underlying distributions, and these features often have an impact on inferences and conclusions drawn from data. Graphical analysis is central to EDA, and graphical representations of distributions often benefit from smoothing. A viable method of estimating and graphing the underlying density in EDA is kernel density estimation (KDE). This article provides an introduction to KDE and examines alternative methods for specifying the smoothing bandwidth in terms of their ability to recover the true density. We also illustrate the comparison and use of KDE methods with 2 empirical examples. Simulations were carried out in which we compared 8 bandwidth selection methods (Sheather-Jones plug-in [SJDP], normal rule of thumb, Silverman's rule of thumb, least squares cross-validation, biased cross-validation, and 3 adaptive kernel estimators) using 5 true density shapes (standard normal, positively skewed, bimodal, skewed bimodal, and standard lognormal) and 9 sample sizes (15, 25, 50, 75, 100, 250, 500, 1,000, 2,000). Results indicate that, overall, SJDP outperformed all methods. However, for smaller sample sizes (25 to 100) either biased cross-validation or Silverman's rule of thumb was recommended, and for larger sample sizes the adaptive kernel estimator with SJDP was recommended. Information is provided about implementing the recommendations in the R computing language. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  16. Comparisons of geoid models over Alaska computed with different Stokes' kernel modifications

    NASA Astrophysics Data System (ADS)

    Li, X.; Wang, Y.

    2011-01-01

    Various Stokes kernel modification methods have been developed over the years. The goal of this paper is to test the most commonly used Stokes kernel modifications numerically by using Alaska as a test area and EGM08 as a reference model. The tests show that some methods are more sensitive than others to the integration cap sizes. For instance, using the methods of Vaníček and Kleusberg or Featherstone et al. with kernel modification at degree 60, the geoid decreases by 30 cm (on average) when the cap size increases from 1° to 25°. The corresponding changes in the methods of Wong and Gore and Heck and Grüninger are only at the 1 cm level. At high modification degrees, above 360, the methods of Vaníček and Kleusberg and Featherstone et al become unstable because of numerical problems in the modification coefficients; similar conclusions have been reported by Featherstone (2003). In contrast, the methods of Wong and Gore, Heck and Grüninger and the least-squares spectral combination are stable at any modification degree, though they do not provide as good fit as the best case of the Molodenskii-type methods at the GPS/Leveling benchmarks. However, certain tests for choosing the cap size and modification degree have to be performed in advance to avoid abrupt mean geoid changes if the latter methods are applied.

  17. Abiotic stress growth conditions induce different responses in kernel iron concentration across genotypically distinct maize inbred varieties

    PubMed Central

    Kandianis, Catherine B.; Michenfelder, Abigail S.; Simmons, Susan J.; Grusak, Michael A.; Stapleton, Ann E.

    2013-01-01

    The improvement of grain nutrient profiles for essential minerals and vitamins through breeding strategies is a target important for agricultural regions where nutrient poor crops like maize contribute a large proportion of the daily caloric intake. Kernel iron concentration in maize exhibits a broad range. However, the magnitude of genotype by environment (GxE) effects on this trait reduces the efficacy and predictability of selection programs, particularly when challenged with abiotic stress such as water and nitrogen limitations. Selection has also been limited by an inverse correlation between kernel iron concentration and the yield component of kernel size in target environments. Using 25 maize inbred lines for which extensive genome sequence data is publicly available, we evaluated the response of kernel iron density and kernel mass to water and nitrogen limitation in a managed field stress experiment using a factorial design. To further understand GxE interactions we used partition analysis to characterize response of kernel iron and weight to abiotic stressors among all genotypes, and observed two patterns: one characterized by higher kernel iron concentrations in control over stress conditions, and another with higher kernel iron concentration under drought and combined stress conditions. Breeding efforts for this nutritional trait could exploit these complementary responses through combinations of favorable allelic variation from these already well-characterized genetic stocks. PMID:24363659

  18. Optimizing Irregular Applications for Energy and Performance on the Tilera Many-core Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavarría-Miranda, Daniel; Panyala, Ajay R.; Halappanavar, Mahantesh

    Optimizing applications simultaneously for energy and performance is a complex problem. High performance, parallel, irregular applications are notoriously hard to optimize due to their data-dependent memory accesses, lack of structured locality and complex data structures and code patterns. Irregular kernels are growing in importance in applications such as machine learning, graph analytics and combinatorial scientific computing. Performance- and energy-efficient implementation of these kernels on modern, energy efficient, multicore and many-core platforms is therefore an important and challenging problem. We present results from optimizing two irregular applications { the Louvain method for community detection (Grappolo), and high-performance conjugate gradient (HPCCG) {more » on the Tilera many-core system. We have significantly extended MIT's OpenTuner auto-tuning framework to conduct a detailed study of platform-independent and platform-specific optimizations to improve performance as well as reduce total energy consumption. We explore the optimization design space along three dimensions: memory layout schemes, compiler-based code transformations, and optimization of parallel loop schedules. Using auto-tuning, we demonstrate whole node energy savings of up to 41% relative to a baseline instantiation, and up to 31% relative to manually optimized variants.« less

  19. MIAG12: A Triticum timopheevii-derived powdery mildew resistance gene in common wheat on chromosome 7AL

    USDA-ARS?s Scientific Manuscript database

    Wheat powdery mildew is an economically important disease in cool and humid 2 environments. Powdery mildew causes yield losses as high as 48 percent through a reduction in 3 tiller survival, kernels per head and kernel size. Race-specific host resistance is the most 4 consistent, environmentally fri...

  20. Kernel and Traditional Equipercentile Equating with Degrees of Presmoothing. Research Report. ETS RR-07-15

    ERIC Educational Resources Information Center

    Moses, Tim; Holland, Paul

    2007-01-01

    The purpose of this study was to empirically evaluate the impact of loglinear presmoothing accuracy on equating bias and variability across chained and post-stratification equating methods, kernel and percentile-rank continuization methods, and sample sizes. The results of evaluating presmoothing on equating accuracy generally agreed with those of…

  1. Image quality of mixed convolution kernel in thoracic computed tomography.

    PubMed

    Neubauer, Jakob; Spira, Eva Maria; Strube, Juliane; Langer, Mathias; Voss, Christian; Kotter, Elmar

    2016-11-01

    The mixed convolution kernel alters his properties geographically according to the depicted organ structure, especially for the lung. Therefore, we compared the image quality of the mixed convolution kernel to standard soft and hard kernel reconstructions for different organ structures in thoracic computed tomography (CT) images.Our Ethics Committee approved this prospective study. In total, 31 patients who underwent contrast-enhanced thoracic CT studies were included after informed consent. Axial reconstructions were performed with hard, soft, and mixed convolution kernel. Three independent and blinded observers rated the image quality according to the European Guidelines for Quality Criteria of Thoracic CT for 13 organ structures. The observers rated the depiction of the structures in all reconstructions on a 5-point Likert scale. Statistical analysis was performed with the Friedman Test and post hoc analysis with the Wilcoxon rank-sum test.Compared to the soft convolution kernel, the mixed convolution kernel was rated with a higher image quality for lung parenchyma, segmental bronchi, and the border between the pleura and the thoracic wall (P < 0.03). Compared to the hard convolution kernel, the mixed convolution kernel was rated with a higher image quality for aorta, anterior mediastinal structures, paratracheal soft tissue, hilar lymph nodes, esophagus, pleuromediastinal border, large and medium sized pulmonary vessels and abdomen (P < 0.004) but a lower image quality for trachea, segmental bronchi, lung parenchyma, and skeleton (P < 0.001).The mixed convolution kernel cannot fully substitute the standard CT reconstructions. Hard and soft convolution kernel reconstructions still seem to be mandatory for thoracic CT.

  2. 7 CFR 51.2284 - Size classification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Size classification. 51.2284 Section 51.2284...) Size Requirements § 51.2284 Size classification. The following classifications are provided to describe... of kernels in the lot shall conform to the requirements of the specified classification as defined...

  3. 7 CFR 51.2284 - Size classification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Size classification. 51.2284 Section 51.2284...) Size Requirements § 51.2284 Size classification. The following classifications are provided to describe... of kernels in the lot shall conform to the requirements of the specified classification as defined...

  4. TU-H-BRC-05: Stereotactic Radiosurgery Optimized with Orthovoltage Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fagerstrom, J; Culberson, W; Bender, E

    2016-06-15

    Purpose: To achieve improved stereotactic radiosurgery (SRS) dose distributions using orthovoltage energy fluence modulation with inverse planning optimization techniques. Methods: A pencil beam model was used to calculate dose distributions from the institution’s orthovoltage unit at 250 kVp. Kernels for the model were derived using Monte Carlo methods as well as measurements with radiochromic film. The orthovoltage photon spectra, modulated by varying thicknesses of attenuating material, were approximated using open-source software. A genetic algorithm search heuristic routine was used to optimize added tungsten filtration thicknesses to approach rectangular function dose distributions at depth. Optimizations were performed for depths of 2.5,more » 5.0, and 7.5 cm, with cone sizes of 8, 10, and 12 mm. Results: Circularly-symmetric tungsten filters were designed based on the results of the optimization, to modulate the orthovoltage beam across the aperture of an SRS cone collimator. For each depth and cone size combination examined, the beam flatness and 80–20% and 90–10% penumbrae were calculated for both standard, open cone-collimated beams as well as for the optimized, filtered beams. For all configurations tested, the modulated beams were able to achieve improved penumbra widths and flatness statistics at depth, with flatness improving between 33 and 52%, and penumbrae improving between 18 and 25% for the modulated beams compared to the unmodulated beams. Conclusion: A methodology has been described that may be used to optimize the spatial distribution of added filtration material in an orthovoltage SRS beam to result in dose distributions at depth with improved flatness and penumbrae compared to standard open cones. This work provides the mathematical foundation for a novel, orthovoltage energy fluence-modulated SRS system.« less

  5. ASSESSMENT OF CLINICAL IMAGE QUALITY IN PAEDIATRIC ABDOMINAL CT EXAMINATIONS: DEPENDENCY ON THE LEVEL OF ADAPTIVE STATISTICAL ITERATIVE RECONSTRUCTION (ASiR) AND THE TYPE OF CONVOLUTION KERNEL.

    PubMed

    Larsson, Joel; Båth, Magnus; Ledenius, Kerstin; Caisander, Håkan; Thilander-Klang, Anne

    2016-06-01

    The purpose of this study was to investigate the effect of different combinations of convolution kernel and the level of Adaptive Statistical iterative Reconstruction (ASiR™) on diagnostic image quality as well as visualisation of anatomical structures in paediatric abdominal computed tomography (CT) examinations. Thirty-five paediatric patients with abdominal pain with non-specified pathology undergoing abdominal CT were included in the study. Transaxial stacks of 5-mm-thick images were retrospectively reconstructed at various ASiR levels, in combination with three convolution kernels. Four paediatric radiologists rated the diagnostic image quality and the delineation of six anatomical structures in a blinded randomised visual grading study. Image quality at a given ASiR level was found to be dependent on the kernel, and a more edge-enhancing kernel benefitted from a higher ASiR level. An ASiR level of 70 % together with the Soft™ or Standard™ kernel was suggested to be the optimal combination for paediatric abdominal CT examinations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Structured Kernel Dictionary Learning with Correlation Constraint for Object Recognition.

    PubMed

    Wang, Zhengjue; Wang, Yinghua; Liu, Hongwei; Zhang, Hao

    2017-06-21

    In this paper, we propose a new discriminative non-linear dictionary learning approach, called correlation constrained structured kernel KSVD, for object recognition. The objective function for dictionary learning contains a reconstructive term and a discriminative term. In the reconstructive term, signals are implicitly non-linearly mapped into a space, where a structured kernel dictionary, each sub-dictionary of which lies in the span of the mapped signals from the corresponding class, is established. In the discriminative term, by analyzing the classification mechanism, the correlation constraint is proposed in kernel form, constraining the correlations between different discriminative codes, and restricting the coefficient vectors to be transformed into a feature space, where the features are highly correlated inner-class and nearly independent between-classes. The objective function is optimized by the proposed structured kernel KSVD. During the classification stage, the specific form of the discriminative feature is needless to be known, while the inner product of the discriminative feature with kernel matrix embedded is available, and is suitable for a linear SVM classifier. Experimental results demonstrate that the proposed approach outperforms many state-of-the-art dictionary learning approaches for face, scene and synthetic aperture radar (SAR) vehicle target recognition.

  7. SU-F-J-133: Adaptive Radiation Therapy with a Four-Dimensional Dose Calculation Algorithm That Optimizes Dose Distribution Considering Breathing Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, I; Algan, O; Ahmad, S

    Purpose: To model patient motion and produce four-dimensional (4D) optimized dose distributions that consider motion-artifacts in the dose calculation during the treatment planning process. Methods: An algorithm for dose calculation is developed where patient motion is considered in dose calculation at the stage of the treatment planning. First, optimal dose distributions are calculated for the stationary target volume where the dose distributions are optimized considering intensity-modulated radiation therapy (IMRT). Second, a convolution-kernel is produced from the best-fitting curve which matches the motion trajectory of the patient. Third, the motion kernel is deconvolved with the initial dose distribution optimized for themore » stationary target to produce a dose distribution that is optimized in four-dimensions. This algorithm is tested with measured doses using a mobile phantom that moves with controlled motion patterns. Results: A motion-optimized dose distribution is obtained from the initial dose distribution of the stationary target by deconvolution with the motion-kernel of the mobile target. This motion-optimized dose distribution is equivalent to that optimized for the stationary target using IMRT. The motion-optimized and measured dose distributions are tested with the gamma index with a passing rate of >95% considering 3% dose-difference and 3mm distance-to-agreement. If the dose delivery per beam takes place over several respiratory cycles, then the spread-out of the dose distributions is only dependent on the motion amplitude and not affected by motion frequency and phase. This algorithm is limited to motion amplitudes that are smaller than the length of the target along the direction of motion. Conclusion: An algorithm is developed to optimize dose in 4D. Besides IMRT that provides optimal dose coverage for a stationary target, it extends dose optimization to 4D considering target motion. This algorithm provides alternative to motion management techniques such as beam-gating or breath-holding and has potential applications in adaptive radiation therapy.« less

  8. fMRat: an extension of SPM for a fully automatic analysis of rodent brain functional magnetic resonance series.

    PubMed

    Chavarrías, Cristina; García-Vázquez, Verónica; Alemán-Gómez, Yasser; Montesinos, Paula; Pascau, Javier; Desco, Manuel

    2016-05-01

    The purpose of this study was to develop a multi-platform automatic software tool for full processing of fMRI rodent studies. Existing tools require the usage of several different plug-ins, a significant user interaction and/or programming skills. Based on a user-friendly interface, the tool provides statistical parametric brain maps (t and Z) and percentage of signal change for user-provided regions of interest. The tool is coded in MATLAB (MathWorks(®)) and implemented as a plug-in for SPM (Statistical Parametric Mapping, the Wellcome Trust Centre for Neuroimaging). The automatic pipeline loads default parameters that are appropriate for preclinical studies and processes multiple subjects in batch mode (from images in either Nifti or raw Bruker format). In advanced mode, all processing steps can be selected or deselected and executed independently. Processing parameters and workflow were optimized for rat studies and assessed using 460 male-rat fMRI series on which we tested five smoothing kernel sizes and three different hemodynamic models. A smoothing kernel of FWHM = 1.2 mm (four times the voxel size) yielded the highest t values at the somatosensorial primary cortex, and a boxcar response function provided the lowest residual variance after fitting. fMRat offers the features of a thorough SPM-based analysis combined with the functionality of several SPM extensions in a single automatic pipeline with a user-friendly interface. The code and sample images can be downloaded from https://github.com/HGGM-LIM/fmrat .

  9. [Spectral scatter correction of coal samples based on quasi-linear local weighted method].

    PubMed

    Lei, Meng; Li, Ming; Ma, Xiao-Ping; Miao, Yan-Zi; Wang, Jian-Sheng

    2014-07-01

    The present paper puts forth a new spectral correction method based on quasi-linear expression and local weighted function. The first stage of the method is to search 3 quasi-linear expressions to replace the original linear expression in MSC method, such as quadratic, cubic and growth curve expression. Then the local weighted function is constructed by introducing 4 kernel functions, such as Gaussian, Epanechnikov, Biweight and Triweight kernel function. After adding the function in the basic estimation equation, the dependency between the original and ideal spectra is described more accurately and meticulously at each wavelength point. Furthermore, two analytical models were established respectively based on PLS and PCA-BP neural network method, which can be used for estimating the accuracy of corrected spectra. At last, the optimal correction mode was determined by the analytical results with different combination of quasi-linear expression and local weighted function. The spectra of the same coal sample have different noise ratios while the coal sample was prepared under different particle sizes. To validate the effectiveness of this method, the experiment analyzed the correction results of 3 spectral data sets with the particle sizes of 0.2, 1 and 3 mm. The results show that the proposed method can eliminate the scattering influence, and also can enhance the information of spectral peaks. This paper proves a more efficient way to enhance the correlation between corrected spectra and coal qualities significantly, and improve the accuracy and stability of the analytical model substantially.

  10. On Making a Distinguished Vertex Minimum Degree by Vertex Deletion

    NASA Astrophysics Data System (ADS)

    Betzler, Nadja; Bredereck, Robert; Niedermeier, Rolf; Uhlmann, Johannes

    For directed and undirected graphs, we study the problem to make a distinguished vertex the unique minimum-(in)degree vertex through deletion of a minimum number of vertices. The corresponding NP-hard optimization problems are motivated by applications concerning control in elections and social network analysis. Continuing previous work for the directed case, we show that the problem is W[2]-hard when parameterized by the graph's feedback arc set number, whereas it becomes fixed-parameter tractable when combining the parameters "feedback vertex set number" and "number of vertices to delete". For the so far unstudied undirected case, we show that the problem is NP-hard and W[1]-hard when parameterized by the "number of vertices to delete". On the positive side, we show fixed-parameter tractability for several parameterizations measuring tree-likeness, including a vertex-linear problem kernel with respect to the parameter "feedback edge set number". On the contrary, we show a non-existence result concerning polynomial-size problem kernels for the combined parameter "vertex cover number and number of vertices to delete", implying corresponding nonexistence results when replacing vertex cover number by treewidth or feedback vertex set number.

  11. Indetermination of particle sizing by laser diffraction in the anomalous size ranges

    NASA Astrophysics Data System (ADS)

    Pan, Linchao; Ge, Baozhen; Zhang, Fugen

    2017-09-01

    The laser diffraction method is widely used to measure particle size distributions. It is generally accepted that the scattering angle becomes smaller and the angles to the location of the main peak of scattered energy distributions in laser diffraction instruments shift to smaller values with increasing particle size. This specific principle forms the foundation of the laser diffraction method. However, this principle is not entirely correct for non-absorbing particles in certain size ranges and these particle size ranges are called anomalous size ranges. Here, we derive the analytical formulae for the bounds of the anomalous size ranges and discuss the influence of the width of the size segments on the signature of the Mie scattering kernel. This anomalous signature of the Mie scattering kernel will result in an indetermination of the particle size distribution when measured by laser diffraction instruments in the anomalous size ranges. By using the singular-value decomposition method we interpret the mechanism of occurrence of this indetermination in detail and then validate its existence by using inversion simulations.

  12. 7 CFR 51.2559 - Size classifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Size classifications. 51.2559 Section 51.2559... STANDARDS) United States Standards for Grades of Shelled Pistachio Nuts § 51.2559 Size classifications. (a... the following size classifications. (1) Jumbo Whole Kernels: 80 percent or more by weight shall be...

  13. 7 CFR 51.2559 - Size classifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Size classifications. 51.2559 Section 51.2559... STANDARDS) United States Standards for Grades of Shelled Pistachio Nuts § 51.2559 Size classifications. (a... the following size classifications. (1) Jumbo Whole Kernels: 80 percent or more by weight shall be...

  14. Modeling and optimization by particle swarm embedded neural network for adsorption of zinc (II) by palm kernel shell based activated carbon from aqueous environment.

    PubMed

    Karri, Rama Rao; Sahu, J N

    2018-01-15

    Zn (II) is one the common pollutant among heavy metals found in industrial effluents. Removal of pollutant from industrial effluents can be accomplished by various techniques, out of which adsorption was found to be an efficient method. Applications of adsorption limits itself due to high cost of adsorbent. In this regard, a low cost adsorbent produced from palm oil kernel shell based agricultural waste is examined for its efficiency to remove Zn (II) from waste water and aqueous solution. The influence of independent process variables like initial concentration, pH, residence time, activated carbon (AC) dosage and process temperature on the removal of Zn (II) by palm kernel shell based AC from batch adsorption process are studied systematically. Based on the design of experimental matrix, 50 experimental runs are performed with each process variable in the experimental range. The optimal values of process variables to achieve maximum removal efficiency is studied using response surface methodology (RSM) and artificial neural network (ANN) approaches. A quadratic model, which consists of first order and second order degree regressive model is developed using the analysis of variance and RSM - CCD framework. The particle swarm optimization which is a meta-heuristic optimization is embedded on the ANN architecture to optimize the search space of neural network. The optimized trained neural network well depicts the testing data and validation data with R 2 equal to 0.9106 and 0.9279 respectively. The outcomes indicates that the superiority of ANN-PSO based model predictions over the quadratic model predictions provided by RSM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Roofline Analysis in the Intel® Advisor to Deliver Optimized Performance for applications on Intel® Xeon Phi™ Processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koskela, Tuomas S.; Lobet, Mathieu; Deslippe, Jack

    In this session we show, in two case studies, how the roofline feature of Intel Advisor has been utilized to optimize the performance of kernels of the XGC1 and PICSAR codes in preparation for Intel Knights Landing architecture. The impact of the implemented optimizations and the benefits of using the automatic roofline feature of Intel Advisor to study performance of large applications will be presented. This demonstrates an effective optimization strategy that has enabled these science applications to achieve up to 4.6 times speed-up and prepare for future exascale architectures. # Goal/Relevance of Session The roofline model [1,2] is amore » powerful tool for analyzing the performance of applications with respect to the theoretical peak achievable on a given computer architecture. It allows one to graphically represent the performance of an application in terms of operational intensity, i.e. the ratio of flops performed and bytes moved from memory in order to guide optimization efforts. Given the scale and complexity of modern science applications, it can often be a tedious task for the user to perform the analysis on the level of functions or loops to identify where performance gains can be made. With new Intel tools, it is now possible to automate this task, as well as base the estimates of peak performance on measurements rather than vendor specifications. The goal of this session is to demonstrate how the roofline feature of Intel Advisor can be used to balance memory vs. computation related optimization efforts and effectively identify performance bottlenecks. A series of typical optimization techniques: cache blocking, structure refactoring, data alignment, and vectorization illustrated by the kernel cases will be addressed. # Description of the codes ## XGC1 The XGC1 code [3] is a magnetic fusion Particle-In-Cell code that uses an unstructured mesh for its Poisson solver that allows it to accurately resolve the edge plasma of a magnetic fusion device. After recent optimizations to its collision kernel [4], most of the computing time is spent in the electron push (pushe) kernel, where these optimization efforts have been focused. The kernel code scaled well with MPI+OpenMP but had almost no automatic compiler vectorization, in part due to indirect memory addresses and in part due to low trip counts of low-level loops that would be candidates for vectorization. Particle blocking and sorting have been implemented to increase trip counts of low-level loops and improve memory locality, and OpenMP directives have been added to vectorize compute-intensive loops that were identified by Advisor. The optimizations have improved the performance of the pushe kernel 2x on Haswell processors and 1.7x on KNL. The KNL node-for-node performance has been brought to within 30% of a NERSC Cori phase I Haswell node and we expect to bridge this gap by reducing the memory footprint of compute intensive routines to improve cache reuse. ## PICSAR is a Fortran/Python high-performance Particle-In-Cell library targeting at MIC architectures first designed to be coupled with the PIC code WARP for the simulation of laser-matter interaction and particle accelerators. PICSAR also contains a FORTRAN stand-alone kernel for performance studies and benchmarks. A MPI domain decomposition is used between NUMA domains and a tile decomposition (cache-blocking) handled by OpenMP has been added for shared-memory parallelism and better cache management. The so-called current deposition and field gathering steps that compose the PIC time loop constitute major hotspots that have been rewritten to enable more efficient vectorization. Particle communications between tiles and MPI domain has been merged and parallelized. All considered, these improvements provide speedups of 3.1 for order 1 and 4.6 for order 3 interpolation shape factors on KNL configured in SNC4 quadrant flat mode. Performance is similar between a node of cori phase 1 and KNL at order 1 and better on KNL by a factor 1.6 at order 3 with the considered test case (homogeneous thermal plasma).« less

  16. Compiler-Driven Performance Optimization and Tuning for Multicore Architectures

    DTIC Science & Technology

    2015-04-10

    develop a powerful system for auto-tuning of library routines and compute-intensive kernels, driven by the Pluto system for multicores that we are...kernels, driven by the Pluto system for multicores that we are developing. The work here is motivated by recent advances in two major areas of...automatic C-to-CUDA code generator using a polyhedral compiler transformation framework. We have used and adapted PLUTO (our state-of-the-art tool

  17. An Optimized Multicolor Point-Implicit Solver for Unstructured Grid Applications on Graphics Processing Units

    NASA Technical Reports Server (NTRS)

    Zubair, Mohammad; Nielsen, Eric; Luitjens, Justin; Hammond, Dana

    2016-01-01

    In the field of computational fluid dynamics, the Navier-Stokes equations are often solved using an unstructuredgrid approach to accommodate geometric complexity. Implicit solution methodologies for such spatial discretizations generally require frequent solution of large tightly-coupled systems of block-sparse linear equations. The multicolor point-implicit solver used in the current work typically requires a significant fraction of the overall application run time. In this work, an efficient implementation of the solver for graphics processing units is proposed. Several factors present unique challenges to achieving an efficient implementation in this environment. These include the variable amount of parallelism available in different kernel calls, indirect memory access patterns, low arithmetic intensity, and the requirement to support variable block sizes. In this work, the solver is reformulated to use standard sparse and dense Basic Linear Algebra Subprograms (BLAS) functions. However, numerical experiments show that the performance of the BLAS functions available in existing CUDA libraries is suboptimal for matrices representative of those encountered in actual simulations. Instead, optimized versions of these functions are developed. Depending on block size, the new implementations show performance gains of up to 7x over the existing CUDA library functions.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Zheming; Yoshii, Kazutomo; Finkel, Hal

    Open Computing Language (OpenCL) is a high-level language that enables software programmers to explore Field Programmable Gate Arrays (FPGAs) for application acceleration. The Intel FPGA software development kit (SDK) for OpenCL allows a user to specify applications at a high level and explore the performance of low-level hardware acceleration. In this report, we present the FPGA performance and power consumption results of the single-precision floating-point vector add OpenCL kernel using the Intel FPGA SDK for OpenCL on the Nallatech 385A FPGA board. The board features an Arria 10 FPGA. We evaluate the FPGA implementations using the compute unit duplication andmore » kernel vectorization optimization techniques. On the Nallatech 385A FPGA board, the maximum compute kernel bandwidth we achieve is 25.8 GB/s, approximately 76% of the peak memory bandwidth. The power consumption of the FPGA device when running the kernels ranges from 29W to 42W.« less

  19. Nonparametric entropy estimation using kernel densities.

    PubMed

    Lake, Douglas E

    2009-01-01

    The entropy of experimental data from the biological and medical sciences provides additional information over summary statistics. Calculating entropy involves estimates of probability density functions, which can be effectively accomplished using kernel density methods. Kernel density estimation has been widely studied and a univariate implementation is readily available in MATLAB. The traditional definition of Shannon entropy is part of a larger family of statistics, called Renyi entropy, which are useful in applications that require a measure of the Gaussianity of data. Of particular note is the quadratic entropy which is related to the Friedman-Tukey (FT) index, a widely used measure in the statistical community. One application where quadratic entropy is very useful is the detection of abnormal cardiac rhythms, such as atrial fibrillation (AF). Asymptotic and exact small-sample results for optimal bandwidth and kernel selection to estimate the FT index are presented and lead to improved methods for entropy estimation.

  20. Comparative microstructure study of oil palm fruit bunch fibre, mesocarp and kernels after microwave pre-treatment

    NASA Astrophysics Data System (ADS)

    Chang, Jessie S. L.; Chan, Y. S.; Law, M. C.; Leo, C. P.

    2017-07-01

    The implementation of microwave technology in palm oil processing offers numerous advantages; besides elimination of polluted palm oil mill effluent, it also reduces energy consumption, processing time and space. However, microwave exposure could damage a material’s microstructure which affected the quality of fruit that can be related to its physical structure including the texture and appearance. In this work, empty fruit bunches, mesocarp and kernel was microwave dried and their respective microstructures were examined. The microwave pretreatments were conducted at 100W and 200W and the microstructure investigation of both treated and untreated samples were evaluated using scanning electron microscope. The micrographs demonstrated that microwave does not significantly influence kernel and mesocarp but noticeable change was found on the empty fruit bunches where the sizes of the granular starch were reduced and a small portion of the silica bodies were disrupted. From the experimental data, the microwave irradiation was shown to be efficiently applied on empty fruit bunches followed by mesocarp and kernel as significant weight loss and size reduction was observed after the microwave treatments. The current work showed that microwave treatment did not change the physical surfaces of samples but sample shrinkage is observed.

  1. Nonparametric probability density estimation by optimization theoretic techniques

    NASA Technical Reports Server (NTRS)

    Scott, D. W.

    1976-01-01

    Two nonparametric probability density estimators are considered. The first is the kernel estimator. The problem of choosing the kernel scaling factor based solely on a random sample is addressed. An interactive mode is discussed and an algorithm proposed to choose the scaling factor automatically. The second nonparametric probability estimate uses penalty function techniques with the maximum likelihood criterion. A discrete maximum penalized likelihood estimator is proposed and is shown to be consistent in the mean square error. A numerical implementation technique for the discrete solution is discussed and examples displayed. An extensive simulation study compares the integrated mean square error of the discrete and kernel estimators. The robustness of the discrete estimator is demonstrated graphically.

  2. Deep learning architecture for iris recognition based on optimal Gabor filters and deep belief network

    NASA Astrophysics Data System (ADS)

    He, Fei; Han, Ye; Wang, Han; Ji, Jinchao; Liu, Yuanning; Ma, Zhiqiang

    2017-03-01

    Gabor filters are widely utilized to detect iris texture information in several state-of-the-art iris recognition systems. However, the proper Gabor kernels and the generative pattern of iris Gabor features need to be predetermined in application. The traditional empirical Gabor filters and shallow iris encoding ways are incapable of dealing with such complex variations in iris imaging including illumination, aging, deformation, and device variations. Thereby, an adaptive Gabor filter selection strategy and deep learning architecture are presented. We first employ particle swarm optimization approach and its binary version to define a set of data-driven Gabor kernels for fitting the most informative filtering bands, and then capture complex pattern from the optimal Gabor filtered coefficients by a trained deep belief network. A succession of comparative experiments validate that our optimal Gabor filters may produce more distinctive Gabor coefficients and our iris deep representations be more robust and stable than traditional iris Gabor codes. Furthermore, the depth and scales of the deep learning architecture are also discussed.

  3. SVM-Based Synthetic Fingerprint Discrimination Algorithm and Quantitative Optimization Strategy

    PubMed Central

    Chen, Suhang; Chang, Sheng; Huang, Qijun; He, Jin; Wang, Hao; Huang, Qiangui

    2014-01-01

    Synthetic fingerprints are a potential threat to automatic fingerprint identification systems (AFISs). In this paper, we propose an algorithm to discriminate synthetic fingerprints from real ones. First, four typical characteristic factors—the ridge distance features, global gray features, frequency feature and Harris Corner feature—are extracted. Then, a support vector machine (SVM) is used to distinguish synthetic fingerprints from real fingerprints. The experiments demonstrate that this method can achieve a recognition accuracy rate of over 98% for two discrete synthetic fingerprint databases as well as a mixed database. Furthermore, a performance factor that can evaluate the SVM's accuracy and efficiency is presented, and a quantitative optimization strategy is established for the first time. After the optimization of our synthetic fingerprint discrimination task, the polynomial kernel with a training sample proportion of 5% is the optimized value when the minimum accuracy requirement is 95%. The radial basis function (RBF) kernel with a training sample proportion of 15% is a more suitable choice when the minimum accuracy requirement is 98%. PMID:25347063

  4. Introducing etch kernels for efficient pattern sampling and etch bias prediction

    NASA Astrophysics Data System (ADS)

    Weisbuch, François; Lutich, Andrey; Schatz, Jirka

    2018-01-01

    Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels, as well as the choice of calibration patterns, is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels-"internal, external, curvature, Gaussian, z_profile"-designed to represent the finest details of the resist geometry to characterize precisely the etch bias at any point along a resist contour. By evaluating the etch kernels on various structures, it is possible to map their etch signatures in a multidimensional space and analyze them to find an optimal sampling of structures. The etch kernels evaluated on these structures were combined with experimental etch bias derived from scanning electron microscope contours to train artificial neural networks to predict etch bias. The method applied to contact and line/space layers shows an improvement in etch model prediction accuracy over standard etch model. This work emphasizes the importance of the etch kernel definition to characterize and predict complex etch effects.

  5. Curve fitting of the corporate recovery rates: the comparison of Beta distribution estimation and kernel density estimation.

    PubMed

    Chen, Rongda; Wang, Ze

    2013-01-01

    Recovery rate is essential to the estimation of the portfolio's loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody's. However, it has a fatal defect that it can't fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody's new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management.

  6. Curve Fitting of the Corporate Recovery Rates: The Comparison of Beta Distribution Estimation and Kernel Density Estimation

    PubMed Central

    Chen, Rongda; Wang, Ze

    2013-01-01

    Recovery rate is essential to the estimation of the portfolio’s loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody’s. However, it has a fatal defect that it can’t fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody’s new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management. PMID:23874558

  7. Calculation of plasma dielectric response in inhomogeneous magnetic field near electron cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Evstatiev, Evstati; Svidzinski, Vladimir; Spencer, Andy; Galkin, Sergei

    2014-10-01

    Full wave 3-D modeling of RF fields in hot magnetized nonuniform plasma requires calculation of nonlocal conductivity kernel describing the dielectric response of such plasma to the RF field. In many cases, the conductivity kernel is a localized function near the test point which significantly simplifies numerical solution of the full wave 3-D problem. Preliminary results of feasibility analysis of numerical calculation of the conductivity kernel in a 3-D hot nonuniform magnetized plasma in the electron cyclotron frequency range will be reported. This case is relevant to modeling of ECRH in ITER. The kernel is calculated by integrating the linearized Vlasov equation along the unperturbed particle's orbits. Particle's orbits in the nonuniform equilibrium magnetic field are calculated numerically by one of the Runge-Kutta methods. RF electric field is interpolated on a specified grid on which the conductivity kernel is discretized. The resulting integrals in the particle's initial velocity and time are then calculated numerically. Different optimization approaches of the integration are tested in this feasibility analysis. Work is supported by the U.S. DOE SBIR program.

  8. Intelligent Control of a Sensor-Actuator System via Kernelized Least-Squares Policy Iteration

    PubMed Central

    Liu, Bo; Chen, Sanfeng; Li, Shuai; Liang, Yongsheng

    2012-01-01

    In this paper a new framework, called Compressive Kernelized Reinforcement Learning (CKRL), for computing near-optimal policies in sequential decision making with uncertainty is proposed via incorporating the non-adaptive data-independent Random Projections and nonparametric Kernelized Least-squares Policy Iteration (KLSPI). Random Projections are a fast, non-adaptive dimensionality reduction framework in which high-dimensionality data is projected onto a random lower-dimension subspace via spherically random rotation and coordination sampling. KLSPI introduce kernel trick into the LSPI framework for Reinforcement Learning, often achieving faster convergence and providing automatic feature selection via various kernel sparsification approaches. In this approach, policies are computed in a low-dimensional subspace generated by projecting the high-dimensional features onto a set of random basis. We first show how Random Projections constitute an efficient sparsification technique and how our method often converges faster than regular LSPI, while at lower computational costs. Theoretical foundation underlying this approach is a fast approximation of Singular Value Decomposition (SVD). Finally, simulation results are exhibited on benchmark MDP domains, which confirm gains both in computation time and in performance in large feature spaces. PMID:22736969

  9. Optimized Quasi-Interpolators for Image Reconstruction.

    PubMed

    Sacht, Leonardo; Nehab, Diego

    2015-12-01

    We propose new quasi-interpolators for the continuous reconstruction of sampled images, combining a narrowly supported piecewise-polynomial kernel and an efficient digital filter. In other words, our quasi-interpolators fit within the generalized sampling framework and are straightforward to use. We go against standard practice and optimize for approximation quality over the entire Nyquist range, rather than focusing exclusively on the asymptotic behavior as the sample spacing goes to zero. In contrast to previous work, we jointly optimize with respect to all degrees of freedom available in both the kernel and the digital filter. We consider linear, quadratic, and cubic schemes, offering different tradeoffs between quality and computational cost. Experiments with compounded rotations and translations over a range of input images confirm that, due to the additional degrees of freedom and the more realistic objective function, our new quasi-interpolators perform better than the state of the art, at a similar computational cost.

  10. Automatic plankton image classification combining multiple view features via multiple kernel learning.

    PubMed

    Zheng, Haiyong; Wang, Ruchen; Yu, Zhibin; Wang, Nan; Gu, Zhaorui; Zheng, Bing

    2017-12-28

    Plankton, including phytoplankton and zooplankton, are the main source of food for organisms in the ocean and form the base of marine food chain. As the fundamental components of marine ecosystems, plankton is very sensitive to environment changes, and the study of plankton abundance and distribution is crucial, in order to understand environment changes and protect marine ecosystems. This study was carried out to develop an extensive applicable plankton classification system with high accuracy for the increasing number of various imaging devices. Literature shows that most plankton image classification systems were limited to only one specific imaging device and a relatively narrow taxonomic scope. The real practical system for automatic plankton classification is even non-existent and this study is partly to fill this gap. Inspired by the analysis of literature and development of technology, we focused on the requirements of practical application and proposed an automatic system for plankton image classification combining multiple view features via multiple kernel learning (MKL). For one thing, in order to describe the biomorphic characteristics of plankton more completely and comprehensively, we combined general features with robust features, especially by adding features like Inner-Distance Shape Context for morphological representation. For another, we divided all the features into different types from multiple views and feed them to multiple classifiers instead of only one by combining different kernel matrices computed from different types of features optimally via multiple kernel learning. Moreover, we also applied feature selection method to choose the optimal feature subsets from redundant features for satisfying different datasets from different imaging devices. We implemented our proposed classification system on three different datasets across more than 20 categories from phytoplankton to zooplankton. The experimental results validated that our system outperforms state-of-the-art plankton image classification systems in terms of accuracy and robustness. This study demonstrated automatic plankton image classification system combining multiple view features using multiple kernel learning. The results indicated that multiple view features combined by NLMKL using three kernel functions (linear, polynomial and Gaussian kernel functions) can describe and use information of features better so that achieve a higher classification accuracy.

  11. Spectral imaging using consumer-level devices and kernel-based regression.

    PubMed

    Heikkinen, Ville; Cámara, Clara; Hirvonen, Tapani; Penttinen, Niko

    2016-06-01

    Hyperspectral reflectance factor image estimations were performed in the 400-700 nm wavelength range using a portable consumer-level laptop display as an adjustable light source for a trichromatic camera. Targets of interest were ColorChecker Classic samples, Munsell Matte samples, geometrically challenging tempera icon paintings from the turn of the 20th century, and human hands. Measurements and simulations were performed using Nikon D80 RGB camera and Dell Vostro 2520 laptop screen as a light source. Estimations were performed without spectral characteristics of the devices and by emphasizing simplicity for training sets and estimation model optimization. Spectral and color error images are shown for the estimations using line-scanned hyperspectral images as the ground truth. Estimations were performed using kernel-based regression models via a first-degree inhomogeneous polynomial kernel and a Matérn kernel, where in the latter case the median heuristic approach for model optimization and link function for bounded estimation were evaluated. Results suggest modest requirements for a training set and show that all estimation models have markedly improved accuracy with respect to the DE00 color distance (up to 99% for paintings and hands) and the Pearson distance (up to 98% for paintings and 99% for hands) from a weak training set (Digital ColorChecker SG) case when small representative training data were used in the estimation.

  12. A multiple-feature and multiple-kernel scene segmentation algorithm for humanoid robot.

    PubMed

    Liu, Zhi; Xu, Shuqiong; Zhang, Yun; Chen, Chun Lung Philip

    2014-11-01

    This technical correspondence presents a multiple-feature and multiple-kernel support vector machine (MFMK-SVM) methodology to achieve a more reliable and robust segmentation performance for humanoid robot. The pixel wise intensity, gradient, and C1 SMF features are extracted via the local homogeneity model and Gabor filter, which would be used as inputs of MFMK-SVM model. It may provide multiple features of the samples for easier implementation and efficient computation of MFMK-SVM model. A new clustering method, which is called feature validity-interval type-2 fuzzy C-means (FV-IT2FCM) clustering algorithm, is proposed by integrating a type-2 fuzzy criterion in the clustering optimization process to improve the robustness and reliability of clustering results by the iterative optimization. Furthermore, the clustering validity is employed to select the training samples for the learning of the MFMK-SVM model. The MFMK-SVM scene segmentation method is able to fully take advantage of the multiple features of scene image and the ability of multiple kernels. Experiments on the BSDS dataset and real natural scene images demonstrate the superior performance of our proposed method.

  13. Livermore Compiler Analysis Loop Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornung, R. D.

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizations and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermoremore » Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.« less

  14. An effective fuzzy kernel clustering analysis approach for gene expression data.

    PubMed

    Sun, Lin; Xu, Jiucheng; Yin, Jiaojiao

    2015-01-01

    Fuzzy clustering is an important tool for analyzing microarray data. A major problem in applying fuzzy clustering method to microarray gene expression data is the choice of parameters with cluster number and centers. This paper proposes a new approach to fuzzy kernel clustering analysis (FKCA) that identifies desired cluster number and obtains more steady results for gene expression data. First of all, to optimize characteristic differences and estimate optimal cluster number, Gaussian kernel function is introduced to improve spectrum analysis method (SAM). By combining subtractive clustering with max-min distance mean, maximum distance method (MDM) is proposed to determine cluster centers. Then, the corresponding steps of improved SAM (ISAM) and MDM are given respectively, whose superiority and stability are illustrated through performing experimental comparisons on gene expression data. Finally, by introducing ISAM and MDM into FKCA, an effective improved FKCA algorithm is proposed. Experimental results from public gene expression data and UCI database show that the proposed algorithms are feasible for cluster analysis, and the clustering accuracy is higher than the other related clustering algorithms.

  15. Theory and implementation of H-matrix based iterative and direct solvers for Helmholtz and elastodynamic oscillatory kernels

    NASA Astrophysics Data System (ADS)

    Chaillat, Stéphanie; Desiderio, Luca; Ciarlet, Patrick

    2017-12-01

    In this work, we study the accuracy and efficiency of hierarchical matrix (H-matrix) based fast methods for solving dense linear systems arising from the discretization of the 3D elastodynamic Green's tensors. It is well known in the literature that standard H-matrix based methods, although very efficient tools for asymptotically smooth kernels, are not optimal for oscillatory kernels. H2-matrix and directional approaches have been proposed to overcome this problem. However the implementation of such methods is much more involved than the standard H-matrix representation. The central questions we address are twofold. (i) What is the frequency-range in which the H-matrix format is an efficient representation for 3D elastodynamic problems? (ii) What can be expected of such an approach to model problems in mechanical engineering? We show that even though the method is not optimal (in the sense that more involved representations can lead to faster algorithms) an efficient solver can be easily developed. The capabilities of the method are illustrated on numerical examples using the Boundary Element Method.

