Sample records for optimal operating strategy

  1. Data analytics and optimization of an ice-based energy storage system for commercial buildings

    DOE PAGES

    Luo, Na; Hong, Tianzhen; Li, Hui; ...

    2017-07-25

    Ice-based thermal energy storage (TES) systems can shift peak cooling demand and reduce operational energy costs (with time-of-use rates) in commercial buildings. The accurate prediction of the cooling load, and the optimal control strategy for managing the charging and discharging of a TES system, are two critical elements to improving system performance and achieving energy cost savings. This study utilizes data-driven analytics and modeling to holistically understand the operation of an ice–based TES system in a shopping mall, calculating the system’s performance using actual measured data from installed meters and sensors. Results show that there is significant savings potential whenmore » the current operating strategy is improved by appropriately scheduling the operation of each piece of equipment of the TES system, as well as by determining the amount of charging and discharging for each day. A novel optimal control strategy, determined by an optimization algorithm of Sequential Quadratic Programming, was developed to minimize the TES system’s operating costs. Three heuristic strategies were also investigated for comparison with our proposed strategy, and the results demonstrate the superiority of our method to the heuristic strategies in terms of total energy cost savings. Specifically, the optimal strategy yields energy costs of up to 11.3% per day and 9.3% per month compared with current operational strategies. A one-day-ahead hourly load prediction was also developed using machine learning algorithms, which facilitates the adoption of the developed data analytics and optimization of the control strategy in a real TES system operation.« less

  2. Data analytics and optimization of an ice-based energy storage system for commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Na; Hong, Tianzhen; Li, Hui

    Ice-based thermal energy storage (TES) systems can shift peak cooling demand and reduce operational energy costs (with time-of-use rates) in commercial buildings. The accurate prediction of the cooling load, and the optimal control strategy for managing the charging and discharging of a TES system, are two critical elements to improving system performance and achieving energy cost savings. This study utilizes data-driven analytics and modeling to holistically understand the operation of an ice–based TES system in a shopping mall, calculating the system’s performance using actual measured data from installed meters and sensors. Results show that there is significant savings potential whenmore » the current operating strategy is improved by appropriately scheduling the operation of each piece of equipment of the TES system, as well as by determining the amount of charging and discharging for each day. A novel optimal control strategy, determined by an optimization algorithm of Sequential Quadratic Programming, was developed to minimize the TES system’s operating costs. Three heuristic strategies were also investigated for comparison with our proposed strategy, and the results demonstrate the superiority of our method to the heuristic strategies in terms of total energy cost savings. Specifically, the optimal strategy yields energy costs of up to 11.3% per day and 9.3% per month compared with current operational strategies. A one-day-ahead hourly load prediction was also developed using machine learning algorithms, which facilitates the adoption of the developed data analytics and optimization of the control strategy in a real TES system operation.« less

  3. Emergency strategy optimization for the environmental control system in manned spacecraft

    NASA Astrophysics Data System (ADS)

    Li, Guoxiang; Pang, Liping; Liu, Meng; Fang, Yufeng; Zhang, Helin

    2018-02-01

    It is very important for a manned environmental control system (ECS) to be able to reconfigure its operation strategy in emergency conditions. In this article, a multi-objective optimization is established to design the optimal emergency strategy for an ECS in an insufficient power supply condition. The maximum ECS lifetime and the minimum power consumption are chosen as the optimization objectives. Some adjustable key variables are chosen as the optimization variables, which finally represent the reconfigured emergency strategy. The non-dominated sorting genetic algorithm-II is adopted to solve this multi-objective optimization problem. Optimization processes are conducted at four different carbon dioxide partial pressure control levels. The study results show that the Pareto-optimal frontiers obtained from this multi-objective optimization can represent the relationship between the lifetime and the power consumption of the ECS. Hence, the preferred emergency operation strategy can be recommended for situations when there is suddenly insufficient power.

  4. Optimal robust control strategy of a solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojuan; Gao, Danhui

    2018-01-01

    Optimal control can ensure system safe operation with a high efficiency. However, only a few papers discuss optimal control strategies for solid oxide fuel cell (SOFC) systems. Moreover, the existed methods ignore the impact of parameter uncertainty on system instantaneous performance. In real SOFC systems, several parameters may vary with the variation of operation conditions and can not be identified exactly, such as load current. Therefore, a robust optimal control strategy is proposed, which involves three parts: a SOFC model with parameter uncertainty, a robust optimizer and robust controllers. During the model building process, boundaries of the uncertain parameter are extracted based on Monte Carlo algorithm. To achieve the maximum efficiency, a two-space particle swarm optimization approach is employed to obtain optimal operating points, which are used as the set points of the controllers. To ensure the SOFC safe operation, two feed-forward controllers and a higher-order robust sliding mode controller are presented to control fuel utilization ratio, air excess ratio and stack temperature afterwards. The results show the proposed optimal robust control method can maintain the SOFC system safe operation with a maximum efficiency under load and uncertainty variations.

  5. Operation management of daily economic dispatch using novel hybrid particle swarm optimization and gravitational search algorithm with hybrid mutation strategy

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Song; Ji, Zhicheng

    2017-07-01

    This paper presents a hybrid particle swarm optimization and gravitational search algorithm based on hybrid mutation strategy (HGSAPSO-M) to optimize economic dispatch (ED) including distributed generations (DGs) considering market-based energy pricing. A daily ED model was formulated and a hybrid mutation strategy was adopted in HGSAPSO-M. The hybrid mutation strategy includes two mutation operators, chaotic mutation, Gaussian mutation. The proposed algorithm was tested on IEEE-33 bus and results show that the approach is effective for this problem.

  6. Long-term energy capture and the effects of optimizing wind turbine operating strategies

    NASA Technical Reports Server (NTRS)

    Miller, A. H.; Formica, W. J.

    1982-01-01

    Methods of increasing energy capture without affecting the turbine design were investigated. The emphasis was on optimizing the wind turbine operating strategy. The operating strategy embodies the startup and shutdown algorithm as well as the algorithm for determining when to yaw (rotate) the axis of the turbine more directly into the wind. Using data collected at a number of sites, the time-dependent simulation of a MOD-2 wind turbine using various, site-dependent operating strategies provided evidence that site-specific fine tuning can produce significant increases in long-term energy capture as well as reduce the number of start-stop cycles and yawing maneuvers, which may result in reduced fatigue and subsequent maintenance.

  7. Study on the Control Strategy of Ground Source Heat Pump of Complex Buildings

    NASA Astrophysics Data System (ADS)

    Dandan, Zhang; Wei, Li; Siyi, Tang

    2018-05-01

    The complex building group is a building group which integrates residential, business and office. Study on the operation of buried tube heat exchanger (BHE) with 30%, 50%, 70% and 100% occupancy rate by numerical simulation under the condition of full operation of the business and office, the optimal operation control strategy of a hybrid ground-source heat pump (HGSHP) system with different occupancy rates can be obtained. The results show that: at low occupancy rate the optimal operation control of the heat pump system is to use the cooling tower in the valley load period (June and September) and the heat absorption of the buried tube in winter; While at high occupancy rates, opening the cooling tower when the temperature of the outlet of the BHE is 2 degrees centigrade higher than the temperature of the wet bulb at the corresponding time is the optimal operating strategy. This paper is based on the annual energy consumption and optimization of soil temperature rise, which has an important guideline value for the design and operation of HGSHP system in complex buildings.

  8. Information Foraging in Nuclear Power Plant Control Rooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.L. Boring

    2011-09-01

    nformation foraging theory articulates the role of the human as an 'informavore' that seeks information and follows optimal foraging strategies (i.e., the 'information scent') to find meaningful information. This paper briefly reviews the findings from information foraging theory outside the nuclear domain and then discusses the types of information foraging strategies operators employ for normal and off-normal operations in the control room. For example, operators may employ a predatory 'wolf' strategy of hunting for information in the face of a plant upset. However, during routine operations, the operators may employ a trapping 'spider' strategy of waiting for relevant indicators tomore » appear. This delineation corresponds to information pull and push strategies, respectively. No studies have been conducted to determine explicitly the characteristics of a control room interface that is optimized for both push and pull information foraging strategies, nor has there been empirical work to validate operator performance when transitioning between push and pull strategies. This paper explores examples of control room operators as wolves vs. spiders and con- cludes by proposing a set of research questions to investigate information foraging in control room settings.« less

  9. Modelling and operation strategies of DLR's large scale thermocline test facility (TESIS)

    NASA Astrophysics Data System (ADS)

    Odenthal, Christian; Breidenbach, Nils; Bauer, Thomas

    2017-06-01

    In this work an overview of the TESIS:store thermocline test facility and its current construction status will be given. Based on this, the TESIS:store facility using sensible solid filler material is modelled with a fully transient model, implemented in MATLAB®. Results in terms of the impact of filler site and operation strategies will be presented. While low porosity and small particle diameters for the filler material are beneficial, operation strategy is one key element with potential for optimization. It is shown that plant operators have to ponder between utilization and exergetic efficiency. Different durations of the charging and discharging period enable further potential for optimizations.

  10. Cost related sensitivity analysis for optimal operation of a grid-parallel PEM fuel cell power plant

    NASA Astrophysics Data System (ADS)

    El-Sharkh, M. Y.; Tanrioven, M.; Rahman, A.; Alam, M. S.

    Fuel cell power plants (FCPP) as a combined source of heat, power and hydrogen (CHP&H) can be considered as a potential option to supply both thermal and electrical loads. Hydrogen produced from the FCPP can be stored for future use of the FCPP or can be sold for profit. In such a system, tariff rates for purchasing or selling electricity, the fuel cost for the FCPP/thermal load, and hydrogen selling price are the main factors that affect the operational strategy. This paper presents a hybrid evolutionary programming and Hill-Climbing based approach to evaluate the impact of change of the above mentioned cost parameters on the optimal operational strategy of the FCPP. The optimal operational strategy of the FCPP for different tariffs is achieved through the estimation of the following: hourly generated power, the amount of thermal power recovered, power trade with the local grid, and the quantity of hydrogen that can be produced. Results show the importance of optimizing system cost parameters in order to minimize overall operating cost.

  11. Integrating operation design into infrastructure planning to foster robustness of planned water systems

    NASA Astrophysics Data System (ADS)

    Bertoni, Federica; Giuliani, Matteo; Castelletti, Andrea

    2017-04-01

    Over the past years, many studies have looked at the planning and management of water infrastructure systems as two separate problems, where the dynamic component (i.e., operations) is considered only after the static problem (i.e., planning) has been resolved. Most recent works have started to investigate planning and management as two strictly interconnected faces of the same problem, where the former is solved jointly with the latter in an integrated framework. This brings advantages to multi-purpose water reservoir systems, where several optimal operating strategies exist and similar system designs might perform differently on the long term depending on the considered short-term operating tradeoff. An operationally robust design will be therefore one performing well across multiple feasible tradeoff operating policies. This work aims at studying the interaction between short-term operating strategies and their impacts on long-term structural decisions, when long-lived infrastructures with complex ecological impacts and multi-sectoral demands to satisfy (i.e., reservoirs) are considered. A parametric reinforcement learning approach is adopted for nesting optimization and control yielding to both optimal reservoir design and optimal operational policies for water reservoir systems. The method is demonstrated on a synthetic reservoir that must be designed and operated for ensuring reliable water supply to downstream users. At first, the optimal design capacity derived is compared with the 'no-fail storage' computed through Rippl, a capacity design function that returns the minimum storage needed to satisfy specified water demands without allowing supply shortfall. Then, the optimal reservoir volume is used to simulate the simplified case study under other operating objectives than water supply, in order to assess whether and how the system performance changes. The more robust the infrastructural design, the smaller the difference between the performances of different operating strategies.

  12. Research on Operation Strategy for Bundled Wind-thermal Generation Power Systems Based on Two-Stage Optimization Model

    NASA Astrophysics Data System (ADS)

    Sun, Congcong; Wang, Zhijie; Liu, Sanming; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu

    2017-05-01

    Wind power has the advantages of being clean and non-polluting and the development of bundled wind-thermal generation power systems (BWTGSs) is one of the important means to improve wind power accommodation rate and implement “clean alternative” on generation side. A two-stage optimization strategy for BWTGSs considering wind speed forecasting results and load characteristics is proposed. By taking short-term wind speed forecasting results of generation side and load characteristics of demand side into account, a two-stage optimization model for BWTGSs is formulated. By using the environmental benefit index of BWTGSs as the objective function, supply-demand balance and generator operation as the constraints, the first-stage optimization model is developed with the chance-constrained programming theory. By using the operation cost for BWTGSs as the objective function, the second-stage optimization model is developed with the greedy algorithm. The improved PSO algorithm is employed to solve the model and numerical test verifies the effectiveness of the proposed strategy.

  13. A three-level support method for smooth switching of the micro-grid operation model

    NASA Astrophysics Data System (ADS)

    Zong, Yuanyang; Gong, Dongliang; Zhang, Jianzhou; Liu, Bin; Wang, Yun

    2018-01-01

    Smooth switching of micro-grid between the grid-connected operation mode and off-grid operation mode is one of the key technologies to ensure it runs flexible and efficiently. The basic control strategy and the switching principle of micro-grid are analyzed in this paper. The reasons for the fluctuations of the voltage and the frequency in the switching process are analyzed from views of power balance and control strategy, and the operation mode switching strategy has been improved targeted. From the three aspects of controller’s current inner loop reference signal, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level security strategy for smooth switching of micro-grid operation mode is proposed. From the three aspects of controller’s current inner loop reference signal tracking, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level strategy for smooth switching of micro-grid operation mode is proposed. At last, it is proved by simulation that the proposed control strategy can make the switching process smooth and stable, the fluctuation problem of the voltage and frequency has been effectively improved.

  14. Reservoir management strategy for East Randolph Field, Randolph Township, Portage County, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safley, L.E.; Salamy, S.P.; Young, M.A.

    1998-07-01

    The primary objective of the Reservoir Management Field Demonstration Program is to demonstrate that multidisciplinary reservoir management teams using appropriate software and methodologies with efforts scaled to the size of the resource are a cost-effective method for: Increasing current profitability of field operations; Forestalling abandonment of the reservoir; and Improving long-term economic recovery for the company. The primary objective of the Reservoir Management Demonstration Project with Belden and Blake Corporation is to develop a comprehensive reservoir management strategy to improve the operational economics and optimize oil production from East Randolph field, Randolph Township, Portage County, Ohio. This strategy identifies themore » viable improved recovery process options and defines related operational and facility requirements. In addition, strategies are addressed for field operation problems, such as paraffin buildup, hydraulic fracture stimulation, pumping system optimization, and production treatment requirements, with the goal of reducing operating costs and improving oil recovery.« less

  15. Operationally optimal maneuver strategy for spacecraft injected into sub-geosynchronous transfer orbit

    NASA Astrophysics Data System (ADS)

    Kiran, B. S.; Singh, Satyendra; Negi, Kuldeep

    The GSAT-12 spacecraft is providing Communication services from the INSAT/GSAT system in the Indian region. The spacecraft carries 12 extended C-band transponders. GSAT-12 was launched by ISRO’s PSLV from Sriharikota, into a sub-geosynchronous Transfer Orbit (sub-GTO) of 284 x 21000 km with inclination 18 deg. This Mission successfully accomplished combined optimization of launch vehicle and satellite capabilities to maximize operational life of the s/c. This paper describes mission analysis carried out for GSAT-12 comprising launch window, orbital events study and orbit raising maneuver strategies considering various Mission operational constraints. GSAT-12 is equipped with two earth sensors (ES), three gyroscopes and digital sun sensor. The launch window was generated considering mission requirement of minimum 45 minutes of ES data for calibration of gyros with Roll-sun-pointing orientation in T.O. Since the T.O. period was a rather short 6.1 hr, required pitch biases were worked out to meet the gyro-calibration requirement. A 440 N Liquid Apogee Motor (LAM) is used for orbit raising. The objective of the maneuver strategy is to achieve desired drift orbit satisfying mission constraints and minimizing propellant expenditure. In case of sub-GTO, the optimal strategy is to first perform an in-plane maneuver at perigee to raise the apogee to synchronous level and then perform combined maneuvers at the synchronous apogee to achieve desired drift orbit. The perigee burn opportunities were examined considering ground station visibility requirement for monitoring the burn. Two maneuver strategies were proposed: an optimal five-burn strategy with two perigee burns centered around perigee#5 and perigee#8 with partial ground station visibility and three apogee burns with dual station visibility, a near-optimal five-burn strategy with two off-perigee burns at perigee#5 and perigee#8 with single ground station visibility and three apogee burns with dual station visibility. The range vector profiles were studied in the s/c frame during LAM burn phases and accurate polarization predictions were provided to supporting ground stations. The near optimal strategy was selected for implementation in order to ensure full visibility during each LAM burn. Contingency maneuver plans were generated in preparation for specified Propulsion system related contingencies. Maneuver plans were generated considering 3-sigma dispersions in T.O. GSAT-12 is positioned at 83 deg East longitude. The estimated operational life is about 11 years which was realized through operationally optimal maneuver strategy selected from the detailed mission analysis.

  16. A neural network strategy for end-point optimization of batch processes.

    PubMed

    Krothapally, M; Palanki, S

    1999-01-01

    The traditional way of operating batch processes has been to utilize an open-loop "golden recipe". However, there can be substantial batch to batch variation in process conditions and this open-loop strategy can lead to non-optimal operation. In this paper, a new approach is presented for end-point optimization of batch processes by utilizing neural networks. This strategy involves the training of two neural networks; one to predict switching times and the other to predict the input profile in the singular region. This approach alleviates the computational problems associated with the classical Pontryagin's approach and the nonlinear programming approach. The efficacy of this scheme is illustrated via simulation of a fed-batch fermentation.

  17. Optimizing water purchases for an Environmental Water Account

    NASA Astrophysics Data System (ADS)

    Lund, J. R.; Hollinshead, S. P.

    2005-12-01

    State and federal agencies in California have established an Environmental Water Account (EWA) to buy water to protect endangered fish in the San Francisco Bay/ Sacramento-San Joaquin Delta Estuary. This paper presents a three-stage probabilistic optimization model that identifies least-cost strategies for purchasing water for the EWA given hydrologic, operational, and biological uncertainties. This approach minimizes the expected cost of long-term, spot, and option water purchases to meet uncertain flow dedications for fish. The model prescribes the location, timing, and type of optimal water purchases and can illustrate how least-cost strategies change with hydrologic, operational, biological, and cost inputs. Details of the optimization model's application to California's EWA are provided with a discussion of its utility for strategic planning and policy purposes. Limitations in and sensitivity analysis of the model's representation of EWA operations are discussed, as are operational and research recommendations.

  18. Genetic programming assisted stochastic optimization strategies for optimization of glucose to gluconic acid fermentation.

    PubMed

    Cheema, Jitender Jit Singh; Sankpal, Narendra V; Tambe, Sanjeev S; Kulkarni, Bhaskar D

    2002-01-01

    This article presents two hybrid strategies for the modeling and optimization of the glucose to gluconic acid batch bioprocess. In the hybrid approaches, first a novel artificial intelligence formalism, namely, genetic programming (GP), is used to develop a process model solely from the historic process input-output data. In the next step, the input space of the GP-based model, representing process operating conditions, is optimized using two stochastic optimization (SO) formalisms, viz., genetic algorithms (GAs) and simultaneous perturbation stochastic approximation (SPSA). These SO formalisms possess certain unique advantages over the commonly used gradient-based optimization techniques. The principal advantage of the GP-GA and GP-SPSA hybrid techniques is that process modeling and optimization can be performed exclusively from the process input-output data without invoking the detailed knowledge of the process phenomenology. The GP-GA and GP-SPSA techniques have been employed for modeling and optimization of the glucose to gluconic acid bioprocess, and the optimized process operating conditions obtained thereby have been compared with those obtained using two other hybrid modeling-optimization paradigms integrating artificial neural networks (ANNs) and GA/SPSA formalisms. Finally, the overall optimized operating conditions given by the GP-GA method, when verified experimentally resulted in a significant improvement in the gluconic acid yield. The hybrid strategies presented here are generic in nature and can be employed for modeling and optimization of a wide variety of batch and continuous bioprocesses.

  19. Intelligent reservoir operation system based on evolving artificial neural networks

    NASA Astrophysics Data System (ADS)

    Chaves, Paulo; Chang, Fi-John

    2008-06-01

    We propose a novel intelligent reservoir operation system based on an evolving artificial neural network (ANN). Evolving means the parameters of the ANN model are identified by the GA evolutionary optimization technique. Accordingly, the ANN model should represent the operational strategies of reservoir operation. The main advantages of the Evolving ANN Intelligent System (ENNIS) are as follows: (i) only a small number of parameters to be optimized even for long optimization horizons, (ii) easy to handle multiple decision variables, and (iii) the straightforward combination of the operation model with other prediction models. The developed intelligent system was applied to the operation of the Shihmen Reservoir in North Taiwan, to investigate its applicability and practicability. The proposed method is first built to a simple formulation for the operation of the Shihmen Reservoir, with single objective and single decision. Its results were compared to those obtained by dynamic programming. The constructed network proved to be a good operational strategy. The method was then built and applied to the reservoir with multiple (five) decision variables. The results demonstrated that the developed evolving neural networks improved the operation performance of the reservoir when compared to its current operational strategy. The system was capable of successfully simultaneously handling various decision variables and provided reasonable and suitable decisions.

  20. Fault-Tolerant Control of ANPC Three-Level Inverter Based on Order-Reduction Optimal Control Strategy under Multi-Device Open-Circuit Fault.

    PubMed

    Xu, Shi-Zhou; Wang, Chun-Jie; Lin, Fang-Li; Li, Shi-Xiang

    2017-10-31

    The multi-device open-circuit fault is a common fault of ANPC (Active Neutral-Point Clamped) three-level inverter and effect the operation stability of the whole system. To improve the operation stability, this paper summarized the main solutions currently firstly and analyzed all the possible states of multi-device open-circuit fault. Secondly, an order-reduction optimal control strategy was proposed under multi-device open-circuit fault to realize fault-tolerant control based on the topology and control requirement of ANPC three-level inverter and operation stability. This control strategy can solve the faults with different operation states, and can works in order-reduction state under specific open-circuit faults with specific combined devices, which sacrifices the control quality to obtain the stability priority control. Finally, the simulation and experiment proved the effectiveness of the proposed strategy.

  1. Capital dissipation minimization for a class of complex irreversible resource exchange processes

    NASA Astrophysics Data System (ADS)

    Xia, Shaojun; Chen, Lingen

    2017-05-01

    A model of a class of irreversible resource exchange processes (REPes) between a firm and a producer with commodity flow leakage from the producer to a competitive market is established in this paper. The REPes are assumed to obey the linear commodity transfer law (LCTL). Optimal price paths for capital dissipation minimization (CDM) (it can measure economic process irreversibility) are obtained. The averaged optimal control theory is used. The optimal REP strategy is also compared with other strategies, such as constant-firm-price operation and constant-commodity-flow operation, and effects of the amount of commodity transferred and the commodity flow leakage on the optimal REP strategy are also analyzed. The commodity prices of both the producer and the firm for the CDM of the REPes with commodity flow leakage change with the time exponentially.

  2. Optimization of fuel-cell tram operation based on two dimension dynamic programming

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbin; Lu, Xuecheng; Zhao, Jingsong; Li, Jianqiu

    2018-02-01

    This paper proposes an optimal control strategy based on the two-dimension dynamic programming (2DDP) algorithm targeting at minimizing operation energy consumption for a fuel-cell tram. The energy consumption model with the tram dynamics is firstly deduced. Optimal control problem are analyzed and the 2DDP strategy is applied to solve the problem. The optimal tram speed profiles are obtained for each interstation which consist of three stages: accelerate to the set speed with the maximum traction power, dynamically adjust to maintain a uniform speed and decelerate to zero speed with the maximum braking power at a suitable timing. The optimal control curves of all the interstations are connected with the parking time to form the optimal control method of the whole line. The optimized speed profiles are also simplified for drivers to follow.

  3. Free-form Airfoil Shape Optimization Under Uncertainty Using Maximum Expected Value and Second-order Second-moment Strategies

    NASA Technical Reports Server (NTRS)

    Huyse, Luc; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    Free-form shape optimization of airfoils poses unexpected difficulties. Practical experience has indicated that a deterministic optimization for discrete operating conditions can result in dramatically inferior performance when the actual operating conditions are different from the - somewhat arbitrary - design values used for the optimization. Extensions to multi-point optimization have proven unable to adequately remedy this problem of "localized optimization" near the sampled operating conditions. This paper presents an intrinsically statistical approach and demonstrates how the shortcomings of multi-point optimization with respect to "localized optimization" can be overcome. The practical examples also reveal how the relative likelihood of each of the operating conditions is automatically taken into consideration during the optimization process. This is a key advantage over the use of multipoint methods.

  4. Microgrids and distributed generation systems: Control, operation, coordination and planning

    NASA Astrophysics Data System (ADS)

    Che, Liang

    Distributed Energy Resources (DERs) which include distributed generations (DGs), distributed energy storage systems, and adjustable loads are key components in microgrid operations. A microgrid is a small electric power system integrated with on-site DERs to serve all or some portion of the local load and connected to the utility grid through the point of common coupling (PCC). Microgrids can operate in both grid-connected mode and island mode. The structure and components of hierarchical control for a microgrid at Illinois Institute of Technology (IIT) are discussed and analyzed. Case studies would address the reliable and economic operation of IIT microgrid. The simulation results of IIT microgrid operation demonstrate that the hierarchical control and the coordination strategy of distributed energy resources (DERs) is an effective way of optimizing the economic operation and the reliability of microgrids. The benefits and challenges of DC microgrids are addressed with a DC model for the IIT microgrid. We presented the hierarchical control strategy including the primary, secondary, and tertiary controls for economic operation and the resilience of a DC microgrid. The simulation results verify that the proposed coordinated strategy is an effective way of ensuring the resilient response of DC microgrids to emergencies and optimizing their economic operation at steady state. The concept and prototype of a community microgrid that interconnecting multiple microgrids in a community are proposed. Two works are conducted. For the coordination, novel three-level hierarchical coordination strategy to coordinate the optimal power exchanges among neighboring microgrids is proposed. For the planning, a multi-microgrid interconnection planning framework using probabilistic minimal cut-set (MCS) based iterative methodology is proposed for enhancing the economic, resilience, and reliability signals in multi-microgrid operations. The implementation of high-reliability microgrids requires proper protection schemes that effectively function in both grid-connected and island modes. This chapter presents a communication-assisted four-level hierarchical protection strategy for high-reliability microgrids, and tests the proposed protection strategy based on a loop structured microgrid. The simulation results demonstrate the proposed strategy to be an effective and efficient option for microgrid protection. Additionally, microgrid topology ought to be optimally planned. To address the microgrid topology planning, a graph-partitioning and integer-programming integrated methodology is proposed. This work is not included in the dissertation. Interested readers can refer to our related publication.

  5. Control strategies for wind farm power optimization: LES study

    NASA Astrophysics Data System (ADS)

    Ciri, Umberto; Rotea, Mario; Leonardi, Stefano

    2017-11-01

    Turbines in wind farms operate in off-design conditions as wake interactions occur for particular wind directions. Advanced wind farm control strategies aim at coordinating and adjusting turbine operations to mitigate power losses in such conditions. Coordination is achieved by controlling on upstream turbines either the wake intensity, through the blade pitch angle or the generator torque, or the wake direction, through yaw misalignment. Downstream turbines can be adapted to work in waked conditions and limit power losses, using the blade pitch angle or the generator torque. As wind conditions in wind farm operations may change significantly, it is difficult to determine and parameterize the variations of the coordinated optimal settings. An alternative is model-free control and optimization of wind farms, which does not require any parameterization and can track the optimal settings as conditions vary. In this work, we employ a model-free optimization algorithm, extremum-seeking control, to find the optimal set-points of generator torque, blade pitch and yaw angle for a three-turbine configuration. Large-Eddy Simulations are used to provide a virtual environment to evaluate the performance of the control strategies under realistic, unsteady incoming wind. This work was supported by the National Science Foundation, Grants No. 1243482 (the WINDINSPIRE project) and IIP 1362033 (I/UCRC WindSTAR). TACC is acknowledged for providing computational time.

  6. Optimal PGU operation strategy in CHP systems

    NASA Astrophysics Data System (ADS)

    Yun, Kyungtae

    Traditional power plants only utilize about 30 percent of the primary energy that they consume, and the rest of the energy is usually wasted in the process of generating or transmitting electricity. On-site and near-site power generation has been considered by business, labor, and environmental groups to improve the efficiency and the reliability of power generation. Combined heat and power (CHP) systems are a promising alternative to traditional power plants because of the high efficiency and low CO2 emission achieved by recovering waste thermal energy produced during power generation. A CHP operational algorithm designed to optimize operational costs must be relatively simple to implement in practice such as to minimize the computational requirements from the hardware to be installed. This dissertation focuses on the following aspects pertaining the design of a practical CHP operational algorithm designed to minimize the operational costs: (a) real-time CHP operational strategy using a hierarchical optimization algorithm; (b) analytic solutions for cost-optimal power generation unit operation in CHP Systems; (c) modeling of reciprocating internal combustion engines for power generation and heat recovery; (d) an easy to implement, effective, and reliable hourly building load prediction algorithm.

  7. Seasonal-Scale Optimization of Conventional Hydropower Operations in the Upper Colorado System

    NASA Astrophysics Data System (ADS)

    Bier, A.; Villa, D.; Sun, A.; Lowry, T. S.; Barco, J.

    2011-12-01

    Sandia National Laboratories is developing the Hydropower Seasonal Concurrent Optimization for Power and the Environment (Hydro-SCOPE) tool to examine basin-wide conventional hydropower operations at seasonal time scales. This tool is part of an integrated, multi-laboratory project designed to explore different aspects of optimizing conventional hydropower operations. The Hydro-SCOPE tool couples a one-dimensional reservoir model with a river routing model to simulate hydrology and water quality. An optimization engine wraps around this model framework to solve for long-term operational strategies that best meet the specific objectives of the hydrologic system while honoring operational and environmental constraints. The optimization routines are provided by Sandia's open source DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) software. Hydro-SCOPE allows for multi-objective optimization, which can be used to gain insight into the trade-offs that must be made between objectives. The Hydro-SCOPE tool is being applied to the Upper Colorado Basin hydrologic system. This system contains six reservoirs, each with its own set of objectives (such as maximizing revenue, optimizing environmental indicators, meeting water use needs, or other objectives) and constraints. This leads to a large optimization problem with strong connectedness between objectives. The systems-level approach used by the Hydro-SCOPE tool allows simultaneous analysis of these objectives, as well as understanding of potential trade-offs related to different objectives and operating strategies. The seasonal-scale tool will be tightly integrated with the other components of this project, which examine day-ahead and real-time planning, environmental performance, hydrologic forecasting, and plant efficiency.

  8. Fireworks Algorithm with Enhanced Fireworks Interaction.

    PubMed

    Zhang, Bei; Zheng, Yu-Jun; Zhang, Min-Xia; Chen, Sheng-Yong

    2017-01-01

    As a relatively new metaheuristic in swarm intelligence, fireworks algorithm (FWA) has exhibited promising performance on a wide range of optimization problems. This paper aims to improve FWA by enhancing fireworks interaction in three aspects: 1) Developing a new Gaussian mutation operator to make sparks learn from more exemplars; 2) Integrating the regular explosion operator of FWA with the migration operator of biogeography-based optimization (BBO) to increase information sharing; 3) Adopting a new population selection strategy that enables high-quality solutions to have high probabilities of entering the next generation without incurring high computational cost. The combination of the three strategies can significantly enhance fireworks interaction and thus improve solution diversity and suppress premature convergence. Numerical experiments on the CEC 2015 single-objective optimization test problems show the effectiveness of the proposed algorithm. The application to a high-speed train scheduling problem also demonstrates its feasibility in real-world optimization problems.

  9. Hybrid Self-Adaptive Evolution Strategies Guided by Neighborhood Structures for Combinatorial Optimization Problems.

    PubMed

    Coelho, V N; Coelho, I M; Souza, M J F; Oliveira, T A; Cota, L P; Haddad, M N; Mladenovic, N; Silva, R C P; Guimarães, F G

    2016-01-01

    This article presents an Evolution Strategy (ES)--based algorithm, designed to self-adapt its mutation operators, guiding the search into the solution space using a Self-Adaptive Reduced Variable Neighborhood Search procedure. In view of the specific local search operators for each individual, the proposed population-based approach also fits into the context of the Memetic Algorithms. The proposed variant uses the Greedy Randomized Adaptive Search Procedure with different greedy parameters for generating its initial population, providing an interesting exploration-exploitation balance. To validate the proposal, this framework is applied to solve three different [Formula: see text]-Hard combinatorial optimization problems: an Open-Pit-Mining Operational Planning Problem with dynamic allocation of trucks, an Unrelated Parallel Machine Scheduling Problem with Setup Times, and the calibration of a hybrid fuzzy model for Short-Term Load Forecasting. Computational results point out the convergence of the proposed model and highlight its ability in combining the application of move operations from distinct neighborhood structures along the optimization. The results gathered and reported in this article represent a collective evidence of the performance of the method in challenging combinatorial optimization problems from different application domains. The proposed evolution strategy demonstrates an ability of adapting the strength of the mutation disturbance during the generations of its evolution process. The effectiveness of the proposal motivates the application of this novel evolutionary framework for solving other combinatorial optimization problems.

  10. REopt Improves the Operations of Alcatraz's Solar PV-Battery-Diesel Hybrid System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olis, Daniel R; Walker, H. A; Van Geet, Otto D

    This poster identifies operations improvement strategies for a photovoltaic (PV)-battery-diesel hybrid system at the National Park Service's Alcatraz Island using NREL's REopt analysis tool. The current 'cycle charging' strategy results in significant curtailing of energy production from the PV array, requiring excessive diesel use, while also incurring high wear on batteries without benefit of improved efficiency. A simple 'load following' strategy results in near optimal operating cost reduction.

  11. Acquisition of Inductive Biconditional Reasoning Skills: Training of Simultaneous and Sequential Processing.

    ERIC Educational Resources Information Center

    Lee, Seong-Soo

    1982-01-01

    Tenth-grade students (n=144) received training on one of three processing methods: coding-mapping (simultaneous), coding only, or decision tree (sequential). The induced simultaneous processing strategy worked optimally under rule learning, while the sequential strategy was difficult to induce and/or not optimal for rule-learning operations.…

  12. Optimizing the DoD Supply Chain for the Future Joint Force

    DTIC Science & Technology

    2013-05-01

    4 Sunil Chopra and Peter Meindl, Supply Chain Management: Strategy, Planning, and Operation, 5th ed. (Boston: Pearson Education, Inc., 2013), 339...Arlington, VA: Lexington Institute, 2005. Chopra, Sunil and Peter Meindl. Supply Chain Management: Strategy, Planning, and Operation. 5th ed. Boston

  13. Economic optimization of operations for hybrid energy systems under variable markets

    DOE PAGES

    Chen, Jen; Garcia, Humberto E.

    2016-05-21

    We prosed a hybrid energy systems (HES) which is an important element to enable increasing penetration of clean energy. Our paper investigates the operations flexibility of HES, and develops a methodology for operations optimization for maximizing economic value based on predicted renewable generation and market information. A multi-environment computational platform for performing such operations optimization is also developed. In order to compensate for prediction error, a control strategy is accordingly designed to operate a standby energy storage element (ESE) to avoid energy imbalance within HES. The proposed operations optimizer allows systematic control of energy conversion for maximal economic value. Simulationmore » results of two specific HES configurations are included to illustrate the proposed methodology and computational capability. These results demonstrate the economic viability of HES under proposed operations optimizer, suggesting the diversion of energy for alternative energy output while participating in the ancillary service market. Economic advantages of such operations optimizer and associated flexible operations are illustrated by comparing the economic performance of flexible operations against that of constant operations. Sensitivity analysis with respect to market variability and prediction error, are also performed.« less

  14. Economic optimization of operations for hybrid energy systems under variable markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jen; Garcia, Humberto E.

    We prosed a hybrid energy systems (HES) which is an important element to enable increasing penetration of clean energy. Our paper investigates the operations flexibility of HES, and develops a methodology for operations optimization for maximizing economic value based on predicted renewable generation and market information. A multi-environment computational platform for performing such operations optimization is also developed. In order to compensate for prediction error, a control strategy is accordingly designed to operate a standby energy storage element (ESE) to avoid energy imbalance within HES. The proposed operations optimizer allows systematic control of energy conversion for maximal economic value. Simulationmore » results of two specific HES configurations are included to illustrate the proposed methodology and computational capability. These results demonstrate the economic viability of HES under proposed operations optimizer, suggesting the diversion of energy for alternative energy output while participating in the ancillary service market. Economic advantages of such operations optimizer and associated flexible operations are illustrated by comparing the economic performance of flexible operations against that of constant operations. Sensitivity analysis with respect to market variability and prediction error, are also performed.« less

  15. A novel composite adaptive flap controller design by a high-efficient modified differential evolution identification approach.

    PubMed

    Li, Nailu; Mu, Anle; Yang, Xiyun; Magar, Kaman T; Liu, Chao

    2018-05-01

    The optimal tuning of adaptive flap controller can improve adaptive flap control performance on uncertain operating environments, but the optimization process is usually time-consuming and it is difficult to design proper optimal tuning strategy for the flap control system (FCS). To solve this problem, a novel adaptive flap controller is designed based on a high-efficient differential evolution (DE) identification technique and composite adaptive internal model control (CAIMC) strategy. The optimal tuning can be easily obtained by DE identified inverse of the FCS via CAIMC structure. To achieve fast tuning, a high-efficient modified adaptive DE algorithm is proposed with new mutant operator and varying range adaptive mechanism for the FCS identification. A tradeoff between optimized adaptive flap control and low computation cost is successfully achieved by proposed controller. Simulation results show the robustness of proposed method and its superiority to conventional adaptive IMC (AIMC) flap controller and the CAIMC flap controllers using other DE algorithms on various uncertain operating conditions. The high computation efficiency of proposed controller is also verified based on the computation time on those operating cases. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  16. An improved self-adaptive ant colony algorithm based on genetic strategy for the traveling salesman problem

    NASA Astrophysics Data System (ADS)

    Wang, Pan; Zhang, Yi; Yan, Dong

    2018-05-01

    Ant Colony Algorithm (ACA) is a powerful and effective algorithm for solving the combination optimization problem. Moreover, it was successfully used in traveling salesman problem (TSP). But it is easy to prematurely converge to the non-global optimal solution and the calculation time is too long. To overcome those shortcomings, a new method is presented-An improved self-adaptive Ant Colony Algorithm based on genetic strategy. The proposed method adopts adaptive strategy to adjust the parameters dynamically. And new crossover operation and inversion operation in genetic strategy was used in this method. We also make an experiment using the well-known data in TSPLIB. The experiment results show that the performance of the proposed method is better than the basic Ant Colony Algorithm and some improved ACA in both the result and the convergence time. The numerical results obtained also show that the proposed optimization method can achieve results close to the theoretical best known solutions at present.

  17. Cascade Optimization for Aircraft Engines With Regression and Neural Network Analysis - Approximators

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Guptill, James D.; Hopkins, Dale A.; Lavelle, Thomas M.

    2000-01-01

    The NASA Engine Performance Program (NEPP) can configure and analyze almost any type of gas turbine engine that can be generated through the interconnection of a set of standard physical components. In addition, the code can optimize engine performance by changing adjustable variables under a set of constraints. However, for engine cycle problems at certain operating points, the NEPP code can encounter difficulties: nonconvergence in the currently implemented Powell's optimization algorithm and deficiencies in the Newton-Raphson solver during engine balancing. A project was undertaken to correct these deficiencies. Nonconvergence was avoided through a cascade optimization strategy, and deficiencies associated with engine balancing were eliminated through neural network and linear regression methods. An approximation-interspersed cascade strategy was used to optimize the engine's operation over its flight envelope. Replacement of Powell's algorithm by the cascade strategy improved the optimization segment of the NEPP code. The performance of the linear regression and neural network methods as alternative engine analyzers was found to be satisfactory. This report considers two examples-a supersonic mixed-flow turbofan engine and a subsonic waverotor-topped engine-to illustrate the results, and it discusses insights gained from the improved version of the NEPP code.

  18. Optimization process planning using hybrid genetic algorithm and intelligent search for job shop machining.

    PubMed

    Salehi, Mojtaba; Bahreininejad, Ardeshir

    2011-08-01

    Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously.

  19. Optimization process planning using hybrid genetic algorithm and intelligent search for job shop machining

    PubMed Central

    Salehi, Mojtaba

    2010-01-01

    Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously. PMID:21845020

  20. AI techniques for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands

    NASA Astrophysics Data System (ADS)

    Tsai, Wen-Ping; Chang, Fi-John; Chang, Li-Chiu; Herricks, Edwin E.

    2015-11-01

    Flow regime is the key driver of the riverine ecology. This study proposes a novel hybrid methodology based on artificial intelligence (AI) techniques for quantifying riverine ecosystems requirements and delivering suitable flow regimes that sustain river and floodplain ecology through optimizing reservoir operation. This approach addresses issues to better fit riverine ecosystem requirements with existing human demands. We first explored and characterized the relationship between flow regimes and fish communities through a hybrid artificial neural network (ANN). Then the non-dominated sorting genetic algorithm II (NSGA-II) was established for river flow management over the Shihmen Reservoir in northern Taiwan. The ecosystem requirement took the form of maximizing fish diversity, which could be estimated by the hybrid ANN. The human requirement was to provide a higher satisfaction degree of water supply. The results demonstrated that the proposed methodology could offer a number of diversified alternative strategies for reservoir operation and improve reservoir operational strategies producing downstream flows that could meet both human and ecosystem needs. Applications that make this methodology attractive to water resources managers benefit from the wide spread of Pareto-front (optimal) solutions allowing decision makers to easily determine the best compromise through the trade-off between reservoir operational strategies for human and ecosystem needs.

  1. Optimal charge control strategies for stationary photovoltaic battery systems

    NASA Astrophysics Data System (ADS)

    Li, Jiahao; Danzer, Michael A.

    2014-07-01

    Battery systems coupled to photovoltaic (PV) modules for example fulfill one major function: they locally decouple PV generation and consumption of electrical power leading to two major effects. First, they reduce the grid load, especially at peak times and therewith reduce the necessity of a network expansion. And second, they increase the self-consumption in households and therewith help to reduce energy expenses. For the management of PV batteries charge control strategies need to be developed to reach the goals of both the distribution system operators and the local power producer. In this work optimal control strategies regarding various optimization goals are developed on the basis of the predicted household loads and PV generation profiles using the method of dynamic programming. The resulting charge curves are compared and essential differences discussed. Finally, a multi-objective optimization shows that charge control strategies can be derived that take all optimization goals into account.

  2. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem

    PubMed Central

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them. PMID:26819585

  3. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem.

    PubMed

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.

  4. Modeling joint restoration strategies for interdependent infrastructure systems.

    PubMed

    Zhang, Chao; Kong, Jingjing; Simonovic, Slobodan P

    2018-01-01

    Life in the modern world depends on multiple critical services provided by infrastructure systems which are interdependent at multiple levels. To effectively respond to infrastructure failures, this paper proposes a model for developing optimal joint restoration strategy for interdependent infrastructure systems following a disruptive event. First, models for (i) describing structure of interdependent infrastructure system and (ii) their interaction process, are presented. Both models are considering the failure types, infrastructure operating rules and interdependencies among systems. Second, an optimization model for determining an optimal joint restoration strategy at infrastructure component level by minimizing the economic loss from the infrastructure failures, is proposed. The utility of the model is illustrated using a case study of electric-water systems. Results show that a small number of failed infrastructure components can trigger high level failures in interdependent systems; the optimal joint restoration strategy varies with failure occurrence time. The proposed models can help decision makers to understand the mechanisms of infrastructure interactions and search for optimal joint restoration strategy, which can significantly enhance safety of infrastructure systems.

  5. Self-Averaging Property of Minimal Investment Risk of Mean-Variance Model.

    PubMed

    Shinzato, Takashi

    2015-01-01

    In portfolio optimization problems, the minimum expected investment risk is not always smaller than the expected minimal investment risk. That is, using a well-known approach from operations research, it is possible to derive a strategy that minimizes the expected investment risk, but this strategy does not always result in the best rate of return on assets. Prior to making investment decisions, it is important to an investor to know the potential minimal investment risk (or the expected minimal investment risk) and to determine the strategy that will maximize the return on assets. We use the self-averaging property to analyze the potential minimal investment risk and the concentrated investment level for the strategy that gives the best rate of return. We compare the results from our method with the results obtained by the operations research approach and with those obtained by a numerical simulation using the optimal portfolio. The results of our method and the numerical simulation are in agreement, but they differ from that of the operations research approach.

  6. Solving TSP problem with improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Fu, Chunhua; Zhang, Lijun; Wang, Xiaojing; Qiao, Liying

    2018-05-01

    The TSP is a typical NP problem. The optimization of vehicle routing problem (VRP) and city pipeline optimization can use TSP to solve; therefore it is very important to the optimization for solving TSP problem. The genetic algorithm (GA) is one of ideal methods in solving it. The standard genetic algorithm has some limitations. Improving the selection operator of genetic algorithm, and importing elite retention strategy can ensure the select operation of quality, In mutation operation, using the adaptive algorithm selection can improve the quality of search results and variation, after the chromosome evolved one-way evolution reverse operation is added which can make the offspring inherit gene of parental quality improvement opportunities, and improve the ability of searching the optimal solution algorithm.

  7. Optimal Reservoir Operation using Stochastic Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Sahu, R.; McLaughlin, D.

    2016-12-01

    Hydropower operations are typically designed to fulfill contracts negotiated with consumers who need reliable energy supplies, despite uncertainties in reservoir inflows. In addition to providing reliable power the reservoir operator needs to take into account environmental factors such as downstream flooding or compliance with minimum flow requirements. From a dynamical systems perspective, the reservoir operating strategy must cope with conflicting objectives in the presence of random disturbances. In order to achieve optimal performance, the reservoir system needs to continually adapt to disturbances in real time. Model Predictive Control (MPC) is a real-time control technique that adapts by deriving the reservoir release at each decision time from the current state of the system. Here an ensemble-based version of MPC (SMPC) is applied to a generic reservoir to determine both the optimal power contract, considering future inflow uncertainty, and a real-time operating strategy that attempts to satisfy the contract. Contract selection and real-time operation are coupled in an optimization framework that also defines a Pareto trade off between the revenue generated from energy production and the environmental damage resulting from uncontrolled reservoir spills. Further insight is provided by a sensitivity analysis of key parameters specified in the SMPC technique. The results demonstrate that SMPC is suitable for multi-objective planning and associated real-time operation of a wide range of hydropower reservoir systems.

  8. Optimizing Storage and Renewable Energy Systems with REopt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgqvist, Emma M.; Anderson, Katherine H.; Cutler, Dylan S.

    Under the right conditions, behind the meter (BTM) storage combined with renewable energy (RE) technologies can provide both cost savings and resiliency. Storage economics depend not only on technology costs and avoided utility rates, but also on how the technology is operated. REopt, a model developed at NREL, can be used to determine the optimal size and dispatch strategy for BTM or off-grid applications. This poster gives an overview of three applications of REopt: Optimizing BTM Storage and RE to Extend Probability of Surviving Outage, Optimizing Off-Grid Energy System Operation, and Optimizing Residential BTM Solar 'Plus'.

  9. Battery Storage Evaluation Tool, version 1.x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-02

    The battery storage evaluation tool developed at Pacific Northwest National Laboratory is used to run a one-year simulation to evaluate the benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. This tool is based on the optimal control strategies to capture multiple services from a single energy storage device. In this control strategy, at each hour, a lookahead optimization is first formulated and solved to determine the battery base operating point. The minute-by-minute simulation is then performed to simulate the actual battery operation.

  10. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error.more » The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.« less

  11. Estimation of brain network ictogenicity predicts outcome from epilepsy surgery

    NASA Astrophysics Data System (ADS)

    Goodfellow, M.; Rummel, C.; Abela, E.; Richardson, M. P.; Schindler, K.; Terry, J. R.

    2016-07-01

    Surgery is a valuable option for pharmacologically intractable epilepsy. However, significant post-operative improvements are not always attained. This is due in part to our incomplete understanding of the seizure generating (ictogenic) capabilities of brain networks. Here we introduce an in silico, model-based framework to study the effects of surgery within ictogenic brain networks. We find that factors conventionally determining the region of tissue to resect, such as the location of focal brain lesions or the presence of epileptiform rhythms, do not necessarily predict the best resection strategy. We validate our framework by analysing electrocorticogram (ECoG) recordings from patients who have undergone epilepsy surgery. We find that when post-operative outcome is good, model predictions for optimal strategies align better with the actual surgery undertaken than when post-operative outcome is poor. Crucially, this allows the prediction of optimal surgical strategies and the provision of quantitative prognoses for patients undergoing epilepsy surgery.

  12. A particle swarm optimization variant with an inner variable learning strategy.

    PubMed

    Wu, Guohua; Pedrycz, Witold; Ma, Manhao; Qiu, Dishan; Li, Haifeng; Liu, Jin

    2014-01-01

    Although Particle Swarm Optimization (PSO) has demonstrated competitive performance in solving global optimization problems, it exhibits some limitations when dealing with optimization problems with high dimensionality and complex landscape. In this paper, we integrate some problem-oriented knowledge into the design of a certain PSO variant. The resulting novel PSO algorithm with an inner variable learning strategy (PSO-IVL) is particularly efficient for optimizing functions with symmetric variables. Symmetric variables of the optimized function have to satisfy a certain quantitative relation. Based on this knowledge, the inner variable learning (IVL) strategy helps the particle to inspect the relation among its inner variables, determine the exemplar variable for all other variables, and then make each variable learn from the exemplar variable in terms of their quantitative relations. In addition, we design a new trap detection and jumping out strategy to help particles escape from local optima. The trap detection operation is employed at the level of individual particles whereas the trap jumping out strategy is adaptive in its nature. Experimental simulations completed for some representative optimization functions demonstrate the excellent performance of PSO-IVL. The effectiveness of the PSO-IVL stresses a usefulness of augmenting evolutionary algorithms by problem-oriented domain knowledge.

  13. Mathematical modeling for optimizing skip-stop rail transit operation strategy using genetic algorithm.

    DOT National Transportation Integrated Search

    2012-03-01

    "With skip-stop rail transit operation, transit agencies can reduce their operating costs and fleet size, : and passengers can experience reduced in-transit travel times without extra track and technological : improvement. However, since skip-stop op...

  14. Difficulty of distinguishing product states locally

    NASA Astrophysics Data System (ADS)

    Croke, Sarah; Barnett, Stephen M.

    2017-01-01

    Nonlocality without entanglement is a rather counterintuitive phenomenon in which information may be encoded entirely in product (unentangled) states of composite quantum systems in such a way that local measurement of the subsystems is not enough for optimal decoding. For simple examples of pure product states, the gap in performance is known to be rather small when arbitrary local strategies are allowed. Here we restrict to local strategies readily achievable with current technology: those requiring neither a quantum memory nor joint operations. We show that even for measurements on pure product states, there can be a large gap between such strategies and theoretically optimal performance. Thus, even in the absence of entanglement, physically realizable local strategies can be far from optimal for extracting quantum information.

  15. Minimizing the health and climate impacts of emissions from heavy-duty public transportation bus fleets through operational optimization.

    PubMed

    Gouge, Brian; Dowlatabadi, Hadi; Ries, Francis J

    2013-04-16

    In contrast to capital control strategies (i.e., investments in new technology), the potential of operational control strategies (e.g., vehicle scheduling optimization) to reduce the health and climate impacts of the emissions from public transportation bus fleets has not been widely considered. This case study demonstrates that heterogeneity in the emission levels of different bus technologies and the exposure potential of bus routes can be exploited though optimization (e.g., how vehicles are assigned to routes) to minimize these impacts as well as operating costs. The magnitude of the benefits of the optimization depend on the specific transit system and region. Health impacts were found to be particularly sensitive to different vehicle assignments and ranged from worst to best case assignment by more than a factor of 2, suggesting there is significant potential to reduce health impacts. Trade-offs between climate, health, and cost objectives were also found. Transit agencies that do not consider these objectives in an integrated framework and, for example, optimize for costs and/or climate impacts alone, risk inadvertently increasing health impacts by as much as 49%. Cost-benefit analysis was used to evaluate trade-offs between objectives, but large uncertainties make identifying an optimal solution challenging.

  16. Sensor-Based Optimized Control of the Full Load Instability in Large Hydraulic Turbines

    PubMed Central

    Presas, Alexandre; Valero, Carme; Egusquiza, Eduard

    2018-01-01

    Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW) have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined based on the correlation characteristics (linearity, sensitivity and reactivity), the simplicity of the installation and the acquisition frequency necessary. Finally, an economic and easy implementable protection system based on the resulting optimized acquisition strategy is proposed. This system, which can be used in a generic Francis turbine with a similar full load instability, permits one to extend the operating range of the unit by working close to the instability with a reasonable safety margin. PMID:29601512

  17. Sensor-Based Optimized Control of the Full Load Instability in Large Hydraulic Turbines.

    PubMed

    Presas, Alexandre; Valentin, David; Egusquiza, Mònica; Valero, Carme; Egusquiza, Eduard

    2018-03-30

    Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW) have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined based on the correlation characteristics (linearity, sensitivity and reactivity), the simplicity of the installation and the acquisition frequency necessary. Finally, an economic and easy implementable protection system based on the resulting optimized acquisition strategy is proposed. This system, which can be used in a generic Francis turbine with a similar full load instability, permits one to extend the operating range of the unit by working close to the instability with a reasonable safety margin.

  18. Modeling joint restoration strategies for interdependent infrastructure systems

    PubMed Central

    Simonovic, Slobodan P.

    2018-01-01

    Life in the modern world depends on multiple critical services provided by infrastructure systems which are interdependent at multiple levels. To effectively respond to infrastructure failures, this paper proposes a model for developing optimal joint restoration strategy for interdependent infrastructure systems following a disruptive event. First, models for (i) describing structure of interdependent infrastructure system and (ii) their interaction process, are presented. Both models are considering the failure types, infrastructure operating rules and interdependencies among systems. Second, an optimization model for determining an optimal joint restoration strategy at infrastructure component level by minimizing the economic loss from the infrastructure failures, is proposed. The utility of the model is illustrated using a case study of electric-water systems. Results show that a small number of failed infrastructure components can trigger high level failures in interdependent systems; the optimal joint restoration strategy varies with failure occurrence time. The proposed models can help decision makers to understand the mechanisms of infrastructure interactions and search for optimal joint restoration strategy, which can significantly enhance safety of infrastructure systems. PMID:29649300

  19. Active model-based balancing strategy for self-reconfigurable batteries

    NASA Astrophysics Data System (ADS)

    Bouchhima, Nejmeddine; Schnierle, Marc; Schulte, Sascha; Birke, Kai Peter

    2016-08-01

    This paper describes a novel balancing strategy for self-reconfigurable batteries where the discharge and charge rates of each cell can be controlled. While much effort has been focused on improving the hardware architecture of self-reconfigurable batteries, energy equalization algorithms have not been systematically optimized in terms of maximizing the efficiency of the balancing system. Our approach includes aspects of such optimization theory. We develop a balancing strategy for optimal control of the discharge rate of battery cells. We first formulate the cell balancing as a nonlinear optimal control problem, which is modeled afterward as a network program. Using dynamic programming techniques and MATLAB's vectorization feature, we solve the optimal control problem by generating the optimal battery operation policy for a given drive cycle. The simulation results show that the proposed strategy efficiently balances the cells over the life of the battery, an obvious advantage that is absent in the other conventional approaches. Our algorithm is shown to be robust when tested against different influencing parameters varying over wide spectrum on different drive cycles. Furthermore, due to the little computation time and the proved low sensitivity to the inaccurate power predictions, our strategy can be integrated in a real-time system.

  20. Self-Averaging Property of Minimal Investment Risk of Mean-Variance Model

    PubMed Central

    Shinzato, Takashi

    2015-01-01

    In portfolio optimization problems, the minimum expected investment risk is not always smaller than the expected minimal investment risk. That is, using a well-known approach from operations research, it is possible to derive a strategy that minimizes the expected investment risk, but this strategy does not always result in the best rate of return on assets. Prior to making investment decisions, it is important to an investor to know the potential minimal investment risk (or the expected minimal investment risk) and to determine the strategy that will maximize the return on assets. We use the self-averaging property to analyze the potential minimal investment risk and the concentrated investment level for the strategy that gives the best rate of return. We compare the results from our method with the results obtained by the operations research approach and with those obtained by a numerical simulation using the optimal portfolio. The results of our method and the numerical simulation are in agreement, but they differ from that of the operations research approach. PMID:26225761

  1. Control of rolling contact fatigue on premium rails in revenue service.

    DOT National Transportation Integrated Search

    2014-11-01

    Effective rail maintenance strategies are : essential for controlling rolling contact fatigue : (RCF) and reducing wear of rails under heavy : axle load (HAL) operations. In an effort to : optimize rail maintenance strategies in revenue : service, Tr...