  16. Depth-time interpolation of feature trends extracted from mobile microelectrode data with kernel functions.

    PubMed

    Wong, Stephen; Hargreaves, Eric L; Baltuch, Gordon H; Jaggi, Jurg L; Danish, Shabbar F

    2012-01-01

    Microelectrode recording (MER) is necessary for precision localization of target structures such as the subthalamic nucleus during deep brain stimulation (DBS) surgery. Attempts to automate this process have produced quantitative temporal trends (feature activity vs. time) extracted from mobile MER data. Our goal was to evaluate computational methods of generating spatial profiles (feature activity vs. depth) from temporal trends that would decouple automated MER localization from the clinical procedure and enhance functional localization in DBS surgery. We evaluated two methods of interpolation (standard vs. kernel) that generated spatial profiles from temporal trends. We compared interpolated spatial profiles to true spatial profiles that were calculated with depth windows, using correlation coefficient analysis. Excellent approximation of true spatial profiles is achieved by interpolation. Kernel-interpolated spatial profiles produced superior correlation coefficient values at optimal kernel widths (r = 0.932-0.940) compared to standard interpolation (r = 0.891). The choice of kernel function and kernel width resulted in trade-offs in smoothing and resolution. Interpolation of feature activity to create spatial profiles from temporal trends is accurate and can standardize and facilitate MER functional localization of subcortical structures. The methods are computationally efficient, enhancing localization without imposing additional constraints on the MER clinical procedure during DBS surgery. Copyright © 2012 S. Karger AG, Basel.

  17. Pattern sampling for etch model calibration

    NASA Astrophysics Data System (ADS)

    Weisbuch, François; Lutich, Andrey; Schatz, Jirka

    2017-06-01

    Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels as well as the choice of calibration patterns is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels -"internal, external, curvature, Gaussian, z_profile" - designed to capture the finest details of the resist contours and represent precisely any etch bias. By evaluating the etch kernels on various structures it is possible to map their etch signatures in a multi-dimensional space and analyze them to find an optimal sampling of structures to train an etch model. The method was specifically applied to a contact layer containing many different geometries and was used to successfully select appropriate calibration structures. The proposed kernels evaluated on these structures were combined to train an etch model significantly better than the standard one. We also illustrate the usage of the specific kernel "z_profile" which adds a third dimension to the description of the resist profile.

  18. Real-time monitoring of peanut drying parameters in semitrailers

    USDA-ARS?s Scientific Manuscript database

    Knowledge of peanut drying parameters such as temperature and relative humidity of the ambient air, temperature and relative humidity of the air being blown into the peanuts and kernel moisture content is essential in managing the dryer for optimal drying rate. The optimal drying rate is required to...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Travis A.; Kashinath, Karthik; Cavanaugh, Nicholas R.

    Numerous facets of scientific research implicitly or explicitly call for the estimation of probability densities. Histograms and kernel density estimates (KDEs) are two commonly used techniques for estimating such information, with the KDE generally providing a higher fidelity representation of the probability density function (PDF). Both methods require specification of either a bin width or a kernel bandwidth. While techniques exist for choosing the kernel bandwidth optimally and objectively, they are computationally intensive, since they require repeated calculation of the KDE. A solution for objectively and optimally choosing both the kernel shape and width has recently been developed by Bernacchiamore » and Pigolotti (2011). While this solution theoretically applies to multidimensional KDEs, it has not been clear how to practically do so. A method for practically extending the Bernacchia-Pigolotti KDE to multidimensions is introduced. This multidimensional extension is combined with a recently-developed computational improvement to their method that makes it computationally efficient: a 2D KDE on 10 5 samples only takes 1 s on a modern workstation. This fast and objective KDE method, called the fastKDE method, retains the excellent statistical convergence properties that have been demonstrated for univariate samples. The fastKDE method exhibits statistical accuracy that is comparable to state-of-the-science KDE methods publicly available in R, and it produces kernel density estimates several orders of magnitude faster. The fastKDE method does an excellent job of encoding covariance information for bivariate samples. This property allows for direct calculation of conditional PDFs with fastKDE. It is demonstrated how this capability might be leveraged for detecting non-trivial relationships between quantities in physical systems, such as transitional behavior.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornung, Richard D.; Hones, Holger E.

    The RAJA Performance Suite is designed to evaluate performance of the RAJA performance portability library on a wide variety of important high performance computing (HPC) algorithmic lulmels. These kernels assess compiler optimizations and various parallel programming model backends accessible through RAJA, such as OpenMP, CUDA, etc. The Initial version of the suite contains 25 computational kernels, each of which appears in 6 variants: Baseline SequcntiaJ, RAJA SequentiaJ, Baseline OpenMP, RAJA OpenMP, Baseline CUDA, RAJA CUDA. All variants of each kernel perform essentially the same mathematical operations and the loop body code for each kernel is identical across all variants. Theremore » are a few kernels, such as those that contain reduction operations, that require CUDA-specific coding for their CUDA variants. ActuaJ computer instructions executed and how they run in parallel differs depending on the parallel programming model backend used and which optimizations are perfonned by the compiler used to build the Perfonnance Suite executable. The Suite will be used primarily by RAJA developers to perform regular assessments of RAJA performance across a range of hardware platforms and compilers as RAJA features are being developed. It will also be used by LLNL hardware and software vendor panners for new defining requirements for future computing platform procurements and acceptance testing. In particular, the RAJA Performance Suite will be used for compiler acceptance testing of the upcoming CORAUSierra machine {initial LLNL delivery expected in late-2017/early 2018) and the CORAL-2 procurement. The Suite will aJso be used to generate concise source code reproducers of compiler and runtime issues we uncover so that we may provide them to relevant vendors to be fixed.« less

  1. Digital logic optimization using selection operators

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling R. (Inventor); Miles, Lowell H. (Inventor); Cameron, Eric G. (Inventor); Gambles, Jody W. (Inventor)

    2004-01-01

    According to the invention, a digital design method for manipulating a digital circuit netlist is disclosed. In one step, a first netlist is loaded. The first netlist is comprised of first basic cells that are comprised of first kernel cells. The first netlist is manipulated to create a second netlist. The second netlist is comprised of second basic cells that are comprised of second kernel cells. A percentage of the first and second kernel cells are selection circuits. There is less chip area consumed in the second basic cells than in the first basic cells. The second netlist is stored. In various embodiments, the percentage could be 2% or more, 5% or more, 10% or more, 20% or more, 30% or more, or 40% or more.

  2. An automatic optimum kernel-size selection technique for edge enhancement

    USGS Publications Warehouse

    Chavez, Pat S.; Bauer, Brian P.

    1982-01-01

    Edge enhancement is a technique that can be considered, to a first order, a correction for the modulation transfer function of an imaging system. Digital imaging systems sample a continuous function at discrete intervals so that high-frequency information cannot be recorded at the same precision as lower frequency data. Because of this, fine detail or edge information in digital images is lost. Spatial filtering techniques can be used to enhance the fine detail information that does exist in the digital image, but the filter size is dependent on the type of area being processed. A technique has been developed by the authors that uses the horizontal first difference to automatically select the optimum kernel-size that should be used to enhance the edges that are contained in the image. 

  3. Deep neural mapping support vector machines.

    PubMed

    Li, Yujian; Zhang, Ting

    2017-09-01

    The choice of kernel has an important effect on the performance of a support vector machine (SVM). The effect could be reduced by NEUROSVM, an architecture using multilayer perceptron for feature extraction and SVM for classification. In binary classification, a general linear kernel NEUROSVM can be theoretically simplified as an input layer, many hidden layers, and an SVM output layer. As a feature extractor, the sub-network composed of the input and hidden layers is first trained together with a virtual ordinary output layer by backpropagation, then with the output of its last hidden layer taken as input of the SVM classifier for further training separately. By taking the sub-network as a kernel mapping from the original input space into a feature space, we present a novel model, called deep neural mapping support vector machine (DNMSVM), from the viewpoint of deep learning. This model is also a new and general kernel learning method, where the kernel mapping is indeed an explicit function expressed as a sub-network, different from an implicit function induced by a kernel function traditionally. Moreover, we exploit a two-stage procedure of contrastive divergence learning and gradient descent for DNMSVM to jointly training an adaptive kernel mapping instead of a kernel function, without requirement of kernel tricks. As a whole of the sub-network and the SVM classifier, the joint training of DNMSVM is done by using gradient descent to optimize the objective function with the sub-network layer-wise pre-trained via contrastive divergence learning of restricted Boltzmann machines. Compared to the separate training of NEUROSVM, the joint training is a new algorithm for DNMSVM to have advantages over NEUROSVM. Experimental results show that DNMSVM can outperform NEUROSVM and RBFSVM (i.e., SVM with the kernel of radial basis function), demonstrating its effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Speeding Up the Bilateral Filter: A Joint Acceleration Way.

    PubMed

    Dai, Longquan; Yuan, Mengke; Zhang, Xiaopeng

    2016-06-01

    Computational complexity of the brute-force implementation of the bilateral filter (BF) depends on its filter kernel size. To achieve the constant-time BF whose complexity is irrelevant to the kernel size, many techniques have been proposed, such as 2D box filtering, dimension promotion, and shiftability property. Although each of the above techniques suffers from accuracy and efficiency problems, previous algorithm designers were used to take only one of them to assemble fast implementations due to the hardness of combining them together. Hence, no joint exploitation of these techniques has been proposed to construct a new cutting edge implementation that solves these problems. Jointly employing five techniques: kernel truncation, best N-term approximation as well as previous 2D box filtering, dimension promotion, and shiftability property, we propose a unified framework to transform BF with arbitrary spatial and range kernels into a set of 3D box filters that can be computed in linear time. To the best of our knowledge, our algorithm is the first method that can integrate all these acceleration techniques and, therefore, can draw upon one another's strong point to overcome deficiencies. The strength of our method has been corroborated by several carefully designed experiments. In particular, the filtering accuracy is significantly improved without sacrificing the efficiency at running time.

  5. Discrimination of raw and processed Dipsacus asperoides by near infrared spectroscopy combined with least squares-support vector machine and random forests

    NASA Astrophysics Data System (ADS)

    Xin, Ni; Gu, Xiao-Feng; Wu, Hao; Hu, Yu-Zhu; Yang, Zhong-Lin

    2012-04-01

    Most herbal medicines could be processed to fulfill the different requirements of therapy. The purpose of this study was to discriminate between raw and processed Dipsacus asperoides, a common traditional Chinese medicine, based on their near infrared (NIR) spectra. Least squares-support vector machine (LS-SVM) and random forests (RF) were employed for full-spectrum classification. Three types of kernels, including linear kernel, polynomial kernel and radial basis function kernel (RBF), were checked for optimization of LS-SVM model. For comparison, a linear discriminant analysis (LDA) model was performed for classification, and the successive projections algorithm (SPA) was executed prior to building an LDA model to choose an appropriate subset of wavelengths. The three methods were applied to a dataset containing 40 raw herbs and 40 corresponding processed herbs. We ran 50 runs of 10-fold cross validation to evaluate the model's efficiency. The performance of the LS-SVM with RBF kernel (RBF LS-SVM) was better than the other two kernels. The RF, RBF LS-SVM and SPA-LDA successfully classified all test samples. The mean error rates for the 50 runs of 10-fold cross validation were 1.35% for RBF LS-SVM, 2.87% for RF, and 2.50% for SPA-LDA. The best classification results were obtained by using LS-SVM with RBF kernel, while RF was fast in the training and making predictions.

  6. An improved robust blind motion de-blurring algorithm for remote sensing images

    NASA Astrophysics Data System (ADS)

    He, Yulong; Liu, Jin; Liang, Yonghui

    2016-10-01

    Shift-invariant motion blur can be modeled as a convolution of the true latent image and the blur kernel with additive noise. Blind motion de-blurring estimates a sharp image from a motion blurred image without the knowledge of the blur kernel. This paper proposes an improved edge-specific motion de-blurring algorithm which proved to be fit for processing remote sensing images. We find that an inaccurate blur kernel is the main factor to the low-quality restored images. To improve image quality, we do the following contributions. For the robust kernel estimation, first, we adapt the multi-scale scheme to make sure that the edge map could be constructed accurately; second, an effective salient edge selection method based on RTV (Relative Total Variation) is used to extract salient structure from texture; third, an alternative iterative method is introduced to perform kernel optimization, in this step, we adopt l1 and l0 norm as the priors to remove noise and ensure the continuity of blur kernel. For the final latent image reconstruction, an improved adaptive deconvolution algorithm based on TV-l2 model is used to recover the latent image; we control the regularization weight adaptively in different region according to the image local characteristics in order to preserve tiny details and eliminate noise and ringing artifacts. Some synthetic remote sensing images are used to test the proposed algorithm, and results demonstrate that the proposed algorithm obtains accurate blur kernel and achieves better de-blurring results.

  7. A coarse-to-fine kernel matching approach for mean-shift based visual tracking

    NASA Astrophysics Data System (ADS)

    Liangfu, L.; Zuren, F.; Weidong, C.; Ming, J.

    2009-03-01

    Mean shift is an efficient pattern match algorithm. It is widely used in visual tracking fields since it need not perform whole search in the image space. It employs gradient optimization method to reduce the time of feature matching and realize rapid object localization, and uses Bhattacharyya coefficient as the similarity measure between object template and candidate template. This thesis presents a mean shift algorithm based on coarse-to-fine search for the best kernel matching. This paper researches for object tracking with large motion area based on mean shift. To realize efficient tracking of such an object, we present a kernel matching method from coarseness to fine. If the motion areas of the object between two frames are very large and they are not overlapped in image space, then the traditional mean shift method can only obtain local optimal value by iterative computing in the old object window area, so the real tracking position cannot be obtained and the object tracking will be disabled. Our proposed algorithm can efficiently use a similarity measure function to realize the rough location of motion object, then use mean shift method to obtain the accurate local optimal value by iterative computing, which successfully realizes object tracking with large motion. Experimental results show its good performance in accuracy and speed when compared with background-weighted histogram algorithm in the literature.

  8. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing

    PubMed Central

    Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing

    2017-01-01

    Remote sensing technologies have been widely applied in urban environments’ monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the “salt and pepper” phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive. PMID:28604641

  9. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing.

    PubMed

    Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing

    2017-06-12

    Remote sensing technologies have been widely applied in urban environments' monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the "salt and pepper" phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive.

  10. Reply to Comments to X. Li and Y. M. Wang (2011) Comparisons of geoid models over Alaska computed with different Stokes' kernel modifications, JGS 1(2): 136-142 by L. E. Sjöberg

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2012-01-01

    The authors thank professor Sjöberg for having interest in our paper. The main goal of the paper is to test kernel modification methods used in geoid computations. Our tests found that Vanicek/Kleusberg's and Featherstone's methods fit the GPS/leveling data the best in the relative sense at various cap sizes. At the same time, we also pointed out that their methods are unstable and the mean values change from dm to meters by just changing the cap size. By contrast, the modification of the Wong and Gore type (including the spectral combination, method of Heck and Grüninger) is stable and insensitive to the truncation degree and cap size. This feature is especially useful when we know the accuracy of the gravity field at different frequency bands. For instance, it is advisable to truncate Stokes' kernel at a degree to which the satellite model is believed to be more accurate than surface data. The method of the Wong and Goretype does this job quite well. In contrast, the low degrees of Stokes' kernel are modified by Molodensky's coefficients tn in Vanicek/Kleusberg's and Featherstone's methods (cf. Eq. (6) in Li and Wang (2011)). It implies that the low degree gravity field of the reference model will be altered by less accurate surface data in the final geoid. This is also the cause of the larger variation in mean values of the geoid.

  11. Direct discriminant locality preserving projection with Hammerstein polynomial expansion.

    PubMed

    Chen, Xi; Zhang, Jiashu; Li, Defang

    2012-12-01

    Discriminant locality preserving projection (DLPP) is a linear approach that encodes discriminant information into the objective of locality preserving projection and improves its classification ability. To enhance the nonlinear description ability of DLPP, we can optimize the objective function of DLPP in reproducing kernel Hilbert space to form a kernel-based discriminant locality preserving projection (KDLPP). However, KDLPP suffers the following problems: 1) larger computational burden; 2) no explicit mapping functions in KDLPP, which results in more computational burden when projecting a new sample into the low-dimensional subspace; and 3) KDLPP cannot obtain optimal discriminant vectors, which exceedingly optimize the objective of DLPP. To overcome the weaknesses of KDLPP, in this paper, a direct discriminant locality preserving projection with Hammerstein polynomial expansion (HPDDLPP) is proposed. The proposed HPDDLPP directly implements the objective of DLPP in high-dimensional second-order Hammerstein polynomial space without matrix inverse, which extracts the optimal discriminant vectors for DLPP without larger computational burden. Compared with some other related classical methods, experimental results for face and palmprint recognition problems indicate the effectiveness of the proposed HPDDLPP.

  12. Gradient descent for robust kernel-based regression

    NASA Astrophysics Data System (ADS)

    Guo, Zheng-Chu; Hu, Ting; Shi, Lei

    2018-06-01

    In this paper, we study the gradient descent algorithm generated by a robust loss function over a reproducing kernel Hilbert space (RKHS). The loss function is defined by a windowing function G and a scale parameter σ, which can include a wide range of commonly used robust losses for regression. There is still a gap between theoretical analysis and optimization process of empirical risk minimization based on loss: the estimator needs to be global optimal in the theoretical analysis while the optimization method can not ensure the global optimality of its solutions. In this paper, we aim to fill this gap by developing a novel theoretical analysis on the performance of estimators generated by the gradient descent algorithm. We demonstrate that with an appropriately chosen scale parameter σ, the gradient update with early stopping rules can approximate the regression function. Our elegant error analysis can lead to convergence in the standard L 2 norm and the strong RKHS norm, both of which are optimal in the mini-max sense. We show that the scale parameter σ plays an important role in providing robustness as well as fast convergence. The numerical experiments implemented on synthetic examples and real data set also support our theoretical results.

  13. Acceleration of GPU-based Krylov solvers via data transfer reduction

    DOE PAGES

    Anzt, Hartwig; Tomov, Stanimire; Luszczek, Piotr; ...

    2015-04-08

    Krylov subspace iterative solvers are often the method of choice when solving large sparse linear systems. At the same time, hardware accelerators such as graphics processing units continue to offer significant floating point performance gains for matrix and vector computations through easy-to-use libraries of computational kernels. However, as these libraries are usually composed of a well optimized but limited set of linear algebra operations, applications that use them often fail to reduce certain data communications, and hence fail to leverage the full potential of the accelerator. In this study, we target the acceleration of Krylov subspace iterative methods for graphicsmore » processing units, and in particular the Biconjugate Gradient Stabilized solver that significant improvement can be achieved by reformulating the method to reduce data-communications through application-specific kernels instead of using the generic BLAS kernels, e.g. as provided by NVIDIA’s cuBLAS library, and by designing a graphics processing unit specific sparse matrix-vector product kernel that is able to more efficiently use the graphics processing unit’s computing power. Furthermore, we derive a model estimating the performance improvement, and use experimental data to validate the expected runtime savings. Finally, considering that the derived implementation achieves significantly higher performance, we assert that similar optimizations addressing algorithm structure, as well as sparse matrix-vector, are crucial for the subsequent development of high-performance graphics processing units accelerated Krylov subspace iterative methods.« less

  14. Online selective kernel-based temporal difference learning.

    PubMed

    Chen, Xingguo; Gao, Yang; Wang, Ruili

    2013-12-01

    In this paper, an online selective kernel-based temporal difference (OSKTD) learning algorithm is proposed to deal with large scale and/or continuous reinforcement learning problems. OSKTD includes two online procedures: online sparsification and parameter updating for the selective kernel-based value function. A new sparsification method (i.e., a kernel distance-based online sparsification method) is proposed based on selective ensemble learning, which is computationally less complex compared with other sparsification methods. With the proposed sparsification method, the sparsified dictionary of samples is constructed online by checking if a sample needs to be added to the sparsified dictionary. In addition, based on local validity, a selective kernel-based value function is proposed to select the best samples from the sample dictionary for the selective kernel-based value function approximator. The parameters of the selective kernel-based value function are iteratively updated by using the temporal difference (TD) learning algorithm combined with the gradient descent technique. The complexity of the online sparsification procedure in the OSKTD algorithm is O(n). In addition, two typical experiments (Maze and Mountain Car) are used to compare with both traditional and up-to-date O(n) algorithms (GTD, GTD2, and TDC using the kernel-based value function), and the results demonstrate the effectiveness of our proposed algorithm. In the Maze problem, OSKTD converges to an optimal policy and converges faster than both traditional and up-to-date algorithms. In the Mountain Car problem, OSKTD converges, requires less computation time compared with other sparsification methods, gets a better local optima than the traditional algorithms, and converges much faster than the up-to-date algorithms. In addition, OSKTD can reach a competitive ultimate optima compared with the up-to-date algorithms.

  15. Spectral Kernel Approach to Study Radiative Response of Climate Variables and Interannual Variability of Reflected Solar Spectrum

    NASA Technical Reports Server (NTRS)

    Jin, Zhonghai; Wielicki, Bruce A.; Loukachine, Constantin; Charlock, Thomas P.; Young, David; Noeel, Stefan

    2011-01-01

    The radiative kernel approach provides a simple way to separate the radiative response to different climate parameters and to decompose the feedback into radiative and climate response components. Using CERES/MODIS/Geostationary data, we calculated and analyzed the solar spectral reflectance kernels for various climate parameters on zonal, regional, and global spatial scales. The kernel linearity is tested. Errors in the kernel due to nonlinearity can vary strongly depending on climate parameter, wavelength, surface, and solar elevation; they are large in some absorption bands for some parameters but are negligible in most conditions. The spectral kernels are used to calculate the radiative responses to different climate parameter changes in different latitudes. The results show that the radiative response in high latitudes is sensitive to the coverage of snow and sea ice. The radiative response in low latitudes is contributed mainly by cloud property changes, especially cloud fraction and optical depth. The large cloud height effect is confined to absorption bands, while the cloud particle size effect is found mainly in the near infrared. The kernel approach, which is based on calculations using CERES retrievals, is then tested by direct comparison with spectral measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (a different instrument on a different spacecraft). The monthly mean interannual variability of spectral reflectance based on the kernel technique is consistent with satellite observations over the ocean, but not over land, where both model and data have large uncertainty. RMS errors in kernel ]derived monthly global mean reflectance over the ocean compared to observations are about 0.001, and the sampling error is likely a major component.

  16. A robust, high-throughput method for computing maize ear, cob, and kernel attributes automatically from images.

    PubMed

    Miller, Nathan D; Haase, Nicholas J; Lee, Jonghyun; Kaeppler, Shawn M; de Leon, Natalia; Spalding, Edgar P

    2017-01-01

    Grain yield of the maize plant depends on the sizes, shapes, and numbers of ears and the kernels they bear. An automated pipeline that can measure these components of yield from easily-obtained digital images is needed to advance our understanding of this globally important crop. Here we present three custom algorithms designed to compute such yield components automatically from digital images acquired by a low-cost platform. One algorithm determines the average space each kernel occupies along the cob axis using a sliding-window Fourier transform analysis of image intensity features. A second counts individual kernels removed from ears, including those in clusters. A third measures each kernel's major and minor axis after a Bayesian analysis of contour points identifies the kernel tip. Dimensionless ear and kernel shape traits that may interrelate yield components are measured by principal components analysis of contour point sets. Increased objectivity and speed compared to typical manual methods are achieved without loss of accuracy as evidenced by high correlations with ground truth measurements and simulated data. Millimeter-scale differences among ear, cob, and kernel traits that ranged more than 2.5-fold across a diverse group of inbred maize lines were resolved. This system for measuring maize ear, cob, and kernel attributes is being used by multiple research groups as an automated Web service running on community high-throughput computing and distributed data storage infrastructure. Users may create their own workflow using the source code that is staged for download on a public repository. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  17. Removal of Malachite Green Dye by Mangifera indica Seed Kernel Powder

    NASA Astrophysics Data System (ADS)

    Singh, Dilbagh; Sowmya, V.; Abinandan, S.; Shanthakumar, S.

    2017-11-01

    In this study, batch experiments were carried out to study the adsorption of Malachite green dye from aqueous solution by Mangifera indica (mango) seed kernel powder. The mango seed kernel powder was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Effect of various parameters including pH, contact time, adsorbent dosage, initial dye concentration and temperature on adsorption capacity of the adsorbent was observed and the optimized condition for maximum dye removal was identified. Maximum percentage removal of 96% was achieved with an adsorption capacity of 22.8 mg/g at pH 6 with an initial concentration of 100 mg/l. The equilibrium data were examined to fit the Langmuir and Freundlich isotherm models. Thermodynamic parameters for the adsorption process were also calculated.

  18. Single image super-resolution based on convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Zou, Lamei; Luo, Ming; Yang, Weidong; Li, Peng; Jin, Liujia

    2018-03-01

    We present a deep learning method for single image super-resolution (SISR). The proposed approach learns end-to-end mapping between low-resolution (LR) images and high-resolution (HR) images. The mapping is represented as a deep convolutional neural network which inputs the LR image and outputs the HR image. Our network uses 5 convolution layers, which kernels size include 5×5, 3×3 and 1×1. In our proposed network, we use residual-learning and combine different sizes of convolution kernels at the same layer. The experiment results show that our proposed method performs better than the existing methods in reconstructing quality index and human visual effects on benchmarked images.

  19. Multiple optimization of chemical components and texture of purple maize expanded by IVDV treatment using the response surface methodology.

    PubMed

    Mrad, Rachelle; Debs, Espérance; Maroun, Richard G; Louka, Nicolas

    2014-12-15

    A new process, Intensification of Vaporization by Decompression to the Vacuum (IVDV), is proposed for texturizing purple maize. It consists in exposing humid kernels to high steam pressure followed by a decompression to the vacuum. Response surface methodology with three operating parameters (initial water content (W), steam pressure (P) and processing time (T)) was used to study the response parameters: Total Anthocyanins Content, Total Polyphenols Content, Free Radical Scavenging Activity, Expansion Ratio, Hardness and Work Done. P was the most important variable, followed by T. Pressure drop helped the release of bound phenolics arriving to their expulsion outside the cell. Combined with convenient T and W, it caused kernels expansion. Multiple optimization of expansion and chemical content showed that IVDV resulted in good texturization of maize while preserving the antioxidant compounds and activity. Optimal conditions were: W=29%, P=5 bar and T=37s. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery.

    PubMed

    Speicher, Nora K; Pfeifer, Nico

    2015-06-15

    Despite ongoing cancer research, available therapies are still limited in quantity and effectiveness, and making treatment decisions for individual patients remains a hard problem. Established subtypes, which help guide these decisions, are mainly based on individual data types. However, the analysis of multidimensional patient data involving the measurements of various molecular features could reveal intrinsic characteristics of the tumor. Large-scale projects accumulate this kind of data for various cancer types, but we still lack the computational methods to reliably integrate this information in a meaningful manner. Therefore, we apply and extend current multiple kernel learning for dimensionality reduction approaches. On the one hand, we add a regularization term to avoid overfitting during the optimization procedure, and on the other hand, we show that one can even use several kernels per data type and thereby alleviate the user from having to choose the best kernel functions and kernel parameters for each data type beforehand. We have identified biologically meaningful subgroups for five different cancer types. Survival analysis has revealed significant differences between the survival times of the identified subtypes, with P values comparable or even better than state-of-the-art methods. Moreover, our resulting subtypes reflect combined patterns from the different data sources, and we demonstrate that input kernel matrices with only little information have less impact on the integrated kernel matrix. Our subtypes show different responses to specific therapies, which could eventually assist in treatment decision making. An executable is available upon request. © The Author 2015. Published by Oxford University Press.

  1. SU-F-SPS-09: Parallel MC Kernel Calculations for VMAT Plan Improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberlain, S; Roswell Park Cancer Institute, Buffalo, NY; French, S

    Purpose: Adding kernels (small perturbations in leaf positions) to the existing apertures of VMAT control points may improve plan quality. We investigate the calculation of kernel doses using a parallelized Monte Carlo (MC) method. Methods: A clinical prostate VMAT DICOM plan was exported from Eclipse. An arbitrary control point and leaf were chosen, and a modified MLC file was created, corresponding to the leaf position offset by 0.5cm. The additional dose produced by this 0.5 cm × 0.5 cm kernel was calculated using the DOSXYZnrc component module of BEAMnrc. A range of particle history counts were run (varying from 3more » × 10{sup 6} to 3 × 10{sup 7}); each job was split among 1, 10, or 100 parallel processes. A particle count of 3 × 10{sup 6} was established as the lower range because it provided the minimal accuracy level. Results: As expected, an increase in particle counts linearly increases run time. For the lowest particle count, the time varied from 30 hours for the single-processor run, to 0.30 hours for the 100-processor run. Conclusion: Parallel processing of MC calculations in the EGS framework significantly decreases time necessary for each kernel dose calculation. Particle counts lower than 1 × 10{sup 6} have too large of an error to output accurate dose for a Monte Carlo kernel calculation. Future work will investigate increasing the number of parallel processes and optimizing run times for multiple kernel calculations.« less

  2. Singularity Preserving Numerical Methods for Boundary Integral Equations

    NASA Technical Reports Server (NTRS)

    Kaneko, Hideaki (Principal Investigator)

    1996-01-01

    In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement with Division of Multidisciplinary Optimization at NASA Langley, we have accomplished the following five projects: a note on the finite element method with singular basis functions; numerical quadrature for weakly singular integrals; superconvergence of degenerate kernel method; superconvergence of the iterated collocation method for Hammersteion equations; and singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. This final report consists of five papers describing these projects. Each project is preceeded by a brief abstract.

  3. Extraction process of palm kernel cake as a source of mannan for feed additive on poultry diet

    NASA Astrophysics Data System (ADS)

    Tafsin, M.; Hanafi, N. D.; Yusraini, E.

    2017-05-01

    Palm Kernel Cake (PKC) is a by-product of palm kernel oil extraction and found in large quantity in Indonesia. The inclusion of PKC on poultry diet are limited due to some nutritional problems such as anti-nutritional properties (mannan). On the other hand, mannan containing polysaccharides play in various biological functions particularly in enhancing the immune response and to control pathogen in poultry. The research objective to find out the extraction process of PKC and conducted at animal nutrition and Feed Science Laboratory, Agricultural Faculty, University of Sumatera Utara. Various extraction methode were used in this experiment, including fraction analysis used 7 number sieves, and followed by water and acetic acid extraction. The result indicated that PKC had different particle size according to sieve size and dominated by particle size 850 um. The analysis of sugar content indicated that each particle size had different characteristic on treatment by hot water extraction. The particle size 180—850 um had higher sugar content than coarse PKC (2000—3000 um). The total sugar content were recovered vary between 0.9—3,2% from PKC were extracted. Treatment grinding method followed by hot water extraction (100—120 °C, 1 h) increased total sugar content than previous treatments and reach 8% from PKC were extracted. Utilisation acetic acid decreased the total amount of total sugar from PKC were extracted. It is concluded that treatment by hot temperature (110—120 °C) for 1 h show highest yield to extract sugar from PKC.

  4. Effects of Japanese beetle (Coleoptera: Scarabaeidae) and silk clipping in field corn.

    PubMed

    Steckel, Sandy; Stewart, S D; Tindall, K V

    2013-10-01

    Japanese beetle (Popillia japonica Newman) is an emerging silk-feeding insect found in fields in the lower Corn Belt and Midsouthern United States. Studies were conducted in 2010 and 2011 to evaluate how silk clipping in corn affects pollination and yield parameters. Manually clipping silks once daily had modest effects on yield parameters. Sustained clipping by either manually clipping silks three times per day or by caging Japanese beetles onto ears affected total kernel weight if it occurred during early silking (R1 growth stage). Manually clipping silks three times per day for the first 5 d of silking affected the number of kernels per ear, total kernel weight, and the weight of individual kernels. Caged beetles fed on silks and, depending on the number of beetles caged per ear, reduced the number of kernels per ear. Caging eight beetles per ear significantly reduced total kernel weight compared with noninfested ears. Drought stress before anthesis appeared to magnify the impact of silk clipping by Japanese beetles. There was evidence of some compensation for reduced pollination by increasing the size of pollinated kernels within the ear. Our results showed that it requires sustained silk clipping during the first week of silking to have substantial impacts on pollination and yield parameters, at least under good growing conditions. Some states recommend treating for Japanese beetle when three Japanese beetles per ear are found, silks are clipped to < 13 mm, and pollination is < 50% complete, and that recommendation appears to be adequate.

  5. Accuracy of unmodified Stokes' integration in the R-C-R procedure for geoid computation

    NASA Astrophysics Data System (ADS)

    Ismail, Zahra; Jamet, Olivier

    2015-06-01

    Geoid determinations by the Remove-Compute-­Restore (R-C-R) technique involves the application of Stokes' integral on reduced gravity anomalies. Numerical Stokes' integration produces an error depending on the choice of the integration radius, grid resolution and Stokes' kernel function. In this work, we aim to evaluate the accuracy of Stokes' integral through a study on synthetic gravitational signals derived from EGM2008 on three different landscape areas with respect to the size of the integration domain and the resolution of the anomaly grid. The influence of the integration radius was studied earlier by several authors. Using real data, they found that the choice of relatively small radii (less than 1°) enables to reach an optimal accuracy. We observe a general behaviour coherent with these earlier studies. On the other hand, we notice that increasing the integration radius up to 2° or 2.5° might bring significantly better results. We note that, unlike the smallest radius corresponding to a local minimum of the error curve, the optimal radius in the range 0° to 6° depends on the terrain characteristics. We also find that the high frequencies, from degree 600, improve continuously with the integration radius in both semi-­mountainous and mountain areas. Finally, we note that the relative error of the computed geoid heights depends weakly on the anomaly spherical harmonic degree in the range from degree 200 to 2000. It remains greater than 10 % for any integration radii up to 6°. This result tends to prove that a one centimetre accuracy cannot be reached in semi-mountainous and mountainous regions with the unmodified Stokes' kernel.

  6. Task-driven imaging in cone-beam computed tomography.

    PubMed

    Gang, G J; Stayman, J W; Ouadah, S; Ehtiati, T; Siewerdsen, J H

    Conventional workflow in interventional imaging often ignores a wealth of prior information of the patient anatomy and the imaging task. This work introduces a task-driven imaging framework that utilizes such information to prospectively design acquisition and reconstruction techniques for cone-beam CT (CBCT) in a manner that maximizes task-based performance in subsequent imaging procedures. The framework is employed in jointly optimizing tube current modulation, orbital tilt, and reconstruction parameters in filtered backprojection reconstruction for interventional imaging. Theoretical predictors of noise and resolution relates acquisition and reconstruction parameters to task-based detectability. Given a patient-specific prior image and specification of the imaging task, an optimization algorithm prospectively identifies the combination of imaging parameters that maximizes task-based detectability. Initial investigations were performed for a variety of imaging tasks in an elliptical phantom and an anthropomorphic head phantom. Optimization of tube current modulation and view-dependent reconstruction kernel was shown to have greatest benefits for a directional task (e.g., identification of device or tissue orientation). The task-driven approach yielded techniques in which the dose and sharp kernels were concentrated in views contributing the most to the signal power associated with the imaging task. For example, detectability of a line pair detection task was improved by at least three fold compared to conventional approaches. For radially symmetric tasks, the task-driven strategy yielded results similar to a minimum variance strategy in the absence of kernel modulation. Optimization of the orbital tilt successfully avoided highly attenuating structures that can confound the imaging task by introducing noise correlations masquerading at spatial frequencies of interest. This work demonstrated the potential of a task-driven imaging framework to improve image quality and reduce dose beyond that achievable with conventional imaging approaches.

  7. Improved object optimal synthetic description, modeling, learning, and discrimination by GEOGINE computational kernel

    NASA Astrophysics Data System (ADS)

    Fiorini, Rodolfo A.; Dacquino, Gianfranco

    2005-03-01

    GEOGINE (GEOmetrical enGINE), a state-of-the-art OMG (Ontological Model Generator) based on n-D Tensor Invariants for n-Dimensional shape/texture optimal synthetic representation, description and learning, was presented in previous conferences elsewhere recently. Improved computational algorithms based on the computational invariant theory of finite groups in Euclidean space and a demo application is presented. Progressive model automatic generation is discussed. GEOGINE can be used as an efficient computational kernel for fast reliable application development and delivery in advanced biomedical engineering, biometric, intelligent computing, target recognition, content image retrieval, data mining technological areas mainly. Ontology can be regarded as a logical theory accounting for the intended meaning of a formal dictionary, i.e., its ontological commitment to a particular conceptualization of the world object. According to this approach, "n-D Tensor Calculus" can be considered a "Formal Language" to reliably compute optimized "n-Dimensional Tensor Invariants" as specific object "invariant parameter and attribute words" for automated n-Dimensional shape/texture optimal synthetic object description by incremental model generation. The class of those "invariant parameter and attribute words" can be thought as a specific "Formal Vocabulary" learned from a "Generalized Formal Dictionary" of the "Computational Tensor Invariants" language. Even object chromatic attributes can be effectively and reliably computed from object geometric parameters into robust colour shape invariant characteristics. As a matter of fact, any highly sophisticated application needing effective, robust object geometric/colour invariant attribute capture and parameterization features, for reliable automated object learning and discrimination can deeply benefit from GEOGINE progressive automated model generation computational kernel performance. Main operational advantages over previous, similar approaches are: 1) Progressive Automated Invariant Model Generation, 2) Invariant Minimal Complete Description Set for computational efficiency, 3) Arbitrary Model Precision for robust object description and identification.

  8. Size and moisture distribution characteristics of walnuts and their components

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine the size characteristics and moisture content (MC) distributions of individual walnuts and their components, including hulls, shells and kernels under different harvest conditions. Measurements were carried out for three walnut varieties, Tulare, Howard a...

  9. A scalable kernel-based semisupervised metric learning algorithm with out-of-sample generalization ability.

    PubMed

    Yeung, Dit-Yan; Chang, Hong; Dai, Guang

    2008-11-01

    In recent years, metric learning in the semisupervised setting has aroused a lot of research interest. One type of semisupervised metric learning utilizes supervisory information in the form of pairwise similarity or dissimilarity constraints. However, most methods proposed so far are either limited to linear metric learning or unable to scale well with the data set size. In this letter, we propose a nonlinear metric learning method based on the kernel approach. By applying low-rank approximation to the kernel matrix, our method can handle significantly larger data sets. Moreover, our low-rank approximation scheme can naturally lead to out-of-sample generalization. Experiments performed on both artificial and real-world data show very promising results.

  10. Home range and space use patterns of flathead catfish during the summer-fall period in two Missouri streams

    USGS Publications Warehouse

    Vokoun, Jason C.; Rabeni, Charles F.

    2005-01-01

    Flathead catfish Pylodictis olivaris were radio-tracked in the Grand River and Cuivre River, Missouri, from late July until they moved to overwintering habitats in late October. Fish moved within a definable area, and although occasional long-distance movements occurred, the fish typically returned to the previously occupied area. Seasonal home range was calculated with the use of kernel density estimation, which can be interpreted as a probabilistic utilization distribution that documents the internal structure of the estimate by delineating portions of the range that was used a specified percentage of the time. A traditional linear range also was reported. Most flathead catfish (89%) had one 50% kernel-estimated core area, whereas 11% of the fish split their time between two core areas. Core areas were typically in the middle of the 90% kernel-estimated home range (58%), although several had core areas in upstream (26%) and downstream (16%) portions of the home range. Home-range size did not differ based on river, sex, or size and was highly variable among individuals. The median 95% kernel estimate was 1,085 m (range, 70– 69,090 m) for all fish. The median 50% kernel-estimated core area was 135 m (10–2,260 m). The median linear range was 3,510 m (150–50,400 m). Fish pairs with core areas in the same and neighboring pools had static joint space use values of up to 49% (area of intersection index), indicating substantial overlap and use of the same area. However, all fish pairs had low dynamic joint space use values (<0.07; coefficient of association), indicating that fish pairs were temporally segregated, rarely occurring in the same location at the same time.

  11. Effects of sample size and sampling frequency on studies of brown bear home ranges and habitat use

    USGS Publications Warehouse

    Arthur, Steve M.; Schwartz, Charles C.

    1999-01-01

    We equipped 9 brown bears (Ursus arctos) on the Kenai Peninsula, Alaska, with collars containing both conventional very-high-frequency (VHF) transmitters and global positioning system (GPS) receivers programmed to determine an animal's position at 5.75-hr intervals. We calculated minimum convex polygon (MCP) and fixed and adaptive kernel home ranges for randomly-selected subsets of the GPS data to examine the effects of sample size on accuracy and precision of home range estimates. We also compared results obtained by weekly aerial radiotracking versus more frequent GPS locations to test for biases in conventional radiotracking data. Home ranges based on the MCP were 20-606 km2 (x = 201) for aerial radiotracking data (n = 12-16 locations/bear) and 116-1,505 km2 (x = 522) for the complete GPS data sets (n = 245-466 locations/bear). Fixed kernel home ranges were 34-955 km2 (x = 224) for radiotracking data and 16-130 km2 (x = 60) for the GPS data. Differences between means for radiotracking and GPS data were due primarily to the larger samples provided by the GPS data. Means did not differ between radiotracking data and equivalent-sized subsets of GPS data (P > 0.10). For the MCP, home range area increased and variability decreased asymptotically with number of locations. For the kernel models, both area and variability decreased with increasing sample size. Simulations suggested that the MCP and kernel models required >60 and >80 locations, respectively, for estimates to be both accurate (change in area <1%/additional location) and precise (CV < 50%). Although the radiotracking data appeared unbiased, except for the relationship between area and sample size, these data failed to indicate some areas that likely were important to bears. Our results suggest that the usefulness of conventional radiotracking data may be limited by potential biases and variability due to small samples. Investigators that use home range estimates in statistical tests should consider the effects of variability of those estimates. Use of GPS-equipped collars can facilitate obtaining larger samples of unbiased data and improve accuracy and precision of home range estimates.

  12. Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study.

    PubMed

    Lima, Clodoaldo A M; Coelho, André L V

    2011-10-01

    We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely, Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). Copyright © 2011 Elsevier B.V. All rights reserved.

  13. The distal portion of the short arm of wheat (Triticum aestivum L.) chromosome 5D controls endosperm vitreosity and grain hardness.

    PubMed

    Morris, Craig F; Beecher, Brian S

    2012-07-01

    Kernel vitreosity is an important trait of wheat grain, but its developmental control is not completely known. We developed back-cross seven (BC(7)) near-isogenic lines in the soft white spring wheat cultivar Alpowa that lack the distal portion of chromosome 5D short arm. From the final back-cross, 46 BC(7)F(2) plants were isolated. These plants exhibited a complete and perfect association between kernel vitreosity (i.e. vitreous, non-vitreous or mixed) and Single Kernel Characterization System (SKCS) hardness. Observed segregation of 10:28:7 fit a 1:2:1 Chi-square. BC(7)F(2) plants classified as heterozygous for both SKCS hardness and kernel vitreosity (n = 29) were selected and a single vitreous and non-vitreous kernel were selected, and grown to maturity and subjected to SKCS analysis. The resultant phenotypic ratios were, from non-vitreous kernels, 23:6:0, and from vitreous kernels, 0:1:28, soft:heterozygous:hard, respectively. Three of these BC(7)F(2) heterozygous plants were selected and 40 kernels each drawn at random, grown to maturity and subjected to SKCS analysis. Phenotypic segregation ratios were 7:27:6, 11:20:9, and 3:28:9, soft:heterozygous:hard. Chi-square analysis supported a 1:2:1 segregation for one plant but not the other two, in which cases the two homozygous classes were under-represented. Twenty-two paired BC(7)F(2):F(3) full sibs were compared for kernel hardness, weight, size, density and protein content. SKCS hardness index differed markedly, 29.4 for the lines with a complete 5DS, and 88.6 for the lines possessing the deletion. The soft non-vitreous kernels were on average significantly heavier, by nearly 20%, and were slightly larger. Density and protein contents were similar, however. The results provide strong genetic evidence that gene(s) on distal 5DS control not only kernel hardness but also the manner in which the endosperm develops, viz. whether it is vitreous or non-vitreous.