  2. Optimal subhourly electricity resource dispatch under multiple price signals with high renewable generation availability

    DOE PAGES

    Chassin, David P.; Behboodi, Sahand; Djilali, Ned

    2018-01-28

    This article proposes a system-wide optimal resource dispatch strategy that enables a shift from a primarily energy cost-based approach, to a strategy using simultaneous price signals for energy, power and ramping behavior. A formal method to compute the optimal sub-hourly power trajectory is derived for a system when the price of energy and ramping are both significant. Optimal control functions are obtained in both time and frequency domains, and a discrete-time solution suitable for periodic feedback control systems is presented. The method is applied to North America Western Interconnection for the planning year 2024, and it is shown that anmore » optimal dispatch strategy that simultaneously considers both the cost of energy and the cost of ramping leads to significant cost savings in systems with high levels of renewable generation: the savings exceed 25% of the total system operating cost for a 50% renewables scenario.« less

  3. Optimal subhourly electricity resource dispatch under multiple price signals with high renewable generation availability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, David P.; Behboodi, Sahand; Djilali, Ned

    This article proposes a system-wide optimal resource dispatch strategy that enables a shift from a primarily energy cost-based approach, to a strategy using simultaneous price signals for energy, power and ramping behavior. A formal method to compute the optimal sub-hourly power trajectory is derived for a system when the price of energy and ramping are both significant. Optimal control functions are obtained in both time and frequency domains, and a discrete-time solution suitable for periodic feedback control systems is presented. The method is applied to North America Western Interconnection for the planning year 2024, and it is shown that anmore » optimal dispatch strategy that simultaneously considers both the cost of energy and the cost of ramping leads to significant cost savings in systems with high levels of renewable generation: the savings exceed 25% of the total system operating cost for a 50% renewables scenario.« less

  4. Algebraic, geometric, and stochastic aspects of genetic operators

    NASA Technical Reports Server (NTRS)

    Foo, N. Y.; Bosworth, J. L.

    1972-01-01

    Genetic algorithms for function optimization employ genetic operators patterned after those observed in search strategies employed in natural adaptation. Two of these operators, crossover and inversion, are interpreted in terms of their algebraic and geometric properties. Stochastic models of the operators are developed which are employed in Monte Carlo simulations of their behavior.

  5. Optimal Trajectories for the Helicopter in One-Engine-Inoperative Terminal-Area Operations

    NASA Technical Reports Server (NTRS)

    Zhao, Yiyuan; Chen, Robert T. N.

    1996-01-01

    This paper presents a summary of a series of recent analytical studies conducted to investigate One-Engine-Inoperative (OEI) optimal control strategies and the associated optimal trajectories for a twin engine helicopter in Category-A terminal-area operations. These studies also examine the associated heliport size requirements and the maximum gross weight capability of the helicopter. Using an eight states, two controls, augmented point-mass model representative of the study helicopter, Continued TakeOff (CTO), Rejected TakeOff (RTO), Balked Landing (BL), and Continued Landing (CL) are investigated for both Vertical-TakeOff-and-Landing (VTOL) and Short-TakeOff-and-Landing (STOL) terminal-area operations. The formulation of the nonlinear optimal control problems with considerations for realistic constraints, solution methods for the two-point boundary-value problem, a new real-time generation method for the optimal OEI trajectories, and the main results of this series of trajectory optimization studies are presented. In particular, a new balanced- weight concept for determining the takeoff decision point for VTOL Category-A operations is proposed, extending the balanced-field length concept used for STOL operations.

  6. Optimization Strategies for Long-Term Ground Water Remedies (with Particular Emphasis on Pump and Treat Systems)

    EPA Pesticide Factsheets

    This fact sheet has been prepared to assist environmental case managers from Federal and State agencies, environmental program managers from private organizations, and environmental contractors with optimization of operating long-term ground water remedies

  7. THE CHOICE OF REAL-TIME CONTROL STRATEGY FOR COMBINED SEWER OVERFLOW CONTROL

    EPA Science Inventory

    This paper focuses on the strategies used to operate a collection system in real-time control (RTC) in order to optimize use of system capacity and to reduce the cost of long-term combined sewer overflow (CSO) control. Three RTC strategies were developed and analyzed based on the...

  8. Human Information Processing and Supervisory Control.

    DTIC Science & Technology

    1980-05-01

    interpretation of information .............. 16 Sampling strategies .............................. 17 Speed-accuracy tradeoff ................... 23...operator is usually highly trained, and largely controls the tasks, being allowed to use what strategies he will.. Risk is incurred in ways which can...his search less than optimally effective. Hence from matters of tactics and strategy which will be discussed below, straightforward questions of

  9. Hybrid-optimization strategy for the communication of large-scale Kinetic Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Wu, Baodong; Li, Shigang; Zhang, Yunquan; Nie, Ningming

    2017-02-01

    The parallel Kinetic Monte Carlo (KMC) algorithm based on domain decomposition has been widely used in large-scale physical simulations. However, the communication overhead of the parallel KMC algorithm is critical, and severely degrades the overall performance and scalability. In this paper, we present a hybrid optimization strategy to reduce the communication overhead for the parallel KMC simulations. We first propose a communication aggregation algorithm to reduce the total number of messages and eliminate the communication redundancy. Then, we utilize the shared memory to reduce the memory copy overhead of the intra-node communication. Finally, we optimize the communication scheduling using the neighborhood collective operations. We demonstrate the scalability and high performance of our hybrid optimization strategy by both theoretical and experimental analysis. Results show that the optimized KMC algorithm exhibits better performance and scalability than the well-known open-source library-SPPARKS. On 32-node Xeon E5-2680 cluster (total 640 cores), the optimized algorithm reduces the communication time by 24.8% compared with SPPARKS.

  10. The Optimization dispatching of Micro Grid Considering Load Control

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Xie, Jiqiang; Yang, Xiu; He, Hongli

    2018-01-01

    This paper proposes an optimization control of micro-grid system economy operation model. It coordinates the new energy and storage operation with diesel generator output, so as to achieve the economic operation purpose of micro-grid. In this paper, the micro-grid network economic operation model is transformed into mixed integer programming problem, which is solved by the mature commercial software, and the new model is proved to be economical, and the load control strategy can reduce the charge and discharge times of energy storage devices, and extend the service life of the energy storage device to a certain extent.

  11. Sourcing in the Air Force: An Optimization Approach

    DTIC Science & Technology

    2009-09-01

    quality supplies and services at the lowest cost ( Gabbard , 2004). The commodity sourcing strategy focuses on developing a specific sourcing strategy...Springer Series in Operations Research. New York: Springer-Verlag. Gabbard , E.G. (2004, April). Strategic sourcing: Critical elements and keys to success

  12. Memory and Energy Optimization Strategies for Multithreaded Operating System on the Resource-Constrained Wireless Sensor Node

    PubMed Central

    Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Xu, Jun; Yang, Jianfeng; Zhou, Haiying; Shi, Hongling; Zhou, Peng

    2015-01-01

    Memory and energy optimization strategies are essential for the resource-constrained wireless sensor network (WSN) nodes. In this article, a new memory-optimized and energy-optimized multithreaded WSN operating system (OS) LiveOS is designed and implemented. Memory cost of LiveOS is optimized by using the stack-shifting hybrid scheduling approach. Different from the traditional multithreaded OS in which thread stacks are allocated statically by the pre-reservation, thread stacks in LiveOS are allocated dynamically by using the stack-shifting technique. As a result, memory waste problems caused by the static pre-reservation can be avoided. In addition to the stack-shifting dynamic allocation approach, the hybrid scheduling mechanism which can decrease both the thread scheduling overhead and the thread stack number is also implemented in LiveOS. With these mechanisms, the stack memory cost of LiveOS can be reduced more than 50% if compared to that of a traditional multithreaded OS. Not is memory cost optimized, but also the energy cost is optimized in LiveOS, and this is achieved by using the multi-core “context aware” and multi-core “power-off/wakeup” energy conservation approaches. By using these approaches, energy cost of LiveOS can be reduced more than 30% when compared to the single-core WSN system. Memory and energy optimization strategies in LiveOS not only prolong the lifetime of WSN nodes, but also make the multithreaded OS feasible to run on the memory-constrained WSN nodes. PMID:25545264

  13. Properties of heuristic search strategies

    NASA Technical Reports Server (NTRS)

    Vanderbrug, G. J.

    1973-01-01

    A directed graph is used to model the search space of a state space representation with single input operators, an AND/OR is used for problem reduction representations, and a theorem proving graph is used for state space representations with multiple input operators. These three graph models and heuristic strategies for searching them are surveyed. The completeness, admissibility, and optimality properties of search strategies which use the evaluation function f = (1 - omega)g = omega(h) are presented and interpreted using a representation of the search process in the plane. The use of multiple output operators to imply dependent successors, and thus obtain a formalism which includes all three types of representations, is discussed.

  14. Optimal design and operation of solid oxide fuel cell systems for small-scale stationary applications

    NASA Astrophysics Data System (ADS)

    Braun, Robert Joseph

    The advent of maturing fuel cell technologies presents an opportunity to achieve significant improvements in energy conversion efficiencies at many scales; thereby, simultaneously extending our finite resources and reducing "harmful" energy-related emissions to levels well below that of near-future regulatory standards. However, before realization of the advantages of fuel cells can take place, systems-level design issues regarding their application must be addressed. Using modeling and simulation, the present work offers optimal system design and operation strategies for stationary solid oxide fuel cell systems applied to single-family detached dwellings. A one-dimensional, steady-state finite-difference model of a solid oxide fuel cell (SOFC) is generated and verified against other mathematical SOFC models in the literature. Fuel cell system balance-of-plant components and costs are also modeled and used to provide an estimate of system capital and life cycle costs. The models are used to evaluate optimal cell-stack power output, the impact of cell operating and design parameters, fuel type, thermal energy recovery, system process design, and operating strategy on overall system energetic and economic performance. Optimal cell design voltage, fuel utilization, and operating temperature parameters are found using minimization of the life cycle costs. System design evaluations reveal that hydrogen-fueled SOFC systems demonstrate lower system efficiencies than methane-fueled systems. The use of recycled cell exhaust gases in process design in the stack periphery are found to produce the highest system electric and cogeneration efficiencies while achieving the lowest capital costs. Annual simulations reveal that efficiencies of 45% electric (LHV basis), 85% cogenerative, and simple economic paybacks of 5--8 years are feasible for 1--2 kW SOFC systems in residential-scale applications. Design guidelines that offer additional suggestions related to fuel cell-stack sizing and operating strategy (base-load or load-following and cogeneration or electric-only) are also presented.

  15. Optimization of startup and shutdown operation of simulated moving bed chromatographic processes.

    PubMed

    Li, Suzhou; Kawajiri, Yoshiaki; Raisch, Jörg; Seidel-Morgenstern, Andreas

    2011-06-24

    This paper presents new multistage optimal startup and shutdown strategies for simulated moving bed (SMB) chromatographic processes. The proposed concept allows to adjust transient operating conditions stage-wise, and provides capability to improve transient performance and to fulfill product quality specifications simultaneously. A specially tailored decomposition algorithm is developed to ensure computational tractability of the resulting dynamic optimization problems. By examining the transient operation of a literature separation example characterized by nonlinear competitive isotherm, the feasibility of the solution approach is demonstrated, and the performance of the conventional and multistage optimal transient regimes is evaluated systematically. The quantitative results clearly show that the optimal operating policies not only allow to significantly reduce both duration of the transient phase and desorbent consumption, but also enable on-spec production even during startup and shutdown periods. With the aid of the developed transient procedures, short-term separation campaigns with small batch sizes can be performed more flexibly and efficiently by SMB chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Cost-performance analysis of nutrient removal in a full-scale oxidation ditch process based on kinetic modeling.

    PubMed

    Li, Zheng; Qi, Rong; Wang, Bo; Zou, Zhe; Wei, Guohong; Yang, Min

    2013-01-01

    A full-scale oxidation ditch process for treating sewage was simulated with the ASM2d model and optimized for minimal cost with acceptable performance in terms of ammonium and phosphorus removal. A unified index was introduced by integrating operational costs (aeration energy and sludge production) with effluent violations for performance evaluation. Scenario analysis showed that, in comparison with the baseline (all of the 9 aerators activated), the strategy of activating 5 aerators could save aeration energy significantly with an ammonium violation below 10%. Sludge discharge scenario analysis showed that a sludge discharge flow of 250-300 m3/day (solid retention time (SRT), 13-15 days) was appropriate for the enhancement of phosphorus removal without excessive sludge production. The proposed optimal control strategy was: activating 5 rotating disks operated with a mode of "111100100" ("1" represents activation and "0" represents inactivation) for aeration and sludge discharge flow of 200 m3/day (SRT, 19 days). Compared with the baseline, this strategy could achieve ammonium violation below 10% and TP violation below 30% with substantial reduction of aeration energy cost (46%) and minimal increment of sludge production (< 2%). This study provides a useful approach for the optimization of process operation and control.

  17. Enhancing artificial bee colony algorithm with self-adaptive searching strategy and artificial immune network operators for global optimization.

    PubMed

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments.

  18. Enhancing Artificial Bee Colony Algorithm with Self-Adaptive Searching Strategy and Artificial Immune Network Operators for Global Optimization

    PubMed Central

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023

  19. Systematic design for trait introgression projects.

    PubMed

    Cameron, John N; Han, Ye; Wang, Lizhi; Beavis, William D

    2017-10-01

    Using an Operations Research approach, we demonstrate design of optimal trait introgression projects with respect to competing objectives. We demonstrate an innovative approach for designing Trait Introgression (TI) projects based on optimization principles from Operations Research. If the designs of TI projects are based on clear and measurable objectives, they can be translated into mathematical models with decision variables and constraints that can be translated into Pareto optimality plots associated with any arbitrary selection strategy. The Pareto plots can be used to make rational decisions concerning the trade-offs between maximizing the probability of success while minimizing costs and time. The systematic rigor associated with a cost, time and probability of success (CTP) framework is well suited to designing TI projects that require dynamic decision making. The CTP framework also revealed that previously identified 'best' strategies can be improved to be at least twice as effective without increasing time or expenses.

  20. Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Reed M; Curran, Scott; Wagner, Robert M

    2012-01-01

    Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that that produces low NO{sub x} and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injectionmore » (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom machined pistons designed for RCCI operation. The pistons were designed with assistance from the KIVA 3V computational fluid dynamics (CFD) code. By using a genetic algorithm optimization, in conjunction with KIVA, the piston bowl profile was optimized for dedicated RCCI operation to reduce unburned fuel emissions and piston bowl surface area. By reducing these parameters, the thermal efficiency of the engine was improved while maintaining low NOx and PM emissions. Results show that with the new piston bowl profile and an optimized injection schedule, RCCI brake thermal efficiency was increased from 37%, with the stock EURO IV configuration, to 40% at the 2,600 rev/min, 6.9 bar BMEP condition, and NOx and PM emissions targets were met without the need for exhaust after-treatment.« less

  1. Spacecraft formation flying for Earth-crossing object deflections using a power limited laser ablating

    NASA Astrophysics Data System (ADS)

    Yoo, Sung-Moon; Song, Young-Joo; Park, Sang-Young; Choi, Kyu-Hong

    2009-06-01

    A formation flying strategy with an Earth-crossing object (ECO) is proposed to avoid the Earth collision. Assuming that a future conceptual spacecraft equipped with a powerful laser ablation tool already rendezvoused with a fictitious Earth collision object, the optimal required laser operating duration and direction histories are accurately derived to miss the Earth. Based on these results, the concept of formation flying between the object and the spacecraft is applied and analyzed as to establish the spacecraft's orbital motion design strategy. A fictitious "Apophis"-like object is established to impact with the Earth and two major deflection scenarios are designed and analyzed. These scenarios include the cases for the both short and long laser operating duration to avoid the Earth impact. Also, requirement of onboard laser tool's for both cases are discussed. As a result, the optimal initial conditions for the spacecraft to maintain its relative trajectory to the object are discovered. Additionally, the discovered optimal initial conditions also satisfied the optimal required laser operating conditions with no additional spacecraft's own fuel expenditure to achieve the spacecraft formation flying with the ECO. The initial conditions founded in the current research can be used as a spacecraft's initial rendezvous points with the ECO when designing the future deflection missions with laser ablation tools. The results with proposed strategy are expected to make more advances in the fields of the conceptual studies, especially for the future deflection missions using powerful laser ablation tools.

  2. Optimization of Operations Resources via Discrete Event Simulation Modeling

    NASA Technical Reports Server (NTRS)

    Joshi, B.; Morris, D.; White, N.; Unal, R.

    1996-01-01

    The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.

  3. Optimization of joint energy micro-grid with cold storage

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Luo, Simin; Tian, Yan; Chen, Xianda; Xiong, Botao; Zhou, Bowen

    2018-02-01

    To accommodate distributed photovoltaic (PV) curtailment, to make full use of the joint energy micro-grid with cold storage, and to reduce the high operating costs, the economic dispatch of joint energy micro-grid load is particularly important. Considering the different prices during the peak and valley durations, an optimization model is established, which takes the minimum production costs and PV curtailment fluctuations as the objectives. Linear weighted sum method and genetic-taboo Particle Swarm Optimization (PSO) algorithm are used to solve the optimization model, to obtain optimal power supply output. Taking the garlic market in Henan as an example, the simulation results show that considering distributed PV and different prices in different time durations, the optimization strategies are able to reduce the operating costs and accommodate PV power efficiently.

  4. Application of Multi-Objective Human Learning Optimization Method to Solve AC/DC Multi-Objective Optimal Power Flow Problem

    NASA Astrophysics Data System (ADS)

    Cao, Jia; Yan, Zheng; He, Guangyu

    2016-06-01

    This paper introduces an efficient algorithm, multi-objective human learning optimization method (MOHLO), to solve AC/DC multi-objective optimal power flow problem (MOPF). Firstly, the model of AC/DC MOPF including wind farms is constructed, where includes three objective functions, operating cost, power loss, and pollutant emission. Combining the non-dominated sorting technique and the crowding distance index, the MOHLO method can be derived, which involves individual learning operator, social learning operator, random exploration learning operator and adaptive strategies. Both the proposed MOHLO method and non-dominated sorting genetic algorithm II (NSGAII) are tested on an improved IEEE 30-bus AC/DC hybrid system. Simulation results show that MOHLO method has excellent search efficiency and the powerful ability of searching optimal. Above all, MOHLO method can obtain more complete pareto front than that by NSGAII method. However, how to choose the optimal solution from pareto front depends mainly on the decision makers who stand from the economic point of view or from the energy saving and emission reduction point of view.

  5. Balancing exploration, uncertainty and computational demands in many objective reservoir optimization

    NASA Astrophysics Data System (ADS)

    Zatarain Salazar, Jazmin; Reed, Patrick M.; Quinn, Julianne D.; Giuliani, Matteo; Castelletti, Andrea

    2017-11-01

    Reservoir operations are central to our ability to manage river basin systems serving conflicting multi-sectoral demands under increasingly uncertain futures. These challenges motivate the need for new solution strategies capable of effectively and efficiently discovering the multi-sectoral tradeoffs that are inherent to alternative reservoir operation policies. Evolutionary many-objective direct policy search (EMODPS) is gaining importance in this context due to its capability of addressing multiple objectives and its flexibility in incorporating multiple sources of uncertainties. This simulation-optimization framework has high potential for addressing the complexities of water resources management, and it can benefit from current advances in parallel computing and meta-heuristics. This study contributes a diagnostic assessment of state-of-the-art parallel strategies for the auto-adaptive Borg Multi Objective Evolutionary Algorithm (MOEA) to support EMODPS. Our analysis focuses on the Lower Susquehanna River Basin (LSRB) system where multiple sectoral demands from hydropower production, urban water supply, recreation and environmental flows need to be balanced. Using EMODPS with different parallel configurations of the Borg MOEA, we optimize operating policies over different size ensembles of synthetic streamflows and evaporation rates. As we increase the ensemble size, we increase the statistical fidelity of our objective function evaluations at the cost of higher computational demands. This study demonstrates how to overcome the mathematical and computational barriers associated with capturing uncertainties in stochastic multiobjective reservoir control optimization, where parallel algorithmic search serves to reduce the wall-clock time in discovering high quality representations of key operational tradeoffs. Our results show that emerging self-adaptive parallelization schemes exploiting cooperative search populations are crucial. Such strategies provide a promising new set of tools for effectively balancing exploration, uncertainty, and computational demands when using EMODPS.

  6. Assessment of Energy Storage Alternatives in the Puget Sound Energy System Volume 2: Energy Storage Evaluation Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di; Jin, Chunlian; Balducci, Patrick J.

    2013-12-01

    This volume presents the battery storage evaluation tool developed at Pacific Northwest National Laboratory (PNNL), which is used to evaluate benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. This tool is based on the optimal control strategies to capture multiple services from a single energy storage device. In this control strategy, at each hour, a look-ahead optimization is first formulated and solved to determine battery base operating point. The minute by minute simulation is then performed to simulate the actual battery operation. This volume provide backgroundmore » and manual for this evaluation tool.« less

  7. Active and Reactive Power Optimal Dispatch Associated with Load and DG Uncertainties in Active Distribution Network

    NASA Astrophysics Data System (ADS)

    Gao, F.; Song, X. H.; Zhang, Y.; Li, J. F.; Zhao, S. S.; Ma, W. Q.; Jia, Z. Y.

    2017-05-01

    In order to reduce the adverse effects of uncertainty on optimal dispatch in active distribution network, an optimal dispatch model based on chance-constrained programming is proposed in this paper. In this model, the active and reactive power of DG can be dispatched at the aim of reducing the operating cost. The effect of operation strategy on the cost can be reflected in the objective which contains the cost of network loss, DG curtailment, DG reactive power ancillary service, and power quality compensation. At the same time, the probabilistic constraints can reflect the operation risk degree. Then the optimal dispatch model is simplified as a series of single stage model which can avoid large variable dimension and improve the convergence speed. And the single stage model is solved using a combination of particle swarm optimization (PSO) and point estimate method (PEM). Finally, the proposed optimal dispatch model and method is verified by the IEEE33 test system.

  8. Complexity Science Applications to Dynamic Trajectory Management: Research Strategies

    NASA Technical Reports Server (NTRS)

    Sawhill, Bruce; Herriot, James; Holmes, Bruce J.; Alexandrov, Natalia

    2009-01-01

    The promise of the Next Generation Air Transportation System (NextGen) is strongly tied to the concept of trajectory-based operations in the national airspace system. Existing efforts to develop trajectory management concepts are largely focused on individual trajectories, optimized independently, then de-conflicted among each other, and individually re-optimized, as possible. The benefits in capacity, fuel, and time are valuable, though perhaps could be greater through alternative strategies. The concept of agent-based trajectories offers a strategy for automation of simultaneous multiple trajectory management. The anticipated result of the strategy would be dynamic management of multiple trajectories with interacting and interdependent outcomes that satisfy multiple, conflicting constraints. These constraints would include the business case for operators, the capacity case for the Air Navigation Service Provider (ANSP), and the environmental case for noise and emissions. The benefits in capacity, fuel, and time might be improved over those possible under individual trajectory management approaches. The proposed approach relies on computational agent-based modeling (ABM), combinatorial mathematics, as well as application of "traffic physics" concepts to the challenge, and modeling and simulation capabilities. The proposed strategy could support transforming air traffic control from managing individual aircraft behaviors to managing systemic behavior of air traffic in the NAS. A system built on the approach could provide the ability to know when regions of airspace approach being "full," that is, having non-viable local solution space for optimizing trajectories in advance.

  9. Using genetic algorithms to determine near-optimal pricing, investment and operating strategies in the electric power industry

    NASA Astrophysics Data System (ADS)

    Wu, Dongjun

    Network industries have technologies characterized by a spatial hierarchy, the "network," with capital-intensive interconnections and time-dependent, capacity-limited flows of products and services through the network to customers. This dissertation studies service pricing, investment and business operating strategies for the electric power network. First-best solutions for a variety of pricing and investment problems have been studied. The evaluation of genetic algorithms (GA, which are methods based on the idea of natural evolution) as a primary means of solving complicated network problems, both w.r.t. pricing: as well as w.r.t. investment and other operating decisions, has been conducted. New constraint-handling techniques in GAs have been studied and tested. The actual application of such constraint-handling techniques in solving practical non-linear optimization problems has been tested on several complex network design problems with encouraging initial results. Genetic algorithms provide solutions that are feasible and close to optimal when the optimal solution is know; in some instances, the near-optimal solutions for small problems by the proposed GA approach can only be tested by pushing the limits of currently available non-linear optimization software. The performance is far better than several commercially available GA programs, which are generally inadequate in solving any of the problems studied in this dissertation, primarily because of their poor handling of constraints. Genetic algorithms, if carefully designed, seem very promising in solving difficult problems which are intractable by traditional analytic methods.

  10. Operating wind turbines in strong wind conditions by using feedforward-feedback control

    NASA Astrophysics Data System (ADS)

    Feng, Ju; Sheng, Wen Zhong

    2014-12-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening the loads on rotor and blades.

  11. Application of the advanced engineering environment for optimization energy consumption in designed vehicles

    NASA Astrophysics Data System (ADS)

    Monica, Z.; Sękala, A.; Gwiazda, A.; Banaś, W.

    2016-08-01

    Nowadays a key issue is to reduce the energy consumption of road vehicles. In particular solution one could find different strategies of energy optimization. The most popular but not sophisticated is so called eco-driving. In this strategy emphasized is particular behavior of drivers. In more sophisticated solution behavior of drivers is supported by control system measuring driving parameters and suggesting proper operation of the driver. The other strategy is concerned with application of different engineering solutions that aid optimization the process of energy consumption. Such systems take into consideration different parameters measured in real time and next take proper action according to procedures loaded to the control computer of a vehicle. The third strategy bases on optimization of the designed vehicle taking into account especially main sub-systems of a technical mean. In this approach the optimal level of energy consumption by a vehicle is obtained by synergetic results of individual optimization of particular constructional sub-systems of a vehicle. It is possible to distinguish three main sub-systems: the structural one the drive one and the control one. In the case of the structural sub-system optimization of the energy consumption level is related with the optimization or the weight parameter and optimization the aerodynamic parameter. The result is optimized body of a vehicle. Regarding the drive sub-system the optimization of the energy consumption level is related with the fuel or power consumption using the previously elaborated physical models. Finally the optimization of the control sub-system consists in determining optimal control parameters.

  12. Robust Airfoil Optimization in High Resolution Design Space

    NASA Technical Reports Server (NTRS)

    Li, Wu; Padula, Sharon L.

    2003-01-01

    The robust airfoil shape optimization is a direct method for drag reduction over a given range of operating conditions and has three advantages: (1) it prevents severe degradation in the off-design performance by using a smart descent direction in each optimization iteration, (2) it uses a large number of B-spline control points as design variables yet the resulting airfoil shape is fairly smooth, and (3) it allows the user to make a trade-off between the level of optimization and the amount of computing time consumed. The robust optimization method is demonstrated by solving a lift-constrained drag minimization problem for a two-dimensional airfoil in viscous flow with a large number of geometric design variables. Our experience with robust optimization indicates that our strategy produces reasonable airfoil shapes that are similar to the original airfoils, but these new shapes provide drag reduction over the specified range of Mach numbers. We have tested this strategy on a number of advanced airfoil models produced by knowledgeable aerodynamic design team members and found that our strategy produces airfoils better or equal to any designs produced by traditional design methods.

  13. Dynamics and control of DNA sequence amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marimuthu, Karthikeyan; Chakrabarti, Raj, E-mail: raj@pmc-group.com, E-mail: rajc@andrew.cmu.edu; Division of Fundamental Research, PMC Advanced Technology, Mount Laurel, New Jersey 08054

    2014-10-28

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reactionmore » are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.« less

  14. Nonlinear Multiobjective MPC-Based Optimal Operation of a High Consistency Refining System in Papermaking

    DOE PAGES

    Li, Mingjie; Zhou, Ping; Wang, Hong; ...

    2017-09-19

    As one of the most important unit in the papermaking industry, the high consistency (HC) refining system is confronted with challenges such as improving pulp quality, energy saving, and emissions reduction in its operation processes. Here in this correspondence, an optimal operation of HC refining system is presented using nonlinear multiobjective model predictive control strategies that aim at set-point tracking objective of pulp quality, economic objective, and specific energy (SE) consumption objective, respectively. First, a set of input and output data at different times are employed to construct the subprocess model of the state process model for the HC refiningmore » system, and then the Wiener-type model can be obtained through combining the mechanism model of Canadian Standard Freeness and the state process model that determines their structures based on Akaike information criterion. Second, the multiobjective optimization strategy that optimizes both the set-point tracking objective of pulp quality and SE consumption is proposed simultaneously, which uses NSGA-II approach to obtain the Pareto optimal set. Furthermore, targeting at the set-point tracking objective of pulp quality, economic objective, and SE consumption objective, the sequential quadratic programming method is utilized to produce the optimal predictive controllers. In conclusion, the simulation results demonstrate that the proposed methods can make the HC refining system provide a better performance of set-point tracking of pulp quality when these predictive controllers are employed. In addition, while the optimal predictive controllers orienting with comprehensive economic objective and SE consumption objective, it has been shown that they have significantly reduced the energy consumption.« less

  15. Nonlinear Multiobjective MPC-Based Optimal Operation of a High Consistency Refining System in Papermaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mingjie; Zhou, Ping; Wang, Hong

    As one of the most important unit in the papermaking industry, the high consistency (HC) refining system is confronted with challenges such as improving pulp quality, energy saving, and emissions reduction in its operation processes. Here in this correspondence, an optimal operation of HC refining system is presented using nonlinear multiobjective model predictive control strategies that aim at set-point tracking objective of pulp quality, economic objective, and specific energy (SE) consumption objective, respectively. First, a set of input and output data at different times are employed to construct the subprocess model of the state process model for the HC refiningmore » system, and then the Wiener-type model can be obtained through combining the mechanism model of Canadian Standard Freeness and the state process model that determines their structures based on Akaike information criterion. Second, the multiobjective optimization strategy that optimizes both the set-point tracking objective of pulp quality and SE consumption is proposed simultaneously, which uses NSGA-II approach to obtain the Pareto optimal set. Furthermore, targeting at the set-point tracking objective of pulp quality, economic objective, and SE consumption objective, the sequential quadratic programming method is utilized to produce the optimal predictive controllers. In conclusion, the simulation results demonstrate that the proposed methods can make the HC refining system provide a better performance of set-point tracking of pulp quality when these predictive controllers are employed. In addition, while the optimal predictive controllers orienting with comprehensive economic objective and SE consumption objective, it has been shown that they have significantly reduced the energy consumption.« less

  16. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2014-05-15

    This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Simulation on an optimal combustion control strategy for 3-D temperature distributions in tangentially pc-fired utility boiler furnaces.

    PubMed

    Wang, Xi-fen; Zhou, Huai-chun

    2005-01-01

    The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pc-fired furnace with multi-burner system. The development of the visualization of 3-D temperature distributions in pc-fired furnaces makes it possible for a new combustion control strategy directly with the furnace temperature as its goal to improve the control quality for the combustion processes. Studied in this paper is such a new strategy that the whole furnace is divided into several parts in the vertical direction, and the average temperature and its bias from the center in every cross section can be extracted from the visualization results of the 3-D temperature distributions. In the simulation stage, a computational fluid dynamics (CFD) code served to calculate the 3-D temperature distributions in a furnace, then a linear model was set up to relate the features of the temperature distributions with the input of the combustion processes, such as the flow rates of fuel and air fed into the furnaces through all the burners. The adaptive genetic algorithm was adopted to find the optimal combination of the whole input parameters which ensure to form an optimal 3-D temperature field in the furnace desired for the operation of boiler. Simulation results showed that the strategy could soon find the factors making the temperature distribution apart from the optimal state and give correct adjusting suggestions.

  18. Left ventricular assist device management in patients chronically supported for advanced heart failure.

    PubMed

    Cowger, Jennifer; Romano, Matthew A; Stulak, John; Pagani, Francis D; Aaronson, Keith D

    2011-03-01

    This review summarizes management strategies to reduce morbidity and mortality in heart failure patients supported chronically with implantable left ventricular assist devices (LVADs). As the population of patients supported with long-term LVADs has grown, patient selection, operative technique, and patient management strategies have been refined, leading to improved outcomes. This review summarizes recent findings on LVAD candidate selection, and discusses outpatient strategies to optimize device performance and heart failure management. It also reviews important device complications that warrant close outpatient monitoring. Managing patients on chronic LVAD support requires regular patient follow-up, multidisciplinary care teams, and frequent laboratory and echocardiographic surveillance to ensure optimal outcomes.

  19. Microgrid Optimal Scheduling With Chance-Constrained Islanding Capability

    DOE PAGES

    Liu, Guodong; Starke, Michael R.; Xiao, B.; ...

    2017-01-13

    To facilitate the integration of variable renewable generation and improve the resilience of electricity sup-ply in a microgrid, this paper proposes an optimal scheduling strategy for microgrid operation considering constraints of islanding capability. A new concept, probability of successful islanding (PSI), indicating the probability that a microgrid maintains enough spinning reserve (both up and down) to meet local demand and accommodate local renewable generation after instantaneously islanding from the main grid, is developed. The PSI is formulated as mixed-integer linear program using multi-interval approximation taking into account the probability distributions of forecast errors of wind, PV and load. With themore » goal of minimizing the total operating cost while preserving user specified PSI, a chance-constrained optimization problem is formulated for the optimal scheduling of mirogrids and solved by mixed integer linear programming (MILP). Numerical simulations on a microgrid consisting of a wind turbine, a PV panel, a fuel cell, a micro-turbine, a diesel generator and a battery demonstrate the effectiveness of the proposed scheduling strategy. Lastly, we verify the relationship between PSI and various factors.« less

  20. Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guodong; Xu, Yan; Tomsovic, Kevin

    In this paper, we propose an optimal bidding strategy in the day-ahead market of a microgrid consisting of intermittent distributed generation (DG), storage, dispatchable DG and price responsive loads. The microgrid coordinates the energy consumption or production of its components and trades electricity in both the day-ahead and real-time markets to minimize its operating cost as a single entity. The bidding problem is challenging due to a variety of uncertainties, including power output of intermittent DG, load variation, day-ahead and real-time market prices. A hybrid stochastic/robust optimization model is proposed to minimize the expected net cost, i.e., expected total costmore » of operation minus total benefit of demand. This formulation can be solved by mixed integer linear programming. The uncertain output of intermittent DG and day-ahead market price are modeled via scenarios based on forecast results, while a robust optimization is proposed to limit the unbalanced power in real-time market taking account of the uncertainty of real-time market price. Numerical simulations on a microgrid consisting of a wind turbine, a PV panel, a fuel cell, a micro-turbine, a diesel generator, a battery and a responsive load show the advantage of stochastic optimization in addition to robust optimization.« less

  1. Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization

    DOE PAGES

    Liu, Guodong; Xu, Yan; Tomsovic, Kevin

    2016-01-01

    In this paper, we propose an optimal bidding strategy in the day-ahead market of a microgrid consisting of intermittent distributed generation (DG), storage, dispatchable DG and price responsive loads. The microgrid coordinates the energy consumption or production of its components and trades electricity in both the day-ahead and real-time markets to minimize its operating cost as a single entity. The bidding problem is challenging due to a variety of uncertainties, including power output of intermittent DG, load variation, day-ahead and real-time market prices. A hybrid stochastic/robust optimization model is proposed to minimize the expected net cost, i.e., expected total costmore » of operation minus total benefit of demand. This formulation can be solved by mixed integer linear programming. The uncertain output of intermittent DG and day-ahead market price are modeled via scenarios based on forecast results, while a robust optimization is proposed to limit the unbalanced power in real-time market taking account of the uncertainty of real-time market price. Numerical simulations on a microgrid consisting of a wind turbine, a PV panel, a fuel cell, a micro-turbine, a diesel generator, a battery and a responsive load show the advantage of stochastic optimization in addition to robust optimization.« less

  2. Optimal control of hydroelectric facilities

    NASA Astrophysics Data System (ADS)

    Zhao, Guangzhi

    This thesis considers a simple yet realistic model of pump-assisted hydroelectric facilities operating in a market with time-varying but deterministic power prices. Both deterministic and stochastic water inflows are considered. The fluid mechanical and engineering details of the facility are described by a model containing several parameters. We present a dynamic programming algorithm for optimizing either the total energy produced or the total cash generated by these plants. The algorithm allows us to give the optimal control strategy as a function of time and to see how this strategy, and the associated plant value, varies with water inflow and electricity price. We investigate various cases. For a single pumped storage facility experiencing deterministic power prices and water inflows, we investigate the varying behaviour for an oversimplified constant turbine- and pump-efficiency model with simple reservoir geometries. We then generalize this simple model to include more realistic turbine efficiencies, situations with more complicated reservoir geometry, and the introduction of dissipative switching costs between various control states. We find many results which reinforce our physical intuition about this complicated system as well as results which initially challenge, though later deepen, this intuition. One major lesson of this work is that the optimal control strategy does not differ much between two differing objectives of maximizing energy production and maximizing its cash value. We then turn our attention to the case of stochastic water inflows. We present a stochastic dynamic programming algorithm which can find an on-average optimal control in the face of this randomness. As the operator of a facility must be more cautious when inflows are random, the randomness destroys facility value. Following this insight we quantify exactly how much a perfect hydrological inflow forecast would be worth to a dam operator. In our final chapter we discuss the challenging problem of optimizing a sequence of two hydro dams sharing the same river system. The complexity of this problem is magnified and we just scratch its surface here. The thesis concludes with suggestions for future work in this fertile area. Keywords: dynamic programming, hydroelectric facility, optimization, optimal control, switching cost, turbine efficiency.

  3. Multi-time scale Climate Informed Stochastic Hybrid Simulation-Optimization Model (McISH model) for Multi-Purpose Reservoir System

    NASA Astrophysics Data System (ADS)

    Lu, M.; Lall, U.

    2013-12-01

    In order to mitigate the impacts of climate change, proactive management strategies to operate reservoirs and dams are needed. A multi-time scale climate informed stochastic model is developed to optimize the operations for a multi-purpose single reservoir by simulating decadal, interannual, seasonal and sub-seasonal variability. We apply the model to a setting motivated by the largest multi-purpose dam in N. India, the Bhakhra reservoir on the Sutlej River, a tributary of the Indus. This leads to a focus on timing and amplitude of the flows for the monsoon and snowmelt periods. The flow simulations are constrained by multiple sources of historical data and GCM future projections, that are being developed through a NSF funded project titled 'Decadal Prediction and Stochastic Simulation of Hydroclimate Over Monsoon Asia'. The model presented is a multilevel, nonlinear programming model that aims to optimize the reservoir operating policy on a decadal horizon and the operation strategy on an updated annual basis. The model is hierarchical, in terms of having a structure that two optimization models designated for different time scales are nested as a matryoshka doll. The two optimization models have similar mathematical formulations with some modifications to meet the constraints within that time frame. The first level of the model is designated to provide optimization solution for policy makers to determine contracted annual releases to different uses with a prescribed reliability; the second level is a within-the-period (e.g., year) operation optimization scheme that allocates the contracted annual releases on a subperiod (e.g. monthly) basis, with additional benefit for extra release and penalty for failure. The model maximizes the net benefit of irrigation, hydropower generation and flood control in each of the periods. The model design thus facilitates the consistent application of weather and climate forecasts to improve operations of reservoir systems. The decadal flow simulations are re-initialized every year with updated climate projections to improve the reliability of the operation rules for the next year, within which the seasonal operation strategies are nested. The multi-level structure can be repeated for monthly operation with weekly subperiods to take advantage of evolving weather forecasts and seasonal climate forecasts. As a result of the hierarchical structure, sub-seasonal even weather time scale updates and adjustment can be achieved. Given an ensemble of these scenarios, the McISH reservoir simulation-optimization model is able to derive the desired reservoir storage levels, including minimum and maximum, as a function of calendar date, and the associated release patterns. The multi-time scale approach allows adaptive management of water supplies acknowledging the changing risks, meeting both the objectives over the decade in expected value and controlling the near term and planning period risk through probabilistic reliability constraints. For the applications presented, the target season is the monsoon season from June to September. The model also includes a monthly flood volume forecast model, based on a Copula density fit to the monthly flow and the flood volume flow. This is used to guide dynamic allocation of the flood control volume given the forecasts.

  4. Optimization of European call options considering physical delivery network and reservoir operation rules

    NASA Astrophysics Data System (ADS)

    Cheng, Wei-Chen; Hsu, Nien-Sheng; Cheng, Wen-Ming; Yeh, William W.-G.

    2011-10-01

    This paper develops alternative strategies for European call options for water purchase under hydrological uncertainties that can be used by water resources managers for decision making. Each alternative strategy maximizes its own objective over a selected sequence of future hydrology that is characterized by exceedance probability. Water trade provides flexibility and enhances water distribution system reliability. However, water trade between two parties in a regional water distribution system involves many issues, such as delivery network, reservoir operation rules, storage space, demand, water availability, uncertainty, and any existing contracts. An option is a security giving the right to buy or sell an asset; in our case, the asset is water. We extend a flow path-based water distribution model to include reservoir operation rules. The model simultaneously considers both the physical distribution network as well as the relationships between water sellers and buyers. We first test the model extension. Then we apply the proposed optimization model for European call options to the Tainan water distribution system in southern Taiwan. The formulation lends itself to a mixed integer linear programming model. We use the weighing method to formulate a composite function for a multiobjective problem. The proposed methodology provides water resources managers with an overall picture of water trade strategies and the consequence of each strategy. The results from the case study indicate that the strategy associated with a streamflow exceedence probability of 50% or smaller should be adopted as the reference strategy for the Tainan water distribution system.

  5. Optimization of operation conditions for the startup of aerobic granular sludge reactors biologically removing carbon, nitrogen, and phosphorous.

    PubMed

    Lochmatter, Samuel; Holliger, Christof

    2014-08-01

    The transformation of conventional flocculent sludge to aerobic granular sludge (AGS) biologically removing carbon, nitrogen and phosphorus (COD, N, P) is still a main challenge in startup of AGS sequencing batch reactors (AGS-SBRs). On the one hand a rapid granulation is desired, on the other hand good biological nutrient removal capacities have to be maintained. So far, several operation parameters have been studied separately, which makes it difficult to compare their impacts. We investigated seven operation parameters in parallel by applying a Plackett-Burman experimental design approach with the aim to propose an optimized startup strategy. Five out of the seven tested parameters had a significant impact on the startup duration. The conditions identified to allow a rapid startup of AGS-SBRs with good nutrient removal performances were (i) alternation of high and low dissolved oxygen phases during aeration, (ii) a settling strategy avoiding too high biomass washout during the first weeks of reactor operation, (iii) adaptation of the contaminant load in the early stage of the startup in order to ensure that all soluble COD was consumed before the beginning of the aeration phase, (iv) a temperature of 20 °C, and (v) a neutral pH. Under such conditions, it took less than 30 days to produce granular sludge with high removal performances for COD, N, and P. A control run using this optimized startup strategy produced again AGS with good nutrient removal performances within four weeks and the system was stable during the additional operation period of more than 50 days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Skipping Strategy (SS) for Initial Population of Job-Shop Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Abdolrazzagh-Nezhad, M.; Nababan, E. B.; Sarim, H. M.

    2018-03-01

    Initial population in job-shop scheduling problem (JSSP) is an essential step to obtain near optimal solution. Techniques used to solve JSSP are computationally demanding. Skipping strategy (SS) is employed to acquire initial population after sequence of job on machine and sequence of operations (expressed in Plates-jobs and mPlates-jobs) are determined. The proposed technique is applied to benchmark datasets and the results are compared to that of other initialization techniques. It is shown that the initial population obtained from the SS approach could generate optimal solution.

  7. Spatial optimization of operationally relevant large fire confine and point protection strategies: Model development and test cases

    Treesearch

    Yu Wei; Matthew P. Thompson; Jessica R. Haas; Gregory K. Dillon; Christopher D. O’Connor

    2018-01-01

    This study introduces a large fire containment strategy that builds upon recent advances in spatial fire planning, notably the concept of potential wildland fire operation delineations (PODs). Multiple PODs can be clustered together to form a “box” that is referred as the “response POD” (or rPOD). Fire lines would be built along the boundary of an rPOD to contain a...

  8. Design and Control of Integrated Systems for Hydrogen Production and Power Generation

    NASA Astrophysics Data System (ADS)

    Georgis, Dimitrios

    Growing concerns on CO2 emissions have led to the development of highly efficient power plants. Options for increased energy efficiencies include alternative energy conversion pathways, energy integration and process intensification. Solid oxide fuel cells (SOFC) constitute a promising alternative for power generation since they convert the chemical energy electrochemically directly to electricity. Their high operating temperature shows potential for energy integration with energy intensive units (e.g. steam reforming reactors). Although energy integration is an essential tool for increased efficiencies, it leads to highly complex process schemes with rich dynamic behavior, which are challenging to control. Furthermore, the use of process intensification for increased energy efficiency imposes an additional control challenge. This dissertation identifies and proposes solutions on design, operational and control challenges of integrated systems for hydrogen production and power generation. Initially, a study on energy integrated SOFC systems is presented. Design alternatives are identified, control strategies are proposed for each alternative and their validity is evaluated under different operational scenarios. The operational range of the proposed control strategies is also analyzed. Next, thermal management of water gas shift membrane reactors, which are a typical application of process intensification, is considered. Design and operational objectives are identified and a control strategy is proposed employing advanced control algorithms. The performance of the proposed control strategy is evaluated and compared with classical control strategies. Finally SOFC systems for combined heat and power applications are considered. Multiple recycle loops are placed to increase design flexibility. Different operational objectives are identified and a nonlinear optimization problem is formulated. Optimal designs are obtained and their features are discussed and compared. The results of the dissertation provide a deeper understanding on the design, operational and control challenges of the above systems and can potentially guide further commercialization efforts. In addition to this, the results can be generalized and used for applications from the transportation and residential sector to large--scale power plants.

  9. A guide to multi-objective optimization for ecological problems with an application to cackling goose management

    USGS Publications Warehouse

    Williams, Perry J.; Kendall, William L.

    2017-01-01

    Choices in ecological research and management are the result of balancing multiple, often competing, objectives. Multi-objective optimization (MOO) is a formal decision-theoretic framework for solving multiple objective problems. MOO is used extensively in other fields including engineering, economics, and operations research. However, its application for solving ecological problems has been sparse, perhaps due to a lack of widespread understanding. Thus, our objective was to provide an accessible primer on MOO, including a review of methods common in other fields, a review of their application in ecology, and a demonstration to an applied resource management problem.A large class of methods for solving MOO problems can be separated into two strategies: modelling preferences pre-optimization (the a priori strategy), or modelling preferences post-optimization (the a posteriori strategy). The a priori strategy requires describing preferences among objectives without knowledge of how preferences affect the resulting decision. In the a posteriori strategy, the decision maker simultaneously considers a set of solutions (the Pareto optimal set) and makes a choice based on the trade-offs observed in the set. We describe several methods for modelling preferences pre-optimization, including: the bounded objective function method, the lexicographic method, and the weighted-sum method. We discuss modelling preferences post-optimization through examination of the Pareto optimal set. We applied each MOO strategy to the natural resource management problem of selecting a population target for cackling goose (Branta hutchinsii minima) abundance. Cackling geese provide food security to Native Alaskan subsistence hunters in the goose's nesting area, but depredate crops on private agricultural fields in wintering areas. We developed objective functions to represent the competing objectives related to the cackling goose population target and identified an optimal solution first using the a priori strategy, and then by examining trade-offs in the Pareto set using the a posteriori strategy. We used four approaches for selecting a final solution within the a posteriori strategy; the most common optimal solution, the most robust optimal solution, and two solutions based on maximizing a restricted portion of the Pareto set. We discuss MOO with respect to natural resource management, but MOO is sufficiently general to cover any ecological problem that contains multiple competing objectives that can be quantified using objective functions.

  10. Design optimization of a prescribed vibration system using conjoint value analysis

    NASA Astrophysics Data System (ADS)

    Malinga, Bongani; Buckner, Gregory D.

    2016-12-01

    This article details a novel design optimization strategy for a prescribed vibration system (PVS) used to mechanically filter solids from fluids in oil and gas drilling operations. A dynamic model of the PVS is developed, and the effects of disturbance torques are detailed. This model is used to predict the effects of design parameters on system performance and efficiency, as quantified by system attributes. Conjoint value analysis, a statistical technique commonly used in marketing science, is utilized to incorporate designer preferences. This approach effectively quantifies and optimizes preference-based trade-offs in the design process. The effects of designer preferences on system performance and efficiency are simulated. This novel optimization strategy yields improvements in all system attributes across all simulated vibration profiles, and is applicable to other industrial electromechanical systems.

  11. Research on charging and discharging control strategy for electric vehicles as distributed energy storage devices

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Yang, Feng; Zhang, Dongqing; Tang, Pengcheng

    2018-02-01

    A large number of electric vehicles are connected to the family micro grid will affect the operation safety of the power grid and the quality of power. Considering the factors of family micro grid price and electric vehicle as a distributed energy storage device, a two stage optimization model is established, and the improved discrete binary particle swarm optimization algorithm is used to optimize the parameters in the model. The proposed control strategy of electric vehicle charging and discharging is of practical significance for the rational control of electric vehicle as a distributed energy storage device and electric vehicle participating in the peak load regulation of power consumption.

  12. Coordinated Control of Cross-Flow Turbines

    NASA Astrophysics Data System (ADS)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2016-11-01

    Cross-flow turbines, also known as vertical-axis turbines, have several advantages over axial-flow turbines for a number of applications including urban wind power, high-density arrays, and marine or fluvial currents. By controlling the angular velocity applied to the turbine as a function of angular blade position, we have demonstrated a 79 percent increase in cross-flow turbine efficiency over constant-velocity control. This strategy uses the downhill simplex method to optimize control parameter profiles during operation of a model turbine in a recirculating water flume. This optimization method is extended to a set of two turbines, where the blade motions and position of the downstream turbine are optimized to beneficially interact with the coherent structures in the wake of the upstream turbine. This control scheme has the potential to enable high-density arrays of cross-flow turbines to operate at cost-effective efficiency. Turbine wake and force measurements are analyzed for insight into the effect of a coordinated control strategy.

  13. A strategy to determine operating parameters in tissue engineering hollow fiber bioreactors

    PubMed Central

    Shipley, RJ; Davidson, AJ; Chan, K; Chaudhuri, JB; Waters, SL; Ellis, MJ

    2011-01-01

    The development of tissue engineering hollow fiber bioreactors (HFB) requires the optimal design of the geometry and operation parameters of the system. This article provides a strategy for specifying operating conditions for the system based on mathematical models of oxygen delivery to the cell population. Analytical and numerical solutions of these models are developed based on Michaelis–Menten kinetics. Depending on the minimum oxygen concentration required to culture a functional cell population, together with the oxygen uptake kinetics, the strategy dictates the model needed to describe mass transport so that the operating conditions can be defined. If cmin ≫ Km we capture oxygen uptake using zero-order kinetics and proceed analytically. This enables operating equations to be developed that allow the user to choose the medium flow rate, lumen length, and ECS depth to provide a prescribed value of cmin. When , we use numerical techniques to solve full Michaelis–Menten kinetics and present operating data for the bioreactor. The strategy presented utilizes both analytical and numerical approaches and can be applied to any cell type with known oxygen transport properties and uptake kinetics. PMID:21370228

  14. Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas

    NASA Astrophysics Data System (ADS)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad-Ali; Pourfayaz, Fathollah

    2015-09-01

    Developing new technologies like nano-technology improves the performance of the energy industries. Consequently, emerging new groups of thermal cycles in nano-scale can revolutionize the energy systems' future. This paper presents a thermo-dynamical study of a nano-scale irreversible Stirling engine cycle with the aim of optimizing the performance of the Stirling engine cycle. In the Stirling engine cycle the working fluid is an Ideal Maxwell-Boltzmann gas. Moreover, two different strategies are proposed for a multi-objective optimization issue, and the outcomes of each strategy are evaluated separately. The first strategy is proposed to maximize the ecological coefficient of performance (ECOP), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F . Furthermore, the second strategy is suggested to maximize the thermal efficiency ( η), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F). All the strategies in the present work are executed via a multi-objective evolutionary algorithms based on NSGA∥ method. Finally, to achieve the final answer in each strategy, three well-known decision makers are executed. Lastly, deviations of the outcomes gained in each strategy and each decision maker are evaluated separately.

  15. Flexible operation strategy for environment control system in abnormal supply power condition

    NASA Astrophysics Data System (ADS)

    Liping, Pang; Guoxiang, Li; Hongquan, Qu; Yufeng, Fang

    2017-04-01

    This paper establishes an optimization method that can be applied to the flexible operation of the environment control system in an abnormal supply power condition. A proposed conception of lifespan is used to evaluate the depletion time of the non-regenerative substance. The optimization objective function is to maximize the lifespans. The optimization variables are the allocated powers of subsystems. The improved Non-dominated Sorting Genetic Algorithm is adopted to obtain the pareto optimization frontier with the constraints of the cabin environmental parameters and the adjustable operating parameters of the subsystems. Based on the same importance of objective functions, the preferred power allocation of subsystems can be optimized. Then the corresponding running parameters of subsystems can be determined to ensure the maximum lifespans. A long-duration space station with three astronauts is used to show the implementation of the proposed optimization method. Three different CO2 partial pressure levels are taken into consideration in this study. The optimization results show that the proposed optimization method can obtain the preferred power allocation for the subsystems when the supply power is at a less-than-nominal value. The method can be applied to the autonomous control for the emergency response of the environment control system.

  16. SPECT System Optimization Against A Discrete Parameter Space

    PubMed Central

    Meng, L. J.; Li, N.

    2013-01-01

    In this paper, we present an analytical approach for optimizing the design of a static SPECT system or optimizing the sampling strategy with a variable/adaptive SPECT imaging hardware against an arbitrarily given set of system parameters. This approach has three key aspects. First, it is designed to operate over a discretized system parameter space. Second, we have introduced an artificial concept of virtual detector as the basic building block of an imaging system. With a SPECT system described as a collection of the virtual detectors, one can convert the task of system optimization into a process of finding the optimum imaging time distribution (ITD) across all virtual detectors. Thirdly, the optimization problem (finding the optimum ITD) could be solved with a block-iterative approach or other non-linear optimization algorithms. In essence, the resultant optimum ITD could provide a quantitative measure of the relative importance (or effectiveness) of the virtual detectors and help to identify the system configuration or sampling strategy that leads to an optimum imaging performance. Although we are using SPECT imaging as a platform to demonstrate the system optimization strategy, this development also provides a useful framework for system optimization problems in other modalities, such as positron emission tomography (PET) and X-ray computed tomography (CT) [1, 2]. PMID:23587609

  17. Cooperative optimization of reconfigurable machine tool configurations and production process plan

    NASA Astrophysics Data System (ADS)

    Xie, Nan; Li, Aiping; Xue, Wei

    2012-09-01

    The production process plan design and configurations of reconfigurable machine tool (RMT) interact with each other. Reasonable process plans with suitable configurations of RMT help to improve product quality and reduce production cost. Therefore, a cooperative strategy is needed to concurrently solve the above issue. In this paper, the cooperative optimization model for RMT configurations and production process plan is presented. Its objectives take into account both impacts of process and configuration. Moreover, a novel genetic algorithm is also developed to provide optimal or near-optimal solutions: firstly, its chromosome is redesigned which is composed of three parts, operations, process plan and configurations of RMTs, respectively; secondly, its new selection, crossover and mutation operators are also developed to deal with the process constraints from operation processes (OP) graph, otherwise these operators could generate illegal solutions violating the limits; eventually the optimal configurations for RMT under optimal process plan design can be obtained. At last, a manufacturing line case is applied which is composed of three RMTs. It is shown from the case that the optimal process plan and configurations of RMT are concurrently obtained, and the production cost decreases 6.28% and nonmonetary performance increases 22%. The proposed method can figure out both RMT configurations and production process, improve production capacity, functions and equipment utilization for RMT.

  18. Design principles and operating principles: the yin and yang of optimal functioning.

    PubMed

    Voit, Eberhard O

    2003-03-01

    Metabolic engineering has as a goal the improvement of yield of desired products from microorganisms and cell lines. This goal has traditionally been approached with experimental biotechnological methods, but it is becoming increasingly popular to precede the experimental phase by a mathematical modeling step that allows objective pre-screening of possible improvement strategies. The models are either linear and represent the stoichiometry and flux distribution in pathways or they are non-linear and account for the full kinetic behavior of the pathway, which is often significantly effected by regulatory signals. Linear flux analysis is simpler and requires less input information than a full kinetic analysis, and the question arises whether the consideration of non-linearities is really necessary for devising optimal strategies for yield improvements. The article analyzes this question with a generic, representative pathway. It shows that flux split ratios, which are the key criterion for linear flux analysis, are essentially sufficient for unregulated, but not for regulated branch points. The interrelationships between regulatory design on one hand and optimal patterns of operation on the other suggest the investigation of operating principles that complement design principles, like a user's manual complements the hardwiring of electronic equipment.

  19. An optimizing start-up strategy for a bio-methanator.

    PubMed

    Sbarciog, Mihaela; Loccufier, Mia; Vande Wouwer, Alain

    2012-05-01

    This paper presents an optimizing start-up strategy for a bio-methanator. The goal of the control strategy is to maximize the outflow rate of methane in anaerobic digestion processes, which can be described by a two-population model. The methodology relies on a thorough analysis of the system dynamics and involves the solution of two optimization problems: steady-state optimization for determining the optimal operating point and transient optimization. The latter is a classical optimal control problem, which can be solved using the maximum principle of Pontryagin. The proposed control law is of the bang-bang type. The process is driven from an initial state to a small neighborhood of the optimal steady state by switching the manipulated variable (dilution rate) from the minimum to the maximum value at a certain time instant. Then the dilution rate is set to the optimal value and the system settles down in the optimal steady state. This control law ensures the convergence of the system to the optimal steady state and substantially increases its stability region. The region of attraction of the steady state corresponding to maximum production of methane is considerably enlarged. In some cases, which are related to the possibility of selecting the minimum dilution rate below a certain level, the stability region of the optimal steady state equals the interior of the state space. Aside its efficiency, which is evaluated not only in terms of biogas production but also from the perspective of treatment of the organic load, the strategy is also characterized by simplicity, being thus appropriate for implementation in real-life systems. Another important advantage is its generality: this technique may be applied to any anaerobic digestion process, for which the acidogenesis and methanogenesis are, respectively, characterized by Monod and Haldane kinetics.