  14. EFFECTS OF FLUID AND COMPUTED TOMOGRAPHIC TECHNICAL FACTORS ON CONSPICUITY OF CANINE AND FELINE NASAL TURBINATES

    PubMed Central

    Uosyte, Raimonda; Shaw, Darren J; Gunn-Moore, Danielle A; Fraga-Manteiga, Eduardo; Schwarz, Tobias

    2015-01-01

    Turbinate destruction is an important diagnostic criterion in canine and feline nasal computed tomography (CT). However decreased turbinate visibility may also be caused by technical CT settings and nasal fluid. The purpose of this experimental, crossover study was to determine whether fluid reduces conspicuity of canine and feline nasal turbinates in CT and if so, whether CT settings can maximize conspicuity. Three canine and three feline cadaver heads were used. Nasal slabs were CT-scanned before and after submerging them in a water bath; using sequential, helical, and ultrahigh resolution modes; with images in low, medium, and high frequency image reconstruction kernels; and with application of additional posterior fossa optimization and high contrast enhancing filters. Visible turbinate length was measured by a single observer using manual tracing. Nasal density heterogeneity was measured using the standard deviation (SD) of mean nasal density from a region of interest in each nasal cavity. Linear mixed-effect models using the R package ‘nlme’, multivariable models and standard post hoc Tukey pair-wise comparisons were performed to investigate the effect of several variables (nasal content, scanning mode, image reconstruction kernel, application of post reconstruction filters) on measured visible total turbinate length and SD of mean nasal density. All canine and feline water-filled nasal slabs showed significantly decreased visibility of nasal turbinates (P < 0.001). High frequency kernels provided the best turbinate visibility and highest SD of aerated nasal slabs, whereas medium frequency kernels were optimal for water-filled nasal slabs. Scanning mode and filter application had no effect on turbinate visibility. PMID:25867935

  15. Evaluation of Multiple Kernel Learning Algorithms for Crop Mapping Using Satellite Image Time-Series Data

    NASA Astrophysics Data System (ADS)

    Niazmardi, S.; Safari, A.; Homayouni, S.

    2017-09-01

    Crop mapping through classification of Satellite Image Time-Series (SITS) data can provide very valuable information for several agricultural applications, such as crop monitoring, yield estimation, and crop inventory. However, the SITS data classification is not straightforward. Because different images of a SITS data have different levels of information regarding the classification problems. Moreover, the SITS data is a four-dimensional data that cannot be classified using the conventional classification algorithms. To address these issues in this paper, we presented a classification strategy based on Multiple Kernel Learning (MKL) algorithms for SITS data classification. In this strategy, initially different kernels are constructed from different images of the SITS data and then they are combined into a composite kernel using the MKL algorithms. The composite kernel, once constructed, can be used for the classification of the data using the kernel-based classification algorithms. We compared the computational time and the classification performances of the proposed classification strategy using different MKL algorithms for the purpose of crop mapping. The considered MKL algorithms are: MKL-Sum, SimpleMKL, LPMKL and Group-Lasso MKL algorithms. The experimental tests of the proposed strategy on two SITS data sets, acquired by SPOT satellite sensors, showed that this strategy was able to provide better performances when compared to the standard classification algorithm. The results also showed that the optimization method of the used MKL algorithms affects both the computational time and classification accuracy of this strategy.

  16. Super-resolution fusion of complementary panoramic images based on cross-selection kernel regression interpolation.

    PubMed

    Chen, Lidong; Basu, Anup; Zhang, Maojun; Wang, Wei; Liu, Yu

    2014-03-20

    A complementary catadioptric imaging technique was proposed to solve the problem of low and nonuniform resolution in omnidirectional imaging. To enhance this research, our paper focuses on how to generate a high-resolution panoramic image from the captured omnidirectional image. To avoid the interference between the inner and outer images while fusing the two complementary views, a cross-selection kernel regression method is proposed. First, in view of the complementarity of sampling resolution in the tangential and radial directions between the inner and the outer images, respectively, the horizontal gradients in the expected panoramic image are estimated based on the scattered neighboring pixels mapped from the outer, while the vertical gradients are estimated using the inner image. Then, the size and shape of the regression kernel are adaptively steered based on the local gradients. Furthermore, the neighboring pixels in the next interpolation step of kernel regression are also selected based on the comparison between the horizontal and vertical gradients. In simulation and real-image experiments, the proposed method outperforms existing kernel regression methods and our previous wavelet-based fusion method in terms of both visual quality and objective evaluation.

  17. Estimation of biological parameters of marine organisms using linear and nonlinear acoustic scattering model-based inversion methods.

    PubMed

    Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H

    2016-05-01

    The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.

  18. LoCoH: Non-parameteric kernel methods for constructing home ranges and utilization distributions

    USGS Publications Warehouse

    Getz, Wayne M.; Fortmann-Roe, Scott; Cross, Paul C.; Lyons, Andrew J.; Ryan, Sadie J.; Wilmers, Christopher C.

    2007-01-01

    Parametric kernel methods currently dominate the literature regarding the construction of animal home ranges (HRs) and utilization distributions (UDs). These methods frequently fail to capture the kinds of hard boundaries common to many natural systems. Recently a local convex hull (LoCoH) nonparametric kernel method, which generalizes the minimum convex polygon (MCP) method, was shown to be more appropriate than parametric kernel methods for constructing HRs and UDs, because of its ability to identify hard boundaries (e.g., rivers, cliff edges) and convergence to the true distribution as sample size increases. Here we extend the LoCoH in two ways: ‘‘fixed sphere-of-influence,’’ or r -LoCoH (kernels constructed from all points within a fixed radius r of each reference point), and an ‘‘adaptive sphere-of-influence,’’ or a -LoCoH (kernels constructed from all points within a radius a such that the distances of all points within the radius to the reference point sum to a value less than or equal to a ), and compare them to the original ‘‘fixed-number-of-points,’’ or k -LoCoH (all kernels constructed from k -1 nearest neighbors of root points). We also compare these nonparametric LoCoH to parametric kernel methods using manufactured data and data collected from GPS collars on African buffalo in the Kruger National Park, South Africa. Our results demonstrate that LoCoH methods are superior to parametric kernel methods in estimating areas used by animals, excluding unused areas (holes) and, generally, in constructing UDs and HRs arising from the movement of animals influenced by hard boundaries and irregular structures (e.g., rocky outcrops). We also demonstrate that a -LoCoH is generally superior to k - and r -LoCoH (with software for all three methods available at http://locoh.cnr.berkeley.edu).

  19. Classification and recognition of dynamical models: the role of phase, independent components, kernels and optimal transport.

    PubMed

    Bissacco, Alessandro; Chiuso, Alessandro; Soatto, Stefano

    2007-11-01

    We address the problem of performing decision tasks, and in particular classification and recognition, in the space of dynamical models in order to compare time series of data. Motivated by the application of recognition of human motion in image sequences, we consider a class of models that include linear dynamics, both stable and marginally stable (periodic), both minimum and non-minimum phase, driven by non-Gaussian processes. This requires extending existing learning and system identification algorithms to handle periodic modes and nonminimum phase behavior, while taking into account higher-order statistics of the data. Once a model is identified, we define a kernel-based cord distance between models that includes their dynamics, their initial conditions as well as input distribution. This is made possible by a novel kernel defined between two arbitrary (non-Gaussian) distributions, which is computed by efficiently solving an optimal transport problem. We validate our choice of models, inference algorithm, and distance on the tasks of human motion synthesis (sample paths of the learned models), and recognition (nearest-neighbor classification in the computed distance). However, our work can be applied more broadly where one needs to compare historical data while taking into account periodic trends, non-minimum phase behavior, and non-Gaussian input distributions.

  20. A Genetic Algorithm Based Support Vector Machine Model for Blood-Brain Barrier Penetration Prediction

    PubMed Central

    Zhang, Daqing; Xiao, Jianfeng; Zhou, Nannan; Luo, Xiaomin; Jiang, Hualiang; Chen, Kaixian

    2015-01-01

    Blood-brain barrier (BBB) is a highly complex physical barrier determining what substances are allowed to enter the brain. Support vector machine (SVM) is a kernel-based machine learning method that is widely used in QSAR study. For a successful SVM model, the kernel parameters for SVM and feature subset selection are the most important factors affecting prediction accuracy. In most studies, they are treated as two independent problems, but it has been proven that they could affect each other. We designed and implemented genetic algorithm (GA) to optimize kernel parameters and feature subset selection for SVM regression and applied it to the BBB penetration prediction. The results show that our GA/SVM model is more accurate than other currently available log BB models. Therefore, to optimize both SVM parameters and feature subset simultaneously with genetic algorithm is a better approach than other methods that treat the two problems separately. Analysis of our log BB model suggests that carboxylic acid group, polar surface area (PSA)/hydrogen-bonding ability, lipophilicity, and molecular charge play important role in BBB penetration. Among those properties relevant to BBB penetration, lipophilicity could enhance the BBB penetration while all the others are negatively correlated with BBB penetration. PMID:26504797

  1. Efficient similarity-based data clustering by optimal object to cluster reallocation.

    PubMed

    Rossignol, Mathias; Lagrange, Mathieu; Cont, Arshia

    2018-01-01

    We present an iterative flat hard clustering algorithm designed to operate on arbitrary similarity matrices, with the only constraint that these matrices be symmetrical. Although functionally very close to kernel k-means, our proposal performs a maximization of average intra-class similarity, instead of a squared distance minimization, in order to remain closer to the semantics of similarities. We show that this approach permits the relaxing of some conditions on usable affinity matrices like semi-positiveness, as well as opening possibilities for computational optimization required for large datasets. Systematic evaluation on a variety of data sets shows that compared with kernel k-means and the spectral clustering methods, the proposed approach gives equivalent or better performance, while running much faster. Most notably, it significantly reduces memory access, which makes it a good choice for large data collections. Material enabling the reproducibility of the results is made available online.

  2. Fusion PIC code performance analysis on the Cori KNL system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koskela, Tuomas S.; Deslippe, Jack; Friesen, Brian

    We study the attainable performance of Particle-In-Cell codes on the Cori KNL system by analyzing a miniature particle push application based on the fusion PIC code XGC1. We start from the most basic building blocks of a PIC code and build up the complexity to identify the kernels that cost the most in performance and focus optimization efforts there. Particle push kernels operate at high AI and are not likely to be memory bandwidth or even cache bandwidth bound on KNL. Therefore, we see only minor benefits from the high bandwidth memory available on KNL, and achieving good vectorization ismore » shown to be the most beneficial optimization path with theoretical yield of up to 8x speedup on KNL. In practice we are able to obtain up to a 4x gain from vectorization due to limitations set by the data layout and memory latency.« less

  3. GPU-Powered Coherent Beamforming

    NASA Astrophysics Data System (ADS)

    Magro, A.; Adami, K. Zarb; Hickish, J.

    2015-03-01

    Graphics processing units (GPU)-based beamforming is a relatively unexplored area in radio astronomy, possibly due to the assumption that any such system will be severely limited by the PCIe bandwidth required to transfer data to the GPU. We have developed a CUDA-based GPU implementation of a coherent beamformer, specifically designed and optimized for deployment at the BEST-2 array which can generate an arbitrary number of synthesized beams for a wide range of parameters. It achieves ˜1.3 TFLOPs on an NVIDIA Tesla K20, approximately 10x faster than an optimized, multithreaded CPU implementation. This kernel has been integrated into two real-time, GPU-based time-domain software pipelines deployed at the BEST-2 array in Medicina: a standalone beamforming pipeline and a transient detection pipeline. We present performance benchmarks for the beamforming kernel as well as the transient detection pipeline with beamforming capabilities as well as results of test observation.

  4. Efficient 3D movement-based kernel density estimator and application to wildlife ecology

    USGS Publications Warehouse

    Tracey-PR, Jeff; Sheppard, James K.; Lockwood, Glenn K.; Chourasia, Amit; Tatineni, Mahidhar; Fisher, Robert N.; Sinkovits, Robert S.

    2014-01-01

    We describe an efficient implementation of a 3D movement-based kernel density estimator for determining animal space use from discrete GPS measurements. This new method provides more accurate results, particularly for species that make large excursions in the vertical dimension. The downside of this approach is that it is much more computationally expensive than simpler, lower-dimensional models. Through a combination of code restructuring, parallelization and performance optimization, we were able to reduce the time to solution by up to a factor of 1000x, thereby greatly improving the applicability of the method.

  5. An energy efficient and high speed architecture for convolution computing based on binary resistive random access memory

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Han, Runze; Zhou, Zheng; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng

    2018-04-01

    In this work we present a novel convolution computing architecture based on metal oxide resistive random access memory (RRAM) to process the image data stored in the RRAM arrays. The proposed image storage architecture shows performances of better speed-device consumption efficiency compared with the previous kernel storage architecture. Further we improve the architecture for a high accuracy and low power computing by utilizing the binary storage and the series resistor. For a 28 × 28 image and 10 kernels with a size of 3 × 3, compared with the previous kernel storage approach, the newly proposed architecture shows excellent performances including: 1) almost 100% accuracy within 20% LRS variation and 90% HRS variation; 2) more than 67 times speed boost; 3) 71.4% energy saving.

  6. BESIII physical offline data analysis on virtualization platform

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Li, H.; Kan, B.; Shi, J.; Lei, X.

    2015-12-01

    In this contribution, we present an ongoing work, which aims at benefiting BESIII computing system for higher resource utilization and more efficient job operations brought by cloud and virtualization technology with Openstack and KVM. We begin with the architecture of BESIII offline software to understand how it works. We mainly report the KVM performance evaluation and optimization from various factors in hardware and kernel. Experimental results show the CPU performance penalty of KVM can be approximately decreased to 3%. In addition, the performance comparison between KVM and physical machines in aspect of CPU, disk IO and network IO is also presented. Finally, we present our development work, an adaptive cloud scheduler, which allocates and reclaims VMs dynamically according to the status of TORQUE queue and the size of resource pool to improve resource utilization and job processing efficiency.

  7. Hybrid approach of selecting hyperparameters of support vector machine for regression.

    PubMed

    Jeng, Jin-Tsong

    2006-06-01

    To select the hyperparameters of the support vector machine for regression (SVR), a hybrid approach is proposed to determine the kernel parameter of the Gaussian kernel function and the epsilon value of Vapnik's epsilon-insensitive loss function. The proposed hybrid approach includes a competitive agglomeration (CA) clustering algorithm and a repeated SVR (RSVR) approach. Since the CA clustering algorithm is used to find the nearly "optimal" number of clusters and the centers of clusters in the clustering process, the CA clustering algorithm is applied to select the Gaussian kernel parameter. Additionally, an RSVR approach that relies on the standard deviation of a training error is proposed to obtain an epsilon in the loss function. Finally, two functions, one real data set (i.e., a time series of quarterly unemployment rate for West Germany) and an identification of nonlinear plant are used to verify the usefulness of the hybrid approach.

  8. Embryo and endosperm development in wheat (Triticum aestivum L.) kernels subjected to drought stress.

    PubMed

    Fábián, Attila; Jäger, Katalin; Rakszegi, Mariann; Barnabás, Beáta

    2011-04-01

    The aim of the present work was to reveal the histological alterations triggered in developing wheat kernels by soil drought stress during early seed development resulting in yield losses at harvest. For this purpose, observations were made on the effect of drought stress, applied in a controlled environment from the 5th to the 9th day after pollination, on the kernel morphology, starch content and grain yield of the drought-sensitive Cappelle Desprez and drought-tolerant Plainsman V winter wheat (Triticum aestivum L.) varieties. As a consequence of water withdrawal, there was a decrease in the size of the embryos and the number of A-type starch granules deposited in the endosperm, while the development of aleurone cells and the degradation of the cell layers surrounding the ovule were significantly accelerated in both genotypes. In addition, the number of B-type starch granules per cell was significantly reduced. Drought stress affected the rate of grain filling shortened the grain-filling and ripening period and severely reduced the yield. With respect to the recovery of vegetative tissues, seed set and yield, the drought-tolerant Plainsman V responded significantly better to drought stress than Cappelle Desprez. The reduction in the size of the mature embryos was significantly greater in the sensitive genotype. Compared to Plainsman V, the endosperm cells of Cappelle Desprez accumulated significantly fewer B-type starch granules. In stressed kernels of the tolerant genotype, the accumulation of protein bodies occurred significantly earlier than in the sensitive variety.

  9. Left ventricle segmentation via graph cut distribution matching.

    PubMed

    Ben Ayed, Ismail; Punithakumar, Kumaradevan; Li, Shuo; Islam, Ali; Chong, Jaron

    2009-01-01

    We present a discrete kernel density matching energy for segmenting the left ventricle cavity in cardiac magnetic resonance sequences. The energy and its graph cut optimization based on an original first-order approximation of the Bhattacharyya measure have not been proposed previously, and yield competitive results in nearly real-time. The algorithm seeks a region within each frame by optimization of two priors, one geometric (distance-based) and the other photometric, each measuring a distribution similarity between the region and a model learned from the first frame. Based on global rather than pixelwise information, the proposed algorithm does not require complex training and optimization with respect to geometric transformations. Unlike related active contour methods, it does not compute iterative updates of computationally expensive kernel densities. Furthermore, the proposed first-order analysis can be used for other intractable energies and, therefore, can lead to segmentation algorithms which share the flexibility of active contours and computational advantages of graph cuts. Quantitative evaluations over 2280 images acquired from 20 subjects demonstrated that the results correlate well with independent manual segmentations by an expert.

  10. Simultaneous determination of fumonisins B1 and B2 in different types of maize by matrix solid phase dispersion and HPLC-MS/MS.

    PubMed

    de Oliveira, Gabriel Barros; de Castro Gomes Vieira, Carolyne Menezes; Orlando, Ricardo Mathias; Faria, Adriana Ferreira

    2017-10-15

    This work involved the optimization and validation of a method, according to Directive 2002/657/EC and the Analytical Quality Assurance Manual of Ministério da Agricultura, Pecuária e Abastecimento, Brazil, for simultaneous extraction and determination of fumonisins B1 and B2 in maize. The extraction procedure was based on a matrix solid phase dispersion approach, the optimization of which employed a sequence of different factorial designs. A liquid chromatography-tandem mass spectrometry method was developed for determining these analytes using the selected reaction monitoring mode. The optimized method employed only 1g of silica gel for dispersion and elution with 70% ammonium formate aqueous buffer (50mmolL -1 , pH 9), representing a simple, cheap and chemically friendly sample preparation method. Trueness (recoveries: 86-106%), precision (RSD ≤19%), decision limits, detection capabilities and measurement uncertainties were calculated for the validated method. The method scope was expanded to popcorn kernels, white maize kernels and yellow maize grits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Towards Highly Scalable Ab Initio Molecular Dynamics (AIMD) Simulations on the Intel Knights Landing Manycore Processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacquelin, Mathias; De Jong, Wibe A.; Bylaska, Eric J.

    2017-07-03

    The Ab Initio Molecular Dynamics (AIMD) method allows scientists to treat the dynamics of molecular and condensed phase systems while retaining a first-principles-based description of their interactions. This extremely important method has tremendous computational requirements, because the electronic Schr¨odinger equation, approximated using Kohn-Sham Density Functional Theory (DFT), is solved at every time step. With the advent of manycore architectures, application developers have a significant amount of processing power within each compute node that can only be exploited through massive parallelism. A compute intensive application such as AIMD forms a good candidate to leverage this processing power. In this paper, wemore » focus on adding thread level parallelism to the plane wave DFT methodology implemented in NWChem. Through a careful optimization of tall-skinny matrix products, which are at the heart of the Lagrange multiplier and nonlocal pseudopotential kernels, as well as 3D FFTs, our OpenMP implementation delivers excellent strong scaling on the latest Intel Knights Landing (KNL) processor. We assess the efficiency of our Lagrange multiplier kernels by building a Roofline model of the platform, and verify that our implementation is close to the roofline for various problem sizes. Finally, we present strong scaling results on the complete AIMD simulation for a 64 water molecules test case, that scales up to all 68 cores of the Knights Landing processor.« less

  12. QTL Analysis of Kernel-Related Traits in Maize Using an Immortalized F2 Population

    PubMed Central

    Hu, Yanmin; Li, Weihua; Fu, Zhiyuan; Ding, Dong; Li, Haochuan; Qiao, Mengmeng; Tang, Jihua

    2014-01-01

    Kernel size and weight are important determinants of grain yield in maize. In this study, multivariate conditional and unconditional quantitative trait loci (QTL), and digenic epistatic analyses were utilized in order to elucidate the genetic basis for these kernel-related traits. Five kernel-related traits, including kernel weight (KW), volume (KV), length (KL), thickness (KT), and width (KWI), were collected from an immortalized F2 (IF2) maize population comprising of 243 crosses performed at two separate locations over a span of two years. A total of 54 unconditional main QTL for these five kernel-related traits were identified, many of which were clustered in chromosomal bins 6.04–6.06, 7.02–7.03, and 10.06–10.07. In addition, qKL3, qKWI6, qKV10a, qKV10b, qKW10a, and qKW7a were detected across multiple environments. Sixteen main QTL were identified for KW conditioned on the other four kernel traits (KL, KWI, KT, and KV). Thirteen main QTL were identified for KV conditioned on three kernel-shape traits. Conditional mapping analysis revealed that KWI and KV had the strongest influence on KW at the individual QTL level, followed by KT, and then KL; KV was mostly strongly influenced by KT, followed by KWI, and was least impacted by KL. Digenic epistatic analysis identified 18 digenic interactions involving 34 loci over the entire genome. However, only a small proportion of them were identical to the main QTL we detected. Additionally, conditional digenic epistatic analysis revealed that the digenic epistasis for KW and KV were entirely determined by their constituent traits. The main QTL identified in this study for determining kernel-related traits with high broad-sense heritability may play important roles during kernel development. Furthermore, digenic interactions were shown to exert relatively large effects on KL (the highest AA and DD effects were 4.6% and 6.7%, respectively) and KT (the highest AA effects were 4.3%). PMID:24586932

  13. WE-EF-207-01: FEATURED PRESENTATION and BEST IN PHYSICS (IMAGING): Task-Driven Imaging for Cone-Beam CT in Interventional Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gang, G; Stayman, J; Ouadah, S

    2015-06-15

    Purpose: This work introduces a task-driven imaging framework that utilizes a patient-specific anatomical model, mathematical definition of the imaging task, and a model of the imaging system to prospectively design acquisition and reconstruction techniques that maximize task-based imaging performance. Utility of the framework is demonstrated in the joint optimization of tube current modulation and view-dependent reconstruction kernel in filtered-backprojection reconstruction and non-circular orbit design in model-based reconstruction. Methods: The system model is based on a cascaded systems analysis of cone-beam CT capable of predicting the spatially varying noise and resolution characteristics as a function of the anatomical model and amore » wide range of imaging parameters. Detectability index for a non-prewhitening observer model is used as the objective function in a task-driven optimization. The combination of tube current and reconstruction kernel modulation profiles were identified through an alternating optimization algorithm where tube current was updated analytically followed by a gradient-based optimization of reconstruction kernel. The non-circular orbit is first parameterized as a linear combination of bases functions and the coefficients were then optimized using an evolutionary algorithm. The task-driven strategy was compared with conventional acquisitions without modulation, using automatic exposure control, and in a circular orbit. Results: The task-driven strategy outperformed conventional techniques in all tasks investigated, improving the detectability of a spherical lesion detection task by an average of 50% in the interior of a pelvis phantom. The non-circular orbit design successfully mitigated photon starvation effects arising from a dense embolization coil in a head phantom, improving the conspicuity of an intracranial hemorrhage proximal to the coil. Conclusion: The task-driven imaging framework leverages a knowledge of the imaging task within a patient-specific anatomical model to optimize image acquisition and reconstruction techniques, thereby improving imaging performance beyond that achievable with conventional approaches. 2R01-CA-112163; R01-EB-017226; U01-EB-018758; Siemens Healthcare (Forcheim, Germany)« less

  14. Defining space use and movements of Canada lynx with global positioning system telemetry

    USGS Publications Warehouse

    Burdett, C.L.; Moen, R.A.; Niemi, G.J.; Mech, L.D.

    2007-01-01

    Space use and movements of Canada lynx (Lynx canadensis) are difficult to study with very-high-frequency radiocollars. We deployed global positioning system (GPS) collars on 11 lynx in Minnesota to study their seasonal space-use patterns. We estimated home ranges with minimum-convex-polygon and fixed-kernel methods and estimated core areas with area/probability curves. Fixed-kernel home ranges of males (range = 29-522 km2) were significantly larger than those of females (range = 5-95 km2) annually and during the denning season. Some male lynx increased movements during March, the month most influenced by breeding activity. Lynx core areas were predicted by the 60% fixed-kernel isopleth in most seasons. The mean core-area size of males (range = 6-190 km2) was significantly larger than that of females (range = 1-19 km2) annually and during denning. Most female lynx were reproductive animals with reduced movements, whereas males often ranged widely between Minnesota and Ontario. Sensitivity analyses examining the effect of location frequency on home-range size suggest that the home-range sizes of breeding females are less sensitive to sample size than those of males. Longer periods between locations decreased home-range and core-area overlap relative to the home range estimated from daily locations. GPS collars improve our understanding of space use and movements by lynx by increasing the spatial extent and temporal frequency of monitoring and allowing home ranges to be estimated over short periods that are relevant to life-history characteristics. ?? 2007 American Society of Mammalogists.

  15. The roofline model: A pedagogical tool for program analysis and optimization

    DOE PAGES

    Williams, Samuel; Patterson, David; Oliker, Leonid; ...

    2008-08-01

    This article consists of a collection of slides from the authors' conference presentation. The Roofline model is a visually intuitive figure for kernel analysis and optimization. We believe undergraduates will find it useful in assessing performance and scalability limitations. It is easily extended to other architectural paradigms. It is easily extendable to other metrics: performance (sort, graphics, crypto..) bandwidth (L2, PCIe, ..). Furthermore, a performance counters could be used to generate a runtime-specific roofline that would greatly aide the optimization.

  16. Spectrofluorimetric determination of melatonin in kernels of four different Pistacia varieties after ultrasound-assisted solid-liquid extraction.

    PubMed

    Oladi, Elham; Mohamadi, Maryam; Shamspur, Tayebeh; Mostafavi, Ali

    2014-11-11

    Melatonin is normally consumed to regulate the body's biological cycle. However it also has therapeutic properties, such as anti-tumor, anti-aging and protects the immune system. There are some reports on the presence of melatonin in edible kernels such as walnuts, but the extraction of melatonin from pistachio kernels is reported here for the first time. For this, the methanolic extract of pistachio kernels was exposed to gas chromatography/mass spectrometry analysis which confirmed the presence of melatonin. A fluorescence-based method was applied for the determination of melatonin in different extracts. When excited at λ=275 nm, the fluorescence emission intensity of melatonin was measured at λ=366 nm. Ultrasound-assisted solid-liquid extraction was used for the extraction of melatonin from pistachio kernels prior to fluorimetric determination. To achieve the highest extraction recovery, the main parameters affecting the extraction efficiency such as extracting solvent type and volume, temperature, sonication time and pH were evaluated. Under the optimized conditions, a linear dependence of fluorescence intensity on melatonin concentration was observed in the range of 0.0040-0.160 μg mL(-1), with a detection limit of 0.0036 μg mL(-1). This method was applied successfully for measuring and comparing the melatonin content in the kernels of four different varieties of Pistacia including Ahmad Aghaei, Akbari, Kalle Qouchi and Fandoghi. In addition, the results obtained were compared with those obtained using GC/MS. A good agreement was observed indicating the reliability of the proposed method. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Spectrofluorimetric determination of melatonin in kernels of four different Pistacia varieties after ultrasound-assisted solid-liquid extraction

    NASA Astrophysics Data System (ADS)

    Oladi, Elham; Mohamadi, Maryam; Shamspur, Tayebeh; Mostafavi, Ali

    2014-11-01

    Melatonin is normally consumed to regulate the body's biological cycle. However it also has therapeutic properties, such as anti-tumor, anti-aging and protects the immune system. There are some reports on the presence of melatonin in edible kernels such as walnuts, but the extraction of melatonin from pistachio kernels is reported here for the first time. For this, the methanolic extract of pistachio kernels was exposed to gas chromatography/mass spectrometry analysis which confirmed the presence of melatonin. A fluorescence-based method was applied for the determination of melatonin in different extracts. When excited at λ = 275 nm, the fluorescence emission intensity of melatonin was measured at λ = 366 nm. Ultrasound-assisted solid-liquid extraction was used for the extraction of melatonin from pistachio kernels prior to fluorimetric determination. To achieve the highest extraction recovery, the main parameters affecting the extraction efficiency such as extracting solvent type and volume, temperature, sonication time and pH were evaluated. Under the optimized conditions, a linear dependence of fluorescence intensity on melatonin concentration was observed in the range of 0.0040-0.160 μg mL-1, with a detection limit of 0.0036 μg mL-1. This method was applied successfully for measuring and comparing the melatonin content in the kernels of four different varieties of Pistacia including Ahmad Aghaei, Akbari, Kalle Qouchi and Fandoghi. In addition, the results obtained were compared with those obtained using GC/MS. A good agreement was observed indicating the reliability of the proposed method.

  18. Classification and quantification analysis of peach kernel from different origins with near-infrared diffuse reflection spectroscopy

    PubMed Central

    Liu, Wei; Wang, Zhen-Zhong; Qing, Jian-Ping; Li, Hong-Juan; Xiao, Wei

    2014-01-01

    Background: Peach kernels which contain kinds of fatty acids play an important role in the regulation of a variety of physiological and biological functions. Objective: To establish an innovative and rapid diffuse reflectance near-infrared spectroscopy (DR-NIR) analysis method along with chemometric techniques for the qualitative and quantitative determination of a peach kernel. Materials and Methods: Peach kernel samples from nine different origins were analyzed with high-performance liquid chromatography (HPLC) as a reference method. DR-NIR is in the spectral range 1100-2300 nm. Principal component analysis (PCA) and partial least squares regression (PLSR) algorithm were applied to obtain prediction models, The Savitzky-Golay derivative and first derivative were adopted for the spectral pre-processing, PCA was applied to classify the varieties of those samples. For the quantitative calibration, the models of linoleic and oleinic acids were established with the PLSR algorithm and the optimal principal component (PC) numbers were selected with leave-one-out (LOO) cross-validation. The established models were evaluated with the root mean square error of deviation (RMSED) and corresponding correlation coefficients (R2). Results: The PCA results of DR-NIR spectra yield clear classification of the two varieties of peach kernel. PLSR had a better predictive ability. The correlation coefficients of the two calibration models were above 0.99, and the RMSED of linoleic and oleinic acids were 1.266% and 1.412%, respectively. Conclusion: The DR-NIR combined with PCA and PLSR algorithm could be used efficiently to identify and quantify peach kernels and also help to solve variety problem. PMID:25422544

  19. Analysis and fabrication of tungsten CERMET materials for ultra-high temperature reactor applications via pulsed electric current sintering

    NASA Astrophysics Data System (ADS)

    Webb, Jonathan A.

    The optimized development path for the fabrication of ultra-high temperature W-UO2 CERMET fuel elements were explored within this dissertation. A robust literature search was conducted, which concluded that a W-UO 2 fuel element must contain a fine tungsten microstructure and spherical UO2 kernels throughout the entire consolidation process. Combined Monte Carlo and Computational Fluid Dynamics (CFD) analysis were used to determine the effects of rhenium and gadolinia additions on the performance of W-UO 2 fuel elements at refractory temperatures and in dry and water submerged environments. The computational analysis also led to the design of quasi-optimized fuel elements that can meet thermal-hydraulic and neutronic requirements A rigorous set of experiments were conducted to determine if Pulsed Electric Current Sintering (PECS) can fabricate tungsten and W-Ce02 specimens to the required geometries, densities and microstructures required for high temperature fuel elements as well as determine the mechanisms involved within the PECS consolidation process. The CeO2 acts as a surrogate for UO 2 fuel kernels in these experiments. The experiments seemed to confirm that PECS consolidation takes place via diffusional mass transfer methods; however, the densification process is rapidly accelerated due to the effects of current densities within the consolidating specimen. Fortunately the grain growth proceeds at a traditional rate and the PECS process can yield near fully dense W and W-Ce02 specimens with a finer microstructure than other sintering techniques. PECS consolidation techniques were also shown to be capable of producing W-UO2 segments at near-prototypic geometries; however, great care must be taken to coat the fuel particles with tungsten prior to sintering. Also, great care must be taken to ensure that the particles remain spherical in geometry under the influence of a uniaxial stress as applied during PECS, which involves mixing different fuel kernel sizes in order to reduce the porosity in the initial green compact. Particle mixing techniques were also shown to be capable of producing consolidated CERMETs, but with a less than desirable microstructure. The work presented herin will help in the development of very high temperature reactors for terrestrial and space missions in the future.

  20. A dry-inoculation method for nut kernels.

    PubMed

    Blessington, Tyann; Theofel, Christopher G; Harris, Linda J

    2013-04-01

    A dry-inoculation method for almonds and walnuts was developed to eliminate the need for the postinoculation drying required for wet-inoculation methods. The survival of Salmonella enterica Enteritidis PT 30 on wet- and dry-inoculated almond and walnut kernels stored under ambient conditions (average: 23 °C; 41 or 47% RH) was then compared over 14 weeks. For wet inoculation, an aqueous Salmonella preparation was added directly to almond or walnut kernels, which were then dried under ambient conditions (3 or 7 days, respectively) to initial nut moisture levels. For the dry inoculation, liquid inoculum was mixed with sterilized sand and dried for 24 h at 40 °C. The dried inoculated sand was mixed with kernels, and the sand was removed by shaking the mixture in a sterile sieve. Mixing procedures to optimize the bacterial transfer from sand to kernel were evaluated; in general, similar levels were achieved on walnuts (4.8-5.2 log CFU/g) and almonds (4.2-5.1 log CFU/g). The decline of Salmonella Enteritidis populations was similar during ambient storage (98 days) for both wet-and dry-inoculation methods for both almonds and walnuts. The dry-inoculation method mimics some of the suspected routes of contamination for tree nuts and may be appropriate for some postharvest challenge studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. A stepwise, 'test-all-positives' methodology to assess gluten-kernel contamination at the serving-size level in gluten-free (GF) oat production.

    PubMed

    Chen, Yumin; Fritz, Ronald D; Kock, Lindsay; Garg, Dinesh; Davis, R Mark; Kasturi, Prabhakar

    2018-02-01

    A step-wise, 'test-all-positive-gluten' analytical methodology has been developed and verified to assess kernel-based gluten contamination (i.e., wheat, barley and rye kernels) during gluten-free (GF) oat production. It targets GF claim compliance at the serving-size level (of a pouch or approximately 40-50g). Oat groats are collected from GF oat production following a robust attribute-based sampling plan then split into 75-g subsamples, and ground. R-Biopharm R5 sandwich ELISA R7001 is used for analysis of all the first15-g portions of the ground sample. A >20-ppm result disqualifies the production lot, while a >5 to <20-ppm result triggers complete analysis of the remaining 60-g of ground sample, analyzed in 15-g portions. If all five 15-g test results are <20ppm, and their average is <10.67ppm (since a 20-ppm contaminant in 40g of oats would dilute to 10.67ppm in 75-g), the lot is passed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Detecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approach.

    PubMed

    Hussain, Lal

    2018-06-01

    Epilepsy is a neurological disorder produced due to abnormal excitability of neurons in the brain. The research reveals that brain activity is monitored through electroencephalogram (EEG) of patients suffered from seizure to detect the epileptic seizure. The performance of EEG detection based epilepsy require feature extracting strategies. In this research, we have extracted varying features extracting strategies based on time and frequency domain characteristics, nonlinear, wavelet based entropy and few statistical features. A deeper study was undertaken using novel machine learning classifiers by considering multiple factors. The support vector machine kernels are evaluated based on multiclass kernel and box constraint level. Likewise, for K-nearest neighbors (KNN), we computed the different distance metrics, Neighbor weights and Neighbors. Similarly, the decision trees we tuned the paramours based on maximum splits and split criteria and ensemble classifiers are evaluated based on different ensemble methods and learning rate. For training/testing tenfold Cross validation was employed and performance was evaluated in form of TPR, NPR, PPV, accuracy and AUC. In this research, a deeper analysis approach was performed using diverse features extracting strategies using robust machine learning classifiers with more advanced optimal options. Support Vector Machine linear kernel and KNN with City block distance metric give the overall highest accuracy of 99.5% which was higher than using the default parameters for these classifiers. Moreover, highest separation (AUC = 0.9991, 0.9990) were obtained at different kernel scales using SVM. Additionally, the K-nearest neighbors with inverse squared distance weight give higher performance at different Neighbors. Moreover, to distinguish the postictal heart rate oscillations from epileptic ictal subjects, and highest performance of 100% was obtained using different machine learning classifiers.

  3. GPU-accelerated atmospheric chemical kinetics in the ECHAM/MESSy (EMAC) Earth system model (version 2.52)

    NASA Astrophysics Data System (ADS)

    Alvanos, Michail; Christoudias, Theodoros

    2017-10-01

    This paper presents an application of GPU accelerators in Earth system modeling. We focus on atmospheric chemical kinetics, one of the most computationally intensive tasks in climate-chemistry model simulations. We developed a software package that automatically generates CUDA kernels to numerically integrate atmospheric chemical kinetics in the global climate model ECHAM/MESSy Atmospheric Chemistry (EMAC), used to study climate change and air quality scenarios. A source-to-source compiler outputs a CUDA-compatible kernel by parsing the FORTRAN code generated by the Kinetic PreProcessor (KPP) general analysis tool. All Rosenbrock methods that are available in the KPP numerical library are supported.Performance evaluation, using Fermi and Pascal CUDA-enabled GPU accelerators, shows achieved speed-ups of 4. 5 × and 20. 4 × , respectively, of the kernel execution time. A node-to-node real-world production performance comparison shows a 1. 75 × speed-up over the non-accelerated application using the KPP three-stage Rosenbrock solver. We provide a detailed description of the code optimizations used to improve the performance including memory optimizations, control code simplification, and reduction of idle time. The accuracy and correctness of the accelerated implementation are evaluated by comparing to the CPU-only code of the application. The median relative difference is found to be less than 0.000000001 % when comparing the output of the accelerated kernel the CPU-only code.The approach followed, including the computational workload division, and the developed GPU solver code can potentially be used as the basis for hardware acceleration of numerous geoscientific models that rely on KPP for atmospheric chemical kinetics applications.

  4. Combining Statistical and Geometric Features for Colonic Polyp Detection in CTC Based on Multiple Kernel Learning

    PubMed Central

    Wang, Shijun; Yao, Jianhua; Petrick, Nicholas; Summers, Ronald M.

    2010-01-01

    Colon cancer is the second leading cause of cancer-related deaths in the United States. Computed tomographic colonography (CTC) combined with a computer aided detection system provides a feasible approach for improving colonic polyps detection and increasing the use of CTC for colon cancer screening. To distinguish true polyps from false positives, various features extracted from polyp candidates have been proposed. Most of these traditional features try to capture the shape information of polyp candidates or neighborhood knowledge about the surrounding structures (fold, colon wall, etc.). In this paper, we propose a new set of shape descriptors for polyp candidates based on statistical curvature information. These features called histograms of curvature features are rotation, translation and scale invariant and can be treated as complementing existing feature set. Then in order to make full use of the traditional geometric features (defined as group A) and the new statistical features (group B) which are highly heterogeneous, we employed a multiple kernel learning method based on semi-definite programming to learn an optimized classification kernel from the two groups of features. We conducted leave-one-patient-out test on a CTC dataset which contained scans from 66 patients. Experimental results show that a support vector machine (SVM) based on the combined feature set and the semi-definite optimization kernel achieved higher FROC performance compared to SVMs using the two groups of features separately. At a false positive per scan rate of 5, the sensitivity of the SVM using the combined features improved from 0.77 (Group A) and 0.73 (Group B) to 0.83 (p ≤ 0.01). PMID:20953299

  5. Quantitative CT: technique dependence of volume estimation on pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Chen, Baiyu; Barnhart, Huiman; Richard, Samuel; Colsher, James; Amurao, Maxwell; Samei, Ehsan

    2012-03-01

    Current estimation of lung nodule size typically relies on uni- or bi-dimensional techniques. While new three-dimensional volume estimation techniques using MDCT have improved size estimation of nodules with irregular shapes, the effect of acquisition and reconstruction parameters on accuracy (bias) and precision (variance) of the new techniques has not been fully investigated. To characterize the volume estimation performance dependence on these parameters, an anthropomorphic chest phantom containing synthetic nodules was scanned and reconstructed with protocols across various acquisition and reconstruction parameters. Nodule volumes were estimated by a clinical lung analysis software package, LungVCAR. Precision and accuracy of the volume assessment were calculated across the nodules and compared between protocols via a generalized estimating equation analysis. Results showed that the precision and accuracy of nodule volume quantifications were dependent on slice thickness, with different dependences for different nodule characteristics. Other parameters including kVp, pitch, and reconstruction kernel had lower impact. Determining these technique dependences enables better volume quantification via protocol optimization and highlights the importance of consistent imaging parameters in sequential examinations.

  6. 7 CFR 51.1437 - Size classifications for halves.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... weight of half-kernels after all pieces, particles and dust, shell, center wall, and foreign material..., particles, and dust. In order to allow for variations incident to proper sizing and handling, not more than 15 percent, by weight, of any lot may consist of pieces, particles, and dust: Provided, That not more...

  7. 7 CFR 51.1437 - Size classifications for halves.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... weight of half-kernels after all pieces, particles and dust, shell, center wall, and foreign material..., particles, and dust. In order to allow for variations incident to proper sizing and handling, not more than 15 percent, by weight, of any lot may consist of pieces, particles, and dust: Provided, That not more...

  8. 7 CFR 51.1437 - Size classifications for halves.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... weight of half-kernels after all pieces, particles and dust, shell, center wall, and foreign material..., particles, and dust. In order to allow for variations incident to proper sizing and handling, not more than 15 percent, by weight, of any lot may consist of pieces, particles, and dust: Provided, That not more...

  9. Spatial frequency performance limitations of radiation dose optimization and beam positioning

    NASA Astrophysics Data System (ADS)

    Stewart, James M. P.; Stapleton, Shawn; Chaudary, Naz; Lindsay, Patricia E.; Jaffray, David A.

    2018-06-01

    The flexibility and sophistication of modern radiotherapy treatment planning and delivery methods have advanced techniques to improve the therapeutic ratio. Contemporary dose optimization and calculation algorithms facilitate radiotherapy plans which closely conform the three-dimensional dose distribution to the target, with beam shaping devices and image guided field targeting ensuring the fidelity and accuracy of treatment delivery. Ultimately, dose distribution conformity is limited by the maximum deliverable dose gradient; shallow dose gradients challenge techniques to deliver a tumoricidal radiation dose while minimizing dose to surrounding tissue. In this work, this ‘dose delivery resolution’ observation is rigorously formalized for a general dose delivery model based on the superposition of dose kernel primitives. It is proven that the spatial resolution of a delivered dose is bounded by the spatial frequency content of the underlying dose kernel, which in turn defines a lower bound in the minimization of a dose optimization objective function. In addition, it is shown that this optimization is penalized by a dose deposition strategy which enforces a constant relative phase (or constant spacing) between individual radiation beams. These results are further refined to provide a direct, analytic method to estimate the dose distribution arising from the minimization of such an optimization function. The efficacy of the overall framework is demonstrated on an image guided small animal microirradiator for a set of two-dimensional hypoxia guided dose prescriptions.

  10. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield.

    PubMed

    Ma, Lin; Li, Tian; Hao, Chenyang; Wang, Yuquan; Chen, Xinhong; Zhang, Xueyong

    2016-05-01

    Grain size is a dominant component of grain weight in cereals. Earlier studies have shown that OsGS5 plays a major role in regulating both grain size and weight in rice via promotion of cell division. In this study, we isolated TaGS5 homoeologues in wheat and mapped them on chromosomes 3A, 3B and 3D. Temporal and spatial expression analysis showed that TaGS5 homoeologues were preferentially expressed in young spikes and developing grains. Two alleles of TaGS5-3A, TaGS5-3A-T and TaGS5-3A-G were identified in wheat accessions, and a functional marker was developed to discriminate them. Association analysis revealed that TaGS5-3A-T was significantly correlated with larger grain size and higher thousand kernel weight. Biochemical assays showed that TaGS5-3A-T possesses a higher enzymatic activity than TaGS5-3A-G. Transgenic rice lines overexpressing TaGS5-3A-T also exhibited larger grain size and higher thousand kernel weight than TaGS5-3A-G lines, and the transcript levels of cell cycle-related genes in TaGS5-3A-T lines were higher than those in TaGS5-3A-G lines. Furthermore, systematic evolution analysis in diploid, tetraploid and hexaploid wheat showed that TaGS5-3A underwent strong artificial selection during wheat polyploidization events and the frequency changes of two alleles demonstrated that TaGS5-3A-T was favoured in global modern wheat cultivars. These results suggest that TaGS5-3A is a positive regulator of grain size and its favoured allele TaGS5-3A-T exhibits a larger potential application in wheat high-yield breeding. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. 2D convolution kernels of ionization chambers used for photon-beam dosimetry in magnetic fields: the advantage of small over large chamber dimensions

    NASA Astrophysics Data System (ADS)

    Khee Looe, Hui; Delfs, Björn; Poppinga, Daniela; Harder, Dietrich; Poppe, Björn

    2018-04-01

    This study aims at developing an optimization strategy for photon-beam dosimetry in magnetic fields using ionization chambers. Similar to the familiar case in the absence of a magnetic field, detectors should be selected under the criterion that their measured 2D signal profiles M(x,y) approximate the absorbed dose to water profiles D(x,y) as closely as possible. Since the conversion of D(x,y) into M(x,y) is known as the convolution with the ‘lateral dose response function’ K(x-ξ, y-η) of the detector, the ideal detector would be characterized by a vanishing magnetic field dependence of this convolution kernel (Looe et al 2017b Phys. Med. Biol. 62 5131–48). The idea of the present study is to find out, by Monte Carlo simulation of two commercial ionization chambers of different size, whether the smaller chamber dimensions would be instrumental to approach this aim. As typical examples, the lateral dose response functions in the presence and absence of a magnetic field have been Monte-Carlo modeled for the new commercial ionization chambers PTW 31021 (‘Semiflex 3D’, internal radius 2.4 mm) and PTW 31022 (‘PinPoint 3D’, internal radius 1.45 mm), which are both available with calibration factors. The Monte-Carlo model of the ionization chambers has been adjusted to account for the presence of the non-collecting part of the air volume near the guard ring. The Monte-Carlo results allow a comparison between the widths of the magnetic field dependent photon fluence response function K M(x-ξ, y-η) and of the lateral dose response function K(x-ξ, y-η) of the two chambers with the width of the dose deposition kernel K D(x-ξ, y-η). The simulated dose and chamber signal profiles show that in small photon fields and in the presence of a 1.5 T field the distortion of the chamber signal profile compared with the true dose profile is weakest for the smaller chamber. The dose responses of both chambers at large field size are shown to be altered by not more than 2% in magnetic fields up to 1.5 T for all three investigated chamber orientations.