  20. REopt: A Platform for Energy System Integration and Optimization: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpkins, T.; Cutler, D.; Anderson, K.

    2014-08-01

    REopt is NREL's energy planning platform offering concurrent, multi-technology integration and optimization capabilities to help clients meet their cost savings and energy performance goals. The REopt platform provides techno-economic decision-support analysis throughout the energy planning process, from agency-level screening and macro planning to project development to energy asset operation. REopt employs an integrated approach to optimizing a site?s energy costs by considering electricity and thermal consumption, resource availability, complex tariff structures including time-of-use, demand and sell-back rates, incentives, net-metering, and interconnection limits. Formulated as a mixed integer linear program, REopt recommends an optimally-sized mix of conventional and renewable energy, andmore » energy storage technologies; estimates the net present value associated with implementing those technologies; and provides the cost-optimal dispatch strategy for operating them at maximum economic efficiency. The REopt platform can be customized to address a variety of energy optimization scenarios including policy, microgrid, and operational energy applications. This paper presents the REopt techno-economic model along with two examples of recently completed analysis projects.« less

  1. Remediation System Design Optimization: Field Demonstration at the Umatilla Army Deport

    NASA Astrophysics Data System (ADS)

    Zheng, C.; Wang, P. P.

    2002-05-01

    Since the early 1980s, many researchers have shown that the simulation-optimization (S/O) approach is superior to the traditional trial-and-error method for designing cost-effective groundwater pump-and-treat systems. However, the application of the S/O approach to real field problems has remained limited. This paper describes the application of a new general simulation-optimization code to optimize an existing pump-and-treat system at the Umatilla Army Depot in Oregon, as part of a field demonstration project supported by the Environmental Security Technology Certification Program (ESTCP). Two optimization formulations were developed to minimize the total capital and operational costs under the current and possibly expanded treatment plant capacities. A third formulation was developed to minimize the total contaminant mass of RDX and TNT remaining in the shallow aquifer by the end of the project duration. For the first two formulations, this study produced an optimal pumping strategy that would achieve the cleanup goal in 4 years with a total cost of 1.66 million US dollars in net present value. For comparison, the existing design in operation was calculated to require 17 years for cleanup with a total cost of 3.83 million US dollars in net present value. Thus, the optimal pumping strategy represents a reduction of 13 years in cleanup time and a reduction of 56.6 percent in the expected total expenditure. For the third formulation, this study identified an optimal dynamic pumping strategy that would reduce the total mass remaining in the shallow aquifer by 89.5 percent compared with that calculated for the existing design. In spite of their intensive computational requirements, this study shows that the global optimization techniques including tabu search and genetic algorithms can be applied successfully to large-scale field problems involving multiple contaminants and complex hydrogeological conditions.

  2. Certification of tactics and strategies in aviation

    NASA Technical Reports Server (NTRS)

    Koelman, Hartmut

    1994-01-01

    The paper suggests that the 'tactics and strategies' notion is a highly suitable paradigm to describe the cognitive involvement of human operators in advanced aviation systems (far more suitable than classical functional analysis), and that the workload and situational awareness of operators are intimately associated with the planning and execution of their tactics and strategies. If system designers have muddled views about the collective tactics and strategies to be used during operation, they will produce sub-optimum designs. If operators use unproven and/or inappropriate tactics and strategies, the system may fail. The author wants to make a point that, beyond certification of people or system designs, there may be a need to go into more detail and examine (certify?) the set of tactics and strategies (i.e., the Operational Concept) which makes the people and systems perform as expected. The collective tactics and strategies determine the information flows and situational awareness which exists in organizations and composite human-machine systems. The available infrastructure and equipment (automation) enable these information flows and situational awareness, but are at the same time the constraining factor. Frequently, the tactics and strategies are driven by technology, whereas we would rather like to see a system designed to support an optimized Operational Concept, i.e., to support a sufficiently coherent, cooperative and modular set of anticipation and planning mechanisms. Again, in line with the view of MacLeod and Taylor (1993), this technology driven situation may be caused by the system designer's and operator job designer's over-emphasis on functional analysis (a mechanistic engineering concept), at the expense of a subject which does not seem to be well understood today: the role of the (human cognitive and/or automated) tactics and strategies which are embedded in composite human-machine systems. Research would be needed to arrive at a generally accepted 'planning theory' which can elevate the analysis, description and design of tactics and strategies from today's cottage industry methods to an engineering discipline. The available infrastructure and equipment (automation) enable these information flows and situational awareness, but are at the same time the constraining factor. Frequently, the tactics and strategies are driven by technology, whereas we would rather like to see a system designed to support an optimized Operational Concept, i.e., to support a sufficiently coherent, cooperative and modular set of anticipation and planning mechanisms. Again, in line with the view of MacLeod and Taylor (1993), this technology driven situation may be caused by the system designer's and operator job designer's over-emphasis on functional analysis (a mechanistic engineering concept), at the expense of a subject which does not seem to be well understood today: the role of the (human cognitive and/or automated) tactics and strategies which are embedded in composite human-machine systems. Research would be needed to arrive at a generally accepted 'planning theory' which can evaluate the analysis, description and design of tactics and strategies from today's cottage industry methods to an engineering discipline.

  3. Multi-Objective Ant Colony Optimization Based on the Physarum-Inspired Mathematical Model for Bi-Objective Traveling Salesman Problems

    PubMed Central

    Zhang, Zili; Gao, Chao; Lu, Yuxiao; Liu, Yuxin; Liang, Mingxin

    2016-01-01

    Bi-objective Traveling Salesman Problem (bTSP) is an important field in the operations research, its solutions can be widely applied in the real world. Many researches of Multi-objective Ant Colony Optimization (MOACOs) have been proposed to solve bTSPs. However, most of MOACOs suffer premature convergence. This paper proposes an optimization strategy for MOACOs by optimizing the initialization of pheromone matrix with the prior knowledge of Physarum-inspired Mathematical Model (PMM). PMM can find the shortest route between two nodes based on the positive feedback mechanism. The optimized algorithms, named as iPM-MOACOs, can enhance the pheromone in the short paths and promote the search ability of ants. A series of experiments are conducted and experimental results show that the proposed strategy can achieve a better compromise solution than the original MOACOs for solving bTSPs. PMID:26751562

  4. Multi-Objective Ant Colony Optimization Based on the Physarum-Inspired Mathematical Model for Bi-Objective Traveling Salesman Problems.

    PubMed

    Zhang, Zili; Gao, Chao; Lu, Yuxiao; Liu, Yuxin; Liang, Mingxin

    2016-01-01

    Bi-objective Traveling Salesman Problem (bTSP) is an important field in the operations research, its solutions can be widely applied in the real world. Many researches of Multi-objective Ant Colony Optimization (MOACOs) have been proposed to solve bTSPs. However, most of MOACOs suffer premature convergence. This paper proposes an optimization strategy for MOACOs by optimizing the initialization of pheromone matrix with the prior knowledge of Physarum-inspired Mathematical Model (PMM). PMM can find the shortest route between two nodes based on the positive feedback mechanism. The optimized algorithms, named as iPM-MOACOs, can enhance the pheromone in the short paths and promote the search ability of ants. A series of experiments are conducted and experimental results show that the proposed strategy can achieve a better compromise solution than the original MOACOs for solving bTSPs.

  5. Comparison of empirical strategies to maximize GENEHUNTER lod scores.

    PubMed

    Chen, C H; Finch, S J; Mendell, N R; Gordon, D

    1999-01-01

    We compare four strategies for finding the settings of genetic parameters that maximize the lod scores reported in GENEHUNTER 1.2. The four strategies are iterated complete factorial designs, iterated orthogonal Latin hypercubes, evolutionary operation, and numerical optimization. The genetic parameters that are set are the phenocopy rate, penetrance, and disease allele frequency; both recessive and dominant models are considered. We selected the optimization of a recessive model on the Collaborative Study on the Genetics of Alcoholism (COGA) data of chromosome 1 for complete analysis. Convergence to a setting producing a local maximum required the evaluation of over 100 settings (for a time budget of 800 minutes on a Pentium II 300 MHz PC). Two notable local maxima were detected, suggesting the need for a more extensive search before claiming that a global maximum had been found. The orthogonal Latin hypercube design was the best strategy for finding areas that produced high lod scores with small numbers of evaluations. Numerical optimization starting from a region producing high lod scores was the strategy that found the highest maximum observed.

  6. Research on the operation control strategy of the cooling ceiling combined with fresh air system

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Li, Hao

    2018-03-01

    The cooling ceiling combined with independent fresh air system was built by TRNSYS. And the cooling effects of the air conditioning system of an office in Beijing in a summer typical day were simulated. Based on the “variable temperature” control strategy, the operation strategy of “variable air volume auxiliary adjustment” was put forward. The variation of the indoor temperature, the indoor humidity, the temperature of supplying water and the temperature of returning water were simulated under the two control strategies. The energy consumption of system during the whole summer was compared by utilizing the two control strategies, and the indoor thermal comfort was analyzed. The optimal control strategy was proposed under the condition that the condensation on the surface of the cooling ceiling is not occurred and the indoor thermal comfort is satisfied.

  7. A Study of the Optimal Planning Model for Reservoir Sustainable Management- A Case Study of Shihmen Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ho, C. C.; Chang, L. C.

    2017-12-01

    The reservoir management in Taiwan faces lots of challenge. Massive sediment caused by landslide were flushed into reservoir, which will decrease capacity, rise the turbidity, and increase supply risk. Sediment usually accompanies nutrition that will cause eutrophication problem. Moreover, the unevenly distribution of rainfall cause water supply instability. Hence, how to ensure sustainable use of reservoirs has become an important task in reservoir management. The purpose of the study is developing an optimal planning model for reservoir sustainable management to find out an optimal operation rules of reservoir flood control and sediment sluicing. The model applies Genetic Algorithms to combine with the artificial neural network of hydraulic analysis and reservoir sediment movement. The main objective of operation rules in this study is to prevent reservoir outflow caused downstream overflow, minimum the gap between initial and last water level of reservoir, and maximum sluicing sediment efficiency. A case of Shihmen reservoir was used to explore the different between optimal operating rule and the current operation of the reservoir. The results indicate optimal operating rules tended to open desilting tunnel early and extend open duration during flood discharge period. The results also show the sluicing sediment efficiency of optimal operating rule is 36%, 44%, 54% during Typhoon Jangmi, Typhoon Fung-Wong, and Typhoon Sinlaku respectively. The results demonstrate the optimal operation rules do play a role in extending the service life of Shihmen reservoir and protecting the safety of downstream. The study introduces a low cost strategy, alteration of operation reservoir rules, into reservoir sustainable management instead of pump dredger in order to improve the problem of elimination of reservoir sediment and high cost.

  8. By Force or by Fraud: Optimizing U.S. Information Strategy With Deception

    DTIC Science & Technology

    2016-06-01

    IV. CASE- STUDY ASSESSMENTS ........................................................................37 A. CASE 1 OVERVIEW: THE DHOFAR REBELLION, 1965...xvi SOF Special Operations Forces SOG Studies and Observations Group USIA United States Information Agency VC Viet Cong...The Development of Overt and Covert Propaganda Strategies,” Presidential Studies Quarterly 24, no. 2 (Spring 1994): 265. 6 Ibid. 4 USIA departments

  9. Parameter Optimization and Operating Strategy of a TEG System for Railway Vehicles

    NASA Astrophysics Data System (ADS)

    Heghmanns, A.; Wilbrecht, S.; Beitelschmidt, M.; Geradts, K.

    2016-03-01

    A thermoelectric generator (TEG) system demonstrator for diesel electric locomotives with the objective of reducing the mechanical load on the thermoelectric modules (TEM) is developed and constructed to validate a one-dimensional thermo-fluid flow simulation model. The model is in good agreement with the measurements and basis for the optimization of the TEG's geometry by a genetic multi objective algorithm. The best solution has a maximum power output of approx. 2.7 kW and does not exceed the maximum back pressure of the diesel engine nor the maximum TEM hot side temperature. To maximize the reduction of the fuel consumption, an operating strategy regarding the system power output for the TEG system is developed. Finally, the potential consumption reduction in passenger and freight traffic operating modes is estimated under realistic driving conditions by means of a power train and lateral dynamics model. The fuel savings are between 0.5% and 0.7%, depending on the driving style.

  10. An intelligent factory-wide optimal operation system for continuous production process

    NASA Astrophysics Data System (ADS)

    Ding, Jinliang; Chai, Tianyou; Wang, Hongfeng; Wang, Junwei; Zheng, Xiuping

    2016-03-01

    In this study, a novel intelligent factory-wide operation system for a continuous production process is designed to optimise the entire production process, which consists of multiple units; furthermore, this system is developed using process operational data to avoid the complexity of mathematical modelling of the continuous production process. The data-driven approach aims to specify the structure of the optimal operation system; in particular, the operational data of the process are used to formulate each part of the system. In this context, the domain knowledge of process engineers is utilised, and a closed-loop dynamic optimisation strategy, which combines feedback, performance prediction, feed-forward, and dynamic tuning schemes into a framework, is employed. The effectiveness of the proposed system has been verified using industrial experimental results.

  11. Robust Operation of Soft Open Points in Active Distribution Networks with High Penetration of Photovoltaic Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Ji, Haoran; Wang, Chengshan

    Distributed generators (DGs) including photovoltaic panels (PVs) have been integrated dramatically in active distribution networks (ADNs). Due to the strong volatility and uncertainty, the high penetration of PV generation immensely exacerbates the conditions of voltage violation in ADNs. However, the emerging flexible interconnection technology based on soft open points (SOPs) provides increased controllability and flexibility to the system operation. For fully exploiting the regulation ability of SOPs to address the problems caused by PV, this paper proposes a robust optimization method to achieve the robust optimal operation of SOPs in ADNs. A two-stage adjustable robust optimization model is built tomore » tackle the uncertainties of PV outputs, in which robust operation strategies of SOPs are generated to eliminate the voltage violations and reduce the power losses of ADNs. A column-and-constraint generation (C&CG) algorithm is developed to solve the proposed robust optimization model, which are formulated as second-order cone program (SOCP) to facilitate the accuracy and computation efficiency. Case studies on the modified IEEE 33-node system and comparisons with the deterministic optimization approach are conducted to verify the effectiveness and robustness of the proposed method.« less

  12. Optimal Dispatch of Unreliable Electric Grid-Connected Diesel Generator-Battery Power Systems

    NASA Astrophysics Data System (ADS)

    Xu, D.; Kang, L.

    2015-06-01

    Diesel generator (DG)-battery power systems are often adopted by telecom operators, especially in semi-urban and rural areas of developing countries. Unreliable electric grids (UEG), which have frequent and lengthy outages, are peculiar to these regions. DG-UEG-battery power system is an important kind of hybrid power system. System dispatch is one of the key factors to hybrid power system integration. In this paper, the system dispatch of a DG-UEG-lead acid battery power system is studied with the UEG of relatively ample electricity in Central African Republic (CAR) and UEG of poor electricity in Congo Republic (CR). The mathematical models of the power system and the UEG are studied for completing the system operation simulation program. The net present cost (NPC) of the power system is the main evaluation index. The state of charge (SOC) set points and battery bank charging current are the optimization variables. For the UEG in CAR, the optimal dispatch solution is SOC start and stop points 0.4 and 0.5 that belong to the Micro-Cycling strategy and charging current 0.1 C. For the UEG in CR, the optimal dispatch solution is of 0.1 and 0.8 that belongs to the Cycle-Charging strategy and 0.1 C. Charging current 0.1 C is suitable for both grid scenarios compared to 0.2 C. It makes the dispatch strategy design easier in commercial practices that there are a few very good candidate dispatch solutions with system NPC values close to that of the optimal solution for both UEG scenarios in CAR and CR.

  13. Perioperative blood management strategies for patients undergoing total knee replacement: Where do we stand now?

    PubMed Central

    Themistoklis, Tzatzairis; Theodosia, Vogiatzaki; Konstantinos, Kazakos; Georgios, Drosos I

    2017-01-01

    Total knee replacement (TKR) is one of the most common surgeries over the last decade. Patients undergoing TKR are at high risk for postoperative anemia and furthermore for allogeneic blood transfusions (ABT). Complications associated with ABT including chills, rigor, fever, dyspnea, light-headedness should be early recognized in order to lead to a better prognosis. Therefore, perioperative blood management program should be adopted with main aim to reduce the risk of blood transfusion while maximizing hemoglobin simultaneously. Many blood conservation strategies have been attempted including preoperative autologous blood donation, acute normovolemic haemodilution, autologous blood transfusion, intraoperative cell saver, drain clamping, pneumatic tourniquet application, and the use of tranexamic acid. For practical and clinical reasons we will try to classify these strategies in three main stages/pillars: Pre-operative optimization, intra-operative and post-operative protocols. The aim of this work is review the strategies currently in use and reports our experience regarding the perioperative blood management strategies in TKR. PMID:28660135

  14. Resource planning and scheduling of payload for satellite with particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Li, Jian; Wang, Cheng

    2007-11-01

    The resource planning and scheduling technology of payload is a key technology to realize an automated control for earth observing satellite with limited resources on satellite, which is implemented to arrange the works states of various payloads to carry out missions by optimizing the scheme of the resources. The scheduling task is a difficult constraint optimization problem with various and mutative requests and constraints. Based on the analysis of the satellite's functions and the payload's resource constraints, a proactive planning and scheduling strategy based on the availability of consumable and replenishable resources in time-order is introduced along with dividing the planning and scheduling period to several pieces. A particle swarm optimization algorithm is proposed to address the problem with an adaptive mutation operator selection, where the swarm is divided into groups with different probabilities to employ various mutation operators viz., differential evolution, Gaussian and random mutation operators. The probabilities are adjusted adaptively by comparing the effectiveness of the groups to select a proper operator. The simulation results have shown the feasibility and effectiveness of the method.

  15. Comparison of Strategies for Climate Change Adaptation of Water Supply and Flood Control Reservoirs

    NASA Astrophysics Data System (ADS)

    Ng, T. L.; Yang, P.; Bhushan, R.

    2016-12-01

    With climate change, streamflows are expected to become more fluctuating, with more frequent and intense floods and droughts. This complicates reservoir operation, which is highly sensitive to inflow variability. We make a comparative evaluation of three strategies for adapting reservoirs to climate-induced shifts in streamflow patterns. Specifically, we examine the effectiveness of (i) expanding the capacities of reservoirs by way of new off-stream reservoirs, (ii) introducing wastewater reclamation to augment supplies, and (iii) improving real-time streamflow forecasts for more optimal decision-making. The first two are hard strategies involving major infrastructure modifications, while the third a soft strategy entailing adjusting the system operation. A comprehensive side-by-side comparison of the three strategies is as yet lacking in the literature despite the many past studies investigating the strategies individually. To this end, we developed an adaptive forward-looking linear program that solves to yield the optimal decisions for the current time as a function of an ensemble forecast of future streamflows. Solving the model repeatedly on a rolling basis with regular updating of the streamflow forecast simulates the system behavior over the entire operating horizon. Results are generated for two hypothetical water supply and flood control reservoirs of differing inflows and demands. Preliminary findings suggest that of the three strategies, improving streamflow forecasts to be most effective in mitigating the effects of climate change. We also found that, in average terms, both additional reservoir capacity and wastewater reclamation have potential to reduce water shortage and downstream flooding. However, in the worst case, the potential of the former to reduce water shortage is limited, and similarly so the potential of the latter to reduce downstream flooding.

  16. Regional operations : one approach to improve traffic signal timing.

    DOT National Transportation Integrated Search

    2016-11-11

    In the 2014 Texas Transportation Poll, survey participants identified more effective traffic signal timing as the highest-rated strategy for resolving regional transportation issues (1). One way traffic engineers optimize traffic signal performance i...

  17. Aerodynamics as a subway design parameter

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.

    1976-01-01

    A parametric sensitivity study has been performed on the system operational energy requirement in order to guide subway design strategy. Aerodynamics can play a dominant or trivial role, depending upon the system characteristics. Optimization of the aerodynamic parameters may not minimize the total operational energy. Isolation of the station box from the tunnel and reduction of the inertial power requirements pay the largest dividends in terms of the operational energy requirement.

  18. Towards a framework for selection of supervisory control for commercial buildings: HVAC system energy efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramachandran, Thiagarajan; Kundu, Soumya; Chen, Yan

    This paper develops and utilizes an optimization based framework to investigate the maximal energy efficiency potentially attainable by HVAC system operation in a non-predictive context. Performance is evaluated relative to the existing state of the art set point reset strategies. The expected efficiency increase driven by operation constraints relaxations is evaluated.

  19. Towards a framework for selection of supervisory control for commercial buildings: HVAC system energy efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramachandran, Thiagarajan; Kundu, Soumya; Chen, Yan

    This paper develops and utilizes an optimization based framework to investigate the maximal energy efficiency potentially attainable by HVAC system operation in a non-predictive context. Performance is evaluated relative to the existing state of the art set-point reset strategies. The expected efficiency increase driven by operation constraints relaxations is evaluated.

  20. Optimal PID gain schedule for hydrogenerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orelind, G.; Wozniak, L.; Medanic, J.

    1989-09-01

    This paper describes the development and testing of a digital gain switching governor for hydrogenerators. Optimal gains were found at different load points by minimizing a quadratic performance criterion prior to controller operating. During operation, the gain sets are switched in depending on the gate position and speed error magnitude. With gain switching operating, the digital governor was shown to have a substantial reduction of noise on the command signal and up to 42% faster responses to power requests. Non-linear control strategies enabled the digital governor to have a 2.5% to 2% reduction in speed overshoot on startups, and anmore » 8% to 1% reduction in undershoot on load rejections as compared to the analog.« less

  1. Differences in attentional strategies by novice and experienced operating theatre scrub nurses.

    PubMed

    Koh, Ranieri Y I; Park, Taezoon; Wickens, Christopher D; Ong, Lay Teng; Chia, Soon Noi

    2011-09-01

    This study investigated the effect of nursing experience on attention allocation and task performance during surgery. The prevention of cases of retained foreign bodies after surgery typically depends on scrub nurses, who are responsible for performing multiple tasks that impose heavy demands on the nurses' cognitive resources. However, the relationship between the level of experiences and attention allocation strategies has not been extensively studied. Eye movement data were collected from 10 novice and 10 experienced scrub nurses in the operating theater for caesarean section surgeries. Visual scanning data, analyzed by dividing the workstation into four main areas and the surgery into four stages, were compared to the optimum expected value estimated by SEEV (Salience, Effort, Expectancy, and Value) model. Both experienced and novice nurses showed significant correlations to the optimal percentage dwell time values, and significant differences were found in attention allocation optimality between experienced and novice nurses, with experienced nurses adhering significantly more to the optimal in the stages of high workload. Experienced nurses spent less time on the final count and encountered fewer interruptions during the count than novices indicating better performance in task management, whereas novice nurses switched attention between areas of interest more than experienced nurses. The results provide empirical evidence of a relationship between the application of optimal visual attention management strategies and performance, opening up possibilities to the development of visual attention and interruption training for better performance. (c) 2011 APA, all rights reserved.

  2. Nutrition in peri-operative esophageal cancer management.

    PubMed

    Steenhagen, Elles; van Vulpen, Jonna K; van Hillegersberg, Richard; May, Anne M; Siersema, Peter D

    2017-07-01

    Nutritional status and dietary intake are increasingly recognized as essential areas in esophageal cancer management. Nutritional management of esophageal cancer is a continuously evolving field and comprises an interesting area for scientific research. Areas covered: This review encompasses the current literature on nutrition in the pre-operative, peri-operative, and post-operative phases of esophageal cancer. Both established interventions and potential novel targets for nutritional management are discussed. Expert commentary: To ensure an optimal pre-operative status and to reduce peri-operative complications, it is key to assess nutritional status in all pre-operative esophageal cancer patients and to apply nutritional interventions accordingly. Since esophagectomy results in a permanent anatomical change, a special focus on nutritional strategies is needed in the post-operative phase, including early initiation of enteral feeding, nutritional interventions for post-operative complications, and attention to long-term nutritional intake and status. Nutritional aspects of pre-optimization and peri-operative management should be incorporated in novel Enhanced Recovery After Surgery programs for esophageal cancer.

  3. The topography of the environment alters the optimal search strategy for active particles

    PubMed Central

    Volpe, Giovanni

    2017-01-01

    In environments with scarce resources, adopting the right search strategy can make the difference between succeeding and failing, even between life and death. At different scales, this applies to molecular encounters in the cell cytoplasm, to animals looking for food or mates in natural landscapes, to rescuers during search and rescue operations in disaster zones, and to genetic computer algorithms exploring parameter spaces. When looking for sparse targets in a homogeneous environment, a combination of ballistic and diffusive steps is considered optimal; in particular, more ballistic Lévy flights with exponent α≤1 are generally believed to optimize the search process. However, most search spaces present complex topographies. What is the best search strategy in these more realistic scenarios? Here, we show that the topography of the environment significantly alters the optimal search strategy toward less ballistic and more Brownian strategies. We consider an active particle performing a blind cruise search for nonregenerating sparse targets in a 2D space with steps drawn from a Lévy distribution with the exponent varying from α=1 to α=2 (Brownian). We show that, when boundaries, barriers, and obstacles are present, the optimal search strategy depends on the topography of the environment, with α assuming intermediate values in the whole range under consideration. We interpret these findings using simple scaling arguments and discuss their robustness to varying searcher’s size. Our results are relevant for search problems at different length scales from animal and human foraging to microswimmers’ taxis to biochemical rates of reaction. PMID:29073055

  4. The topography of the environment alters the optimal search strategy for active particles

    NASA Astrophysics Data System (ADS)

    Volpe, Giorgio; Volpe, Giovanni

    2017-10-01

    In environments with scarce resources, adopting the right search strategy can make the difference between succeeding and failing, even between life and death. At different scales, this applies to molecular encounters in the cell cytoplasm, to animals looking for food or mates in natural landscapes, to rescuers during search and rescue operations in disaster zones, and to genetic computer algorithms exploring parameter spaces. When looking for sparse targets in a homogeneous environment, a combination of ballistic and diffusive steps is considered optimal; in particular, more ballistic Lévy flights with exponent α≤1 are generally believed to optimize the search process. However, most search spaces present complex topographies. What is the best search strategy in these more realistic scenarios? Here, we show that the topography of the environment significantly alters the optimal search strategy toward less ballistic and more Brownian strategies. We consider an active particle performing a blind cruise search for nonregenerating sparse targets in a 2D space with steps drawn from a Lévy distribution with the exponent varying from α=1 to α=2 (Brownian). We show that, when boundaries, barriers, and obstacles are present, the optimal search strategy depends on the topography of the environment, with α assuming intermediate values in the whole range under consideration. We interpret these findings using simple scaling arguments and discuss their robustness to varying searcher's size. Our results are relevant for search problems at different length scales from animal and human foraging to microswimmers' taxis to biochemical rates of reaction.

  5. Modeling and Advanced Control for Sustainable Process Systems

    EPA Science Inventory

    This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-insp...

  6. Mining hidden value through strategic real estate plans.

    PubMed

    Hayes, D

    1998-11-01

    Healthcare providers can get the most from their real estate investments if they manage them strategically rather than view them as a cost of doing business. Organizations that develop strategic real estate plans can optimize the cost-effectiveness of their assets, reduce operating costs, and create cash through disposition strategies. The cost-effectiveness of assets can be optimized by using off-balance-sheet financing structures, such as outright sale, sale-lease-back arrangements, synthetic leases, and beneficial occupancy agreements. Opportunities for cost reduction can be found by conducting operations, administrative, and maintenance reviews and cost-segregation studies. Cost-reduction efforts also should focus on ensuring space is used in the most productive manner possible and that the organization pays no more than the minimum required property tax. Disposition strategies should begin with inventorying real estate assets to identify surplus assets. Such assets then can be moved off the balance sheet or converted into commercial or public uses.

  7. Optimal Trajectories and Control Strategies for the Helicopter in One-Engine-Inoperative Terminal-Area Operations

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.; Zhao, Yi-Yuan; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    Engine failure represents a major safety concern to helicopter operations, especially in the critical flight phases of takeoff and landing from/to small, confined areas. As a result, the JAA and FAA both certificate a transport helicopter as either Category-A or Category-B according to the ability to continue its operations following engine failures. A Category-B helicopter must be able to land safely in the event of one or all engine failures. There is no requirement, however, for continued flight capability. In contrast, Category-A certification, which applies to multi-engine transport helicopters with independent engine systems, requires that they continue the flight with one engine inoperative (OEI). These stringent requirements, while permitting its operations from rooftops and oil rigs and flight to areas where no emergency landing sites are available, restrict the payload of a Category-A transport helicopter to a value safe for continued flight as well as for landing with one engine inoperative. The current certification process involves extensive flight tests, which are potentially dangerous, costly, and time consuming. These tests require the pilot to simulate engine failures at increasingly critical conditions, Flight manuals based on these tests tend to provide very conservative recommendations with regard to maximum takeoff weight or required runway length. There are very few theoretical studies on this subject to identify the fundamental parameters and tradeoff factors involved. Furthermore, a capability for real-time generation of OEI optimal trajectories is very desirable for providing timely cockpit display guidance to assist the pilot in reducing his workload and to increase safety in a consistent and reliable manner. A joint research program involving NASA Ames Research Center, the FAA, and the University of Minnesota is being conducted to determine OEI optimal control strategies and the associated optimal,trajectories for continued takeoff (CTO), rejected takeoff (RTO), balked landing (BL), and continued landing (CL) for a twin engine helicopter in both VTOL and STOL terminal-area operations. This proposed paper will present the problem formulation, the optimal control solution methods, and the key results of the trajectory optimization studies for both STOL and VTOL OEI operations. In addition, new results concerning the recently developed methodology, which enable a real-time generation of optimal OEI trajectories, will be presented in the paper. This new real-time capability was developed to support the second piloted simulator investigation on cockpit displays for Category-A operations being scheduled for the NASA Ames Vertical Motion Simulator in June-August of 1995. The first VMS simulation was conducted in 1994 and reported.

  8. Optimization-based power management of hybrid power systems with applications in advanced hybrid electric vehicles and wind farms with battery storage

    NASA Astrophysics Data System (ADS)

    Borhan, Hoseinali

    Modern hybrid electric vehicles and many stationary renewable power generation systems combine multiple power generating and energy storage devices to achieve an overall system-level efficiency and flexibility which is higher than their individual components. The power or energy management control, "brain" of these "hybrid" systems, determines adaptively and based on the power demand the power split between multiple subsystems and plays a critical role in overall system-level efficiency. This dissertation proposes that a receding horizon optimal control (aka Model Predictive Control) approach can be a natural and systematic framework for formulating this type of power management controls. More importantly the dissertation develops new results based on the classical theory of optimal control that allow solving the resulting optimal control problem in real-time, in spite of the complexities that arise due to several system nonlinearities and constraints. The dissertation focus is on two classes of hybrid systems: hybrid electric vehicles in the first part and wind farms with battery storage in the second part. The first part of the dissertation proposes and fully develops a real-time optimization-based power management strategy for hybrid electric vehicles. Current industry practice uses rule-based control techniques with "else-then-if" logic and look-up maps and tables in the power management of production hybrid vehicles. These algorithms are not guaranteed to result in the best possible fuel economy and there exists a gap between their performance and a minimum possible fuel economy benchmark. Furthermore, considerable time and effort are spent calibrating the control system in the vehicle development phase, and there is little flexibility in real-time handling of constraints and re-optimization of the system operation in the event of changing operating conditions and varying parameters. In addition, a proliferation of different powertrain configurations may result in the need for repeated control system redesign. To address these shortcomings, we formulate the power management problem as a nonlinear and constrained optimal control problem. Solution of this optimal control problem in real-time on chronometric- and memory-constrained automotive microcontrollers is quite challenging; this computational complexity is due to the highly nonlinear dynamics of the powertrain subsystems, mixed-integer switching modes of their operation, and time-varying and nonlinear hard constraints that system variables should satisfy. The main contribution of the first part of the dissertation is that it establishes methods for systematic and step-by step improvements in fuel economy while maintaining the algorithmic computational requirements in a real-time implementable framework. More specifically a linear time-varying model predictive control approach is employed first which uses sequential quadratic programming to find sub-optimal solutions to the power management problem. Next the objective function is further refined and broken into a short and a long horizon segments; the latter approximated as a function of the state using the connection between the Pontryagin minimum principle and Hamilton-Jacobi-Bellman equations. The power management problem is then solved using a nonlinear MPC framework with a dynamic programming solver and the fuel economy is further improved. Typical simplifying academic assumptions are minimal throughout this work, thanks to close collaboration with research scientists at Ford research labs and their stringent requirement that the proposed solutions be tested on high-fidelity production models. Simulation results on a high-fidelity model of a hybrid electric vehicle over multiple standard driving cycles reveal the potential for substantial fuel economy gains. To address the control calibration challenges, we also present a novel and fast calibration technique utilizing parallel computing techniques. ^ The second part of this dissertation presents an optimization-based control strategy for the power management of a wind farm with battery storage. The strategy seeks to minimize the error between the power delivered by the wind farm with battery storage and the power demand from an operator. In addition, the strategy attempts to maximize battery life. The control strategy has two main stages. The first stage produces a family of control solutions that minimize the power error subject to the battery constraints over an optimization horizon. These solutions are parameterized by a given value for the state of charge at the end of the optimization horizon. The second stage screens the family of control solutions to select one attaining an optimal balance between power error and battery life. The battery life model used in this stage is a weighted Amp-hour (Ah) throughput model. The control strategy is modular, allowing for more sophisticated optimization models in the first stage, or more elaborate battery life models in the second stage. The strategy is implemented in real-time in the framework of Model Predictive Control (MPC).

  9. Optimal integration strategies for a syngas fuelled SOFC and gas turbine hybrid

    NASA Astrophysics Data System (ADS)

    Zhao, Yingru; Sadhukhan, Jhuma; Lanzini, Andrea; Brandon, Nigel; Shah, Nilay

    This article aims to develop a thermodynamic modelling and optimization framework for a thorough understanding of the optimal integration of fuel cell, gas turbine and other components in an ambient pressure SOFC-GT hybrid power plant. This method is based on the coupling of a syngas-fed SOFC model and an associated irreversible GT model, with an optimization algorithm developed using MATLAB to efficiently explore the range of possible operating conditions. Energy and entropy balance analysis has been carried out for the entire system to observe the irreversibility distribution within the plant and the contribution of different components. Based on the methodology developed, a comprehensive parametric analysis has been performed to explore the optimum system behavior, and predict the sensitivity of system performance to the variations in major design and operating parameters. The current density, operating temperature, fuel utilization and temperature gradient of the fuel cell, as well as the isentropic efficiencies and temperature ratio of the gas turbine cycle, together with three parameters related to the heat transfer between subsystems are all set to be controllable variables. Other factors affecting the hybrid efficiency have been further simulated and analysed. The model developed is able to predict the performance characteristics of a wide range of hybrid systems potentially sizing from 2000 to 2500 W m -2 with efficiencies varying between 50% and 60%. The analysis enables us to identify the system design tradeoffs, and therefore to determine better integration strategies for advanced SOFC-GT systems.

  10. An apology for primary repair of tetralogy of Fallot.

    PubMed

    Van Arsdell, Glen; Yun, Tae-Jin

    2005-01-01

    The first repair of tetralogy of Fallot (TOF) was 50 years ago, so it would seem that the details for optimal management strategies would be clear. Timing of repair and operative repair strategy for TOF are still a source of debate. Varying institutions have published excellent outcomes with a primary repair strategy or a selective staged repair strategy. In this article, the current and historic strategy for repair of TOF at the Hospital for Sick Children in Toronto is delineated along with associated outcomes. Data from our institution indicate a clear survival advantage for primary repair of TOF.

  11. Modelling energy costs for different operational strategies of a large water resource recovery facility.

    PubMed

    Póvoa, P; Oehmen, A; Inocêncio, P; Matos, J S; Frazão, A

    2017-05-01

    The main objective of this paper is to demonstrate the importance of applying dynamic modelling and real energy prices on a full scale water resource recovery facility (WRRF) for the evaluation of control strategies in terms of energy costs with aeration. The Activated Sludge Model No. 1 (ASM1) was coupled with real energy pricing and a power consumption model and applied as a dynamic simulation case study. The model calibration is based on the STOWA protocol. The case study investigates the importance of providing real energy pricing comparing (i) real energy pricing, (ii) weighted arithmetic mean energy pricing and (iii) arithmetic mean energy pricing. The operational strategies evaluated were (i) old versus new air diffusers, (ii) different DO set-points and (iii) implementation of a carbon removal controller based on nitrate sensor readings. The application in a full scale WRRF of the ASM1 model coupled with real energy costs was successful. Dynamic modelling with real energy pricing instead of constant energy pricing enables the wastewater utility to optimize energy consumption according to the real energy price structure. Specific energy cost allows the identification of time periods with potential for linking WRRF with the electric grid to optimize the treatment costs, satisfying operational goals.

  12. Improved hybrid optimization algorithm for 3D protein structure prediction.

    PubMed

    Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang

    2014-07-01

    A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.

  13. Integrating geological uncertainty in long-term open pit mine production planning by ant colony optimization

    NASA Astrophysics Data System (ADS)

    Gilani, Seyed-Omid; Sattarvand, Javad

    2016-02-01

    Meeting production targets in terms of ore quantity and quality is critical for a successful mining operation. In-situ grade uncertainty causes both deviations from production targets and general financial deficits. A new stochastic optimization algorithm based on ant colony optimization (ACO) approach is developed herein to integrate geological uncertainty described through a series of the simulated ore bodies. Two different strategies were developed based on a single predefined probability value (Prob) and multiple probability values (Pro bnt) , respectively in order to improve the initial solutions that created by deterministic ACO procedure. Application at the Sungun copper mine in the northwest of Iran demonstrate the abilities of the stochastic approach to create a single schedule and control the risk of deviating from production targets over time and also increase the project value. A comparison between two strategies and traditional approach illustrates that the multiple probability strategy is able to produce better schedules, however, the single predefined probability is more practical in projects requiring of high flexibility degree.

  14. Reactive power optimization strategy considering analytical impedance ratio

    NASA Astrophysics Data System (ADS)

    Wu, Zhongchao; Shen, Weibing; Liu, Jinming; Guo, Maoran; Zhang, Shoulin; Xu, Keqiang; Wang, Wanjun; Sui, Jinlong

    2017-05-01

    In this paper, considering the traditional reactive power optimization cannot realize the continuous voltage adjustment and voltage stability, a dynamic reactive power optimization strategy is proposed in order to achieve both the minimization of network loss and high voltage stability with wind power. Due to the fact that wind power generation is fluctuant and uncertain, electrical equipments such as transformers and shunt capacitors may be operated frequently in order to achieve minimization of network loss, which affect the lives of these devices. In order to solve this problem, this paper introduces the derivation process of analytical impedance ratio based on Thevenin equivalent. Thus, the multiple objective function is proposed to minimize the network loss and analytical impedance ratio. Finally, taking the improved IEEE 33-bus distribution system as example, the result shows that the movement of voltage control equipment has been reduced and network loss increment is controlled at the same time, which proves the applicable value of this strategy.

  15. Strategies for enhanced deammonification performance and reduced nitrous oxide emissions.

    PubMed

    Leix, Carmen; Drewes, Jörg E; Ye, Liu; Koch, Konrad

    2017-07-01

    Deammonification's performance and associated nitrous oxide emissions (N 2 O) depend on operational conditions. While studies have investigated factors for high performances and low emissions separately, this study investigated optimizing deammonification performance while simultaneously reducing N 2 O emissions. Using a design of experiment (DoE) method, two models were developed for the prediction of the nitrogen removal rate and N 2 O emissions during single-stage deammonification considering three operational factors (i.e., pH value, feeding and aeration strategy). The emission factor varied between 0.7±0.5% and 4.1±1.2% at different DoE-conditions. The nitrogen removal rate was predicted to be maximized at settings of pH 7.46, intermittent feeding and aeration. Conversely, emissions were predicted to be minimized at the design edges at pH 7.80, single feeding, and continuous aeration. Results suggested a weak positive correlation between the nitrogen removal rate and N 2 O emissions, thus, a single optimizing operational set-point for maximized performance and minimized emissions did not exist. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Research on energy-saving optimal control of trains in a following operation under a fixed four-aspect autoblock system based on multi-dimension parallel GA

    NASA Astrophysics Data System (ADS)

    Lu, Qiheng; Feng, Xiaoyun

    2013-03-01

    After analyzing the working principle of the four-aspect fixed autoblock system, an energy-saving control model was created based on the dynamics equations of the trains in order to study the energy-saving optimal control strategy of trains in a following operation. Besides the safety and punctuality, the main aims of the model were the energy consumption and the time error. Based on this model, the static and dynamic speed restraints under a four-aspect fixed autoblock system were put forward. The multi-dimension parallel genetic algorithm (GA) and the external punishment function were adopted to solve this problem. By using the real number coding and the strategy of ramps divided into three parts, the convergence of GA was speeded up and the length of chromosomes was shortened. A vector of Gaussian random disturbance with zero mean was superposed to the mutation operator. The simulation result showed that the method could reduce the energy consumption effectively based on safety and punctuality.

  17. Power-balancing instantaneous optimization energy management for a novel series-parallel hybrid electric bus

    NASA Astrophysics Data System (ADS)

    Sun, Dongye; Lin, Xinyou; Qin, Datong; Deng, Tao

    2012-11-01

    Energy management(EM) is a core technique of hybrid electric bus(HEB) in order to advance fuel economy performance optimization and is unique for the corresponding configuration. There are existing algorithms of control strategy seldom take battery power management into account with international combustion engine power management. In this paper, a type of power-balancing instantaneous optimization(PBIO) energy management control strategy is proposed for a novel series-parallel hybrid electric bus. According to the characteristic of the novel series-parallel architecture, the switching boundary condition between series and parallel mode as well as the control rules of the power-balancing strategy are developed. The equivalent fuel model of battery is implemented and combined with the fuel of engine to constitute the objective function which is to minimize the fuel consumption at each sampled time and to coordinate the power distribution in real-time between the engine and battery. To validate the proposed strategy effective and reasonable, a forward model is built based on Matlab/Simulink for the simulation and the dSPACE autobox is applied to act as a controller for hardware in-the-loop integrated with bench test. Both the results of simulation and hardware-in-the-loop demonstrate that the proposed strategy not only enable to sustain the battery SOC within its operational range and keep the engine operation point locating the peak efficiency region, but also the fuel economy of series-parallel hybrid electric bus(SPHEB) dramatically advanced up to 30.73% via comparing with the prototype bus and a similar improvement for PBIO strategy relative to rule-based strategy, the reduction of fuel consumption is up to 12.38%. The proposed research ensures the algorithm of PBIO is real-time applicability, improves the efficiency of SPHEB system, as well as suite to complicated configuration perfectly.

  18. Model Predictive Control-based Optimal Coordination of Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming

    2013-01-07

    Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive controlmore » (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.« less

  19. Model Predictive Control-based Optimal Coordination of Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming

    2013-04-03

    Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive controlmore » (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.« less

  20. A hedging point strategy--balancing effluent quality, economy and robustness in the control of wastewater treatment plants.

    PubMed

    Ingildsen, P; Olsson, G; Yuan, Z

    2002-01-01

    An operational space map is an efficient tool to compare a large number of operational strategies to find an optimal choice of setpoints based on a multicriterion. Typically, such a multicriterion includes a weighted sum of cost of operation and effluent quality. Due to the relative high cost of aeration such a definition of optimality result in a relatively high fraction of the effluent total nitrogen in the form of ammonium. Such a strategy may however introduce a risk into operation because a low degree of ammonium removal leads to a low amount of nitrifiers. This in turn leads to a reduced ability to reject event disturbances, such as large variations in the ammonium load, drop in temperature, the presence of toxic/inhibitory compounds in the influent etc. Hedging is a risk minimisation tool, with the aim to "reduce one's risk of loss on a bet or speculation by compensating transactions on the other side" (The Concise Oxford Dictionary (1995)). In wastewater treatment plant operation hedging can be applied by choosing a higher level of ammonium removal to increase the amount of nitrifiers. This is a sensible way to introduce disturbance rejection ability into the multi criterion. In practice, this is done by deciding upon an internal effluent ammonium criterion. In some countries such as Germany, a separate criterion already applies to the level of ammonium in the effluent. However, in most countries the effluent criterion applies to total nitrogen only. In these cases, an internal effluent ammonium criterion should be selected in order to secure proper disturbance rejection ability.

  1. Time, Technology, and Exploitation - Can Future Military Command and Control (C2) Domination be Linked to Effective Knowledge Management?

    DTIC Science & Technology

    2008-04-24

    Domination be Linked to Effective Knowledge 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...necessarily endorsed by the NWC or the Department of the Navy. 14. ABSTRACT Highly effective employment of military force at the operational level...The most effective strategy to optimize this operational function is by increasing the speed of the operational commander’s decision- making process by

  2. An Incentive-based Online Optimization Framework for Distribution Grids

    DOE PAGES

    Zhou, Xinyang; Dall'Anese, Emiliano; Chen, Lijun; ...

    2017-10-09

    This article formulates a time-varying social-welfare maximization problem for distribution grids with distributed energy resources (DERs) and develops online distributed algorithms to identify (and track) its solutions. In the considered setting, network operator and DER-owners pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. The proposed algorithm affords an online implementation to enable tracking of the solutions in the presence of time-varying operational conditions and changing optimization objectives. It involves a strategy where the network operator collects voltage measurements throughout the feeder to build incentive signals for the DER-owners in real time; DERs thenmore » adjust the generated/consumed powers in order to avoid the violation of the voltage constraints while maximizing given objectives. Stability of the proposed schemes is analytically established and numerically corroborated.« less

  3. An Incentive-based Online Optimization Framework for Distribution Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xinyang; Dall'Anese, Emiliano; Chen, Lijun

    This article formulates a time-varying social-welfare maximization problem for distribution grids with distributed energy resources (DERs) and develops online distributed algorithms to identify (and track) its solutions. In the considered setting, network operator and DER-owners pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. The proposed algorithm affords an online implementation to enable tracking of the solutions in the presence of time-varying operational conditions and changing optimization objectives. It involves a strategy where the network operator collects voltage measurements throughout the feeder to build incentive signals for the DER-owners in real time; DERs thenmore » adjust the generated/consumed powers in order to avoid the violation of the voltage constraints while maximizing given objectives. Stability of the proposed schemes is analytically established and numerically corroborated.« less

  4. A diesel fuel processor for fuel-cell-based auxiliary power unit applications

    NASA Astrophysics Data System (ADS)

    Samsun, Remzi Can; Krekel, Daniel; Pasel, Joachim; Prawitz, Matthias; Peters, Ralf; Stolten, Detlef

    2017-07-01

    Producing a hydrogen-rich gas from diesel fuel enables the efficient generation of electricity in a fuel-cell-based auxiliary power unit. In recent years, significant progress has been achieved in diesel reforming. One issue encountered is the stable operation of water-gas shift reactors with real reformates. A new fuel processor is developed using a commercial shift catalyst. The system is operated using optimized start-up and shut-down strategies. Experiments with diesel and kerosene fuels show slight performance drops in the shift reactor during continuous operation for 100 h. CO concentrations much lower than the target value are achieved during system operation in auxiliary power unit mode at partial loads of up to 60%. The regeneration leads to full recovery of the shift activity. Finally, a new operation strategy is developed whereby the gas hourly space velocity of the shift stages is re-designed. This strategy is validated using different diesel and kerosene fuels, showing a maximum CO concentration of 1.5% at the fuel processor outlet under extreme conditions, which can be tolerated by a high-temperature PEFC. The proposed operation strategy solves the issue of strong performance drop in the shift reactor and makes this technology available for reducing emissions in the transportation sector.

  5. Virtual solar field - An opportunity to optimize transient processes in line-focus CSP power plants

    NASA Astrophysics Data System (ADS)

    Noureldin, Kareem; Hirsch, Tobias; Pitz-Paal, Robert

    2017-06-01

    Optimizing solar field operation and control is a key factor to improve the competitiveness of line-focus solar thermal power plants. However, the risks of assessing new and innovative control strategies on operational power plants hinder such optimizations and result in applying more conservative control schemes. In this paper, we describe some applications for a whole solar field transient in-house simulation tool developed at the German Aerospace Centre (DLR), the Virtual Solar Field (VSF). The tool offers a virtual platform to simulate real solar fields while coupling the thermal and hydraulic conditions of the field with high computational efficiency. Using the tool, developers and operator can probe their control strategies and assess the potential benefits while avoiding the high risks and costs. In this paper, we study the benefits gained from controlling the loop valves and of using direct normal irradiance maps and forecasts for the field control. Loop valve control is interesting for many solar field operators since it provides a high degree of flexibility to the control of the solar field through regulating the flow rate in each loop. This improves the reaction to transient condition, such as passing clouds and field start-up in the morning. Nevertheless, due to the large number of loops and the sensitivity of the field control to the valve settings, this process needs to be automated and the effect of changing the setting of each valve on the whole field control needs to be taken into account. We used VSF to implement simple control algorithms to control the loop valves and to study the benefits that could be gained from using active loop valve control during transient conditions. Secondly, we study how using short-term highly spatially-resolved DNI forecasts provided by cloud cameras could improve the plant energy yield. Both cases show an improvement in the plant efficiency and outlet temperature stability. This paves the road for further investigations of new control strategies or for optimizations of the currently implemented ones.

  6. An Optimization Approach to Coexistence of Bluetooth and Wi-Fi Networks Operating in ISM Environment

    NASA Astrophysics Data System (ADS)

    Klajbor, Tomasz; Rak, Jacek; Wozniak, Jozef

    Unlicensed ISM band is used by various wireless technologies. Therefore, issues related to ensuring the required efficiency and quality of operation of coexisting networks become essential. The paper addresses the problem of mutual interferences between IEEE 802.11b transmitters (commercially named Wi-Fi) and Bluetooth (BT) devices.An optimization approach to modeling the topology of BT scatternets is introduced, resulting in more efficient utilization of ISM environment consisting of BT and Wi-Fi networks. To achieve it, the Integer Linear Programming approach has been proposed. Example results presented in the paper illustrate significant benefits of using the proposed modeling strategy.

  7. Optimal sensor placement for time-domain identification using a wavelet-based genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mahdavi, Seyed Hossein; Razak, Hashim Abdul

    2016-06-01

    This paper presents a wavelet-based genetic algorithm strategy for optimal sensor placement (OSP) effective for time-domain structural identification. Initially, the GA-based fitness evaluation is significantly improved by using adaptive wavelet functions. Later, a multi-species decimal GA coding system is modified to be suitable for an efficient search around the local optima. In this regard, a local operation of mutation is introduced in addition with regeneration and reintroduction operators. It is concluded that different characteristics of applied force influence the features of structural responses, and therefore the accuracy of time-domain structural identification is directly affected. Thus, the reliable OSP strategy prior to the time-domain identification will be achieved by those methods dealing with minimizing the distance of simulated responses for the entire system and condensed system considering the force effects. The numerical and experimental verification on the effectiveness of the proposed strategy demonstrates the considerably high computational performance of the proposed OSP strategy, in terms of computational cost and the accuracy of identification. It is deduced that the robustness of the proposed OSP algorithm lies in the precise and fast fitness evaluation at larger sampling rates which result in the optimum evaluation of the GA-based exploration and exploitation phases towards the global optimum solution.

  8. Comprehensive clone screening and evaluation of fed-batch strategies in a microbioreactor and lab scale stirred tank bioreactor system: application on Pichia pastoris producing Rhizopus oryzae lipase

    PubMed Central

    2014-01-01

    Background In Pichia pastoris bioprocess engineering, classic approaches for clone selection and bioprocess optimization at small/micro scale using the promoter of the alcohol oxidase 1 gene (PAOX1), induced by methanol, present low reproducibility leading to high time and resource consumption. Results An automated microfermentation platform (RoboLector) was successfully tested to overcome the chronic problems of clone selection and optimization of fed-batch strategies. Different clones from Mut+P. pastoris phenotype strains expressing heterologous Rhizopus oryzae lipase (ROL), including a subset also overexpressing the transcription factor HAC1, were tested to select the most promising clones. The RoboLector showed high performance for the selection and optimization of cultivation media with minimal cost and time. Syn6 medium was better than conventional YNB medium in terms of production of heterologous protein. The RoboLector microbioreactor was also tested for different fed-batch strategies with three clones producing different lipase levels. Two mixed substrates fed-batch strategies were evaluated. The first strategy was the enzymatic release of glucose from a soluble glucose polymer by a glucosidase, and methanol addition every 24 hours. The second strategy used glycerol as co-substrate jointly with methanol at two different feeding rates. The implementation of these simple fed-batch strategies increased the levels of lipolytic activity 80-fold compared to classical batch strategies used in clone selection. Thus, these strategies minimize the risk of errors in the clone selection and increase the detection level of the desired product. Finally, the performance of two fed-batch strategies was compared for lipase production between the RoboLector microbioreactor and 5 liter stirred tank bioreactor for three selected clones. In both scales, the same clone ranking was achieved. Conclusion The RoboLector showed excellent performance in clone selection of P. pastoris Mut+ phenotype. The use of fed-batch strategies using mixed substrate feeds resulted in increased biomass and lipolytic activity. The automated processing of fed-batch strategies by the RoboLector considerably facilitates the operation of fermentation processes, while reducing error-prone clone selection by increasing product titers. The scale-up from microbioreactor to lab scale stirred tank bioreactor showed an excellent correlation, validating the use of microbioreactor as a powerful tool for evaluating fed-batch operational strategies. PMID:24606982

  9. Optimal technology investment strategies for a reusable launch vehicle

    NASA Technical Reports Server (NTRS)

    Moore, A. A.; Braun, R. D.; Powell, R. W.

    1995-01-01

    Within the present budgetary environment, developing the technology that leads to an operationally efficient space transportation system with the required performance is a challenge. The present research focuses on a methodology to determine high payoff technology investment strategies. Research has been conducted at Langley Research Center in which design codes for the conceptual analysis of space transportation systems have been integrated in a multidisciplinary design optimization approach. The current study integrates trajectory, propulsion, weights and sizing, and cost disciplines where the effect of technology maturation on the development cost of a single stage to orbit reusable launch vehicle is examined. Results show that the technology investment prior to full-scale development has a significant economic payoff. The design optimization process is used to determine strategic allocations of limited technology funding to maximize the economic payoff.

  10. Cascade Optimization Strategy Maximizes Thrust for High-Speed Civil Transport Propulsion System Concept

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The design of a High-Speed Civil Transport (HSCT) air-breathing propulsion system for multimission, variable-cycle operations was successfully optimized through a soft coupling of the engine performance analyzer NASA Engine Performance Program (NEPP) to a multidisciplinary optimization tool COMETBOARDS that was developed at the NASA Lewis Research Center. The design optimization of this engine was cast as a nonlinear optimization problem, with engine thrust as the merit function and the bypass ratios, r-values of fans, fuel flow, and other factors as important active design variables. Constraints were specified on factors including the maximum speed of the compressors, the positive surge margins for the compressors with specified safety factors, the discharge temperature, the pressure ratios, and the mixer extreme Mach number. Solving the problem by using the most reliable optimization algorithm available in COMETBOARDS would provide feasible optimum results only for a portion of the aircraft flight regime because of the large number of mission points (defined by altitudes, Mach numbers, flow rates, and other factors), diverse constraint types, and overall poor conditioning of the design space. Only the cascade optimization strategy of COMETBOARDS, which was devised especially for difficult multidisciplinary applications, could successfully solve a number of engine design problems for their flight regimes. Furthermore, the cascade strategy converged to the same global optimum solution even when it was initiated from different design points. Multiple optimizers in a specified sequence, pseudorandom damping, and reduction of the design space distortion via a global scaling scheme are some of the key features of the cascade strategy. HSCT engine concept, optimized solution for HSCT engine concept. A COMETBOARDS solution for an HSCT engine (Mach-2.4 mixed-flow turbofan) along with its configuration is shown. The optimum thrust is normalized with respect to NEPP results. COMETBOARDS added value in the design optimization of the HSCT engine.

  11. Perspectives on engineering strategies for improving biofuel production from microalgae--a critical review.

    PubMed

    Ho, Shih-Hsin; Ye, Xiaoting; Hasunuma, Tomohisa; Chang, Jo-Shu; Kondo, Akihiko

    2014-12-01

    Although the potential for biofuel production from microalgae via photosynthesis has been intensively investigated, information on the selection of a suitable operation strategy for microalgae-based biofuel production is lacking. Many published reports describe competitive strains and optimal culture conditions for use in biofuel production; however, the major impediment to further improvements is the absence of effective engineering strategies for microalgae cultivation and biofuel production. This comprehensive review discusses recent advances in understanding the effects of major environmental stresses and the characteristics of various engineering operation strategies on the production of biofuels (mainly biodiesel and bioethanol) using microalgae. The performances of microalgae-based biofuel-producing systems under various environmental stresses (i.e., irradiance, temperature, pH, nitrogen depletion, and salinity) and cultivation strategies (i.e., fed-batch, semi-continuous, continuous, two-stage, and salinity-gradient) are compared. The reasons for variations in performance and the underlying theories of the various production strategies are also critically discussed. The aim of this review is to provide useful information to facilitate development of innovative and feasible operation technologies for effectively increasing the commercial viability of microalgae-based biofuel production. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Noninvasive, automatic optimization strategy in cardiac resynchronization therapy.

    PubMed

    Reumann, Matthias; Osswald, Brigitte; Doessel, Olaf

    2007-07-01

    Optimization of cardiac resynchronization therapy (CRT) is still unsolved. It has been shown that optimal electrode position,atrioventricular (AV) and interventricular (VV) delays improve the success of CRT and reduce the number of non-responders. However, no automatic, noninvasive optimization strategy exists to date. Cardiac resynchronization therapy was simulated on the Visible Man and a patient data-set including fiber orientation and ventricular heterogeneity. A cellular automaton was used for fast computation of ventricular excitation. An AV block and a left bundle branch block were simulated with 100%, 80% and 60% interventricular conduction velocity. A right apical and 12 left ventricular lead positions were set. Sequential optimization and optimization with the downhill simplex algorithm (DSA) were carried out. The minimal error between isochrones of the physiologic excitation and the therapy was computed automatically and leads to an optimal lead position and timing. Up to 1512 simulations were carried out per pathology per patient. One simulation took 4 minutes on an Apple Macintosh 2 GHz PowerPC G5. For each electrode pair an optimal pacemaker delay was found. The DSA reduced the number of simulations by an order of magnitude and the AV-delay and VV - delay were determined with a much higher resolution. The findings are well comparable with clinical studies. The presented computer model of CRT automatically evaluates an optimal lead position and AV-delay and VV-delay, which can be used to noninvasively plan an optimal therapy for an individual patient. The application of the DSA reduces the simulation time so that the strategy is suitable for pre-operative planning in clinical routine. Future work will focus on clinical evaluation of the computer models and integration of patient data for individualized therapy planning and optimization.

  13. Testing of Strategies for the Acceleration of the Cost Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponciroli, Roberto; Vilim, Richard B.

    The general problem addressed in the Nuclear-Renewable Hybrid Energy System (N-R HES) project is finding the optimum economical dispatch (ED) and capacity planning solutions for the hybrid energy systems. In the present test-problem configuration, the N-R HES unit is composed of three electrical power-generating components, i.e. the Balance of Plant (BOP), the Secondary Energy Source (SES), and the Energy Storage (ES). In addition, there is an Industrial Process (IP), which is devoted to hydrogen generation. At this preliminary stage, the goal is to find the power outputs of each one of the N-R HES unit components (BOP, SES, ES) andmore » the IP hydrogen production level that maximizes the unit profit by simultaneously satisfying individual component operational constraints. The optimization problem is meant to be solved in the Risk Analysis Virtual Environment (RAVEN) framework. The dynamic response of the N-R HES unit components is simulated by using dedicated object-oriented models written in the Modelica modeling language. Though this code coupling provides for very accurate predictions, the ensuing optimization problem is characterized by a very large number of solution variables. To ease the computational burden and to improve the path to a converged solution, a method to better estimate the initial guess for the optimization problem solution was developed. The proposed approach led to the definition of a suitable Monte Carlo-based optimization algorithm (called the preconditioner), which provides an initial guess for the optimal N-R HES power dispatch and the optimal installed capacity for each one of the unit components. The preconditioner samples a set of stochastic power scenarios for each one of the N-R HES unit components, and then for each of them the corresponding value of a suitably defined cost function is evaluated. After having simulated a sufficient number of power histories, the configuration which ensures the highest profit is selected as the optimal one. The component physical dynamics are represented through suitable ramp constraints, which considerably simplify the numerical solving. In order to test the capabilities of the proposed approach, in the present report, the dispatch problem only is tackled, i.e. a reference unit configuration is assumed, and each one of the N-R HES unit components is assumed to have a fixed installed capacity. As for the next steps, the main improvement will concern the operation strategy of the ES facility. In particular, in order to describe a more realistic battery commitment strategy, the ES operation will be regulated according to the electricity price forecasts.« less

  14. Global, Multi-Objective Trajectory Optimization With Parametric Spreading

    NASA Technical Reports Server (NTRS)

    Vavrina, Matthew A.; Englander, Jacob A.; Phillips, Sean M.; Hughes, Kyle M.

    2017-01-01

    Mission design problems are often characterized by multiple, competing trajectory optimization objectives. Recent multi-objective trajectory optimization formulations enable generation of globally-optimal, Pareto solutions via a multi-objective genetic algorithm. A byproduct of these formulations is that clustering in design space can occur in evolving the population towards the Pareto front. This clustering can be a drawback, however, if parametric evaluations of design variables are desired. This effort addresses clustering by incorporating operators that encourage a uniform spread over specified design variables while maintaining Pareto front representation. The algorithm is demonstrated on a Neptune orbiter mission, and enhanced multidimensional visualization strategies are presented.

  15. An optimization framework for workplace charging strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yongxi; Zhou, Yan

    2015-03-01

    The workplace charging (WPC) has been recently recognized as the most important secondary charging point next to residential charging for plug-in electric vehicles (PEVs). The current WPC practice is spontaneous and grants every PEV a designated charger, which may not be practical or economic when there are a large number of PEVs present at workplace. This study is the first research undertaken that develops an optimization framework for WPC strategies to satisfy all charging demand while explicitly addressing different eligible levels of charging technology and employees’ demographic distributions. The optimization model is to minimize the lifetime cost of equipment, installations,more » and operations, and is formulated as an integer program. We demonstrate the applicability of the model using numerical examples based on national average data. The results indicate that the proposed optimization model can reduce the total cost of running a WPC system by up to 70% compared to the current practice. The WPC strategies are sensitive to the time windows and installation costs, and dominated by the PEV population size. The WPC has also been identified as an alternative sustainable transportation program to the public transit subsidy programs for both economic and environmental advantages.« less

  16. GALAXY: A new hybrid MOEA for the optimal design of Water Distribution Systems

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Savić, D. A.; Kapelan, Z.

    2017-03-01

    A new hybrid optimizer, called genetically adaptive leaping algorithm for approximation and diversity (GALAXY), is proposed for dealing with the discrete, combinatorial, multiobjective design of Water Distribution Systems (WDSs), which is NP-hard and computationally intensive. The merit of GALAXY is its ability to alleviate to a great extent the parameterization issue and the high computational overhead. It follows the generational framework of Multiobjective Evolutionary Algorithms (MOEAs) and includes six search operators and several important strategies. These operators are selected based on their leaping ability in the objective space from the global and local search perspectives. These strategies steer the optimization and balance the exploration and exploitation aspects simultaneously. A highlighted feature of GALAXY lies in the fact that it eliminates majority of parameters, thus being robust and easy-to-use. The comparative studies between GALAXY and three representative MOEAs on five benchmark WDS design problems confirm its competitiveness. GALAXY can identify better converged and distributed boundary solutions efficiently and consistently, indicating a much more balanced capability between the global and local search. Moreover, its advantages over other MOEAs become more substantial as the complexity of the design problem increases.

  17. Safety Ellipse Motion with Coarse Sun Angle Optimization

    NASA Technical Reports Server (NTRS)

    Naasz, Bo

    2005-01-01

    The Hubble Space Telescope Robotic Servicing and De-orbit Mission (HRSDM) was t o be performed by the unmanned Hubble Robotic Vehicle (HRV) consisting of a Deorbit Module (DM), responsible for the ultimate disposal of Hubble Space Telescope (HST) at the end of science operations, and an Ejection Module (EM), responsible for robotically servicing the HST to extend its useful operational lifetime. HRSDM consisted of eight distinct phases, including: launch, pursuit, proximity operations, capture, servicing, EM jettison and disposal, science operations, and deorbit. The scope of this paper is limited to the Proximity Operations phase of HRSDM. It introduces a relative motion strategy useful for Autonomous Rendezvous and Docking (AR&D) or Formation Flying missions where safe circumnavigation trajectories, or close proximity operations (tens or hundreds of meters) are required for extended periods of time. Parameters and algorithms used to model the relative motion of HRV with respect to HST during the Proximity Operations phase of the HRSDM are described. Specifically, the Safety Ellipse (SE) concept, convenient parameters for describing SE motion, and a concept for initializing SE motion around a target vehicle to coarsely optimize sun and relative navigation sensor angles are presented. The effects of solar incidence angle variations on sun angle optimization, and the effects of orbital perturbations and navigation uncertainty on long term SE motion are discussed.

  18. Optimization of Boiling Water Reactor Loading Pattern Using Two-Stage Genetic Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2002-10-15

    A new two-stage optimization method based on genetic algorithms (GAs) using an if-then heuristic rule was developed to generate optimized boiling water reactor (BWR) loading patterns (LPs). In the first stage, the LP is optimized using an improved GA operator. In the second stage, an exposure-dependent control rod pattern (CRP) is sought using GA with an if-then heuristic rule. The procedure of the improved GA is based on deterministic operators that consist of crossover, mutation, and selection. The handling of the encoding technique and constraint conditions by that GA reflects the peculiar characteristics of the BWR. In addition, strategies suchmore » as elitism and self-reproduction are effectively used in order to improve the search speed. The LP evaluations were performed with a three-dimensional diffusion code that coupled neutronic and thermal-hydraulic models. Strong axial heterogeneities and constraints dependent on three dimensions have always necessitated the use of three-dimensional core simulators for BWRs, so that optimization of computational efficiency is required. The proposed algorithm is demonstrated by successfully generating LPs for an actual BWR plant in two phases. One phase is only LP optimization applying the Haling technique. The other phase is an LP optimization that considers the CRP during reactor operation. In test calculations, candidates that shuffled fresh and burned fuel assemblies within a reasonable computation time were obtained.« less

  19. Surgical Approaches to Chronic Pancreatitis: Indications and Techniques.

    PubMed

    Dua, Monica M; Visser, Brendan C

    2017-07-01

    There are a number of surgical strategies for the treatment of chronic pancreatitis. The optimal intervention should provide effective pain relief, improve/maintain quality of life, preserve exocrine and endocrine function, and manage local complications. Pancreaticoduodenectomy was once the standard operation for patients with chronic pancreatitis; however, other procedures such as the duodenum-preserving pancreatic head resections and its variants have been introduced with good long-term results. Pancreatic duct drainage via a lateral pancreaticojejunostomy continues to be effective in ameliorating symptoms and expediting return to normal lifestyle in many patients. This review summarizes operative indications and gives an overview of the different surgical strategies in treating chronic pancreatitis.

  20. Optimization Strategies for Single-Stage, Multi-Stage and Continuous ADRs

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.

    2014-01-01

    Adiabatic Demagnetization Refrigerators (ADR) have many advantages that are prompting a resurgence in their use in spaceflight and laboratory applications. They are solid-state coolers capable of very high efficiency and very wide operating range. However, their low energy storage density translates to larger mass for a given cooling capacity than is possible with other refrigeration techniques. The interplay between refrigerant mass and other parameters such as magnetic field and heat transfer points in multi-stage ADRs gives rise to a wide parameter space for optimization. This paper first presents optimization strategies for single ADR stages, focusing primarily on obtaining the largest cooling capacity per stage mass, then discusses the optimization of multi-stage and continuous ADRs in the context of the coordinated heat transfer that must occur between stages. The goal for the latter is usually to obtain the largest cooling power per mass or volume, but there can also be many secondary objectives, such as limiting instantaneous heat rejection rates and producing intermediate temperatures for cooling of other instrument components.

  1. Development of Chemical Process Design and Control for ...

    EPA Pesticide Factsheets

    This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy. The implemented control strategy combines a biologically inspired method with optimal control concepts for finding more sustainable operating trajectories. The sustainability assessment of process operating points is carried out by using the U.S. E.P.A.’s Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Objective Process Evaluator (GREENSCOPE) tool that provides scores for the selected indicators in the economic, material efficiency, environmental and energy areas. The indicator scores describe process performance on a sustainability measurement scale, effectively determining which operating point is more sustainable if there are more than several steady states for one specific product manufacturing. Through comparisons between a representative benchmark and the optimal steady-states obtained through implementation of the proposed controller, a systematic decision can be made in terms of whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous fermentation process for fuel production, whose materi

  2. Toward an Operational Definition of Workload: A Workload Assessment of Aviation Maneuvers

    DTIC Science & Technology

    2010-08-01

    and evaluated by the learner . With practice, the learner moves into the second phase, where optimal strategies are strengthened. The final stage of...The first phase demands a great amount of resources as performance is slow and prone to errors. During this phase, strategies are being formulated...asked to assess mental, physical, visual, aural , and verbal demands of each task. The new assessment is a cost effective method of assessing workload

  3. Boosting the Energy Density of Carbon-Based Aqueous Supercapacitors by Optimizing the Surface Charge.

    PubMed

    Yu, Minghao; Lin, Dun; Feng, Haobin; Zeng, Yinxiang; Tong, Yexiang; Lu, Xihong

    2017-05-08

    The voltage of carbon-based aqueous supercapacitors is limited by the water splitting reaction occurring in one electrode, generally resulting in the promising but unused potential range of the other electrode. Exploiting this unused potential range provides the possibility for further boosting their energy density. An efficient surface charge control strategy was developed to remarkably enhance the energy density of multiscale porous carbon (MSPC) based aqueous symmetric supercapacitors (SSCs) by controllably tuning the operating potential range of MSPC electrodes. The operating voltage of the SSCs with neutral electrolyte was significantly expanded from 1.4 V to 1.8 V after simple adjustment, enabling the energy density of the optimized SSCs reached twice as much as the original. Such a facile strategy was also demonstrated for the aqueous SSCs with acidic and alkaline electrolytes, and is believed to bring insight in the design of aqueous supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Optimal Cut-Off Points of Fasting Plasma Glucose for Two-Step Strategy in Estimating Prevalence and Screening Undiagnosed Diabetes and Pre-Diabetes in Harbin, China

    PubMed Central

    Sun, Bo; Lan, Li; Cui, Wenxiu; Xu, Guohua; Sui, Conglan; Wang, Yibaina; Zhao, Yashuang; Wang, Jian; Li, Hongyuan

    2015-01-01

    To identify optimal cut-off points of fasting plasma glucose (FPG) for two-step strategy in screening abnormal glucose metabolism and estimating prevalence in general Chinese population. A population-based cross-sectional study was conducted on 7913 people aged 20 to 74 years in Harbin. Diabetes and pre-diabetes were determined by fasting and 2 hour post-load glucose from the oral glucose tolerance test in all participants. Screening potential of FPG, cost per case identified by two-step strategy, and optimal FPG cut-off points were described. The prevalence of diabetes was 12.7%, of which 65.2% was undiagnosed. Twelve percent or 9.0% of participants were diagnosed with pre-diabetes using 2003 ADA criteria or 1999 WHO criteria, respectively. The optimal FPG cut-off points for two-step strategy were 5.6 mmol/l for previously undiagnosed diabetes (area under the receiver-operating characteristic curve of FPG 0.93; sensitivity 82.0%; cost per case identified by two-step strategy ¥261), 5.3 mmol/l for both diabetes and pre-diabetes or pre-diabetes alone using 2003 ADA criteria (0.89 or 0.85; 72.4% or 62.9%; ¥110 or ¥258), 5.0 mmol/l for pre-diabetes using 1999 WHO criteria (0.78; 66.8%; ¥399), and 4.9 mmol/l for IGT alone (0.74; 62.2%; ¥502). Using the two-step strategy, the underestimates of prevalence reduced to nearly 38% for pre-diabetes or 18.7% for undiagnosed diabetes, respectively. Approximately a quarter of the general population in Harbin was in hyperglycemic condition. Using optimal FPG cut-off points for two-step strategy in Chinese population may be more effective and less costly for reducing the missed diagnosis of hyperglycemic condition. PMID:25785585

  5. Development of an operation strategy for hydrogen production using solar PV energy based on fluid dynamic aspects

    NASA Astrophysics Data System (ADS)

    Amores, Ernesto; Rodríguez, Jesús; Oviedo, José; de Lucas-Consuegra, Antonio

    2017-06-01

    Alkaline water electrolysis powered by renewable energy sources is one of the most promising strategies for environmentally friendly hydrogen production. However, wind and solar energy sources are highly dependent on weather conditions. As a result, power fluctuations affect the electrolyzer and cause several negative effects. Considering these limiting effects which reduce the water electrolysis efficiency, a novel operation strategy is proposed in this study. It is based on pumping the electrolyte according to the current density supplied by a solar PV module, in order to achieve the suitable fluid dynamics conditions in an electrolysis cell. To this aim, a mathematical model including the influence of electrode-membrane distance, temperature and electrolyte flow rate has been developed and used as optimization tool. The obtained results confirm the convenience of the selected strategy, especially when the electrolyzer is powered by renewable energies.

  6. Optimation of Operation System Integration between Main and Feeder Public Transport (Case Study: Trans Jakarta-Kopaja Bus Services)

    NASA Astrophysics Data System (ADS)

    Miharja, M.; Priadi, Y. N.

    2018-05-01

    Promoting a better public transport is a key strategy to cope with urban transport problems which are mostly caused by a huge private vehicle usage. A better public transport service quality not only focuses on one type of public transport mode, but also concerns on inter modes service integration. Fragmented inter mode public transport service leads to a longer trip chain as well as average travel time which would result in its failure to compete with a private vehicle. This paper examines the optimation process of operation system integration between Trans Jakarta Bus as the main public transport mode and Kopaja Bus as feeder public transport service in Jakarta. Using scoring-interview method combined with standard parameters in operation system integration, this paper identifies the key factors that determine the success of the two public transport operation system integrations. The study found that some key integration parameters, such as the cancellation of “system setoran”, passenger get in-get out at official stop points, and systematic payment, positively contribute to a better service integration. However, some parameters such as fine system, time and changing point reliability, and information system reliability are among those which need improvement. These findings are very useful for the authority to set the right strategy to improve operation system integration between Trans Jakarta and Kopaja Bus services.

  7. Dynamic modeling and evaluation of solid oxide fuel cell - combined heat and power system operating strategies

    NASA Astrophysics Data System (ADS)

    Nanaeda, Kimihiro; Mueller, Fabian; Brouwer, Jacob; Samuelsen, Scott

    Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power. Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.

  8. Strategy Developed for Selecting Optimal Sensors for Monitoring Engine Health

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Sensor indications during rocket engine operation are the primary means of assessing engine performance and health. Effective selection and location of sensors in the operating engine environment enables accurate real-time condition monitoring and rapid engine controller response to mitigate critical fault conditions. These capabilities are crucial to ensure crew safety and mission success. Effective sensor selection also facilitates postflight condition assessment, which contributes to efficient engine maintenance and reduced operating costs. Under the Next Generation Launch Technology program, the NASA Glenn Research Center, in partnership with Rocketdyne Propulsion and Power, has developed a model-based procedure for systematically selecting an optimal sensor suite for assessing rocket engine system health. This optimization process is termed the systematic sensor selection strategy. Engine health management (EHM) systems generally employ multiple diagnostic procedures including data validation, anomaly detection, fault-isolation, and information fusion. The effectiveness of each diagnostic component is affected by the quality, availability, and compatibility of sensor data. Therefore systematic sensor selection is an enabling technology for EHM. Information in three categories is required by the systematic sensor selection strategy. The first category consists of targeted engine fault information; including the description and estimated risk-reduction factor for each identified fault. Risk-reduction factors are used to define and rank the potential merit of timely fault diagnoses. The second category is composed of candidate sensor information; including type, location, and estimated variance in normal operation. The final category includes the definition of fault scenarios characteristic of each targeted engine fault. These scenarios are defined in terms of engine model hardware parameters. Values of these parameters define engine simulations that generate expected sensor values for targeted fault scenarios. Taken together, this information provides an efficient condensation of the engineering experience and engine flow physics needed for sensor selection. The systematic sensor selection strategy is composed of three primary algorithms. The core of the selection process is a genetic algorithm that iteratively improves a defined quality measure of selected sensor suites. A merit algorithm is employed to compute the quality measure for each test sensor suite presented by the selection process. The quality measure is based on the fidelity of fault detection and the level of fault source discrimination provided by the test sensor suite. An inverse engine model, whose function is to derive hardware performance parameters from sensor data, is an integral part of the merit algorithm. The final component is a statistical evaluation algorithm that characterizes the impact of interference effects, such as control-induced sensor variation and sensor noise, on the probability of fault detection and isolation for optimal and near-optimal sensor suites.

  9. Lessons Learned During Solutions of Multidisciplinary Design Optimization Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Suna N.; Coroneos, Rula M.; Hopkins, Dale A.; Lavelle, Thomas M.

    2000-01-01

    Optimization research at NASA Glenn Research Center has addressed the design of structures, aircraft and airbreathing propulsion engines. During solution of the multidisciplinary problems several issues were encountered. This paper lists four issues and discusses the strategies adapted for their resolution: (1) The optimization process can lead to an inefficient local solution. This deficiency was encountered during design of an engine component. The limitation was overcome through an augmentation of animation into optimization. (2) Optimum solutions obtained were infeasible for aircraft and air-breathing propulsion engine problems. Alleviation of this deficiency required a cascading of multiple algorithms. (3) Profile optimization of a beam produced an irregular shape. Engineering intuition restored the regular shape for the beam. (4) The solution obtained for a cylindrical shell by a subproblem strategy converged to a design that can be difficult to manufacture. Resolution of this issue remains a challenge. The issues and resolutions are illustrated through six problems: (1) design of an engine component, (2) synthesis of a subsonic aircraft, (3) operation optimization of a supersonic engine, (4) design of a wave-rotor-topping device, (5) profile optimization of a cantilever beam, and (6) design of a cvlindrical shell. The combined effort of designers and researchers can bring the optimization method from academia to industry.

  10. Optimal Demand Execution Strategy for the Defense Logistics Agency

    DTIC Science & Technology

    2014-12-01

    PLT Production Lead-Time PTO Paid Time Off FSC Federal Stock /Supply Class NIIN National Item Identification Number S&OP Sales and Operations...new software sets a recommended inventory level that balances the risk of stock out with holding cost expenses and buys to the optimal level instead...when a PR should be generated. A Time Phased Inventory Plan (TPIP) is computed daily that accounts for the lead-time and current stock on the shelf

  11. A Fuzzy Approach of the Competition on the Air Transport Market

    NASA Technical Reports Server (NTRS)

    Charfeddine, Souhir; DeColigny, Marc; Camino, Felix Mora; Cosenza, Carlos Alberto Nunes

    2003-01-01

    The aim of this communication is to study with a new scope the conditions of the equilibrium in an air transport market where two competitive airlines are operating. Each airline is supposed to adopt a strategy maximizing its profit while its estimation of the demand has a fuzzy nature. This leads each company to optimize a program of its proposed services (frequency of the flights and ticket prices) characterized by some fuzzy parameters. The case of monopoly is being taken as a benchmark. Classical convex optimization can be used to solve this decision problem. This approach provides the airline with a new decision tool where uncertainty can be taken into account explicitly. The confrontation of the strategies of the companies, in the ease of duopoly, leads to the definition of a fuzzy equilibrium. This concept of fuzzy equilibrium is more general and can be applied to several other domains. The formulation of the optimization problem and the methodological consideration adopted for its resolution are presented in their general theoretical aspect. In the case of air transportation, where the conditions of management of operations are critical, this approach should offer to the manager elements needed to the consolidation of its decisions depending on the circumstances (ordinary, exceptional events,..) and to be prepared to face all possibilities. Keywords: air transportation, competition equilibrium, convex optimization , fuzzy modeling,

  12. Optimal CINAHL search strategies for identifying therapy studies and review articles.

    PubMed

    Wong, Sharon S L; Wilczynski, Nancy L; Haynes, R Brian

    2006-01-01

    To design optimal search strategies for locating sound therapy studies and review articles in CiNAHL in the year 2000. An analytic survey was conducted, comparing hand searches of 75 journals with retrievals from CINAHL for 5,020 candidate search terms and 17,900 combinations for therapy and 5,977 combinations for review articles. All articles were rated with purpose and quality indicators. Candidate search strategies were used in CINAHL, and the retrievals were compared with results of the hand searches. The proposed search strategies were treated as "diagnostic tests" for sound studies and the manual review of the literature was treated as the "gold standard." Operating characteristics of the search strategies were calculated. Of the 1,383 articles about treatment, 506 (36.6%) met basic criteria for scientific merit and 127 (17.9%) of the 711 articles classified as a review met the criteria for systematic reviews. For locating sound treatment studies, a three-term strategy maximized sensitivity at 99.4% but with compromised specificity at 58.3%, and a two-term strategy maximized specificity at 98.5% but with compromised sensitivity at 52.0%. For detecting systematic reviews, a three-term strategy maximized sensitivity at 91.3% while keeping specificity high at 95.4%, and a single-term strategy maximized specificity at 99.6% but with compromised sensitivity at 42.5%. Three-term search strategies optimizing sensitivity and specificity achieved these values over 91% for detecting sound treatment studies and over 76% for detecting systematic reviews. Search strategies combining indexing terms and text words can achieve high sensitivity and specificity for retrieving sound treatment studies and review articles in CINAHL.

  13. Optimizing oil spill cleanup efforts: A tactical approach and evaluation framework.

    PubMed

    Grubesic, Tony H; Wei, Ran; Nelson, Jake

    2017-12-15

    Although anthropogenic oil spills vary in size, duration and severity, their broad impacts on complex social, economic and ecological systems can be significant. Questions pertaining to the operational challenges associated with the tactical allocation of human resources, cleanup equipment and supplies to areas impacted by a large spill are particularly salient when developing mitigation strategies for extreme oiling events. The purpose of this paper is to illustrate the application of advanced oil spill modeling techniques in combination with a developed mathematical model to spatially optimize the allocation of response crews and equipment for cleaning up an offshore oil spill. The results suggest that the detailed simulations and optimization model are a good first step in allowing both communities and emergency responders to proactively plan for extreme oiling events and develop response strategies that minimize the impacts of spills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Systematic Sensor Selection Strategy (S4) User Guide

    NASA Technical Reports Server (NTRS)

    Sowers, T. Shane

    2012-01-01

    This paper describes a User Guide for the Systematic Sensor Selection Strategy (S4). S4 was developed to optimally select a sensor suite from a larger pool of candidate sensors based on their performance in a diagnostic system. For aerospace systems, selecting the proper sensors is important for ensuring adequate measurement coverage to satisfy operational, maintenance, performance, and system diagnostic criteria. S4 optimizes the selection of sensors based on the system fault diagnostic approach while taking conflicting objectives such as cost, weight and reliability into consideration. S4 can be described as a general architecture structured to accommodate application-specific components and requirements. It performs combinational optimization with a user defined merit or cost function to identify optimum or near-optimum sensor suite solutions. The S4 User Guide describes the sensor selection procedure and presents an example problem using an open source turbofan engine simulation to demonstrate its application.

  15. Optimal ventilation of the anesthetized pediatric patient.

    PubMed

    Feldman, Jeffrey M

    2015-01-01

    Mechanical ventilation of the pediatric patient is challenging because small changes in delivered volume can be a significant fraction of the intended tidal volume. Anesthesia ventilators have traditionally been poorly suited to delivering small tidal volumes accurately, and pressure-controlled ventilation has become used commonly when caring for pediatric patients. Modern anesthesia ventilators are designed to deliver small volumes accurately to the patient's airway by compensating for the compliance of the breathing system and delivering tidal volume independent of fresh gas flow. These technology advances provide the opportunity to implement a lung-protective ventilation strategy in the operating room based upon control of tidal volume. This review will describe the capabilities of the modern anesthesia ventilator and the current understanding of lung-protective ventilation. An optimal approach to mechanical ventilation for the pediatric patient is described, emphasizing the importance of using bedside monitors to optimize the ventilation strategy for the individual patient.

  16. The study on the control strategy of micro grid considering the economy of energy storage operation

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Liu, Yiqun; Wang, Xin; Li, Bei; Zeng, Ming

    2017-08-01

    To optimize the running of micro grid to guarantee the supply and demand balance of electricity, and to promote the utilization of renewable energy. The control strategy of micro grid energy storage system is studied. Firstly, the mixed integer linear programming model is established based on the receding horizon control. Secondly, the modified cuckoo search algorithm is proposed to calculate the model. Finally, a case study is carried out to study the signal characteristic of micro grid and batteries under the optimal control strategy, and the convergence of the modified cuckoo search algorithm is compared with others to verify the validity of the proposed model and method. The results show that, different micro grid running targets can affect the control strategy of energy storage system, which further affect the signal characteristics of the micro grid. Meanwhile, the convergent speed, computing time and the economy of the modified cuckoo search algorithm are improved compared with the traditional cuckoo search algorithm and differential evolution algorithm.

  17. Enhancing synchronization stability in a multi-area power grid

    PubMed Central

    Wang, Bing; Suzuki, Hideyuki; Aihara, Kazuyuki

    2016-01-01

    Maintaining a synchronous state of generators is of central importance to the normal operation of power grids, in which many networks are generally interconnected. In order to understand the condition under which the stability can be optimized, it is important to relate network stability with feedback control strategies as well as network structure. Here, we present a stability analysis on a multi-area power grid by relating it with several control strategies and topological design of network structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal communication network for the local and global control strategies. Finally, we consider relationship between the interconnection pattern and the synchronization stability; by optimizing the network interlinks, the obtained network shows better synchronization stability than the original network does, in particular, at a high power demand. Our analysis shows that interlinks between spatially distant nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real systems but provide a potential guide for the design of stable power systems. PMID:27225708

  18. Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management

    NASA Astrophysics Data System (ADS)

    Tan, S. T.; Hashim, H.

    2014-02-01

    Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study.

  19. An Energy Storage Assessment: Using Optimal Control Strategies to Capture Multiple Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di; Jin, Chunlian; Balducci, Patrick J.

    2015-09-01

    This paper presents a methodology for evaluating benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. In the proposed method, at each hour, a look-ahead optimization is first formulated and solved to determine battery base operating point. The minute by minute simulation is then performed to simulate the actual battery operation. This methodology is used to assess energy storage alternatives in Puget Sound Energy System. Different battery storage candidates are simulated for a period of one year to assess different value streams and overall benefits, as partmore » of a financial feasibility evaluation of battery storage projects.« less

  20. Optimal generator bidding strategies for power and ancillary services

    NASA Astrophysics Data System (ADS)

    Morinec, Allen G.

    As the electric power industry transitions to a deregulated market, power transactions are made upon price rather than cost. Generator companies are interested in maximizing their profits rather than overall system efficiency. A method to equitably compensate generation providers for real power, and ancillary services such as reactive power and spinning reserve, will ensure a competitive market with an adequate number of suppliers. Optimizing the generation product mix during bidding is necessary to maximize a generator company's profits. The objective of this research work is to determine and formulate appropriate optimal bidding strategies for a generation company in both the energy and ancillary services markets. These strategies should incorporate the capability curves of their generators as constraints to define the optimal product mix and price offered in the day-ahead and real time spot markets. In order to achieve such a goal, a two-player model was composed to simulate market auctions for power generation. A dynamic game methodology was developed to identify Nash Equilibria and Mixed-Strategy Nash Equilibria solutions as optimal generation bidding strategies for two-player non-cooperative variable-sum matrix games with incomplete information. These games integrated the generation product mix of real power, reactive power, and spinning reserve with the generators's capability curves as constraints. The research includes simulations of market auctions, where strategies were tested for generators with different unit constraints, costs, types of competitors, strategies, and demand levels. Studies on the capability of large hydrogen cooled synchronous generators were utilized to derive useful equations that define the exact shape of the capability curve from the intersections of the arcs defined by the centers and radial vectors of the rotor, stator, and steady-state stability limits. The available reactive reserve and spinning reserve were calculated given a generator operating point in the P-Q plane. Four computer programs were developed to automatically perform the market auction simulations using the equal incremental cost rule. The software calculates the payoffs for the two competing competitors, dispatches six generators, and allocates ancillary services for 64 combinations of bidding strategies, three levels of system demand, and three different types of competitors. Matrix Game theory was utilized to calculate Nash Equilibrium solutions and mixed-strategy Nash solutions as the optimal generator bidding strategies. A method to incorporate ancillary services into the generation bidding strategy, to assure an adequate supply of ancillary services, and to allocate these necessary resources to the on-line units was devised. The optimal generator bid strategy in a power auction was shown to be the Nash Equilibrium solution found in two-player variable-sum matrix games.

  1. Start-Stop Moment Optimization of Range Extender and Control Strategy Design for Extended -Range Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Zhao, Jing-bo; Han, Bing-yuan; Bei, Shao-yi

    2017-10-01

    Range extender is the core component of E-REV, its start-stop control determines the operation modes of vehicle. This paper based on a certain type of E-REV, researched constant power control strategy of range extender in extended-range model, to target range as constraint condition, combined with different driving cycle conditions, by correcting battery SOC for range extender start-stop moment, optimized the control strategy of range extender, and established the vehicle and range extender start-stop control simulation model. Selected NEDC and UDDS conditions simulation results show that: under certain target mileage, the range extender running time reduced by 37.2% and 28.2% in the NEDC condition, and running time UDDS conditions were reduced by 40.6% and 33.5% in the UDDS condition, reached the purpose of meeting the vehicle mileage and reducing consumption and emission.

  2. Energy and water quality management systems for water utility's operations: a review.

    PubMed

    Cherchi, Carla; Badruzzaman, Mohammad; Oppenheimer, Joan; Bros, Christopher M; Jacangelo, Joseph G

    2015-04-15

    Holistic management of water and energy resources is critical for water utilities facing increasing energy prices, water supply shortage and stringent regulatory requirements. In the early 1990s, the concept of an integrated Energy and Water Quality Management System (EWQMS) was developed as an operational optimization framework for solving water quality, water supply and energy management problems simultaneously. Approximately twenty water utilities have implemented an EWQMS by interfacing commercial or in-house software optimization programs with existing control systems. For utilities with an installed EWQMS, operating cost savings of 8-15% have been reported due to higher use of cheaper tariff periods and better operating efficiencies, resulting in the reduction in energy consumption of ∼6-9%. This review provides the current state-of-knowledge on EWQMS typical structural features and operational strategies and benefits and drawbacks are analyzed. The review also highlights the challenges encountered during installation and implementation of EWQMS and identifies the knowledge gaps that should motivate new research efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Supply chain optimization: a practitioner's perspective on the next logistics breakthrough.

    PubMed

    Schlegel, G L

    2000-08-01

    The objective of this paper is to profile a practitioner's perspective on supply chain optimization and highlight the critical elements of this potential new logistics breakthrough idea. The introduction will briefly describe the existing distribution network, and business environment. This will include operational statistics, manufacturing software, and hardware configurations. The first segment will cover the critical success factors or foundations elements that are prerequisites for success. The second segment will give you a glimpse of a "working game plan" for successful migration to supply chain optimization. The final segment will briefly profile "bottom-line" benefits to be derived from the use of supply chain optimization as a strategy, tactical tool, and competitive advantage.

  4. Stochastic multi-objective model for optimal energy exchange optimization of networked microgrids with presence of renewable generation under risk-based strategies.

    PubMed

    Gazijahani, Farhad Samadi; Ravadanegh, Sajad Najafi; Salehi, Javad

    2018-02-01

    The inherent volatility and unpredictable nature of renewable generations and load demand pose considerable challenges for energy exchange optimization of microgrids (MG). To address these challenges, this paper proposes a new risk-based multi-objective energy exchange optimization for networked MGs from economic and reliability standpoints under load consumption and renewable power generation uncertainties. In so doing, three various risk-based strategies are distinguished by using conditional value at risk (CVaR) approach. The proposed model is specified as a two-distinct objective function. The first function minimizes the operation and maintenance costs, cost of power transaction between upstream network and MGs as well as power loss cost, whereas the second function minimizes the energy not supplied (ENS) value. Furthermore, the stochastic scenario-based approach is incorporated into the approach in order to handle the uncertainty. Also, Kantorovich distance scenario reduction method has been implemented to reduce the computational burden. Finally, non-dominated sorting genetic algorithm (NSGAII) is applied to minimize the objective functions simultaneously and the best solution is extracted by fuzzy satisfying method with respect to risk-based strategies. To indicate the performance of the proposed model, it is performed on the modified IEEE 33-bus distribution system and the obtained results show that the presented approach can be considered as an efficient tool for optimal energy exchange optimization of MGs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Designing train-speed trajectory with energy efficiency and service quality

    NASA Astrophysics Data System (ADS)

    Jia, Jiannan; Yang, Kai; Yang, Lixing; Gao, Yuan; Li, Shukai

    2018-05-01

    With the development of automatic train operations, optimal trajectory design is significant to the performance of train operations in railway transportation systems. Considering energy efficiency and service quality, this article formulates a bi-objective train-speed trajectory optimization model to minimize simultaneously the energy consumption and travel time in an inter-station section. This article is distinct from previous studies in that more sophisticated train driving strategies characterized by the acceleration/deceleration gear, the cruising speed, and the speed-shift site are specifically considered. For obtaining an optimal train-speed trajectory which has equal satisfactory degree on both objectives, a fuzzy linear programming approach is applied to reformulate the objectives. In addition, a genetic algorithm is developed to solve the proposed train-speed trajectory optimization problem. Finally, a series of numerical experiments based on a real-world instance of Beijing-Tianjin Intercity Railway are implemented to illustrate the practicability of the proposed model as well as the effectiveness of the solution methodology.

  6. Advanced Satellite-Derived Wind Observations, Assimilation, and Targeting Strategies during TCS-08 for Developing Improved Operational Analysis and Prediction of Western Pacific Tropical Cyclones

    DTIC Science & Technology

    2012-09-30

    influences on TC structure evolve up to landfall or extratropical transition. In particular, winds derived from geostationary satellites have been shown... extratropical transition, it is clear that a dedicated research effort is needed to optimize the satellite data processing strategies, assimilation...and applications to better understand the behavior of the near- storm environmental flow fields during these evolutionary TC stages. To our knowledge

  7. Advanced Satellite-Derived Wind Observations, Assimilation, and Targeting Strategies during TCS-08 for Developing Improved Operational Analysis and Prediction of Western Pacific Tropical Cyclones

    DTIC Science & Technology

    2011-09-30

    influences on TC structure evolve up to landfall or extratropical transition. In particular, winds derived from geostationary satellites have been...and extratropical transition, it is clear that a dedicated research effort is needed to optimize the satellite data processing strategies...assimilation, and applications to better understand the behavior of the near- storm environmental flow fields during these evolutionary TC stages. To our

  8. Relativistic and noise effects on multiplayer Prisoners' dilemma with entangling initial states

    NASA Astrophysics Data System (ADS)

    Goudarzi, H.; Rashidi, S. S.

    2017-11-01

    Three-players Prisoners' dilemma (Alice, Bob and Colin) is studied in the presence of a single collective environment effect as a noise. The environmental effect is coupled with final states by a particular form of Kraus operators K_0 and K_1 through amplitude damping channel. We introduce the decoherence parameter 0≤p≤1 to the corresponding noise matrices, in order to controling the rate of environment influence on payoff of each players. Also, we consider the Unruh effect on the payoff of player, who is located at a noninertial frame. We suppose that two players (Bob and Colin) are in Rindler region I from Minkowski space-time, and move with same uniform acceleration (r_b=r_c) and frequency mode. The game is begun with the classical strategies cooperation ( C) and defection ( D) accessible to each player. Furthermore, the players are allowed to access the quantum strategic space ( Q and M). The quantum entanglement is coupled with initial classical states by the parameter γ \\in [0,π /2]. Using entangled initial states by exerting an unitary operator \\hat{J} as entangling gate, the quantum game (competition between Prisoners, as a three-qubit system) is started by choosing the strategies from classical or quantum strategic space. Arbitrarily chosen strategy by each player can lead to achieving profiles, which can be considered as Nash equilibrium or Pareto optimal. It is shown that in the presence of noise effect, choosing quantum strategy Q results in a winning payoff against the classical strategy D and, for example, the strategy profile ( Q, D, C) is Pareto optimal. We find that the unfair miracle move of Eisert from quantum strategic space is an effective strategy for accelerated players in decoherence mode (p=1) of the game.

  9. Combinatorial optimization problem solution based on improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Peng

    2017-08-01

    Traveling salesman problem (TSP) is a classic combinatorial optimization problem. It is a simplified form of many complex problems. In the process of study and research, it is understood that the parameters that affect the performance of genetic algorithm mainly include the quality of initial population, the population size, and crossover probability and mutation probability values. As a result, an improved genetic algorithm for solving TSP problems is put forward. The population is graded according to individual similarity, and different operations are performed to different levels of individuals. In addition, elitist retention strategy is adopted at each level, and the crossover operator and mutation operator are improved. Several experiments are designed to verify the feasibility of the algorithm. Through the experimental results analysis, it is proved that the improved algorithm can improve the accuracy and efficiency of the solution.

  10. Investigation of Cost and Energy Optimization of Drinking Water Distribution Systems.

    PubMed

    Cherchi, Carla; Badruzzaman, Mohammad; Gordon, Matthew; Bunn, Simon; Jacangelo, Joseph G

    2015-11-17

    Holistic management of water and energy resources through energy and water quality management systems (EWQMSs) have traditionally aimed at energy cost reduction with limited or no emphasis on energy efficiency or greenhouse gas minimization. This study expanded the existing EWQMS framework and determined the impact of different management strategies for energy cost and energy consumption (e.g., carbon footprint) reduction on system performance at two drinking water utilities in California (United States). The results showed that optimizing for cost led to cost reductions of 4% (Utility B, summer) to 48% (Utility A, winter). The energy optimization strategy was successfully able to find the lowest energy use operation and achieved energy usage reductions of 3% (Utility B, summer) to 10% (Utility A, winter). The findings of this study revealed that there may be a trade-off between cost optimization (dollars) and energy use (kilowatt-hours), particularly in the summer, when optimizing the system for the reduction of energy use to a minimum incurred cost increases of 64% and 184% compared with the cost optimization scenario. Water age simulations through hydraulic modeling did not reveal any adverse effects on the water quality in the distribution system or in tanks from pump schedule optimization targeting either cost or energy minimization.

  11. Scalable Heuristics for Planning, Placement and Sizing of Flexible AC Transmission System Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, Vladmir; Backhaus, Scott N.; Chertkov, Michael

    Aiming to relieve transmission grid congestion and improve or extend feasibility domain of the operations, we build optimization heuristics, generalizing standard AC Optimal Power Flow (OPF), for placement and sizing of Flexible Alternating Current Transmission System (FACTS) devices of the Series Compensation (SC) and Static VAR Compensation (SVC) type. One use of these devices is in resolving the case when the AC OPF solution does not exist because of congestion. Another application is developing a long-term investment strategy for placement and sizing of the SC and SVC devices to reduce operational cost and improve power system operation. SC and SVCmore » devices are represented by modification of the transmission line inductances and reactive power nodal corrections respectively. We find one placement and sizing of FACTs devices for multiple scenarios and optimal settings for each scenario simultaneously. Our solution of the nonlinear and nonconvex generalized AC-OPF consists of building a convergent sequence of convex optimizations containing only linear constraints and shows good computational scaling to larger systems. The approach is illustrated on single- and multi-scenario examples of the Matpower case-30 model.« less

  12. Relations between information, time, and value of water

    NASA Astrophysics Data System (ADS)

    Weijs, S. V.; Galindo, L. C.

    2015-12-01

    This research uses with stochastic dynamic programming (SDP) as a tool to reveal economic information about managed water resources. An application to the operation of an example hydropower reservoir is presented. SDP explicitly balances the marginal value of water for immediate use and its expected opportunity cost of not having more water available for future use. The result of an SDP analysis is a steady state policy, which gives the optimal decision as a function of the state. A commonly applied form gives the optimal release as a function of the month, current reservoir level and current inflow to the reservoir. The steady state policy can be complemented with a real-time management strategy, that can depend on more real-time information. An information-theoretical perspective is given on how this information influences the value of water, and how to deal with that influence in hydropower reservoir optimization. This results in some conjectures about how the information gain from real-time operation could affect the optimal long term policy. Another issue is the sharing of increased benefits that result from this information gain in a multi-objective setting. It is argued that this should be accounted for in negotiations about an operation policy.

  13. Model-based intensification of a fed-batch microbial process for the maximization of polyhydroxybutyrate (PHB) production rate.

    PubMed

    Penloglou, Giannis; Vasileiadou, Athina; Chatzidoukas, Christos; Kiparissides, Costas

    2017-08-01

    An integrated metabolic-polymerization-macroscopic model, describing the microbial production of polyhydroxybutyrate (PHB) in Azohydromonas lata bacteria, was developed and validated using a comprehensive series of experimental measurements. The model accounted for biomass growth, biopolymer accumulation, carbon and nitrogen sources utilization, oxygen mass transfer and uptake rates and average molecular weights of the accumulated PHB, produced under batch and fed-batch cultivation conditions. Model predictions were in excellent agreement with experimental measurements. The validated model was subsequently utilized to calculate optimal operating conditions and feeding policies for maximizing PHB productivity for desired PHB molecular properties. More specifically, two optimal fed-batch strategies were calculated and experimentally tested: (1) a nitrogen-limited fed-batch policy and (2) a nitrogen sufficient one. The calculated optimal operating policies resulted in a maximum PHB content (94% g/g) in the cultivated bacteria and a biopolymer productivity of 4.2 g/(l h), respectively. Moreover, it was demonstrated that different PHB grades with weight average molecular weights of up to 1513 kg/mol could be produced via the optimal selection of bioprocess operating conditions.

  14. Optimization of ground-water withdrawal at the old O-Field area, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Banks, William S.L.; Dillow, Jonathan J.A.

    2001-01-01

    The U.S. Army disposed of chemical agents, laboratory materials, and unexploded ordnance at the Old O-Field landfill at Aberdeen Proving Ground, Maryland, beginning prior to World War II and continuing until at least the 1950?s. Soil, ground water, surface water, and wetland sediments in the Old O-Field area were contaminated by the disposal of these materials. The site is in the Atlantic Coastal Plain, and is characterized by a complex series of Pleistocene and Holocene sediments formed in various fluvial, estuarine, and marine-marginal hydrogeologic environments. A previously constructed transient finite-difference ground-water-flow model was used to simulate ground-water flow and the effects of a pump-and-treat remediation system designed to prevent contaminated ground water from flowing into Watson Creek (a tidal estuary and a tributary to the Gunpowder River). The remediation system consists of 14 extraction wells located between the Old O-Field landfill and Watson Creek.Linear programming techniques were applied to the results of the flow-model simulations to identify optimal pumping strategies for the remediation system. The optimal management objective is to minimize total withdrawal from the water-table aquifer, while adhering to the following constraints: (1) ground-water flow from the landfill should be prevented from reaching Watson Creek, (2) no extraction pump should be operated at a rate that exceeds its capacity, and (3) no extraction pump should be operated at a rate below its minimum capacity, the minimum rate at which an Old O-Field pump can function. Water withdrawal is minimized by varying the rate and frequency of pumping at each of the 14 extraction wells over time. This minimizes the costs of both pumping and water treatment, thus providing the least-cost remediation alternative while simultaneously meeting all operating constraints.The optimal strategy identified using this objective and constraint set involved operating 13 of the 14 extraction wells at rates ranging from 0.4 to 4.9 gallons per minute.

  15. Coupling strategies for coherent operation of quantum cascade ring laser arrays

    NASA Astrophysics Data System (ADS)

    Schwarzer, Clemens; Yao, Y.; Mujagić, E.; Ahn, S.; Schrenk, W.; Chen, J.; Gmachl, C.; Strasser, G.

    2011-12-01

    We report the design, fabrication and operation of coherently coupled ring cavity surface emitting quantum cascade lasers, emitting at wavelength around 8 μm. Special emphasis is placed on the evaluation of optimal coupling approaches and corresponding parameters. Evanescent field coupling as well as direct coupling where both devices are physically connected is presented. Furthermore, exploiting the Vernier-effect was used to obtain enhanced mode selectivity and robust coherent coupling of two ring-type quantum cascade lasers. Investigations were performed at pulsed room-temperature operation.

  16. Optimized dispatch in a first-principles concentrating solar power production model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Michael J.; Newman, Alexandra M.; Hamilton, William T.

    Concentrating solar power towers, which include a steam-Rankine cycle with molten salt thermal energy storage, is an emerging technology whose maximum effectiveness relies on an optimal operational and dispatch policy. Given parameters such as start-up and shut-down penalties, expected electricity price profiles, solar availability, and system interoperability requirements, this paper seeks a profit-maximizing solution that determines start-up and shut-down times for the power cycle and solar receiver, and the times at which to dispatch stored and instantaneous quantities of energy over a 48-h horizon at hourly fidelity. The mixed-integer linear program (MIP) is subject to constraints including: (i) minimum andmore » maximum rates of start-up and shut-down, (ii) energy balance, including energetic state of the system as a whole and its components, (iii) logical rules governing the operational modes of the power cycle and solar receiver, and (iv) operational consistency between time periods. The novelty in this work lies in the successful integration of a dispatch optimization model into a detailed techno-economic analysis tool, specifically, the National Renewable Energy Laboratory's System Advisor Model (SAM). The MIP produces an optimized operating strategy, historically determined via a heuristic. Using several market electricity pricing profiles, we present comparative results for a system with and without dispatch optimization, indicating that dispatch optimization can improve plant profitability by 5-20% and thereby alter the economics of concentrating solar power technology. While we examine a molten salt power tower system, this analysis is equally applicable to the more mature concentrating solar parabolic trough system with thermal energy storage.« less

  17. Robust Sliding Mode Control Based on GA Optimization and CMAC Compensation for Lower Limb Exoskeleton

    PubMed Central

    Long, Yi; Du, Zhi-jiang; Wang, Wei-dong; Dong, Wei

    2016-01-01

    A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow human motion intent accurately and compliantly to prevent incoordination. If the user's intention is estimated accurately, a precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network, is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy (SMC_GA_CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal SMC with GA (SMC_GA), and SMC with CMAC compensation (SMC_CMAC), all of which are employed to track the desired joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which can be employed in similar exoskeleton systems. PMID:27069353

  18. Acoustic reverse-time migration using GPU card and POSIX thread based on the adaptive optimal finite-difference scheme and the hybrid absorbing boundary condition

    NASA Astrophysics Data System (ADS)

    Cai, Xiaohui; Liu, Yang; Ren, Zhiming

    2018-06-01

    Reverse-time migration (RTM) is a powerful tool for imaging geologically complex structures such as steep-dip and subsalt. However, its implementation is quite computationally expensive. Recently, as a low-cost solution, the graphic processing unit (GPU) was introduced to improve the efficiency of RTM. In the paper, we develop three ameliorative strategies to implement RTM on GPU card. First, given the high accuracy and efficiency of the adaptive optimal finite-difference (FD) method based on least squares (LS) on central processing unit (CPU), we study the optimal LS-based FD method on GPU. Second, we develop the CPU-based hybrid absorbing boundary condition (ABC) to the GPU-based one by addressing two issues of the former when introduced to GPU card: time-consuming and chaotic threads. Third, for large-scale data, the combinatorial strategy for optimal checkpointing and efficient boundary storage is introduced for the trade-off between memory and recomputation. To save the time of communication between host and disk, the portable operating system interface (POSIX) thread is utilized to create the other CPU core at the checkpoints. Applications of the three strategies on GPU with the compute unified device architecture (CUDA) programming language in RTM demonstrate their efficiency and validity.

  19. Robust Sliding Mode Control Based on GA Optimization and CMAC Compensation for Lower Limb Exoskeleton.

    PubMed

    Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Dong, Wei

    2016-01-01

    A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow human motion intent accurately and compliantly to prevent incoordination. If the user's intention is estimated accurately, a precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network, is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy (SMC_GA_CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal SMC with GA (SMC_GA), and SMC with CMAC compensation (SMC_CMAC), all of which are employed to track the desired joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which can be employed in similar exoskeleton systems.

  20. Maximizing power generation from dark fermentation effluents in microbial fuel cell by selective enrichment of exoelectrogens and optimization of anodic operational parameters.

    PubMed

    Varanasi, Jhansi L; Sinha, Pallavi; Das, Debabrata

    2017-05-01

    To selectively enrich an electrogenic mixed consortium capable of utilizing dark fermentative effluents as substrates in microbial fuel cells and to further enhance the power outputs by optimization of influential anodic operational parameters. A maximum power density of 1.4 W/m 3 was obtained by an enriched mixed electrogenic consortium in microbial fuel cells using acetate as substrate. This was further increased to 5.43 W/m 3 by optimization of influential anodic parameters. By utilizing dark fermentative effluents as substrates, the maximum power densities ranged from 5.2 to 6.2 W/m 3 with an average COD removal efficiency of 75% and a columbic efficiency of 10.6%. A simple strategy is provided for selective enrichment of electrogenic bacteria that can be used in microbial fuel cells for generating power from various dark fermentative effluents.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano

    Past works that focused on addressing power-quality and reliability concerns related to renewable energy resources (RESs) operating with business-as-usual practices have looked at the design of Volt/VAr and Volt/Watt strategies to regulate real or reactive powers based on local voltage measurements, so that terminal voltages are within acceptable levels. These control strategies have the potential of operating at the same time scale of distribution-system dynamics, and can therefore mitigate disturbances precipitated fast time-varying loads and ambient conditions; however, they do not necessarily guarantee system-level optimality, and stability claims are mainly based on empirical evidences. On a different time scale, centralizedmore » and distributed optimal power flow (OPF) algorithms have been proposed to compute optimal steady-state inverter setpoints, so that power losses and voltage deviations are minimized and economic benefits to end-users providing ancillary services are maximized. However, traditional OPF schemes may offer decision making capabilities that do not match the dynamics of distribution systems. Particularly, during the time required to collect data from all the nodes of the network (e.g., loads), solve the OPF, and subsequently dispatch setpoints, the underlying load, ambient, and network conditions may have already changed; in this case, the DER output powers would be consistently regulated around outdated setpoints, leading to suboptimal system operation and violation of relevant electrical limits. The present work focuses on the synthesis of distributed RES-inverter controllers that leverage the opportunities for fast feedback offered by power-electronics interfaced RESs. The overarching objective is to bridge the temporal gap between long-term system optimization and real-time control, to enable seamless RES integration in large scale with stability and efficiency guarantees, while congruently pursuing system-level optimization objectives. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. The proposed controllers enable an update of the power outputs at a time scale that is compatible with the underlying dynamics of loads and ambient conditions, and continuously drive the system operation towards OPF-based solutions.« less

  2. Mission Planning and Decision Support for Underwater Glider Networks: A Sampling on-Demand Approach

    PubMed Central

    Ferri, Gabriele; Cococcioni, Marco; Alvarez, Alberto

    2015-01-01

    This paper describes an optimal sampling approach to support glider fleet operators and marine scientists during the complex task of planning the missions of fleets of underwater gliders. Optimal sampling, which has gained considerable attention in the last decade, consists in planning the paths of gliders to minimize a specific criterion pertinent to the phenomenon under investigation. Different criteria (e.g., A, G, or E optimality), used in geosciences to obtain an optimum design, lead to different sampling strategies. In particular, the A criterion produces paths for the gliders that minimize the overall level of uncertainty over the area of interest. However, there are commonly operative situations in which the marine scientists may prefer not to minimize the overall uncertainty of a certain area, but instead they may be interested in achieving an acceptable uncertainty sufficient for the scientific or operational needs of the mission. We propose and discuss here an approach named sampling on-demand that explicitly addresses this need. In our approach the user provides an objective map, setting both the amount and the geographic distribution of the uncertainty to be achieved after assimilating the information gathered by the fleet. A novel optimality criterion, called Aη, is proposed and the resulting minimization problem is solved by using a Simulated Annealing based optimizer that takes into account the constraints imposed by the glider navigation features, the desired geometry of the paths and the problems of reachability caused by ocean currents. This planning strategy has been implemented in a Matlab toolbox called SoDDS (Sampling on-Demand and Decision Support). The tool is able to automatically download the ocean fields data from MyOcean repository and also provides graphical user interfaces to ease the input process of mission parameters and targets. The results obtained by running SoDDS on three different scenarios are provided and show that SoDDS, which is currently used at NATO STO Centre for Maritime Research and Experimentation (CMRE), can represent a step forward towards a systematic mission planning of glider fleets, dramatically reducing the efforts of glider operators. PMID:26712763

  3. Mission Planning and Decision Support for Underwater Glider Networks: A Sampling on-Demand Approach.

    PubMed

    Ferri, Gabriele; Cococcioni, Marco; Alvarez, Alberto

    2015-12-26

    This paper describes an optimal sampling approach to support glider fleet operators and marine scientists during the complex task of planning the missions of fleets of underwater gliders. Optimal sampling, which has gained considerable attention in the last decade, consists in planning the paths of gliders to minimize a specific criterion pertinent to the phenomenon under investigation. Different criteria (e.g., A, G, or E optimality), used in geosciences to obtain an optimum design, lead to different sampling strategies. In particular, the A criterion produces paths for the gliders that minimize the overall level of uncertainty over the area of interest. However, there are commonly operative situations in which the marine scientists may prefer not to minimize the overall uncertainty of a certain area, but instead they may be interested in achieving an acceptable uncertainty sufficient for the scientific or operational needs of the mission. We propose and discuss here an approach named sampling on-demand that explicitly addresses this need. In our approach the user provides an objective map, setting both the amount and the geographic distribution of the uncertainty to be achieved after assimilating the information gathered by the fleet. A novel optimality criterion, called A η , is proposed and the resulting minimization problem is solved by using a Simulated Annealing based optimizer that takes into account the constraints imposed by the glider navigation features, the desired geometry of the paths and the problems of reachability caused by ocean currents. This planning strategy has been implemented in a Matlab toolbox called SoDDS (Sampling on-Demand and Decision Support). The tool is able to automatically download the ocean fields data from MyOcean repository and also provides graphical user interfaces to ease the input process of mission parameters and targets. The results obtained by running SoDDS on three different scenarios are provided and show that SoDDS, which is currently used at NATO STO Centre for Maritime Research and Experimentation (CMRE), can represent a step forward towards a systematic mission planning of glider fleets, dramatically reducing the efforts of glider operators.