  12. 7 CFR 51.2128 - Damage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... rubbed off with the fingers; (c) Gum, when a film of shiny, resinous appearing substance affects an area... the kernel is excessively thin for its size, or when materially withered, shrunken, leathery, tough or...

  13. Optimized formulas for the gravitational field of a tesseroid

    NASA Astrophysics Data System (ADS)

    Grombein, Thomas; Seitz, Kurt; Heck, Bernhard

    2013-07-01

    Various tasks in geodesy, geophysics, and related geosciences require precise information on the impact of mass distributions on gravity field-related quantities, such as the gravitational potential and its partial derivatives. Using forward modeling based on Newton's integral, mass distributions are generally decomposed into regular elementary bodies. In classical approaches, prisms or point mass approximations are mostly utilized. Considering the effect of the sphericity of the Earth, alternative mass modeling methods based on tesseroid bodies (spherical prisms) should be taken into account, particularly in regional and global applications. Expressions for the gravitational field of a point mass are relatively simple when formulated in Cartesian coordinates. In the case of integrating over a tesseroid volume bounded by geocentric spherical coordinates, it will be shown that it is also beneficial to represent the integral kernel in terms of Cartesian coordinates. This considerably simplifies the determination of the tesseroid's potential derivatives in comparison with previously published methodologies that make use of integral kernels expressed in spherical coordinates. Based on this idea, optimized formulas for the gravitational potential of a homogeneous tesseroid and its derivatives up to second-order are elaborated in this paper. These new formulas do not suffer from the polar singularity of the spherical coordinate system and can, therefore, be evaluated for any position on the globe. Since integrals over tesseroid volumes cannot be solved analytically, the numerical evaluation is achieved by means of expanding the integral kernel in a Taylor series with fourth-order error in the spatial coordinates of the integration point. As the structure of the Cartesian integral kernel is substantially simplified, Taylor coefficients can be represented in a compact and computationally attractive form. Thus, the use of the optimized tesseroid formulas particularly benefits from a significant decrease in computation time by about 45 % compared to previously used algorithms. In order to show the computational efficiency and to validate the mathematical derivations, the new tesseroid formulas are applied to two realistic numerical experiments and are compared to previously published tesseroid methods and the conventional prism approach.

  14. Prediction of heterotrimeric protein complexes by two-phase learning using neighboring kernels

    PubMed Central

    2014-01-01

    Background Protein complexes play important roles in biological systems such as gene regulatory networks and metabolic pathways. Most methods for predicting protein complexes try to find protein complexes with size more than three. It, however, is known that protein complexes with smaller sizes occupy a large part of whole complexes for several species. In our previous work, we developed a method with several feature space mappings and the domain composition kernel for prediction of heterodimeric protein complexes, which outperforms existing methods. Results We propose methods for prediction of heterotrimeric protein complexes by extending techniques in the previous work on the basis of the idea that most heterotrimeric protein complexes are not likely to share the same protein with each other. We make use of the discriminant function in support vector machines (SVMs), and design novel feature space mappings for the second phase. As the second classifier, we examine SVMs and relevance vector machines (RVMs). We perform 10-fold cross-validation computational experiments. The results suggest that our proposed two-phase methods and SVM with the extended features outperform the existing method NWE, which was reported to outperform other existing methods such as MCL, MCODE, DPClus, CMC, COACH, RRW, and PPSampler for prediction of heterotrimeric protein complexes. Conclusions We propose two-phase prediction methods with the extended features, the domain composition kernel, SVMs and RVMs. The two-phase method with the extended features and the domain composition kernel using SVM as the second classifier is particularly useful for prediction of heterotrimeric protein complexes. PMID:24564744

  15. Optimized Orthovoltage Stereotactic Radiosurgery

    NASA Astrophysics Data System (ADS)

    Fagerstrom, Jessica M.

    Because of its ability to treat intracranial targets effectively and noninvasively, stereotactic radiosurgery (SRS) is a prevalent treatment modality in modern radiation therapy. This work focused on SRS delivering rectangular function dose distributions, which are desirable for some targets such as those with functional tissue included within the target volume. In order to achieve such distributions, this work used fluence modulation and energies lower than those utilized in conventional SRS. In this work, the relationship between prescription isodose and dose gradients was examined for standard, unmodulated orthovoltage SRS dose distributions. Monte Carlo-generated energy deposition kernels were used to calculate 4pi, isocentric dose distributions for a polyenergetic orthovoltage spectrum, as well as monoenergetic orthovoltage beams. The relationship between dose gradients and prescription isodose was found to be field size and energy dependent, and values were found for prescription isodose that optimize dose gradients. Next, a pencil-beam model was used with a Genetic Algorithm search heuristic to optimize the spatial distribution of added tungsten filtration within apertures of cone collimators in a moderately filtered 250 kVp beam. Four cone sizes at three depths were examined with a Monte Carlo model to determine the effects of the optimized modulation compared to open cones, and the simulations found that the optimized cones were able to achieve both improved penumbra and flatness statistics at depth compared to the open cones. Prototypes of the filter designs calculated using mathematical optimization techniques and Monte Carlo simulations were then manufactured and inserted into custom built orthovoltage SRS cone collimators. A positioning system built in-house was used to place the collimator and filter assemblies temporarily in the 250 kVp beam line. Measurements were performed in water using radiochromic film scanned with both a standard white light flatbed scanner as well as a prototype laser densitometry system. Measured beam profiles showed that the modulated beams could more closely approach rectangular function dose profiles compared to the open cones. A methodology has been described and implemented to achieve optimized SRS delivery, including the development of working prototypes. Future work may include the construction of a full treatment platform.

  16. SU-E-T-329: Dosimetric Impact of Implementing Metal Artifact Reduction Methods and Metal Energy Deposition Kernels for Photon Dose Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J; Followill, D; Howell, R

    2015-06-15

    Purpose: To investigate two strategies for reducing dose calculation errors near metal implants: use of CT metal artifact reduction methods and implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) method. Methods: Radiochromic film was used to measure the dose upstream and downstream of titanium and Cerrobend implants. To assess the dosimetric impact of metal artifact reduction methods, dose calculations were performed using baseline, uncorrected images and metal artifact reduction Methods: Philips O-MAR, GE’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI imaging with metal artifact reduction software applied (MARs).To assess the impact of metal kernels, titaniummore » and silver kernels were implemented into a commercial collapsed cone C/S algorithm. Results: The CT artifact reduction methods were more successful for titanium than Cerrobend. Interestingly, for beams traversing the metal implant, we found that errors in the dimensions of the metal in the CT images were more important for dose calculation accuracy than reduction of imaging artifacts. The MARs algorithm caused a distortion in the shape of the titanium implant that substantially worsened the calculation accuracy. In comparison to water kernel dose calculations, metal kernels resulted in better modeling of the increased backscatter dose at the upstream interface but decreased accuracy directly downstream of the metal. We also found that the success of metal kernels was dependent on dose grid size, with smaller calculation voxels giving better accuracy. Conclusion: Our study yielded mixed results, with neither the metal artifact reduction methods nor the metal kernels being globally effective at improving dose calculation accuracy. However, some successes were observed. The MARs algorithm decreased errors downstream of Cerrobend by a factor of two, and metal kernels resulted in more accurate backscatter dose upstream of metals. Thus, these two strategies do have the potential to improve accuracy for patients with metal implants in certain scenarios. This work was supported by Public Health Service grants CA 180803 and CA 10953 awarded by the National Cancer Institute, United States of Health and Human Services, and in part by Mobius Medical Systems.« less

  17. Greater power and computational efficiency for kernel-based association testing of sets of genetic variants

    PubMed Central

    Lippert, Christoph; Xiang, Jing; Horta, Danilo; Widmer, Christian; Kadie, Carl; Heckerman, David; Listgarten, Jennifer

    2014-01-01

    Motivation: Set-based variance component tests have been identified as a way to increase power in association studies by aggregating weak individual effects. However, the choice of test statistic has been largely ignored even though it may play an important role in obtaining optimal power. We compared a standard statistical test—a score test—with a recently developed likelihood ratio (LR) test. Further, when correction for hidden structure is needed, or gene–gene interactions are sought, state-of-the art algorithms for both the score and LR tests can be computationally impractical. Thus we develop new computationally efficient methods. Results: After reviewing theoretical differences in performance between the score and LR tests, we find empirically on real data that the LR test generally has more power. In particular, on 15 of 17 real datasets, the LR test yielded at least as many associations as the score test—up to 23 more associations—whereas the score test yielded at most one more association than the LR test in the two remaining datasets. On synthetic data, we find that the LR test yielded up to 12% more associations, consistent with our results on real data, but also observe a regime of extremely small signal where the score test yielded up to 25% more associations than the LR test, consistent with theory. Finally, our computational speedups now enable (i) efficient LR testing when the background kernel is full rank, and (ii) efficient score testing when the background kernel changes with each test, as for gene–gene interaction tests. The latter yielded a factor of 2000 speedup on a cohort of size 13 500. Availability: Software available at http://research.microsoft.com/en-us/um/redmond/projects/MSCompBio/Fastlmm/. Contact: heckerma@microsoft.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25075117

  18. Greater power and computational efficiency for kernel-based association testing of sets of genetic variants.

    PubMed

    Lippert, Christoph; Xiang, Jing; Horta, Danilo; Widmer, Christian; Kadie, Carl; Heckerman, David; Listgarten, Jennifer

    2014-11-15

    Set-based variance component tests have been identified as a way to increase power in association studies by aggregating weak individual effects. However, the choice of test statistic has been largely ignored even though it may play an important role in obtaining optimal power. We compared a standard statistical test-a score test-with a recently developed likelihood ratio (LR) test. Further, when correction for hidden structure is needed, or gene-gene interactions are sought, state-of-the art algorithms for both the score and LR tests can be computationally impractical. Thus we develop new computationally efficient methods. After reviewing theoretical differences in performance between the score and LR tests, we find empirically on real data that the LR test generally has more power. In particular, on 15 of 17 real datasets, the LR test yielded at least as many associations as the score test-up to 23 more associations-whereas the score test yielded at most one more association than the LR test in the two remaining datasets. On synthetic data, we find that the LR test yielded up to 12% more associations, consistent with our results on real data, but also observe a regime of extremely small signal where the score test yielded up to 25% more associations than the LR test, consistent with theory. Finally, our computational speedups now enable (i) efficient LR testing when the background kernel is full rank, and (ii) efficient score testing when the background kernel changes with each test, as for gene-gene interaction tests. The latter yielded a factor of 2000 speedup on a cohort of size 13 500. Software available at http://research.microsoft.com/en-us/um/redmond/projects/MSCompBio/Fastlmm/. heckerma@microsoft.com Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  19. Dynamic characteristics of oxygen consumption.

    PubMed

    Ye, Lin; Argha, Ahmadreza; Yu, Hairong; Celler, Branko G; Nguyen, Hung T; Su, Steven

    2018-04-23

    Previous studies have indicated that oxygen uptake ([Formula: see text]) is one of the most accurate indices for assessing the cardiorespiratory response to exercise. In most existing studies, the response of [Formula: see text] is often roughly modelled as a first-order system due to the inadequate stimulation and low signal to noise ratio. To overcome this difficulty, this paper proposes a novel nonparametric kernel-based method for the dynamic modelling of [Formula: see text] response to provide a more robust estimation. Twenty healthy non-athlete participants conducted treadmill exercises with monotonous stimulation (e.g., single step function as input). During the exercise, [Formula: see text] was measured and recorded by a popular portable gas analyser ([Formula: see text], COSMED). Based on the recorded data, a kernel-based estimation method was proposed to perform the nonparametric modelling of [Formula: see text]. For the proposed method, a properly selected kernel can represent the prior modelling information to reduce the dependence of comprehensive stimulations. Furthermore, due to the special elastic net formed by [Formula: see text] norm and kernelised [Formula: see text] norm, the estimations are smooth and concise. Additionally, the finite impulse response based nonparametric model which estimated by the proposed method can optimally select the order and fit better in terms of goodness-of-fit comparing to classical methods. Several kernels were introduced for the kernel-based [Formula: see text] modelling method. The results clearly indicated that the stable spline (SS) kernel has the best performance for [Formula: see text] modelling. Particularly, based on the experimental data from 20 participants, the estimated response from the proposed method with SS kernel was significantly better than the results from the benchmark method [i.e., prediction error method (PEM)] ([Formula: see text] vs [Formula: see text]). The proposed nonparametric modelling method is an effective method for the estimation of the impulse response of VO 2 -Speed system. Furthermore, the identified average nonparametric model method can dynamically predict [Formula: see text] response with acceptable accuracy during treadmill exercise.

  20. Multiple Kernel Learning with Random Effects for Predicting Longitudinal Outcomes and Data Integration

    PubMed Central

    Chen, Tianle; Zeng, Donglin

    2015-01-01

    Summary Predicting disease risk and progression is one of the main goals in many clinical research studies. Cohort studies on the natural history and etiology of chronic diseases span years and data are collected at multiple visits. Although kernel-based statistical learning methods are proven to be powerful for a wide range of disease prediction problems, these methods are only well studied for independent data but not for longitudinal data. It is thus important to develop time-sensitive prediction rules that make use of the longitudinal nature of the data. In this paper, we develop a novel statistical learning method for longitudinal data by introducing subject-specific short-term and long-term latent effects through a designed kernel to account for within-subject correlation of longitudinal measurements. Since the presence of multiple sources of data is increasingly common, we embed our method in a multiple kernel learning framework and propose a regularized multiple kernel statistical learning with random effects to construct effective nonparametric prediction rules. Our method allows easy integration of various heterogeneous data sources and takes advantage of correlation among longitudinal measures to increase prediction power. We use different kernels for each data source taking advantage of the distinctive feature of each data modality, and then optimally combine data across modalities. We apply the developed methods to two large epidemiological studies, one on Huntington's disease and the other on Alzheimer's Disease (Alzheimer's Disease Neuroimaging Initiative, ADNI) where we explore a unique opportunity to combine imaging and genetic data to study prediction of mild cognitive impairment, and show a substantial gain in performance while accounting for the longitudinal aspect of the data. PMID:26177419

  1. Effects of study area size on home range estimates of common bottlenose dolphins Tursiops truncatus

    PubMed Central

    Nekolny, Samantha R; Denny, Matthew; Biedenbach, George; Howells, Elisabeth M; Mazzoil, Marilyn; Durden, Wendy N; Moreland, Lydia; David Lambert, J

    2017-01-01

    Abstract Knowledge of an animal’s home range is a crucial component in making informed management decisions. However, many home range studies are limited by study area size, and therefore may underestimate the size of the home range. In many cases, individuals have been shown to travel outside of the study area and utilize a larger area than estimated by the study design. In this study, data collected by multiple research groups studying bottlenose dolphins on the east coast of Florida were combined to determine how home range estimates increased with increasing study area size. Home range analyses utilized photo-identification data collected from 6 study areas throughout the St Johns River (SJR; Jacksonville, FL, USA) and adjacent waterways, extending a total of 253 km to the southern end of Mosquito Lagoon in the Indian River Lagoon Estuarine System. Univariate kernel density estimates (KDEs) were computed for individuals with 10 or more sightings (n = 20). Kernels were calculated for the primary study area (SJR) first, then additional kernels were calculated by combining the SJR and the next adjacent waterway; this continued in an additive fashion until all study areas were included. The 95% and 50% KDEs calculated for the SJR alone ranged from 21 to 35 km and 4 to 19 km, respectively. The 95% and 50% KDEs calculated for all combined study areas ranged from 116 to 217 km and 9 to 70 km, respectively. This study illustrates the degree to which home range may be underestimated by the use of limited study areas and demonstrates the benefits of conducting collaborative science. PMID:29492031

  2. Effects of study area size on home range estimates of common bottlenose dolphins Tursiops truncatus.

    PubMed

    Nekolny, Samantha R; Denny, Matthew; Biedenbach, George; Howells, Elisabeth M; Mazzoil, Marilyn; Durden, Wendy N; Moreland, Lydia; David Lambert, J; Gibson, Quincy A

    2017-12-01

    Knowledge of an animal's home range is a crucial component in making informed management decisions. However, many home range studies are limited by study area size, and therefore may underestimate the size of the home range. In many cases, individuals have been shown to travel outside of the study area and utilize a larger area than estimated by the study design. In this study, data collected by multiple research groups studying bottlenose dolphins on the east coast of Florida were combined to determine how home range estimates increased with increasing study area size. Home range analyses utilized photo-identification data collected from 6 study areas throughout the St Johns River (SJR; Jacksonville, FL, USA) and adjacent waterways, extending a total of 253 km to the southern end of Mosquito Lagoon in the Indian River Lagoon Estuarine System. Univariate kernel density estimates (KDEs) were computed for individuals with 10 or more sightings ( n =  20). Kernels were calculated for the primary study area (SJR) first, then additional kernels were calculated by combining the SJR and the next adjacent waterway; this continued in an additive fashion until all study areas were included. The 95% and 50% KDEs calculated for the SJR alone ranged from 21 to 35 km and 4 to 19 km, respectively. The 95% and 50% KDEs calculated for all combined study areas ranged from 116 to 217 km and 9 to 70 km, respectively. This study illustrates the degree to which home range may be underestimated by the use of limited study areas and demonstrates the benefits of conducting collaborative science.

  3. Improving the quality of reconstructed X-ray CT images of polymer gel dosimeters: zero-scan coupled with adaptive mean filtering.

    PubMed

    Kakakhel, M B; Jirasek, A; Johnston, H; Kairn, T; Trapp, J V

    2017-03-01

    This study evaluated the feasibility of combining the 'zero-scan' (ZS) X-ray computed tomography (CT) based polymer gel dosimeter (PGD) readout with adaptive mean (AM) filtering for improving the signal to noise ratio (SNR), and to compare these results with available average scan (AS) X-ray CT readout techniques. NIPAM PGD were manufactured, irradiated with 6 MV photons, CT imaged and processed in Matlab. AM filter for two iterations, with 3 × 3 and 5 × 5 pixels (kernel size), was used in two scenarios (a) the CT images were subjected to AM filtering (pre-processing) and these were further employed to generate AS and ZS gel images, and (b) the AS and ZS images were first reconstructed from the CT images and then AM filtering was carried out (post-processing). SNR was computed in an ROI of 30 × 30 for different pre and post processing cases. Results showed that the ZS technique combined with AM filtering resulted in improved SNR. Using the previously-recommended 25 images for reconstruction the ZS pre-processed protocol can give an increase of 44% and 80% in SNR for 3 × 3 and 5 × 5 kernel sizes respectively. However, post processing using both techniques and filter sizes introduced blur and a reduction in the spatial resolution. Based on this work, it is possible to recommend that the ZS method may be combined with pre-processed AM filtering using appropriate kernel size, to produce a large increase in the SNR of the reconstructed PGD images.

  4. Coalescence of repelling colloidal droplets: a route to monodisperse populations.

    PubMed

    Roger, Kevin; Botet, Robert; Cabane, Bernard

    2013-05-14

    Populations of droplets or particles dispersed in a liquid may evolve through Brownian collisions, aggregation, and coalescence. We have found a set of conditions under which these populations evolve spontaneously toward a narrow size distribution. The experimental system consists of poly(methyl methacrylate) (PMMA) nanodroplets dispersed in a solvent (acetone) + nonsolvent (water) mixture. These droplets carry electrical charges, located on the ionic end groups of the macromolecules. We used time-resolved small angle X-ray scattering to determine their size distribution. We find that the droplets grow through coalescence events: the average radius (R) increases logarithmically with elapsed time while the relative width σR/(R) of the distribution decreases as the inverse square root of (R). We interpret this evolution as resulting from coalescence events that are hindered by ionic repulsions between droplets. We generalize this evolution through a simulation of the Smoluchowski kinetic equation, with a kernel that takes into account the interactions between droplets. In the case of vanishing or attractive interactions, all droplet encounters lead to coalescence. The corresponding kernel leads to the well-known "self-preserving" particle distribution of the coalescence process, where σR/(R) increases to a plateau value. However, for droplets that interact through long-range ionic repulsions, "large + small" droplet encounters are more successful at coalescence than "large + large" encounters. We show that the corresponding kernel leads to a particular scaling of the droplet-size distribution-known as the "second-scaling law" in the theory of critical phenomena, where σR/(R) decreases as 1/√(R) and becomes independent of the initial distribution. We argue that this scaling explains the narrow size distributions of colloidal dispersions that have been synthesized through aggregation processes.

  5. Neural decoding with kernel-based metric learning.

    PubMed

    Brockmeier, Austin J; Choi, John S; Kriminger, Evan G; Francis, Joseph T; Principe, Jose C

    2014-06-01

    In studies of the nervous system, the choice of metric for the neural responses is a pivotal assumption. For instance, a well-suited distance metric enables us to gauge the similarity of neural responses to various stimuli and assess the variability of responses to a repeated stimulus-exploratory steps in understanding how the stimuli are encoded neurally. Here we introduce an approach where the metric is tuned for a particular neural decoding task. Neural spike train metrics have been used to quantify the information content carried by the timing of action potentials. While a number of metrics for individual neurons exist, a method to optimally combine single-neuron metrics into multineuron, or population-based, metrics is lacking. We pose the problem of optimizing multineuron metrics and other metrics using centered alignment, a kernel-based dependence measure. The approach is demonstrated on invasively recorded neural data consisting of both spike trains and local field potentials. The experimental paradigm consists of decoding the location of tactile stimulation on the forepaws of anesthetized rats. We show that the optimized metrics highlight the distinguishing dimensions of the neural response, significantly increase the decoding accuracy, and improve nonlinear dimensionality reduction methods for exploratory neural analysis.

  6. New adaptive statistical iterative reconstruction ASiR-V: Assessment of noise performance in comparison to ASiR.

    PubMed

    De Marco, Paolo; Origgi, Daniela

    2018-03-01

    To assess the noise characteristics of the new adaptive statistical iterative reconstruction (ASiR-V) in comparison to ASiR. A water phantom was acquired with common clinical scanning parameters, at five different levels of CTDI vol . Images were reconstructed with different kernels (STD, SOFT, and BONE), different IR levels (40%, 60%, and 100%) and different slice thickness (ST) (0.625 and 2.5 mm), both for ASiR-V and ASiR. Noise properties were investigated and noise power spectrum (NPS) was evaluated. ASiR-V significantly reduced noise relative to FBP: noise reduction was in the range 23%-60% for a 0.625 mm ST and 12%-64% for the 2.5 mm ST. Above 2 mGy, noise reduction for ASiR-V had no dependence on dose. Noise reduction for ASIR-V has dependence on ST, being greater for STD and SOFT kernels at 2.5 mm. For the STD kernel ASiR-V has greater noise reduction for both ST, if compared to ASiR. For the SOFT kernel, results varies according to dose and ST, while for BONE kernel ASIR-V shows less noise reduction. NPS for CT Revolution has dose dependent behavior at lower doses. NPS for ASIR-V and ASiR is similar, showing a shift toward lower frequencies as the IR level increases for STD and SOFT kernels. The NPS is different between ASiR-V and ASIR with BONE kernel. NPS for ASiR-V appears to be ST dependent, having a shift toward lower frequencies for 2.5 mm ST. ASiR-V showed greater noise reduction than ASiR for STD and SOFT kernels, while keeping the same NPS. For the BONE kernel, ASiR-V presents a completely different behavior, with less noise reduction and modified NPS. Noise properties of the ASiR-V are dependent on reconstruction slice thickness. The noise properties of ASiR-V suggest the need for further measurements and efforts to establish new CT protocols to optimize clinical imaging. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Samuel; Patterson, David; Oliker, Leonid

    This article consists of a collection of slides from the authors' conference presentation. The Roofline model is a visually intuitive figure for kernel analysis and optimization. We believe undergraduates will find it useful in assessing performance and scalability limitations. It is easily extended to other architectural paradigms. It is easily extendable to other metrics: performance (sort, graphics, crypto..) bandwidth (L2, PCIe, ..). Furthermore, a performance counters could be used to generate a runtime-specific roofline that would greatly aide the optimization.

  8. Pulmonary Nodule Recognition Based on Multiple Kernel Learning Support Vector Machine-PSO

    PubMed Central

    Zhu, Zhichuan; Zhao, Qingdong; Liu, Liwei; Zhang, Lijuan

    2018-01-01

    Pulmonary nodule recognition is the core module of lung CAD. The Support Vector Machine (SVM) algorithm has been widely used in pulmonary nodule recognition, and the algorithm of Multiple Kernel Learning Support Vector Machine (MKL-SVM) has achieved good results therein. Based on grid search, however, the MKL-SVM algorithm needs long optimization time in course of parameter optimization; also its identification accuracy depends on the fineness of grid. In the paper, swarm intelligence is introduced and the Particle Swarm Optimization (PSO) is combined with MKL-SVM algorithm to be MKL-SVM-PSO algorithm so as to realize global optimization of parameters rapidly. In order to obtain the global optimal solution, different inertia weights such as constant inertia weight, linear inertia weight, and nonlinear inertia weight are applied to pulmonary nodules recognition. The experimental results show that the model training time of the proposed MKL-SVM-PSO algorithm is only 1/7 of the training time of the MKL-SVM grid search algorithm, achieving better recognition effect. Moreover, Euclidean norm of normalized error vector is proposed to measure the proximity between the average fitness curve and the optimal fitness curve after convergence. Through statistical analysis of the average of 20 times operation results with different inertial weights, it can be seen that the dynamic inertial weight is superior to the constant inertia weight in the MKL-SVM-PSO algorithm. In the dynamic inertial weight algorithm, the parameter optimization time of nonlinear inertia weight is shorter; the average fitness value after convergence is much closer to the optimal fitness value, which is better than the linear inertial weight. Besides, a better nonlinear inertial weight is verified. PMID:29853983

  9. Pulmonary Nodule Recognition Based on Multiple Kernel Learning Support Vector Machine-PSO.

    PubMed

    Li, Yang; Zhu, Zhichuan; Hou, Alin; Zhao, Qingdong; Liu, Liwei; Zhang, Lijuan

    2018-01-01

    Pulmonary nodule recognition is the core module of lung CAD. The Support Vector Machine (SVM) algorithm has been widely used in pulmonary nodule recognition, and the algorithm of Multiple Kernel Learning Support Vector Machine (MKL-SVM) has achieved good results therein. Based on grid search, however, the MKL-SVM algorithm needs long optimization time in course of parameter optimization; also its identification accuracy depends on the fineness of grid. In the paper, swarm intelligence is introduced and the Particle Swarm Optimization (PSO) is combined with MKL-SVM algorithm to be MKL-SVM-PSO algorithm so as to realize global optimization of parameters rapidly. In order to obtain the global optimal solution, different inertia weights such as constant inertia weight, linear inertia weight, and nonlinear inertia weight are applied to pulmonary nodules recognition. The experimental results show that the model training time of the proposed MKL-SVM-PSO algorithm is only 1/7 of the training time of the MKL-SVM grid search algorithm, achieving better recognition effect. Moreover, Euclidean norm of normalized error vector is proposed to measure the proximity between the average fitness curve and the optimal fitness curve after convergence. Through statistical analysis of the average of 20 times operation results with different inertial weights, it can be seen that the dynamic inertial weight is superior to the constant inertia weight in the MKL-SVM-PSO algorithm. In the dynamic inertial weight algorithm, the parameter optimization time of nonlinear inertia weight is shorter; the average fitness value after convergence is much closer to the optimal fitness value, which is better than the linear inertial weight. Besides, a better nonlinear inertial weight is verified.

  10. Localized Multiple Kernel Learning A Convex Approach

    DTIC Science & Technology

    2016-11-22

    data. All the aforementioned approaches to localized MKL are formulated in terms of non-convex optimization problems, and deep the- oretical...learning. IEEE Transactions on Neural Networks, 22(3):433–446, 2011. Jingjing Yang, Yuanning Li, Yonghong Tian, Lingyu Duan, and Wen Gao. Group-sensitive

  11. A locally adaptive kernel regression method for facies delineation

    NASA Astrophysics Data System (ADS)

    Fernàndez-Garcia, D.; Barahona-Palomo, M.; Henri, C. V.; Sanchez-Vila, X.

    2015-12-01

    Facies delineation is defined as the separation of geological units with distinct intrinsic characteristics (grain size, hydraulic conductivity, mineralogical composition). A major challenge in this area stems from the fact that only a few scattered pieces of hydrogeological information are available to delineate geological facies. Several methods to delineate facies are available in the literature, ranging from those based only on existing hard data, to those including secondary data or external knowledge about sedimentological patterns. This paper describes a methodology to use kernel regression methods as an effective tool for facies delineation. The method uses both the spatial and the actual sampled values to produce, for each individual hard data point, a locally adaptive steering kernel function, self-adjusting the principal directions of the local anisotropic kernels to the direction of highest local spatial correlation. The method is shown to outperform the nearest neighbor classification method in a number of synthetic aquifers whenever the available number of hard data is small and randomly distributed in space. In the case of exhaustive sampling, the steering kernel regression method converges to the true solution. Simulations ran in a suite of synthetic examples are used to explore the selection of kernel parameters in typical field settings. It is shown that, in practice, a rule of thumb can be used to obtain suboptimal results. The performance of the method is demonstrated to significantly improve when external information regarding facies proportions is incorporated. Remarkably, the method allows for a reasonable reconstruction of the facies connectivity patterns, shown in terms of breakthrough curves performance.

  12. Improved scatter correction using adaptive scatter kernel superposition

    NASA Astrophysics Data System (ADS)

    Sun, M.; Star-Lack, J. M.

    2010-11-01

    Accurate scatter correction is required to produce high-quality reconstructions of x-ray cone-beam computed tomography (CBCT) scans. This paper describes new scatter kernel superposition (SKS) algorithms for deconvolving scatter from projection data. The algorithms are designed to improve upon the conventional approach whose accuracy is limited by the use of symmetric kernels that characterize the scatter properties of uniform slabs. To model scatter transport in more realistic objects, nonstationary kernels, whose shapes adapt to local thickness variations in the projection data, are proposed. Two methods are introduced: (1) adaptive scatter kernel superposition (ASKS) requiring spatial domain convolutions and (2) fast adaptive scatter kernel superposition (fASKS) where, through a linearity approximation, convolution is efficiently performed in Fourier space. The conventional SKS algorithm, ASKS, and fASKS, were tested with Monte Carlo simulations and with phantom data acquired on a table-top CBCT system matching the Varian On-Board Imager (OBI). All three models accounted for scatter point-spread broadening due to object thickening, object edge effects, detector scatter properties and an anti-scatter grid. Hounsfield unit (HU) errors in reconstructions of a large pelvis phantom with a measured maximum scatter-to-primary ratio over 200% were reduced from -90 ± 58 HU (mean ± standard deviation) with no scatter correction to 53 ± 82 HU with SKS, to 19 ± 25 HU with fASKS and to 13 ± 21 HU with ASKS. HU accuracies and measured contrast were similarly improved in reconstructions of a body-sized elliptical Catphan phantom. The results show that the adaptive SKS methods offer significant advantages over the conventional scatter deconvolution technique.

  13. Visualization of Oil Body Distribution in Jatropha curcas L. by Four-Wave Mixing Microscopy

    NASA Astrophysics Data System (ADS)

    Ishii, Makiko; Uchiyama, Susumu; Ozeki, Yasuyuki; Kajiyama, Sin'ichiro; Itoh, Kazuyoshi; Fukui, Kiichi

    2013-06-01

    Jatropha curcas L. (jatropha) is a superior oil crop for biofuel production. To improve the oil yield of jatropha by breeding, the development of effective and reliable tools to evaluate the oil production efficiency is essential. The characteristics of the jatropha kernel, which contains a large amount of oil, are not fully understood yet. Here, we demonstrate the application of four-wave mixing (FWM) microscopy to visualize the distribution of oil bodies in a jatropha kernel without staining. FWM microscopy enables us to visualize the size and morphology of oil bodies and to determine the oil content in the kernel to be 33.2%. The signal obtained from FWM microscopy comprises both of stimulated parametric emission (SPE) and coherent anti-Stokes Raman scattering (CARS) signals. In the present situation, where a very short pump pulse is employed, the SPE signal is believed to dominate the FWM signal.

  14. A linear-RBF multikernel SVM to classify big text corpora.

    PubMed

    Romero, R; Iglesias, E L; Borrajo, L

    2015-01-01

    Support vector machine (SVM) is a powerful technique for classification. However, SVM is not suitable for classification of large datasets or text corpora, because the training complexity of SVMs is highly dependent on the input size. Recent developments in the literature on the SVM and other kernel methods emphasize the need to consider multiple kernels or parameterizations of kernels because they provide greater flexibility. This paper shows a multikernel SVM to manage highly dimensional data, providing an automatic parameterization with low computational cost and improving results against SVMs parameterized under a brute-force search. The model consists in spreading the dataset into cohesive term slices (clusters) to construct a defined structure (multikernel). The new approach is tested on different text corpora. Experimental results show that the new classifier has good accuracy compared with the classic SVM, while the training is significantly faster than several other SVM classifiers.

  15. Feature extraction based on semi-supervised kernel Marginal Fisher analysis and its application in bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Xuan, Jianping; Shi, Tielin

    2013-12-01

    Generally, the vibration signals of faulty machinery are non-stationary and nonlinear under complicated operating conditions. Therefore, it is a big challenge for machinery fault diagnosis to extract optimal features for improving classification accuracy. This paper proposes semi-supervised kernel Marginal Fisher analysis (SSKMFA) for feature extraction, which can discover the intrinsic manifold structure of dataset, and simultaneously consider the intra-class compactness and the inter-class separability. Based on SSKMFA, a novel approach to fault diagnosis is put forward and applied to fault recognition of rolling bearings. SSKMFA directly extracts the low-dimensional characteristics from the raw high-dimensional vibration signals, by exploiting the inherent manifold structure of both labeled and unlabeled samples. Subsequently, the optimal low-dimensional features are fed into the simplest K-nearest neighbor (KNN) classifier to recognize different fault categories and severities of bearings. The experimental results demonstrate that the proposed approach improves the fault recognition performance and outperforms the other four feature extraction methods.

  16. A boosted optimal linear learner for retinal vessel segmentation

    NASA Astrophysics Data System (ADS)

    Poletti, E.; Grisan, E.

    2014-03-01

    Ocular fundus images provide important information about retinal degeneration, which may be related to acute pathologies or to early signs of systemic diseases. An automatic and quantitative assessment of vessel morphological features, such as diameters and tortuosity, can improve clinical diagnosis and evaluation of retinopathy. At variance with available methods, we propose a data-driven approach, in which the system learns a set of optimal discriminative convolution kernels (linear learner). The set is progressively built based on an ADA-boost sample weighting scheme, providing seamless integration between linear learner estimation and classification. In order to capture the vessel appearance changes at different scales, the kernels are estimated on a pyramidal decomposition of the training samples. The set is employed as a rotating bank of matched filters, whose response is used by the boosted linear classifier to provide a classification of each image pixel into the two classes of interest (vessel/background). We tested the approach fundus images available from the DRIVE dataset. We show that the segmentation performance yields an accuracy of 0.94.

  17. Stable Local Volatility Calibration Using Kernel Splines

    NASA Astrophysics Data System (ADS)

    Coleman, Thomas F.; Li, Yuying; Wang, Cheng

    2010-09-01

    We propose an optimization formulation using L1 norm to ensure accuracy and stability in calibrating a local volatility function for option pricing. Using a regularization parameter, the proposed objective function balances the calibration accuracy with the model complexity. Motivated by the support vector machine learning, the unknown local volatility function is represented by a kernel function generating splines and the model complexity is controlled by minimizing the 1-norm of the kernel coefficient vector. In the context of the support vector regression for function estimation based on a finite set of observations, this corresponds to minimizing the number of support vectors for predictability. We illustrate the ability of the proposed approach to reconstruct the local volatility function in a synthetic market. In addition, based on S&P 500 market index option data, we demonstrate that the calibrated local volatility surface is simple and resembles the observed implied volatility surface in shape. Stability is illustrated by calibrating local volatility functions using market option data from different dates.

  18. Software implementation of the SKIPSM paradigm under PIP

    NASA Astrophysics Data System (ADS)

    Hack, Ralf; Waltz, Frederick M.; Batchelor, Bruce G.

    1997-09-01

    SKIPSM (separated-kernel image processing using finite state machines) is a technique for implementing large-kernel binary- morphology operators and many other operations. While earlier papers on SKIPSM concentrated mainly on implementations using pipelined hardware, there is considerable scope for achieving major speed improvements in software systems. Using identical control software, one-pass binary erosion and dilation structuring elements (SEs) ranging from the trivial (3 by 3) to the gigantic (51 by 51, or even larger), are readily available. Processing speed is independent of the size of the SE, making the SKIPSM approach practical for work with very large SEs on ordinary desktop computers. PIP (prolog image processing) is an interactive machine vision prototyping environment developed at the University of Wales Cardiff. It consists of a large number of image processing operators embedded within the standard AI language Prolog. This paper describes the SKIPSM implementation of binary morphology operators within PIP. A large set of binary erosion and dilation operations (circles, squares, diamonds, octagons, etc.) is available to the user through a command-line driven dialogue, via pull-down menus, or incorporated into standard (Prolog) programs. Little has been done thus far to optimize speed on this first software implementation of SKIPSM. Nevertheless, the results are impressive. The paper describes sample applications and presents timing figures. Readers have the opportunity to try out these operations on demonstration software written by the University of Wales, or via their WWW home page at http://bruce.cs.cf.ac.uk/bruce/index.html .

  19. Software-based high-level synthesis design of FPGA beamformers for synthetic aperture imaging.

    PubMed

    Amaro, Joao; Yiu, Billy Y S; Falcao, Gabriel; Gomes, Marco A C; Yu, Alfred C H

    2015-05-01

    Field-programmable gate arrays (FPGAs) can potentially be configured as beamforming platforms for ultrasound imaging, but a long design time and skilled expertise in hardware programming are typically required. In this article, we present a novel approach to the efficient design of FPGA beamformers for synthetic aperture (SA) imaging via the use of software-based high-level synthesis techniques. Software kernels (coded in OpenCL) were first developed to stage-wise handle SA beamforming operations, and their corresponding FPGA logic circuitry was emulated through a high-level synthesis framework. After design space analysis, the fine-tuned OpenCL kernels were compiled into register transfer level descriptions to configure an FPGA as a beamformer module. The processing performance of this beamformer was assessed through a series of offline emulation experiments that sought to derive beamformed images from SA channel-domain raw data (40-MHz sampling rate, 12 bit resolution). With 128 channels, our FPGA-based SA beamformer can achieve 41 frames per second (fps) processing throughput (3.44 × 10(8) pixels per second for frame size of 256 × 256 pixels) at 31.5 W power consumption (1.30 fps/W power efficiency). It utilized 86.9% of the FPGA fabric and operated at a 196.5 MHz clock frequency (after optimization). Based on these findings, we anticipate that FPGA and high-level synthesis can together foster rapid prototyping of real-time ultrasound processor modules at low power consumption budgets.

  20. Data Assimilation on a Quantum Annealing Computer: Feasibility and Scalability

    NASA Astrophysics Data System (ADS)

    Nearing, G. S.; Halem, M.; Chapman, D. R.; Pelissier, C. S.

    2014-12-01

    Data assimilation is one of the ubiquitous and computationally hard problems in the Earth Sciences. In particular, ensemble-based methods require a large number of model evaluations to estimate the prior probability density over system states, and variational methods require adjoint calculations and iteration to locate the maximum a posteriori solution in the presence of nonlinear models and observation operators. Quantum annealing computers (QAC) like the new D-Wave housed at the NASA Ames Research Center can be used for optimization and sampling, and therefore offers a new possibility for efficiently solving hard data assimilation problems. Coding on the QAC is not straightforward: a problem must be posed as a Quadratic Unconstrained Binary Optimization (QUBO) and mapped to a spherical Chimera graph. We have developed a method for compiling nonlinear 4D-Var problems on the D-Wave that consists of five steps: Emulating the nonlinear model and/or observation function using radial basis functions (RBF) or Chebyshev polynomials. Truncating a Taylor series around each RBF kernel. Reducing the Taylor polynomial to a quadratic using ancilla gadgets. Mapping the real-valued quadratic to a fixed-precision binary quadratic. Mapping the fully coupled binary quadratic to a partially coupled spherical Chimera graph using ancilla gadgets. At present the D-Wave contains 512 qbits (with 1024 and 2048 qbit machines due in the next two years); this machine size allows us to estimate only 3 state variables at each satellite overpass. However, QAC's solve optimization problems using a physical (quantum) system, and therefore do not require iterations or calculation of model adjoints. This has the potential to revolutionize our ability to efficiently perform variational data assimilation, as the size of these computers grows in the coming years.

  1. Improving Classification of Cancer and Mining Biomarkers from Gene Expression Profiles Using Hybrid Optimization Algorithms and Fuzzy Support Vector Machine

    PubMed Central

    Moteghaed, Niloofar Yousefi; Maghooli, Keivan; Garshasbi, Masoud

    2018-01-01

    Background: Gene expression data are characteristically high dimensional with a small sample size in contrast to the feature size and variability inherent in biological processes that contribute to difficulties in analysis. Selection of highly discriminative features decreases the computational cost and complexity of the classifier and improves its reliability for prediction of a new class of samples. Methods: The present study used hybrid particle swarm optimization and genetic algorithms for gene selection and a fuzzy support vector machine (SVM) as the classifier. Fuzzy logic is used to infer the importance of each sample in the training phase and decrease the outlier sensitivity of the system to increase the ability to generalize the classifier. A decision-tree algorithm was applied to the most frequent genes to develop a set of rules for each type of cancer. This improved the abilities of the algorithm by finding the best parameters for the classifier during the training phase without the need for trial-and-error by the user. The proposed approach was tested on four benchmark gene expression profiles. Results: Good results have been demonstrated for the proposed algorithm. The classification accuracy for leukemia data is 100%, for colon cancer is 96.67% and for breast cancer is 98%. The results show that the best kernel used in training the SVM classifier is the radial basis function. Conclusions: The experimental results show that the proposed algorithm can decrease the dimensionality of the dataset, determine the most informative gene subset, and improve classification accuracy using the optimal parameters of the classifier with no user interface. PMID:29535919

  2. Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds.

    PubMed

    Ekman, Asa; Hayden, Daniel M; Dehesh, Katayoon; Bülow, Leif; Stymne, Sten

    2008-01-01

    Cereals accumulate starch in the endosperm as their major energy reserve in the grain. In most cereals the embryo, scutellum, and aleurone layer are high in oil, but these tissues constitute a very small part of the total seed weight. However, in oat (Avena sativa L.) most of the oil in kernels is deposited in the same endosperm cells that accumulate starch. Thus oat endosperm is a desirable model system to study the metabolic switches responsible for carbon partitioning between oil and starch synthesis. A prerequisite for such investigations is the development of an experimental system for oat that allows for metabolic flux analysis using stable and radioactive isotope labelling. An in vitro liquid culture system, developed for detached oat panicles and optimized to mimic kernel composition during different developmental stages in planta, is presented here. This system was subsequently used in analyses of carbon partitioning between lipids and carbohydrates by the administration of 14C-labelled sucrose to two cultivars having different amounts of kernel oil. The data presented in this study clearly show that a higher amount of oil in the high-oil cultivar compared with the medium-oil cultivar was due to a higher proportion of carbon partitioning into oil during seed filling, predominantly at the earlier stages of kernel development.