  4. Integrated continuous bioprocessing: Economic, operational, and environmental feasibility for clinical and commercial antibody manufacture.

    PubMed

    Pollock, James; Coffman, Jon; Ho, Sa V; Farid, Suzanne S

    2017-07-01

    This paper presents a systems approach to evaluating the potential of integrated continuous bioprocessing for monoclonal antibody (mAb) manufacture across a product's lifecycle from preclinical to commercial manufacture. The economic, operational, and environmental feasibility of alternative continuous manufacturing strategies were evaluated holistically using a prototype UCL decisional tool that integrated process economics, discrete-event simulation, environmental impact analysis, operational risk analysis, and multiattribute decision-making. The case study focused on comparing whole bioprocesses that used either batch, continuous or a hybrid combination of batch and continuous technologies for cell culture, capture chromatography, and polishing chromatography steps. The cost of goods per gram (COG/g), E-factor, and operational risk scores of each strategy were established across a matrix of scenarios with differing combinations of clinical development phase and company portfolio size. The tool outputs predict that the optimal strategy for early phase production and small/medium-sized companies is the integrated continuous strategy (alternating tangential flow filtration (ATF) perfusion, continuous capture, continuous polishing). However, the top ranking strategy changes for commercial production and companies with large portfolios to the hybrid strategy with fed-batch culture, continuous capture and batch polishing from a COG/g perspective. The multiattribute decision-making analysis highlighted that if the operational feasibility was considered more important than the economic benefits, the hybrid strategy would be preferred for all company scales. Further considerations outside the scope of this work include the process development costs required to adopt continuous processing. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:854-866, 2017. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  5. Integrated continuous bioprocessing: Economic, operational, and environmental feasibility for clinical and commercial antibody manufacture

    PubMed Central

    Pollock, James; Coffman, Jon; Ho, Sa V.

    2017-01-01

    This paper presents a systems approach to evaluating the potential of integrated continuous bioprocessing for monoclonal antibody (mAb) manufacture across a product's lifecycle from preclinical to commercial manufacture. The economic, operational, and environmental feasibility of alternative continuous manufacturing strategies were evaluated holistically using a prototype UCL decisional tool that integrated process economics, discrete‐event simulation, environmental impact analysis, operational risk analysis, and multiattribute decision‐making. The case study focused on comparing whole bioprocesses that used either batch, continuous or a hybrid combination of batch and continuous technologies for cell culture, capture chromatography, and polishing chromatography steps. The cost of goods per gram (COG/g), E‐factor, and operational risk scores of each strategy were established across a matrix of scenarios with differing combinations of clinical development phase and company portfolio size. The tool outputs predict that the optimal strategy for early phase production and small/medium‐sized companies is the integrated continuous strategy (alternating tangential flow filtration (ATF) perfusion, continuous capture, continuous polishing). However, the top ranking strategy changes for commercial production and companies with large portfolios to the hybrid strategy with fed‐batch culture, continuous capture and batch polishing from a COG/g perspective. The multiattribute decision‐making analysis highlighted that if the operational feasibility was considered more important than the economic benefits, the hybrid strategy would be preferred for all company scales. Further considerations outside the scope of this work include the process development costs required to adopt continuous processing. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:854–866, 2017 PMID:28480535

  6. Operational and Clinical Strategies to Address Drug Cost Containment in the Acute Care Setting.

    PubMed

    McConnell, Karen J; Guzman, Oscar E; Pherwani, Nisha; Spencer, Dustin D; Van Cura, Jennifer D; Shea, Katherine M

    2017-01-01

    To provide clinical and operational strategies to generate drug cost savings in the hospital setting. A search of the PubMed database was performed with no time limit through July 2016. All original prospective and retrospective studies, peer-reviewed guidelines, consensus statements, review articles, and accompanying references were evaluated for inclusion. Only articles published in the English language were included. Investigators reviewed 937 abstracts. The review of the literature showed that acute care hospitals are under increasing financial pressures, and the pharmacy is often responsible for opportunities to manage drug costs. The literature also indicated that cost-containment strategies in the acute care setting range from pharmacy-directed activities to initiatives requiring interdisciplinary collaboration and strategic planning. Hospital pharmacies should consider establishing an interdisciplinary team that is responsible for systematically reviewing drug cost implications and leading any initiatives that are deemed necessary. Acute care settings can use various operational and clinical strategies to lower their expenditures on high-cost drugs. Operational strategies include various activities that pharmacy staff implement related to contracting, purchasing, and inventory management. Clinical strategies utilize clinical pharmacists working with interdisciplinary teams to develop and maintain a formulary, implement established-use criteria for select drugs, use dose optimization, and implement other clinical tactics aimed at cost containment. After initiatives are implemented, assessing the outcomes of the initiatives is important to determine how successful they were at lowering costs safely and effectively. Acute care hospitals can use various operational and clinical strategies to lower overall drug costs. A systematic stepwise approach is recommended to ensure relevant drugs are regularly reviewed and addressed as needed. © 2016 Pharmacotherapy Publications, Inc.

  7. Microgrid to enable optimal distributed energy retail and end-user demand response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Ming; Feng, Wei; Marnay, Chris

    In the face of unprecedented challenges in environmental sustainability and grid resilience, there is an increasingly held consensus regarding the adoption of distributed and renewable energy resources such as microgrids (MGs), and the utilization of flexible electric loads by demand response (DR) to potentially drive a necessary paradigm shift in energy production and consumption patterns. However, the potential value of distributed generation and demand flexibility has not yet been fully realized in the operation of MGs. This study investigates the pricing and operation strategy with DR for a MG retailer in an integrated energy system (IES). Based on co-optimizing retailmore » rates and MG dispatch formulated as a mixed integer quadratic programming (MIQP) problem, our model devises a dynamic pricing scheme that reflects the cost of generation and promotes DR, in tandem with an optimal dispatch plan that exploits spark spread and facilitates the integration of renewables, resulting in improved retailer profits and system stability. Main issues like integrated energy coupling and customer bill reduction are addressed during pricing to ensure rates competitiveness and customer protection. By evaluating on real datasets, the system is demonstrated to optimally coordinate storage, renewables, and combined heat and power (CHP), reduce carbon dioxide emission while maintaining profits, and effectively alleviate the PV curtailment problem. Finally, the model can be used by retailers and MG operators to optimize their operations, as well as regulators to design new utility rates in support of the ongoing transformation of energy systems.« less

  8. A derived heuristics based multi-objective optimization procedure for micro-grid scheduling

    NASA Astrophysics Data System (ADS)

    Li, Xin; Deb, Kalyanmoy; Fang, Yanjun

    2017-06-01

    With the availability of different types of power generators to be used in an electric micro-grid system, their operation scheduling as the load demand changes with time becomes an important task. Besides satisfying load balance constraints and the generator's rated power, several other practicalities, such as limited availability of grid power and restricted ramping of power output from generators, must all be considered during the operation scheduling process, which makes it difficult to decide whether the optimization results are accurate and satisfactory. In solving such complex practical problems, heuristics-based customized optimization algorithms are suggested. However, due to nonlinear and complex interactions of variables, it is difficult to come up with heuristics in such problems off-hand. In this article, a two-step strategy is proposed in which the first task deciphers important heuristics about the problem and the second task utilizes the derived heuristics to solve the original problem in a computationally fast manner. Specifically, the specific operation scheduling is considered from a two-objective (cost and emission) point of view. The first task develops basic and advanced level knowledge bases offline from a series of prior demand-wise optimization runs and then the second task utilizes them to modify optimized solutions in an application scenario. Results on island and grid connected modes and several pragmatic formulations of the micro-grid operation scheduling problem clearly indicate the merit of the proposed two-step procedure.

  9. Microgrid to enable optimal distributed energy retail and end-user demand response

    DOE PAGES

    Jin, Ming; Feng, Wei; Marnay, Chris; ...

    2018-06-07

    In the face of unprecedented challenges in environmental sustainability and grid resilience, there is an increasingly held consensus regarding the adoption of distributed and renewable energy resources such as microgrids (MGs), and the utilization of flexible electric loads by demand response (DR) to potentially drive a necessary paradigm shift in energy production and consumption patterns. However, the potential value of distributed generation and demand flexibility has not yet been fully realized in the operation of MGs. This study investigates the pricing and operation strategy with DR for a MG retailer in an integrated energy system (IES). Based on co-optimizing retailmore » rates and MG dispatch formulated as a mixed integer quadratic programming (MIQP) problem, our model devises a dynamic pricing scheme that reflects the cost of generation and promotes DR, in tandem with an optimal dispatch plan that exploits spark spread and facilitates the integration of renewables, resulting in improved retailer profits and system stability. Main issues like integrated energy coupling and customer bill reduction are addressed during pricing to ensure rates competitiveness and customer protection. By evaluating on real datasets, the system is demonstrated to optimally coordinate storage, renewables, and combined heat and power (CHP), reduce carbon dioxide emission while maintaining profits, and effectively alleviate the PV curtailment problem. Finally, the model can be used by retailers and MG operators to optimize their operations, as well as regulators to design new utility rates in support of the ongoing transformation of energy systems.« less

  10. Value centric approaches to the design, operations and maintenance of wind turbines

    NASA Astrophysics Data System (ADS)

    Khadabadi, Madhur Aravind

    Wind turbine maintenance is emerging as an unexpectedly high component of turbine operating cost, and there is an increasing interest in managing this cost. This thesis presents an alternative view of maintenance as a value-driver, and develops an optimization algorithm to evaluate the value delivered by different maintenance techniques. I view maintenance as an operation that moves the turbine to an improved state in which it can generate more power and, thus, earn more revenue. To implement this approach, I model the stochastic deterioration of the turbine in two dimensions: the deterioration rate, and the extent of deterioration, and then use maintenance to improve the state of the turbine. The value of the turbine is the difference between the revenue from to the power generation and the costs incurred in operation and maintenance. With a focus on blade deterioration, I evaluate the value delivered by implementing two different maintenance schemes, predictive maintenance and scheduled maintenance. An example of predictive maintenance technique is the use of Condition Monitoring Systems to precisely detect deterioration. I model Condition Monitoring System (CMS) of different degrees of fidelity, where a higher fidelity CMS would allow the blade state to be determined with a higher precision. The same model is then applied for the scheduled maintenance technique. The improved state information obtained from these techniques is then used to derive an optimal maintenance strategy. The difference between the value of the turbine with and without the inspection type can be interpreted as the value of the inspection. The results indicate that a higher fidelity (and more expensive) inspection method does not necessarily yield the highest value, and, that there is an optimal level of fidelity that results in maximum value. The results also aim to inform the operator of the impact of regional parameters such as wind speed, variance and maintenance costs to the optimal maintenance strategy. The contributions of this work are twofold. First, I present a practical approach to wind turbine valuation that takes operating and market conditions into account. This work should therefore be useful to wind farm operators, investors and decision makers. Second, I show how the value of a maintenance scheme can be explicitly assessed for different conditions.

  11. Advanced Satellite-Derived Wind Observations, Assimilation, and Targeting Strategies during TCS-08 for Developing Improved Operational Analysis and Prediction of Western Pacific Tropical Cyclones

    DTIC Science & Technology

    2013-09-30

    TC structure evolve up to landfall or extratropical transition. In particular, winds derived from geostationary satellites have been shown to be an... extratropical transition, it is clear that a dedicated research effort is needed to optimize the satellite data processing strategies, assimilation, and...applications to better understand the behavior of the near- storm environmental flow fields during these evolutionary TC stages. To our knowledge, this

  12. Etude experimentale et optimisation d'un systeme hybride hydraulique pour camions a ordures et amelioration des performances par raffinement de sa logique de controle

    NASA Astrophysics Data System (ADS)

    Lacroix, Benoit

    The aim of this thesis is to demonstrate experimentally the operation of a hydraulic hybrid system specifically dedicated to the application of refuse trucks in addition to proposing solutions to improve its control strategy. The developed hybrid system recovers the vehicle's kinetic energy during braking. A variable displacement hydraulic motor then uses the energy stored in a hydraulic accumulator to assist the internal combustion engine (ICE) at suitable times. The particular aspect of this system is that assistance to the ICE can occur when it operates at idle and drives the auxiliary hydraulic equipment of the refuse truck. Essentially, the control strategy initially developed maximizes the recovery of braking energy and uses that energy to minimize the solicitation of the ICE at idle. The experimental results obtained with two prototypes tested in real operating conditions show that the hybrid system can recover a significant portion of braking energy. In addition, the results show that it is possible to reduce the load on the ICE during idle with the application of an assisting torque. However, the advantage of assisting the ICE in specific areas of the operating range is slim since the ICE's gross efficiency varies only slightly depending on conditions of operation. This is confirmed by the optimization of the control logic using deterministic dynamic programming. Indeed, by managing the pressure in the accumulator to maximize the amount of energy recovered during braking and by dosing the assistance to the ICE in an ideal fashion, the optimal control only managed to improve fuel savings by 6% in comparison to the original control. Therefore, since the efforts that would be required to emulate the ideal behavior in real time are significant for a relatively small and uncertain gain, the initial control logic is considered near optimal. Finally, this thesis proposes an improved version of the torque assisting hybrid system that could shut down the ICE when the vehicle is stopped while maintaining functional the auxiliary hydraulic equipment. An optimization of the control logic indicates that proper management of the pressure in the accumulator would allow turning off the ICE most of the time at stop and thus, would increase the fuel savings by over 40% compared to the original system. The simulation of a basic control strategy shows that such pressure management may be feasible in real time and that the potential gain in fuel savings is achievable. Keywords: hybrid system, hydraulic, control, refuse truck.

  13. Doubly Bayesian Analysis of Confidence in Perceptual Decision-Making.

    PubMed

    Aitchison, Laurence; Bang, Dan; Bahrami, Bahador; Latham, Peter E

    2015-10-01

    Humans stand out from other animals in that they are able to explicitly report on the reliability of their internal operations. This ability, which is known as metacognition, is typically studied by asking people to report their confidence in the correctness of some decision. However, the computations underlying confidence reports remain unclear. In this paper, we present a fully Bayesian method for directly comparing models of confidence. Using a visual two-interval forced-choice task, we tested whether confidence reports reflect heuristic computations (e.g. the magnitude of sensory data) or Bayes optimal ones (i.e. how likely a decision is to be correct given the sensory data). In a standard design in which subjects were first asked to make a decision, and only then gave their confidence, subjects were mostly Bayes optimal. In contrast, in a less-commonly used design in which subjects indicated their confidence and decision simultaneously, they were roughly equally likely to use the Bayes optimal strategy or to use a heuristic but suboptimal strategy. Our results suggest that, while people's confidence reports can reflect Bayes optimal computations, even a small unusual twist or additional element of complexity can prevent optimality.

  14. Group search optimiser-based optimal bidding strategies with no Karush-Kuhn-Tucker optimality conditions

    NASA Astrophysics Data System (ADS)

    Yadav, Naresh Kumar; Kumar, Mukesh; Gupta, S. K.

    2017-03-01

    General strategic bidding procedure has been formulated in the literature as a bi-level searching problem, in which the offer curve tends to minimise the market clearing function and to maximise the profit. Computationally, this is complex and hence, the researchers have adopted Karush-Kuhn-Tucker (KKT) optimality conditions to transform the model into a single-level maximisation problem. However, the profit maximisation problem with KKT optimality conditions poses great challenge to the classical optimisation algorithms. The problem has become more complex after the inclusion of transmission constraints. This paper simplifies the profit maximisation problem as a minimisation function, in which the transmission constraints, the operating limits and the ISO market clearing functions are considered with no KKT optimality conditions. The derived function is solved using group search optimiser (GSO), a robust population-based optimisation algorithm. Experimental investigation is carried out on IEEE 14 as well as IEEE 30 bus systems and the performance is compared against differential evolution-based strategic bidding, genetic algorithm-based strategic bidding and particle swarm optimisation-based strategic bidding methods. The simulation results demonstrate that the obtained profit maximisation through GSO-based bidding strategies is higher than the other three methods.

  15. Simulation-optimization of large agro-hydrosystems using a decomposition approach

    NASA Astrophysics Data System (ADS)

    Schuetze, Niels; Grundmann, Jens

    2014-05-01

    In this contribution a stochastic simulation-optimization framework for decision support for optimal planning and operation of water supply of large agro-hydrosystems is presented. It is based on a decomposition solution strategy which allows for (i) the usage of numerical process models together with efficient Monte Carlo simulations for a reliable estimation of higher quantiles of the minimum agricultural water demand for full and deficit irrigation strategies at small scale (farm level), and (ii) the utilization of the optimization results at small scale for solving water resources management problems at regional scale. As a secondary result of several simulation-optimization runs at the smaller scale stochastic crop-water production functions (SCWPF) for different crops are derived which can be used as a basic tool for assessing the impact of climate variability on risk for potential yield. In addition, microeconomic impacts of climate change and the vulnerability of the agro-ecological systems are evaluated. The developed methodology is demonstrated through its application on a real-world case study for the South Al-Batinah region in the Sultanate of Oman where a coastal aquifer is affected by saltwater intrusion due to excessive groundwater withdrawal for irrigated agriculture.

  16. Model-based minimization algorithm of a supercritical helium loop consumption subject to operational constraints

    NASA Astrophysics Data System (ADS)

    Bonne, F.; Bonnay, P.; Girard, A.; Hoa, C.; Lacroix, B.; Le Coz, Q.; Nicollet, S.; Poncet, J.-M.; Zani, L.

    2017-12-01

    Supercritical helium loops at 4.2 K are the baseline cooling strategy of tokamaks superconducting magnets (JT-60SA, ITER, DEMO, etc.). This loops work with cryogenic circulators that force a supercritical helium flow through the superconducting magnets in order that the temperature stay below the working range all along their length. This paper shows that a supercritical helium loop associated with a saturated liquid helium bath can satisfy temperature constraints in different ways (playing on bath temperature and on the supercritical flow), but that only one is optimal from an energy point of view (every Watt consumed at 4.2 K consumes at least 220 W of electrical power). To find the optimal operational conditions, an algorithm capable of minimizing an objective function (energy consumption at 5 bar, 5 K) subject to constraints has been written. This algorithm works with a supercritical loop model realized with the Simcryogenics [2] library. This article describes the model used and the results of constrained optimization. It will be possible to see that the changes in operating point on the temperature of the magnet (e.g. in case of a change in the plasma configuration) involves large changes on the cryodistribution optimal operating point. Recommendations will be made to ensure that the energetic consumption is kept as low as possible despite the changing operating point. This work is partially supported by EUROfusion Consortium through the Euratom Research and Training Program 20142018 under Grant 633053.

  17. Adaptation and optimization of a line-by-line radiative transfer program for the STAR-100 (STARSMART)

    NASA Technical Reports Server (NTRS)

    Rarig, P. L.

    1980-01-01

    A program to calculate upwelling infrared radiation was modified to operate efficiently on the STAR-100. The modified software processes specific test cases significantly faster than the initial STAR-100 code. For example, a midlatitude summer atmospheric model is executed in less than 2% of the time originally required on the STAR-100. Furthermore, the optimized program performs extra operations to save the calculated absorption coefficients. Some of the advantages and pitfalls of virtual memory and vector processing are discussed along with strategies used to avoid loss of accuracy and computing power. Results from the vectorized code, in terms of speed, cost, and relative error with respect to serial code solutions are encouraging.

  18. Dynamic modeling and adaptive vibration suppression of a high-speed macro-micro manipulator

    NASA Astrophysics Data System (ADS)

    Yang, Yi-ling; Wei, Yan-ding; Lou, Jun-qiang; Fu, Lei; Fang, Sheng; Chen, Te-huan

    2018-05-01

    This paper presents a dynamic modeling and microscopic vibration suppression for a flexible macro-micro manipulator dedicated to high-speed operation. The manipulator system mainly consists of a macro motion stage and a flexible micromanipulator bonded with one macro-fiber-composite actuator. Based on Hamilton's principle and the Bouc-Wen hysteresis equation, the nonlinear dynamic model is obtained. Then, a hybrid control scheme is proposed to simultaneously suppress the elastic vibration during and after the motor motion. In particular, the hybrid control strategy is composed of a trajectory planning approach and an adaptive variable structure control. Moreover, two optimization indices regarding the comprehensive torques and synthesized vibrations are designed, and the optimal trajectories are acquired using a genetic algorithm. Furthermore, a nonlinear fuzzy regulator is used to adjust the switching gain in the variable structure control. Thus, a fuzzy variable structure control with nonlinear adaptive control law is achieved. A series of experiments are performed to verify the effectiveness and feasibility of the established system model and hybrid control strategy. The excited vibration during the motor motion and the residual vibration after the motor motion are decreased. Meanwhile, the settling time is shortened. Both the manipulation stability and operation efficiency of the manipulator are improved by the proposed hybrid strategy.

  19. Optimized efficiency of all-electric ships by dc hybrid power systems

    NASA Astrophysics Data System (ADS)

    Zahedi, Bijan; Norum, Lars E.; Ludvigsen, Kristine B.

    2014-06-01

    Hybrid power systems with dc distribution are being considered for commercial marine vessels to comply with new stringent environmental regulations, and to achieve higher fuel economy. In this paper, detailed efficiency analysis of a shipboard dc hybrid power system is carried out. An optimization algorithm is proposed to minimize fuel consumption under various loading conditions. The studied system includes diesel engines, synchronous generator-rectifier units, a full-bridge bidirectional converter, and a Li-Ion battery bank as energy storage. In order to evaluate potential fuel saving provided by such a system, an online optimization strategy for fuel consumption is implemented. An Offshore Support Vessel (OSV) is simulated over different operating modes using the online control strategy. The resulted consumed fuel in the simulation is compared to that of a conventional ac power system, and also a dc power system without energy storage. The results show that while the dc system without energy storage provides noticeable fuel saving compared to the conventional ac system, optimal utilization of the energy storage in the dc system results in twice as much fuel saving.

  20. An intelligent agent for optimal river-reservoir system management

    NASA Astrophysics Data System (ADS)

    Rieker, Jeffrey D.; Labadie, John W.

    2012-09-01

    A generalized software package is presented for developing an intelligent agent for stochastic optimization of complex river-reservoir system management and operations. Reinforcement learning is an approach to artificial intelligence for developing a decision-making agent that learns the best operational policies without the need for explicit probabilistic models of hydrologic system behavior. The agent learns these strategies experientially in a Markov decision process through observational interaction with the environment and simulation of the river-reservoir system using well-calibrated models. The graphical user interface for the reinforcement learning process controller includes numerous learning method options and dynamic displays for visualizing the adaptive behavior of the agent. As a case study, the generalized reinforcement learning software is applied to developing an intelligent agent for optimal management of water stored in the Truckee river-reservoir system of California and Nevada for the purpose of streamflow augmentation for water quality enhancement. The intelligent agent successfully learns long-term reservoir operational policies that specifically focus on mitigating water temperature extremes during persistent drought periods that jeopardize the survival of threatened and endangered fish species.

  1. Optimal strategies for electric energy contract decision making

    NASA Astrophysics Data System (ADS)

    Song, Haili

    2000-10-01

    The power industry restructuring in various countries in recent years has created an environment where trading of electric energy is conducted in a market environment. In such an environment, electric power companies compete for the market share through spot and bilateral markets. Being profit driven, electric power companies need to make decisions on spot market bidding, contract evaluation, and risk management. New methods and software tools are required to meet these upcoming needs. In this research, bidding strategy and contract pricing are studied from a market participant's viewpoint; new methods are developed to guide a market participant in spot and bilateral market operation. A supplier's spot market bidding decision is studied. Stochastic optimization is formulated to calculate a supplier's optimal bids in a single time period. This decision making problem is also formulated as a Markov Decision Process. All the competitors are represented by their bidding parameters with corresponding probabilities. A systematic method is developed to calculate transition probabilities and rewards. The optimal strategy is calculated to maximize the expected reward over a planning horizon. Besides the spot market, a power producer can also trade in the bilateral markets. Bidding strategies in a bilateral market are studied with game theory techniques. Necessary and sufficient conditions of Nash Equilibrium (NE) bidding strategy are derived based on the generators' cost and the loads' willingness to pay. The study shows that in any NE, market efficiency is achieved. Furthermore, all Nash equilibria are revenue equivalent for the generators. The pricing of "Flexible" contracts, which allow delivery flexibility over a period of time with a fixed total amount of electricity to be delivered, is analyzed based on the no-arbitrage pricing principle. The proposed algorithm calculates the price based on the optimality condition of the stochastic optimization formulation. Simulation examples illustrate the tradeoffs between prices and scheduling flexibility. Spot bidding and contract pricing are not independent decision processes. The interaction between spot bidding and contract evaluation is demonstrated with game theory equilibrium model and market simulation results. It leads to the conclusion that a market participant's contract decision making needs to be further investigated as an integrated optimization formulation.

  2. Artificial Intelligence Based Selection of Optimal Cutting Tool and Process Parameters for Effective Turning and Milling Operations

    NASA Astrophysics Data System (ADS)

    Saranya, Kunaparaju; John Rozario Jegaraj, J.; Ramesh Kumar, Katta; Venkateshwara Rao, Ghanta

    2016-06-01

    With the increased trend in automation of modern manufacturing industry, the human intervention in routine, repetitive and data specific activities of manufacturing is greatly reduced. In this paper, an attempt has been made to reduce the human intervention in selection of optimal cutting tool and process parameters for metal cutting applications, using Artificial Intelligence techniques. Generally, the selection of appropriate cutting tool and parameters in metal cutting is carried out by experienced technician/cutting tool expert based on his knowledge base or extensive search from huge cutting tool database. The present proposed approach replaces the existing practice of physical search for tools from the databooks/tool catalogues with intelligent knowledge-based selection system. This system employs artificial intelligence based techniques such as artificial neural networks, fuzzy logic and genetic algorithm for decision making and optimization. This intelligence based optimal tool selection strategy is developed using Mathworks Matlab Version 7.11.0 and implemented. The cutting tool database was obtained from the tool catalogues of different tool manufacturers. This paper discusses in detail, the methodology and strategies employed for selection of appropriate cutting tool and optimization of process parameters based on multi-objective optimization criteria considering material removal rate, tool life and tool cost.

  3. DOTD support for UTC project : development of an optimal ramp metering control strategy for I-12, [research project capsule].

    DOT National Transportation Integrated Search

    2013-10-01

    From June to November of 2010, the Louisiana Department of Transportation and : Development (DOTD) deployed ramp metering control, using a simple pre-timed operation : with a xed cycle length (2 seconds of green/2 seconds of red), along a 15-mile ...

  4. Management of sickle cell disease in patients undergoing cardiac surgery.

    PubMed

    Crawford, Todd C; Carter, Michael V; Patel, Rina K; Suarez-Pierre, Alejandro; Lin, Sophie Z; Magruder, Jonathan Trent; Grimm, Joshua C; Cameron, Duke E; Baumgartner, William A; Mandal, Kaushik

    2017-02-01

    Sickle cell disease is a life-limiting inherited hemoglobinopathy that poses inherent risk for surgical complications following cardiac operations. In this review, we discuss preoperative considerations, intraoperative decision-making, and postoperative strategies to optimize the care of a patient with sickle cell disease undergoing cardiac surgery. © 2017 Wiley Periodicals, Inc.

  5. Interpreting cost of ownership for mix-and-match lithography

    NASA Astrophysics Data System (ADS)

    Levine, Alan L.; Bergendahl, Albert S.

    1994-05-01

    Cost of ownership modeling is a critical and emerging tool that provides significant insight into the ways to optimize device manufacturing costs. The development of a model to deal with a particular application, mix-and-match lithography, was performed in order to determine the level of cost savings and the optimum ways to create these savings. The use of sensitivity analysis with cost of ownership allows the user to make accurate trade-offs between technology and cost. The use and interpretation of the model results are described in this paper. Parameters analyzed include several manufacturing considerations -- depreciation, maintenance, engineering and operator labor, floorspace, resist, consumables and reticles. Inherent in this study is the ability to customize this analysis for a particular operating environment. Results demonstrate the clear advantages of a mix-and-match approach for three different operating environments. These case studies also demonstrate various methods to efficiently optimize cost savings strategies.

  6. Optimizing noise control strategy in a forging workshop.

    PubMed

    Razavi, Hamideh; Ramazanifar, Ehsan; Bagherzadeh, Jalal

    2014-01-01

    In this paper, a computer program based on a genetic algorithm is developed to find an economic solution for noise control in a forging workshop. Initially, input data, including characteristics of sound sources, human exposure, abatement techniques, and production plans are inserted into the model. Using sound pressure levels at working locations, the operators who are at higher risk are identified and picked out for the next step. The program is devised in MATLAB such that the parameters can be easily defined and changed for comparison. The final results are structured into 4 sections that specify an appropriate abatement method for each operator and machine, minimum allowance time for high-risk operators, required damping material for enclosures, and minimum total cost of these treatments. The validity of input data in addition to proper settings in the optimization model ensures the final solution is practical and economically reasonable.

  7. Optimal mission planning of GEO on-orbit refueling in mixed strategy

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-qian; Yu, Jing

    2017-04-01

    The mission planning of GEO on-orbit refueling (OOR) in Mixed strategy is studied in this paper. Specifically, one SSc will be launched to an orbital slot near the depot when multiple GEO satellites are reaching their end of lives. The SSc replenishes fuel from the depot and then extends the lifespan of the target satellites via refueling. In the mixed scenario, only some of the target satellites could be served by the SSc, and the remaining ones will be fueled by Pseudo SScs (the target satellite which has already been refueled by the SSc and now has sufficient fuel for its operation as well as the fuel to refuel other target satellites is called Pseudo SSc here). The mission sequences and fuel mass of the SSc and Pseudo SScs, the dry mass of the SSc are used as design variables, whereas the economic benefit of the whole mission is used as design objective. The economic cost and benefit models are stated first, and then a mathematical optimization model is proposed. A comprehensive solution method involving enumeration, particle swarm optimization and modification is developed. Numerical examples are carried out to demonstrate the effectiveness of the model and solution method. Economic efficiencies of different OOR strategies are compared and discussed. The mixed strategy would perform better than the other strategies only when the target satellites satisfy some conditions. This paper presents an available mixed strategy scheme for users and analyzes its advantages and disadvantages by comparing with some other OOR strategies, providing helpful references to decision makers. The best strategy in practical applications depends on the specific demands and user preference.

  8. Using the principles of circadian physiology enhances shift schedule design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, J.J.; Moore-Ede, M.C.

    1987-01-01

    Nuclear power plants must operate 24 h, 7 days a week. For the most part, shift schedules currently in use at nuclear power plants have been designed to meet operational needs without considering the biological clocks of the human operators. The development of schedules that also take circadian principles into account is a positive step that can be taken to improve plant safety by optimizing operator alertness. These schedules reduce the probability of human errors especially during backshifts. In addition, training programs that teach round-the-clock workers how to deal with the problems of shiftwork can help to optimize performance andmore » alertness. These programs teach shiftworkers the underlying causes of the sleep problems associated with shiftwork and also provide coping strategies for improving sleep and dealing with the transition between shifts. When these training programs are coupled with an improved schedule, the problems associated with working round-the-clock can be significantly reduced.« less

  9. Discriminative motif optimization based on perceptron training

    PubMed Central

    Patel, Ronak Y.; Stormo, Gary D.

    2014-01-01

    Motivation: Generating accurate transcription factor (TF) binding site motifs from data generated using the next-generation sequencing, especially ChIP-seq, is challenging. The challenge arises because a typical experiment reports a large number of sequences bound by a TF, and the length of each sequence is relatively long. Most traditional motif finders are slow in handling such enormous amount of data. To overcome this limitation, tools have been developed that compromise accuracy with speed by using heuristic discrete search strategies or limited optimization of identified seed motifs. However, such strategies may not fully use the information in input sequences to generate motifs. Such motifs often form good seeds and can be further improved with appropriate scoring functions and rapid optimization. Results: We report a tool named discriminative motif optimizer (DiMO). DiMO takes a seed motif along with a positive and a negative database and improves the motif based on a discriminative strategy. We use area under receiver-operating characteristic curve (AUC) as a measure of discriminating power of motifs and a strategy based on perceptron training that maximizes AUC rapidly in a discriminative manner. Using DiMO, on a large test set of 87 TFs from human, drosophila and yeast, we show that it is possible to significantly improve motifs identified by nine motif finders. The motifs are generated/optimized using training sets and evaluated on test sets. The AUC is improved for almost 90% of the TFs on test sets and the magnitude of increase is up to 39%. Availability and implementation: DiMO is available at http://stormo.wustl.edu/DiMO Contact: rpatel@genetics.wustl.edu, ronakypatel@gmail.com PMID:24369152

  10. Integration of Wind Turbines with Compressed Air Energy Storage

    NASA Astrophysics Data System (ADS)

    Arsie, I.; Marano, V.; Rizzo, G.; Moran, M.

    2009-08-01

    Some of the major limitations of renewable energy sources are represented by their low power density and intermittent nature, largely depending upon local site and unpredictable weather conditions. These problems concur to increase the unit costs of wind power, so limiting their diffusion. By coupling storage systems with a wind farm, some of the major limitations of wind power, such as a low power density and an unpredictable nature, can be overcome. After an overview on storage systems, the Compressed Air Energy Storage (CAES) is analyzed, and the state of art on such systems is discussed. A Matlab/Simulink model of a hybrid power plant consisting of a wind farm coupled with CAES is then presented. The model has been successfully validated starting from the operating data of the McIntosh CAES Plant in Alabama. Time-series neural network-based wind speed forecasting are employed to determine the optimal daily operation strategy for the storage system. A detailed economic analysis has been carried out: investment and maintenance costs are estimated based on literature data, while operational costs and revenues are calculated according to energy market prices. As shown in the paper, the knowledge of the expected available energy is a key factor to optimize the management strategies of the proposed hybrid power plant, allowing to obtain environmental and economic benefits.

  11. Multidimensional optimal droop control for wind resources in DC microgrids

    NASA Astrophysics Data System (ADS)

    Bunker, Kaitlyn J.

    Two important and upcoming technologies, microgrids and electricity generation from wind resources, are increasingly being combined. Various control strategies can be implemented, and droop control provides a simple option without requiring communication between microgrid components. Eliminating the single source of potential failure around the communication system is especially important in remote, islanded microgrids, which are considered in this work. However, traditional droop control does not allow the microgrid to utilize much of the power available from the wind. This dissertation presents a novel droop control strategy, which implements a droop surface in higher dimension than the traditional strategy. The droop control relationship then depends on two variables: the dc microgrid bus voltage, and the wind speed at the current time. An approach for optimizing this droop control surface in order to meet a given objective, for example utilizing all of the power available from a wind resource, is proposed and demonstrated. Various cases are used to test the proposed optimal high dimension droop control method, and demonstrate its function. First, the use of linear multidimensional droop control without optimization is demonstrated through simulation. Next, an optimal high dimension droop control surface is implemented with a simple dc microgrid containing two sources and one load. Various cases for changing load and wind speed are investigated using simulation and hardware-in-the-loop techniques. Optimal multidimensional droop control is demonstrated with a wind resource in a full dc microgrid example, containing an energy storage device as well as multiple sources and loads. Finally, the optimal high dimension droop control method is applied with a solar resource, and using a load model developed for a military patrol base application. The operation of the proposed control is again investigated using simulation and hardware-in-the-loop techniques.

  12. Optimizing Multiple QoS for Workflow Applications using PSO and Min-Max Strategy

    NASA Astrophysics Data System (ADS)

    Umar Ambursa, Faruku; Latip, Rohaya; Abdullah, Azizol; Subramaniam, Shamala

    2017-08-01

    Workflow scheduling under multiple QoS constraints is a complicated optimization problem. Metaheuristic techniques are excellent approaches used in dealing with such problem. Many metaheuristic based algorithms have been proposed, that considers various economic and trustworthy QoS dimensions. However, most of these approaches lead to high violation of user-defined QoS requirements in tight situation. Recently, a new Particle Swarm Optimization (PSO)-based QoS-aware workflow scheduling strategy (LAPSO) is proposed to improve performance in such situations. LAPSO algorithm is designed based on synergy between a violation handling method and a hybrid of PSO and min-max heuristic. Simulation results showed a great potential of LAPSO algorithm to handling user requirements even in tight situations. In this paper, the performance of the algorithm is anlysed further. Specifically, the impact of the min-max strategy on the performance of the algorithm is revealed. This is achieved by removing the violation handling from the operation of the algorithm. The results show that LAPSO based on only the min-max method still outperforms the benchmark, even though the LAPSO with the violation handling performs more significantly better.

  13. The potential of coordinated reservoir operation for flood mitigation in large basins - A case study on the Bavarian Danube using coupled hydrological-hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Seibert, S. P.; Skublics, D.; Ehret, U.

    2014-09-01

    The coordinated operation of reservoirs in large-scale river basins has great potential to improve flood mitigation. However, this requires large scale hydrological models to translate the effect of reservoir operation to downstream points of interest, in a quality sufficient for the iterative development of optimized operation strategies. And, of course, it requires reservoirs large enough to make a noticeable impact. In this paper, we present and discuss several methods dealing with these prerequisites for reservoir operation using the example of three major floods in the Bavarian Danube basin (45,000 km2) and nine reservoirs therein: We start by presenting an approach for multi-criteria evaluation of model performance during floods, including aspects of local sensitivity to simulation quality. Then we investigate the potential of joint hydrologic-2d-hydrodynamic modeling to improve model performance. Based on this, we evaluate upper limits of reservoir impact under idealized conditions (perfect knowledge of future rainfall) with two methods: Detailed simulations and statistical analysis of the reservoirs' specific retention volume. Finally, we investigate to what degree reservoir operation strategies optimized for local (downstream vicinity to the reservoir) and regional (at the Danube) points of interest are compatible. With respect to model evaluation, we found that the consideration of local sensitivities to simulation quality added valuable information not included in the other evaluation criteria (Nash-Sutcliffe efficiency and Peak timing). With respect to the second question, adding hydrodynamic models to the model chain did, contrary to our expectations, not improve simulations, despite the fact that under idealized conditions (using observed instead of simulated lateral inflow) the hydrodynamic models clearly outperformed the routing schemes of the hydrological models. Apparently, the advantages of hydrodynamic models could not be fully exploited when fed by output from hydrological models afflicted with systematic errors in volume and timing. This effect could potentially be reduced by joint calibration of the hydrological-hydrodynamic model chain. Finally, based on the combination of the simulation-based and statistical impact assessment, we identified one reservoir potentially useful for coordinated, regional flood mitigation for the Danube. While this finding is specific to our test basin, the more interesting and generally valid finding is that operation strategies optimized for local and regional flood mitigation are not necessarily mutually exclusive, sometimes they are identical, sometimes they can, due to temporal offsets, be pursued simultaneously.

  14. Optimization of Operation Parameters for Helical Flow Cleanout with Supercritical CO2 in Horizontal Wells Using Back-Propagation Artificial Neural Network.

    PubMed

    Song, Xianzhi; Peng, Chi; Li, Gensheng; He, Zhenguo; Wang, Haizhu

    2016-01-01

    Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN) was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells.

  15. Optimization of Operation Parameters for Helical Flow Cleanout with Supercritical CO2 in Horizontal Wells Using Back-Propagation Artificial Neural Network

    PubMed Central

    Song, Xianzhi; Peng, Chi; Li, Gensheng

    2016-01-01

    Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN) was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells. PMID:27249026

  16. Space Station Freedom altitude strategy

    NASA Technical Reports Server (NTRS)

    Mcdonald, Brian M.; Teplitz, Scott B.

    1990-01-01

    The Space Station Freedom (SSF) altitude strategy provides guidelines and assumptions to determine an altitude profile for Freedom. The process for determining an altitude profile incorporates several factors such as where the Space Shuttle will rendezvous with the SSF, when reboosts must occur, and what atmospheric conditions exist causing decay. The altitude strategy has an influence on all areas of SSF development and mission planning. The altitude strategy directly affects the micro-gravity environment for experiments, propulsion and control system sizing, and Space Shuttle delivery manifests. Indirectly the altitude strategy influences almost every system and operation within the Space Station Program. Evolution of the SSF altitude strategy has been a very dynamic process over the past few years. Each altitude strategy in turn has emphasized a different consideration. Examples include a constant Space Shuttle rendezvous altitude for mission planning simplicity, or constant micro-gravity levels with its inherent emphasis on payloads, or lifetime altitudes to provide a safety buffer to loss of control conditions. Currently a new altitude strategy is in development. This altitude strategy will emphasize Space Shuttle delivery optimization. Since propellant is counted against Space Shuttle payload-to-orbit capacity, lowering the rendezvous altitude will not always increase the net payload-to-orbit, since more propellant would be required for reboost. This altitude strategy will also consider altitude biases to account for Space Shuttle launch slips and an unexpected worsening of atmospheric conditions. Safety concerns will define a lower operational altitude limit, while radiation levels will define upper altitude constraints. The evolution of past and current SSF altitude strategies and the development of a new altitude strategy which focuses on operational issues as opposed to design are discussed.

  17. Night ventilation control strategies in office buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaojun; Yi, Lingli; Gao, Fusheng

    2009-10-15

    In moderate climates night ventilation is an effective and energy-efficient approach to improve the indoor thermal environment for office buildings during the summer months, especially for heavyweight construction. However, is night ventilation a suitable strategy for office buildings with lightweight construction located in cold climates? In order to answer this question, the whole energy-consumption analysis software EnergyPlus was used to simulate the indoor thermal environment and energy consumption in typical office buildings with night mechanical ventilation in three cities in northern China. The summer outdoor climate data was analyzed, and three typical design days were chosen. The most important factorsmore » influencing night ventilation performance such as ventilation rates, ventilation duration, building mass and climatic conditions were evaluated. When night ventilation operation time is closer to active cooling time, the efficiency of night ventilation is higher. With night ventilation rate of 10 ach, the mean radiant temperature of the indoor surface decreased by up to 3.9 C. The longer the duration of operation, the more efficient the night ventilation strategy becomes. The control strategies for three locations are given in the paper. Based on the optimized strategies, the operation consumption and fees are calculated. The results show that more energy is saved in office buildings cooled by a night ventilation system in northern China than ones that do not employ this strategy. (author)« less

  18. Nonlinear Recurrent Neural Network Predictive Control for Energy Distribution of a Fuel Cell Powered Robot

    PubMed Central

    Chen, Qihong; Long, Rong; Quan, Shuhai

    2014-01-01

    This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX), and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell. PMID:24707206

  19. Control strategy of grid-connected photovoltaic generation system based on GMPPT method

    NASA Astrophysics Data System (ADS)

    Wang, Zhongfeng; Zhang, Xuyang; Hu, Bo; Liu, Jun; Li, Ligang; Gu, Yongqiang; Zhou, Bowen

    2018-02-01

    There are multiple local maximum power points when photovoltaic (PV) array runs under partial shading condition (PSC).However, the traditional maximum power point tracking (MPPT) algorithm might be easily trapped in local maximum power points (MPPs) and cannot find the global maximum power point (GMPP). To solve such problem, a global maximum power point tracking method (GMPPT) is improved, combined with traditional MPPT method and particle swarm optimization (PSO) algorithm. Under different operating conditions of PV cells, different tracking algorithms are used. When the environment changes, the improved PSO algorithm is adopted to realize the global optimal search, and the variable step incremental conductance (INC) method is adopted to achieve MPPT in optimal local location. Based on the simulation model of the PV grid system built in Matlab/Simulink, comparative analysis of the tracking effect of MPPT by the proposed control algorithm and the traditional MPPT method under the uniform solar condition and PSC, validate the correctness, feasibility and effectiveness of the proposed control strategy.

  20. Multi-objective optimization of chromatographic rare earth element separation.

    PubMed

    Knutson, Hans-Kristian; Holmqvist, Anders; Nilsson, Bernt

    2015-10-16

    The importance of rare earth elements in modern technological industry grows, and as a result the interest for developing separation processes increases. This work is a part of developing chromatography as a rare earth element processing method. Process optimization is an important step in process development, and there are several competing objectives that need to be considered in a chromatographic separation process. Most studies are limited to evaluating the two competing objectives productivity and yield, and studies of scenarios with tri-objective optimizations are scarce. Tri-objective optimizations are much needed when evaluating the chromatographic separation of rare earth elements due to the importance of product pool concentration along with productivity and yield as process objectives. In this work, a multi-objective optimization strategy considering productivity, yield and pool concentration is proposed. This was carried out in the frame of a model based optimization study on a batch chromatography separation of the rare earth elements samarium, europium and gadolinium. The findings from the multi-objective optimization were used to provide with a general strategy for achieving desirable operation points, resulting in a productivity ranging between 0.61 and 0.75 kgEu/mcolumn(3), h(-1) and a pool concentration between 0.52 and 0.79 kgEu/m(3), while maintaining a purity above 99% and never falling below an 80% yield for the main target component europium. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Cooper, Grant S.; Peralta, Richard C.; Kaluarachchi, Jagath J.

    A modeling approach is presented that optimizes separate phase recovery of light non-aqueous phase liquids (LNAPL) for a single dual-extraction well in a homogeneous, isotropic unconfined aquifer. A simulation/regression/optimization (S/R/O) model is developed to predict, analyze, and optimize the oil recovery process. The approach combines detailed simulation, nonlinear regression, and optimization. The S/R/O model utilizes nonlinear regression equations describing system response to time-varying water pumping and oil skimming. Regression equations are developed for residual oil volume and free oil volume. The S/R/O model determines optimized time-varying (stepwise) pumping rates which minimize residual oil volume and maximize free oil recovery while causing free oil volume to decrease a specified amount. This S/R/O modeling approach implicitly immobilizes the free product plume by reversing the water table gradient while achieving containment. Application to a simple representative problem illustrates the S/R/O model utility for problem analysis and remediation design. When compared with the best steady pumping strategies, the optimal stepwise pumping strategy improves free oil recovery by 11.5% and reduces the amount of residual oil left in the system due to pumping by 15%. The S/R/O model approach offers promise for enhancing the design of free phase LNAPL recovery systems and to help in making cost-effective operation and management decisions for hydrogeologists, engineers, and regulators.

  2. Review of CERN Data Centre Infrastructure

    NASA Astrophysics Data System (ADS)

    Andrade, P.; Bell, T.; van Eldik, J.; McCance, G.; Panzer-Steindel, B.; Coelho dos Santos, M.; Traylen and, S.; Schwickerath, U.

    2012-12-01

    The CERN Data Centre is reviewing strategies for optimizing the use of the existing infrastructure and expanding to a new data centre by studying how other large sites are being operated. Over the past six months, CERN has been investigating modern and widely-used tools and procedures used for virtualisation, clouds and fabric management in order to reduce operational effort, increase agility and support unattended remote data centres. This paper gives the details on the project's motivations, current status and areas for future investigation.

  3. Military Review, Volume 74, Number 1. January 1994. FM 100-5 and Operations Other than War

    DTIC Science & Technology

    1994-01-01

    capable of strategy : 2 achieving decisive victory as part of a joint team 0 Task organize an effective mix of Active on the battlefield--anYwhere in the...At its best, doctrine provides a common approach to thinking about the effective use of military force, but realizing this optimal condition takes time...news coverage with signilicant effects on military operations is an imrportant parl of the future environment of leaders at all levels. I was

  4. An improved NSGA - II algorithm for mixed model assembly line balancing

    NASA Astrophysics Data System (ADS)

    Wu, Yongming; Xu, Yanxia; Luo, Lifei; Zhang, Han; Zhao, Xudong

    2018-05-01

    Aiming at the problems of assembly line balancing and path optimization for material vehicles in mixed model manufacturing system, a multi-objective mixed model assembly line (MMAL), which is based on optimization objectives, influencing factors and constraints, is established. According to the specific situation, an improved NSGA-II algorithm based on ecological evolution strategy is designed. An environment self-detecting operator, which is used to detect whether the environment changes, is adopted in the algorithm. Finally, the effectiveness of proposed model and algorithm is verified by examples in a concrete mixing system.

  5. a Stochastic Approach to Multiobjective Optimization of Large-Scale Water Reservoir Networks

    NASA Astrophysics Data System (ADS)

    Bottacin-Busolin, A.; Worman, A. L.

    2013-12-01

    A main challenge for the planning and management of water resources is the development of multiobjective strategies for operation of large-scale water reservoir networks. The optimal sequence of water releases from multiple reservoirs depends on the stochastic variability of correlated hydrologic inflows and on various processes that affect water demand and energy prices. Although several methods have been suggested, large-scale optimization problems arising in water resources management are still plagued by the high dimensional state space and by the stochastic nature of the hydrologic inflows. In this work, the optimization of reservoir operation is approached using approximate dynamic programming (ADP) with policy iteration and function approximators. The method is based on an off-line learning process in which operating policies are evaluated for a number of stochastic inflow scenarios, and the resulting value functions are used to design new, improved policies until convergence is attained. A case study is presented of a multi-reservoir system in the Dalälven River, Sweden, which includes 13 interconnected reservoirs and 36 power stations. Depending on the late spring and summer peak discharges, the lowlands adjacent to Dalälven can often be flooded during the summer period, and the presence of stagnating floodwater during the hottest months of the year is the cause of a large proliferation of mosquitos, which is a major problem for the people living in the surroundings. Chemical pesticides are currently being used as a preventive countermeasure, which do not provide an effective solution to the problem and have adverse environmental impacts. In this study, ADP was used to analyze the feasibility of alternative operating policies for reducing the flood risk at a reasonable economic cost for the hydropower companies. To this end, mid-term operating policies were derived by combining flood risk reduction with hydropower production objectives. The performance of the resulting policies was evaluated by simulating the online operating process for historical inflow scenarios and synthetic inflow forecasts. The simulations are based on a combined mid- and short-term planning model in which the value function derived in the mid-term planning phase provides the value of the policy at the end of the short-term operating horizon. While a purely deterministic linear analysis provided rather optimistic results, the stochastic model allowed for a more accurate evaluation of trade-offs and limitations of alternative operating strategies for the Dalälven reservoir network.

  6. [Workflow management in the operating room. Analysis of potentials for optimizing efficiency at a university hospital].

    PubMed

    Welker, A; Wolcke, B; Schleppers, A; Schmeck, S B; Focke, U; Gervais, H W; Schmeck, J

    2010-10-01

    The introduction of the diagnosis-related groups reimbursement system has increased cost pressures. Due to the interaction of many different professional groups, analysis and optimization of internal coordination and scheduling in the operating room (OR) is mandatory. The aim of this study was to analyze the processes at a university hospital in order to optimize strategies by identifying potential weak points. Over a period 6 weeks before and 4 weeks after intervention processes time intervals in the OR of a tertiary care hospital (university hospital) were documented in a structured data collection sheet. The main reason for lack of efficiency of labor was underused OR utilization. Multifactorial reasons, particularly in the management of perioperative interfaces, led to vacant ORs. A significant deficit was in the use of OR capacity at the end of the daily OR schedule. After harmonization of working hours of different staff groups and implementation of several other changes an increase in efficiency could be verified. These results indicate that optimization of perioperative processes considerably contribute to the success of OR organization. Additionally, the implementation of standard operating procedures and a generally accepted OR statute are mandatory. In this way an efficient OR management can contribute to the economic success of a hospital.

  7. The value of compressed air energy storage in energy and reserve markets

    DOE PAGES

    Drury, Easan; Denholm, Paul; Sioshansi, Ramteen

    2011-06-28

    Storage devices can provide several grid services, however it is challenging to quantify the value of providing several services and to optimally allocate storage resources to maximize value. We develop a co-optimized Compressed Air Energy Storage (CAES) dispatch model to characterize the value of providing operating reserves in addition to energy arbitrage in several U.S. markets. We use the model to: (1) quantify the added value of providing operating reserves in addition to energy arbitrage; (2) evaluate the dynamic nature of optimally allocating storage resources into energy and reserve markets; and (3) quantify the sensitivity of CAES net revenues tomore » several design and performance parameters. We find that conventional CAES systems could earn an additional 23 ± 10/kW-yr by providing operating reserves, and adiabatic CAES systems could earn an additional 28 ± 13/kW-yr. We find that arbitrage-only revenues are unlikely to support a CAES investment in most market locations, but the addition of reserve revenues could support a conventional CAES investment in several markets. Adiabatic CAES revenues are not likely to support an investment in most regions studied. As a result, modifying CAES design and performance parameters primarily impacts arbitrage revenues, and optimizing CAES design will be nearly independent of dispatch strategy.« less

  8. Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings

    DOE PAGES

    Cui, Borui; Gao, Dian-ce; Xiao, Fu; ...

    2016-12-23

    This article provides a method in comprehensive evaluation of cost-saving potential of active cool thermal energy storage (CTES) integrated with HVAC system for demand management in non-residential building. The active storage is beneficial by shifting peak demand for peak load management (PLM) as well as providing longer duration and larger capacity of demand response (DR). In this research, a model-based optimal design method using genetic algorithm is developed to optimize the capacity of active CTES aiming for maximizing the life-cycle cost saving concerning capital cost associated with storage capacity as well as incentives from both fast DR and PLM. Inmore » the method, the active CTES operates under a fast DR control strategy during DR events while under the storage-priority operation mode to shift peak demand during normal days. The optimal storage capacities, maximum annual net cost saving and corresponding power reduction set-points during DR event are obtained by using the proposed optimal design method. Lastly, this research provides guidance in comprehensive evaluation of cost-saving potential of CTES integrated with HVAC system for building demand management including both fast DR and PLM.« less

  9. Bi-level Optimization Method of Air-conditioning System Based on Office Building Energy Storage Characteristics

    NASA Astrophysics Data System (ADS)

    Wang, Qingze; Chen, Xingying; Ji, Li; Liao, Yingchen; Yu, Kun

    2017-05-01

    The air-conditioning system of office building is a large power consumption terminal equipment, whose unreasonable operation mode leads to low energy efficiency. Realizing the optimization of the air-conditioning system has become one of the important research contents of the electric power demand response. In this paper, in order to save electricity cost and improve energy efficiency, bi-level optimization method of air-conditioning system based on TOU price is put forward by using the energy storage characteristics of the office building itself. In the upper level, the operation mode of the air-conditioning system is optimized in order to minimize the uses’ electricity cost in the premise of ensuring user’ comfort according to the information of outdoor temperature and TOU price, and the cooling load of the air-conditioning is output to the lower level; In the lower level, the distribution mode of cooling load among the multi chillers is optimized in order to maximize the energy efficiency according to the characteristics of each chiller. Finally, the experimental results under different modes demonstrate that the strategy can improve the energy efficiency of chillers and save the electricity cost for users.

  10. Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Borui; Gao, Dian-ce; Xiao, Fu

    This article provides a method in comprehensive evaluation of cost-saving potential of active cool thermal energy storage (CTES) integrated with HVAC system for demand management in non-residential building. The active storage is beneficial by shifting peak demand for peak load management (PLM) as well as providing longer duration and larger capacity of demand response (DR). In this research, a model-based optimal design method using genetic algorithm is developed to optimize the capacity of active CTES aiming for maximizing the life-cycle cost saving concerning capital cost associated with storage capacity as well as incentives from both fast DR and PLM. Inmore » the method, the active CTES operates under a fast DR control strategy during DR events while under the storage-priority operation mode to shift peak demand during normal days. The optimal storage capacities, maximum annual net cost saving and corresponding power reduction set-points during DR event are obtained by using the proposed optimal design method. Lastly, this research provides guidance in comprehensive evaluation of cost-saving potential of CTES integrated with HVAC system for building demand management including both fast DR and PLM.« less

  11. A Robust Design Methodology for Optimal Microscale Secondary Flow Control in Compact Inlet Diffusers

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Keller, Dennis J.

    2001-01-01

    It is the purpose of this study to develop an economical Robust design methodology for microscale secondary flow control in compact inlet diffusers. To illustrate the potential of economical Robust Design methodology, two different mission strategies were considered for the subject inlet, namely Maximum Performance and Maximum HCF Life Expectancy. The Maximum Performance mission maximized total pressure recovery while the Maximum HCF Life Expectancy mission minimized the mean of the first five Fourier harmonic amplitudes, i.e., 'collectively' reduced all the harmonic 1/2 amplitudes of engine face distortion. Each of the mission strategies was subject to a low engine face distortion constraint, i.e., DC60<0.10, which is a level acceptable for commercial engines. For each of these missions strategies, an 'Optimal Robust' (open loop control) and an 'Optimal Adaptive' (closed loop control) installation was designed over a twenty degree angle-of-incidence range. The Optimal Robust installation used economical Robust Design methodology to arrive at a single design which operated over the entire angle-of-incident range (open loop control). The Optimal Adaptive installation optimized all the design parameters at each angle-of-incidence. Thus, the Optimal Adaptive installation would require a closed loop control system to sense a proper signal for each effector and modify that effector device, whether mechanical or fluidic, for optimal inlet performance. In general, the performance differences between the Optimal Adaptive and Optimal Robust installation designs were found to be marginal. This suggests, however, that Optimal Robust open loop installation designs can be very competitive with Optimal Adaptive close loop designs. Secondary flow control in inlets is inherently robust, provided it is optimally designed. Therefore, the new methodology presented in this paper, combined array 'Lower Order' approach to Robust DOE, offers the aerodynamicist a very viable and economical way of exploring the concept of Robust inlet design, where the mission variables are brought directly into the inlet design process and insensitivity or robustness to the mission variables becomes a design objective.

  12. Selective Sensing of Gas Mixture via a Temperature Modulation Approach: New Strategy for Potentiometric Gas Sensor Obtaining Satisfactory Discriminating Features.

    PubMed

    Li, Fu-An; Jin, Han; Wang, Jinxia; Zou, Jie; Jian, Jiawen

    2017-03-12

    A new strategy to discriminate four types of hazardous gases is proposed in this research. Through modulating the operating temperature and the processing response signal with a pattern recognition algorithm, a gas sensor consisting of a single sensing electrode, i.e., ZnO/In₂O₃ composite, is designed to differentiate NO₂, NH₃, C₃H₆, CO within the level of 50-400 ppm. Results indicate that with adding 15 wt.% ZnO to In₂O₃, the sensor fabricated at 900 °C shows optimal sensing characteristics in detecting all the studied gases. Moreover, with the aid of the principle component analysis (PCA) algorithm, the sensor operating in the temperature modulation mode demonstrates acceptable discrimination features. The satisfactory discrimination features disclose the future that it is possible to differentiate gas mixture efficiently through operating a single electrode sensor at temperature modulation mode.

  13. Design and control strategy for a hybrid green energy system for mobile telecommunication sites

    NASA Astrophysics Data System (ADS)

    Okundamiya, Michael S.; Emagbetere, Joy O.; Ogujor, Emmanuel A.

    2014-07-01

    The rising energy costs and carbon footprint of operating mobile telecommunication sites in the emerging world have increased research interests in green technology. The intermittent nature of most green energy sources creates the problem of designing the optimum configuration for a given location. This study presents the design analysis and control strategy for a cost effective and reliable operation of the hybrid green energy system (HGES) for GSM base transceiver station (BTS) sites in isolated regions. The design constrains the generation and distribution of power to reliably satisfy the energy demand while ensuring safe operation of the system. The overall process control applies the genetic algorithm-based technique for optimal techno-economic sizing of system's components. The process simulation utilized meteorological data for 3 locations (Abuja, Benin City and Sokoto) with varying climatic conditions in Nigeria. Simulation results presented for green GSM BTS sites are discussed and compared with existing approaches.

  14. An Optimizing Space Data-Communications Scheduling Method and Algorithm with Interference Mitigation, Generalized for a Broad Class of Optimization Problems

    NASA Technical Reports Server (NTRS)

    Rash, James

    2014-01-01

    NASA's space data-communications infrastructure-the Space Network and the Ground Network-provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft. The Space Network operates several orbiting geostationary platforms (the Tracking and Data Relay Satellite System (TDRSS)), each with its own servicedelivery antennas onboard. The Ground Network operates service-delivery antennas at ground stations located around the world. Together, these networks enable data transfer between user spacecraft and their mission control centers on Earth. Scheduling data-communications events for spacecraft that use the NASA communications infrastructure-the relay satellites and the ground stations-can be accomplished today with software having an operational heritage dating from the 1980s or earlier. An implementation of the scheduling methods and algorithms disclosed and formally specified herein will produce globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary algorithms, a class of probabilistic strategies for searching large solution spaces, is the essential technology invoked and exploited in this disclosure. Also disclosed are secondary methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithms themselves. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure within the expected range of future users and space- or ground-based service-delivery assets. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally. The generalized methods and algorithms are applicable to a very broad class of combinatorial-optimization problems that encompasses, among many others, the problem of generating optimal space-data communications schedules.

  15. NOAA Marine and Arctic Monitoring Using UASs

    NASA Astrophysics Data System (ADS)

    Jacobs, T.; Coffey, J. J.; Hood, R. E.; Hall, P.; Adler, J.

    2014-12-01

    Unmanned systems have the potential to efficiently, effectively, economically and safely bridging critical observation requirements in an environmentally friendly manner. As the United States' Marine and Arctic areas of interest expand and include hard-to-reach regions of the Earth (such as the Arctic and remote oceanic areas) optimizing unmanned capabilities will be needed to advance the United States' science, technology and security efforts. Through increased multi-mission and multi-agency operations using improved inter-operable and autonomous unmanned systems, the research and operations communities will better collect environmental intelligence and better protect our Country against hazardous weather, environmental, marine and polar hazards. This presentation will examine NOAA's Marine and Arctic Monitoring UAS strategies which includes developing a coordinated effort to maximize the efficiency and capabilities of unmanned systems across the federal government and research partners. Numerous intra- and inter-agency operational demonstrations and assessments have been made to verify and validated these strategies. The presentation will also discuss the requisite sUAS capabilities and our experience in using them.

  16. Societal costs in displaced transverse olecranon fractures: using decision analysis tools to find the most cost-effective strategy between tension band wiring and locked plating.

    PubMed

    Francis, Tittu; Washington, Travis; Srivastava, Karan; Moutzouros, Vasilios; Makhni, Eric C; Hakeos, William

    2017-11-01

    Tension band wiring (TBW) and locked plating are common treatment options for Mayo IIA olecranon fractures. Clinical trials have shown excellent functional outcomes with both techniques. Although TBW implants are significantly less expensive than a locked olecranon plate, TBW often requires an additional operation for implant removal. To choose the most cost-effective treatment strategy, surgeons must understand how implant costs and return to the operating room influence the most cost-effective strategy. This cost-effective analysis study explored the optimal treatment strategies by using decision analysis tools. An expected-value decision tree was constructed to estimate costs based on the 2 implant choices. Values for critical variables, such as implant removal rate, were obtained from the literature. A Monte Carlo simulation consisting of 100,000 trials was used to incorporate variability in medical costs and implant removal rates. Sensitivity analysis and strategy tables were used to show how different variables influence the most cost-effective strategy. TBW was the most cost-effective strategy, with a cost savings of approximately $1300. TBW was also the dominant strategy by being the most cost-effective solution in 63% of the Monte Carlo trials. Sensitivity analysis identified implant costs for plate fixation and surgical costs for implant removal as the most sensitive parameters influencing the cost-effective strategy. Strategy tables showed the most cost-effective solution as 2 parameters vary simultaneously. TBW is the most cost-effective strategy in treating Mayo IIA olecranon fractures despite a higher rate of return to the operating room. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  17. Minimum error discrimination between similarity-transformed quantum states

    NASA Astrophysics Data System (ADS)

    Jafarizadeh, M. A.; Sufiani, R.; Mazhari Khiavi, Y.

    2011-07-01

    Using the well-known necessary and sufficient conditions for minimum error discrimination (MED), we extract an equivalent form for the MED conditions. In fact, by replacing the inequalities corresponding to the MED conditions with an equivalent but more suitable and convenient identity, the problem of mixed state discrimination with optimal success probability is solved. Moreover, we show that the mentioned optimality conditions can be viewed as a Helstrom family of ensembles under some circumstances. Using the given identity, MED between N similarity transformed equiprobable quantum states is investigated. In the case that the unitary operators are generating a set of irreducible representation, the optimal set of measurements and corresponding maximum success probability of discrimination can be determined precisely. In particular, it is shown that for equiprobable pure states, the optimal measurement strategy is the square-root measurement (SRM), whereas for the mixed states, SRM is not optimal. In the case that the unitary operators are reducible, there is no closed-form formula in the general case, but the procedure can be applied in each case in accordance to that case. Finally, we give the maximum success probability of optimal discrimination for some important examples of mixed quantum states, such as generalized Bloch sphere m-qubit states, spin-j states, particular nonsymmetric qudit states, etc.

  18. Minimum error discrimination between similarity-transformed quantum states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarizadeh, M. A.; Institute for Studies in Theoretical Physics and Mathematics, Tehran 19395-1795; Research Institute for Fundamental Sciences, Tabriz 51664

    2011-07-15

    Using the well-known necessary and sufficient conditions for minimum error discrimination (MED), we extract an equivalent form for the MED conditions. In fact, by replacing the inequalities corresponding to the MED conditions with an equivalent but more suitable and convenient identity, the problem of mixed state discrimination with optimal success probability is solved. Moreover, we show that the mentioned optimality conditions can be viewed as a Helstrom family of ensembles under some circumstances. Using the given identity, MED between N similarity transformed equiprobable quantum states is investigated. In the case that the unitary operators are generating a set of irreduciblemore » representation, the optimal set of measurements and corresponding maximum success probability of discrimination can be determined precisely. In particular, it is shown that for equiprobable pure states, the optimal measurement strategy is the square-root measurement (SRM), whereas for the mixed states, SRM is not optimal. In the case that the unitary operators are reducible, there is no closed-form formula in the general case, but the procedure can be applied in each case in accordance to that case. Finally, we give the maximum success probability of optimal discrimination for some important examples of mixed quantum states, such as generalized Bloch sphere m-qubit states, spin-j states, particular nonsymmetric qudit states, etc.« less

  19. Modeling the Environmental Impact of Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Chen, Neil

    2011-01-01

    There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.

  20. Multi-time Scale Coordination of Distributed Energy Resources in Isolated Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony; Xie, Le; Butler-Purry, Karen

    2016-03-31

    In isolated power systems, including microgrids, distributed assets, such as renewable energy resources (e.g. wind, solar) and energy storage, can be actively coordinated to reduce dependency on fossil fuel generation. The key challenge of such coordination arises from significant uncertainty and variability occurring at small time scales associated with increased penetration of renewables. Specifically, the problem is with ensuring economic and efficient utilization of DERs, while also meeting operational objectives such as adequate frequency performance. One possible solution is to reduce the time step at which tertiary controls are implemented and to ensure feedback and look-ahead capability are incorporated tomore » handle variability and uncertainty. However, reducing the time step of tertiary controls necessitates investigating time-scale coupling with primary controls so as not to exacerbate system stability issues. In this paper, an optimal coordination (OC) strategy, which considers multiple time-scales, is proposed for isolated microgrid systems with a mix of DERs. This coordination strategy is based on an online moving horizon optimization approach. The effectiveness of the strategy was evaluated in terms of economics, technical performance, and computation time by varying key parameters that significantly impact performance. The illustrative example with realistic scenarios on a simulated isolated microgrid test system suggests that the proposed approach is generalizable towards designing multi-time scale optimal coordination strategies for isolated power systems.« less

  1. Defense Science and Technology Strategy

    DTIC Science & Technology

    1994-09-01

    I 3 IV. The Science and Technology Program .................... 15 Advanced Concept Technology Demomstrations...product and process concepts that pcrmit us to tailor, modify, and optimize the manufactUriiig process; develop sensors a-t i~a Mcrials that will detect...It can be used during concept formulations to expand the range of technical, operational, and system alternatives evaluated. The technology can

  2. The Salem Smart Power Center: An Assessment of Battery Performance and Economic Potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balducci, Patrick J.; Alam, M. J.E.; Viswanathan, Vilayanur

    This paper presents an assessment of the economic potential of a 5 MW/1.25 MWh Energy Storage System (ESS) installed at the Salem Smart Power Center (SSPC), a smart grid technology demonstration facility owned and operated by Portland General Electric (PGE) in Salem, Oregon. The ESS and the grid conditions in which it operates were modeled using Pacific Northwest National Laboratory’s Battery Storage Evaluation Tool (BSET) to explore tradeoffs between services, and to develop optimal control strategies. This assessment monetized the value derived from nine services the SSPC could provide to PGE and the customers it serves. The ESS and themore » grid conditions in which it operates were modeled using PNNL’s in-house optimization tool BSET to explore tradeoffs between services, and to develop optimal control strategies. The analysis resulted in a number of lessons that provide crucial insights into the practical application of ESS, including; The SSPC, which was originally conceived as a research and test facility and built with the prevailing maturity technology level, was built at a cost ($20.4 million) that exceeds current day prices ($5.4 million) for a similarly designed and built 5 MW/1.25 MWh system; In terms of economic operation, the SSPC is currently underutilized, deployed only for primary frequency response. PNNL modeling indicates that optimal operation of the ESS could generate an additional value of $2.3 million over 20 years. It should also be noted that primary frequency response is the highest benefit application but requires a response from the SSPC only 17 hours each year. While optimally engaged, the ESS would provide arbitrage and ancillary services 78 percent of the time, but those services generate only 27 percent of the total value; Participation in Western EIM represents an interesting opportunity for PGE with a potential to generate $2.1 million value in PV terms over 20 years in the 5-min real-time market; With an energy to power ratio of only 0.25, the SSPC is not well suited to engage in most energy-intensive applications such as arbitrage or ancillary services. By upsizing the storage capacity to 5 MWh and 10MWh, the additional value allows the benefits ($13.3 million and 20.3 million, respectively) to exceed the system’s revenue requirements ($11.5 and $16.4 million, respectively). For the SSPC, ROI ratios exceeded 1.0 when the energy to power ratio fell between 0.5 and 3.5, and peaked at an energy to power ratio of 2.0. This report represents the output of the first of a two-phase effort. Phase II will involve the development of enhanced control strategies to assist PGE in realizing the benefits of energy storage in real-time.« less

  3. Bi-objective optimization of a multiple-target active debris removal mission

    NASA Astrophysics Data System (ADS)

    Bérend, Nicolas; Olive, Xavier

    2016-05-01

    The increasing number of space debris in Low-Earth Orbit (LEO) raises the question of future Active Debris Removal (ADR) operations. Typical ADR scenarios rely on an Orbital Transfer Vehicle (OTV) using one of the two following disposal strategies: the first one consists in attaching a deorbiting kit, such as a solid rocket booster, to the debris after rendezvous; with the second one, the OTV captures the debris and moves it to a low-perigee disposal orbit. For multiple-target ADR scenarios, the design of such a mission is very complex, as it involves two optimization levels: one for the space debris sequence, and a second one for the "elementary" orbit transfer strategy from a released debris to the next one in the sequence. This problem can be seen as a Time-Dependant Traveling Salesman Problem (TDTSP) with two objective functions to minimize: the total mission duration and the total propellant consumption. In order to efficiently solve this problem, ONERA has designed, under CNES contract, TOPAS (Tool for Optimal Planning of ADR Sequence), a tool that implements a Branch & Bound method developed in previous work together with a dedicated algorithm for optimizing the "elementary" orbit transfer. A single run of this tool yields an estimation of the Pareto front of the problem, which exhibits the trade-off between mission duration and propellant consumption. We first detail our solution to cope with the combinatorial explosion of complex ADR scenarios with 10 debris. The key point of this approach is to define the orbit transfer strategy through a small set of parameters, allowing an acceptable compromise between the quality of the optimum solution and the calculation cost. Then we present optimization results obtained for various 10 debris removal scenarios involving a 15-ton OTV, using either the deorbiting kit or the disposal orbit strategy. We show that the advantage of one strategy upon the other depends on the propellant margin, the maximum duration allowed for the mission and the orbit inclination domain. For high inclination orbits near 98 deg, the disposal orbit strategy is more appropriate for short duration missions, while the deorbiting kit strategy ensures a better propellant margin. Conversely, for lower inclination orbits near 65 deg, the deorbiting kit strategy appears to be the only possible with a 10 debris set. We eventually explain the consistency of these results with regards to astrodynamics.

  4. Blood management issues using blood management strategies.

    PubMed

    Stulberg, Bernard N; Zadzilka, Jayson D

    2007-06-01

    Blood management strategies is a term used to address a coordinated approach to the management of blood loss in the perioperative period for total joint arthroplasty. The premise of any blood management strategy is that each patient, surgeon, and operative intervention experiences different risks of requiring transfusion, that those risks can be identified, and that a plan can be implemented to address them. A surgeon's decision to transfuse should be based on physiologic assessment of the patient's response to anemia and not on an arbitrary number ("transfusion trigger"). Intervention strategies can be applied preoperatively, intraoperatively, and postoperatively. Patient-specific planning allows for the appropriate use of patient, hospital, and system resources, ensuring that the consequences of anemia are minimized and that the patient's recovery process is optimized.

  5. Aerodynamic load control strategy of wind turbine in microgrid

    NASA Astrophysics Data System (ADS)

    Wang, Xiangming; Liu, Heshun; Chen, Yanfei

    2017-12-01

    A control strategy is proposed in the paper to optimize the aerodynamic load of the wind turbine in micro-grid. In grid-connection mode, the wind turbine adopts a new individual variable pitch control strategy. The pitch angle of the blade is rapidly given by the controller, and the pitch angle of each blade is fine tuned by the weight coefficient distributor. In islanding mode, according to the requirements of energy storage system, a given power tracking control method based on fuzzy PID control is proposed. Simulation result shows that this control strategy can effectively improve the axial aerodynamic load of the blade under rated wind speed in grid-connection mode, and ensure the smooth operation of the micro-grid in islanding mode.

  6. Wind power generation and dispatch in competitive power markets

    NASA Astrophysics Data System (ADS)

    Abreu, Lisias

    Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.

  7. Optimal Power Scheduling for a Medium Voltage AC/DC Hybrid Distribution Network

    DOE PAGES

    Zhu, Zhenshan; Liu, Dichen; Liao, Qingfen; ...

    2018-01-26

    With the great increase of renewable generation as well as the DC loads in the distribution network; DC distribution technology is receiving more attention; since the DC distribution network can improve operating efficiency and power quality by reducing the energy conversion stages. This paper presents a new architecture for the medium voltage AC/DC hybrid distribution network; where the AC and DC subgrids are looped by normally closed AC soft open point (ACSOP) and DC soft open point (DCSOP); respectively. The proposed AC/DC hybrid distribution systems contain renewable generation (i.e., wind power and photovoltaic (PV) generation); energy storage systems (ESSs); softmore » open points (SOPs); and both AC and DC flexible demands. An energy management strategy for the hybrid system is presented based on the dynamic optimal power flow (DOPF) method. The main objective of the proposed power scheduling strategy is to minimize the operating cost and reduce the curtailment of renewable generation while meeting operational and technical constraints. The proposed approach is verified in five scenarios. The five scenarios are classified as pure AC system; hybrid AC/DC system; hybrid system with interlinking converter; hybrid system with DC flexible demand; and hybrid system with SOPs. Results show that the proposed scheduling method can successfully dispatch the controllable elements; and that the presented architecture for the AC/DC hybrid distribution system is beneficial for reducing operating cost and renewable generation curtailment.« less

  8. Optimal Power Scheduling for a Medium Voltage AC/DC Hybrid Distribution Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zhenshan; Liu, Dichen; Liao, Qingfen

    With the great increase of renewable generation as well as the DC loads in the distribution network; DC distribution technology is receiving more attention; since the DC distribution network can improve operating efficiency and power quality by reducing the energy conversion stages. This paper presents a new architecture for the medium voltage AC/DC hybrid distribution network; where the AC and DC subgrids are looped by normally closed AC soft open point (ACSOP) and DC soft open point (DCSOP); respectively. The proposed AC/DC hybrid distribution systems contain renewable generation (i.e., wind power and photovoltaic (PV) generation); energy storage systems (ESSs); softmore » open points (SOPs); and both AC and DC flexible demands. An energy management strategy for the hybrid system is presented based on the dynamic optimal power flow (DOPF) method. The main objective of the proposed power scheduling strategy is to minimize the operating cost and reduce the curtailment of renewable generation while meeting operational and technical constraints. The proposed approach is verified in five scenarios. The five scenarios are classified as pure AC system; hybrid AC/DC system; hybrid system with interlinking converter; hybrid system with DC flexible demand; and hybrid system with SOPs. Results show that the proposed scheduling method can successfully dispatch the controllable elements; and that the presented architecture for the AC/DC hybrid distribution system is beneficial for reducing operating cost and renewable generation curtailment.« less

  9. An improved artificial bee colony algorithm based on balance-evolution strategy for unmanned combat aerial vehicle path planning.

    PubMed

    Li, Bai; Gong, Li-gang; Yang, Wen-lun

    2014-01-01

    Unmanned combat aerial vehicles (UCAVs) have been of great interest to military organizations throughout the world due to their outstanding capabilities to operate in dangerous or hazardous environments. UCAV path planning aims to obtain an optimal flight route with the threats and constraints in the combat field well considered. In this work, a novel artificial bee colony (ABC) algorithm improved by a balance-evolution strategy (BES) is applied in this optimization scheme. In this new algorithm, convergence information during the iteration is fully utilized to manipulate the exploration/exploitation accuracy and to pursue a balance between local exploitation and global exploration capabilities. Simulation results confirm that BE-ABC algorithm is more competent for the UCAV path planning scheme than the conventional ABC algorithm and two other state-of-the-art modified ABC algorithms.

  10. Engineering low-temperature expression systems for heterologous production of cold-adapted enzymes.

    PubMed

    Bjerga, Gro Elin Kjæreng; Lale, Rahmi; Williamson, Adele Kim

    2016-01-01

    Production of psychrophilic enzymes in the commonly used mesophilic expression systems is hampered by low intrinsic stability of the recombinant enzymes at the optimal host growth temperatures. Unless strategies for low-temperature expression are advanced, research on psychrophilic enzymes may end up being biased toward those that can be stably produced in commonly used mesophilic host systems. Two main strategies are currently being explored for the development of low-temperature expression in bacterial hosts: (i) low-temperature adaption of existing mesophilic expression systems, and (ii) development of new psychrophilic hosts. These developments include genetic engineering of the expression cassettes to optimize the promoter/operator systems that regulate heterologous expression. In this addendum we present our efforts in the development of such low-temperature expression systems, and speculate about future advancements in the field and potential applications.

  11. Sensitivity of California water supply to changes in runoff magnitude and timing: A bottom-up assessment of vulnerabilities and adaptation strategies

    NASA Astrophysics Data System (ADS)

    Fefer, M.; Dogan, M. S.; Herman, J. D.

    2017-12-01

    Long-term shifts in the timing and magnitude of reservoir inflows will potentially have significant impacts on water supply reliability in California, though projections remain uncertain. Here we assess the vulnerability of the statewide system to changes in total annual runoff (a function of precipitation) and the fraction of runoff occurring during the winter months (primarily a function of temperature). An ensemble of scenarios is sampled using a bottom-up approach and compared to the most recent available streamflow projections from the state's 4th Climate Assessment. We evaluate these scenarios using a new open-source version of the CALVIN model, a network flow optimization model encompassing roughly 90% of the urban and agricultural water demands in California, which is capable of running scenario ensembles on a high-performance computing cluster. The economic representation of water demand in the model yields several advantages for this type of analysis: optimized reservoir operating policies to minimize shortage cost and the marginal value of adaptation opportunities, defined by shadow prices on infrastructure and regulatory constraints. Results indicate a shift in optimal reservoir operations and high marginal value of additional reservoir storage in the winter months. The collaborative management of reservoirs in CALVIN yields increased storage in downstream reservoirs to store the increased winter runoff. This study contributes an ensemble evaluation of a large-scale network model to investigate uncertain climate projections, and an approach to interpret the results of economic optimization through the lens of long-term adaptation strategies.

  12. Aeration optimization through operation at low dissolved oxygen concentrations: Evaluation of oxygen mass transfer dynamics in different activated sludge systems.

    PubMed

    Fan, Haitao; Qi, Lu; Liu, Guoqiang; Zhang, Yuankai; Fan, Qiang; Wang, Hongchen

    2017-05-01

    In wastewater treatment plants (WWTPs) using the activated sludge process, two methods are widely used to improve aeration efficiency - use of high-efficiency aeration devices and optimizing the aeration control strategy. Aeration efficiency is closely linked to sludge characteristics (such as concentrations of mixed liquor suspended solids (MLSS) and microbial communities) and operating conditions (such as air flow rate and operational dissolved oxygen (DO) concentrations). Moreover, operational DO is closely linked to effluent quality. This study, which is in reference to WWTP discharge class A Chinese standard effluent criteria, determined the growth kinetics parameters of nitrifiers at different DO levels in small-scale tests. Results showed that the activated sludge system could meet effluent criteria when DO was as low as 0.3mg/L, and that nitrifier communities cultivated under low DO conditions had higher oxygen affinity than those cultivated under high DO conditions, as indicated by the oxygen half-saturation constant and nitrification ability. Based on nitrifier growth kinetics and on the oxygen mass transfer dynamic model (determined using different air flow rate (Q' air ) and mixed liquor volatile suspended solids (MLVSS) values), theoretical analysis indicated limited potential for energy saving by improving aeration diffuser performance when the activated sludge system had low oxygen consumption; however, operating at low DO and low MLVSS could significantly reduce energy consumption. Finally, a control strategy coupling sludge retention time and MLVSS to minimize the DO level was discussed, which is critical to appropriate setting of the oxygen point and to the operation of low DO treatment technology. Copyright © 2016. Published by Elsevier B.V.

  13. A methodology to assess the economic impact of power storage technologies.

    PubMed

    El-Ghandour, Laila; Johnson, Timothy C

    2017-08-13

    We present a methodology for assessing the economic impact of power storage technologies. The methodology is founded on classical approaches to the optimal stopping of stochastic processes but involves an innovation that circumvents the need to, ex ante , identify the form of a driving process and works directly on observed data, avoiding model risks. Power storage is regarded as a complement to the intermittent output of renewable energy generators and is therefore important in contributing to the reduction of carbon-intensive power generation. Our aim is to present a methodology suitable for use by policy makers that is simple to maintain, adaptable to different technologies and easy to interpret. The methodology has benefits over current techniques and is able to value, by identifying a viable optimal operational strategy, a conceived storage facility based on compressed air technology operating in the UK.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  14. Optimization of a Boiling Water Reactor Loading Pattern Using an Improved Genetic Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2003-08-15

    A search method based on genetic algorithms (GA) using deterministic operators has been developed to generate optimized boiling water reactor (BWR) loading patterns (LPs). The search method uses an Improved GA operator, that is, crossover, mutation, and selection. The handling of the encoding technique and constraint conditions is designed so that the GA reflects the peculiar characteristics of the BWR. In addition, some strategies such as elitism and self-reproduction are effectively used to improve the search speed. LP evaluations were performed with a three-dimensional diffusion code that coupled neutronic and thermal-hydraulic models. Strong axial heterogeneities and three-dimensional-dependent constraints have alwaysmore » necessitated the use of three-dimensional core simulators for BWRs, so that an optimization method is required for computational efficiency. The proposed algorithm is demonstrated by successfully generating LPs for an actual BWR plant applying the Haling technique. In test calculations, candidates that shuffled fresh and burned fuel assemblies within a reasonable computation time were obtained.« less

  15. Applying Dynamical Systems Theory to Optimize Libration Point Orbit Stationkeeping Maneuvers for WIND

    NASA Technical Reports Server (NTRS)

    Brown, Jonathan M.; Petersen, Jeremy D.

    2014-01-01

    NASA's WIND mission has been operating in a large amplitude Lissajous orbit in the vicinity of the interior libration point of the Sun-Earth/Moon system since 2004. Regular stationkeeping maneuvers are required to maintain the orbit due to the instability around the collinear libration points. Historically these stationkeeping maneuvers have been performed by applying an incremental change in velocity, or (delta)v along the spacecraft-Sun vector as projected into the ecliptic plane. Previous studies have shown that the magnitude of libration point stationkeeping maneuvers can be minimized by applying the (delta)v in the direction of the local stable manifold found using dynamical systems theory. This paper presents the analysis of this new maneuver strategy which shows that the magnitude of stationkeeping maneuvers can be decreased by 5 to 25 percent, depending on the location in the orbit where the maneuver is performed. The implementation of the optimized maneuver method into operations is discussed and results are presented for the first two optimized stationkeeping maneuvers executed by WIND.

  16. Road screening and distribution route multi-objective robust optimization for hazardous materials based on neural network and genetic algorithm.

    PubMed

    Ma, Changxi; Hao, Wei; Pan, Fuquan; Xiang, Wang

    2018-01-01

    Route optimization of hazardous materials transportation is one of the basic steps in ensuring the safety of hazardous materials transportation. The optimization scheme may be a security risk if road screening is not completed before the distribution route is optimized. For road screening issues of hazardous materials transportation, a road screening algorithm of hazardous materials transportation is built based on genetic algorithm and Levenberg-Marquardt neural network (GA-LM-NN) by analyzing 15 attributes data of each road network section. A multi-objective robust optimization model with adjustable robustness is constructed for the hazardous materials transportation problem of single distribution center to minimize transportation risk and time. A multi-objective genetic algorithm is designed to solve the problem according to the characteristics of the model. The algorithm uses an improved strategy to complete the selection operation, applies partial matching cross shift and single ortho swap methods to complete the crossover and mutation operation, and employs an exclusive method to construct Pareto optimal solutions. Studies show that the sets of hazardous materials transportation road can be found quickly through the proposed road screening algorithm based on GA-LM-NN, whereas the distribution route Pareto solutions with different levels of robustness can be found rapidly through the proposed multi-objective robust optimization model and algorithm.

  17. Optimization of Emissions Sensor Networks Incorporating Tradeoffs Between Different Sensor Technologies

    NASA Astrophysics Data System (ADS)

    Nicholson, B.; Klise, K. A.; Laird, C. D.; Ravikumar, A. P.; Brandt, A. R.

    2017-12-01

    In order to comply with current and future methane emissions regulations, natural gas producers must develop emissions monitoring strategies for their facilities. In addition, regulators must develop air monitoring strategies over wide areas incorporating multiple facilities. However, in both of these cases, only a limited number of sensors can be deployed. With a wide variety of sensors to choose from in terms of cost, precision, accuracy, spatial coverage, location, orientation, and sampling frequency, it is difficult to design robust monitoring strategies for different scenarios while systematically considering the tradeoffs between different sensor technologies. In addition, the geography, weather, and other site specific conditions can have a large impact on the performance of a sensor network. In this work, we demonstrate methods for calculating optimal sensor networks. Our approach can incorporate tradeoffs between vastly different sensor technologies, optimize over typical wind conditions for a particular area, and consider different objectives such as time to detection or geographic coverage. We do this by pre-computing site specific scenarios and using them as input to a mixed-integer, stochastic programming problem that solves for a sensor network that maximizes the effectiveness of the detection program. Our methods and approach have been incorporated within an open source Python package called Chama with the goal of providing facility operators and regulators with tools for designing more effective and efficient monitoring systems. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525.

  18. A hybrid systems strategy for automated spacecraft tour design and optimization

    NASA Astrophysics Data System (ADS)

    Stuart, Jeffrey R.

    As the number of operational spacecraft increases, autonomous operations is rapidly evolving into a critical necessity. Additionally, the capability to rapidly generate baseline trajectories greatly expands the range of options available to analysts as they explore the design space to meet mission demands. Thus, a general strategy is developed, one that is suitable for the construction of flight plans for both Earth-based and interplanetary spacecraft that encounter multiple objects, where these multiple encounters comprise a ``tour''. The proposed scheme is flexible in implementation and can readily be adjusted to a variety of mission architectures. Heuristic algorithms that autonomously generate baseline tour trajectories and, when appropriate, adjust reference solutions in the presence of rapidly changing environments are investigated. Furthermore, relative priorities for ranking the targets are explicitly accommodated during the construction of potential tour sequences. As a consequence, a priori, as well as newly acquired, knowledge concerning the target objects enhances the potential value of the ultimate encounter sequences. A variety of transfer options are incorporated, from rendezvous arcs enabled by low-thrust engines to more conventional impulsive orbit adjustments via chemical propulsion technologies. When advantageous, trajectories are optimized in terms of propellant consumption via a combination of indirect and direct methods; such a combination of available technologies is an example of hybrid optimization. Additionally, elements of hybrid systems theory, i.e., the blending of dynamical states, some discrete and some continuous, are integrated into the high-level tour generation scheme. For a preliminary investigation, this strategy is applied to mission design scenarios for a Sun-Jupiter Trojan asteroid tour as well as orbital debris removal for near-Earth applications.

  19. An implementation of differential evolution algorithm for inversion of geoelectrical data

    NASA Astrophysics Data System (ADS)

    Balkaya, Çağlayan

    2013-11-01

    Differential evolution (DE), a population-based evolutionary algorithm (EA) has been implemented to invert self-potential (SP) and vertical electrical sounding (VES) data sets. The algorithm uses three operators including mutation, crossover and selection similar to genetic algorithm (GA). Mutation is the most important operator for the success of DE. Three commonly used mutation strategies including DE/best/1 (strategy 1), DE/rand/1 (strategy 2) and DE/rand-to-best/1 (strategy 3) were applied together with a binomial type crossover. Evolution cycle of DE was realized without boundary constraints. For the test studies performed with SP data, in addition to both noise-free and noisy synthetic data sets two field data sets observed over the sulfide ore body in the Malachite mine (Colorado) and over the ore bodies in the Neem-Ka Thana cooper belt (India) were considered. VES test studies were carried out using synthetically produced resistivity data representing a three-layered earth model and a field data set example from Gökçeada (Turkey), which displays a seawater infiltration problem. Mutation strategies mentioned above were also extensively tested on both synthetic and field data sets in consideration. Of these, strategy 1 was found to be the most effective strategy for the parameter estimation by providing less computational cost together with a good accuracy. The solutions obtained by DE for the synthetic cases of SP were quite consistent with particle swarm optimization (PSO) which is a more widely used population-based optimization algorithm than DE in geophysics. Estimated parameters of SP and VES data were also compared with those obtained from Metropolis-Hastings (M-H) sampling algorithm based on simulated annealing (SA) without cooling to clarify uncertainties in the solutions. Comparison to the M-H algorithm shows that DE performs a fast approximate posterior sampling for the case of low-dimensional inverse geophysical problems.

  20. Real option valuation of a decremental regulation service provided by electricity storage.

    PubMed

    Szabó, Dávid Zoltán; Martyr, Randall

    2017-08-13

    This paper is a quantitative study of a reserve contract for real-time balancing of a power system. Under this contract, the owner of a storage device, such as a battery, helps smooth fluctuations in electricity demand and supply by using the device to increase electricity consumption. The battery owner must be able to provide immediate physical cover, and should therefore have sufficient storage available in the battery before entering the contract. Accordingly, the following problem can be formulated for the battery owner: determine the optimal time to enter the contract and, if necessary, the optimal time to discharge electricity before entering the contract. This problem is formulated as one of optimal stopping, and is solved explicitly in terms of the model parameters and instantaneous values of the power system imbalance. The optimal operational strategies thus obtained ensure that the battery owner has positive expected economic profit from the contract. Furthermore, they provide explicit conditions under which the optimal discharge time is consistent with the overall objective of power system balancing. This paper also carries out a preliminary investigation of the 'lifetime value' aggregated from an infinite sequence of these balancing reserve contracts. This lifetime value, which can be viewed as a single project valuation of the battery, is shown to be positive and bounded. Therefore, in the long run such reserve contracts can be beneficial to commercial operators of electricity storage, while reducing some of the financial and operational risks in power system balancing.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  1. An Elitist Multiobjective Tabu Search for Optimal Design of Groundwater Remediation Systems.

    PubMed

    Yang, Yun; Wu, Jianfeng; Wang, Jinguo; Zhou, Zhifang

    2017-11-01

    This study presents a new multiobjective evolutionary algorithm (MOEA), the elitist multiobjective tabu search (EMOTS), and incorporates it with MODFLOW/MT3DMS to develop a groundwater simulation-optimization (SO) framework based on modular design for optimal design of groundwater remediation systems using pump-and-treat (PAT) technique. The most notable improvement of EMOTS over the original multiple objective tabu search (MOTS) lies in the elitist strategy, selection strategy, and neighborhood move rule. The elitist strategy is to maintain all nondominated solutions within later search process for better converging to the true Pareto front. The elitism-based selection operator is modified to choose two most remote solutions from current candidate list as seed solutions to increase the diversity of searching space. Moreover, neighborhood solutions are uniformly generated using the Latin hypercube sampling (LHS) in the bounded neighborhood space around each seed solution. To demonstrate the performance of the EMOTS, we consider a synthetic groundwater remediation example. Problem formulations consist of two objective functions with continuous decision variables of pumping rates while meeting water quality requirements. Especially, sensitivity analysis is evaluated through the synthetic case for determination of optimal combination of the heuristic parameters. Furthermore, the EMOTS is successfully applied to evaluate remediation options at the field site of the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts. With both the hypothetical and the large-scale field remediation sites, the EMOTS-based SO framework is demonstrated to outperform the original MOTS in achieving the performance metrics of optimality and diversity of nondominated frontiers with desirable stability and robustness. © 2017, National Ground Water Association.

  2. Optimal Control of Distributed Energy Resources using Model Predictive Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Elizondo, Marcelo A.

    2012-07-22

    In an isolated power system (rural microgrid), Distributed Energy Resources (DERs) such as renewable energy resources (wind, solar), energy storage and demand response can be used to complement fossil fueled generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation. The problem is formulated as a multi-objective optimization problem with the goals of minimizing fuel costs and changes in power output of diesel generators, minimizingmore » costs associated with low battery life of energy storage and maintaining system frequency at the nominal operating value. Two control modes are considered for controlling the energy storage to compensate either net load variability or wind variability. Model predictive control (MPC) is used to solve the aforementioned problem and the performance is compared to an open-loop look-ahead dispatch problem. Simulation studies using high and low wind profiles, as well as, different MPC prediction horizons demonstrate the efficacy of the closed-loop MPC in compensating for uncertainties in wind and demand.« less

  3. Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach

    NASA Astrophysics Data System (ADS)

    Zhou, Daming; Al-Durra, Ahmed; Gao, Fei; Ravey, Alexandre; Matraji, Imad; Godoy Simões, Marcelo

    2017-10-01

    Energy management strategy plays a key role for Fuel Cell Hybrid Electric Vehicles (FCHEVs), it directly affects the efficiency and performance of energy storages in FCHEVs. For example, by using a suitable energy distribution controller, the fuel cell system can be maintained in a high efficiency region and thus saving hydrogen consumption. In this paper, an energy management strategy for online driving cycles is proposed based on a combination of the parameters from three offline optimized fuzzy logic controllers using data fusion approach. The fuzzy logic controllers are respectively optimized for three typical driving scenarios: highway, suburban and city in offline. To classify patterns of online driving cycles, a Probabilistic Support Vector Machine (PSVM) is used to provide probabilistic classification results. Based on the classification results of the online driving cycle, the parameters of each offline optimized fuzzy logic controllers are then fused using Dempster-Shafer (DS) evidence theory, in order to calculate the final parameters for the online fuzzy logic controller. Three experimental validations using Hardware-In-the-Loop (HIL) platform with different-sized FCHEVs have been performed. Experimental comparison results show that, the proposed PSVM-DS based online controller can achieve a relatively stable operation and a higher efficiency of fuel cell system in real driving cycles.

  4. Resource Allocation and Outpatient Appointment Scheduling Using Simulation Optimization

    PubMed Central

    Ling, Teresa Wai Ching; Yeung, Wing Kwan

    2017-01-01

    This paper studies the real-life problems of outpatient clinics having the multiple objectives of minimizing resource overtime, patient waiting time, and waiting area congestion. In the clinic, there are several patient classes, each of which follows different treatment procedure flow paths through a multiphase and multiserver queuing system with scarce staff and limited space. We incorporate the stochastic factors for the probabilities of the patients being diverted into different flow paths, patient punctuality, arrival times, procedure duration, and the number of accompanied visitors. We present a novel two-stage simulation-based heuristic algorithm to assess various tactical and operational decisions for optimizing the multiple objectives. In stage I, we search for a resource allocation plan, and in stage II, we determine a block appointment schedule by patient class and a service discipline for the daily operational level. We also explore the effects of the separate strategies and their integration to identify the best possible combination. The computational experiments are designed on the basis of data from a study of an ophthalmology clinic in a public hospital. Results show that our approach significantly mitigates the undesirable outcomes by integrating the strategies and increasing the resource flexibility at the bottleneck procedures without adding resources. PMID:29104748

  5. New MHD feedback control schemes using the MARTe framework in RFX-mod

    NASA Astrophysics Data System (ADS)

    Piron, Chiara; Manduchi, Gabriele; Marrelli, Lionello; Piovesan, Paolo; Zanca, Paolo

    2013-10-01

    Real-time feedback control of MHD instabilities is a topic of major interest in magnetic thermonuclear fusion, since it allows to optimize a device performance even beyond its stability bounds. The stability properties of different magnetic configurations are important test benches for real-time control systems. RFX-mod, a Reversed Field Pinch experiment that can also operate as a tokamak, is a well suited device to investigate this topic. It is equipped with a sophisticated magnetic feedback system that controls MHD instabilities and error fields by means of 192 active coils and a corresponding grid of sensors. In addition, the RFX-mod control system has recently gained new potentialities thanks to the introduction of the MARTe framework and of a new CPU architecture. These capabilities allow to study new feedback algorithms relevant to both RFP and tokamak operation and to contribute to the debate on the optimal feedback strategy. This work focuses on the design of new feedback schemes. For this purpose new magnetic sensors have been explored, together with new algorithms that refine the de-aliasing computation of the radial sideband harmonics. The comparison of different sensor and feedback strategy performance is described in both RFP and tokamak experiments.

  6. Resource Allocation and Outpatient Appointment Scheduling Using Simulation Optimization.

    PubMed

    Lin, Carrie Ka Yuk; Ling, Teresa Wai Ching; Yeung, Wing Kwan

    2017-01-01

    This paper studies the real-life problems of outpatient clinics having the multiple objectives of minimizing resource overtime, patient waiting time, and waiting area congestion. In the clinic, there are several patient classes, each of which follows different treatment procedure flow paths through a multiphase and multiserver queuing system with scarce staff and limited space. We incorporate the stochastic factors for the probabilities of the patients being diverted into different flow paths, patient punctuality, arrival times, procedure duration, and the number of accompanied visitors. We present a novel two-stage simulation-based heuristic algorithm to assess various tactical and operational decisions for optimizing the multiple objectives. In stage I, we search for a resource allocation plan, and in stage II, we determine a block appointment schedule by patient class and a service discipline for the daily operational level. We also explore the effects of the separate strategies and their integration to identify the best possible combination. The computational experiments are designed on the basis of data from a study of an ophthalmology clinic in a public hospital. Results show that our approach significantly mitigates the undesirable outcomes by integrating the strategies and increasing the resource flexibility at the bottleneck procedures without adding resources.

  7. Simulative method for determining the optimal operating conditions for a cooling plate for lithium-ion battery cell modules

    NASA Astrophysics Data System (ADS)

    Smith, Joshua; Hinterberger, Michael; Hable, Peter; Koehler, Juergen

    2014-12-01

    Extended battery system lifetime and reduced costs are essential to the success of electric vehicles. An effective thermal management strategy is one method of enhancing system lifetime increasing vehicle range. Vehicle-typical space restrictions favor the minimization of battery thermal management system (BTMS) size and weight, making their production and subsequent vehicle integration extremely difficult and complex. Due to these space requirements, a cooling plate as part of a water-glycerol cooling circuit is commonly implemented. This paper presents a computational fluid dynamics (CFD) model and multi-objective analysis technique for determining the thermal effect of coolant flow rate and inlet temperature in a cooling plate-at a range of vehicle operating conditions-on a battery system, thereby providing a dynamic input for one-dimensional models. Traditionally, one-dimensional vehicular thermal management system models assume a static heat input from components such as a battery system: as a result, the components are designed for a set coolant input (flow rate and inlet temperature). Such a design method is insufficient for dynamic thermal management models and control strategies, thereby compromising system efficiency. The presented approach allows for optimal BMTS design and integration in the vehicular coolant circuit.

  8. Analysis of the Multi Strategy Goal Programming for Micro-Grid Based on Dynamic ant Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Qiu, J. P.; Niu, D. X.

    Micro-grid is one of the key technologies of the future energy supplies. Take economic planning. reliability, and environmental protection of micro grid as a basis for the analysis of multi-strategy objective programming problems for micro grid which contains wind power, solar power, and battery and micro gas turbine. Establish the mathematical model of each power generation characteristics and energy dissipation. and change micro grid planning multi-objective function under different operating strategies to a single objective model based on AHP method. Example analysis shows that in combination with dynamic ant mixed genetic algorithm can get the optimal power output of this model.

  9. An economic evaluation and assessment of environmental impact of the municipal solid waste management system for Taichung City in Taiwan.

    PubMed

    Chang, Yao-Jen; Chu, Chien-Wei; Lin, Min-Der

    2012-05-01

    Municipal solid waste management (MSWM) is an important environmental challenge and subject in urban planning. For sustainable MSWM strategies, the critical management factors to be considered include not only economic efficiency of MSW treatment but also life-cycle assessment of the environmental impact. This paper employed linear programming technique to establish optimal MSWM strategies considering economic efficiency and the air pollutant emissions during the life cycle of a MSWM system, and investigated the correlations between the economical optimization and pollutant emissions. A case study based on real-world MSW operating parameters in Taichung City is also presented. The results showed that the costs, benefits, streams of MSW, and throughputs of incinerators and landfills will be affected if pollution emission reductions are implemented in the MSWM strategies. In addition, the quantity of particulate matter is the best pollutant indicator for the MSWM system performance of emission reduction. In particular this model will assist the decision maker in drawing up a friendly MSWM strategy for Taichung City in Taiwan. Recently, life-cycle assessments of municipal solid waste management (MSWM) strategies have been given more considerations. However, what seems to be lacking is the consideration of economic factors and environmental impacts simultaneously. This work analyzed real-world data to establish optimal MSWM strategies considering economic efficiency and the air pollutant emissions during the life cycle of the MSWM system. The results indicated that the consideration of environmental impacts will affect the costs, benefits, streams of MSW, and throughputs of incinerators and landfills. This work is relevant to public discussion and may establish useful guidelines for the MSWM policies.

  10. Optimization techniques applied to passive measures for in-orbit spacecraft survivability

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.; Helba, Michael J.; Hill, Janeil B.

    1992-01-01

    The purpose of this research is to provide Space Station Freedom protective structures design insight through the coupling of design/material requirements, hypervelocity impact phenomenology, meteoroid and space debris environment sensitivities, optimization techniques and operations research strategies, and mission scenarios. The goals of the research are: (1) to develop a Monte Carlo simulation tool which will provide top level insight for Space Station protective structures designers; (2) to develop advanced shielding concepts relevant to Space Station Freedom using unique multiple bumper approaches; and (3) to investigate projectile shape effects on protective structures design.

  11. Towards operating direct methanol fuel cells with highly concentrated fuel

    NASA Astrophysics Data System (ADS)

    Zhao, T. S.; Yang, W. W.; Chen, R.; Wu, Q. X.

    A significant advantage of direct methanol fuel cells (DMFCs) is the high specific energy of the liquid fuel, making it particularly suitable for portable and mobile applications. Nevertheless, conventional DMFCs have to be operated with excessively diluted methanol solutions to limit methanol crossover and the detrimental consequences. Operation with diluted methanol solutions significantly reduces the specific energy of the power pack and thereby prevents it from competing with advanced batteries. In view of this fact, there exists a need to improve conventional DMFC system designs, including membrane electrode assemblies and the subsystems for supplying/removing reactants/products, so that both the cell performance and the specific energy can be simultaneously maximized. This article provides a comprehensive review of past efforts on the optimization of DMFC systems that operate with concentrated methanol. Based on the discussion of the key issues associated with transport of the reactants/products, the strategies to manage the supply/removal of the reactants/products in DMFC operating with highly concentrated methanol are identified. With these strategies, the possible approaches to achieving the goal of concentrated fuel operation are then proposed. Past efforts in the management of the reactants/products for implementing each of the approaches are also summarized and reviewed.

  12. Optimal reconstruction of historical water supply to a distribution system: A. Methodology.

    PubMed

    Aral, M M; Guan, J; Maslia, M L; Sautner, J B; Gillig, R E; Reyes, J J; Williams, R C

    2004-09-01

    The New Jersey Department of Health and Senior Services (NJDHSS), with support from the Agency for Toxic Substances and Disease Registry (ATSDR) conducted an epidemiological study of childhood leukaemia and nervous system cancers that occurred in the period 1979 through 1996 in Dover Township, Ocean County, New Jersey. The epidemiological study explored a wide variety of possible risk factors, including environmental exposures. ATSDR and NJDHSS determined that completed human exposure pathways to groundwater contaminants occurred in the past through private and community water supplies (i.e. the water distribution system serving the area). To investigate this exposure, a model of the water distribution system was developed and calibrated through an extensive field investigation. The components of this water distribution system, such as number of pipes, number of tanks, and number of supply wells in the network, changed significantly over a 35-year period (1962--1996), the time frame established for the epidemiological study. Data on the historical management of this system was limited. Thus, it was necessary to investigate alternative ways to reconstruct the operation of the system and test the sensitivity of the system to various alternative operations. Manual reconstruction of the historical water supply to the system in order to provide this sensitivity analysis was time-consuming and labour intensive, given the complexity of the system and the time constraints imposed on the study. To address these issues, the problem was formulated as an optimization problem, where it was assumed that the water distribution system was operated in an optimum manner at all times to satisfy the constraints in the system. The solution to the optimization problem provided the historical water supply strategy in a consistent manner for each month of the study period. The non-uniqueness of the selected historical water supply strategy was addressed by the formulation of a second model, which was based on the first solution. Numerous other sensitivity analyses were also conducted using these two models. Both models are solved using a two-stage progressive optimality algorithm along with genetic algorithms (GAs) and the EPANET2 water distribution network solver. This process reduced the required solution time and generated a historically consistent water supply strategy for the water distribution system.

  13. Decentralized DC Microgrid Monitoring and Optimization via Primary Control Perturbations

    NASA Astrophysics Data System (ADS)

    Angjelichinoski, Marko; Scaglione, Anna; Popovski, Petar; Stefanovic, Cedomir

    2018-06-01

    We treat the emerging power systems with direct current (DC) MicroGrids, characterized with high penetration of power electronic converters. We rely on the power electronics to propose a decentralized solution for autonomous learning of and adaptation to the operating conditions of the DC Mirogrids; the goal is to eliminate the need to rely on an external communication system for such purpose. The solution works within the primary droop control loops and uses only local bus voltage measurements. Each controller is able to estimate (i) the generation capacities of power sources, (ii) the load demands, and (iii) the conductances of the distribution lines. To define a well-conditioned estimation problem, we employ decentralized strategy where the primary droop controllers temporarily switch between operating points in a coordinated manner, following amplitude-modulated training sequences. We study the use of the estimator in a decentralized solution of the Optimal Economic Dispatch problem. The evaluations confirm the usefulness of the proposed solution for autonomous MicroGrid operation.

  14. Cloud Model-Based Artificial Immune Network for Complex Optimization Problem.

    PubMed

    Wang, Mingan; Feng, Shuo; Li, Jianming; Li, Zhonghua; Xue, Yu; Guo, Dongliang

    2017-01-01

    This paper proposes an artificial immune network based on cloud model (AINet-CM) for complex function optimization problems. Three key immune operators-cloning, mutation, and suppression-are redesigned with the help of the cloud model. To be specific, an increasing half cloud-based cloning operator is used to adjust the dynamic clone multipliers of antibodies, an asymmetrical cloud-based mutation operator is used to control the adaptive evolution of antibodies, and a normal similarity cloud-based suppressor is used to keep the diversity of the antibody population. To quicken the searching convergence, a dynamic searching step length strategy is adopted. For comparative study, a series of numerical simulations are arranged between AINet-CM and the other three artificial immune systems, that is, opt-aiNet, IA-AIS, and AAIS-2S. Furthermore, two industrial applications-finite impulse response (FIR) filter design and proportional-integral-differential (PID) controller tuning-are investigated and the results demonstrate the potential searching capability and practical value of the proposed AINet-CM algorithm.

  15. Research on strategy and optimization method of PRT empty vehicles resource allocation based on traffic demand forecast

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Tao, Cheng

    2018-05-01

    During the operation of the personal rapid transit system(PRT), the empty vehicle resources is distributed unevenly because of different passenger demand. In order to maintain the balance between supply and demand, and to meet the passenger needs of the ride, PRT empty vehicle resource allocation model is constructed based on the future demand forecasted by historical demand in this paper. The improved genetic algorithm is implied in distribution of the empty vehicle which can reduce the customers waiting time and improve the operation efficiency of the PRT system so that all passengers can take the PRT vehicles in the shortest time. The experimental result shows that the improved genetic algorithm can allocate the empty vehicle from the system level optimally, and realize the distribution of the empty vehicle resources reasonably in the system.

  16. Ideal AFROC and FROC observers.

    PubMed

    Khurd, Parmeshwar; Liu, Bin; Gindi, Gene

    2010-02-01

    Detection of multiple lesions in images is a medically important task and free-response receiver operating characteristic (FROC) analyses and its variants, such as alternative FROC (AFROC) analyses, are commonly used to quantify performance in such tasks. However, ideal observers that optimize FROC or AFROC performance metrics have not yet been formulated in the general case. If available, such ideal observers may turn out to be valuable for imaging system optimization and in the design of computer aided diagnosis techniques for lesion detection in medical images. In this paper, we derive ideal AFROC and FROC observers. They are ideal in that they maximize, amongst all decision strategies, the area, or any partial area, under the associated AFROC or FROC curve. Calculation of observer performance for these ideal observers is computationally quite complex. We can reduce this complexity by considering forms of these observers that use false positive reports derived from signal-absent images only. We also consider a Bayes risk analysis for the multiple-signal detection task with an appropriate definition of costs. A general decision strategy that minimizes Bayes risk is derived. With particular cost constraints, this general decision strategy reduces to the decision strategy associated with the ideal AFROC or FROC observer.

  17. System level modeling and component level control of fuel cells

    NASA Astrophysics Data System (ADS)

    Xue, Xingjian

    This dissertation investigates the fuel cell systems and the related technologies in three aspects: (1) system-level dynamic modeling of both PEM fuel cell (PEMFC) and solid oxide fuel cell (SOFC); (2) condition monitoring scheme development of PEM fuel cell system using model-based statistical method; and (3) strategy and algorithm development of precision control with potential application in energy systems. The dissertation first presents a system level dynamic modeling strategy for PEM fuel cells. It is well known that water plays a critical role in PEM fuel cell operations. It makes the membrane function appropriately and improves the durability. The low temperature operating conditions, however, impose modeling difficulties in characterizing the liquid-vapor two phase change phenomenon, which becomes even more complex under dynamic operating conditions. This dissertation proposes an innovative method to characterize this phenomenon, and builds a comprehensive model for PEM fuel cell at the system level. The model features the complete characterization of multi-physics dynamic coupling effects with the inclusion of dynamic phase change. The model is validated using Ballard stack experimental result from open literature. The system behavior and the internal coupling effects are also investigated using this model under various operating conditions. Anode-supported tubular SOFC is also investigated in the dissertation. While the Nernst potential plays a central role in characterizing the electrochemical performance, the traditional Nernst equation may lead to incorrect analysis results under dynamic operating conditions due to the current reverse flow phenomenon. This dissertation presents a systematic study in this regard to incorporate a modified Nernst potential expression and the heat/mass transfer into the analysis. The model is used to investigate the limitations and optimal results of various operating conditions; it can also be utilized to perform the optimal design of tubular SOFC. With the system-level dynamic model as a basis, a framework for the robust, online monitoring of PEM fuel cell is developed in the dissertation. The monitoring scheme employs the Hotelling T2 based statistical scheme to handle the measurement noise and system uncertainties and identifies the fault conditions through a series of self-checking and conformal testing. A statistical sampling strategy is also utilized to improve the computation efficiency. Fuel/gas flow control is the fundamental operation for fuel cell energy systems. In the final part of the dissertation, a high-precision and robust tracking control scheme using piezoelectric actuator circuit with direct hysteresis compensation is developed. The key characteristic of the developed control algorithm includes the nonlinear continuous control action with the adaptive boundary layer strategy.

  18. Optimism, coping and long-term recovery from coronary artery surgery in women.

    PubMed

    King, K B; Rowe, M A; Kimble, L P; Zerwic, J J

    1998-02-01

    Optimism, coping strategies, and psychological and functional outcomes were measured in 55 women undergoing coronary artery surgery. Data were collected in-hospital and at 1, 6, and 12 months after surgery. Optimism was related to positive moods and life satisfaction, and inversely related to negative moods. Few relationships were found between optimism and functional ability. Cognitive coping strategies accounted for a mediating effect between optimism and negative mood. Optimists were more likely to accept their situation, and less likely to use escapism. In turn, these coping strategies were inversely related to negative mood and mediated the relationship between optimism and this outcome. Optimism was not related to problem-focused coping strategies; this, these coping strategies cannot explain the relationship between optimism and outcomes.

  19. Optimal Power Flow for Distribution Systems under Uncertain Forecasts: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Baker, Kyri; Summers, Tyler

    2016-12-01

    The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative boundsmore » that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.« less

  20. Blast optimization for improved dragline productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphreys, M.; Baldwin, G.

    1994-12-31

    A project aimed at blast optimization for large open pit coal mines is utilizing blast monitoring and analysis techniques, advanced dragline monitoring equipment, and blast simulation software, to assess the major controlling factors affecting both blast performance and subsequent dragline productivity. This has involved collaborative work between the explosives supplier, mine operator, monitoring equipment manufacturer, and a mining research organization. The results from trial blasts and subsequently monitored dragline production have yielded promising results and continuing studies are being conducted as part of a blast optimization program. It should be stressed that the optimization of blasting practices for improved draglinemore » productivity is a site specific task, achieved through controlled and closely monitored procedures. The benefits achieved at one location can not be simply transferred to another minesite unless similar improvement strategies are first implemented.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Baker, Kyri; Summers, Tyler

    The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative boundsmore » that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.« less

  2. Research reactor loading pattern optimization using estimation of distribution algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, S.; Ziver, K.; AMCG Group, RM Consultants, Abingdon

    2006-07-01

    A new evolutionary search based approach for solving the nuclear reactor loading pattern optimization problems is presented based on the Estimation of Distribution Algorithms. The optimization technique developed is then applied to the maximization of the effective multiplication factor (K{sub eff}) of the Imperial College CONSORT research reactor (the last remaining civilian research reactor in the United Kingdom). A new elitism-guided searching strategy has been developed and applied to improve the local convergence together with some problem-dependent information based on the 'stand-alone K{sub eff} with fuel coupling calculations. A comparison study between the EDAs and a Genetic Algorithm with Heuristicmore » Tie Breaking Crossover operator has shown that the new algorithm is efficient and robust. (authors)« less

  3. Control strategy optimization of HVAC plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Facci, Andrea Luigi; Zanfardino, Antonella; Martini, Fabrizio

    In this paper we present a methodology to optimize the operating conditions of heating, ventilation and air conditioning (HVAC) plants to achieve a higher energy efficiency in use. Semi-empiric numerical models of the plant components are used to predict their performances as a function of their set-point and the environmental and occupied space conditions. The optimization is performed through a graph-based algorithm that finds the set-points of the system components that minimize energy consumption and/or energy costs, while matching the user energy demands. The resulting model can be used with systems of almost any complexity, featuring both HVAC components andmore » energy systems, and is sufficiently fast to make it applicable to real-time setting.« less

  4. Optimizing withdrawal from drinking water reservoirs to reduce downstream temperature pollution and reservoir hypoxia.