  3. Margin-maximizing feature elimination methods for linear and nonlinear kernel-based discriminant functions.

    PubMed

    Aksu, Yaman; Miller, David J; Kesidis, George; Yang, Qing X

    2010-05-01

    Feature selection for classification in high-dimensional spaces can improve generalization, reduce classifier complexity, and identify important, discriminating feature "markers." For support vector machine (SVM) classification, a widely used technique is recursive feature elimination (RFE). We demonstrate that RFE is not consistent with margin maximization, central to the SVM learning approach. We thus propose explicit margin-based feature elimination (MFE) for SVMs and demonstrate both improved margin and improved generalization, compared with RFE. Moreover, for the case of a nonlinear kernel, we show that RFE assumes that the squared weight vector 2-norm is strictly decreasing as features are eliminated. We demonstrate this is not true for the Gaussian kernel and, consequently, RFE may give poor results in this case. MFE for nonlinear kernels gives better margin and generalization. We also present an extension which achieves further margin gains, by optimizing only two degrees of freedom--the hyperplane's intercept and its squared 2-norm--with the weight vector orientation fixed. We finally introduce an extension that allows margin slackness. We compare against several alternatives, including RFE and a linear programming method that embeds feature selection within the classifier design. On high-dimensional gene microarray data sets, University of California at Irvine (UCI) repository data sets, and Alzheimer's disease brain image data, MFE methods give promising results.

  4. Fermentation profile and identification of lactic acid bacteria and yeasts of rehydrated corn kernel silage.

    PubMed

    Carvalho, B F; Ávila, C L S; Bernardes, T F; Pereira, M N; Santos, C; Schwan, R F

    2017-03-01

    The aim of this study was to evaluate the chemical and microbiological characteristics and to identify the lactic acid bacteria (LAB) and yeasts involved in rehydrated corn kernel silage. Four replicates for each fermentation time: 5, 15, 30, 60, 90, 150, 210 and 280 days were prepared. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and PCR-based identification were utilized to identify LAB and yeasts. Eighteen bacteria and four yeast species were identified. The bacteria population reached maximum growth after 15 days and moulds were detected up to this time. The highest dry matter (DM) loss was 7·6% after 280 days. The low concentration of water-soluble carbohydrates (20 g kg -1 of DM) was not limiting for fermentation, although the reduction in pH and acid production occurred slowly. Storage of the rehydrated corn kernel silage increased digestibility up to day 280. This silage was dominated by LAB but showed a slow decrease in pH values. This technique of corn storage on farms increased the DM digestibility. This study was the first to evaluate the rehydrated corn kernel silage fermentation dynamics and our findings are relevant to optimization of this silage fermentation. © 2016 The Society for Applied Microbiology.

  5. On the Efficacy of Source Code Optimizations for Cache-Based Systems

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.; Saphir, William C.

    1998-01-01

    Obtaining high performance without machine-specific tuning is an important goal of scientific application programmers. Since most scientific processing is done on commodity microprocessors with hierarchical memory systems, this goal of "portable performance" can be achieved if a common set of optimization principles is effective for all such systems. It is widely believed, or at least hoped, that portable performance can be realized. The rule of thumb for optimization on hierarchical memory systems is to maximize temporal and spatial locality of memory references by reusing data and minimizing memory access stride. We investigate the effects of a number of optimizations on the performance of three related kernels taken from a computational fluid dynamics application. Timing the kernels on a range of processors, we observe an inconsistent and often counterintuitive impact of the optimizations on performance. In particular, code variations that have a positive impact on one architecture can have a negative impact on another, and variations expected to be unimportant can produce large effects. Moreover, we find that cache miss rates - as reported by a cache simulation tool, and confirmed by hardware counters - only partially explain the results. By contrast, the compiler-generated assembly code provides more insight by revealing the importance of processor-specific instructions and of compiler maturity, both of which strongly, and sometimes unexpectedly, influence performance. We conclude that it is difficult to obtain performance portability on modern cache-based computers, and comment on the implications of this result.

  6. On the Efficacy of Source Code Optimizations for Cache-Based Systems

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.; Saphir, William C.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Obtaining high performance without machine-specific tuning is an important goal of scientific application programmers. Since most scientific processing is done on commodity microprocessors with hierarchical memory systems, this goal of "portable performance" can be achieved if a common set of optimization principles is effective for all such systems. It is widely believed, or at least hoped, that portable performance can be realized. The rule of thumb for optimization on hierarchical memory systems is to maximize temporal and spatial locality of memory references by reusing data and minimizing memory access stride. We investigate the effects of a number of optimizations on the performance of three related kernels taken from a computational fluid dynamics application. Timing the kernels on a range of processors, we observe an inconsistent and often counterintuitive impact of the optimizations on performance. In particular, code variations that have a positive impact on one architecture can have a negative impact on another, and variations expected to be unimportant can produce large effects. Moreover, we find that cache miss rates-as reported by a cache simulation tool, and confirmed by hardware counters-only partially explain the results. By contrast, the compiler-generated assembly code provides more insight by revealing the importance of processor-specific instructions and of compiler maturity, both of which strongly, and sometimes unexpectedly, influence performance. We conclude that it is difficult to obtain performance portability on modern cache-based computers, and comment on the implications of this result.

  7. Active impulsive noise control using maximum correntropy with adaptive kernel size

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Zhao, Haiquan

    2017-03-01

    The active noise control (ANC) based on the principle of superposition is an attractive method to attenuate the noise signals. However, the impulsive noise in the ANC systems will degrade the performance of the controller. In this paper, a filtered-x recursive maximum correntropy (FxRMC) algorithm is proposed based on the maximum correntropy criterion (MCC) to reduce the effect of outliers. The proposed FxRMC algorithm does not requires any priori information of the noise characteristics and outperforms the filtered-x least mean square (FxLMS) algorithm for impulsive noise. Meanwhile, in order to adjust the kernel size of FxRMC algorithm online, a recursive approach is proposed through taking into account the past estimates of error signals over a sliding window. Simulation and experimental results in the context of active impulsive noise control demonstrate that the proposed algorithms achieve much better performance than the existing algorithms in various noise environments.

  8. Generalized PSF modeling for optimized quantitation in PET imaging.

    PubMed

    Ashrafinia, Saeed; Mohy-Ud-Din, Hassan; Karakatsanis, Nicolas A; Jha, Abhinav K; Casey, Michael E; Kadrmas, Dan J; Rahmim, Arman

    2017-06-21

    Point-spread function (PSF) modeling offers the ability to account for resolution degrading phenomena within the PET image generation framework. PSF modeling improves resolution and enhances contrast, but at the same time significantly alters image noise properties and induces edge overshoot effect. Thus, studying the effect of PSF modeling on quantitation task performance can be very important. Frameworks explored in the past involved a dichotomy of PSF versus no-PSF modeling. By contrast, the present work focuses on quantitative performance evaluation of standard uptake value (SUV) PET images, while incorporating a wide spectrum of PSF models, including those that under- and over-estimate the true PSF, for the potential of enhanced quantitation of SUVs. The developed framework first analytically models the true PSF, considering a range of resolution degradation phenomena (including photon non-collinearity, inter-crystal penetration and scattering) as present in data acquisitions with modern commercial PET systems. In the context of oncologic liver FDG PET imaging, we generated 200 noisy datasets per image-set (with clinically realistic noise levels) using an XCAT anthropomorphic phantom with liver tumours of varying sizes. These were subsequently reconstructed using the OS-EM algorithm with varying PSF modelled kernels. We focused on quantitation of both SUV mean and SUV max , including assessment of contrast recovery coefficients, as well as noise-bias characteristics (including both image roughness and coefficient of-variability), for different tumours/iterations/PSF kernels. It was observed that overestimated PSF yielded more accurate contrast recovery for a range of tumours, and typically improved quantitative performance. For a clinically reasonable number of iterations, edge enhancement due to PSF modeling (especially due to over-estimated PSF) was in fact seen to lower SUV mean bias in small tumours. Overall, the results indicate that exactly matched PSF modeling does not offer optimized PET quantitation, and that PSF overestimation may provide enhanced SUV quantitation. Furthermore, generalized PSF modeling may provide a valuable approach for quantitative tasks such as treatment-response assessment and prognostication.

  9. Initial Simulations of RF Waves in Hot Plasmas Using the FullWave Code

    NASA Astrophysics Data System (ADS)

    Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo

    2017-10-01

    FullWave is a simulation tool that models RF fields in hot inhomogeneous magnetized plasmas. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. In an rf field, the hot plasma dielectric response is limited to the distance of a few particles' Larmor radii, near the magnetic field line passing through the test point. The localization of the hot plasma dielectric response results in a sparse matrix of the problem thus significantly reduces the size of the problem and makes the simulations faster. We will present the initial results of modeling of rf waves using the Fullwave code, including calculation of nonlocal conductivity kernel in 2D Tokamak geometry; the interpolation of conductivity kernel from test points to adaptive cloud of computational points; and the results of self-consistent simulations of 2D rf fields using calculated hot plasma conductivity kernel in a tokamak plasma with reduced parameters. Work supported by the US DOE ``SBIR program.

  10. Prediction of Heterodimeric Protein Complexes from Weighted Protein-Protein Interaction Networks Using Novel Features and Kernel Functions

    PubMed Central

    Ruan, Peiying; Hayashida, Morihiro; Maruyama, Osamu; Akutsu, Tatsuya

    2013-01-01

    Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These methods have dealt with only complexes with size of more than three because the methods often are based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part according to several comprehensive databases of known complexes. In this paper, we propose several feature space mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric protein complexes. PMID:23776458

  11. A fast non-local means algorithm based on integral image and reconstructed similar kernel

    NASA Astrophysics Data System (ADS)

    Lin, Zheng; Song, Enmin

    2018-03-01

    Image denoising is one of the essential methods in digital image processing. The non-local means (NLM) denoising approach is a remarkable denoising technique. However, its time complexity of the computation is high. In this paper, we design a fast NLM algorithm based on integral image and reconstructed similar kernel. First, the integral image is introduced in the traditional NLM algorithm. In doing so, it reduces a great deal of repetitive operations in the parallel processing, which will greatly improves the running speed of the algorithm. Secondly, in order to amend the error of the integral image, we construct a similar window resembling the Gaussian kernel in the pyramidal stacking pattern. Finally, in order to eliminate the influence produced by replacing the Gaussian weighted Euclidean distance with Euclidean distance, we propose a scheme to construct a similar kernel with a size of 3 x 3 in a neighborhood window which will reduce the effect of noise on a single pixel. Experimental results demonstrate that the proposed algorithm is about seventeen times faster than the traditional NLM algorithm, yet produce comparable results in terms of Peak Signal-to- Noise Ratio (the PSNR increased 2.9% in average) and perceptual image quality.

  12. Rapid simulation of spatial epidemics: a spectral method.

    PubMed

    Brand, Samuel P C; Tildesley, Michael J; Keeling, Matthew J

    2015-04-07

    Spatial structure and hence the spatial position of host populations plays a vital role in the spread of infection. In the majority of situations, it is only possible to predict the spatial spread of infection using simulation models, which can be computationally demanding especially for large population sizes. Here we develop an approximation method that vastly reduces this computational burden. We assume that the transmission rates between individuals or sub-populations are determined by a spatial transmission kernel. This kernel is assumed to be isotropic, such that the transmission rate is simply a function of the distance between susceptible and infectious individuals; as such this provides the ideal mechanism for modelling localised transmission in a spatial environment. We show that the spatial force of infection acting on all susceptibles can be represented as a spatial convolution between the transmission kernel and a spatially extended 'image' of the infection state. This representation allows the rapid calculation of stochastic rates of infection using fast-Fourier transform (FFT) routines, which greatly improves the computational efficiency of spatial simulations. We demonstrate the efficiency and accuracy of this fast spectral rate recalculation (FSR) method with two examples: an idealised scenario simulating an SIR-type epidemic outbreak amongst N habitats distributed across a two-dimensional plane; the spread of infection between US cattle farms, illustrating that the FSR method makes continental-scale outbreak forecasting feasible with desktop processing power. The latter model demonstrates which areas of the US are at consistently high risk for cattle-infections, although predictions of epidemic size are highly dependent on assumptions about the tail of the transmission kernel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Difference in postprandial GLP-1 response despite similar glucose kinetics after consumption of wheat breads with different particle size in healthy men.

    PubMed

    Eelderink, Coby; Noort, Martijn W J; Sozer, Nesli; Koehorst, Martijn; Holst, Jens J; Deacon, Carolyn F; Rehfeld, Jens F; Poutanen, Kaisa; Vonk, Roel J; Oudhuis, Lizette; Priebe, Marion G

    2017-04-01

    Underlying mechanisms of the beneficial health effects of low glycemic index starchy foods are not fully elucidated yet. We varied the wheat particle size to obtain fiber-rich breads with a high and low glycemic response and investigated the differences in postprandial glucose kinetics and metabolic response after their consumption. Ten healthy male volunteers participated in a randomized, crossover study, consuming 13 C-enriched breads with different structures; a control bread (CB) made from wheat flour combined with wheat bran, and a kernel bread (KB) where 85 % of flour was substituted with broken wheat kernels. The structure of the breads was characterized extensively. The use of stable isotopes enabled calculation of glucose kinetics: rate of appearance of exogenous glucose, endogenous glucose production, and glucose clearance rate. Additionally, postprandial plasma concentrations of glucose, insulin, glucagon, incretins, cholecystokinin, and bile acids were analyzed. Despite the attempt to obtain a bread with a low glycemic response by replacing flour by broken kernels, the glycemic response and glucose kinetics were quite similar after consumption of CB and KB. Interestingly, the glucagon-like peptide-1 (GLP-1) response was much lower after KB compared to CB (iAUC, P < 0.005). A clear postprandial increase in plasma conjugated bile acids was observed after both meals. Substitution of 85 % wheat flour by broken kernels in bread did not result in a difference in glucose response and kinetics, but in a pronounced difference in GLP-1 response. Thus, changing the processing conditions of wheat for baking bread can influence the metabolic response beyond glycemia and may therefore influence health.

  14. The Latent Structure of Dictionaries.

    PubMed

    Vincent-Lamarre, Philippe; Massé, Alexandre Blondin; Lopes, Marcos; Lord, Mélanie; Marcotte, Odile; Harnad, Stevan

    2016-07-01

    How many words-and which ones-are sufficient to define all other words? When dictionaries are analyzed as directed graphs with links from defining words to defined words, they reveal a latent structure. Recursively removing all words that are reachable by definition but that do not define any further words reduces the dictionary to a Kernel of about 10% of its size. This is still not the smallest number of words that can define all the rest. About 75% of the Kernel turns out to be its Core, a "Strongly Connected Subset" of words with a definitional path to and from any pair of its words and no word's definition depending on a word outside the set. But the Core cannot define all the rest of the dictionary. The 25% of the Kernel surrounding the Core consists of small strongly connected subsets of words: the Satellites. The size of the smallest set of words that can define all the rest-the graph's "minimum feedback vertex set" or MinSet-is about 1% of the dictionary, about 15% of the Kernel, and part-Core/part-Satellite. But every dictionary has a huge number of MinSets. The Core words are learned earlier, more frequent, and less concrete than the Satellites, which are in turn learned earlier, more frequent, but more concrete than the rest of the Dictionary. In principle, only one MinSet's words would need to be grounded through the sensorimotor capacity to recognize and categorize their referents. In a dual-code sensorimotor/symbolic model of the mental lexicon, the symbolic code could do all the rest through recombinatory definition. Copyright © 2016 Cognitive Science Society, Inc.

  15. Multiscale approach to contour fitting for MR images

    NASA Astrophysics Data System (ADS)

    Rueckert, Daniel; Burger, Peter

    1996-04-01

    We present a new multiscale contour fitting process which combines information about the image and the contour of the object at different levels of scale. The algorithm is based on energy minimizing deformable models but avoids some of the problems associated with these models. The segmentation algorithm starts by constructing a linear scale-space of an image through convolution of the original image with a Gaussian kernel at different levels of scale, where the scale corresponds to the standard deviation of the Gaussian kernel. At high levels of scale large scale features of the objects are preserved while small scale features, like object details as well as noise, are suppressed. In order to maximize the accuracy of the segmentation, the contour of the object of interest is then tracked in scale-space from coarse to fine scales. We propose a hybrid multi-temperature simulated annealing optimization to minimize the energy of the deformable model. At high levels of scale the SA optimization is started at high temperatures, enabling the SA optimization to find a global optimal solution. At lower levels of scale the SA optimization is started at lower temperatures (at the lowest level the temperature is close to 0). This enforces a more deterministic behavior of the SA optimization at lower scales and leads to an increasingly local optimization as high energy barriers cannot be crossed. The performance and robustness of the algorithm have been tested on spin-echo MR images of the cardiovascular system. The task was to segment the ascending and descending aorta in 15 datasets of different individuals in order to measure regional aortic compliance. The results show that the algorithm is able to provide more accurate segmentation results than the classic contour fitting process and is at the same time very robust to noise and initialization.

  16. Maize early endosperm growth and development: from fertilization through cell type differentiation.

    PubMed

    Leroux, Brian M; Goodyke, Austin J; Schumacher, Katelyn I; Abbott, Chelsi P; Clore, Amy M; Yadegari, Ramin; Larkins, Brian A; Dannenhoffer, Joanne M

    2014-08-01

    • Given the worldwide economic importance of maize endosperm, it is surprising that its development is not the most comprehensively studied of the cereals. We present detailed morphometric and cytological descriptions of endosperm development in the maize inbred line B73, for which the genome has been sequenced, and compare its growth with four diverse Nested Association Mapping (NAM) founder lines.• The first 12 d of B73 endosperm development were described using semithin sections of plastic-embedded kernels and confocal microscopy. Longitudinal sections were used to compare endosperm length, thickness, and area.• Morphometric comparison between Arizona- and Michigan-grown B73 showed a common pattern. Early endosperm development was divided into four stages: coenocytic, cellularization through alveolation, cellularization through partitioning, and differentiation. We observed tightly synchronous nuclear divisions in the coenocyte, elucidated that the onset of cellularization was coincident with endosperm size, and identified a previously undefined cell type (basal intermediate zone, BIZ). NAM founders with small mature kernels had larger endosperms (0-6 d after pollination) than lines with large mature kernels.• Our B73-specific model of early endosperm growth links developmental events to relative endosperm size, while accounting for diverse growing conditions. Maize endosperm cellularizes through alveolation, then random partitioning of the central vacuole. This unique cellularization feature of maize contrasts with the smaller endosperms of Arabidopsis, barley, and rice that strictly cellularize through repeated alveolation. NAM analysis revealed differences in endosperm size during early development, which potentially relates to differences in timing of cellularization across diverse lines of maize. © 2014 Botanical Society of America, Inc.

  17. Reproductive sink of sweet corn in response to plant density and hybrid

    USDA-ARS?s Scientific Manuscript database

    Improvements in plant density tolerance have played an essential role in grain corn yield gains for ~80 years; however, plant density effects on sweet corn biomass allocation to the ear (the reproductive ‘sink’) is poorly quantified. Moreover, optimal plant densities for modern white-kernel shrunke...

  18. Application of kernel functions for accurate similarity search in large chemical databases.

    PubMed

    Wang, Xiaohong; Huan, Jun; Smalter, Aaron; Lushington, Gerald H

    2010-04-29

    Similarity search in chemical structure databases is an important problem with many applications in chemical genomics, drug design, and efficient chemical probe screening among others. It is widely believed that structure based methods provide an efficient way to do the query. Recently various graph kernel functions have been designed to capture the intrinsic similarity of graphs. Though successful in constructing accurate predictive and classification models, graph kernel functions can not be applied to large chemical compound database due to the high computational complexity and the difficulties in indexing similarity search for large databases. To bridge graph kernel function and similarity search in chemical databases, we applied a novel kernel-based similarity measurement, developed in our team, to measure similarity of graph represented chemicals. In our method, we utilize a hash table to support new graph kernel function definition, efficient storage and fast search. We have applied our method, named G-hash, to large chemical databases. Our results show that the G-hash method achieves state-of-the-art performance for k-nearest neighbor (k-NN) classification. Moreover, the similarity measurement and the index structure is scalable to large chemical databases with smaller indexing size, and faster query processing time as compared to state-of-the-art indexing methods such as Daylight fingerprints, C-tree and GraphGrep. Efficient similarity query processing method for large chemical databases is challenging since we need to balance running time efficiency and similarity search accuracy. Our previous similarity search method, G-hash, provides a new way to perform similarity search in chemical databases. Experimental study validates the utility of G-hash in chemical databases.

  19. Static and dynamic behaviour of nonlocal elastic bar using integral strain-based and peridynamic models

    NASA Astrophysics Data System (ADS)

    Challamel, Noël

    2018-04-01

    The static and dynamic behaviour of a nonlocal bar of finite length is studied in this paper. The nonlocal integral models considered in this paper are strain-based and relative displacement-based nonlocal models; the latter one is also labelled as a peridynamic model. For infinite media, and for sufficiently smooth displacement fields, both integral nonlocal models can be equivalent, assuming some kernel correspondence rules. For infinite media (or finite media with extended reflection rules), it is also shown that Eringen's differential model can be reformulated into a consistent strain-based integral nonlocal model with exponential kernel, or into a relative displacement-based integral nonlocal model with a modified exponential kernel. A finite bar in uniform tension is considered as a paradigmatic static case. The strain-based nonlocal behaviour of this bar in tension is analyzed for different kernels available in the literature. It is shown that the kernel has to fulfil some normalization and end compatibility conditions in order to preserve the uniform strain field associated with this homogeneous stress state. Such a kernel can be built by combining a local and a nonlocal strain measure with compatible boundary conditions, or by extending the domain outside its finite size while preserving some kinematic compatibility conditions. The same results are shown for the nonlocal peridynamic bar where a homogeneous strain field is also analytically obtained in the elastic bar for consistent compatible kinematic boundary conditions at the vicinity of the end conditions. The results are extended to the vibration of a fixed-fixed finite bar where the natural frequencies are calculated for both the strain-based and the peridynamic models.

  20. A Fast Multiple-Kernel Method With Applications to Detect Gene-Environment Interaction.

    PubMed

    Marceau, Rachel; Lu, Wenbin; Holloway, Shannon; Sale, Michèle M; Worrall, Bradford B; Williams, Stephen R; Hsu, Fang-Chi; Tzeng, Jung-Ying

    2015-09-01

    Kernel machine (KM) models are a powerful tool for exploring associations between sets of genetic variants and complex traits. Although most KM methods use a single kernel function to assess the marginal effect of a variable set, KM analyses involving multiple kernels have become increasingly popular. Multikernel analysis allows researchers to study more complex problems, such as assessing gene-gene or gene-environment interactions, incorporating variance-component based methods for population substructure into rare-variant association testing, and assessing the conditional effects of a variable set adjusting for other variable sets. The KM framework is robust, powerful, and provides efficient dimension reduction for multifactor analyses, but requires the estimation of high dimensional nuisance parameters. Traditional estimation techniques, including regularization and the "expectation-maximization (EM)" algorithm, have a large computational cost and are not scalable to large sample sizes needed for rare variant analysis. Therefore, under the context of gene-environment interaction, we propose a computationally efficient and statistically rigorous "fastKM" algorithm for multikernel analysis that is based on a low-rank approximation to the nuisance effect kernel matrices. Our algorithm is applicable to various trait types (e.g., continuous, binary, and survival traits) and can be implemented using any existing single-kernel analysis software. Through extensive simulation studies, we show that our algorithm has similar performance to an EM-based KM approach for quantitative traits while running much faster. We also apply our method to the Vitamin Intervention for Stroke Prevention (VISP) clinical trial, examining gene-by-vitamin effects on recurrent stroke risk and gene-by-age effects on change in homocysteine level. © 2015 WILEY PERIODICALS, INC.

  1. SU-E-T-104: An Examination of Dose in the Buildup and Build-Down Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tome, W; Kuo, H; Phillips, J

    2015-06-15

    Purpose: To examine dose in the buildup and build-down regions and compare measurements made with various models and dosimeters Methods: Dose was examined in a 30×30cm {sup 2} phantom of water-equivalent plastic with 10cm of backscatter for various field sizes. Examination was performed with radiochromic film and optically-stimulated-luminescent-dosimeter (OSLD) chips, and compared against a plane-parallel chamber with a correction factor applied to approximate the response of an extrapolation chamber. For the build-down region, a correction factor to account for table absorption and chamber orientation in the posterior-anterior direction was applied. The measurement depths used for the film were halfway throughmore » their sensitive volumes, and a polynomial best fit curve was used to determine the dose to their surfaces. This chamber was also compared with the dose expected in a clinical kernel-based computer model, and a clinical Boltzmann-transport-equation-based (BTE) computer model. The two models were also compared against each other for cases with air gaps in the buildup region. Results: Within 3mm, all dosimeters and models agreed with the chamber within 10% for all field sizes. At the entrance surface, film differed in comparison with the chamber from +90% to +15%, the BTE-model by +140 to +3%, and the kernel-based model by +20% to −25%, decreasing with increasing field size. At the exit surface, film differed in comparison with the chamber from −10% to −15%, the BTE-model by −53% to −50%, the kernel-based model by −55% to −57%, mostly independent of field size. Conclusion: The largest differences compared with the chamber were found at the surface for all field sizes. Differences decreased with increasing field size and increasing depth in phantom. Air gaps in the buildup region cause dose buildup to occur again post-gap, but the effect decreases with increasing phantom thickness prior to the gap.« less

  2. Predicting Hybrid Performances for Quality Traits through Genomic-Assisted Approaches in Central European Wheat

    PubMed Central

    Liu, Guozheng; Zhao, Yusheng; Gowda, Manje; Longin, C. Friedrich H.; Reif, Jochen C.; Mette, Michael F.

    2016-01-01

    Bread-making quality traits are central targets for wheat breeding. The objectives of our study were to (1) examine the presence of major effect QTLs for quality traits in a Central European elite wheat population, (2) explore the optimal strategy for predicting the hybrid performance for wheat quality traits, and (3) investigate the effects of marker density and the composition and size of the training population on the accuracy of prediction of hybrid performance. In total 135 inbred lines of Central European bread wheat (Triticum aestivum L.) and 1,604 hybrids derived from them were evaluated for seven quality traits in up to six environments. The 135 parental lines were genotyped using a 90k single-nucleotide polymorphism array. Genome-wide association mapping initially suggested presence of several quantitative trait loci (QTLs), but cross-validation rather indicated the absence of major effect QTLs for all quality traits except of 1000-kernel weight. Genomic selection substantially outperformed marker-assisted selection in predicting hybrid performance. A resampling study revealed that increasing the effective population size in the estimation set of hybrids is relevant to boost the accuracy of prediction for an unrelated test population. PMID:27383841

  3. A Frequency-Domain Implementation of a Sliding-Window Traffic Sign Detector for Large Scale Panoramic Datasets

    NASA Astrophysics Data System (ADS)

    Creusen, I. M.; Hazelhoff, L.; De With, P. H. N.

    2013-10-01

    In large-scale automatic traffic sign surveying systems, the primary computational effort is concentrated at the traffic sign detection stage. This paper focuses on reducing the computational load of particularly the sliding window object detection algorithm which is employed for traffic sign detection. Sliding-window object detectors often use a linear SVM to classify the features in a window. In this case, the classification can be seen as a convolution of the feature maps with the SVM kernel. It is well known that convolution can be efficiently implemented in the frequency domain, for kernels larger than a certain size. We show that by careful reordering of sliding-window operations, most of the frequency-domain transformations can be eliminated, leading to a substantial increase in efficiency. Additionally, we suggest to use the overlap-add method to keep the memory use within reasonable bounds. This allows us to keep all the transformed kernels in memory, thereby eliminating even more domain transformations, and allows all scales in a multiscale pyramid to be processed using the same set of transformed kernels. For a typical sliding-window implementation, we have found that the detector execution performance improves with a factor of 5.3. As a bonus, many of the detector improvements from literature, e.g. chi-squared kernel approximations, sub-class splitting algorithms etc., can be more easily applied at a lower performance penalty because of an improved scalability.

  4. Modularized seismic full waveform inversion based on waveform sensitivity kernels - The software package ASKI

    NASA Astrophysics Data System (ADS)

    Schumacher, Florian; Friederich, Wolfgang; Lamara, Samir; Gutt, Phillip; Paffrath, Marcel

    2015-04-01

    We present a seismic full waveform inversion concept for applications ranging from seismological to enineering contexts, based on sensitivity kernels for full waveforms. The kernels are derived from Born scattering theory as the Fréchet derivatives of linearized frequency-domain full waveform data functionals, quantifying the influence of elastic earth model parameters and density on the data values. For a specific source-receiver combination, the kernel is computed from the displacement and strain field spectrum originating from the source evaluated throughout the inversion domain, as well as the Green function spectrum and its strains originating from the receiver. By storing the wavefield spectra of specific sources/receivers, they can be re-used for kernel computation for different specific source-receiver combinations, optimizing the total number of required forward simulations. In the iterative inversion procedure, the solution of the forward problem, the computation of sensitivity kernels and the derivation of a model update is held completely separate. In particular, the model description for the forward problem and the description of the inverted model update are kept independent. Hence, the resolution of the inverted model as well as the complexity of solving the forward problem can be iteratively increased (with increasing frequency content of the inverted data subset). This may regularize the overall inverse problem and optimizes the computational effort of both, solving the forward problem and computing the model update. The required interconnection of arbitrary unstructured volume and point grids is realized by generalized high-order integration rules and 3D-unstructured interpolation methods. The model update is inferred solving a minimization problem in a least-squares sense, resulting in Gauss-Newton convergence of the overall inversion process. The inversion method was implemented in the modularized software package ASKI (Analysis of Sensitivity and Kernel Inversion), which provides a generalized interface to arbitrary external forward modelling codes. So far, the 3D spectral-element code SPECFEM3D (Tromp, Komatitsch and Liu, 2008) and the 1D semi-analytical code GEMINI (Friederich and Dalkolmo, 1995) in both, Cartesian and spherical framework are supported. The creation of interfaces to further forward codes is planned in the near future. ASKI is freely available under the terms of the GPL at www.rub.de/aski . Since the independent modules of ASKI must communicate via file output/input, large storage capacities need to be accessible conveniently. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full waveform inversion. In the presentation, we will show some aspects of the theory behind the full waveform inversion method and its practical realization by the software package ASKI, as well as synthetic and real-data applications from different scales and geometries.

  5. A new approach to approximating the linear quadratic optimal control law for hereditary systems with control delays

    NASA Technical Reports Server (NTRS)

    Milman, M. H.

    1985-01-01

    A factorization approach is presented for deriving approximations to the optimal feedback gain for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the feedback kernels.

  6. Intelligent Design of Metal Oxide Gas Sensor Arrays Using Reciprocal Kernel Support Vector Regression

    NASA Astrophysics Data System (ADS)

    Dougherty, Andrew W.

    Metal oxides are a staple of the sensor industry. The combination of their sensitivity to a number of gases, and the electrical nature of their sensing mechanism, make the particularly attractive in solid state devices. The high temperature stability of the ceramic material also make them ideal for detecting combustion byproducts where exhaust temperatures can be high. However, problems do exist with metal oxide sensors. They are not very selective as they all tend to be sensitive to a number of reduction and oxidation reactions on the oxide's surface. This makes sensors with large numbers of sensors interesting to study as a method for introducing orthogonality to the system. Also, the sensors tend to suffer from long term drift for a number of reasons. In this thesis I will develop a system for intelligently modeling metal oxide sensors and determining their suitability for use in large arrays designed to analyze exhaust gas streams. It will introduce prior knowledge of the metal oxide sensors' response mechanisms in order to produce a response function for each sensor from sparse training data. The system will use the same technique to model and remove any long term drift from the sensor response. It will also provide an efficient means for determining the orthogonality of the sensor to determine whether they are useful in gas sensing arrays. The system is based on least squares support vector regression using the reciprocal kernel. The reciprocal kernel is introduced along with a method of optimizing the free parameters of the reciprocal kernel support vector machine. The reciprocal kernel is shown to be simpler and to perform better than an earlier kernel, the modified reciprocal kernel. Least squares support vector regression is chosen as it uses all of the training points and an emphasis was placed throughout this research for extracting the maximum information from very sparse data. The reciprocal kernel is shown to be effective in modeling the sensor responses in the time, gas and temperature domains, and the dual representation of the support vector regression solution is shown to provide insight into the sensor's sensitivity and potential orthogonality. Finally, the dual weights of the support vector regression solution to the sensor's response are suggested as a fitness function for a genetic algorithm, or some other method for efficiently searching large parameter spaces.

  7. Generalized and efficient algorithm for computing multipole energies and gradients based on Cartesian tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Dejun, E-mail: dejun.lin@gmail.com

    2015-09-21

    Accurate representation of intermolecular forces has been the central task of classical atomic simulations, known as molecular mechanics. Recent advancements in molecular mechanics models have put forward the explicit representation of permanent and/or induced electric multipole (EMP) moments. The formulas developed so far to calculate EMP interactions tend to have complicated expressions, especially in Cartesian coordinates, which can only be applied to a specific kernel potential function. For example, one needs to develop a new formula each time a new kernel function is encountered. The complication of these formalisms arises from an intriguing and yet obscured mathematical relation between themore » kernel functions and the gradient operators. Here, I uncover this relation via rigorous derivation and find that the formula to calculate EMP interactions is basically invariant to the potential kernel functions as long as they are of the form f(r), i.e., any Green’s function that depends on inter-particle distance. I provide an algorithm for efficient evaluation of EMP interaction energies, forces, and torques for any kernel f(r) up to any arbitrary rank of EMP moments in Cartesian coordinates. The working equations of this algorithm are essentially the same for any kernel f(r). Recently, a few recursive algorithms were proposed to calculate EMP interactions. Depending on the kernel functions, the algorithm here is about 4–16 times faster than these algorithms in terms of the required number of floating point operations and is much more memory efficient. I show that it is even faster than a theoretically ideal recursion scheme, i.e., one that requires 1 floating point multiplication and 1 addition per recursion step. This algorithm has a compact vector-based expression that is optimal for computer programming. The Cartesian nature of this algorithm makes it fit easily into modern molecular simulation packages as compared with spherical coordinate-based algorithms. A software library based on this algorithm has been implemented in C++11 and has been released.« less

  8. Construction of Core Collections Suitable for Association Mapping to Optimize Use of Mediterranean Olive (Olea europaea L.) Genetic Resources

    PubMed Central

    El Bakkali, Ahmed; Haouane, Hicham; Moukhli, Abdelmajid; Costes, Evelyne; Van Damme, Patrick; Khadari, Bouchaib

    2013-01-01

    Phenotypic characterisation of germplasm collections is a decisive step towards association mapping analyses, but it is particularly expensive and tedious for woody perennial plant species. Characterisation could be more efficient if focused on a reasonably sized subset of accessions, or so-called core collection (CC), reflecting the geographic origin and variability of the germplasm. The questions that arise concern the sample size to use and genetic parameters that should be optimized in a core collection to make it suitable for association mapping. Here we investigated these questions in olive (Olea europaea L.), a perennial fruit species. By testing different sampling methods and sizes in a worldwide olive germplasm bank (OWGB Marrakech, Morocco) containing 502 unique genotypes characterized by nuclear and plastid loci, a two-step sampling method was proposed. The Shannon-Weaver diversity index was found to be the best criterion to be maximized in the first step using the Core Hunter program. A primary core collection of 50 entries (CC50) was defined that captured more than 80% of the diversity. This latter was subsequently used as a kernel with the Mstrat program to capture the remaining diversity. 200 core collections of 94 entries (CC94) were thus built for flexibility in the choice of varieties to be studied. Most entries of both core collections (CC50 and CC94) were revealed to be unrelated due to the low kinship coefficient, whereas a genetic structure spanning the eastern and western/central Mediterranean regions was noted. Linkage disequilibrium was observed in CC94 which was mainly explained by a genetic structure effect as noted for OWGB Marrakech. Since they reflect the geographic origin and diversity of olive germplasm and are of reasonable size, both core collections will be of major interest to develop long-term association studies and thus enhance genomic selection in olive species. PMID:23667437

  9. Kernel approach to molecular similarity based on iterative graph similarity.

    PubMed

    Rupp, Matthias; Proschak, Ewgenij; Schneider, Gisbert

    2007-01-01

    Similarity measures for molecules are of basic importance in chemical, biological, and pharmaceutical applications. We introduce a molecular similarity measure defined directly on the annotated molecular graph, based on iterative graph similarity and optimal assignments. We give an iterative algorithm for the computation of the proposed molecular similarity measure, prove its convergence and the uniqueness of the solution, and provide an upper bound on the required number of iterations necessary to achieve a desired precision. Empirical evidence for the positive semidefiniteness of certain parametrizations of our function is presented. We evaluated our molecular similarity measure by using it as a kernel in support vector machine classification and regression applied to several pharmaceutical and toxicological data sets, with encouraging results.

  10. Design Evolutuion of Hot Isotatic Press Cans for NTP Cermet Fuel Fabrication

    NASA Technical Reports Server (NTRS)

    Mireles, O. R.; Broadway, J.; Hickman, R.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) is under consideration for potential use in deep space exploration missions due to desirable performance properties such as a high specific impulse (> 850 seconds). Tungsten (W)-60vol%UO2 cermet fuel elements are under development, with efforts emphasizing fabrication, performance testing and process optimization to meet NTP service life requirements [1]. Fuel elements incorporate design features that provide redundant protection from crack initiation, crack propagation potentially resulting in hot hydrogen (H2) reduction of UO2 kernels. Fuel erosion and fission product retention barriers include W coated UO2 fuel kernels, W clad internal flow channels and fuel element external W clad resulting in a fully encapsulated fuel element design as shown.

  11. Efficient approach to obtain free energy gradient using QM/MM MD simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asada, Toshio; Koseki, Shiro; The Research Institute for Molecular Electronic Devices

    2015-12-31

    The efficient computational approach denoted as charge and atom dipole response kernel (CDRK) model to consider polarization effects of the quantum mechanical (QM) region is described using the charge response and the atom dipole response kernels for free energy gradient (FEG) calculations in the quantum mechanical/molecular mechanical (QM/MM) method. CDRK model can reasonably reproduce energies and also energy gradients of QM and MM atoms obtained by expensive QM/MM calculations in a drastically reduced computational time. This model is applied on the acylation reaction in hydrated trypsin-BPTI complex to optimize the reaction path on the free energy surface by means ofmore » FEG and the nudged elastic band (NEB) method.« less

  12. Nonlocal kinetic energy functional from the jellium-with-gap model: Applications to orbital-free density functional theory

    NASA Astrophysics Data System (ADS)

    Constantin, Lucian A.; Fabiano, Eduardo; Della Sala, Fabio

    2018-05-01

    Orbital-free density functional theory (OF-DFT) promises to describe the electronic structure of very large quantum systems, being its computational cost linear with the system size. However, the OF-DFT accuracy strongly depends on the approximation made for the kinetic energy (KE) functional. To date, the most accurate KE functionals are nonlocal functionals based on the linear-response kernel of the homogeneous electron gas, i.e., the jellium model. Here, we use the linear-response kernel of the jellium-with-gap model to construct a simple nonlocal KE functional (named KGAP) which depends on the band-gap energy. In the limit of vanishing energy gap (i.e., in the case of metals), the KGAP is equivalent to the Smargiassi-Madden (SM) functional, which is accurate for metals. For a series of semiconductors (with different energy gaps), the KGAP performs much better than SM, and results are close to the state-of-the-art functionals with sophisticated density-dependent kernels.

  13. Predicting spatial patterns of plant recruitment using animal-displacement kernels.

    PubMed

    Santamaría, Luis; Rodríguez-Pérez, Javier; Larrinaga, Asier R; Pias, Beatriz

    2007-10-10

    For plants dispersed by frugivores, spatial patterns of recruitment are primarily influenced by the spatial arrangement and characteristics of parent plants, the digestive characteristics, feeding behaviour and movement patterns of animal dispersers, and the structure of the habitat matrix. We used an individual-based, spatially-explicit framework to characterize seed dispersal and seedling fate in an endangered, insular plant-disperser system: the endemic shrub Daphne rodriguezii and its exclusive disperser, the endemic lizard Podarcis lilfordi. Plant recruitment kernels were chiefly determined by the disperser's patterns of space utilization (i.e. the lizard's displacement kernels), the position of the various plant individuals in relation to them, and habitat structure (vegetation cover vs. bare soil). In contrast to our expectations, seed gut-passage rate and its effects on germination, and lizard speed-of-movement, habitat choice and activity rhythm were of minor importance. Predicted plant recruitment kernels were strongly anisotropic and fine-grained, preventing their description using one-dimensional, frequency-distance curves. We found a general trade-off between recruitment probability and dispersal distance; however, optimal recruitment sites were not necessarily associated to sites of maximal adult-plant density. Conservation efforts aimed at enhancing the regeneration of endangered plant-disperser systems may gain in efficacy by manipulating the spatial distribution of dispersers (e.g. through the creation of refuges and feeding sites) to create areas favourable to plant recruitment.

  14. Kernel-Based Relevance Analysis with Enhanced Interpretability for Detection of Brain Activity Patterns

    PubMed Central

    Alvarez-Meza, Andres M.; Orozco-Gutierrez, Alvaro; Castellanos-Dominguez, German

    2017-01-01

    We introduce Enhanced Kernel-based Relevance Analysis (EKRA) that aims to support the automatic identification of brain activity patterns using electroencephalographic recordings. EKRA is a data-driven strategy that incorporates two kernel functions to take advantage of the available joint information, associating neural responses to a given stimulus condition. Regarding this, a Centered Kernel Alignment functional is adjusted to learning the linear projection that best discriminates the input feature set, optimizing the required free parameters automatically. Our approach is carried out in two scenarios: (i) feature selection by computing a relevance vector from extracted neural features to facilitating the physiological interpretation of a given brain activity task, and (ii) enhanced feature selection to perform an additional transformation of relevant features aiming to improve the overall identification accuracy. Accordingly, we provide an alternative feature relevance analysis strategy that allows improving the system performance while favoring the data interpretability. For the validation purpose, EKRA is tested in two well-known tasks of brain activity: motor imagery discrimination and epileptic seizure detection. The obtained results show that the EKRA approach estimates a relevant representation space extracted from the provided supervised information, emphasizing the salient input features. As a result, our proposal outperforms the state-of-the-art methods regarding brain activity discrimination accuracy with the benefit of enhanced physiological interpretation about the task at hand. PMID:29056897

  15. Experimental analysis of performance and emission on DI diesel engine fueled with diesel-palm kernel methyl ester-triacetin blends: a Taguchi fuzzy-based optimization.

    PubMed

    Panda, Jibitesh Kumar; Sastry, Gadepalli Ravi Kiran; Rai, Ram Naresh

    2018-05-25

    The energy situation and the concerns about global warming nowadays have ignited research interest in non-conventional and alternative fuel resources to decrease the emission and the continuous dependency on fossil fuels, particularly for various sectors like power generation, transportation, and agriculture. In the present work, the research is focused on evaluating the performance, emission characteristics, and combustion of biodiesel such as palm kernel methyl ester with the addition of diesel additive "triacetin" in it. A timed manifold injection (TMI) system was taken up to examine the influence of durations of several blends induced on the emission and performance characteristics as compared to normal diesel operation. This experimental study shows better performance and releases less emission as compared with mineral diesel and in turn, indicates that high performance and low emission is promising in PKME-triacetin fuel operation. This analysis also attempts to describe the application of the fuzzy logic-based Taguchi analysis to optimize the emission and performance parameters.

  16. Para-hydrogen and helium cluster size distributions in free jet expansions based on Smoluchowski theory with kernel scaling.