    PubMed

    Weber, M; Rinke, K; Hipsey, M R; Boehrer, B

    2017-07-15

    Sustainable management of drinking water reservoirs requires balancing the demands of water supply whilst minimizing environmental impact. This study numerically simulates the effect of an improved withdrawal scheme designed to alleviate the temperature pollution downstream of a reservoir. The aim was to identify an optimal withdrawal strategy such that water of a desirable discharge temperature can be supplied downstream without leading to unacceptably low oxygen concentrations within the reservoir. First, we calibrated a one-dimensional numerical model for hydrodynamics and oxygen dynamics (GLM-AED2), verifying that the model reproduced water temperatures and hypolimnetic dissolved oxygen concentrations accurately over a 5 year period. Second, the model was extended to include an adaptive withdrawal functionality, allowing for a prescribed withdrawal temperature to be found, with the potential constraint of hypolimnetic oxygen concentration. Scenario simulations on epi-/metalimnetic withdrawal demonstrate that the model is able to autonomously determine the best withdrawal height depending on the thermal structure and the hypolimnetic oxygen concentration thereby optimizing the ability to supply a desirable discharge temperature to the downstream river during summer. This new withdrawal strategy also increased the hypolimnetic raw water volume to be used for drinking water supply, but reduced the dissolved oxygen concentrations in the deep and cold water layers (hypolimnion). Implications of the results for reservoir management are discussed and the numerical model is provided for operators as a simple and efficient tool for optimizing the withdrawal strategy within different reservoir contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Energy Performance and Optimal Control of Air-conditioned Buildings Integrated with Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Zhu, Na

    This thesis presents an overview of the previous research work on dynamic characteristics and energy performance of buildings due to the integration of PCMs. The research work on dynamic characteristics and energy performance of buildings using PCMs both with and without air-conditioning is reviewed. Since the particular interest in using PCMs for free cooling and peak load shifting, specific research efforts on both subjects are reviewed separately. A simplified physical dynamic model of building structures integrated with SSPCM (shaped-stabilized phase change material) is developed and validated in this study. The simplified physical model represents the wall by 3 resistances and 2 capacitances and the PCM layer by 4 resistances and 2 capacitances respectively while the key issue is the parameter identification of the model. This thesis also presents the studies on the thermodynamic characteristics of buildings enhanced by PCM and on the investigation of the impacts of PCM on the building cooling load and peak cooling demand at different climates and seasons as well as the optimal operation and control strategies to reduce the energy consumption and energy cost by reducing the air-conditioning energy consumption and peak load. An office building floor with typical variable air volume (VAV) air-conditioning system is used and simulated as the reference building in the comparison study. The envelopes of the studied building are further enhanced by integrating the PCM layers. The building system is tested in two selected cities of typical climates in China including Hong Kong and Beijing. The cold charge and discharge processes, the operation and control strategies of night ventilation and the air temperature set-point reset strategy for minimizing the energy consumption and electricity cost are studied. This thesis presents the simulation test platform, the test results on the cold storage and discharge processes, the air-conditioning energy consumption and demand reduction potentials in typical air-conditioning seasons in typical China cites as well as the impacts of operation and control strategies.

  6. Multi-period response management to contaminated water distribution networks: dynamic programming versus genetic algorithms

    NASA Astrophysics Data System (ADS)

    Bashi-Azghadi, Seyyed Nasser; Afshar, Abbas; Afshar, Mohammad Hadi

    2018-03-01

    Previous studies on consequence management assume that the selected response action including valve closure and/or hydrant opening remains unchanged during the entire management period. This study presents a new embedded simulation-optimization methodology for deriving time-varying operational response actions in which the network topology may change from one stage to another. Dynamic programming (DP) and genetic algorithm (GA) are used in order to minimize selected objective functions. Two networks of small and large sizes are used in order to illustrate the performance of the proposed modelling schemes if a time-dependent consequence management strategy is to be implemented. The results show that for a small number of decision variables even in large-scale networks, DP is superior in terms of accuracy and computer runtime. However, as the number of potential actions grows, DP loses its merit over the GA approach. This study clearly proves the priority of the proposed dynamic operation strategy over the commonly used static strategy.

  7. A review of fault tolerant control strategies applied to proton exchange membrane fuel cell systems

    NASA Astrophysics Data System (ADS)

    Dijoux, Etienne; Steiner, Nadia Yousfi; Benne, Michel; Péra, Marie-Cécile; Pérez, Brigitte Grondin

    2017-08-01

    Fuel cells are powerful systems for power generation. They have a good efficiency and do not generate greenhouse gases. This technology involves a lot of scientific fields, which leads to the appearance of strongly inter-dependent parameters. This makes the system particularly hard to control and increases fault's occurrence frequency. These two issues call for the necessity to maintain the system performance at the expected level, even in faulty operating conditions. It is called "fault tolerant control" (FTC). The present paper aims to give the state of the art of FTC applied to the proton exchange membrane fuel cell (PEMFC). The FTC approach is composed of two parts. First, a diagnosis part allows the identification and the isolation of a fault; it requires a good a priori knowledge of all the possible faults. Then, a control part allows an optimal control strategy to find the best operating point to recover/mitigate the fault; it requires the knowledge of the degradation phenomena and their mitigation strategies.

  8. Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittmann, Christoffer; Sych, Denis; Leuchs, Gerd

    2010-06-15

    We investigate quantum measurement strategies capable of discriminating two coherent states probabilistically with significantly smaller error probabilities than can be obtained using nonprobabilistic state discrimination. We apply a postselection strategy to the measurement data of a homodyne detector as well as a photon number resolving detector in order to lower the error probability. We compare the two different receivers with an optimal intermediate measurement scheme where the error rate is minimized for a fixed rate of inconclusive results. The photon number resolving (PNR) receiver is experimentally demonstrated and compared to an experimental realization of a homodyne receiver with postselection. Inmore » the comparison, it becomes clear that the performance of the PNR receiver surpasses the performance of the homodyne receiver, which we prove to be optimal within any Gaussian operations and conditional dynamics.« less

  9. The model and the planning method of volume and variety assessment of innovative products in an industrial enterprise

    NASA Astrophysics Data System (ADS)

    Anisimov, V. G.; Anisimov, E. G.; Saurenko, T. N.; Sonkin, M. A.

    2017-01-01

    In the long term, the innovative development strategy efficiency is considered as the most crucial condition for assurance of economic system competitiveness in market conditions. It determines the problem relevance of such justification strategies with regard to specific systems features and conditions of their operation. The problem solution for industrial enterprises can be based on mathematical models of supporting the decision-making on the elements of the innovative manufacturing program. An optimization model and the planning method of innovative products volume and variety are suggested. The feature of the suggested model lies in the nonlinear nature of the objective function. It allows taking into consideration the law of diminishing marginal utility. The suggested method of optimization takes into account the system features and enables the effective implementation of manufacturing capabilities in modern conditions of production organization and sales in terms of market saturation.

  10. Boosting-Based Optimization as a Generic Framework for Novelty and Fraud Detection in Complex Strategies

    NASA Astrophysics Data System (ADS)

    Gavrishchaka, Valeriy V.; Kovbasinskaya, Maria; Monina, Maria

    2008-11-01

    Novelty detection is a very desirable additional feature of any practical classification or forecasting system. Novelty and rare patterns detection is the main objective in such applications as fault/abnormality discovery in complex technical and biological systems, fraud detection and risk management in financial and insurance industry. Although many interdisciplinary approaches for rare event modeling and novelty detection have been proposed, significant data incompleteness due to the nature of the problem makes it difficult to find a universal solution. Even more challenging and much less formalized problem is novelty detection in complex strategies and models where practical performance criteria are usually multi-objective and the best state-of-the-art solution is often not known due to the complexity of the task and/or proprietary nature of the application area. For example, it is much more difficult to detect a series of small insider trading or other illegal transactions mixed with valid operations and distributed over long time period according to a well-designed strategy than a single, large fraudulent transaction. Recently proposed boosting-based optimization was shown to be an effective generic tool for the discovery of stable multi-component strategies/models from the existing parsimonious base strategies/models in financial and other applications. Here we outline how the same framework can be used for novelty and fraud detection in complex strategies and models.

  11. An Improved Quantum-Behaved Particle Swarm Optimization Algorithm with Elitist Breeding for Unconstrained Optimization.

    PubMed

    Yang, Zhen-Lun; Wu, Angus; Min, Hua-Qing

    2015-01-01

    An improved quantum-behaved particle swarm optimization with elitist breeding (EB-QPSO) for unconstrained optimization is presented and empirically studied in this paper. In EB-QPSO, the novel elitist breeding strategy acts on the elitists of the swarm to escape from the likely local optima and guide the swarm to perform more efficient search. During the iterative optimization process of EB-QPSO, when criteria met, the personal best of each particle and the global best of the swarm are used to generate new diverse individuals through the transposon operators. The new generated individuals with better fitness are selected to be the new personal best particles and global best particle to guide the swarm for further solution exploration. A comprehensive simulation study is conducted on a set of twelve benchmark functions. Compared with five state-of-the-art quantum-behaved particle swarm optimization algorithms, the proposed EB-QPSO performs more competitively in all of the benchmark functions in terms of better global search capability and faster convergence rate.

  12. On sustainable and efficient design of ground-source heat pump systems

    NASA Astrophysics Data System (ADS)

    Grassi, W.; Conti, P.; Schito, E.; Testi, D.

    2015-11-01

    This paper is mainly aimed at stressing some fundamental features of the GSHP design and is based on a broad research we are performing at the University of Pisa. In particular, we focus the discussion on an environmentally sustainable approach, based on performance optimization during the entire operational life. The proposed methodology aims at investigating design and management strategies to find the optimal level of exploitation of the ground source and refer to other technical means to cover the remaining energy requirements and modulate the power peaks. The method is holistic, considering the system as a whole, rather than focusing only on some components, usually considered as the most important ones. Each subsystem is modeled and coupled to the others in a full set of equations, which is used within an optimization routine to reproduce the operative performances of the overall GSHP system. As a matter of fact, the recommended methodology is a 4-in-1 activity, including sizing of components, lifecycle performance evaluation, optimization process, and feasibility analysis. The paper reviews also some previous works concerning possible applications of the proposed methodology. In conclusion, we describe undergoing research activities and objectives of future works.

  13. A Novel Iterative Scheme for the Very Fast and Accurate Solution of Non-LTE Radiative Transfer Problems

    NASA Astrophysics Data System (ADS)

    Trujillo Bueno, J.; Fabiani Bendicho, P.

    1995-12-01

    Iterative schemes based on Gauss-Seidel (G-S) and optimal successive over-relaxation (SOR) iteration are shown to provide a dramatic increase in the speed with which non-LTE radiation transfer (RT) problems can be solved. The convergence rates of these new RT methods are identical to those of upper triangular nonlocal approximate operator splitting techniques, but the computing time per iteration and the memory requirements are similar to those of a local operator splitting method. In addition to these properties, both methods are particularly suitable for multidimensional geometry, since they neither require the actual construction of nonlocal approximate operators nor the application of any matrix inversion procedure. Compared with the currently used Jacobi technique, which is based on the optimal local approximate operator (see Olson, Auer, & Buchler 1986), the G-S method presented here is faster by a factor 2. It gives excellent smoothing of the high-frequency error components, which makes it the iterative scheme of choice for multigrid radiative transfer. This G-S method can also be suitably combined with standard acceleration techniques to achieve even higher performance. Although the convergence rate of the optimal SOR scheme developed here for solving non-LTE RT problems is much higher than G-S, the computing time per iteration is also minimal, i.e., virtually identical to that of a local operator splitting method. While the conventional optimal local operator scheme provides the converged solution after a total CPU time (measured in arbitrary units) approximately equal to the number n of points per decade of optical depth, the time needed by this new method based on the optimal SOR iterations is only √n/2√2. This method is competitive with those that result from combining the above-mentioned Jacobi and G-S schemes with the best acceleration techniques. Contrary to what happens with the local operator splitting strategy currently in use, these novel methods remain effective even under extreme non-LTE conditions in very fine grids.

  14. Industrial waste recycling strategies optimization problem: mixed integer programming model and heuristics

    NASA Astrophysics Data System (ADS)

    Tang, Jiafu; Liu, Yang; Fung, Richard; Luo, Xinggang

    2008-12-01

    Manufacturers have a legal accountability to deal with industrial waste generated from their production processes in order to avoid pollution. Along with advances in waste recovery techniques, manufacturers may adopt various recycling strategies in dealing with industrial waste. With reuse strategies and technologies, byproducts or wastes will be returned to production processes in the iron and steel industry, and some waste can be recycled back to base material for reuse in other industries. This article focuses on a recovery strategies optimization problem for a typical class of industrial waste recycling process in order to maximize profit. There are multiple strategies for waste recycling available to generate multiple byproducts; these byproducts are then further transformed into several types of chemical products via different production patterns. A mixed integer programming model is developed to determine which recycling strategy and which production pattern should be selected with what quantity of chemical products corresponding to this strategy and pattern in order to yield maximum marginal profits. The sales profits of chemical products and the set-up costs of these strategies, patterns and operation costs of production are considered. A simulated annealing (SA) based heuristic algorithm is developed to solve the problem. Finally, an experiment is designed to verify the effectiveness and feasibility of the proposed method. By comparing a single strategy to multiple strategies in an example, it is shown that the total sales profit of chemical products can be increased by around 25% through the simultaneous use of multiple strategies. This illustrates the superiority of combinatorial multiple strategies. Furthermore, the effects of the model parameters on profit are discussed to help manufacturers organize their waste recycling network.

  15. Optimal GENCO bidding strategy

    NASA Astrophysics Data System (ADS)

    Gao, Feng

    Electricity industries worldwide are undergoing a period of profound upheaval. The conventional vertically integrated mechanism is being replaced by a competitive market environment. Generation companies have incentives to apply novel technologies to lower production costs, for example: Combined Cycle units. Economic dispatch with Combined Cycle units becomes a non-convex optimization problem, which is difficult if not impossible to solve by conventional methods. Several techniques are proposed here: Mixed Integer Linear Programming, a hybrid method, as well as Evolutionary Algorithms. Evolutionary Algorithms share a common mechanism, stochastic searching per generation. The stochastic property makes evolutionary algorithms robust and adaptive enough to solve a non-convex optimization problem. This research implements GA, EP, and PS algorithms for economic dispatch with Combined Cycle units, and makes a comparison with classical Mixed Integer Linear Programming. The electricity market equilibrium model not only helps Independent System Operator/Regulator analyze market performance and market power, but also provides Market Participants the ability to build optimal bidding strategies based on Microeconomics analysis. Supply Function Equilibrium (SFE) is attractive compared to traditional models. This research identifies a proper SFE model, which can be applied to a multiple period situation. The equilibrium condition using discrete time optimal control is then developed for fuel resource constraints. Finally, the research discusses the issues of multiple equilibria and mixed strategies, which are caused by the transmission network. Additionally, an advantage of the proposed model for merchant transmission planning is discussed. A market simulator is a valuable training and evaluation tool to assist sellers, buyers, and regulators to understand market performance and make better decisions. A traditional optimization model may not be enough to consider the distributed, large-scale, and complex energy market. This research compares the performance and searching paths of different artificial life techniques such as Genetic Algorithm (GA), Evolutionary Programming (EP), and Particle Swarm (PS), and look for a proper method to emulate Generation Companies' (GENCOs) bidding strategies. After deregulation, GENCOs face risk and uncertainty associated with the fast-changing market environment. A profit-based bidding decision support system is critical for GENCOs to keep a competitive position in the new environment. Most past research do not pay special attention to the piecewise staircase characteristic of generator offer curves. This research proposes an optimal bidding strategy based on Parametric Linear Programming. The proposed algorithm is able to handle actual piecewise staircase energy offer curves. The proposed method is then extended to incorporate incomplete information based on Decision Analysis. Finally, the author develops an optimal bidding tool (GenBidding) and applies it to the RTS96 test system.

  16. ReSCA: decision support tool for remediation planning after the Chernobyl accident.

    PubMed

    Ulanovsky, A; Jacob, P; Fesenko, S; Bogdevitch, I; Kashparov, V; Sanzharova, N

    2011-03-01

    Radioactive contamination of the environment following the Chernobyl accident still provide a substantial impact on the population of affected territories in Belarus, Russia, and Ukraine. Reduction of population exposure can be achieved by performing remediation activities in these areas. Resulting from the IAEA Technical Co-operation Projects with these countries, the program ReSCA (Remediation Strategies after the Chernobyl Accident) has been developed to provide assistance to decision makers and to facilitate a selection of an optimized remediation strategy in rural settlements. The paper provides in-depth description of the program, its algorithm, and structure. © Springer-Verlag 2010

  17. Arity Raising in Manticore

    NASA Astrophysics Data System (ADS)

    Bergstrom, Lars; Reppy, John

    Compilers for polymorphic languages are required to treat values in programs in an abstract and generic way at the source level. The challenges of optimizing the boxing of raw values, flattening of argument tuples, and raising the arity of functions that handle complex structures to reduce memory usage are old ones, but take on newfound import with processors that have twice as many registers. We present a novel strategy that uses both control-flow and type information to provide an arity raising implementation addressing these problems. This strategy is conservative - no matter the execution path, the transformed program will not perform extra operations.

  18. Control of Smart Building Using Advanced SCADA

    NASA Astrophysics Data System (ADS)

    Samuel, Vivin Thomas

    For complete control of the building, a proper SCADA implementation and the optimization strategy has to be build. For better communication and efficiency a proper channel between the Communication protocol and SCADA has to be designed. This paper concentrate mainly between the communication protocol, and the SCADA implementation, for a better optimization and energy savings is derived to large scale industrial buildings. The communication channel used in order to completely control the building remotely from a distant place. For an efficient result we consider the temperature values and the power ratings of the equipment so that while controlling the equipment, we are setting a threshold values for FDD technique implementation. Building management system became a vital source for any building to maintain it and for safety purpose. Smart buildings, refers to various distinct features, where the complete automation system, office building controls, data center controls. ELC's are used to communicate the load values of the building to the remote server from a far location with the help of an Ethernet communication channel. Based on the demand fluctuation and the peak voltage, the loads operate differently increasing the consumption rate thus results in the increase in the annual consumption bill. In modern days, saving energy and reducing the consumption bill is most essential for any building for a better and long operation. The equipment - monitored regularly and optimization strategy is implemented for cost reduction automation system. Thus results in the reduction of annual cost reduction and load lifetime increase.

  19. Balancing Exploration, Uncertainty Representation and Computational Time in Many-Objective Reservoir Policy Optimization

    NASA Astrophysics Data System (ADS)

    Zatarain-Salazar, J.; Reed, P. M.; Quinn, J.; Giuliani, M.; Castelletti, A.

    2016-12-01

    As we confront the challenges of managing river basin systems with a large number of reservoirs and increasingly uncertain tradeoffs impacting their operations (due to, e.g. climate change, changing energy markets, population pressures, ecosystem services, etc.), evolutionary many-objective direct policy search (EMODPS) solution strategies will need to address the computational demands associated with simulating more uncertainties and therefore optimizing over increasingly noisy objective evaluations. Diagnostic assessments of state-of-the-art many-objective evolutionary algorithms (MOEAs) to support EMODPS have highlighted that search time (or number of function evaluations) and auto-adaptive search are key features for successful optimization. Furthermore, auto-adaptive MOEA search operators are themselves sensitive to having a sufficient number of function evaluations to learn successful strategies for exploring complex spaces and for escaping from local optima when stagnation is detected. Fortunately, recent parallel developments allow coordinated runs that enhance auto-adaptive algorithmic learning and can handle scalable and reliable search with limited wall-clock time, but at the expense of the total number of function evaluations. In this study, we analyze this tradeoff between parallel coordination and depth of search using different parallelization schemes of the Multi-Master Borg on a many-objective stochastic control problem. We also consider the tradeoff between better representing uncertainty in the stochastic optimization, and simplifying this representation to shorten the function evaluation time and allow for greater search. Our analysis focuses on the Lower Susquehanna River Basin (LSRB) system where multiple competing objectives for hydropower production, urban water supply, recreation and environmental flows need to be balanced. Our results provide guidance for balancing exploration, uncertainty, and computational demands when using the EMODPS framework to discover key tradeoffs within the LSRB system.

  20. Optimizing integrated airport surface and terminal airspace operations under uncertainty

    NASA Astrophysics Data System (ADS)

    Bosson, Christabelle S.

    In airports and surrounding terminal airspaces, the integration of surface, arrival and departure scheduling and routing have the potential to improve the operations efficiency. Moreover, because both the airport surface and the terminal airspace are often altered by random perturbations, the consideration of uncertainty in flight schedules is crucial to improve the design of robust flight schedules. Previous research mainly focused on independently solving arrival scheduling problems, departure scheduling problems and surface management scheduling problems and most of the developed models are deterministic. This dissertation presents an alternate method to model the integrated operations by using a machine job-shop scheduling formulation. A multistage stochastic programming approach is chosen to formulate the problem in the presence of uncertainty and candidate solutions are obtained by solving sample average approximation problems with finite sample size. The developed mixed-integer-linear-programming algorithm-based scheduler is capable of computing optimal aircraft schedules and routings that reflect the integration of air and ground operations. The assembled methodology is applied to a Los Angeles case study. To show the benefits of integrated operations over First-Come-First-Served, a preliminary proof-of-concept is conducted for a set of fourteen aircraft evolving under deterministic conditions in a model of the Los Angeles International Airport surface and surrounding terminal areas. Using historical data, a representative 30-minute traffic schedule and aircraft mix scenario is constructed. The results of the Los Angeles application show that the integration of air and ground operations and the use of a time-based separation strategy enable both significant surface and air time savings. The solution computed by the optimization provides a more efficient routing and scheduling than the First-Come-First-Served solution. Additionally, a data driven analysis is performed for the Los Angeles environment and probabilistic distributions of pertinent uncertainty sources are obtained. A sensitivity analysis is then carried out to assess the methodology performance and find optimal sampling parameters. Finally, simulations of increasing traffic density in the presence of uncertainty are conducted first for integrated arrivals and departures, then for integrated surface and air operations. To compare the optimization results and show the benefits of integrated operations, two aircraft separation methods are implemented that offer different routing options. The simulations of integrated air operations and the simulations of integrated air and surface operations demonstrate that significant traveling time savings, both total and individual surface and air times, can be obtained when more direct routes are allowed to be traveled even in the presence of uncertainty. The resulting routings induce however extra take off delay for departing flights. As a consequence, some flights cannot meet their initial assigned runway slot which engenders runway position shifting when comparing resulting runway sequences computed under both deterministic and stochastic conditions. The optimization is able to compute an optimal runway schedule that represents an optimal balance between total schedule delays and total travel times.

  1. Dynamic equilibrium strategy for drought emergency temporary water transfer and allocation management

    NASA Astrophysics Data System (ADS)

    Xu, Jiuping; Ma, Ning; Lv, Chengwei

    2016-08-01

    Efficient water transfer and allocation are critical for disaster mitigation in drought emergencies. This is especially important when the different interests of the multiple decision makers and the fluctuating water resource supply and demand simultaneously cause space and time conflicts. To achieve more effective and efficient water transfers and allocations, this paper proposes a novel optimization method with an integrated bi-level structure and a dynamic strategy, in which the bi-level structure works to deal with space dimension conflicts in drought emergencies, and the dynamic strategy is used to deal with time dimension conflicts. Combining these two optimization methods, however, makes calculation complex, so an integrated interactive fuzzy program and a PSO-POA are combined to develop a hybrid-heuristic algorithm. The successful application of the proposed model in a real world case region demonstrates its practicality and efficiency. Dynamic cooperation between multiple reservoirs under the coordination of a global regulator reflects the model's efficiency and effectiveness in drought emergency water transfer and allocation, especially in a fluctuating environment. On this basis, some corresponding management recommendations are proposed to improve practical operations.

  2. A Cascade Optimization Strategy for Solution of Difficult Multidisciplinary Design Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.; Berke, Laszlo

    1996-01-01

    A research project to comparatively evaluate 10 nonlinear optimization algorithms was recently completed. A conclusion was that no single optimizer could successfully solve all 40 problems in the test bed, even though most optimizers successfully solved at least one-third of the problems. We realized that improved search directions and step lengths, available in the 10 optimizers compared, were not likely to alleviate the convergence difficulties. For the solution of those difficult problems we have devised an alternative approach called cascade optimization strategy. The cascade strategy uses several optimizers, one followed by another in a specified sequence, to solve a problem. A pseudorandom scheme perturbs design variables between the optimizers. The cascade strategy has been tested successfully in the design of supersonic and subsonic aircraft configurations and air-breathing engines for high-speed civil transport applications. These problems could not be successfully solved by an individual optimizer. The cascade optimization strategy, however, generated feasible optimum solutions for both aircraft and engine problems. This paper presents the cascade strategy and solutions to a number of these problems.

  3. Calibration and simulation of two large wastewater treatment plants operated for nutrient removal.

    PubMed

    Ferrer, J; Morenilla, J J; Bouzas, A; García-Usach, F

    2004-01-01

    Control and optimisation of plant processes has become a priority for WWTP managers. The calibration and verification of a mathematical model provides an important tool for the investigation of advanced control strategies that may assist in the design or optimization of WWTPs. This paper describes the calibration of the ASM2d model for two full scale biological nitrogen and phosphorus removal plants in order to characterize the biological process and to upgrade the plants' performance. Results from simulation showed a good correspondence with experimental data demonstrating that the model and the calibrated parameters were able to predict the behaviour of both WWTPs. Once the calibration and simulation process was finished, a study for each WWTP was done with the aim of improving its performance. Modifications focused on reactor configuration and operation strategies were proposed.

  4. Modeling and Advanced Control for Sustainable Process ...

    EPA Pesticide Factsheets

    This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-inspired, multi-agent-based method. The sustainability and performance assessment of process operating points is carried out using the U.S. E.P.A.’s GREENSCOPE assessment tool that provides scores for the selected economic, material management, environmental and energy indicators. The indicator results supply information on whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous bioethanol fermentation process whose dynamics are characterized by steady-state multiplicity and oscillatory behavior. This book chapter contribution demonstrates the application of novel process control strategies for sustainability by increasing material management, energy efficiency, and pollution prevention, as needed for SHC Sustainable Uses of Wastes and Materials Management.

  5. Selective Sensing of Gas Mixture via a Temperature Modulation Approach: New Strategy for Potentiometric Gas Sensor Obtaining Satisfactory Discriminating Features

    PubMed Central

    Li, Fu-an; Jin, Han; Wang, Jinxia; Zou, Jie; Jian, Jiawen

    2017-01-01

    A new strategy to discriminate four types of hazardous gases is proposed in this research. Through modulating the operating temperature and the processing response signal with a pattern recognition algorithm, a gas sensor consisting of a single sensing electrode, i.e., ZnO/In2O3 composite, is designed to differentiate NO2, NH3, C3H6, CO within the level of 50–400 ppm. Results indicate that with adding 15 wt.% ZnO to In2O3, the sensor fabricated at 900 °C shows optimal sensing characteristics in detecting all the studied gases. Moreover, with the aid of the principle component analysis (PCA) algorithm, the sensor operating in the temperature modulation mode demonstrates acceptable discrimination features. The satisfactory discrimination features disclose the future that it is possible to differentiate gas mixture efficiently through operating a single electrode sensor at temperature modulation mode. PMID:28287492

  6. Real options valuation and optimization of energy assets

    NASA Astrophysics Data System (ADS)

    Thompson, Matthew

    In this thesis we present algorithms for the valuation and optimal operation of natural gas storage facilities, hydro-electric power plants and thermal power generators in competitive markets. Real options theory is used to derive nonlinear partial-integro-differential equations (PIDEs) for the valuation and optimal operating strategies of all types of facilities. The equations are designed to incorporate a wide class of spot price models that can exhibit the same time-dependent, mean-reverting dynamics and price spikes as those observed in most energy markets. Particular attention is paid to the operational characteristics of real energy assets. For natural gas storage facilities these characteristics include: working gas capacities, variable deliverability and injection rates and cycling limitations. For thermal power plants relevant operational characteristics include variable start-up times and costs, control response time lags, minimum generating levels, nonlinear output functions, structural limitations on ramp rates, and minimum up/down time restrictions. For hydro-electric units, head effects and environmental constraints are addressed. We illustrate the models with numerical examples of a gas storage facility, a hydro-electric pump storage facility and a thermal power plant. This PIDE framework is the first in the literature to achieve second order accuracy in characterizing the operating states of hydro-electric and hydro-thermal power plants. The continuous state space representation derived in this thesis can therefore achieve far greater realism in terms of operating state specification than any other method in the literature to date. This thesis is also the first and only to allow for any continuous time jump diffusion processes in order to account for price spikes.

  7. 3D Protein structure prediction with genetic tabu search algorithm

    PubMed Central

    2010-01-01

    Background Protein structure prediction (PSP) has important applications in different fields, such as drug design, disease prediction, and so on. In protein structure prediction, there are two important issues. The first one is the design of the structure model and the second one is the design of the optimization technology. Because of the complexity of the realistic protein structure, the structure model adopted in this paper is a simplified model, which is called off-lattice AB model. After the structure model is assumed, optimization technology is needed for searching the best conformation of a protein sequence based on the assumed structure model. However, PSP is an NP-hard problem even if the simplest model is assumed. Thus, many algorithms have been developed to solve the global optimization problem. In this paper, a hybrid algorithm, which combines genetic algorithm (GA) and tabu search (TS) algorithm, is developed to complete this task. Results In order to develop an efficient optimization algorithm, several improved strategies are developed for the proposed genetic tabu search algorithm. The combined use of these strategies can improve the efficiency of the algorithm. In these strategies, tabu search introduced into the crossover and mutation operators can improve the local search capability, the adoption of variable population size strategy can maintain the diversity of the population, and the ranking selection strategy can improve the possibility of an individual with low energy value entering into next generation. Experiments are performed with Fibonacci sequences and real protein sequences. Experimental results show that the lowest energy obtained by the proposed GATS algorithm is lower than that obtained by previous methods. Conclusions The hybrid algorithm has the advantages from both genetic algorithm and tabu search algorithm. It makes use of the advantage of multiple search points in genetic algorithm, and can overcome poor hill-climbing capability in the conventional genetic algorithm by using the flexible memory functions of TS. Compared with some previous algorithms, GATS algorithm has better performance in global optimization and can predict 3D protein structure more effectively. PMID:20522256

  8. An Optimized Configuration for the Brazilian Decimetric Array

    NASA Astrophysics Data System (ADS)

    Sawant, Hanumant; Faria, Claudio; Stephany, Stephan

    The Brazilian Decimetric Array (BDA) is a radio interferometer designed to operate in the frequency range of 1.2-1.7, 2.8 and 5.6 GHz and to obtain images of radio sources with high dynamic range. A 5-antenna configuration is already operational being implemented in BDA phase I. Phase II will provide a 26-antenna configuration forming a compact T-array, whereas phase III will include further 12 antennas. However, the BDA site has topographic constraints that preclude the placement of these antennas along the lines defined by the 3 arms of the T-array. Therefore, some antennas must be displaced in a direction that is slightly transverse tothese lines. This work presents the investigation of possible optimized configurations for all 38 antennas spread over the distances of 2.5 x 1.25 km. It was required to determine the optimal position of the last 12 antennas.A new optimization strategy was then proposed in order to obtain the optimal array configuration. It is based on the entropy of the distribution of the sampled points in the Fourier plane. A stochastic model, Ant Colony Optimization, uses the entropy of the such distribution to iteratively refine the candidate solutions. The proposed strategy can be used to determine antenna locations for free-shape arrays in order to provide uniform u-v coverage with minimum redundancy of sampled points in u-v plane that are less susceptible to errors due to unmeasured Fourier components. A different distribution could be chosen for the coverage. It also allows to consider the topographical constraints of the available site. Furthermore, it provides an optimal configuration even considering the predetermined placement of the 26 antennas that compose the central T-array. In this case, the optimal location of the last 12 antennas was determined. Performance results corresponding to the Fourier plane coverage, synthesized beam and sidelobes levels are shown for this optimized BDA configuration and are compared to the results of the standard T-array configuration that cannot be implemented due to site constraints. —————————————————————————————-

  9. Reservoir adaptive operating rules based on both of historical streamflow and future projections

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Pan; Wang, Hao; Chen, Jie; Lei, Xiaohui; Feng, Maoyuan

    2017-10-01

    Climate change is affecting hydrological variables and consequently is impacting water resources management. Historical strategies are no longer applicable under climate change. Therefore, adaptive management, especially adaptive operating rules for reservoirs, has been developed to mitigate the possible adverse effects of climate change. However, to date, adaptive operating rules are generally based on future projections involving uncertainties under climate change, yet ignoring historical information. To address this, we propose an approach for deriving adaptive operating rules considering both historical information and future projections, namely historical and future operating rules (HAFOR). A robustness index was developed by comparing benefits from HAFOR with benefits from conventional operating rules (COR). For both historical and future streamflow series, maximizations of both average benefits and the robustness index were employed as objectives, and four trade-offs were implemented to solve the multi-objective problem. Based on the integrated objective, the simulation-based optimization method was used to optimize the parameters of HAFOR. Using the Dongwushi Reservoir in China as a case study, HAFOR was demonstrated to be an effective and robust method for developing adaptive operating rules under the uncertain changing environment. Compared with historical or projected future operating rules (HOR or FPOR), HAFOR can reduce the uncertainty and increase the robustness for future projections, especially regarding results of reservoir releases and volumes. HAFOR, therefore, facilitates adaptive management in the context that climate change is difficult to predict accurately.

  10. Simulation-Optimization Model for Seawater Intrusion Management at Pingtung Coastal Area, Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, P. S.; Chiu, Y.

    2015-12-01

    In 1970's, the agriculture and aquaculture were rapidly developed at Pingtung coastal area in southern Taiwan. The groundwater aquifers were over-pumped and caused the seawater intrusion. In order to remedy the contaminated groundwater and find the best strategies of groundwater usage, a management model to search the optimal groundwater operational strategies is developed in this study. The objective function is to minimize the total amount of injection water and a set of constraints are applied to ensure the groundwater levels and concentrations are satisfied. A three-dimension density-dependent flow and transport simulation model, called SEAWAT developed by U.S. Geological Survey, is selected to simulate the phenomenon of seawater intrusion. The simulation model is well calibrated by the field measurements and replaced by the surrogate model of trained artificial neural networks (ANNs) to reduce the computational time. The ANNs are embedded in the management model to link the simulation and optimization models, and the global optimizer of differential evolution (DE) is applied for solving the management model. The optimal results show that the fully trained ANNs could substitute the original simulation model and reduce much computational time. Under appropriate setting of objective function and constraints, DE can find the optimal injection rates at predefined barriers. The concentrations at the target locations could decrease more than 50 percent within the planning horizon of 20 years. Keywords : Seawater intrusion, groundwater management, numerical model, artificial neural networks, differential evolution

  11. Machine learning techniques for energy optimization in mobile embedded systems

    NASA Astrophysics Data System (ADS)

    Donohoo, Brad Kyoshi

    Mobile smartphones and other portable battery operated embedded systems (PDAs, tablets) are pervasive computing devices that have emerged in recent years as essential instruments for communication, business, and social interactions. While performance, capabilities, and design are all important considerations when purchasing a mobile device, a long battery lifetime is one of the most desirable attributes. Battery technology and capacity has improved over the years, but it still cannot keep pace with the power consumption demands of today's mobile devices. This key limiter has led to a strong research emphasis on extending battery lifetime by minimizing energy consumption, primarily using software optimizations. This thesis presents two strategies that attempt to optimize mobile device energy consumption with negligible impact on user perception and quality of service (QoS). The first strategy proposes an application and user interaction aware middleware framework that takes advantage of user idle time between interaction events of the foreground application to optimize CPU and screen backlight energy consumption. The framework dynamically classifies mobile device applications based on their received interaction patterns, then invokes a number of different power management algorithms to adjust processor frequency and screen backlight levels accordingly. The second strategy proposes the usage of machine learning techniques to learn a user's mobile device usage pattern pertaining to spatiotemporal and device contexts, and then predict energy-optimal data and location interface configurations. By learning where and when a mobile device user uses certain power-hungry interfaces (3G, WiFi, and GPS), the techniques, which include variants of linear discriminant analysis, linear logistic regression, non-linear logistic regression, and k-nearest neighbor, are able to dynamically turn off unnecessary interfaces at runtime in order to save energy.

  12. Development of an efficient multigrid method for the NEM form of the multigroup neutron diffusion equation

    NASA Astrophysics Data System (ADS)

    Al-Chalabi, Rifat M. Khalil

    1997-09-01

    Development of an improvement to the computational efficiency of the existing nested iterative solution strategy of the Nodal Exapansion Method (NEM) nodal based neutron diffusion code NESTLE is presented. The improvement in the solution strategy is the result of developing a multilevel acceleration scheme that does not suffer from the numerical stalling associated with a number of iterative solution methods. The acceleration scheme is based on the multigrid method, which is specifically adapted for incorporation into the NEM nonlinear iterative strategy. This scheme optimizes the computational interplay between the spatial discretization and the NEM nonlinear iterative solution process through the use of the multigrid method. The combination of the NEM nodal method, calculation of the homogenized, neutron nodal balance coefficients (i.e. restriction operator), efficient underlying smoothing algorithm (power method of NESTLE), and the finer mesh reconstruction algorithm (i.e. prolongation operator), all operating on a sequence of coarser spatial nodes, constitutes the multilevel acceleration scheme employed in this research. Two implementations of the multigrid method into the NESTLE code were examined; the Imbedded NEM Strategy and the Imbedded CMFD Strategy. The main difference in implementation between the two methods is that in the Imbedded NEM Strategy, the NEM solution is required at every MG level. Numerical tests have shown that the Imbedded NEM Strategy suffers from divergence at coarse- grid levels, hence all the results for the different benchmarks presented here were obtained using the Imbedded CMFD Strategy. The novelties in the developed MG method are as follows: the formulation of the restriction and prolongation operators, and the selection of the relaxation method. The restriction operator utilizes a variation of the reactor physics, consistent homogenization technique. The prolongation operator is based upon a variant of the pin power reconstruction methodology. The relaxation method, which is the power method, utilizes a constant coefficient matrix within the NEM non-linear iterative strategy. The choice of the MG nesting within the nested iterative strategy enables the incorporation of other non-linear effects with no additional coding effort. In addition, if an eigenvalue problem is being solved, it remains an eigenvalue problem at all grid levels, simplifying coding implementation. The merit of the developed MG method was tested by incorporating it into the NESTLE iterative solver, and employing it to solve four different benchmark problems. In addition to the base cases, three different sensitivity studies are performed, examining the effects of number of MG levels, homogenized coupling coefficients correction (i.e. restriction operator), and fine-mesh reconstruction algorithm (i.e. prolongation operator). The multilevel acceleration scheme developed in this research provides the foundation for developing adaptive multilevel acceleration methods for steady-state and transient NEM nodal neutron diffusion equations. (Abstract shortened by UMI.)

  13. Psychophysical Models for Signal Detection with Time Varying Uncertainty. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gai, E.

    1975-01-01

    Psychophysical models for the behavior of the human operator in detection tasks which include change in detectability, correlation between observations and deferred decisions are developed. Classical Signal Detection Theory (SDT) is discussed and its emphasis on the sensory processes is contrasted to decision strategies. The analysis of decision strategies utilizes detection tasks with time varying signal strength. The classical theory is modified to include such tasks and several optimal decision strategies are explored. Two methods of classifying strategies are suggested. The first method is similar to the analysis of ROC curves, while the second is based on the relation between the criterion level (CL) and the detectability. Experiments to verify the analysis of tasks with changes of signal strength are designed. The results show that subjects are aware of changes in detectability and tend to use strategies that involve changes in the CL's.

  14. NOAA Atmospheric, Marine and Arctic Monitoring Using UASs (including Rapid Response)

    NASA Astrophysics Data System (ADS)

    Coffey, J. J.; Jacobs, T.

    2015-12-01

    Unmanned systems have the potential to efficiently, effectively, economically, and safely bridge critical observation requirements in an environmentally friendly manner. As the United States' Atmospheric, Marine and Arctic areas of interest expand and include hard-to-reach regions of the Earth (such as the Arctic and remote oceanic areas) optimizing unmanned capabilities will be needed to advance the United States' science, technology and security efforts. Through increased multi-mission and multi-agency operations using improved inter-operable and autonomous unmanned systems, the research and operations communities will better collect environmental intelligence and better protect our Country against hazardous weather, environmental, marine and polar hazards. This presentation will examine NOAA's Atmospheric, Marine and Arctic Monitoring Unmanned Aircraft System (UAS) strategies which includes developing a coordinated effort to maximize the efficiency and capabilities of unmanned systems across the federal government and research partners. Numerous intra- and inter-agency operational demonstrations and assessments have been made to verify and validated these strategies. This includes the introduction of the Targeted Autonomous Insitu Sensing and Rapid Response (TAISRR) with UAS concept of operations. The presentation will also discuss the requisite UAS capabilities and our experience in using them.

  15. Use phase signals to promote lifetime extension for Windows PCs.

    PubMed

    Hickey, Stewart; Fitzpatrick, Colin; O'Connell, Maurice; Johnson, Michael

    2009-04-01

    This paper proposes a signaling methodology for personal computers. Signaling may be viewed as an ecodesign strategy that can positively influence the consumer to consumer (C2C) market process. A number of parameters are identified that can provide the basis for signal implementation. These include operating time, operating temperature, operating voltage, power cycle counts, hard disk drive (HDD) self-monitoring, and reporting technology (SMART) attributes and operating system (OS) event information. All these parameters are currently attainable or derivable via embedded technologies in modern desktop systems. A case study detailing a technical implementation of how the development of signals can be achieved in personal computers that incorporate Microsoft Windows operating systems is presented. Collation of lifetime temperature data from a system processor is demonstrated as a possible means of characterizing a usage profile for a desktop system. In addition, event log data is utilized for devising signals indicative of OS quality. The provision of lifetime usage data in the form of intuitive signals indicative of both hardware and software quality can in conjunction with consumer education facilitate an optimal remarketing strategy for used systems. This implementation requires no additional hardware.

  16. Probability matching in risky choice: the interplay of feedback and strategy availability.

    PubMed

    Newell, Ben R; Koehler, Derek J; James, Greta; Rakow, Tim; van Ravenzwaaij, Don

    2013-04-01

    Probability matching in sequential decision making is a striking violation of rational choice that has been observed in hundreds of experiments. Recent studies have demonstrated that matching persists even in described tasks in which all the information required for identifying a superior alternative strategy-maximizing-is present before the first choice is made. These studies have also indicated that maximizing increases when (1) the asymmetry in the availability of matching and maximizing strategies is reduced and (2) normatively irrelevant outcome feedback is provided. In the two experiments reported here, we examined the joint influences of these factors, revealing that strategy availability and outcome feedback operate on different time courses. Both behavioral and modeling results showed that while availability of the maximizing strategy increases the choice of maximizing early during the task, feedback appears to act more slowly to erode misconceptions about the task and to reinforce optimal responding. The results illuminate the interplay between "top-down" identification of choice strategies and "bottom-up" discovery of those strategies via feedback.

  17. Comprehensive Performance Nutrition for Special Operations Forces.

    PubMed

    Daigle, Karen A; Logan, Christi M; Kotwal, Russ S

    2015-01-01

    Special Operations Forces (SOF) training, combat, and contingency operations are unique and demanding. Performance nutrition within the Department of Defense has emphasized that nutrition is relative to factors related to the desired outcome, which includes successful performance of mentally and physically demanding operations and missions of tactical and strategic importance, as well as nonoperational assignments. Discussed are operational, nonoperational, and patient categories that require different nutrition strategies to facilitate category-specific performance outcomes. Also presented are 10 major guidelines for a SOF comprehensive performance nutrition program, practical nutrition recommendations for Special Operators and medical providers, as well as resources for dietary supplement evaluation. Foundational health concepts, medical treatment, and task-specific performance factors should be considered when developing and systematically implementing a comprehensive SOF performance nutrition program. When tailored to organizational requirements, SOF unit- and culture-specific nutrition education and services can optimize individual Special Operator performance, overall unit readiness, and ultimately, mission success. 2015.

  18. An analytic approach to cyber adversarial dynamics

    NASA Astrophysics Data System (ADS)

    Sweeney, Patrick; Cybenko, George

    2012-06-01

    To date, cyber security investment by both the government and commercial sectors has been largely driven by the myopic best response of players to the actions of their adversaries and their perception of the adversarial environment. However, current work in applying traditional game theory to cyber operations typically assumes that games exist with prescribed moves, strategies, and payos. This paper presents an analytic approach to characterizing the more realistic cyber adversarial metagame that we believe is being played. Examples show that understanding the dynamic metagame provides opportunities to exploit an adversary's anticipated attack strategy. A dynamic version of a graph-based attack-defend game is introduced, and a simulation shows how an optimal strategy can be selected for success in the dynamic environment.

  19. Optimization under Uncertainty of a Biomass-integrated Renewable Energy Microgrid with Energy Storage

    NASA Astrophysics Data System (ADS)

    Zheng, Yingying

    The growing energy demands and needs for reducing carbon emissions call more and more attention to the development of renewable energy technologies and management strategies. Microgrids have been developed around the world as a means to address the high penetration level of renewable generation and reduce greenhouse gas emissions while attempting to address supply-demand balancing at a more local level. This dissertation presents a model developed to optimize the design of a biomass-integrated renewable energy microgrid employing combined heat and power with energy storage. A receding horizon optimization with Monte Carlo simulation were used to evaluate optimal microgrid design and dispatch under uncertainties in the renewable energy and utility grid energy supplies, the energy demands, and the economic assumptions so as to generate a probability density function for the cost of energy. Case studies were examined for a conceptual utility grid-connected microgrid application in Davis, California. The results provide the most cost effective design based on the assumed energy load profile, local climate data, utility tariff structure, and technical and financial performance of the various components of the microgrid. Sensitivity and uncertainty analyses are carried out to illuminate the key parameters that influence the energy costs. The model application provides a means to determine major risk factors associated with alternative design integration and operating strategies.

  20. A Method for Suppressing Line Overload Phenomena Using NAS Battery Systems

    NASA Astrophysics Data System (ADS)

    Ohtaka, Toshiya; Iwamoto, Shinichi

    In this paper, we pay attention to the superior operating control function and instantaneous discharging characteristics of NAS battery systems, and propose a method for determining installation planning and operating control schemes of NAS battery systems for suppressing line overload phenomena. In the stage of planning, a target contingency is identified, and an optimal allocation and capacity of NAS battery systems and an amount of generation changes are determined for the contingency. In the stage of operation, the control strategy of NAS battery system is determined. Simulations are carried out for verifying the validity of the proposed method using the IEEJ 1 machine V system model and an example 2 machine 16 bus system model.

  1. Self-learning control system for plug-in hybrid vehicles

    DOEpatents

    DeVault, Robert C [Knoxville, TN

    2010-12-14

    A system is provided to instruct a plug-in hybrid electric vehicle how optimally to use electric propulsion from a rechargeable energy storage device to reach an electric recharging station, while maintaining as high a state of charge (SOC) as desired along the route prior to arriving at the recharging station at a minimum SOC. The system can include the step of calculating a straight-line distance and/or actual distance between an orientation point and the determined instant present location to determine when to initiate optimally a charge depleting phase. The system can limit extended driving on a deeply discharged rechargeable energy storage device and reduce the number of deep discharge cycles for the rechargeable energy storage device, thereby improving the effective lifetime of the rechargeable energy storage device. This "Just-in-Time strategy can be initiated automatically without operator input to accommodate the unsophisticated operator and without needing a navigation system/GPS input.

  2. Coordinative Voltage Control Strategy with Multiple Resources for Distribution Systems of High PV Penetration: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiangqi; Zhang, Yingchen

    This paper presents an optimal voltage control methodology with coordination among different voltage-regulating resources, including controllable loads, distributed energy resources such as energy storage and photovoltaics (PV), and utility voltage-regulating devices such as voltage regulators and capacitors. The proposed methodology could effectively tackle the overvoltage and voltage regulation device distortion problems brought by high penetrations of PV to improve grid operation reliability. A voltage-load sensitivity matrix and voltage-regulator sensitivity matrix are used to deploy the resources along the feeder to achieve the control objectives. Mixed-integer nonlinear programming is used to solve the formulated optimization control problem. The methodology has beenmore » tested on the IEEE 123-feeder test system, and the results demonstrate that the proposed approach could actively tackle the voltage problem brought about by high penetrations of PV and improve the reliability of distribution system operation.« less

  3. Illumina GA IIx& HiSeq 2000 Production Sequenccing and QC Analysis Pipelines at the DOE Joint Genome Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daum, Christopher; Zane, Matthew; Han, James

    2011-01-31

    The U.S. Department of Energy (DOE) Joint Genome Institute's (JGI) Production Sequencing group is committed to the generation of high-quality genomic DNA sequence to support the mission areas of renewable energy generation, global carbon management, and environmental characterization and clean-up. Within the JGI's Production Sequencing group, a robust Illumina Genome Analyzer and HiSeq pipeline has been established. Optimization of the sesequencer pipelines has been ongoing with the aim of continual process improvement of the laboratory workflow, reducing operational costs and project cycle times to increases ample throughput, and improving the overall quality of the sequence generated. A sequence QC analysismore » pipeline has been implemented to automatically generate read and assembly level quality metrics. The foremost of these optimization projects, along with sequencing and operational strategies, throughput numbers, and sequencing quality results will be presented.« less

  4. Non-linear multi-objective model for planning water-energy modes of Novosibirsk Hydro Power Plant

    NASA Astrophysics Data System (ADS)

    Alsova, O. K.; Artamonova, A. V.

    2018-05-01

    This paper presents a non-linear multi-objective model for planning and optimizing of water-energy modes for the Novosibirsk Hydro Power Plant (HPP) operation. There is a very important problem of developing a strategy to improve the scheme of water-power modes and ensure the effective operation of hydropower plants. It is necessary to determine the methods and criteria for the optimal distribution of water resources, to develop a set of models and to apply them to the software implementation of a DSS (decision-support system) for managing Novosibirsk HPP modes. One of the possible versions of the model is presented and investigated in this paper. Experimental study of the model has been carried out with 2017 data and the task of ten-day period planning from April to July (only 12 ten-day periods) was solved.

  5. Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach

    NASA Astrophysics Data System (ADS)

    Vaz, Miguel; Luersen, Marco A.; Muñoz-Rojas, Pablo A.; Trentin, Robson G.

    2016-04-01

    Application of optimization techniques to the identification of inelastic material parameters has substantially increased in recent years. The complex stress-strain paths and high nonlinearity, typical of this class of problems, require the development of robust and efficient techniques for inverse problems able to account for an irregular topography of the fitness surface. Within this framework, this work investigates the application of the gradient-based Sequential Quadratic Programming method, of the Nelder-Mead downhill simplex algorithm, of Particle Swarm Optimization (PSO), and of a global-local PSO-Nelder-Mead hybrid scheme to the identification of inelastic parameters based on a deep drawing operation. The hybrid technique has shown to be the best strategy by combining the good PSO performance to approach the global minimum basin of attraction with the efficiency demonstrated by the Nelder-Mead algorithm to obtain the minimum itself.

  6. DIII-D accomplishments and plans in support of fusion next steps

    DOE PAGES

    Buttery, R. J; Eidietis, N.; Holcomb, C.; ...

    2013-06-01

    DIII-D is using its flexibility and diagnostics to address the critical science required to enable next step fusion devices. We have adapted operating scenarios for ITER to low torque and are now being optimized for transport. Three ELM mitigation scenarios have been developed to near-ITER parameters. New control techniques are managing the most challenging plasma instabilities. Disruption mitigation tools show promising dissipation strategies for runaway electrons and heat load. An off axis neutral beam upgrade has enabled sustainment of high βN capable steady state regimes. Divertor research is identifying the challenge, physics and candidate solutions for handling the hot plasmamore » exhaust with notable progress in heat flux reduction using the snowflake configuration. Our work is helping optimize design choices and prepare the scientific tools for operation in ITER, and resolve key elements of the plasma configuration and divertor solution for an FNSF.« less

  7. Biokinetic model-based multi-objective optimization of Dunaliella tertiolecta cultivation using elitist non-dominated sorting genetic algorithm with inheritance.

    PubMed

    Sinha, Snehal K; Kumar, Mithilesh; Guria, Chandan; Kumar, Anup; Banerjee, Chiranjib

    2017-10-01

    Algal model based multi-objective optimization using elitist non-dominated sorting genetic algorithm with inheritance was carried out for batch cultivation of Dunaliella tertiolecta using NPK-fertilizer. Optimization problems involving two- and three-objective functions were solved simultaneously. The objective functions are: maximization of algae-biomass and lipid productivity with minimization of cultivation time and cost. Time variant light intensity and temperature including NPK-fertilizer, NaCl and NaHCO 3 loadings are the important decision variables. Algal model involving Monod/Andrews adsorption kinetics and Droop model with internal nutrient cell quota was used for optimization studies. Sets of non-dominated (equally good) Pareto optimal solutions were obtained for the problems studied. It was observed that time variant optimal light intensity and temperature trajectories, including optimum NPK fertilizer, NaCl and NaHCO 3 concentration has significant influence to improve biomass and lipid productivity under minimum cultivation time and cost. Proposed optimization studies may be helpful to implement the control strategy in scale-up operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The optimization of total laboratory automation by simulation of a pull-strategy.

    PubMed

    Yang, Taho; Wang, Teng-Kuan; Li, Vincent C; Su, Chia-Lo

    2015-01-01

    Laboratory results are essential for physicians to diagnose medical conditions. Because of the critical role of medical laboratories, an increasing number of hospitals use total laboratory automation (TLA) to improve laboratory performance. Although the benefits of TLA are well documented, systems occasionally become congested, particularly when hospitals face peak demand. This study optimizes TLA operations. Firstly, value stream mapping (VSM) is used to identify the non-value-added time. Subsequently, batch processing control and parallel scheduling rules are devised and a pull mechanism that comprises a constant work-in-process (CONWIP) is proposed. Simulation optimization is then used to optimize the design parameters and to ensure a small inventory and a shorter average cycle time (CT). For empirical illustration, this approach is applied to a real case. The proposed methodology significantly improves the efficiency of laboratory work and leads to a reduction in patient waiting times and increased service level.

  9. Optimally combining dynamical decoupling and quantum error correction.

    PubMed

    Paz-Silva, Gerardo A; Lidar, D A

    2013-01-01

    Quantum control and fault-tolerant quantum computing (FTQC) are two of the cornerstones on which the hope of realizing a large-scale quantum computer is pinned, yet only preliminary steps have been taken towards formalizing the interplay between them. Here we explore this interplay using the powerful strategy of dynamical decoupling (DD), and show how it can be seamlessly and optimally integrated with FTQC. To this end we show how to find the optimal decoupling generator set (DGS) for various subspaces relevant to FTQC, and how to simultaneously decouple them. We focus on stabilizer codes, which represent the largest contribution to the size of the DGS, showing that the intuitive choice comprising the stabilizers and logical operators of the code is in fact optimal, i.e., minimizes a natural cost function associated with the length of DD sequences. Our work brings hybrid DD-FTQC schemes, and their potentially considerable advantages, closer to realization.

  10. Optimally combining dynamical decoupling and quantum error correction

    PubMed Central

    Paz-Silva, Gerardo A.; Lidar, D. A.