    PubMed

    Kornilov, Oleg; Toennies, J Peter

    2015-02-21

    The size distribution of para-H2 (pH2) clusters produced in free jet expansions at a source temperature of T0 = 29.5 K and pressures of P0 = 0.9-1.96 bars is reported and analyzed according to a cluster growth model based on the Smoluchowski theory with kernel scaling. Good overall agreement is found between the measured and predicted, Nk = A k(a) e(-bk), shape of the distribution. The fit yields values for A and b for values of a derived from simple collision models. The small remaining deviations between measured abundances and theory imply a (pH2)k magic number cluster of k = 13 as has been observed previously by Raman spectroscopy. The predicted linear dependence of b(-(a+1)) on source gas pressure was verified and used to determine the value of the basic effective agglomeration reaction rate constant. A comparison of the corresponding effective growth cross sections σ11 with results from a similar analysis of He cluster size distributions indicates that the latter are much larger by a factor 6-10. An analysis of the three body recombination rates, the geometric sizes and the fact that the He clusters are liquid independent of their size can explain the larger cross sections found for He.

  17. Size-based emphysema cluster analysis on low attenuation area in 3D volumetric CT: comparison with pulmonary functional test

    NASA Astrophysics Data System (ADS)

    Lee, Minho; Kim, Namkug; Lee, Sang Min; Seo, Joon Beom; Oh, Sang Young

    2015-03-01

    To quantify low attenuation area (LAA) of emphysematous regions according to cluster size in 3D volumetric CT data of chronic obstructive pulmonary disease (COPD) patients and to compare these indices with their pulmonary functional test (PFT). Sixty patients with COPD were scanned by a more than 16-multi detector row CT scanner (Siemens Sensation 16 and 64) within 0.75mm collimation. Based on these LAA masks, a length scale analysis to estimate each emphysema LAA's size was performed as follows. At first, Gaussian low pass filter from 30mm to 1mm kernel size with 1mm interval on the mask was performed from large to small size, iteratively. Centroid voxels resistant to the each filter were selected and dilated by the size of the kernel, which was regarded as the specific size emphysema mask. The slopes of area and number of size based LAA (slope of semi-log plot) were analyzed and compared with PFT. PFT parameters including DLco, FEV1, and FEV1/FVC were significantly (all p-value< 0.002) correlated with the slopes (r-values; -0.73, 0.54, 0.69, respectively) and EI (r-values; -0.84, -0.60, -0.68, respectively). In addition, the D independently contributed regression for FEV1 and FEV1/FVC (adjust R sq. of regression study: EI only, 0.70, 0.45; EI and D, 0.71, 0.51, respectively). By the size based LAA segmentation and analysis, we evaluated the Ds of area, number, and distribution of size based LAA, which would be independent factors for predictor of PFT parameters.

  18. Evaluation of the influence of double and triple Gaussian proton kernel models on accuracy of dose calculations for spot scanning technique.

    PubMed

    Hirayama, Shusuke; Takayanagi, Taisuke; Fujii, Yusuke; Fujimoto, Rintaro; Fujitaka, Shinichiro; Umezawa, Masumi; Nagamine, Yoshihiko; Hosaka, Masahiro; Yasui, Keisuke; Omachi, Chihiro; Toshito, Toshiyuki

    2016-03-01

    The main purpose in this study was to present the results of beam modeling and how the authors systematically investigated the influence of double and triple Gaussian proton kernel models on the accuracy of dose calculations for spot scanning technique. The accuracy of calculations was important for treatment planning software (TPS) because the energy, spot position, and absolute dose had to be determined by TPS for the spot scanning technique. The dose distribution was calculated by convolving in-air fluence with the dose kernel. The dose kernel was the in-water 3D dose distribution of an infinitesimal pencil beam and consisted of an integral depth dose (IDD) and a lateral distribution. Accurate modeling of the low-dose region was important for spot scanning technique because the dose distribution was formed by cumulating hundreds or thousands of delivered beams. The authors employed a double Gaussian function as the in-air fluence model of an individual beam. Double and triple Gaussian kernel models were also prepared for comparison. The parameters of the kernel lateral model were derived by fitting a simulated in-water lateral dose profile induced by an infinitesimal proton beam, whose emittance was zero, at various depths using Monte Carlo (MC) simulation. The fitted parameters were interpolated as a function of depth in water and stored as a separate look-up table. These stored parameters for each energy and depth in water were acquired from the look-up table when incorporating them into the TPS. The modeling process for the in-air fluence and IDD was based on the method proposed in the literature. These were derived using MC simulation and measured data. The authors compared the measured and calculated absolute doses at the center of the spread-out Bragg peak (SOBP) under various volumetric irradiation conditions to systematically investigate the influence of the two types of kernel models on the dose calculations. The authors investigated the difference between double and triple Gaussian kernel models. The authors found that the difference between the two studied kernel models appeared at mid-depths and the accuracy of predicting the double Gaussian model deteriorated at the low-dose bump that appeared at mid-depths. When the authors employed the double Gaussian kernel model, the accuracy of calculations for the absolute dose at the center of the SOBP varied with irradiation conditions and the maximum difference was 3.4%. In contrast, the results obtained from calculations with the triple Gaussian kernel model indicated good agreement with the measurements within ±1.1%, regardless of the irradiation conditions. The difference between the results obtained with the two types of studied kernel models was distinct in the high energy region. The accuracy of calculations with the double Gaussian kernel model varied with the field size and SOBP width because the accuracy of prediction with the double Gaussian model was insufficient at the low-dose bump. The evaluation was only qualitative under limited volumetric irradiation conditions. Further accumulation of measured data would be needed to quantitatively comprehend what influence the double and triple Gaussian kernel models had on the accuracy of dose calculations.

  19. Transient and asymptotic behaviour of the binary breakage problem

    NASA Astrophysics Data System (ADS)

    Mantzaris, Nikos V.

    2005-06-01

    The general binary breakage problem with power-law breakage functions and two families of symmetric and asymmetric breakage kernels is studied in this work. A useful transformation leads to an equation that predicts self-similar solutions in its asymptotic limit and offers explicit knowledge of the mean size and particle density at each point in dimensionless time. A novel moving boundary algorithm in the transformed coordinate system is developed, allowing the accurate prediction of the full transient behaviour of the system from the initial condition up to the point where self-similarity is achieved, and beyond if necessary. The numerical algorithm is very rapid and its results are in excellent agreement with known analytical solutions. In the case of the symmetric breakage kernels only unimodal, self-similar number density functions are obtained asymptotically for all parameter values and independent of the initial conditions, while in the case of asymmetric breakage kernels, bimodality appears for high degrees of asymmetry and sharp breakage functions. For symmetric and discrete breakage kernels, self-similarity is not achieved. The solution exhibits sustained oscillations with amplitude that depends on the initial condition and the sharpness of the breakage mechanism, while the period is always fixed and equal to ln 2 with respect to dimensionless time.

  20. Spatiotemporal Domain Decomposition for Massive Parallel Computation of Space-Time Kernel Density

    NASA Astrophysics Data System (ADS)

    Hohl, A.; Delmelle, E. M.; Tang, W.

    2015-07-01

    Accelerated processing capabilities are deemed critical when conducting analysis on spatiotemporal datasets of increasing size, diversity and availability. High-performance parallel computing offers the capacity to solve computationally demanding problems in a limited timeframe, but likewise poses the challenge of preventing processing inefficiency due to workload imbalance between computing resources. Therefore, when designing new algorithms capable of implementing parallel strategies, careful spatiotemporal domain decomposition is necessary to account for heterogeneity in the data. In this study, we perform octtree-based adaptive decomposition of the spatiotemporal domain for parallel computation of space-time kernel density. In order to avoid edge effects near subdomain boundaries, we establish spatiotemporal buffers to include adjacent data-points that are within the spatial and temporal kernel bandwidths. Then, we quantify computational intensity of each subdomain to balance workloads among processors. We illustrate the benefits of our methodology using a space-time epidemiological dataset of Dengue fever, an infectious vector-borne disease that poses a severe threat to communities in tropical climates. Our parallel implementation of kernel density reaches substantial speedup compared to sequential processing, and achieves high levels of workload balance among processors due to great accuracy in quantifying computational intensity. Our approach is portable of other space-time analytical tests.

  1. Kernel machine methods for integrative analysis of genome-wide methylation and genotyping studies.

    PubMed

    Zhao, Ni; Zhan, Xiang; Huang, Yen-Tsung; Almli, Lynn M; Smith, Alicia; Epstein, Michael P; Conneely, Karen; Wu, Michael C

    2018-03-01

    Many large GWAS consortia are expanding to simultaneously examine the joint role of DNA methylation in addition to genotype in the same subjects. However, integrating information from both data types is challenging. In this paper, we propose a composite kernel machine regression model to test the joint epigenetic and genetic effect. Our approach works at the gene level, which allows for a common unit of analysis across different data types. The model compares the pairwise similarities in the phenotype to the pairwise similarities in the genotype and methylation values; and high correspondence is suggestive of association. A composite kernel is constructed to measure the similarities in the genotype and methylation values between pairs of samples. We demonstrate through simulations and real data applications that the proposed approach can correctly control type I error, and is more robust and powerful than using only the genotype or methylation data in detecting trait-associated genes. We applied our method to investigate the genetic and epigenetic regulation of gene expression in response to stressful life events using data that are collected from the Grady Trauma Project. Within the kernel machine testing framework, our methods allow for heterogeneity in effect sizes, nonlinear, and interactive effects, as well as rapid P-value computation. © 2017 WILEY PERIODICALS, INC.

  2. Stochastic Models of Macroscale Quantities for the Prediction of the REV Scale for Multiphase Flow through Porous Media

    NASA Astrophysics Data System (ADS)

    Talbot, C.; McClure, J. E.; Armstrong, R. T.; Mostaghimi, P.; Hu, Y.; Miller, C. T.

    2017-12-01

    Microscale experimental and computational methods can be used to evaluate fundamental microscale mechanisms and deduce macroscale constitutive relationships and parameter values. The link between the microscale and the macroscale is especially demanding, because technical issues arise regarding the necessary scale of the system needed for a meaningful set of macroscale measures to be insensitive to the size of the system, which is known as a representative elementary volume (REV). While the REV scale is routinely determined for single-phase flow in porous media, no systematic study of the scale of a REV for the comprehensive set of macroscale measures considered here has been reported in the literature. A comprehensive set of measures of the macroscale state is developed. We further develop and apply methods to predict the REV scale and quantify the uncertainty of the estimate for this set of macroscale quantities. We model the system state in terms of standard errors of macroscale quantities as a multivariate Gaussian process dependent on the size of the domain simulated. We determine predictive distributions of function values and a posterior distributions of weights using standard kernels, as well as a kernel constructed using relationships between physical quantities. For each kernel, we discuss the decay of the mean and covariance with increasing domain size, and use cross-validation to facilitate model selection. The procedure yields a model of the domain size needed to achieve a REV with quantifiable uncertainty. We present results in the context of multiphase fluid flow through a highly resolved realization of sandstone imaged using micro-CT. A 1440x1440x4320 section of the full 2520x2520x5280 imaged medium is simulated using the lattice-Boltzmann method. We compare the fidelity of the predictive model with results obtained by an analogous approach using polynomial regression.

  3. Kinetic behaviours of aggregate growth driven by time-dependent migration, birth and death

    NASA Astrophysics Data System (ADS)

    Zhu, Sheng-Qing; Yang, Shun-You; Ke, Jianhong; Lin, Zhenquan

    2008-12-01

    We propose a dynamic growth model to mimic some social phenomena, such as the evolution of cities' population, in which monomer migrations occur between any two aggregates and monomer birth/death can simultaneously occur in each aggregate. Considering the fact that the rate kernels of migration, birth and death processes may change with time, we assume that the migration rate kernel is ijf(t), and the self-birth and death rate kernels are ig1(t) and ig2(t), respectively. Based on the mean-field rate equation, we obtain the exact solution of this model and then discuss semi-quantitatively the scaling behaviour of the aggregate size distribution at large times. The results show that in the long-time limit, (i) if ∫t0g1(t') dt'/∫t0g2(t') dt' >= 1 or exp{∫t0[g2(t') - g1(t')] dt'}/∫t0f(t') dt' → 0, the aggregate size distribution ak(t) can obey a generalized scaling form; (ii) if ∫t0g1(t') dt'/∫t0g2(t') dt' → 0 and exp ∫t0[g2(t') - g1(t') dt'/∫t0f(t') dt' → ∞, ak(t) can take a scale-free form and decay exponentially in size k; (iii) ak(t) will satisfy a modified scaling law in the remaining cases. Moreover, the total mass of aggregates depends strongly on the net birth rate g1(t) - g2(t) and evolves exponentially as exp{∫t0[g1(t') - g2(t')] dt'}, which is in qualitative agreement with the evolution of the total population of a country in real world.

  4. Sensitivity kernels for viscoelastic loading based on adjoint methods

    NASA Astrophysics Data System (ADS)

    Al-Attar, David; Tromp, Jeroen

    2014-01-01

    Observations of glacial isostatic adjustment (GIA) allow for inferences to be made about mantle viscosity, ice sheet history and other related parameters. Typically, this inverse problem can be formulated as minimizing the misfit between the given observations and a corresponding set of synthetic data. When the number of parameters is large, solution of such optimization problems can be computationally challenging. A practical, albeit non-ideal, solution is to use gradient-based optimization. Although the gradient of the misfit required in such methods could be calculated approximately using finite differences, the necessary computation time grows linearly with the number of model parameters, and so this is often infeasible. A far better approach is to apply the `adjoint method', which allows the exact gradient to be calculated from a single solution of the forward problem, along with one solution of the associated adjoint problem. As a first step towards applying the adjoint method to the GIA inverse problem, we consider its application to a simpler viscoelastic loading problem in which gravitationally self-consistent ocean loading is neglected. The earth model considered is non-rotating, self-gravitating, compressible, hydrostatically pre-stressed, laterally heterogeneous and possesses a Maxwell solid rheology. We determine adjoint equations and Fréchet kernels for this problem based on a Lagrange multiplier method. Given an objective functional J defined in terms of the surface deformation fields, we show that its first-order perturbation can be written δ J = int _{MS}K_{η }δ ln η dV +int _{t0}^{t1}int _{partial M}K_{dot{σ }} δ dot{σ } dS dt, where δ ln η = δη/η denotes relative viscosity variations in solid regions MS, dV is the volume element, δ dot{σ } is the perturbation to the time derivative of the surface load which is defined on the earth model's surface ∂M and for times [t0, t1] and dS is the surface element on ∂M. The `viscosity kernel' Kη determines the linearized sensitivity of J to viscosity perturbations defined with respect to a laterally heterogeneous reference earth model, while the `rate-of-loading kernel' K_{dot{σ }} determines the sensitivity to variations in the time derivative of the surface load. By restricting attention to spherically symmetric viscosity perturbations, we also obtain a `radial viscosity kernel' overline{K}_{η } such that the associated contribution to δJ can be written int _{IS}overline{K}_{η }δ ln η dr, where IS denotes the subset of radii lying in solid regions. In order to illustrate this theory, we describe its numerical implementation in the case of a spherically symmetric earth model using a 1-D spectral element method, and calculate sensitivity kernels for a range of realistic observables.

  5. Fine tuning of process parameters for improving briquette production from palm kernel shell gasification waste.

    PubMed

    Bazargan, Alireza; Rough, Sarah L; McKay, Gordon

    2018-04-01

    Palm kernel shell biochars (PKSB) ejected as residues from a gasifier have been used for solid fuel briquette production. With this approach, palm kernel shells can be used for energy production twice: first, by producing rich syngas during gasification; second, by compacting the leftover residues from gasification into high calorific value briquettes. Herein, the process parameters for the manufacture of PKSB biomass briquettes via compaction are optimized. Two possible optimum process scenarios are considered. In the first, the compaction speed is increased from 0.5 to 10 mm/s, the compaction pressure is decreased from 80 Pa to 40 MPa, the retention time is reduced from 10 s to zero, and the starch binder content of the briquette is halved from 0.1 to 0.05 kg/kg. With these adjustments, the briquette production rate increases by more than 20-fold; hence capital and operational costs can be reduced and the service life of compaction equipment can be increased. The resulting product satisfactorily passes tensile (compressive) crushing strength and impact resistance tests. The second scenario involves reducing the starch weight content to 0.03 kg/kg, while reducing the compaction pressure to a value no lower than 60 MPa. Overall, in both cases, the PKSB biomass briquettes show excellent potential as a solid fuel with calorific values on par with good-quality coal. CHNS: carbon, hydrogen, nitrogen, sulfur; FFB: fresh fruit bunch(es); HHV: higher heating value [J/kg]; LHV: lower heating value [J/kg]; PKS: palm kernel shell(s); PKSB: palm kernel shell biochar(s); POME: palm oil mill effluent; RDF: refuse-derived fuel; TGA: thermogravimetric analysis.

  6. Next generation extended Lagrangian first principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Niklasson, Anders M. N.

    2017-08-01

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  7. Next generation extended Lagrangian first principles molecular dynamics.

    PubMed

    Niklasson, Anders M N

    2017-08-07

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  8. Chemical Interruption of Flowering to Improve Harvested Peanut Maturity

    USDA-ARS?s Scientific Manuscript database

    Peanut (Arachis hypogaea) is a botanically indeterminate plant where flowering, fruit initiation, and pod maturity occurs over an extended time period during the growing season. As a result, the maturity and size of individual peanut pods varies considerably at harvest. Immature kernels that meet...

  9. Exact combinatorial approach to finite coagulating systems

    NASA Astrophysics Data System (ADS)

    Fronczak, Agata; Chmiel, Anna; Fronczak, Piotr

    2018-02-01

    This paper outlines an exact combinatorial approach to finite coagulating systems. In this approach, cluster sizes and time are discrete and the binary aggregation alone governs the time evolution of the systems. By considering the growth histories of all possible clusters, an exact expression is derived for the probability of a coagulating system with an arbitrary kernel being found in a given cluster configuration when monodisperse initial conditions are applied. Then this probability is used to calculate the time-dependent distribution for the number of clusters of a given size, the average number of such clusters, and that average's standard deviation. The correctness of our general expressions is proved based on the (analytical and numerical) results obtained for systems with the constant kernel. In addition, the results obtained are compared with the results arising from the solutions to the mean-field Smoluchowski coagulation equation, indicating its weak points. The paper closes with a brief discussion on the extensibility to other systems of the approach presented herein, emphasizing the issue of arbitrary initial conditions.

  10. [Adaptability of sweet corn ears to a frozen process].

    PubMed

    Ramírez Matheus, Alejandra O; Martínez, Norelkys Maribel; de Bertorelli, Ligia O; De Venanzi, Frank

    2004-12-01

    The effects of frozen condition on the quality of three sweet corn ears (2038, 2010, 2004) and the pattern (Bonanza), were evaluated. Biometrics characteristics like ear size, ear diameter, row and kernel deep were measured as well as chemical and physical measurement in fresh and frozen states. The corn ears were frozen at -95 degrees C by 7 minutes. The yield and stability of the frozen ears were evaluated at 45 and 90 days of frozen storage (-18 degrees C). The average commercial yield as frozen corn ear for all the hybrids was 54.2%. The industry has a similar value range of 48% to 54%. The ear size average was 21.57 cm, row number was 15, ear diameter 45.54 mm and the kernel corn deep was 8.57 mm. All these measurements were found not different from commercial values found for the industry. All corn samples evaluated showed good stability despites the frozen processing and storage. Hybrid 2038 ranked higher in quality.

  11. Retrieval of the aerosol size distribution in the complex anomalous diffraction approximation

    NASA Astrophysics Data System (ADS)

    Franssens, Ghislain R.

    This contribution reports some recently achieved results in aerosol size distribution retrieval in the complex anomalous diffraction approximation (ADA) to MIE scattering theory. This approximation is valid for spherical particles that are large compared to the wavelength and have a refractive index close to 1. The ADA kernel is compared with the exact MIE kernel. Despite being a simple approximation, the ADA seems to have some practical value for the retrieval of the larger modes of tropospheric and lower stratospheric aerosols. The ADA has the advantage over MIE theory that an analytic inversion of the associated Fredholm integral equation becomes possible. In addition, spectral inversion in the ADA can be formulated as a well-posed problem. In this way, a new inverse formula was obtained, which allows the direct computation of the size distribution as an integral over the spectral extinction function. This formula is valid for particles that both scatter and absorb light and it also takes the spectral dispersion of the refractive index into account. Some details of the numerical implementation of the inverse formula are illustrated using a modified gamma test distribution. Special attention is given to the integration of spectrally truncated discrete extinction data with errors.

  12. Regularization techniques on least squares non-uniform fast Fourier transform.

    PubMed

    Gibiino, Fabio; Positano, Vincenzo; Landini, Luigi; Santarelli, Maria Filomena

    2013-05-01

    Non-Cartesian acquisition strategies are widely used in MRI to dramatically reduce the acquisition time while at the same time preserving the image quality. Among non-Cartesian reconstruction methods, the least squares non-uniform fast Fourier transform (LS_NUFFT) is a gridding method based on a local data interpolation kernel that minimizes the worst-case approximation error. The interpolator is chosen using a pseudoinverse matrix. As the size of the interpolation kernel increases, the inversion problem may become ill-conditioned. Regularization methods can be adopted to solve this issue. In this study, we compared three regularization methods applied to LS_NUFFT. We used truncated singular value decomposition (TSVD), Tikhonov regularization and L₁-regularization. Reconstruction performance was evaluated using the direct summation method as reference on both simulated and experimental data. We also evaluated the processing time required to calculate the interpolator. First, we defined the value of the interpolator size after which regularization is needed. Above this value, TSVD obtained the best reconstruction. However, for large interpolator size, the processing time becomes an important constraint, so an appropriate compromise between processing time and reconstruction quality should be adopted. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Power and Performance Trade-offs for Space Time Adaptive Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gawande, Nitin A.; Manzano Franco, Joseph B.; Tumeo, Antonino

    Computational efficiency – performance relative to power or energy – is one of the most important concerns when designing RADAR processing systems. This paper analyzes power and performance trade-offs for a typical Space Time Adaptive Processing (STAP) application. We study STAP implementations for CUDA and OpenMP on two computationally efficient architectures, Intel Haswell Core I7-4770TE and NVIDIA Kayla with a GK208 GPU. We analyze the power and performance of STAP’s computationally intensive kernels across the two hardware testbeds. We also show the impact and trade-offs of GPU optimization techniques. We show that data parallelism can be exploited for efficient implementationmore » on the Haswell CPU architecture. The GPU architecture is able to process large size data sets without increase in power requirement. The use of shared memory has a significant impact on the power requirement for the GPU. A balance between the use of shared memory and main memory access leads to an improved performance in a typical STAP application.« less

  14. The formation method of the feature space for the identification of fatigued bills

    NASA Astrophysics Data System (ADS)

    Kang, Dongshik; Oshiro, Ayumu; Ozawa, Kenji; Mitsui, Ikugo

    2014-10-01

    Fatigued bills make a trouble such as the paper jam in a bill handling machine. In the discrimination of fatigued bills using an acoustic signal, the variation of an observed bill sound is considered to be one of causes in misclassification. Therefore a technique has demanded in order to make the classification of fatigued bills more efficient. In this paper, we proposed the algorithm that extracted feature quantity of bill sound from acoustic signal using the frequency difference, and carried out discrimination experiment of fatigued bill money by Support Vector Machine(SVM). The feature quantity of frequency difference can represent the frequency components of an acoustic signal is varied by the fatigued degree of bill money. The generalization performance of SVM does not depend on the size of dimensions of the feature space, even in a high dimensional feature space such as bill-acoustic signals. Furthermore, SVM can induce an optimal classifier which considers the combination of features by the virtue of polynomial kernel functions.

  15. Modelling the angular effects on satellite retrieved LST at global scale using a land surface classification

    NASA Astrophysics Data System (ADS)

    Ermida, Sofia; DaCamara, Carlos C.; Trigo, Isabel F.; Pires, Ana C.; Ghent, Darren

    2017-04-01

    Land Surface Temperature (LST) is a key climatological variable and a diagnostic parameter of land surface conditions. Remote sensing constitutes the most effective method to observe LST over large areas and on a regular basis. Although LST estimation from remote sensing instruments operating in the Infrared (IR) is widely used and has been performed for nearly 3 decades, there is still a list of open issues. One of these is the LST dependence on viewing and illumination geometry. This effect introduces significant discrepancies among LST estimations from different sensors, overlapping in space and time, that are not related to uncertainties in the methodologies or input data used. Furthermore, these directional effects deviate LST products from an ideally defined LST, which should represent to the ensemble of directional radiometric temperature of all surface elements within the FOV. Angular effects on LST are here conveniently estimated by means of a kernel model of the surface thermal emission, which describes the angular dependence of LST as a function of viewing and illumination geometry. The model is calibrated using LST data as provided by a wide range of sensors to optimize spatial coverage, namely: 1) a LEO sensor - the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board NASA's TERRA and AQUA; and 2) 3 GEO sensors - the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board EUMETSAT's Meteosat Second Generation (MSG), the Japanese Meteorological Imager (JAMI) on-board the Japanese Meteorological Association (JMA) Multifunction Transport SATellite (MTSAT-2), and NASA's Geostationary Operational Environmental Satellites (GOES). As shown in our previous feasibility studies the sampling of illumination and view angles has a high impact on the obtained model parameters. This impact may be mitigated when the sampling size is increased by aggregating pixels with similar surface conditions. Here we propose a methodology where land surface is stratified by means of a cluster analysis using information on land cover type, fraction of vegetation cover and topography. The kernel model is then adjusted to LST data corresponding to each cluster. It is shown that the quality of the cluster based kernel model is very close to the pixel based one. Furthermore, the reduced number of parameters (limited to the number of identified clusters, instead of a pixel-by-pixel model calibration) allows improving the kernel model trough the incorporation of a seasonal component. The application of the here discussed procedure towards the harmonization of LST products from multi-sensors is on the framework of the ESA DUE GlobTemperature project.

  16. An empirical comparison of different approaches for combining multimodal neuroimaging data with support vector machine

    PubMed Central

    Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F.; Joules, Richard; Catani, Marco; Williams, Steve C. R.; Allen, Paul; McGuire, Philip; Mechelli, Andrea

    2014-01-01

    In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no “magic bullet” for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the integration of more diverse types of data would have produced greater classification enhancement. We suggest that future studies ideally examine a greater variety of data types (e.g., genetic, cognitive, and neuroimaging) in order to identify the data types and combinations optimally suited to the classification of early stage psychosis. PMID:25076868

  17. An empirical comparison of different approaches for combining multimodal neuroimaging data with support vector machine.

    PubMed

    Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F; Joules, Richard; Catani, Marco; Williams, Steve C R; Allen, Paul; McGuire, Philip; Mechelli, Andrea

    2014-01-01

    In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no "magic bullet" for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the integration of more diverse types of data would have produced greater classification enhancement. We suggest that future studies ideally examine a greater variety of data types (e.g., genetic, cognitive, and neuroimaging) in order to identify the data types and combinations optimally suited to the classification of early stage psychosis.

  18. Short-Term File Reference Patterns in a UNIX Environment,

    DTIC Science & Technology

    1986-03-01

    accounts mentioned ahose. This includes major administrative and status files (for example, /etc/ passwd ), system libraries, system include files and so on...34 files are those appearing in / and /etc. Examples are /vmunix (the bootable kernel image) and /etc/ passwd (passwords and other information on accounts...as /etc/ passwd ). The small size of opened files (55% are under 1024 bytes, a common block transfer size, and 75% are under 4096 bytes) suggests that

  19. Analytical Plug-In Method for Kernel Density Estimator Applied to Genetic Neutrality Study

    NASA Astrophysics Data System (ADS)

    Troudi, Molka; Alimi, Adel M.; Saoudi, Samir

    2008-12-01

    The plug-in method enables optimization of the bandwidth of the kernel density estimator in order to estimate probability density functions (pdfs). Here, a faster procedure than that of the common plug-in method is proposed. The mean integrated square error (MISE) depends directly upon [InlineEquation not available: see fulltext.] which is linked to the second-order derivative of the pdf. As we intend to introduce an analytical approximation of [InlineEquation not available: see fulltext.], the pdf is estimated only once, at the end of iterations. These two kinds of algorithm are tested on different random variables having distributions known for their difficult estimation. Finally, they are applied to genetic data in order to provide a better characterisation in the mean of neutrality of Tunisian Berber populations.

  20. Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network

    PubMed Central

    Qu, Xiaobo; He, Yifan

    2018-01-01

    Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods. PMID:29509666

  1. Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network.

    PubMed

    Du, Xiaofeng; Qu, Xiaobo; He, Yifan; Guo, Di

    2018-03-06

    Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods.

  2. Popcorn: An Explosive Mixture of General Mathematics.

    ERIC Educational Resources Information Center

    Westerberg, Judy; Whiting, Jack

    1992-01-01

    Presents an activity developed for back-to-back general science and mathematics classes involving measurement, data analysis, and consumer mathematics. Students compare brands of popcorn for number of popped and unpopped kernels, volume, size, color, texture, and flavor, and develop advertisements for the best brands. Suggests possible extension…

  3. Fractional Brownian motors and stochastic resonance

    NASA Astrophysics Data System (ADS)

    Goychuk, Igor; Kharchenko, Vasyl

    2012-05-01

    We study fluctuating tilt Brownian ratchets based on fractional subdiffusion in sticky viscoelastic media characterized by a power law memory kernel. Unlike the normal diffusion case, the rectification effect vanishes in the adiabatically slow modulation limit and optimizes in a driving frequency range. It is shown also that the anomalous rectification effect is maximal (stochastic resonance effect) at optimal temperature and can be of surprisingly good quality. Moreover, subdiffusive current can flow in the counterintuitive direction upon a change of temperature or driving frequency. The dependence of anomalous transport on load exhibits a remarkably simple universality.

  4. Assessment of the influence of field size on maize gene flow using SSR analysis.

    PubMed

    Palaudelmàs, M; Melé, E; Monfort, A; Serra, J; Salvia, J; Messeguer, J

    2012-06-01

    One of the factors that may influence the rate of cross-fertilization is the relative size of the pollen donor and receptor fields. We designed a spatial distribution with four varieties of genetically-modified (GM) yellow maize to generate different sized fields while maintaining a constant distance to neighbouring fields of conventional white kernel maize. Samples of cross-fertilized, yellow kernels in white cobs were collected from all of the adjacent fields at different distances. A special series of samples was collected at distances of 0, 2, 5, 10, 20, 40, 80 and 120 m following a transect traced in the dominant down-wind direction in order to identify the origin of the pollen through SSR analysis. The size of the receptor fields should be taken into account, especially when they extend in the same direction than the GM pollen flow is coming. From collected data, we then validated a function that takes into account the gene flow found in the field border and that is very useful for estimating the % of GM that can be found in any point of the field. It also serves to predict the total GM content of the field due to cross fertilization. Using SSR analysis to identify the origin of pollen showed that while changes in the size of the donor field clearly influence the percentage of GMO detected, this effect is moderate. This study demonstrates that doubling the donor field size resulted in an approximate increase of GM content in the receptor field of 7%. This indicates that variations in the size of the donor field have a smaller influence on GM content than variations in the size of the receptor field.

  5. An efficient method to determine double Gaussian fluence parameters in the eclipse™ proton pencil beam model.

    PubMed

    Shen, Jiajian; Liu, Wei; Stoker, Joshua; Ding, Xiaoning; Anand, Aman; Hu, Yanle; Herman, Michael G; Bues, Martin

    2016-12-01

    To find an efficient method to configure the proton fluence for a commercial proton pencil beam scanning (PBS) treatment planning system (TPS). An in-water dose kernel was developed to mimic the dose kernel of the pencil beam convolution superposition algorithm, which is part of the commercial proton beam therapy planning software, eclipse™ (Varian Medical Systems, Palo Alto, CA). The field size factor (FSF) was calculated based on the spot profile reconstructed by the in-house dose kernel. The workflow of using FSFs to find the desirable proton fluence is presented. The in-house derived spot profile and FSF were validated by a direct comparison with those calculated by the eclipse TPS. The validation included 420 comparisons of the FSFs from 14 proton energies, various field sizes from 2 to 20 cm and various depths from 20% to 80% of proton range. The relative in-water lateral profiles between the in-house calculation and the eclipse TPS agree very well even at the level of 10 -4 . The FSFs between the in-house calculation and the eclipse TPS also agree well. The maximum deviation is within 0.5%, and the standard deviation is less than 0.1%. The authors' method significantly reduced the time to find the desirable proton fluences of the clinical energies. The method is extensively validated and can be applied to any proton centers using PBS and the eclipse TPS.

  6. Antidiabetic and antioxidant functionality associated with phenolic constituents from fruit parts of indigenous black jamun (Syzygium cumini L.) landraces.

    PubMed

    Gajera, H P; Gevariya, Shila N; Hirpara, Darshna G; Patel, S V; Golakiya, B A

    2017-09-01

    Fruit phenolics are important dietary antioxidant and antidiabetic constituents. The fruit parts (pulp, seed, seed coat, kernel) of underutilized indigenous six black jamun landraces ( Syzygium cumini L.), found in Gir forest region of India and differed in their fruit size, shape and weight, are evaluated and correlated with antidiabetic, DPPH radical scavenging and phenolic constituents. The α-amylase inhibitors propose an efficient antidiabetic strategy and the levels of postprandial hyperglycemia were lowered by restraining starch breakdown. The sequential solvent systems with ascending polarity-petroleum ether, ethyl acetate, methanol and water were performed for soxhlet extraction by hot percolation method and extractive yield was found maximum with methanolic fruit part extracts of six landraces. The methanolic extracts of fruit parts also evidenced higher antidiabetic activity and hence utilized for further characterization. Among the six landraces, pulp and kernel of BJLR-6 (very small, oblong fruits) evidenced maximum 53.8 and 98.2% inhibition of α-amylase activity, respectively. The seed attained inhibitory activity mostly contributed by the kernel fraction. The inhibition of DPPH radical scavenging activity was positively correlated with phenol constituents. An HPLC-PDA technique was used to quantify the seven individual phenolics. The seed and kernel of BJLR-6 exhibited higher individual phenolics-gallic, catechin, ellagic, ferulic acids and quercetin, whereas pulp evidenced higher with gallic acid and catechin as α-amylase inhibitors. The IC 50 value indicates concentration of fruit extracts exhibiting ≥50% inhibition on porcine pancreatic α-amylase (PPA) activity. The kernel fraction of BJLR6 evidenced lowest (8.3 µg ml -1 ) IC 50 value followed by seed (12.9 µg ml -1 ), seed coat (50.8 µg ml -1 ) and pulp (270 µg ml -1 ). The seed and kernel of BJLR-6 inhibited PPA at much lower concentrations than standard acarbose (24.7 µg ml -1 ) considering good candidates for antidiabetic herbal formulations.

  7. [Application of optimized parameters SVM based on photoacoustic spectroscopy method in fault diagnosis of power transformer].

    PubMed

    Zhang, Yu-xin; Cheng, Zhi-feng; Xu, Zheng-ping; Bai, Jing

    2015-01-01

    In order to solve the problems such as complex operation, consumption for the carrier gas and long test period in traditional power transformer fault diagnosis approach based on dissolved gas analysis (DGA), this paper proposes a new method which is detecting 5 types of characteristic gas content in transformer oil such as CH4, C2H2, C2H4, C2H6 and H2 based on photoacoustic Spectroscopy and C2H2/C2H4, CH4/H2, C2H4/C2H6 three-ratios data are calculated. The support vector machine model was constructed using cross validation method under five support vector machine functions and four kernel functions, heuristic algorithms were used in parameter optimization for penalty factor c and g, which to establish the best SVM model for the highest fault diagnosis accuracy and the fast computing speed. Particles swarm optimization and genetic algorithm two types of heuristic algorithms were comparative studied in this paper for accuracy and speed in optimization. The simulation result shows that SVM model composed of C-SVC, RBF kernel functions and genetic algorithm obtain 97. 5% accuracy in test sample set and 98. 333 3% accuracy in train sample set, and genetic algorithm was about two times faster than particles swarm optimization in computing speed. The methods described in this paper has many advantages such as simple operation, non-contact measurement, no consumption for the carrier gas, long test period, high stability and sensitivity, the result shows that the methods described in this paper can instead of the traditional transformer fault diagnosis by gas chromatography and meets the actual project needs in transformer fault diagnosis.

  8. [Hyperspectral remote sensing image classification based on SVM optimized by clonal selection].

    PubMed

    Liu, Qing-Jie; Jing, Lin-Hai; Wang, Meng-Fei; Lin, Qi-Zhong

    2013-03-01

    Model selection for support vector machine (SVM) involving kernel and the margin parameter values selection is usually time-consuming, impacts training efficiency of SVM model and final classification accuracies of SVM hyperspectral remote sensing image classifier greatly. Firstly, based on combinatorial optimization theory and cross-validation method, artificial immune clonal selection algorithm is introduced to the optimal selection of SVM (CSSVM) kernel parameter a and margin parameter C to improve the training efficiency of SVM model. Then an experiment of classifying AVIRIS in India Pine site of USA was performed for testing the novel CSSVM, as well as a traditional SVM classifier with general Grid Searching cross-validation method (GSSVM) for comparison. And then, evaluation indexes including SVM model training time, classification overall accuracy (OA) and Kappa index of both CSSVM and GSSVM were all analyzed quantitatively. It is demonstrated that OA of CSSVM on test samples and whole image are 85.1% and 81.58, the differences from that of GSSVM are both within 0.08% respectively; And Kappa indexes reach 0.8213 and 0.7728, the differences from that of GSSVM are both within 0.001; While the ratio of model training time of CSSVM and GSSVM is between 1/6 and 1/10. Therefore, CSSVM is fast and accurate algorithm for hyperspectral image classification and is superior to GSSVM.

  9. Batch process fault detection and identification based on discriminant global preserving kernel slow feature analysis.

    PubMed

    Zhang, Hanyuan; Tian, Xuemin; Deng, Xiaogang; Cao, Yuping

    2018-05-16

    As an attractive nonlinear dynamic data analysis tool, global preserving kernel slow feature analysis (GKSFA) has achieved great success in extracting the high nonlinearity and inherently time-varying dynamics of batch process. However, GKSFA is an unsupervised feature extraction method and lacks the ability to utilize batch process class label information, which may not offer the most effective means for dealing with batch process monitoring. To overcome this problem, we propose a novel batch process monitoring method based on the modified GKSFA, referred to as discriminant global preserving kernel slow feature analysis (DGKSFA), by closely integrating discriminant analysis and GKSFA. The proposed DGKSFA method can extract discriminant feature of batch process as well as preserve global and local geometrical structure information of observed data. For the purpose of fault detection, a monitoring statistic is constructed based on the distance between the optimal kernel feature vectors of test data and normal data. To tackle the challenging issue of nonlinear fault variable identification, a new nonlinear contribution plot method is also developed to help identifying the fault variable after a fault is detected, which is derived from the idea of variable pseudo-sample trajectory projection in DGKSFA nonlinear biplot. Simulation results conducted on a numerical nonlinear dynamic system and the benchmark fed-batch penicillin fermentation process demonstrate that the proposed process monitoring and fault diagnosis approach can effectively detect fault and distinguish fault variables from normal variables. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Improvement of density models of geological structures by fusion of gravity data and cosmic muon radiographies

    NASA Astrophysics Data System (ADS)

    Jourde, K.; Gibert, D.; Marteau, J.

    2015-04-01

    This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity measurements are linked to density by a 3-D integration encompassing the whole studied domain. We establish the mathematical expressions of these integration formulas - called acquisition kernels - and derive the resolving kernels that are spatial filters relating the true unknown density structure to the density distribution actually recovered from the available data. The resolving kernels approach allows to quantitatively describe the improvement of the resolution of the density models achieved by merging gravity data and muon radiographies. The method developed in this paper may be used to optimally design the geometry of the field measurements to perform in order to obtain a given spatial resolution pattern of the density model to construct. The resolving kernels derived in the joined muon/gravimetry case indicate that gravity data are almost useless to constrain the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. The method is illustrated with examples for La Soufrière of Guadeloupe volcano.

  11. Spectral methods in machine learning and new strategies for very large datasets

    PubMed Central

    Belabbas, Mohamed-Ali; Wolfe, Patrick J.

    2009-01-01

    Spectral methods are of fundamental importance in statistics and machine learning, because they underlie algorithms from classical principal components analysis to more recent approaches that exploit manifold structure. In most cases, the core technical problem can be reduced to computing a low-rank approximation to a positive-definite kernel. For the growing number of applications dealing with very large or high-dimensional datasets, however, the optimal approximation afforded by an exact spectral decomposition is too costly, because its complexity scales as the cube of either the number of training examples or their dimensionality. Motivated by such applications, we present here 2 new algorithms for the approximation of positive-semidefinite kernels, together with error bounds that improve on results in the literature. We approach this problem by seeking to determine, in an efficient manner, the most informative subset of our data relative to the kernel approximation task at hand. This leads to two new strategies based on the Nyström method that are directly applicable to massive datasets. The first of these—based on sampling—leads to a randomized algorithm whereupon the kernel induces a probability distribution on its set of partitions, whereas the latter approach—based on sorting—provides for the selection of a partition in a deterministic way. We detail their numerical implementation and provide simulation results for a variety of representative problems in statistical data analysis, each of which demonstrates the improved performance of our approach relative to existing methods. PMID:19129490

  12. Para-hydrogen and helium cluster size distributions in free jet expansions based on Smoluchowski theory with kernel scaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornilov, Oleg; Toennies, J. Peter

    The size distribution of para-H{sub 2} (pH{sub 2}) clusters produced in free jet expansions at a source temperature of T{sub 0} = 29.5 K and pressures of P{sub 0} = 0.9–1.96 bars is reported and analyzed according to a cluster growth model based on the Smoluchowski theory with kernel scaling. Good overall agreement is found between the measured and predicted, N{sub k} = A k{sup a} e{sup −bk}, shape of the distribution. The fit yields values for A and b for values of a derived from simple collision models. The small remaining deviations between measured abundances and theory imply a (pH{submore » 2}){sub k} magic number cluster of k = 13 as has been observed previously by Raman spectroscopy. The predicted linear dependence of b{sup −(a+1)} on source gas pressure was verified and used to determine the value of the basic effective agglomeration reaction rate constant. A comparison of the corresponding effective growth cross sections σ{sub 11} with results from a similar analysis of He cluster size distributions indicates that the latter are much larger by a factor 6-10. An analysis of the three body recombination rates, the geometric sizes and the fact that the He clusters are liquid independent of their size can explain the larger cross sections found for He.« less

  13. The impact of volunteer rice infestation on rice yield and grain quality

    USDA-ARS?s Scientific Manuscript database

    Volunteer rice (Oryza sativa L.) is a crop stand which emerges from shattered seeds of the previous crop. When present at sufficiently high levels, it can potentially affect the commercial market value of cultivated rice products, especially if it produces kernels with quality, uniformity, or size ...

  14. Comparative habitat use of sympatric Mexican spotted and great horned owls

    Treesearch

    Joseph L. Ganey; William M. Block; Jeffrey S. Jenness; Randolph A. Wilson

    1997-01-01

    To provide information on comparative habitat use, we studied radiotagged Mexican spotted owls (Strix occidentalis lucida: n = 13) and great horned owls (Bubo virginianus: n = 4) in northern Arizona. Home-range size (95% adaptive kernel estimate) did not differ significantly between species during either the breeding or nonbreeding...

  15. Chemical interruption of late season flowering to improve harvested peanut maturity

    USDA-ARS?s Scientific Manuscript database

    Peanut (Arachis hypogaea) is a botanically indeterminate plant where flowering, fruit initiation, and pod maturity occurs over an extended time period during the growing season. As a result, the maturity and size of individual peanut pods varies considerably at harvest. Immature kernels that meet co...

  16. Multi-board kernel communication using socket programming for embedded applications

    NASA Astrophysics Data System (ADS)

    Mishra, Ashish; Girdhar, Neha; Krishnia, Nikita

    2016-03-01

    It is often seen in large application projects, there is a need to communicate between two different processors or two different kernels. The aim of this paper is to communicate between two different kernels and use efficient method to do so. The TCP/IP protocol is implemented to communicate between two boards via the Ethernet port and use lwIP (lightweight IP) stack, which is a smaller independent implementation of the TCP/IP stack suitable for use in embedded systems. While retaining TCP/IP functionality, lwIP stack reduces the use of memory and even size of the code. In this process of communication we made Raspberry pi as an active client and Field programmable gate array(FPGA) board as a passive server and they are allowed to communicate via Ethernet. Three applications based on TCP/IP client-server network communication have been implemented. The Echo server application is used to communicate between two different kernels of two different boards. Socket programming is used as it is independent of platform and programming language used. TCP transmit and receive throughput test applications are used to measure maximum throughput of the transmission of data. These applications are based on communication to an open source tool called iperf. It is used to measure the throughput transmission rate by sending or receiving some constant piece of data to the client or server according to the test application.

  17. Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV.

    PubMed

    Maigne, L; Perrot, Y; Schaart, D R; Donnarieix, D; Breton, V

    2011-02-07

    The GATE Monte Carlo simulation platform based on the GEANT4 toolkit has come into widespread use for simulating positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging devices. Here, we explore its use for calculating electron dose distributions in water. Mono-energetic electron dose point kernels and pencil beam kernels in water are calculated for different energies between 15 keV and 20 MeV by means of GATE 6.0, which makes use of the GEANT4 version 9.2 Standard Electromagnetic Physics Package. The results are compared to the well-validated codes EGSnrc and MCNP4C. It is shown that recent improvements made to the GEANT4/GATE software result in significantly better agreement with the other codes. We furthermore illustrate several issues of general interest to GATE and GEANT4 users who wish to perform accurate simulations involving electrons. Provided that the electron step size is sufficiently restricted, GATE 6.0 and EGSnrc dose point kernels are shown to agree to within less than 3% of the maximum dose between 50 keV and 4 MeV, while pencil beam kernels are found to agree to within less than 4% of the maximum dose between 15 keV and 20 MeV.

  18. Novel procedure for characterizing nonlinear systems with memory: 2017 update

    NASA Astrophysics Data System (ADS)

    Nuttall, Albert H.; Katz, Richard A.; Hughes, Derke R.; Koch, Robert M.

    2017-05-01

    The present article discusses novel improvements in nonlinear signal processing made by the prime algorithm developer, Dr. Albert H. Nuttall and co-authors, a consortium of research scientists from the Naval Undersea Warfare Center Division, Newport, RI. The algorithm, called the Nuttall-Wiener-Volterra or 'NWV' algorithm is named for its principal contributors [1], [2],[ 3] . The NWV algorithm significantly reduces the computational workload for characterizing nonlinear systems with memory. Following this formulation, two measurement waveforms are required in order to characterize a specified nonlinear system under consideration: (1) an excitation input waveform, x(t) (the transmitted signal); and, (2) a response output waveform, z(t) (the received signal). Given these two measurement waveforms for a given propagation channel, a 'kernel' or 'channel response', h= [h0,h1,h2,h3] between the two measurement points, is computed via a least squares approach that optimizes modeled kernel values by performing a best fit between measured response z(t) and a modeled response y(t). New techniques significantly diminish the exponential growth of the number of computed kernel coefficients at second and third order and alleviate the Curse of Dimensionality (COD) in order to realize practical nonlinear solutions of scientific and engineering interest.

  19. Bandlimited computerized improvements in characterization of nonlinear systems with memory

    NASA Astrophysics Data System (ADS)

    Nuttall, Albert H.; Katz, Richard A.; Hughes, Derke R.; Koch, Robert M.

    2016-05-01

    The present article discusses some inroads in nonlinear signal processing made by the prime algorithm developer, Dr. Albert H. Nuttall and co-authors, a consortium of research scientists from the Naval Undersea Warfare Center Division, Newport, RI. The algorithm, called the Nuttall-Wiener-Volterra 'NWV' algorithm is named for its principal contributors [1], [2],[ 3] over many years of developmental research. The NWV algorithm significantly reduces the computational workload for characterizing nonlinear systems with memory. Following this formulation, two measurement waveforms on the system are required in order to characterize a specified nonlinear system under consideration: (1) an excitation input waveform, x(t) (the transmitted signal); and, (2) a response output waveform, z(t) (the received signal). Given these two measurement waveforms for a given propagation channel, a 'kernel' or 'channel response', h= [h0,h1,h2,h3] between the two measurement points, is computed via a least squares approach that optimizes modeled kernel values by performing a best fit between measured response z(t) and a modeled response y(t). New techniques significantly diminish the exponential growth of the number of computed kernel coefficients at second and third order in order to combat and reasonably alleviate the curse of dimensionality.

  20. Encoding Dissimilarity Data for Statistical Model Building.

    PubMed

    Wahba, Grace

    2010-12-01

    We summarize, review and comment upon three papers which discuss the use of discrete, noisy, incomplete, scattered pairwise dissimilarity data in statistical model building. Convex cone optimization codes are used to embed the objects into a Euclidean space which respects the dissimilarity information while controlling the dimension of the space. A "newbie" algorithm is provided for embedding new objects into this space. This allows the dissimilarity information to be incorporated into a Smoothing Spline ANOVA penalized likelihood model, a Support Vector Machine, or any model that will admit Reproducing Kernel Hilbert Space components, for nonparametric regression, supervised learning, or semi-supervised learning. Future work and open questions are discussed. The papers are: F. Lu, S. Keles, S. Wright and G. Wahba 2005. A framework for kernel regularization with application to protein clustering. Proceedings of the National Academy of Sciences 102, 12332-1233.G. Corrada Bravo, G. Wahba, K. Lee, B. Klein, R. Klein and S. Iyengar 2009. Examining the relative influence of familial, genetic and environmental covariate information in flexible risk models. Proceedings of the National Academy of Sciences 106, 8128-8133F. Lu, Y. Lin and G. Wahba. Robust manifold unfolding with kernel regularization. TR 1008, Department of Statistics, University of Wisconsin-Madison.

  1. Permissible Home Range Estimation (PHRE) in restricted habitats: A new algorithm and an evaluation for sea otters

    USGS Publications Warehouse

    Tarjan, Lily M; Tinker, M. Tim

    2016-01-01

    Parametric and nonparametric kernel methods dominate studies of animal home ranges and space use. Most existing methods are unable to incorporate information about the underlying physical environment, leading to poor performance in excluding areas that are not used. Using radio-telemetry data from sea otters, we developed and evaluated a new algorithm for estimating home ranges (hereafter Permissible Home Range Estimation, or “PHRE”) that reflects habitat suitability. We began by transforming sighting locations into relevant landscape features (for sea otters, coastal position and distance from shore). Then, we generated a bivariate kernel probability density function in landscape space and back-transformed this to geographic space in order to define a permissible home range. Compared to two commonly used home range estimation methods, kernel densities and local convex hulls, PHRE better excluded unused areas and required a smaller sample size. Our PHRE method is applicable to species whose ranges are restricted by complex physical boundaries or environmental gradients and will improve understanding of habitat-use requirements and, ultimately, aid in conservation efforts.

  2. Scalable Metropolis Monte Carlo for simulation of hard shapes

    NASA Astrophysics Data System (ADS)

    Anderson, Joshua A.; Eric Irrgang, M.; Glotzer, Sharon C.

    2016-07-01

    We design and implement a scalable hard particle Monte Carlo simulation toolkit (HPMC), and release it open source as part of HOOMD-blue. HPMC runs in parallel on many CPUs and many GPUs using domain decomposition. We employ BVH trees instead of cell lists on the CPU for fast performance, especially with large particle size disparity, and optimize inner loops with SIMD vector intrinsics on the CPU. Our GPU kernel proposes many trial moves in parallel on a checkerboard and uses a block-level queue to redistribute work among threads and avoid divergence. HPMC supports a wide variety of shape classes, including spheres/disks, unions of spheres, convex polygons, convex spheropolygons, concave polygons, ellipsoids/ellipses, convex polyhedra, convex spheropolyhedra, spheres cut by planes, and concave polyhedra. NVT and NPT ensembles can be run in 2D or 3D triclinic boxes. Additional integration schemes permit Frenkel-Ladd free energy computations and implicit depletant simulations. In a benchmark system of a fluid of 4096 pentagons, HPMC performs 10 million sweeps in 10 min on 96 CPU cores on XSEDE Comet. The same simulation would take 7.6 h in serial. HPMC also scales to large system sizes, and the same benchmark with 16.8 million particles runs in 1.4 h on 2048 GPUs on OLCF Titan.

  3. Parametric geometric model and hydrodynamic shape optimization of a flying-wing structure underwater glider

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-yu; Yu, Jian-cheng; Zhang, Ai-qun; Wang, Ya-xing; Zhao, Wen-tao

    2017-12-01

    Combining high precision numerical analysis methods with optimization algorithms to make a systematic exploration of a design space has become an important topic in the modern design methods. During the design process of an underwater glider's flying-wing structure, a surrogate model is introduced to decrease the computation time for a high precision analysis. By these means, the contradiction between precision and efficiency is solved effectively. Based on the parametric geometry modeling, mesh generation and computational fluid dynamics analysis, a surrogate model is constructed by adopting the design of experiment (DOE) theory to solve the multi-objects design optimization problem of the underwater glider. The procedure of a surrogate model construction is presented, and the Gaussian kernel function is specifically discussed. The Particle Swarm Optimization (PSO) algorithm is applied to hydrodynamic design optimization. The hydrodynamic performance of the optimized flying-wing structure underwater glider increases by 9.1%.

  4. Multilevel image recognition using discriminative patches and kernel covariance descriptor

    NASA Astrophysics Data System (ADS)

    Lu, Le; Yao, Jianhua; Turkbey, Evrim; Summers, Ronald M.

    2014-03-01

    Computer-aided diagnosis of medical images has emerged as an important tool to objectively improve the performance, accuracy and consistency for clinical workflow. To computerize the medical image diagnostic recognition problem, there are three fundamental problems: where to look (i.e., where is the region of interest from the whole image/volume), image feature description/encoding, and similarity metrics for classification or matching. In this paper, we exploit the motivation, implementation and performance evaluation of task-driven iterative, discriminative image patch mining; covariance matrix based descriptor via intensity, gradient and spatial layout; and log-Euclidean distance kernel for support vector machine, to address these three aspects respectively. To cope with often visually ambiguous image patterns for the region of interest in medical diagnosis, discovery of multilabel selective discriminative patches is desired. Covariance of several image statistics summarizes their second order interactions within an image patch and is proved as an effective image descriptor, with low dimensionality compared with joint statistics and fast computation regardless of the patch size. We extensively evaluate two extended Gaussian kernels using affine-invariant Riemannian metric or log-Euclidean metric with support vector machines (SVM), on two medical image classification problems of degenerative disc disease (DDD) detection on cortical shell unwrapped CT maps and colitis detection on CT key images. The proposed approach is validated with promising quantitative results on these challenging tasks. Our experimental findings and discussion also unveil some interesting insights on the covariance feature composition with or without spatial layout for classification and retrieval, and different kernel constructions for SVM. This will also shed some light on future work using covariance feature and kernel classification for medical image analysis.

  5. Revisiting the Cramér Rao Lower Bound for Elastography: Predicting the Performance of Axial, Lateral and Polar Strain Elastograms.

    PubMed

    Verma, Prashant; Doyley, Marvin M

    2017-09-01

    We derived the Cramér Rao lower bound for 2-D estimators employed in quasi-static elastography. To illustrate the theory, we modeled the 2-D point spread function as a sinc-modulated sine pulse in the axial direction and as a sinc function in the lateral direction. We compared theoretical predictions of the variance incurred in displacements and strains when quasi-static elastography was performed under varying conditions (different scanning methods, different configuration of conventional linear array imaging and different-size kernels) with those measured from simulated or experimentally acquired data. We performed studies to illustrate the application of the derived expressions when performing vascular elastography with plane wave and compounded plane wave imaging. Standard deviations in lateral displacements were an order higher than those in axial. Additionally, the derived expressions predicted that peak performance should occur when 2% strain is applied, the same order of magnitude as observed in simulations (1%) and experiments (1%-2%). We assessed how different configurations of conventional linear array imaging (number of active reception and transmission elements) influenced the quality of axial and lateral strain elastograms. The theoretical expressions predicted that 2-D echo tracking should be performed with wide kernels, but the length of the kernels should be selected using knowledge of the magnitude of the applied strain: specifically, longer kernels for small strains (<5%) and shorter kernels for larger strains. Although the general trends of theoretical predictions and experimental observations were similar, biases incurred during beamforming and subsample displacement estimation produced noticeable differences. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. A Hybrid Short-Term Traffic Flow Prediction Model Based on Singular Spectrum Analysis and Kernel Extreme Learning Machine.

    PubMed

    Shang, Qiang; Lin, Ciyun; Yang, Zhaosheng; Bing, Qichun; Zhou, Xiyang

    2016-01-01

    Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS). Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM) is proposed based on singular spectrum analysis (SSA) and kernel extreme learning machine (KELM). SSA is used to filter out the noise of traffic flow time series. Then, the filtered traffic flow data is used to train KELM model, the optimal input form of the proposed model is determined by phase space reconstruction, and parameters of the model are optimized by gravitational search algorithm (GSA). Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. And the SSA-KELM model is compared with several well-known prediction models, including support vector machine, extreme learning machine, and single KLEM model. The experimental results demonstrate that performance of the proposed model is superior to that of the comparison models. Apart from accuracy improvement, the proposed model is more robust.

  7. Analysis of projectile motion: A comparative study using fractional operators with power law, exponential decay and Mittag-Leffler kernel

    NASA Astrophysics Data System (ADS)

    Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; López-López, M. G.; Alvarado-Martínez, V. M.

    2018-03-01

    In this paper, the two-dimensional projectile motion was studied; for this study two cases were considered, for the first one, we considered that there is no air resistance and, for the second case, we considered a resisting medium k . The study was carried out by using fractional calculus. The solution to this study was obtained by using fractional operators with power law, exponential decay and Mittag-Leffler kernel in the range of γ \\in (0,1] . These operators were considered in the Liouville-Caputo sense to use physical initial conditions with a known physical interpretation. The range and the maximum height of the projectile were obtained using these derivatives. With the aim of exploring the validity of the obtained results, we compared our results with experimental data given in the literature. A multi-objective particle swarm optimization approach was used for generating Pareto-optimal solutions for the parameters k and γ for different fixed values of velocity v0 and angle θ . The results showed some relevant qualitative differences between the use of power law, exponential decay and Mittag-Leffler law.

  8. An atomistic fingerprint algorithm for learning ab initio molecular force fields

    NASA Astrophysics Data System (ADS)

    Tang, Yu-Hang; Zhang, Dongkun; Karniadakis, George Em

    2018-01-01

    Molecular fingerprints, i.e., feature vectors describing atomistic neighborhood configurations, is an important abstraction and a key ingredient for data-driven modeling of potential energy surface and interatomic force. In this paper, we present the density-encoded canonically aligned fingerprint algorithm, which is robust and efficient, for fitting per-atom scalar and vector quantities. The fingerprint is essentially a continuous density field formed through the superimposition of smoothing kernels centered on the atoms. Rotational invariance of the fingerprint is achieved by aligning, for each fingerprint instance, the neighboring atoms onto a local canonical coordinate frame computed from a kernel minisum optimization procedure. We show that this approach is superior over principal components analysis-based methods especially when the atomistic neighborhood is sparse and/or contains symmetry. We propose that the "distance" between the density fields be measured using a volume integral of their pointwise difference. This can be efficiently computed using optimal quadrature rules, which only require discrete sampling at a small number of grid points. We also experiment on the choice of weight functions for constructing the density fields and characterize their performance for fitting interatomic potentials. The applicability of the fingerprint is demonstrated through a set of benchmark problems.

  9. A Hybrid Short-Term Traffic Flow Prediction Model Based on Singular Spectrum Analysis and Kernel Extreme Learning Machine

    PubMed Central

    Lin, Ciyun; Yang, Zhaosheng; Bing, Qichun; Zhou, Xiyang

    2016-01-01

    Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS). Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM) is proposed based on singular spectrum analysis (SSA) and kernel extreme learning machine (KELM). SSA is used to filter out the noise of traffic flow time series. Then, the filtered traffic flow data is used to train KELM model, the optimal input form of the proposed model is determined by phase space reconstruction, and parameters of the model are optimized by gravitational search algorithm (GSA). Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. And the SSA-KELM model is compared with several well-known prediction models, including support vector machine, extreme learning machine, and single KLEM model. The experimental results demonstrate that performance of the proposed model is superior to that of the comparison models. Apart from accuracy improvement, the proposed model is more robust. PMID:27551829

  10. Integrated model of multiple kernel learning and differential evolution for EUR/USD trading.

    PubMed

    Deng, Shangkun; Sakurai, Akito

    2014-01-01

    Currency trading is an important area for individual investors, government policy decisions, and organization investments. In this study, we propose a hybrid approach referred to as MKL-DE, which combines multiple kernel learning (MKL) with differential evolution (DE) for trading a currency pair. MKL is used to learn a model that predicts changes in the target currency pair, whereas DE is used to generate the buy and sell signals for the target currency pair based on the relative strength index (RSI), while it is also combined with MKL as a trading signal. The new hybrid implementation is applied to EUR/USD trading, which is the most traded foreign exchange (FX) currency pair. MKL is essential for utilizing information from multiple information sources and DE is essential for formulating a trading rule based on a mixture of discrete structures and continuous parameters. Initially, the prediction model optimized by MKL predicts the returns based on a technical indicator called the moving average convergence and divergence. Next, a combined trading signal is optimized by DE using the inputs from the prediction model and technical indicator RSI obtained from multiple timeframes. The experimental results showed that trading using the prediction learned by MKL yielded consistent profits.

  11. Combining heterogeneous features for colonic polyp detection in CTC based on semi-definite programming

    NASA Astrophysics Data System (ADS)

    Wang, Shijun; Yao, Jianhua; Petrick, Nicholas A.; Summers, Ronald M.

    2009-02-01

    Colon cancer is the second leading cause of cancer-related deaths in the United States. Computed tomographic colonography (CTC) combined with a computer aided detection system provides a feasible combination for improving colonic polyps detection and increasing the use of CTC for colon cancer screening. To distinguish true polyps from false positives, various features extracted from polyp candidates have been proposed. Most of these features try to capture the shape information of polyp candidates or neighborhood knowledge about the surrounding structures (fold, colon wall, etc.). In this paper, we propose a new set of shape descriptors for polyp candidates based on statistical curvature information. These features, called histogram of curvature features, are rotation, translation and scale invariant and can be treated as complementing our existing feature set. Then in order to make full use of the traditional features (defined as group A) and the new features (group B) which are highly heterogeneous, we employed a multiple kernel learning method based on semi-definite programming to identify an optimized classification kernel based on the combined set of features. We did leave-one-patient-out test on a CTC dataset which contained scans from 50 patients (with 90 6-9mm polyp detections). Experimental results show that a support vector machine (SVM) based on the combined feature set and the semi-definite optimization kernel achieved higher FROC performance compared to SVMs using the two groups of features separately. At a false positive per patient rate of 7, the sensitivity on 6-9mm polyps using the combined features improved from 0.78 (Group A) and 0.73 (Group B) to 0.82 (p<=0.01).

  12. Absorbed dose kernel and self-shielding calculations for a novel radiopaque glass microsphere for transarterial radioembolization.

    PubMed

    Church, Cody; Mawko, George; Archambault, John Paul; Lewandowski, Robert; Liu, David; Kehoe, Sharon; Boyd, Daniel; Abraham, Robert; Syme, Alasdair

    2018-02-01

    Radiopaque microspheres may provide intraprocedural and postprocedural feedback during transarterial radioembolization (TARE). Furthermore, the potential to use higher resolution x-ray imaging techniques as opposed to nuclear medicine imaging suggests that significant improvements in the accuracy and precision of radiation dosimetry calculations could be realized for this type of therapy. This study investigates the absorbed dose kernel for novel radiopaque microspheres including contributions of both short and long-lived contaminant radionuclides while concurrently quantifying the self-shielding of the glass network. Monte Carlo simulations using EGSnrc were performed to determine the dose kernels for all monoenergetic electron emissions and all beta spectra for radionuclides reported in a neutron activation study of the microspheres. Simulations were benchmarked against an accepted 90 Y dose point kernel. Self-shielding was quantified for the microspheres by simulating an isotropically emitting, uniformly distributed source, in glass and in water. The ratio of the absorbed doses was scored as a function of distance from a microsphere. The absorbed dose kernel for the microspheres was calculated for (a) two bead formulations following (b) two different durations of neutron activation, at (c) various time points following activation. Self-shielding varies with time postremoval from the reactor. At early time points, it is less pronounced due to the higher energies of the emissions. It is on the order of 0.4-2.8% at a radial distance of 5.43 mm with increased size from 10 to 50 μm in diameter during the time that the microspheres would be administered to a patient. At long time points, self-shielding is more pronounced and can reach values in excess of 20% near the end of the range of the emissions. Absorbed dose kernels for 90 Y, 90m Y, 85m Sr, 85 Sr, 87m Sr, 89 Sr, 70 Ga, 72 Ga, and 31 Si are presented and used to determine an overall kernel for the microspheres based on weighted activities. The shapes of the absorbed dose kernels are dominated at short times postactivation by the contributions of 70 Ga and 72 Ga. Following decay of the short-lived contaminants, the absorbed dose kernel is effectively that of 90 Y. After approximately 1000 h postactivation, the contributions of 85 Sr and 89 Sr become increasingly dominant, though the absorbed dose-rate around the beads drops by roughly four orders of magnitude. The introduction of high atomic number elements for the purpose of increasing radiopacity necessarily leads to the production of radionuclides other than 90 Y in the microspheres. Most of the radionuclides in this study are short-lived and are likely not of any significant concern for this therapeutic agent. The presence of small quantities of longer lived radionuclides will change the shape of the absorbed dose kernel around a microsphere at long time points postadministration when activity levels are significantly reduced. © 2017 American Association of Physicists in Medicine.

  13. Kernel abortion in maize : I. Carbohydrate concentration patterns and Acid invertase activity of maize kernels induced to abort in vitro.

    PubMed

    Hanft, J M; Jones, R J

    1986-06-01

    Kernels cultured in vitro were induced to abort by high temperature (35 degrees C) and by culturing six kernels/cob piece. Aborting kernels failed to enter a linear phase of dry mass accumulation and had a final mass that was less than 6% of nonaborting field-grown kernels. Kernels induced to abort by high temperature failed to synthesize starch in the endosperm and had elevated sucrose concentrations and low fructose and glucose concentrations in the pedicel during early growth compared to nonaborting kernels. Kernels induced to abort by high temperature also had much lower pedicel soluble acid invertase activities than did nonaborting kernels. These results suggest that high temperature during the lag phase of kernel growth may impair the process of sucrose unloading in the pedicel by indirectly inhibiting soluble acid invertase activity and prevent starch synthesis in the endosperm. Kernels induced to abort by culturing six kernels/cob piece had reduced pedicel fructose, glucose, and sucrose concentrations compared to kernels from field-grown ears. These aborting kernels also had a lower pedicel soluble acid invertase activity compared to nonaborting kernels from the same cob piece and from field-grown ears. The low invertase activity in pedicel tissue of the aborting kernels was probably caused by a lack of substrate (sucrose) for the invertase to cleave due to the intense competition for available assimilates. In contrast to kernels cultured at 35 degrees C, aborting kernels from cob pieces containing all six kernels accumulated starch in a linear fashion. These results indicate that kernels cultured six/cob piece abort because of an inadequate supply of sugar and are similar to apical kernels from field-grown ears that often abort prior to the onset of linear growth.

  14. Photon Counting Computed Tomography With Dedicated Sharp Convolution Kernels: Tapping the Potential of a New Technology for Stent Imaging.

    PubMed

    von Spiczak, Jochen; Mannil, Manoj; Peters, Benjamin; Hickethier, Tilman; Baer, Matthias; Henning, André; Schmidt, Bernhard; Flohr, Thomas; Manka, Robert; Maintz, David; Alkadhi, Hatem

    2018-05-23

    The aims of this study were to assess the value of a dedicated sharp convolution kernel for photon counting detector (PCD) computed tomography (CT) for coronary stent imaging and to evaluate to which extent iterative reconstructions can compensate for potential increases in image noise. For this in vitro study, a phantom simulating coronary artery stenting was prepared. Eighteen different coronary stents were expanded in plastic tubes of 3 mm diameter. Tubes were filled with diluted contrast agent, sealed, and immersed in oil calibrated to an attenuation of -100 HU simulating epicardial fat. The phantom was scanned in a modified second generation 128-slice dual-source CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Erlangen, Germany) equipped with both a conventional energy integrating detector and PCD. Image data were acquired using the PCD part of the scanner with 48 × 0.25 mm slices, a tube voltage of 100 kVp, and tube current-time product of 100 mAs. Images were reconstructed using a conventional convolution kernel for stent imaging with filtered back-projection (B46) and with sinogram-affirmed iterative reconstruction (SAFIRE) at level 3 (I463). For comparison, a dedicated sharp convolution kernel with filtered back-projection (D70) and SAFIRE level 3 (Q703) and level 5 (Q705) was used. The D70 and Q70 kernels were specifically designed for coronary stent imaging with PCD CT by optimizing the image modulation transfer function and the separation of contrast edges. Two independent, blinded readers evaluated subjective image quality (Likert scale 0-3, where 3 = excellent), in-stent diameter difference, in-stent attenuation difference, mathematically defined image sharpness, and noise of each reconstruction. Interreader reliability was calculated using Goodman and Kruskal's γ and intraclass correlation coefficients (ICCs). Differences in image quality were evaluated using a Wilcoxon signed-rank test. Differences in in-stent diameter difference, in-stent attenuation difference, image sharpness, and image noise were tested using a paired-sample t test corrected for multiple comparisons. Interreader and intrareader reliability were excellent (γ = 0.953, ICCs = 0.891-0.999, and γ = 0.996, ICCs = 0.918-0.999, respectively). Reconstructions using the dedicated sharp convolution kernel yielded significantly better results regarding image quality (B46: 0.4 ± 0.5 vs D70: 2.9 ± 0.3; P < 0.001), in-stent diameter difference (1.5 ± 0.3 vs 1.0 ± 0.3 mm; P < 0.001), and image sharpness (728 ± 246 vs 2069 ± 411 CT numbers/voxel; P < 0.001). Regarding in-stent attenuation difference, no significant difference was observed between the 2 kernels (151 ± 76 vs 158 ± 92 CT numbers; P = 0.627). Noise was significantly higher in all sharp convolution kernel images but was reduced by 41% and 59% by applying SAFIRE levels 3 and 5, respectively (B46: 16 ± 1, D70: 111 ± 3, Q703: 65 ± 2, Q705: 46 ± 2 CT numbers; P < 0.001 for all comparisons). A dedicated sharp convolution kernel for PCD CT imaging of coronary stents yields superior qualitative and quantitative image characteristics compared with conventional reconstruction kernels. Resulting higher noise levels in sharp kernel PCD imaging can be partially compensated with iterative image reconstruction techniques.

  15. The Effects of Popping Popcorn Under Reduced Pressure

    NASA Astrophysics Data System (ADS)

    Quinn, Paul; Cooper, Amanda

    2008-03-01

    In our experiments, we model the popping of popcorn as an adiabatic process and develop a process for improving the efficiency of popcorn production. By lowering the pressure of the popcorn during the popping process, we induce an increase in popcorn size, while decreasing the number of remaining unpopped kernels. In this project we run numerous experiments using three of the most common popping devices, a movie popcorn maker, a stove pot, and a microwave. We specifically examine the effects of varying the pressure on total sample size, flake size and waste. An empirical relationship is found between these variables and the pressure.

  16. Experimental determination of the effect of detector size on profile measurements in narrow photon beams.

    PubMed

    Pappas, E; Maris, T G; Papadakis, A; Zacharopoulou, F; Damilakis, J; Papanikolaou, N; Gourtsoyiannis, N

    2006-10-01

    The aim of this work is to investigate experimentally the detector size effect on narrow beam profile measurements. Polymer gel and magnetic resonance imaging dosimetry was used for this purpose. Profile measurements (Pm(s)) of a 5 mm diameter 6 MV stereotactic beam were performed using polymer gels. Eight measurements of the profile of this narrow beam were performed using correspondingly eight different detector sizes. This was achieved using high spatial resolution (0.25 mm) two-dimensional measurements and eight different signal integration volumes A X A X slice thickness, simulating detectors of different size. "A" ranged from 0.25 to 7.5 mm, representing the detector size. The gel-derived profiles exhibited increased penumbra width with increasing detector size, for sizes >0.5 mm. By extrapolating the gel-derived profiles to zero detector size, the true profile (Pt) of the studied beam was derived. The same polymer gel data were also used to simulate a small-volume ion chamber profile measurement of the same beam, in terms of volume averaging. The comparison between these results and actual corresponding small-volume chamber profile measurements performed in this study, reveal that the penumbra broadening caused by both volume averaging and electron transport alterations (present in actual ion chamber profile measurements) is a lot more intense than that resulted by volume averaging effects alone (present in gel-derived profiles simulating ion chamber profile measurements). Therefore, not only the detector size, but also its composition and tissue equivalency is proved to be an important factor for correct narrow beam profile measurements. Additionally, the convolution kernels related to each detector size and to the air ion chamber were calculated using the corresponding profile measurements (Pm(s)), the gel-derived true profile (Pt), and convolution theory. The response kernels of any desired detector can be derived, allowing the elimination of the errors associated with narrow beam profile measurements.

  17. Preliminary CFD study of Pebble Size and its Effect on Heat Transfer in a Pebble Bed Reactor

    NASA Astrophysics Data System (ADS)

    Jones, Andrew; Enriquez, Christian; Spangler, Julian; Yee, Tein; Park, Jungkyu; Farfan, Eduardo

    2017-11-01

    In pebble bed reactors, the typical pebble diameter used is 6cm, and within each pebble is are thousands of nuclear fuel kernels. However, efficiency of the reactor does not solely depend on the number of kernels of fuel within each graphite sphere, but also depends on the type and motion of the coolant within the voids between the spheres and the reactor itself. In this work a physical analysis of the pebble bed nuclear reactor's fluid dynamics is undertaken using Computational Fluid Dynamics software. The primary goal of this work is to observe the relationship between the different pebble diameters in an idealized alignment and the thermal transport efficiency of the reactor. The model constructed of our idealized argument will consist on stacked 8 pebble columns that fixed at the inlet on the reactor. Two different pebble sizes 4 cm and 6 cm will be studied and helium will be supplied as coolant with a fixed flow rate of 96 kg/s, also a fixed pebble surface temperatures will be used. Comparison will then be made to evaluate the efficiency of coolant to transport heat due to the varying sizes of the pebbles. Assistant Professor for the Department of Civil and Construction Engineering PhD.

  18. Methodological improvements in voxel-based analysis of diffusion tensor images: applications to study the impact of apolipoprotein E on white matter integrity.

    PubMed

    Newlander, Shawn M; Chu, Alan; Sinha, Usha S; Lu, Po H; Bartzokis, George

    2014-02-01

    To identify regional differences in apparent diffusion coefficient (ADC) and fractional anisotropy (FA) using customized preprocessing before voxel-based analysis (VBA) in 14 normal subjects with the specific genes that decrease (apolipoprotein [APO] E ε2) and that increase (APOE ε4) the risk of Alzheimer's disease. Diffusion tensor images (DTI) acquired at 1.5 Tesla were denoised with a total variation tensor regularization algorithm before affine and nonlinear registration to generate a common reference frame for the image volumes of all subjects. Anisotropic and isotropic smoothing with varying kernel sizes was applied to the aligned data before VBA to determine regional differences between cohorts segregated by allele status. VBA on the denoised tensor data identified regions of reduced FA in APOE ε4 compared with the APOE ε2 healthy older carriers. The most consistent results were obtained using the denoised tensor and anisotropic smoothing before statistical testing. In contrast, isotropic smoothing identified regional differences for small filter sizes alone, emphasizing that this method introduces bias in FA values for higher kernel sizes. Voxel-based DTI analysis can be performed on low signal to noise ratio images to detect subtle regional differences in cohorts using the proposed preprocessing techniques. Copyright © 2013 Wiley Periodicals, Inc.

  19. 7 CFR 810.602 - Definition of other terms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Damaged kernels. Kernels and pieces of flaxseed kernels that are badly ground-damaged, badly weather... instructions. Also, underdeveloped, shriveled, and small pieces of flaxseed kernels removed in properly... recleaning. (c) Heat-damaged kernels. Kernels and pieces of flaxseed kernels that are materially discolored...

  20. Simulation of realistic abnormal SPECT brain perfusion images: application in semi-quantitative analysis

    NASA Astrophysics Data System (ADS)

    Ward, T.; Fleming, J. S.; Hoffmann, S. M. A.; Kemp, P. M.

    2005-11-01

    Simulation is useful in the validation of functional image analysis methods, particularly when considering the number of analysis techniques currently available lacking thorough validation. Problems exist with current simulation methods due to long run times or unrealistic results making it problematic to generate complete datasets. A method is presented for simulating known abnormalities within normal brain SPECT images using a measured point spread function (PSF), and incorporating a stereotactic atlas of the brain for anatomical positioning. This allows for the simulation of realistic images through the use of prior information regarding disease progression. SPECT images of cerebral perfusion have been generated consisting of a control database and a group of simulated abnormal subjects that are to be used in a UK audit of analysis methods. The abnormality is defined in the stereotactic space, then transformed to the individual subject space, convolved with a measured PSF and removed from the normal subject image. The dataset was analysed using SPM99 (Wellcome Department of Imaging Neuroscience, University College, London) and the MarsBaR volume of interest (VOI) analysis toolbox. The results were evaluated by comparison with the known ground truth. The analysis showed improvement when using a smoothing kernel equal to system resolution over the slightly larger kernel used routinely. Significant correlation was found between effective volume of a simulated abnormality and the detected size using SPM99. Improvements in VOI analysis sensitivity were found when using the region median over the region mean. The method and dataset provide an efficient methodology for use in the comparison and cross validation of semi-quantitative analysis methods in brain SPECT, and allow the optimization of analysis parameters.

  1. Parallel heterogeneous architectures for efficient OMP compressive sensing reconstruction

    NASA Astrophysics Data System (ADS)

    Kulkarni, Amey; Stanislaus, Jerome L.; Mohsenin, Tinoosh

    2014-05-01

    Compressive Sensing (CS) is a novel scheme, in which a signal that is sparse in a known transform domain can be reconstructed using fewer samples. The signal reconstruction techniques are computationally intensive and have sluggish performance, which make them impractical for real-time processing applications . The paper presents novel architectures for Orthogonal Matching Pursuit algorithm, one of the popular CS reconstruction algorithms. We show the implementation results of proposed architectures on FPGA, ASIC and on a custom many-core platform. For FPGA and ASIC implementation, a novel thresholding method is used to reduce the processing time for the optimization problem by at least 25%. Whereas, for the custom many-core platform, efficient parallelization techniques are applied, to reconstruct signals with variant signal lengths of N and sparsity of m. The algorithm is divided into three kernels. Each kernel is parallelized to reduce execution time, whereas efficient reuse of the matrix operators allows us to reduce area. Matrix operations are efficiently paralellized by taking advantage of blocked algorithms. For demonstration purpose, all architectures reconstruct a 256-length signal with maximum sparsity of 8 using 64 measurements. Implementation on Xilinx Virtex-5 FPGA, requires 27.14 μs to reconstruct the signal using basic OMP. Whereas, with thresholding method it requires 18 μs. ASIC implementation reconstructs the signal in 13 μs. However, our custom many-core, operating at 1.18 GHz, takes 18.28 μs to complete. Our results show that compared to the previous published work of the same algorithm and matrix size, proposed architectures for FPGA and ASIC implementations perform 1.3x and 1.8x respectively faster. Also, the proposed many-core implementation performs 3000x faster than the CPU and 2000x faster than the GPU.

  2. Hi-Res scan mode in clinical MDCT systems: Experimental assessment of spatial resolution performance

    PubMed Central

    Cruz-Bastida, Juan P.; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P.; Chen, Guang-Hong

    2016-01-01

    Purpose: The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. Methods: A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0–16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. Results: At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the tangential direction of the scan field of view (SFOV) was significantly degraded at off-centered positions, yet the combined Hi-Res/HD mode reduced this azimuthal MTF degradation. Images of the animal bone fracture model confirmed the improved spatial resolution at the off-centered positions through the use of the Hi-Res mode and HD kernels. Conclusions: The Hi-Res/HD scan improve spatial resolution of MDCT systems at both centered and off-centered positions. PMID:27147351

  3. Hi-Res scan mode in clinical MDCT systems: Experimental assessment of spatial resolution performance.

    PubMed

    Cruz-Bastida, Juan P; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P; Chen, Guang-Hong

    2016-05-01

    The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0-16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the tangential direction of the scan field of view (SFOV) was significantly degraded at off-centered positions, yet the combined Hi-Res/HD mode reduced this azimuthal MTF degradation. Images of the animal bone fracture model confirmed the improved spatial resolution at the off-centered positions through the use of the Hi-Res mode and HD kernels. The Hi-Res/HD scan improve spatial resolution of MDCT systems at both centered and off-centered positions.

  4. Kernel Abortion in Maize 1

    PubMed Central

    Hanft, Jonathan M.; Jones, Robert J.

    1986-01-01

    Kernels cultured in vitro were induced to abort by high temperature (35°C) and by culturing six kernels/cob piece. Aborting kernels failed to enter a linear phase of dry mass accumulation and had a final mass that was less than 6% of nonaborting field-grown kernels. Kernels induced to abort by high temperature failed to synthesize starch in the endosperm and had elevated sucrose concentrations and low fructose and glucose concentrations in the pedicel during early growth compared to nonaborting kernels. Kernels induced to abort by high temperature also had much lower pedicel soluble acid invertase activities than did nonaborting kernels. These results suggest that high temperature during the lag phase of kernel growth may impair the process of sucrose unloading in the pedicel by indirectly inhibiting soluble acid invertase activity and prevent starch synthesis in the endosperm. Kernels induced to abort by culturing six kernels/cob piece had reduced pedicel fructose, glucose, and sucrose concentrations compared to kernels from field-grown ears. These aborting kernels also had a lower pedicel soluble acid invertase activity compared to nonaborting kernels from the same cob piece and from field-grown ears. The low invertase activity in pedicel tissue of the aborting kernels was probably caused by a lack of substrate (sucrose) for the invertase to cleave due to the intense competition for available assimilates. In contrast to kernels cultured at 35°C, aborting kernels from cob pieces containing all six kernels accumulated starch in a linear fashion. These results indicate that kernels cultured six/cob piece abort because of an inadequate supply of sugar and are similar to apical kernels from field-grown ears that often abort prior to the onset of linear growth. PMID:16664846

  5. End-use quality of CIMMYT-derived soft kernel durum wheat germplasm. II. Dough strength and pan bread quality

    USDA-ARS?s Scientific Manuscript database

    Durum wheat (Triticum turgidum ssp. durum) is considered unsuitable for the majority of commercial bread production because its weak gluten strength combined with flour particle size and flour starch damage after milling are not commensurate with hexaploid wheat flours. Recently a new durum cultivar...

  6. 7 CFR 51.1437 - Size classifications for halves.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... halves per pound shall be based upon the weight of half-kernels after all pieces, particles and dust... specified range. (d) Tolerances for pieces, particles, and dust. In order to allow for variations incident..., particles, and dust: Provided, That not more than one-third of this amount, or 5 percent, shall be allowed...

  7. 7 CFR 51.1437 - Size classifications for halves.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... halves per pound shall be based upon the weight of half-kernels after all pieces, particles and dust... specified range. (d) Tolerances for pieces, particles, and dust. In order to allow for variations incident..., particles, and dust: Provided, That not more than one-third of this amount, or 5 percent, shall be allowed...

  8. Genetic analysis of kernel traits in maize-teosinte introgression populations

    USDA-ARS?s Scientific Manuscript database

    Seed traits have been targeted by human selection during the domestication of crop species as a way to increase caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is mos...

  9. Voronoi Cell Patterns: theoretical model and application to submonolayer growth

    NASA Astrophysics Data System (ADS)

    González, Diego Luis; Einstein, T. L.

    2012-02-01

    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We apply our model to describe the Voronoi cell patterns of island nucleation for critical island sizes i=0,1,2,3. Experimental results for the Voronoi cells of InAs/GaAs quantum dots are also described by our model.

  10. Support vector machine with a Pearson VII function kernel for discriminating halophilic and non-halophilic proteins.

    PubMed

    Zhang, Guangya; Ge, Huihua

    2013-10-01

    Understanding of proteins adaptive to hypersaline environment and identifying them is a challenging task and would help to design stable proteins. Here, we have systematically analyzed the normalized amino acid compositions of 2121 halophilic and 2400 non-halophilic proteins. The results showed that halophilic protein contained more Asp at the expense of Lys, Ile, Cys and Met, fewer small and hydrophobic residues, and showed a large excess of acidic over basic amino acids. Then, we introduce a support vector machine method to discriminate the halophilic and non-halophilic proteins, by using a novel Pearson VII universal function based kernel. In the three validation check methods, it achieved an overall accuracy of 97.7%, 91.7% and 86.9% and outperformed other machine learning algorithms. We also address the influence of protein size on prediction accuracy and found the worse performance for small size proteins might be some significant residues (Cys and Lys) were missing in the proteins. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Out-of-Sample Extensions for Non-Parametric Kernel Methods.

    PubMed

    Pan, Binbin; Chen, Wen-Sheng; Chen, Bo; Xu, Chen; Lai, Jianhuang

    2017-02-01

    Choosing suitable kernels plays an important role in the performance of kernel methods. Recently, a number of studies were devoted to developing nonparametric kernels. Without assuming any parametric form of the target kernel, nonparametric kernel learning offers a flexible scheme to utilize the information of the data, which may potentially characterize the data similarity better. The kernel methods using nonparametric kernels are referred to as nonparametric kernel methods. However, many nonparametric kernel methods are restricted to transductive learning, where the prediction function is defined only over the data points given beforehand. They have no straightforward extension for the out-of-sample data points, and thus cannot be applied to inductive learning. In this paper, we show how to make the nonparametric kernel methods applicable to inductive learning. The key problem of out-of-sample extension is how to extend the nonparametric kernel matrix to the corresponding kernel function. A regression approach in the hyper reproducing kernel Hilbert space is proposed to solve this problem. Empirical results indicate that the out-of-sample performance is comparable to the in-sample performance in most cases. Experiments on face recognition demonstrate the superiority of our nonparametric kernel method over the state-of-the-art parametric kernel methods.

  12. 7 CFR 810.1202 - Definition of other terms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... kernels. Kernels, pieces of rye kernels, and other grains that are badly ground-damaged, badly weather.... Also, underdeveloped, shriveled, and small pieces of rye kernels removed in properly separating the...-damaged kernels. Kernels, pieces of rye kernels, and other grains that are materially discolored and...

  13. 7 CFR 810.802 - Definition of other terms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Damaged kernels. Kernels and pieces of grain kernels for which standards have been established under the.... (d) Heat-damaged kernels. Kernels and pieces of grain kernels for which standards have been...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, J; Lindsay, P; University of Toronto, Toronto

    Purpose: Recent progress in small animal radiotherapy systems has provided the foundation for delivering the heterogeneous, millimeter scale dose distributions demanded by preclinical radiobiology investigations. Despite advances in preclinical dose planning, delivery of highly heterogeneous dose distributions is constrained by the fixed collimation systems and large x-ray focal spot common in small animal radiotherapy systems. This work proposes a dual focal spot dose optimization and delivery method with a large x-ray focal spot used to deliver homogeneous dose regions and a small focal spot to paint spatially heterogeneous dose regions. Methods: Two-dimensional dose kernels were measured for a 1 mmmore » circular collimator with radiochromic film at 10 mm depth in a solid water phantom for the small and large x-ray focal spots on a recently developed small animal microirradiator. These kernels were used in an optimization framework which segmented a desired dose distribution into low- and high-spatial frequency regions for delivery by the large and small focal spot, respectively. For each region, the method determined an optimal set of stage positions and beam-on times. The method was demonstrated by optimizing a bullseye pattern consisting of 0.75 mm radius circular target and 0.5 and 1.0 mm wide rings alternating between 0 and 2 Gy. Results: Compared to a large focal spot technique, the dual focal spot technique improved the optimized dose distribution: 69.2% of the optimized dose was within 0.5 Gy of the intended dose for the large focal spot, compared to 80.6% for the dual focal spot method. The dual focal spot design required 14.0 minutes of optimization, and will require 178.3 minutes for automated delivery. Conclusion: The dual focal spot optimization and delivery framework is a novel option for delivering conformal and heterogeneous dose distributions at the preclinical level and provides a new experimental option for unique radiobiological investigations. Funding Support: this work is supported by funding the National Sciences and Engineering Research Council of Canada, and a Mitacs-accelerate fellowship. Conflict of Interest: Dr. Lindsay and Dr. Jaffray are listed as inventors of the small animal microirradiator described herein. This system has been licensed for commercial development.« less

  15. Reducing disk storage of full-3D seismic waveform tomography (F3DT) through lossy online compression

    NASA Astrophysics Data System (ADS)

    Lindstrom, Peter; Chen, Po; Lee, En-Jui

    2016-08-01

    Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithm into our F3DT-SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.

  16. Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning

    PubMed Central

    Zhang, Yudong; Dong, Zhengchao; Phillips, Preetha; Wang, Shuihua; Ji, Genlin; Yang, Jiquan; Yuan, Ti-Fei

    2015-01-01

    Purpose: Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions. Method: First, we used maximum inter-class variance (ICV) to select key slices from 3D volumetric data. Second, we generated an eigenbrain set for each subject. Third, the most important eigenbrain (MIE) was obtained by Welch's t-test (WTT). Finally, kernel support-vector-machines with different kernels that were trained by particle swarm optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that distinguish AD from NC. Results: The experiments showed that the proposed method can predict AD subjects with a competitive performance with existing methods, especially the accuracy of the polynomial kernel (92.36 ± 0.94) was better than the linear kernel of 91.47 ± 1.02 and the radial basis function (RBF) kernel of 86.71 ± 1.93. The proposed eigenbrain-based CAD system detected 30 AD-related brain regions (Anterior Cingulate, Caudate Nucleus, Cerebellum, Cingulate Gyrus, Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule, Insula, Lateral Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule, Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate, Precentral Gyrus, Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal Gyrus, Superior Parietal Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, Thalamus, Transverse Temporal Gyrus, and Uncus). The results were coherent with existing literatures. Conclusion: The eigenbrain method was effective in AD subject prediction and discriminant brain-region detection in MRI scanning. PMID:26082713

  17. Upgrade to iterative image reconstruction (IR) in MDCT imaging: a clinical study for detailed parameter optimization beyond vendor recommendations using the adaptive statistical iterative reconstruction environment (ASIR) Part2: The chest.

    PubMed

    Mueck, F G; Michael, L; Deak, Z; Scherr, M K; Maxien, D; Geyer, L L; Reiser, M; Wirth, S

    2013-07-01

    To compare the image quality in dose-reduced 64-row CT of the chest at different levels of adaptive statistical iterative reconstruction (ASIR) to full-dose baseline examinations reconstructed solely with filtered back projection (FBP) in a realistic upgrade scenario. A waiver of consent was granted by the institutional review board (IRB). The noise index (NI) relates to the standard deviation of Hounsfield units in a water phantom. Baseline exams of the chest (NI = 29; LightSpeed VCT XT, GE Healthcare) were intra-individually compared to follow-up studies on a CT with ASIR after system upgrade (NI = 45; Discovery HD750, GE Healthcare), n = 46. Images were calculated in slice and volume mode with ASIR levels of 0 - 100 % in the standard and lung kernel. Three radiologists independently compared the image quality to the corresponding full-dose baseline examinations (-2: diagnostically inferior, -1: inferior, 0: equal, + 1: superior, + 2: diagnostically superior). Statistical analysis used Wilcoxon's test, Mann-Whitney U test and the intraclass correlation coefficient (ICC). The mean CTDIvol decreased by 53 % from the FBP baseline to 8.0 ± 2.3 mGy for ASIR follow-ups; p < 0.001. The ICC was 0.70. Regarding the standard kernel, the image quality in dose-reduced studies was comparable to the baseline at ASIR 70 % in volume mode (-0.07 ± 0.29, p = 0.29). Concerning the lung kernel, every ASIR level outperformed the baseline image quality (p < 0.001), with ASIR 30 % rated best (slice: 0.70 ± 0.6, volume: 0.74 ± 0.61). Vendors' recommendation of 50 % ASIR is fair. In detail, the ASIR 70 % in volume mode for the standard kernel and ASIR 30 % for the lung kernel performed best, allowing for a dose reduction of approximately 50 %. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Reducing Disk Storage of Full-3D Seismic Waveform Tomography (F3DT) Through Lossy Online Compression

    DOE PAGES

    Lindstrom, Peter; Chen, Po; Lee, En-Jui

    2016-05-05

    Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithmmore » into our F3DT SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.« less

  19. 7 CFR 981.408 - Inedible kernel.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...

  20. 7 CFR 981.408 - Inedible kernel.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...

  1. 7 CFR 981.408 - Inedible kernel.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...

  2. 7 CFR 981.408 - Inedible kernel.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...

  3. Nonlinearity-aware based dimensionality reduction and over-sampling for AD/MCI classification from MRI measures.

    PubMed

    Cao, Peng; Liu, Xiaoli; Yang, Jinzhu; Zhao, Dazhe; Huang, Min; Zhang, Jian; Zaiane, Osmar

    2017-12-01

    Alzheimer's disease (AD) has been not only a substantial financial burden to the health care system but also an emotional burden to patients and their families. Making accurate diagnosis of AD based on brain magnetic resonance imaging (MRI) is becoming more and more critical and emphasized at the earliest stages. However, the high dimensionality and imbalanced data issues are two major challenges in the study of computer aided AD diagnosis. The greatest limitations of existing dimensionality reduction and over-sampling methods are that they assume a linear relationship between the MRI features (predictor) and the disease status (response). To better capture the complicated but more flexible relationship, we propose a multi-kernel based dimensionality reduction and over-sampling approaches. We combined Marginal Fisher Analysis with ℓ 2,1 -norm based multi-kernel learning (MKMFA) to achieve the sparsity of region-of-interest (ROI), which leads to simultaneously selecting a subset of the relevant brain regions and learning a dimensionality transformation. Meanwhile, a multi-kernel over-sampling (MKOS) was developed to generate synthetic instances in the optimal kernel space induced by MKMFA, so as to compensate for the class imbalanced distribution. We comprehensively evaluate the proposed models for the diagnostic classification (binary class and multi-class classification) including all subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. The experimental results not only demonstrate the proposed method has superior performance over multiple comparable methods, but also identifies relevant imaging biomarkers that are consistent with prior medical knowledge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Improvement of density models of geological structures by fusion of gravity data and cosmic muon radiographies

    NASA Astrophysics Data System (ADS)

    Jourde, K.; Gibert, D.; Marteau, J.

    2015-08-01

    This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like a medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity measurements are linked to density by a 3-D integration encompassing the whole studied domain. We establish the mathematical expressions of these integration formulas - called acquisition kernels - and derive the resolving kernels that are spatial filters relating the true unknown density structure to the density distribution actually recovered from the available data. The resolving kernel approach allows one to quantitatively describe the improvement of the resolution of the density models achieved by merging gravity data and muon radiographies. The method developed in this paper may be used to optimally design the geometry of the field measurements to be performed in order to obtain a given spatial resolution pattern of the density model to be constructed. The resolving kernels derived in the joined muon-gravimetry case indicate that gravity data are almost useless for constraining the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly, the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. The method is illustrated with examples for the La Soufrière volcano of Guadeloupe.

  5. Kernelized Locality-Sensitive Hashing for Fast Image Landmark Association

    DTIC Science & Technology

    2011-03-24

    based Simultaneous Localization and Mapping ( SLAM ). The problem, however, is that vision-based navigation techniques can re- quire excessive amounts of...up and optimizing the data association process in vision-based SLAM . Specifically, this work studies the current methods that algorithms use to...required for location identification than that of other methods. This work can then be extended into a vision- SLAM implementation to subsequently

  6. Horsetail matching: a flexible approach to optimization under uncertainty

    NASA Astrophysics Data System (ADS)

    Cook, L. W.; Jarrett, J. P.

    2018-04-01

    It is important to design engineering systems to be robust with respect to uncertainties in the design process. Often, this is done by considering statistical moments, but over-reliance on statistical moments when formulating a robust optimization can produce designs that are stochastically dominated by other feasible designs. This article instead proposes a formulation for optimization under uncertainty that minimizes the difference between a design's cumulative distribution function and a target. A standard target is proposed that produces stochastically non-dominated designs, but the formulation also offers enough flexibility to recover existing approaches for robust optimization. A numerical implementation is developed that employs kernels to give a differentiable objective function. The method is applied to algebraic test problems and a robust transonic airfoil design problem where it is compared to multi-objective, weighted-sum and density matching approaches to robust optimization; several advantages over these existing methods are demonstrated.

  7. Cache Locality Optimization for Recursive Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lifflander, Jonathan; Krishnamoorthy, Sriram

    We present an approach to optimize the cache locality for recursive programs by dynamically splicing--recursively interleaving--the execution of distinct function invocations. By utilizing data effect annotations, we identify concurrency and data reuse opportunities across function invocations and interleave them to reduce reuse distance. We present algorithms that efficiently track effects in recursive programs, detect interference and dependencies, and interleave execution of function invocations using user-level (non-kernel) lightweight threads. To enable multi-core execution, a program is parallelized using a nested fork/join programming model. Our cache optimization strategy is designed to work in the context of a random work stealing scheduler. Wemore » present an implementation using the MIT Cilk framework that demonstrates significant improvements in sequential and parallel performance, competitive with a state-of-the-art compile-time optimizer for loop programs and a domain- specific optimizer for stencil programs.« less

  8. Customer demand prediction of service-oriented manufacturing using the least square support vector machine optimized by particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Cao, Jin; Jiang, Zhibin; Wang, Kangzhou

    2017-07-01

    Many nonlinear customer satisfaction-related factors significantly influence the future customer demand for service-oriented manufacturing (SOM). To address this issue and enhance the prediction accuracy, this article develops a novel customer demand prediction approach for SOM. The approach combines the phase space reconstruction (PSR) technique with the optimized least square support vector machine (LSSVM). First, the prediction sample space is reconstructed by the PSR to enrich the time-series dynamics of the limited data sample. Then, the generalization and learning ability of the LSSVM are improved by the hybrid polynomial and radial basis function kernel. Finally, the key parameters of the LSSVM are optimized by the particle swarm optimization algorithm. In a real case study, the customer demand prediction of an air conditioner compressor is implemented. Furthermore, the effectiveness and validity of the proposed approach are demonstrated by comparison with other classical predication approaches.

  9. Design of a modulated orthovoltage stereotactic radiosurgery system.

    PubMed

    Fagerstrom, Jessica M; Bender, Edward T; Lawless, Michael J; Culberson, Wesley S

    2017-07-01

    To achieve stereotactic radiosurgery (SRS) dose distributions with sharp gradients using orthovoltage energy fluence modulation with inverse planning optimization techniques. A pencil beam model was used to calculate dose distributions from an orthovoltage unit at 250 kVp. Kernels for the model were derived using Monte Carlo methods. A Genetic Algorithm search heuristic was used to optimize the spatial distribution of added tungsten filtration to achieve dose distributions with sharp dose gradients. Optimizations were performed for depths of 2.5, 5.0, and 7.5 cm, with cone sizes of 5, 6, 8, and 10 mm. In addition to the beam profiles, 4π isocentric irradiation geometries were modeled to examine dose at 0.07 mm depth, a representative skin depth, for the low energy beams. Profiles from 4π irradiations of a constant target volume, assuming maximally conformal coverage, were compared. Finally, dose deposition in bone compared to tissue in this energy range was examined. Based on the results of the optimization, circularly symmetric tungsten filters were designed to modulate the orthovoltage beam across the apertures of SRS cone collimators. For each depth and cone size combination examined, the beam flatness and 80-20% and 90-10% penumbrae were calculated for both standard, open cone-collimated beams as well as for optimized, filtered beams. For all configurations tested, the modulated beam profiles had decreased penumbra widths and flatness statistics at depth. Profiles for the optimized, filtered orthovoltage beams also offered decreases in these metrics compared to measured linear accelerator cone-based SRS profiles. The dose at 0.07 mm depth in the 4π isocentric irradiation geometries was higher for the modulated beams compared to unmodulated beams; however, the modulated dose at 0.07 mm depth remained <0.025% of the central, maximum dose. The 4π profiles irradiating a constant target volume showed improved statistics for the modulated, filtered distribution compared to the standard, open cone-collimated distribution. Simulations of tissue and bone confirmed previously published results that a higher energy beam (≥ 200 keV) would be preferable, but the 250 kVp beam was chosen for this work because it is available for future measurements. A methodology has been described that may be used to optimize the spatial distribution of added filtration material in an orthovoltage SRS beam to result in dose distributions with decreased flatness and penumbra statistics compared to standard open cones. This work provides the mathematical foundation for a novel, orthovoltage energy fluence-modulated SRS system. © 2017 American Association of Physicists in Medicine.

  10. Mutually catalyzed birth of population and assets in exchange-driven growth

    NASA Astrophysics Data System (ADS)

    Lin, Zhenquan; Ke, Jianhong; Ye, Gaoxiang

    2006-10-01

    We propose an exchange-driven aggregation growth model of population and assets with mutually catalyzed birth to study the interaction between the population and assets in their exchange-driven processes. In this model, monomer (or equivalently, individual) exchange occurs between any pair of aggregates of the same species (population or assets). The rate kernels of the exchanges of population and assets are K(k,l)=Kkl and L(k,l)=Lkl , respectively, at which one monomer migrates from an aggregate of size k to another of size l . Meanwhile, an aggregate of one species can yield a new monomer by the catalysis of an arbitrary aggregate of the other species. The rate kernel of asset-catalyzed population birth is I(k,l)=Iklμ [and that of population-catalyzed asset birth is J(k,l)=Jklν ], at which an aggregate of size k gains a monomer birth when it meets a catalyst aggregate of size l . The kinetic behaviors of the population and asset aggregates are solved based on the rate equations. The evolution of the aggregate size distributions of population and assets is found to fall into one of three categories for different parameters μ and ν : (i) population (asset) aggregates evolve according to the conventional scaling form in the case of μ⩽0 (ν⩽0) , (ii) population (asset) aggregates evolve according to a modified scaling form in the case of ν=0 and μ>0 ( μ=0 and ν>0 ), and (iii) both population and asset aggregates undergo gelation transitions at a finite time in the case of μ=ν>0 .

  11. Experimental Evaluation and Optimization of Flank Wear During Turning of AISI 4340 Steel with Coated Carbide Inserts Using Different Cutting Fluids

    NASA Astrophysics Data System (ADS)

    Lawal, S. A.; Choudhury, I. A.; Nukman, Y.

    2015-01-01

    The understanding of cutting fluids performance in turning process is very important in order to improve the efficiency of the process. This efficiency can be determined based on certain process parameters such as flank wear, cutting forces developed, temperature developed at the tool chip interface, surface roughness on the work piece, etc. In this study, the objective is to determine the influence of cutting fluids on flank wear during turning of AISI 4340 with coated carbide inserts. The performances of three types of cutting fluids were compared using Taguchi experimental method. The results show that palm kernel oil based cutting fluids performed better than the other two cutting fluids in reducing flank wear. Mathematical models for cutting parameters such as cutting speed, feed rate, depth of cut and cutting fluids were obtained from regression analysis using MINITAB 14 software to predict flank wear. Experiments were conducted based on the optimized values to validate the regression equations for flank wear and 5.82 % error was obtained. The optimal cutting parameters for the flank wear using S/N ratio were 160 m/min of cutting speed (level 1), 0.18 mm/rev of feed (level 1), 1.75 mm of depth of cut (level 2) and 2.97 mm2/s palm kernel oil based cutting fluid (level 3). ANOVA shows cutting speed of 85.36 %; and feed rate 4.81 %) as significant factors.

  12. On The Cloud Processing of Aerosol Particles: An Entraining Air Parcel Model With Two-dimensional Spectral Cloud Microphysics and A New Formulation of The Collection Kernel

    NASA Astrophysics Data System (ADS)

    Bott, Andreas; Kerkweg, Astrid; Wurzler, Sabine

    A study has been made of the modification of aerosol spectra due to cloud pro- cesses and the impact of the modified aerosols on the microphysical structure of future clouds. For this purpose an entraining air parcel model with two-dimensional spectral cloud microphysics has been used. In order to treat collision/coalescence processes in the two-dimensional microphysical module, a new realistic and continuous formu- lation of the collection kernel has been developed. Based on experimental data, the kernel covers the entire investigated size range of aerosols, cloud and rain drops, that is the kernel combines all important coalescence processes such as the collision of cloud drops as well as the impaction scavenging of small aerosols by big raindrops. Since chemical reactions in the gas phase and in cloud drops have an important impact on the physico-chemical properties of aerosol particles, the parcel model has been extended by a chemical module describing gas phase and aqueous phase chemical reactions. However, it will be shown that in the numerical case studies presented in this paper the modification of aerosols by chemical reactions has a minor influence on the microphysical structure of future clouds. The major process yielding in a second cloud event an enhanced formation of rain is the production of large aerosol particles by collision/coalescence processes in the first cloud.

  13. Compressive strength, flexural strength and water absorption of concrete containing palm oil kernel shell

    NASA Astrophysics Data System (ADS)

    Noor, Nurazuwa Md; Xiang-ONG, Jun; Noh, Hamidun Mohd; Hamid, Noor Azlina Abdul; Kuzaiman, Salsabila; Ali, Adiwijaya

    2017-11-01

    Effect of inclusion of palm oil kernel shell (PKS) and palm oil fibre (POF) in concrete was investigated on the compressive strength and flexural strength. In addition, investigation of palm oil kernel shell on concrete water absorption was also conducted. Total of 48 concrete cubes and 24 concrete prisms with the size of 100mm × 100mm × 100mm and 100mm × 100mm × 500mm were prepared, respectively. Four (4) series of concrete mix consists of coarse aggregate was replaced by 0%, 25%, 50% and 75% palm kernel shell and each series were divided into two (2) main group. The first group is without POF, while the second group was mixed with the 5cm length of 0.25% of the POF volume fraction. All specimen were tested after 7 and 28 days of water curing for a compression test, and flexural test at 28 days of curing period. Water absorption test was conducted on concrete cube age 28 days. The results showed that the replacement of PKS achieves lower compressive and flexural strength in comparison with conventional concrete. However, the 25% replacement of PKS concrete showed acceptable compressive strength which within the range of requirement for structural concrete. Meanwhile, the POF which should act as matrix reinforcement showed no enhancement in flexural strength due to the balling effect in concrete. As expected, water absorption was increasing with the increasing of PKS in the concrete cause by the porous characteristics of PKS

  14. Optimisation of shape kernel and threshold in image-processing motion analysers.

    PubMed

    Pedrocchi, A; Baroni, G; Sada, S; Marcon, E; Pedotti, A; Ferrigno, G

    2001-09-01

    The aim of the work is to optimise the image processing of a motion analyser. This is to improve accuracy, which is crucial for neurophysiological and rehabilitation applications. A new motion analyser, ELITE-S2, for installation on the International Space Station is described, with the focus on image processing. Important improvements are expected in the hardware of ELITE-S2 compared with ELITE and previous versions (ELITE-S and Kinelite). The core algorithm for marker recognition was based on the current ELITE version, using the cross-correlation technique. This technique was based on the matching of the expected marker shape, the so-called kernel, with image features. Optimisation of the kernel parameters was achieved using a genetic algorithm, taking into account noise rejection and accuracy. Optimisation was achieved by performing tests on six highly precise grids (with marker diameters ranging from 1.5 to 4 mm), representing all allowed marker image sizes, and on a noise image. The results of comparing the optimised kernels and the current ELITE version showed a great improvement in marker recognition accuracy, while noise rejection characteristics were preserved. An average increase in marker co-ordinate accuracy of +22% was achieved, corresponding to a mean accuracy of 0.11 pixel in comparison with 0.14 pixel, measured over all grids. An improvement of +37%, corresponding to an improvement from 0.22 pixel to 0.14 pixel, was observed over the grid with the biggest markers.

  15. Classification With Truncated Distance Kernel.

    PubMed

    Huang, Xiaolin; Suykens, Johan A K; Wang, Shuning; Hornegger, Joachim; Maier, Andreas

    2018-05-01

    This brief proposes a truncated distance (TL1) kernel, which results in a classifier that is nonlinear in the global region but is linear in each subregion. With this kernel, the subregion structure can be trained using all the training data and local linear classifiers can be established simultaneously. The TL1 kernel has good adaptiveness to nonlinearity and is suitable for problems which require different nonlinearities in different areas. Though the TL1 kernel is not positive semidefinite, some classical kernel learning methods are still applicable which means that the TL1 kernel can be directly used in standard toolboxes by replacing the kernel evaluation. In numerical experiments, the TL1 kernel with a pregiven parameter achieves similar or better performance than the radial basis function kernel with the parameter tuned by cross validation, implying the TL1 kernel a promising nonlinear kernel for classification tasks.

  16. Gabor-based kernel PCA with fractional power polynomial models for face recognition.

    PubMed

    Liu, Chengjun

    2004-05-01

    This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.

  17. G-Hash: Towards Fast Kernel-based Similarity Search in Large Graph Databases.

    PubMed

    Wang, Xiaohong; Smalter, Aaron; Huan, Jun; Lushington, Gerald H

    2009-01-01

    Structured data including sets, sequences, trees and graphs, pose significant challenges to fundamental aspects of data management such as efficient storage, indexing, and similarity search. With the fast accumulation of graph databases, similarity search in graph databases has emerged as an important research topic. Graph similarity search has applications in a wide range of domains including cheminformatics, bioinformatics, sensor network management, social network management, and XML documents, among others.Most of the current graph indexing methods focus on subgraph query processing, i.e. determining the set of database graphs that contains the query graph and hence do not directly support similarity search. In data mining and machine learning, various graph kernel functions have been designed to capture the intrinsic similarity of graphs. Though successful in constructing accurate predictive and classification models for supervised learning, graph kernel functions have (i) high computational complexity and (ii) non-trivial difficulty to be indexed in a graph database.Our objective is to bridge graph kernel function and similarity search in graph databases by proposing (i) a novel kernel-based similarity measurement and (ii) an efficient indexing structure for graph data management. Our method of similarity measurement builds upon local features extracted from each node and their neighboring nodes in graphs. A hash table is utilized to support efficient storage and fast search of the extracted local features. Using the hash table, a graph kernel function is defined to capture the intrinsic similarity of graphs and for fast similarity query processing. We have implemented our method, which we have named G-hash, and have demonstrated its utility on large chemical graph databases. Our results show that the G-hash method achieves state-of-the-art performance for k-nearest neighbor (k-NN) classification. Most importantly, the new similarity measurement and the index structure is scalable to large database with smaller indexing size, faster indexing construction time, and faster query processing time as compared to state-of-the-art indexing methods such as C-tree, gIndex, and GraphGrep.

  18. Optimization of the kernel functions in a probabilistic neural network analyzing the local pattern distribution.

    PubMed

    Galleske, I; Castellanos, J

    2002-05-01

    This article proposes a procedure for the automatic determination of the elements of the covariance matrix of the gaussian kernel function of probabilistic neural networks. Two matrices, a rotation matrix and a matrix of variances, can be calculated by analyzing the local environment of each training pattern. The combination of them will form the covariance matrix of each training pattern. This automation has two advantages: First, it will free the neural network designer from indicating the complete covariance matrix, and second, it will result in a network with better generalization ability than the original model. A variation of the famous two-spiral problem and real-world examples from the UCI Machine Learning Repository will show a classification rate not only better than the original probabilistic neural network but also that this model can outperform other well-known classification techniques.

  19. [Rapid identification of hogwash oil by using synchronous fluorescence spectroscopy].

    PubMed

    Sun, Yan-Hui; An, Hai-Yang; Jia, Xiao-Li; Wang, Juan

    2012-10-01

    To identify hogwash oil quickly, the characteristic delta lambda of hogwash oil was analyzed by three dimensional fluorescence spectroscopy with parallel factor analysis, and the model was built up by using synchronous fluorescence spectroscopy with support vector machines (SVM). The results showed that the characteristic delta lambda of hogwash oil was 60 nm. Collecting original spectrum of different samples under the condition of characteristic delta lambda 60 nm, the best model was established while 5 principal components were selected from original spectrum and the radial basis function (RBF) was used as the kernel function, and the optimal penalty factor C and kernel function g were 512 and 0.5 respectively obtained by the grid searching and 6-fold cross validation. The discrimination rate of the model was 100% for both training sets and prediction sets. Thus, it is quick and accurate to apply synchronous fluorescence spectroscopy to identification of hogwash oil.

  20. Optimal algorithm for automatic detection of microaneurysms based on receiver operating characteristic curve

    NASA Astrophysics Data System (ADS)

    Xu, Lili; Luo, Shuqian

    2010-11-01

    Microaneurysms (MAs) are the first manifestations of the diabetic retinopathy (DR) as well as an indicator for its progression. Their automatic detection plays a key role for both mass screening and monitoring and is therefore in the core of any system for computer-assisted diagnosis of DR. The algorithm basically comprises the following stages: candidate detection aiming at extracting the patterns possibly corresponding to MAs based on mathematical morphological black top hat, feature extraction to characterize these candidates, and classification based on support vector machine (SVM), to validate MAs. Feature vector and kernel function of SVM selection is very important to the algorithm. We use the receiver operating characteristic (ROC) curve to evaluate the distinguishing performance of different feature vectors and different kernel functions of SVM. The ROC analysis indicates the quadratic polynomial SVM with a combination of features as the input shows the best discriminating performance.

  1. Balancing Particle and Mesh Computation in a Particle-In-Cell Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worley, Patrick H; D'Azevedo, Eduardo; Hager, Robert

    2016-01-01

    The XGC1 plasma microturbulence particle-in-cell simulation code has both particle-based and mesh-based computational kernels that dominate performance. Both of these are subject to load imbalances that can degrade performance and that evolve during a simulation. Each separately can be addressed adequately, but optimizing just for one can introduce significant load imbalances in the other, degrading overall performance. A technique has been developed based on Golden Section Search that minimizes wallclock time given prior information on wallclock time, and on current particle distribution and mesh cost per cell, and also adapts to evolution in load imbalance in both particle and meshmore » work. In problems of interest this doubled the performance on full system runs on the XK7 at the Oak Ridge Leadership Computing Facility compared to load balancing only one of the kernels.« less

  2. Optimal algorithm for automatic detection of microaneurysms based on receiver operating characteristic curve.

    PubMed

    Xu, Lili; Luo, Shuqian

    2010-01-01

    Microaneurysms (MAs) are the first manifestations of the diabetic retinopathy (DR) as well as an indicator for its progression. Their automatic detection plays a key role for both mass screening and monitoring and is therefore in the core of any system for computer-assisted diagnosis of DR. The algorithm basically comprises the following stages: candidate detection aiming at extracting the patterns possibly corresponding to MAs based on mathematical morphological black top hat, feature extraction to characterize these candidates, and classification based on support vector machine (SVM), to validate MAs. Feature vector and kernel function of SVM selection is very important to the algorithm. We use the receiver operating characteristic (ROC) curve to evaluate the distinguishing performance of different feature vectors and different kernel functions of SVM. The ROC analysis indicates the quadratic polynomial SVM with a combination of features as the input shows the best discriminating performance.

  3. diffuStats: an R package to compute diffusion-based scores on biological networks.

    PubMed

    Picart-Armada, Sergio; Thompson, Wesley K; Buil, Alfonso; Perera-Lluna, Alexandre

    2018-02-01

    Label propagation and diffusion over biological networks are a common mathematical formalism in computational biology for giving context to molecular entities and prioritizing novel candidates in the area of study. There are several choices in conceiving the diffusion process-involving the graph kernel, the score definitions and the presence of a posterior statistical normalization-which have an impact on the results. This manuscript describes diffuStats, an R package that provides a collection of graph kernels and diffusion scores, as well as a parallel permutation analysis for the normalized scores, that eases the computation of the scores and their benchmarking for an optimal choice. The R package diffuStats is publicly available in Bioconductor, https://bioconductor.org, under the GPL-3 license. sergi.picart@upc.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  4. Automated discrimination of dementia spectrum disorders using extreme learning machine and structural T1 MRI features.

    PubMed

    Jongin Kim; Boreom Lee

    2017-07-01

    The classification of neuroimaging data for the diagnosis of Alzheimer's Disease (AD) is one of the main research goals of the neuroscience and clinical fields. In this study, we performed extreme learning machine (ELM) classifier to discriminate the AD, mild cognitive impairment (MCI) from normal control (NC). We compared the performance of ELM with that of a linear kernel support vector machine (SVM) for 718 structural MRI images from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The data consisted of normal control, MCI converter (MCI-C), MCI non-converter (MCI-NC), and AD. We employed SVM-based recursive feature elimination (RFE-SVM) algorithm to find the optimal subset of features. In this study, we found that the RFE-SVM feature selection approach in combination with ELM shows the superior classification accuracy to that of linear kernel SVM for structural T1 MRI data.

  5. Numerical estimation of deformation energy of selected bulk oilseeds in compression loading

    NASA Astrophysics Data System (ADS)

    Demirel, C.; Kabutey, A.; Herak, D.; Gurdil, G. A. K.

    2017-09-01

    This paper aimed at the determination of the deformation energy of some bulk oilseeds or kernels namely oil palm, sunflower, rape and flax in linear pressing applying the trapezoidal rule which is characterized by the area under the force and deformation curve.The bulk samples were measured at the initial pressing height of 60 mm with the vessel diameter of 60 mm where they were compressed under the universal compression machine at a maximum force of 200 kN and speed of 5 mm/min.Based on the compression test, the optimal deformation energy for recovering the oil was observed at a force of 163 kN where there was no seed/kernel cake ejection in comparison to the initial maximum force used particularly for rape and flax bulk oilseeds.This information is needed for analyzing the energy efficiency of the non-linear compression process involving a mechanical screw press or expeller.

  6. Preparation and Characterization of Activated Carbon from Palm Kernel Shell

    NASA Astrophysics Data System (ADS)

    Andas, J.; Rahman, M. L. A.; Yahya, M. S. M.

    2017-08-01

    In this study, a high quality of activated carbon (AC) was successfully synthesized from palm kernel shell (PKS) via single step KOH activation. Several optimal conditions such as impregnation ratio and activation temperature were investigated. The prepared activated carbon under the optimum condition of impregnation ratio (1:1.5 raw/KOH) and activation temperature (800 °C) was characterized using Na2S2O3 volumetric method, CHNS/O analysis and Scanning Electron Microscope (SEM). Na2S2O3 volumetric showed an iodine number of 994.83 mgg-1 with yield % of 8.931 %. CHNS/O analysis verified an increase in C content for KOH-AC (61.10 %) in comparison to the raw PKS (47.28 %). Well-formation of porous structure was evidenced through SEM for KOH-AC. From this study, it showed a successful conversion of agricultural waste into value added porous material under benign condition.

  7. Optimal Alignment of Structures for Finite and Periodic Systems.

    PubMed

    Griffiths, Matthew; Niblett, Samuel P; Wales, David J

    2017-10-10

    Finding the optimal alignment between two structures is important for identifying the minimum root-mean-square distance (RMSD) between them and as a starting point for calculating pathways. Most current algorithms for aligning structures are stochastic, scale exponentially with the size of structure, and the performance can be unreliable. We present two complementary methods for aligning structures corresponding to isolated clusters of atoms and to condensed matter described by a periodic cubic supercell. The first method (Go-PERMDIST), a branch and bound algorithm, locates the global minimum RMSD deterministically in polynomial time. The run time increases for larger RMSDs. The second method (FASTOVERLAP) is a heuristic algorithm that aligns structures by finding the global maximum kernel correlation between them using fast Fourier transforms (FFTs) and fast SO(3) transforms (SOFTs). For periodic systems, FASTOVERLAP scales with the square of the number of identical atoms in the system, reliably finds the best alignment between structures that are not too distant, and shows significantly better performance than existing algorithms. The expected run time for Go-PERMDIST is longer than FASTOVERLAP for periodic systems. For finite clusters, the FASTOVERLAP algorithm is competitive with existing algorithms. The expected run time for Go-PERMDIST to find the global RMSD between two structures deterministically is generally longer than for existing stochastic algorithms. However, with an earlier exit condition, Go-PERMDIST exhibits similar or better performance.

  8. A multi-label learning based kernel automatic recommendation method for support vector machine.

    PubMed

    Zhang, Xueying; Song, Qinbao

    2015-01-01

    Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance.

  9. A Multi-Label Learning Based Kernel Automatic Recommendation Method for Support Vector Machine

    PubMed Central

    Zhang, Xueying; Song, Qinbao

    2015-01-01

    Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance. PMID:25893896

  10. Effectiveness of an image-based sorter to select for kernel color within early segregating hard winter wheat (Triticum aestivum L.) populations

    USDA-ARS?s Scientific Manuscript database

    Effective mass selection tools are needed to enrich hard winter wheat breeding populations from red wheat × white wheat crosses while maintaining large population sizes in early breeding generations. Tools also are needed to select for white-seeded genotypes or to eliminate white-seeded genotypes wh...

  11. Fast dose kernel interpolation using Fourier transform with application to permanent prostate brachytherapy dosimetry.

    PubMed

    Liu, Derek; Sloboda, Ron S

    2014-05-01

    Boyer and Mok proposed a fast calculation method employing the Fourier transform (FT), for which calculation time is independent of the number of seeds but seed placement is restricted to calculation grid points. Here an interpolation method is described enabling unrestricted seed placement while preserving the computational efficiency of the original method. The Iodine-125 seed dose kernel was sampled and selected values were modified to optimize interpolation accuracy for clinically relevant doses. For each seed, the kernel was shifted to the nearest grid point via convolution with a unit impulse, implemented in the Fourier domain. The remaining fractional shift was performed using a piecewise third-order Lagrange filter. Implementation of the interpolation method greatly improved FT-based dose calculation accuracy. The dose distribution was accurate to within 2% beyond 3 mm from each seed. Isodose contours were indistinguishable from explicit TG-43 calculation. Dose-volume metric errors were negligible. Computation time for the FT interpolation method was essentially the same as Boyer's method. A FT interpolation method for permanent prostate brachytherapy TG-43 dose calculation was developed which expands upon Boyer's original method and enables unrestricted seed placement. The proposed method substantially improves the clinically relevant dose accuracy with negligible additional computation cost, preserving the efficiency of the original method.

  12. Effect of one step KOH activation and CaO modified carbon in transesterification reaction

    NASA Astrophysics Data System (ADS)

    Yacob, Abd Rahim; Zaki, Muhammad Azam Muhammad

    2017-11-01

    In this work, one step activation was introduced using potassium hydroxide (KOH) and calcium oxide (CaO) modified palm kernel shells. Various concentration of calcium oxide was used as catalyst while maintaining the same concentration of potassium hydroxide to activate and impregnate the palm kernel shell before calcined at 500°C for 5 hours. All the prepared samples were characterized using Fourier Transform Infrared (FTIR) and Field Emission Scanning Electron Microscope (FESEM). FTIR analysis of raw palm kernel shell showed the presence of various functional groups. However, after activation, most of the functional groups were eliminated. The basic strength of the prepared samples were determined using back titration method. The samples were then used as base heterogeneous catalyst for the transesterification reaction of rice bran oil with methanol. Analysis of the products were performed using Gas Chromatography Flame Ionization Detector (GC-FID) to calculate the percentage conversion of the biodiesel products. This study shows, as the percentage of one step activation potassium and calcium oxide doped carbon increases thus, the basic strength also increases followed by the increase in biodiesel production. Optimization study shows that the optimum biodiesel production was at 8 wt% catalyst loading, 9:1 methanol: oil molar ratio at 65°C and 6 hours which gives a conversion up to 95%.

  13. A novel approach for the efficient extraction of silybin from milk thistle fruits.

    PubMed

    Tan, Caihong; Xu, Xianrong; Shang, Yaqi; Fu, Xianli; Xia, Guohua; Yang, Huan

    2014-10-01

    Milk Thistle fruit is an important herb popularly consumed worldwide for a very long time. Silybin is the main bioactive constituent of the herb, and it has been approved by US Food and Drug Administration (FDA) as a medicine to treat liver diseases. Presently, using conventional technology, the meal of Milk Thistle fruit is used as the raw material to extract silybin. To investigate the necessity of detaching husk from kernel of the herb and also to propose a novel approach to enhance the extraction technology in pharmaceutical practices. The husk of Milk Thistle fruit was detached from the kernel of the herb using an automatic huller specially designed for this application. The husk and the meal of Milk Thistle fruit was subsequently refluxed, separately, with production rate of silybin as index for comparison of their extraction effect. The highest production rate was achieved under optimized condition. The husk was extracted 2 times (3 hrs each) using ethyl acetate, and the ratio of solvent to raw material was 8:1. The extract was allowed to be crystallized out. The separation of kernel from the husk of Milk Thistle fruit and using only the husk as raw material can largely enhance the extraction of silybin.

  14. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  15. Image re-sampling detection through a novel interpolation kernel.

    PubMed

    Hilal, Alaa

    2018-06-01

    Image re-sampling involved in re-size and rotation transformations is an essential element block in a typical digital image alteration. Fortunately, traces left from such processes are detectable, proving that the image has gone a re-sampling transformation. Within this context, we present in this paper two original contributions. First, we propose a new re-sampling interpolation kernel. It depends on five independent parameters that controls its amplitude, angular frequency, standard deviation, and duration. Then, we demonstrate its capacity to imitate the same behavior of the most frequent interpolation kernels used in digital image re-sampling applications. Secondly, the proposed model is used to characterize and detect the correlation coefficients involved in re-sampling transformations. The involved process includes a minimization of an error function using the gradient method. The proposed method is assessed over a large database of 11,000 re-sampled images. Additionally, it is implemented within an algorithm in order to assess images that had undergone complex transformations. Obtained results demonstrate better performance and reduced processing time when compared to a reference method validating the suitability of the proposed approaches. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. 7 CFR 981.7 - Edible kernel.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Edible kernel. 981.7 Section 981.7 Agriculture... Regulating Handling Definitions § 981.7 Edible kernel. Edible kernel means a kernel, piece, or particle of almond kernel that is not inedible. [41 FR 26852, June 30, 1976] ...

  17. Salient contour extraction from complex natural scene in night vision image

    NASA Astrophysics Data System (ADS)

    Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lian-fa

    2014-03-01

    The theory of center-surround interaction in non-classical receptive field can be applied in night vision information processing. In this work, an optimized compound receptive field modulation method is proposed to extract salient contour from complex natural scene in low-light-level (LLL) and infrared images. The kernel idea is that multi-feature analysis can recognize the inhomogeneity in modulatory coverage more accurately and that center and surround with the grouping structure satisfying Gestalt rule deserves high connection-probability. Computationally, a multi-feature contrast weighted inhibition model is presented to suppress background and lower mutual inhibition among contour elements; a fuzzy connection facilitation model is proposed to achieve the enhancement of contour response, the connection of discontinuous contour and the further elimination of randomly distributed noise and texture; a multi-scale iterative attention method is designed to accomplish dynamic modulation process and extract contours of targets in multi-size. This work provides a series of biologically motivated computational visual models with high-performance for contour detection from cluttered scene in night vision images.

  18. More rapid climate change promotes evolutionary rescue through selection for increased dispersal distance.

    PubMed

    Boeye, Jeroen; Travis, Justin M J; Stoks, Robby; Bonte, Dries

    2013-02-01

    Species can either adapt to new conditions induced by climate change or shift their range in an attempt to track optimal environmental conditions. During current range shifts, species are simultaneously confronted with a second major anthropogenic disturbance, landscape fragmentation. Using individual-based models with a shifting climate window, we examine the effect of different rates of climate change on the evolution of dispersal distances through changes in the genetically determined dispersal kernel. Our results demonstrate that the rate of climate change is positively correlated to the evolved dispersal distances although too fast climate change causes the population to crash. When faced with realistic rates of climate change, greater dispersal distances evolve than those required for the population to keep track of the climate, thereby maximizing population size. Importantly, the greater dispersal distances that evolve when climate change is more rapid, induce evolutionary rescue by facilitating the population in crossing large gaps in the landscape. This could ensure population persistence in case of range shifting in fragmented landscapes. Furthermore, we highlight problems in using invasion speed as a proxy for potential range shifting abilities under climate change.

  19. High-Throughput, Adaptive FFT Architecture for FPGA-Based Spaceborne Data Processors

    NASA Technical Reports Server (NTRS)

    NguyenKobayashi, Kayla; Zheng, Jason X.; He, Yutao; Shah, Biren N.

    2011-01-01

    Exponential growth in microelectronics technology such as field-programmable gate arrays (FPGAs) has enabled high-performance spaceborne instruments with increasing onboard data processing capabilities. As a commonly used digital signal processing (DSP) building block, fast Fourier transform (FFT) has been of great interest in onboard data processing applications, which needs to strike a reasonable balance between high-performance (throughput, block size, etc.) and low resource usage (power, silicon footprint, etc.). It is also desirable to be designed so that a single design can be reused and adapted into instruments with different requirements. The Multi-Pass Wide Kernel FFT (MPWK-FFT) architecture was developed, in which the high-throughput benefits of the parallel FFT structure and the low resource usage of Singleton s single butterfly method is exploited. The result is a wide-kernel, multipass, adaptive FFT architecture. The 32K-point MPWK-FFT architecture includes 32 radix-2 butterflies, 64 FIFOs to store the real inputs, 64 FIFOs to store the imaginary inputs, complex twiddle factor storage, and FIFO logic to route the outputs to the correct FIFO. The inputs are stored in sequential fashion into the FIFOs, and the outputs of each butterfly are sequentially written first into the even FIFO, then the odd FIFO. Because of the order of the outputs written into the FIFOs, the depth of the even FIFOs, which are 768 each, are 1.5 times larger than the odd FIFOs, which are 512 each. The total memory needed for data storage, assuming that each sample is 36 bits, is 2.95 Mbits. The twiddle factors are stored in internal ROM inside the FPGA for fast access time. The total memory size to store the twiddle factors is 589.9Kbits. This FFT structure combines the benefits of high throughput from the parallel FFT kernels and low resource usage from the multi-pass FFT kernels with desired adaptability. Space instrument missions that need onboard FFT capabilities such as the proposed DESDynl, SWOT (Surface Water Ocean Topography), and Europa sounding radar missions would greatly benefit from this technology with significant reductions in non-recurring cost and risk.

  20. Exploiting graph kernels for high performance biomedical relation extraction.

    PubMed

    Panyam, Nagesh C; Verspoor, Karin; Cohn, Trevor; Ramamohanarao, Kotagiri

    2018-01-30

    Relation extraction from biomedical publications is an important task in the area of semantic mining of text. Kernel methods for supervised relation extraction are often preferred over manual feature engineering methods, when classifying highly ordered structures such as trees and graphs obtained from syntactic parsing of a sentence. Tree kernels such as the Subset Tree Kernel and Partial Tree Kernel have been shown to be effective for classifying constituency parse trees and basic dependency parse graphs of a sentence. Graph kernels such as the All Path Graph kernel (APG) and Approximate Subgraph Matching (ASM) kernel have been shown to be suitable for classifying general graphs with cycles, such as the enhanced dependency parse graph of a sentence. In this work, we present a high performance Chemical-Induced Disease (CID) relation extraction system. We present a comparative study of kernel methods for the CID task and also extend our study to the Protein-Protein Interaction (PPI) extraction task, an important biomedical relation extraction task. We discuss novel modifications to the ASM kernel to boost its performance and a method to apply graph kernels for extracting relations expressed in multiple sentences. Our system for CID relation extraction attains an F-score of 60%, without using external knowledge sources or task specific heuristic or rules. In comparison, the state of the art Chemical-Disease Relation Extraction system achieves an F-score of 56% using an ensemble of multiple machine learning methods, which is then boosted to 61% with a rule based system employing task specific post processing rules. For the CID task, graph kernels outperform tree kernels substantially, and the best performance is obtained with APG kernel that attains an F-score of 60%, followed by the ASM kernel at 57%. The performance difference between the ASM and APG kernels for CID sentence level relation extraction is not significant. In our evaluation of ASM for the PPI task, ASM performed better than APG kernel for the BioInfer dataset, in the Area Under Curve (AUC) measure (74% vs 69%). However, for all the other PPI datasets, namely AIMed, HPRD50, IEPA and LLL, ASM is substantially outperformed by the APG kernel in F-score and AUC measures. We demonstrate a high performance Chemical Induced Disease relation extraction, without employing external knowledge sources or task specific heuristics. Our work shows that graph kernels are effective in extracting relations that are expressed in multiple sentences. We also show that the graph kernels, namely the ASM and APG kernels, substantially outperform the tree kernels. Among the graph kernels, we showed the ASM kernel as effective for biomedical relation extraction, with comparable performance to the APG kernel for datasets such as the CID-sentence level relation extraction and BioInfer in PPI. Overall, the APG kernel is shown to be significantly more accurate than the ASM kernel, achieving better performance on most datasets.

Top