    2013-01-01

    Quantum control and fault-tolerant quantum computing (FTQC) are two of the cornerstones on which the hope of realizing a large-scale quantum computer is pinned, yet only preliminary steps have been taken towards formalizing the interplay between them. Here we explore this interplay using the powerful strategy of dynamical decoupling (DD), and show how it can be seamlessly and optimally integrated with FTQC. To this end we show how to find the optimal decoupling generator set (DGS) for various subspaces relevant to FTQC, and how to simultaneously decouple them. We focus on stabilizer codes, which represent the largest contribution to the size of the DGS, showing that the intuitive choice comprising the stabilizers and logical operators of the code is in fact optimal, i.e., minimizes a natural cost function associated with the length of DD sequences. Our work brings hybrid DD-FTQC schemes, and their potentially considerable advantages, closer to realization. PMID:23559088

  11. A hybrid Q-learning sine-cosine-based strategy for addressing the combinatorial test suite minimization problem

    PubMed Central

    Zamli, Kamal Z.; Din, Fakhrud; Bures, Miroslav

    2018-01-01

    The sine-cosine algorithm (SCA) is a new population-based meta-heuristic algorithm. In addition to exploiting sine and cosine functions to perform local and global searches (hence the name sine-cosine), the SCA introduces several random and adaptive parameters to facilitate the search process. Although it shows promising results, the search process of the SCA is vulnerable to local minima/maxima due to the adoption of a fixed switch probability and the bounded magnitude of the sine and cosine functions (from -1 to 1). In this paper, we propose a new hybrid Q-learning sine-cosine- based strategy, called the Q-learning sine-cosine algorithm (QLSCA). Within the QLSCA, we eliminate the switching probability. Instead, we rely on the Q-learning algorithm (based on the penalty and reward mechanism) to dynamically identify the best operation during runtime. Additionally, we integrate two new operations (Lévy flight motion and crossover) into the QLSCA to facilitate jumping out of local minima/maxima and enhance the solution diversity. To assess its performance, we adopt the QLSCA for the combinatorial test suite minimization problem. Experimental results reveal that the QLSCA is statistically superior with regard to test suite size reduction compared to recent state-of-the-art strategies, including the original SCA, the particle swarm test generator (PSTG), adaptive particle swarm optimization (APSO) and the cuckoo search strategy (CS) at the 95% confidence level. However, concerning the comparison with discrete particle swarm optimization (DPSO), there is no significant difference in performance at the 95% confidence level. On a positive note, the QLSCA statistically outperforms the DPSO in certain configurations at the 90% confidence level. PMID:29771918

  12. A hybrid Q-learning sine-cosine-based strategy for addressing the combinatorial test suite minimization problem.

    PubMed

    Zamli, Kamal Z; Din, Fakhrud; Ahmed, Bestoun S; Bures, Miroslav

    2018-01-01

    The sine-cosine algorithm (SCA) is a new population-based meta-heuristic algorithm. In addition to exploiting sine and cosine functions to perform local and global searches (hence the name sine-cosine), the SCA introduces several random and adaptive parameters to facilitate the search process. Although it shows promising results, the search process of the SCA is vulnerable to local minima/maxima due to the adoption of a fixed switch probability and the bounded magnitude of the sine and cosine functions (from -1 to 1). In this paper, we propose a new hybrid Q-learning sine-cosine- based strategy, called the Q-learning sine-cosine algorithm (QLSCA). Within the QLSCA, we eliminate the switching probability. Instead, we rely on the Q-learning algorithm (based on the penalty and reward mechanism) to dynamically identify the best operation during runtime. Additionally, we integrate two new operations (Lévy flight motion and crossover) into the QLSCA to facilitate jumping out of local minima/maxima and enhance the solution diversity. To assess its performance, we adopt the QLSCA for the combinatorial test suite minimization problem. Experimental results reveal that the QLSCA is statistically superior with regard to test suite size reduction compared to recent state-of-the-art strategies, including the original SCA, the particle swarm test generator (PSTG), adaptive particle swarm optimization (APSO) and the cuckoo search strategy (CS) at the 95% confidence level. However, concerning the comparison with discrete particle swarm optimization (DPSO), there is no significant difference in performance at the 95% confidence level. On a positive note, the QLSCA statistically outperforms the DPSO in certain configurations at the 90% confidence level.

  13. A systematic review on the composting of green waste: Feedstock quality and optimization strategies.

    PubMed

    Reyes-Torres, M; Oviedo-Ocaña, E R; Dominguez, I; Komilis, D; Sánchez, A

    2018-04-27

    Green waste (GW) is an important fraction of municipal solid waste (MSW). The composting of lignocellulosic GW is challenging due to its low decomposition rate. Recently, an increasing number of studies that include strategies to optimize GW composting appeared in the literature. This literature review focuses on the physicochemical quality of GW and on the effect of strategies used to improve the process and product quality. A systematic search was carried out, using keywords, and 447 papers published between 2002 and 2018 were identified. After a screening process, 41 papers addressing feedstock quality and 32 papers on optimization strategies were selected to be reviewed and analyzed in detail. The GW composition is highly variable due to the diversity of the source materials, the type of vegetation, and climatic conditions. This variability limits a strict categorization of the GW physicochemical characteristics. However, this research established that the predominant features of GW are a C/N ratio higher than 25, a deficit in important nutrients, namely nitrogen (0.5-1.5% db), phosphorous (0.1-0.2% db) and potassium (0.4-0.8% db) and a high content of recalcitrant organic compounds (e.g. lignin). The promising strategies to improve composting of GW were: i) GW particle size reduction (e.g. shredding and separation of GW fractions); ii) addition of energy amendments (e.g. non-refined sugar, phosphate rock, food waste, volatile ashes), bulking materials (e.g. biocarbon, wood chips), or microbial inoculum (e.g. fungal consortia); and iii) variations in operating parameters (aeration, temperature, and two-phase composting). These alternatives have successfully led to the reduction of process length and have managed to transform recalcitrant substances to a high-quality end-product. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Relay Selection for Cooperative Relaying in Wireless Energy Harvesting Networks

    NASA Astrophysics Data System (ADS)

    Zhu, Kaiyan; Wang, Fei; Li, Songsong; Jiang, Fengjiao; Cao, Lijie

    2018-01-01

    Energy harvesting from the surroundings is a promising solution to provide energy supply and extend the life of wireless sensor networks. Recently, energy harvesting has been shown as an attractive solution to prolong the operation of cooperative networks. In this paper, we propose a relay selection scheme to optimize the amplify-and-forward (AF) cooperative transmission in wireless energy harvesting cooperative networks. The harvesting energy and channel conditions are considered to select the optimal relay as cooperative relay to minimize the outage probability of the system. Simulation results show that our proposed relay selection scheme achieves better outage performance than other strategies.

  15. An automated model-based aim point distribution system for solar towers

    NASA Astrophysics Data System (ADS)

    Schwarzbözl, Peter; Rong, Amadeus; Macke, Ansgar; Säck, Jan-Peter; Ulmer, Steffen

    2016-05-01

    Distribution of heliostat aim points is a major task during central receiver operation, as the flux distribution produced by the heliostats varies continuously with time. Known methods for aim point distribution are mostly based on simple aim point patterns and focus on control strategies to meet local temperature and flux limits of the receiver. Lowering the peak flux on the receiver to avoid hot spots and maximizing thermal output are obviously competing targets that call for a comprehensive optimization process. This paper presents a model-based method for online aim point optimization that includes the current heliostat field mirror quality derived through an automated deflectometric measurement process.

  16. Seeking the competitive advantage: it's more than cost reduction.

    PubMed

    South, S F

    1999-01-01

    Most organizations focus considerable time and energy on reducing operating costs as a way to attain marketplace advantage. This strategy was not inappropriate in the past. To be competitive in the future, however, focus must be placed on other issues, not just cost reduction. The near future will be dominated by service industries, knowledge management, and virtual partnerships, with production optimization and flexibility, innovation, and strong partnerships defining those organizations that attain competitive advantage. Competitive advantage will reside in clarifying the vision and strategic plan, reviewing and redesigning work processes to optimize resources and value-added work, and creating change-ready environments and empowered workforces.

  17. A conflict analysis of 4D descent strategies in a metered, multiple-arrival route environment

    NASA Technical Reports Server (NTRS)

    Izumi, K. H.; Harris, C. S.

    1990-01-01

    A conflict analysis was performed on multiple arrival traffic at a typical metered airport. The Flow Management Evaluation Model (FMEM) was used to simulate arrival operations using Denver Stapleton's arrival route structure. Sensitivities of conflict performance to three different 4-D descent strategies (clear-idle Mach/Constant AirSpeed (CAS), constant descent angle Mach/CAS and energy optimal) were examined for three traffic mixes represented by those found at Denver Stapleton, John F. Kennedy and typical en route metering (ERM) airports. The Monte Carlo technique was used to generate simulation entry point times. Analysis results indicate that the clean-idle descent strategy offers the best compromise in overall performance. Performance measures primarily include susceptibility to conflict and conflict severity. Fuel usage performance is extrapolated from previous descent strategy studies.

  18. Restart Operator Meta-heuristics for a Problem-Oriented Evolutionary Strategies Algorithm in Inverse Mathematical MISO Modelling Problem Solving

    NASA Astrophysics Data System (ADS)

    Ryzhikov, I. S.; Semenkin, E. S.

    2017-02-01

    This study is focused on solving an inverse mathematical modelling problem for dynamical systems based on observation data and control inputs. The mathematical model is being searched in the form of a linear differential equation, which determines the system with multiple inputs and a single output, and a vector of the initial point coordinates. The described problem is complex and multimodal and for this reason the proposed evolutionary-based optimization technique, which is oriented on a dynamical system identification problem, was applied. To improve its performance an algorithm restart operator was implemented.

  19. Proceedings of the workshop on the dynamic response of environmental control processes in buildings, Lafayette, Indiana, March 13-15, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tree, D.R.; McBride, M.F.

    The purpose of this workshop was to consider how energy use in buildings can be reduced while maintaining the comfort of the occupants. It was postulated that optimization of energy use in buildings can be achieved through the use of operating strategies which consider the dynamic characteristics of comfort, the design and construction of the building, and the environmental control system. Working sessions were presented on equipment, controls, structures, human factors, circulation/distribution, design, operation and use pattern, management and codes, and energy storage. (LCL)

  20. Meeting the challenge of a group practice turnaround.

    PubMed

    Porn, L M

    2001-03-01

    Many healthcare organizations that acquired group practices to enhance their market share have found that the practices have not met their financial goals. Turning around a financially troubled, hospital-owned group practice is challenging but not impossible for healthcare organizations that take certain basic actions. Direction, data, desire, dedication, and drive must be present to effect the financial turnaround of a group practice. The healthcare organization needs to evaluate the practice's strategy and operations and identify the issues that are hindering the practice's ability to optimize revenues. Efforts to achieve profitable operations have to be ongoing.

  1. COMSATCOM service technical baseline strategy development approach using PPBW concept

    NASA Astrophysics Data System (ADS)

    Nguyen, Tien M.; Guillen, Andy T.

    2016-05-01

    This paper presents an innovative approach to develop a Commercial Satellite Communications (COMSATCOM) service Technical Baseline (TB) and associated Program Baseline (PB) strategy using Portable Pool Bandwidth (PPBW) concept. The concept involves trading of the purchased commercial transponders' Bandwidths (BWs) with existing commercial satellites' bandwidths participated in a "designated pool bandwidth"3 according to agreed terms and conditions. Space Missile Systems Center (SMC) has been implementing the Better Buying Power (BBP 3.0) directive4 and recommending the System Program Offices (SPO) to own the Program and Technical Baseline (PTB) [1, 2] for the development of flexible acquisition strategy and achieving affordability and increased in competition. This paper defines and describes the critical PTB parameters and associated requirements that are important to the government SPO for "owning" an affordable COMSATCOM services contract using PPBW trading concept. The paper describes a step-by-step approach to optimally perform the PPBW trading to meet DoD and its stakeholders (i) affordability requirement, and (ii) fixed and variable bandwidth requirements by optimizing communications performance, cost and PPBW accessibility in terms of Quality of Services (QoS), Bandwidth Sharing Ratio (BSR), Committed Information Rate (CIR), Burstable Information Rate (BIR), Transponder equivalent bandwidth (TPE) and transponder Net Presence Value (NPV). The affordable optimal solution that meets variable bandwidth requirements will consider the operating and trading terms and conditions described in the Fair Access Policy (FAP).

  2. Preparation of Effective Operating Manuals to Support Waste Management Plant Operator Training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, S. R.

    2003-02-25

    Effective plant operating manuals used in a formal training program can make the difference between a successful operation and a failure. Once the plant process design and control strategies have been fixed, equipment has been ordered, and the plant is constructed, the only major variable affecting success is the capability of plant operating personnel. It is essential that the myriad details concerning plant operation are documented in comprehensive operating manuals suitable for training the non-technical personnel that will operate the plant. These manuals must cover the fundamental principles of each unit operation including how each operates, what process variables aremore » important, and the impact of each variable on the overall process. In addition, operators must know the process control strategies, process interlocks, how to respond to alarms, each of the detailed procedures required to start up and optimize the plant, and every control loop-including when it is appropriate to take manual control. More than anything else, operating mistakes during the start-up phase can lead to substantial delays in achieving design processing rates as well as to problems with government authorities if environmental permit limits are exceeded. The only way to assure return on plant investment is to ensure plant operators have the knowledge to properly run the plant from the outset. A comprehensive set of operating manuals specifically targeted toward plant operators and supervisors written by experienced operating personnel is the only effective way to provide the necessary information for formal start-up training.« less

  3. Use of the Collaborative Optimization Architecture for Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Braun, R. D.; Moore, A. A.; Kroo, I. M.

    1996-01-01

    Collaborative optimization is a new design architecture specifically created for large-scale distributed-analysis applications. In this approach, problem is decomposed into a user-defined number of subspace optimization problems that are driven towards interdisciplinary compatibility and the appropriate solution by a system-level coordination process. This decentralized design strategy allows domain-specific issues to be accommodated by disciplinary analysts, while requiring interdisciplinary decisions to be reached by consensus. The present investigation focuses on application of the collaborative optimization architecture to the multidisciplinary design of a single-stage-to-orbit launch vehicle. Vehicle design, trajectory, and cost issues are directly modeled. Posed to suit the collaborative architecture, the design problem is characterized by 5 design variables and 16 constraints. Numerous collaborative solutions are obtained. Comparison of these solutions demonstrates the influence which an priori ascent-abort criterion has on development cost. Similarly, objective-function selection is discussed, demonstrating the difference between minimum weight and minimum cost concepts. The operational advantages of the collaborative optimization

  4. Improving Performance and Operational Stability of Porcine Interferon-α Production by Pichia pastoris with Combinational Induction Strategy of Low Temperature and Methanol/Sorbitol Co-feeding.

    PubMed

    Gao, Min-Jie; Zhan, Xiao-Bei; Gao, Peng; Zhang, Xu; Dong, Shi-Juan; Li, Zhen; Shi, Zhong-Ping; Lin, Chi-Chung

    2015-05-01

    Various induction strategies were investigated for effective porcine interferon-α (pIFN-α) production by Pichia pastoris in a 10 L fermenter. We found that pIFN-α concentration could be significantly improved with the strategies of low-temperature induction or methanol/sorbitol co-feeding. On this basis, a combinational strategy of induction at lower temperature (20 °C) with methanol/sorbitol co-feeding has been proposed for improvement of pIFN-α production. The results reveal that maximal pIFN-α concentration and antiviral activity reach the highest level of 2.7 g/L and 1.8 × 10(7) IU/mg with the proposed induction strategy, about 1.3-2.1 folds higher than those obtained with other sub-optimal induction strategies. Metabolic analysis and online multi-variable measurement results indicate that energy metabolic enrichment is responsible for the performance enhancement of pIFN-α production, as a large amount of ATP could be simultaneously produced from both formaldehyde oxidation pathway in methanol metabolism and tricarboxylic acid (TCA) cycle in sorbitol metabolism. In addition, the proposed combinational induction strategy enables P. pastoris to be resistant to high methanol concentration (42 g/L), which conceivably occur associating with the error-prone methanol over-feeding. As a result, the proposed combinational induction strategy simultaneously increased the targeted protein concentration and operational stability leading to significant improvement of pIFN-α production.

  5. Comparison of design strategies for a three-arm clinical trial with time-to-event endpoint: Power, time-to-analysis, and operational aspects.

    PubMed

    Asikanius, Elina; Rufibach, Kaspar; Bahlo, Jasmin; Bieska, Gabriele; Burger, Hans Ulrich

    2016-11-01

    To optimize resources, randomized clinical trials with multiple arms can be an attractive option to simultaneously test various treatment regimens in pharmaceutical drug development. The motivation for this work was the successful conduct and positive final outcome of a three-arm randomized clinical trial primarily assessing whether obinutuzumab plus chlorambucil in patients with chronic lympocytic lymphoma and coexisting conditions is superior to chlorambucil alone based on a time-to-event endpoint. The inference strategy of this trial was based on a closed testing procedure. We compare this strategy to three potential alternatives to run a three-arm clinical trial with a time-to-event endpoint. The primary goal is to quantify the differences between these strategies in terms of the time it takes until the first analysis and thus potential approval of a new drug, number of required events, and power. Operational aspects of implementing the various strategies are discussed. In conclusion, using a closed testing procedure results in the shortest time to the first analysis with a minimal loss in power. Therefore, closed testing procedures should be part of the statistician's standard clinical trials toolbox when planning multiarm clinical trials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Distributed Parallel Genetic Algorithm of Placement Strategy for Virtual Machines Deployment on Cloud Platform

    PubMed Central

    Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong

    2014-01-01

    The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform. PMID:25097872

  7. A distributed parallel genetic algorithm of placement strategy for virtual machines deployment on cloud platform.

    PubMed

    Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong

    2014-01-01

    The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform.

  8. A systematic approach of removal mechanisms, control and optimization of silver nanoparticle in wastewater treatment plants.

    PubMed

    Vilela, Paulina; Liu, Hongbin; Lee, SeungChul; Hwangbo, Soonho; Nam, KiJeon; Yoo, ChangKyoo

    2018-08-15

    The release of silver nanoparticles (AgNPs) to wastewater caused by over-generation and poor treatment of the remaining nanomaterial has raised the interest of researchers. AgNPs can have a negative impact on watersheds and generate degradation of the effluent quality of wastewater treatment plants (WWTPs). The aim of this research is to design and analyze an integrated model system for the removal of AgNPs with high effluent quality in WWTPs using a systematic approach of removal mechanisms modeling, optimization, and control of the removal of silver nanoparticles. The activated sludge model 1 was modified with the inclusion of AgNPs removal mechanisms, such as adsorption/desorption, dissolution, and inhibition of microbial organisms. Response surface methodology was performed to minimize the AgNPs and total nitrogen concentrations in the effluent by optimizing operating conditions of the system. Then, the optimal operating conditions were utilized for the implementation of control strategies into the system for further analysis of enhancement of AgNPs removal efficiency. Thus, the overall AgNP removal efficiency was found to be slightly higher than 80%, which was an improvement of almost 7% compared to the BSM1 reference value. This study provides a systematic approach to find an optimal solution for enhancing AgNP removal efficiency in WWTPs and thereby to prevent pollution in the environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The Use of the Integrated Medical Model for Forecasting and Mitigating Medical Risks for a Near-Earth Asteroid Mission

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Saile, Lynn; Freire de Carvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma

    2011-01-01

    Introduction The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission managers and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight. Methods Stochastic computational methods are used to forecast probability distributions of medical events, crew health metrics, medical resource utilization, and probability estimates of medical evacuation and loss of crew life. The IMM can also optimize medical kits within the constraints of mass and volume for specified missions. The IMM was used to forecast medical evacuation and loss of crew life probabilities, as well as crew health metrics for a near-earth asteroid (NEA) mission. An optimized medical kit for this mission was proposed based on the IMM simulation. Discussion The IMM can provide information to the space program regarding medical risks, including crew medical impairment, medical evacuation and loss of crew life. This information is valuable to mission managers and the space medicine community in assessing risk and developing mitigation strategies. Exploration missions such as NEA missions will have significant mass and volume constraints applied to the medical system. Appropriate allocation of medical resources will be critical to mission success. The IMM capability of optimizing medical systems based on specific crew and mission profiles will be advantageous to medical system designers. Conclusion The IMM is a decision support tool that can provide estimates of the impact of medical events on human space flight missions, such as crew impairment, evacuation, and loss of crew life. It can be used to support the development of mitigation strategies and to propose optimized medical systems for specified space flight missions. Learning Objectives The audience will learn how an evidence-based decision support tool can be used to help assess risk, develop mitigation strategies, and optimize medical systems for exploration space flight missions.

  10. The Operator Guide: An Ambient Persuasive Interface in the Factory

    NASA Astrophysics Data System (ADS)

    Meschtscherjakov, Alexander; Reitberger, Wolfgang; Pöhr, Florian; Tscheligi, Manfred

    In this paper we introduce the context of a semiconductor factory as a promising area for the application of innovative interaction approaches. In order to increase efficiency ambient persuasive interfaces, which influence the operators' behaviour to perform in an optimized way, could constitute a potential strategy. We present insights gained from qualitative studies conducted in a specific semiconductor factory and provide a description of typical work processes and already deployed interfaces in this context. These findings informed the design of a prototype of an ambient persuasive interface within this realm - the "Operator Guide". Its overall aim is to improve work efficiency, while still maintaining a minimal error rate. We provide a detailed description of the Operator Guide along with an outlook of the next steps within a user-centered design approach.

  11. Parallel dispatch: a new paradigm of electrical power system dispatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun Jason; Wang, Fei-Yue; Wang, Qiang

    Modern power systems are evolving into sociotechnical systems with massive complexity, whose real-time operation and dispatch go beyond human capability. Thus, the need for developing and applying new intelligent power system dispatch tools are of great practical significance. In this paper, we introduce the overall business model of power system dispatch, the top level design approach of an intelligent dispatch system, and the parallel intelligent technology with its dispatch applications. We expect that a new dispatch paradigm, namely the parallel dispatch, can be established by incorporating various intelligent technologies, especially the parallel intelligent technology, to enable secure operation of complexmore » power grids, extend system operators U+02BC capabilities, suggest optimal dispatch strategies, and to provide decision-making recommendations according to power system operational goals.« less

  12. Electrochemical model based charge optimization for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Pramanik, Sourav; Anwar, Sohel

    2016-05-01

    In this paper, we propose the design of a novel optimal strategy for charging the lithium-ion battery based on electrochemical battery model that is aimed at improved performance. A performance index that aims at minimizing the charging effort along with a minimum deviation from the rated maximum thresholds for cell temperature and charging current has been defined. The method proposed in this paper aims at achieving a faster charging rate while maintaining safe limits for various battery parameters. Safe operation of the battery is achieved by including the battery bulk temperature as a control component in the performance index which is of critical importance for electric vehicles. Another important aspect of the performance objective proposed here is the efficiency of the algorithm that would allow higher charging rates without compromising the internal electrochemical kinetics of the battery which would prevent abusive conditions, thereby improving the long term durability. A more realistic model, based on battery electro-chemistry has been used for the design of the optimal algorithm as opposed to the conventional equivalent circuit models. To solve the optimization problem, Pontryagins principle has been used which is very effective for constrained optimization problems with both state and input constraints. Simulation results show that the proposed optimal charging algorithm is capable of shortening the charging time of a lithium ion cell while maintaining the temperature constraint when compared with the standard constant current charging. The designed method also maintains the internal states within limits that can avoid abusive operating conditions.

  13. Particle Swarm Optimization With Interswarm Interactive Learning Strategy.

    PubMed

    Qin, Quande; Cheng, Shi; Zhang, Qingyu; Li, Li; Shi, Yuhui

    2016-10-01

    The learning strategy in the canonical particle swarm optimization (PSO) algorithm is often blamed for being the primary reason for loss of diversity. Population diversity maintenance is crucial for preventing particles from being stuck into local optima. In this paper, we present an improved PSO algorithm with an interswarm interactive learning strategy (IILPSO) by overcoming the drawbacks of the canonical PSO algorithm's learning strategy. IILPSO is inspired by the phenomenon in human society that the interactive learning behavior takes place among different groups. Particles in IILPSO are divided into two swarms. The interswarm interactive learning (IIL) behavior is triggered when the best particle's fitness value of both the swarms does not improve for a certain number of iterations. According to the best particle's fitness value of each swarm, the softmax method and roulette method are used to determine the roles of the two swarms as the learning swarm and the learned swarm. In addition, the velocity mutation operator and global best vibration strategy are used to improve the algorithm's global search capability. The IIL strategy is applied to PSO with global star and local ring structures, which are termed as IILPSO-G and IILPSO-L algorithm, respectively. Numerical experiments are conducted to compare the proposed algorithms with eight popular PSO variants. From the experimental results, IILPSO demonstrates the good performance in terms of solution accuracy, convergence speed, and reliability. Finally, the variations of the population diversity in the entire search process provide an explanation why IILPSO performs effectively.

  14. Ultra Low Temperature Ultra Low Power Instrument Packages for Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Millar, P. S.; Beaman, B.; Yeh, P. S.; Cooper, L.; Feng, S.; Young, E.

    2010-01-01

    Achievement of solar system exploration roadmap goals will involve robotic or human deployment and longterm operation of surface science packages remote from human presence, thus requiring autonomous, self-powered operation. The major challenge such packages face will be operating during long periods of darkness in extreme cold potentially without the Pu238 based power and thermal systems available to Apollo era packages (ALSEP). Development of such science payloads will thus require considerable optimization of instrument and subsystem design, packaging and integration for a variety of planetary surface environments in order to support solar system exploration fully. Our work supports this process through the incorporation of low temperature operational components and design strategies which radically minimize power, mass, and cost while maximizing the performance under extreme surface conditions that are in many cases more demanding than those routinely experienced by spacecraft in deep space. Chief instruments/instrument package candidates include those which could provide long-term monitoring of the surface and subsurface environments for fundamental science and human crew safety. The initial attempt to design a 10 instrument environmental monitoring package with a solar/battery based power system led to a package with a unacceptably large mass (500 kg) of which over half was battery mass. In phase 1, a factor of 5 reduction in mass was achieved, first through the introduction of high performance electronics capable of operating at far lower temperature and then through the use of innovative thermal balance strategies involving the use of multi-layer thin materials and gravity-assisted heat pipes. In phase 2, reported here, involves strategies such as universal incorporation of ULT/ULP digital and analog electronics, and distributed or non-conventionally packaged power systems. These strategies will be required to meet the far more challenging thermal requirements of operating through a normal 28 day diurnal cycle. The limited temperature range of efficient battery operation remains the largest obstacle.

  15. Identification of emergent off-nominal operational requirements during conceptual architecting of the more electric aircraft

    NASA Astrophysics Data System (ADS)

    Armstrong, Michael James

    Increases in power demands and changes in the design practices of overall equipment manufacturers has led to a new paradigm in vehicle systems definition. The development of unique power systems architectures is of increasing importance to overall platform feasibility and must be pursued early in the aircraft design process. Many vehicle systems architecture trades must be conducted concurrent to platform definition. With an increased complexity introduced during conceptual design, accurate predictions of unit level sizing requirements must be made. Architecture specific emergent requirements must be identified which arise due to the complex integrated effect of unit behaviors. Off-nominal operating scenarios present sizing critical requirements to the aircraft vehicle systems. These requirements are architecture specific and emergent. Standard heuristically defined failure mitigation is sufficient for sizing traditional and evolutionary architectures. However, architecture concepts which vary significantly in terms of structure and composition require that unique failure mitigation strategies be defined for accurate estimations of unit level requirements. Identifying of these off-nominal emergent operational requirements require extensions to traditional safety and reliability tools and the systematic identification of optimal performance degradation strategies. Discrete operational constraints posed by traditional Functional Hazard Assessment (FHA) are replaced by continuous relationships between function loss and operational hazard. These relationships pose the objective function for hazard minimization. Load shedding optimization is performed for all statistically significant failures by varying the allocation of functional capability throughout the vehicle systems architecture. Expressing hazards, and thereby, reliability requirements as continuous relationships with the magnitude and duration of functional failure requires augmentations to the traditional means for system safety assessment (SSA). The traditional two state and discrete system reliability assessment proves insufficient. Reliability is, therefore, handled in an analog fashion: as a function of magnitude of failure and failure duration. A series of metrics are introduced which characterize system performance in terms of analog hazard probabilities. These include analog and cumulative system and functional risk, hazard correlation, and extensions to the traditional component importance metrics. Continuous FHA, load shedding optimization, and analog SSA constitute the SONOMA process (Systematic Off-Nominal Requirements Analysis). Analog system safety metrics inform both architecture optimization (changes in unit level capability and reliability) and architecture augmentation (changes in architecture structure and composition). This process was applied for two vehicle systems concepts (conventional and 'more-electric') in terms of loss/hazard relationships with varying degrees of fidelity. Application of this process shows that the traditional assumptions regarding the structure of the function loss vs. hazard relationship apply undue design bias to functions and components during exploratory design. This bias is illustrated in terms of inaccurate estimations of the system and function level risk and unit level importance. It was also shown that off-nominal emergent requirements must be defined specific to each architecture concept. Quantitative comparisons of architecture specific off-nominal performance were obtained which provide evidence to the need for accurate definition of load shedding strategies during architecture exploratory design. Formally expressing performance degradation strategies in terms of the minimization of a continuous hazard space enhances the system architects ability to accurately predict sizing critical emergent requirements concurrent to architecture definition. Furthermore, the methods and frameworks generated here provide a structured and flexible means for eliciting these architecture specific requirements during the performance of architecture trades.

  16. A decision tree-based on-line preventive control strategy for power system transient instability prevention

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Dong, Zhao Yang; Zhang, Rui; Wong, Kit Po

    2014-02-01

    Maintaining transient stability is a basic requirement for secure power system operations. Preventive control deals with modifying the system operating point to withstand probable contingencies. In this article, a decision tree (DT)-based on-line preventive control strategy is proposed for transient instability prevention of power systems. Given a stability database, a distance-based feature estimation algorithm is first applied to identify the critical generators, which are then used as features to develop a DT. By interpreting the splitting rules of DT, preventive control is realised by formulating the rules in a standard optimal power flow model and solving it. The proposed method is transparent in control mechanism, on-line computation compatible and convenient to deal with multi-contingency. The effectiveness and efficiency of the method has been verified on New England 10-machine 39-bus test system.

  17. Study on SOC wavelet analysis for LiFePO4 battery

    NASA Astrophysics Data System (ADS)

    Liu, Xuepeng; Zhao, Dongmei

    2017-08-01

    Improving the prediction accuracy of SOC can reduce the complexity of the conservative and control strategy of the strategy such as the scheduling, optimization and planning of LiFePO4 battery system. Based on the analysis of the relationship between the SOC historical data and the external stress factors, the SOC Estimation-Correction Prediction Model based on wavelet analysis is established. Using wavelet neural network prediction model is of high precision to achieve forecast link, external stress measured data is used to update parameters estimation in the model, implement correction link, makes the forecast model can adapt to the LiFePO4 battery under rated condition of charge and discharge the operating point of the variable operation area. The test results show that the method can obtain higher precision prediction model when the input and output of LiFePO4 battery are changed frequently.

  18. Interaction between control and design of a SHARON reactor: economic considerations in a plant-wide (BSM2) context.

    PubMed

    Volcke, E I P; van Loosdrecht, M C M; Vanrolleghem, P A

    2007-01-01

    The combined SHARON-Anammox process is a promising technique for nitrogen removal from wastewater streams with high ammonium concentrations. It is typically applied to sludge digestion reject water, in order to relieve the activated sludge tanks, to which this stream is typically recycled. This contribution assesses the impact of the applied control strategy in the SHARON-reactor, both on the effluent quality of the subsequent Anammox reactor as well as on the plant-wide level by means of an operating cost index. Moreover, it is investigated to which extent the usefulness of a certain control strategy depends on the reactor design (volume). A simulation study is carried out using the plant-wide Benchmark Simulation Model no. 2 (BSM2), extended with the SHARON and Anammox processes. The results reveal a discrepancy between optimizing the reject water treatment performance and minimizing plant-wide operating costs.

  19. Carotid Artery Stenting – Strategies to Improve Procedural Performance and Reduce the Learning Curve

    PubMed Central

    Van Herzeele, Isabelle

    2013-01-01

    Carotid artery stenting (CAS) remains an appealing intervention to reduce the stroke risk because of its minimal invasive nature. Nevertheless, landmark randomised controlled trials have not been able to resolve the controversies surrounding this complex procedure as the peri-operative stroke risk in a non-selected patient population still seems to be higher after CAS in comparison to carotid endarterectomy. What is more, these trials have highlighted that patient outcome after CAS is influenced by patient- and operator-dependant factors. The CAS procedure exhibits a definitive learning curve resulting in higher complication rates if the procedure is performed by inexperienced interventionists or in low-volume centres. This article will outline strategies to improve the performance of physicians carrying out the CAS procedure by means of proficiency-based training, credentialing, virtual reality rehearsal and optimal patient selection. PMID:29588751

  20. The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities.

    PubMed

    Aymerich, I; Rieger, L; Sobhani, R; Rosso, D; Corominas, Ll

    2015-09-15

    The objective of this paper is to demonstrate the importance of incorporating more realistic energy cost models (based on current energy tariff structures) into existing water resource recovery facilities (WRRFs) process models when evaluating technologies and cost-saving control strategies. In this paper, we first introduce a systematic framework to model energy usage at WRRFs and a generalized structure to describe energy tariffs including the most common billing terms. Secondly, this paper introduces a detailed energy cost model based on a Spanish energy tariff structure coupled with a WRRF process model to evaluate several control strategies and provide insights into the selection of the contracted power structure. The results for a 1-year evaluation on a 115,000 population-equivalent WRRF showed monthly cost differences ranging from 7 to 30% when comparing the detailed energy cost model to an average energy price. The evaluation of different aeration control strategies also showed that using average energy prices and neglecting energy tariff structures may lead to biased conclusions when selecting operating strategies or comparing technologies or equipment. The proposed framework demonstrated that for cost minimization, control strategies should be paired with a specific optimal contracted power. Hence, the design of operational and control strategies must take into account the local energy tariff. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A thermodynamic approach for selecting operating conditions in the design of reversible solid oxide cell energy systems

    NASA Astrophysics Data System (ADS)

    Wendel, Christopher H.; Kazempoor, Pejman; Braun, Robert J.

    2016-01-01

    Reversible solid oxide cell (ReSOC) systems are being increasingly considered for electrical energy storage, although much work remains before they can be realized, including cell materials development and system design optimization. These systems store electricity by generating a synthetic fuel in electrolysis mode and subsequently recover electricity by electrochemically oxidizing the stored fuel in fuel cell mode. System thermal management is improved by promoting methane synthesis internal to the ReSOC stack. Within this strategy, the cell-stack operating conditions are highly impactful on system performance and optimizing these parameters to suit both operating modes is critical to achieving high roundtrip efficiency. Preliminary analysis shows the thermoneutral voltage to be a useful parameter for analyzing ReSOC systems and the focus of this study is to quantitatively examine how it is affected by ReSOC operating conditions. The results reveal that the thermoneutral voltage is generally reduced by increased pressure, and reductions in temperature, fuel utilization, and hydrogen-to-carbon ratio. Based on the thermodynamic analysis, many different combinations of these operating conditions are expected to promote efficient energy storage. Pressurized systems can achieve high efficiency at higher temperature and fuel utilization, while non-pressurized systems may require lower stack temperature and suffer from reduced energy density.

  2. Strategies for the startup of methanogenic inverse fluidized-bed reactors using colonized particles.

    PubMed

    Alvarado-Lassman, A; Sandoval-Ramos, A; Flores-Altamirano, M G; Vallejo-Cantú, N A; Méndez-Contreras, J M

    2010-05-01

    One of the inconveniences in the startup of methanogenic inverse fluidized-bed reactors (IFBRs) is the long period required for biofilm formation and stabilization of the system. Previous researchers have preferred to start up in batch mode to shorten stabilization times. Much less work has been done with continuous-mode startup for the IFBR configuration of reactors. In this study, we prepared two IFBRs with similar characteristics to compare startup times for batch- and continuous-operation modes. The reactors were inoculated with a small quantity of colonized particles and run for a period of 3 months, to establish the optimal startup strategy using synthetic media as a substrate (glucose as a source of carbon). After the startup stage, the continuous- and batch-mode reactors removed more than 80% of the chemical oxygen demand (COD) in 51 and 60 days of operation, respectively; however, at the end of the experiments, the continuous-mode reactor had more biomass attached to the support media than the batch-mode reactor. Both reactors developed fully covered support media, but only the continuous-mode reactor had methane yields close to the theoretical value that is typical of stable reactors. Then, a combined startup strategy was proposed, with industrial wastewater as the substrate, using a sequence of batch cycles followed by continuous operation, which allows stable operation at an organic loading rate of 20 g COD/L x d in 15 days. Using a fraction of colonized support as an inoculum presents advantages, with respect to previously reported strategies.

  3. Operation of Power Grids with High Penetration of Wind Power

    NASA Astrophysics Data System (ADS)

    Al-Awami, Ali Taleb

    The integration of wind power into the power grid poses many challenges due to its highly uncertain nature. This dissertation involves two main components related to the operation of power grids with high penetration of wind energy: wind-thermal stochastic dispatch and wind-thermal coordinated bidding in short-term electricity markets. In the first part, a stochastic dispatch (SD) algorithm is proposed that takes into account the stochastic nature of the wind power output. The uncertainty associated with wind power output given the forecast is characterized using conditional probability density functions (CPDF). Several functions are examined to characterize wind uncertainty including Beta, Weibull, Extreme Value, Generalized Extreme Value, and Mixed Gaussian distributions. The unique characteristics of the Mixed Gaussian distribution are then utilized to facilitate the speed of convergence of the SD algorithm. A case study is carried out to evaluate the effectiveness of the proposed algorithm. Then, the SD algorithm is extended to simultaneously optimize the system operating costs and emissions. A modified multi-objective particle swarm optimization algorithm is suggested to identify the Pareto-optimal solutions defined by the two conflicting objectives. A sensitivity analysis is carried out to study the effect of changing load level and imbalance cost factors on the Pareto front. In the second part of this dissertation, coordinated trading of wind and thermal energy is proposed to mitigate risks due to those uncertainties. The problem of wind-thermal coordinated trading is formulated as a mixed-integer stochastic linear program. The objective is to obtain the optimal tradeoff bidding strategy that maximizes the total expected profits while controlling trading risks. For risk control, a weighted term of the conditional value at risk (CVaR) is included in the objective function. The CVaR aims to maximize the expected profits of the least profitable scenarios, thus improving trading risk control. A case study comparing coordinated with uncoordinated bidding strategies depending on the trader's risk attitude is included. Simulation results show that coordinated bidding can improve the expected profits while significantly improving the CVaR.

  4. An Ensemble-Based Forecasting Framework to Optimize Reservoir Releases

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.; Saleh, F.

    2017-12-01

    Increasing frequency of extreme precipitation events are stressing the need to manage water resources on shorter timescales. Short-term management of water resources becomes proactive when inflow forecasts are available and this information can be effectively used in the control strategy. This work investigates the utility of short term hydrological ensemble forecasts for operational decision making during extreme weather events. An advanced automated hydrologic prediction framework integrating a regional scale hydrologic model, GIS datasets and the meteorological ensemble predictions from the European Center for Medium Range Weather Forecasting (ECMWF) was coupled to an implicit multi-objective dynamic programming model to optimize releases from a water supply reservoir. The proposed methodology was evaluated by retrospectively forecasting the inflows to the Oradell reservoir in the Hackensack River basin in New Jersey during the extreme hydrologic event, Hurricane Irene. Additionally, the flexibility of the forecasting framework was investigated by forecasting the inflows from a moderate rainfall event to provide important perspectives on using the framework to assist reservoir operations during moderate events. The proposed forecasting framework seeks to provide a flexible, assistive tool to alleviate the complexity of operational decision-making.

  5. Optimal Operation and Value Evaluation of Pumped Storage Power Plants Considering Spot Market Trading and Uncertainty of Bilateral Demand

    NASA Astrophysics Data System (ADS)

    Takahashi, Kenta; Hara, Ryoichi; Kita, Hiroyuki; Hasegawa, Jun

    In recent years, as the deregulation in electric power industry has advanced in many countries, a spot market trading of electricity has been done. Generation companies are allowed to purchase the electricity through the electric power market and supply electric power for their bilateral customers. Under this circumstance, it is important for the generation companies to procure the required electricity with cheaper cost to increase their profit. The market price is volatile since it is determined by bidding between buyer and seller. The pumped storage power plant, one of the storage facilities is promising against such volatile market price since it can produce a profit by purchasing electricity with lower-price and selling it with higher-price. This paper discusses the optimal operation of the pumped storage power plants considering bidding strategy to an uncertain spot market. The volatilities in market price and demand are represented by the Vasicek model in our estimation. This paper also discusses the allocation of operational reserve to the pumped storage power plant.

  6. Review: Optimization methods for groundwater modeling and management

    NASA Astrophysics Data System (ADS)

    Yeh, William W.-G.

    2015-09-01

    Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.

  7. Experimental study on the optimal purge duration of a proton exchange membrane fuel cell with a dead-ended anode

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Fen; Chen, Yong-Song

    2017-02-01

    When a proton exchange membrane fuel cell (PEMFC) is operated with a dead-ended anode, impurities gradually accumulate within the anode, resulting in a performance drop. An anode purge is thereby ultimately required to remove impurities within the anode. A purge strategy comprises purge interval (valve closed) and purge duration (valve is open). A short purge interval causes frequent and unnecessary activation of the valve, whereas a long purge interval leads to excessive impurity accumulation. A short purge duration causes an incomplete performance recovery, whereas a long purge duration results in low hydrogen utilization. In this study, a series of experimental trials was conducted to simultaneously measure the hydrogen supply rate and power generation of a PEMFC at a frequency of 50 Hz for various operating current density levels and purge durations. The effect of purge duration on the cell's energy efficiency was subsequently analyzed and discussed. The results showed that the optimal purge duration for the PEMFC was approximately 0.2 s. Based on the results of this study, a methodical process for determining optimal purge durations was ultimately proposed for widespread application. Purging approximately one-fourth of anode gas can obtain optimal energy efficiency for a PEMFC with a dead-ended anode.

  8. An EGO-like optimization framework for sensor placement optimization in modal analysis

    NASA Astrophysics Data System (ADS)

    Morlier, Joseph; Basile, Aniello; Chiplunkar, Ankit; Charlotte, Miguel

    2018-07-01

    In aircraft design, ground/flight vibration tests are conducted to extract aircraft’s modal parameters (natural frequencies, damping ratios and mode shapes) also known as the modal basis. The main problem in aircraft modal identification is the large number of sensors needed, which increases operational time and costs. The goal of this paper is to minimize the number of sensors by optimizing their locations in order to reconstruct a truncated modal basis of N mode shapes with a high level of accuracy in the reconstruction. There are several methods to solve sensors placement optimization (SPO) problems, but for this case an original approach has been established based on an iterative process for mode shapes reconstruction through an adaptive Kriging metamodeling approach so called efficient global optimization (EGO)-SPO. The main idea in this publication is to solve an optimization problem where the sensors locations are variables and the objective function is defined by maximizing the trace of criteria so called AutoMAC. The results on a 2D wing demonstrate a reduction of sensors by 30% using our EGO-SPO strategy.

  9. Are Birds Smarter Than Mathematicians? Pigeons (Columba livia) Perform Optimally on a Version of the Monty Hall Dilemma

    PubMed Central

    Herbranson, Walter T.; Schroeder, Julia

    2011-01-01

    The “Monty Hall Dilemma” (MHD) is a well known probability puzzle in which a player tries to guess which of three doors conceals a desirable prize. After an initial choice is made, one of the remaining doors is opened, revealing no prize. The player is then given the option of staying with their initial guess or switching to the other unopened door. Most people opt to stay with their initial guess, despite the fact that switching doubles the probability of winning. A series of experiments investigated whether pigeons (Columba livia), like most humans, would fail to maximize their expected winnings in a version of the MHD. Birds completed multiple trials of a standard MHD, with the three response keys in an operant chamber serving as the three doors and access to mixed grain as the prize. Across experiments, the probability of gaining reinforcement for switching and staying was manipulated, and birds adjusted their probability of switching and staying to approximate the optimal strategy. Replication of the procedure with human participants showed that humans failed to adopt optimal strategies, even with extensive training. PMID:20175592

  10. Seismic waveform inversion best practices: regional, global and exploration test cases

    NASA Astrophysics Data System (ADS)

    Modrak, Ryan; Tromp, Jeroen

    2016-09-01

    Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence associated with strong nonlinearity, one or two test cases are not enough to reliably inform such decisions. We identify best practices, instead, using four seismic near-surface problems, one regional problem and two global problems. To make meaningful quantitative comparisons between methods, we carry out hundreds of inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that limited-memory BFGS provides computational savings over nonlinear conjugate gradient methods in a wide range of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization and total variation regularization are effective in different contexts. Besides questions of one strategy or another, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details involving the line search and restart conditions have a strong effect on computational cost, regardless of the chosen nonlinear optimization algorithm.

  11. Cross layer optimization for cloud-based radio over optical fiber networks

    NASA Astrophysics Data System (ADS)

    Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong; Yang, Hui; Meng, Luoming

    2016-07-01

    To adapt the 5G communication, the cloud radio access network is a paradigm introduced by operators which aggregates all base stations computational resources into a cloud BBU pool. The interaction between RRH and BBU or resource schedule among BBUs in cloud have become more frequent and complex with the development of system scale and user requirement. It can promote the networking demand among RRHs and BBUs, and force to form elastic optical fiber switching and networking. In such network, multiple stratum resources of radio, optical and BBU processing unit have interweaved with each other. In this paper, we propose a novel multiple stratum optimization (MSO) architecture for cloud-based radio over optical fiber networks (C-RoFN) with software defined networking. Additionally, a global evaluation strategy (GES) is introduced in the proposed architecture. MSO can enhance the responsiveness to end-to-end user demands and globally optimize radio frequency, optical spectrum and BBU processing resources effectively to maximize radio coverage. The feasibility and efficiency of the proposed architecture with GES strategy are experimentally verified on OpenFlow-enabled testbed in terms of resource occupation and path provisioning latency.

  12. Accelerating sino-atrium computer simulations with graphic processing units.

    PubMed

    Zhang, Hong; Xiao, Zheng; Lin, Shien-fong

    2015-01-01

    Sino-atrial node cells (SANCs) play a significant role in rhythmic firing. To investigate their role in arrhythmia and interactions with the atrium, computer simulations based on cellular dynamic mathematical models are generally used. However, the large-scale computation usually makes research difficult, given the limited computational power of Central Processing Units (CPUs). In this paper, an accelerating approach with Graphic Processing Units (GPUs) is proposed in a simulation consisting of the SAN tissue and the adjoining atrium. By using the operator splitting method, the computational task was made parallel. Three parallelization strategies were then put forward. The strategy with the shortest running time was further optimized by considering block size, data transfer and partition. The results showed that for a simulation with 500 SANCs and 30 atrial cells, the execution time taken by the non-optimized program decreased 62% with respect to a serial program running on CPU. The execution time decreased by 80% after the program was optimized. The larger the tissue was, the more significant the acceleration became. The results demonstrated the effectiveness of the proposed GPU-accelerating methods and their promising applications in more complicated biological simulations.

  13. Are birds smarter than mathematicians? Pigeons (Columba livia) perform optimally on a version of the Monty Hall Dilemma.

    PubMed

    Herbranson, Walter T; Schroeder, Julia

    2010-02-01

    The "Monty Hall Dilemma" (MHD) is a well known probability puzzle in which a player tries to guess which of three doors conceals a desirable prize. After an initial choice is made, one of the remaining doors is opened, revealing no prize. The player is then given the option of staying with their initial guess or switching to the other unopened door. Most people opt to stay with their initial guess, despite the fact that switching doubles the probability of winning. A series of experiments investigated whether pigeons (Columba livia), like most humans, would fail to maximize their expected winnings in a version of the MHD. Birds completed multiple trials of a standard MHD, with the three response keys in an operant chamber serving as the three doors and access to mixed grain as the prize. Across experiments, the probability of gaining reinforcement for switching and staying was manipulated, and birds adjusted their probability of switching and staying to approximate the optimal strategy. Replication of the procedure with human participants showed that humans failed to adopt optimal strategies, even with extensive training.

  14. A mixed integer linear programming model for operational planning of a biodiesel supply chain network from used cooking oil

    NASA Astrophysics Data System (ADS)

    Jonrinaldi, Hadiguna, Rika Ampuh; Salastino, Rades

    2017-11-01

    Environmental consciousness has paid many attention nowadays. It is not only about how to recycle, remanufacture or reuse used end products but it is also how to optimize the operations of the reverse system. A previous research has proposed a design of reverse supply chain of biodiesel network from used cooking oil. However, the research focused on the design of the supply chain strategy not the operations of the supply chain. It only decided how to design the structure of the supply chain in the next few years, and the process of each stage will be conducted in the supply chain system in general. The supply chain system has not considered operational policies to be conducted by the companies in the supply chain. Companies need a policy for each stage of the supply chain operations to be conducted so as to produce the optimal supply chain system, including how to use all the resources that have been designed in order to achieve the objectives of the supply chain system. Therefore, this paper proposes a model to optimize the operational planning of a biodiesel supply chain network from used cooking oil. A mixed integer linear programming is developed to model the operational planning of biodiesel supply chain in order to minimize the total operational cost of the supply chain. Based on the implementation of the model developed, the total operational cost of the biodiesel supply chain incurred by the system is less than the total operational cost of supply chain based on the previous research during seven days of operational planning about amount of 2,743,470.00 or 0.186%. Production costs contributed to 74.6 % of total operational cost and the cost of purchasing the used cooking oil contributed to 24.1 % of total operational cost. So, the system should pay more attention to these two aspects as changes in the value of these aspects will cause significant effects to the change in the total operational cost of the supply chain.

  15. Strategie de commande optimale de la production electrique dans un site isole

    NASA Astrophysics Data System (ADS)

    Barris, Nicolas

    Hydro-Quebec manages more than 20 isolated power grids all over the province. The grids are located in small villages where the electricity demand is rather small. Those villages being far away from each other and from the main electricity production facilities, energy is produced locally using diesel generators. Electricity production costs at the isolated power grids are very important due to elevated diesel prices and transportation costs. However, the price of electricity is the same for the entire province, with no regards to the production costs of the electricity consumed. These two factors combined result in yearly exploitation losses for Hydro-Quebec. For any given village, several diesel generators are required to satisfy the demand. When the load increases, it becomes necessary to increase the capacity either by adding a generator to the production or by switching to a more powerful generator. The same thing happens when the load decreases. Every decision regarding changes in the production is included in the control strategy, which is based on predetermined parameters. These parameters were specified according to empirical studies and the knowledge base of the engineers managing the isolated power grids, but without any optimisation approach. The objective of the presented work is to minimize the diesel consumption by optimizing the parameters included in the control strategy. Its impact would be to limit the exploitation losses generated by the isolated power grids and the CO2 equivalent emissions without adding new equipment or completely changing the nature of the strategy. To satisfy this objective, the isolated power grid simulator OPERA is used along with the optimization library NOMAD and the data of three villages in northern Quebec. The preliminary optimization instance for the first village showed that some modifications to the existing control strategy must be done to better achieve the minimization objective. The main optimization processes consist of three different optimization approaches: the optimization of one set of parameters for all the villages, the optimization of one set of parameters per village, and the optimization of one set of parameters per diesel generator configuration per village. In the first scenario, the optimization of one set of parameters for all the villages leads to compromises for all three villages without allowing a full potential reduction for any village. Therefore, it is proven that applying one set of parameters to all the villages is not suitable for finding an optimal solution. In the second scenario, the optimization of one set of parameters per village allows an improvement over the previous results. At this point, it is shown that it is crucial to remove from the production the less efficient configurations when they are next to more efficient configurations. In the third scenario, the optimization of one set of parameters per configuration per village requires a very large number of function evaluations but does not result in any satisfying solution. In order to improve the performance of the optimization, it has been decided that the problem structure would be used. Two different approaches are considered: optimizing one set of parameters at a time and optimizing different rules included in the control strategy one at a time. In both cases, results are similar but calculation costs differ, the second method being much more cost efficient. The optimal values of the ultimate rules parameters can be directly linked to the efficient transition points that favor an efficient operation of the isolated power grids. Indeed, these transition points are defined in such a way that the high efficiency zone of every configuration is used. Therefore, it seems possible to directly identify on the graphs these optimal transition points and define the parameters in the control strategy without even having to run any optimization process. The diesel consumption reduction for all three villages is about 1.9%. Considering elevated diesel costs and the existence of about 20 other isolated power grids, the use of the developed methods together with a calibration of OPERA would allow a substantial reduction of Hydro-Quebec's annual deficit. Also, since one of the developed methods is very cost effective and produces equivalent results, it could be possible to use it during other processes; for example, when buying new equipment for the grid it could be possible to assess its full potential, under an optimized control strategy, and improve the net present value.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Z.; Liu, C.; Botterud, A.

    Renewable energy resources have been rapidly integrated into power systems in many parts of the world, contributing to a cleaner and more sustainable supply of electricity. Wind and solar resources also introduce new challenges for system operations and planning in terms of economics and reliability because of their variability and uncertainty. Operational strategies based on stochastic optimization have been developed recently to address these challenges. In general terms, these stochastic strategies either embed uncertainties into the scheduling formulations (e.g., the unit commitment [UC] problem) in probabilistic forms or develop more appropriate operating reserve strategies to take advantage of advanced forecastingmore » techniques. Other approaches to address uncertainty are also proposed, where operational feasibility is ensured within an uncertainty set of forecasting intervals. In this report, a comprehensive review is conducted to present the state of the art through Spring 2015 in the area of stochastic methods applied to power system operations with high penetration of renewable energy. Chapters 1 and 2 give a brief introduction and overview of power system and electricity market operations, as well as the impact of renewable energy and how this impact is typically considered in modeling tools. Chapter 3 reviews relevant literature on operating reserves and specifically probabilistic methods to estimate the need for system reserve requirements. Chapter 4 looks at stochastic programming formulations of the UC and economic dispatch (ED) problems, highlighting benefits reported in the literature as well as recent industry developments. Chapter 5 briefly introduces alternative formulations of UC under uncertainty, such as robust, chance-constrained, and interval programming. Finally, in Chapter 6, we conclude with the main observations from our review and important directions for future work.« less

  17. Perioperative feedback in surgical training: A systematic review.

    PubMed

    McKendy, Katherine M; Watanabe, Yusuke; Lee, Lawrence; Bilgic, Elif; Enani, Ghada; Feldman, Liane S; Fried, Gerald M; Vassiliou, Melina C

    2017-07-01

    Changes in surgical training have raised concerns about residents' operative exposure and preparedness for independent practice. One way of addressing this concern is by optimizing teaching and feedback in the operating room (OR). The objective of this study was to perform a systematic review on perioperative teaching and feedback. A systematic literature search identified articles from 1994 to 2014 that addressed teaching, feedback, guidance, or debriefing in the perioperative period. Data was extracted according to ENTREQ guidelines, and a qualitative analysis was performed. Thematic analysis of the 26 included studies identified four major topics. Observation of teaching behaviors in the OR described current teaching practices. Identification of effective teaching strategies analyzed teaching behaviors, differentiating positive and negative teaching strategies. Perceptions of teaching behaviors described resident and attending satisfaction with teaching in the OR. Finally models for delivering structured feedback cited examples of feedback strategies and measured their effectiveness. This study provides an overview of perioperative teaching and feedback for surgical trainees and identifies a need for improved quality and quantity of structured feedback. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Complete Expulsion of Testicular Prosthesis via the Scrotum: A Case-Based Review of the Preventive Surgical Strategies

    PubMed Central

    Deb, A.; Jay Mathias, Suresh; Fraser Saxby, Mark; Fernando, Herman

    2015-01-01

    Testicular prostheses are regularly used in urological surgery and are important for postoperative psychological well-being in many patients undergoing orchiectomy. One of the recognised complications of this procedure is graft extrusion, which can result in significant morbidity for patients and require operative reintervention. Whilst most cases of extrusion involve upward graft migration to the external inguinal ring or direct displacement through the scrotal skin, we present an unusual case of complete expulsion of testicular implant three weeks postoperatively through a previously healthy scrotum. During surgical insertion of testicular prostheses, the urological surgeon must carefully consider the different surgical strategies at each step of the operation to prevent future extrusion of the graft. A stepwise review of the preventive surgical strategies to reduce the risk of graft extrusion encompasses the choice of optimal surgical incision, the technique of dissection to create the receiving anatomical pouch, the method of fixation of the implant within the receiving hemiscrotum, and the adoption of good postoperative care measures in line with the principles of sound scrotal surgery. PMID:26137344

  19. OPTIMIZATION OF INTEGRATED URBAN WET-WEATHER CONTROL STRATEGIES

    EPA Science Inventory

    An optimization method for urban wet weather control (WWC) strategies is presented. The developed optimization model can be used to determine the most cost-effective strategies for the combination of centralized storage-release systems and distributed on-site WWC alternatives. T...

  20. Estimating Origin-Destination Matrices Using AN Efficient Moth Flame-Based Spatial Clustering Approach

    NASA Astrophysics Data System (ADS)

    Heidari, A. A.; Moayedi, A.; Abbaspour, R. Ali

    2017-09-01

    Automated fare collection (AFC) systems are regarded as valuable resources for public transport planners. In this paper, the AFC data are utilized to analysis and extract mobility patterns in a public transportation system. For this purpose, the smart card data are inserted into a proposed metaheuristic-based aggregation model and then converted to O-D matrix between stops, since the size of O-D matrices makes it difficult to reproduce the measured passenger flows precisely. The proposed strategy is applied to a case study from Haaglanden, Netherlands. In this research, moth-flame optimizer (MFO) is utilized and evaluated for the first time as a new metaheuristic algorithm (MA) in estimating transit origin-destination matrices. The MFO is a novel, efficient swarm-based MA inspired from the celestial navigation of moth insects in nature. To investigate the capabilities of the proposed MFO-based approach, it is compared to methods that utilize the K-means algorithm, gray wolf optimization algorithm (GWO) and genetic algorithm (GA). The sum of the intra-cluster distances and computational time of operations are considered as the evaluation criteria to assess the efficacy of the optimizers. The optimality of solutions of different algorithms is measured in detail. The traveler's behavior is analyzed to achieve to a smooth and optimized transport system. The results reveal that the proposed MFO-based aggregation strategy can outperform other evaluated approaches in terms of convergence tendency and optimality of the results. The results show that it can be utilized as an efficient approach to estimating the transit O-D matrices.

  1. The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model

    NASA Astrophysics Data System (ADS)

    Yang, Lu-Xing; Draief, Moez; Yang, Xiaofan

    2016-05-01

    Dynamic immunizations, under which the state of the propagation network of electronic viruses can be changed by adjusting the control measures, are regarded as an alternative to static immunizations. This paper addresses the optimal dynamical immunization under the widely accepted SIRS assumption. First, based on a controlled heterogeneous node-based SIRS model, an optimal control problem capturing the optimal dynamical immunization is formulated. Second, the existence of an optimal dynamical immunization scheme is shown, and the corresponding optimality system is derived. Next, some numerical examples are given to show that an optimal immunization strategy can be worked out by numerically solving the optimality system, from which it is found that the network topology has a complex impact on the optimal immunization strategy. Finally, the difference between a payoff and the minimum payoff is estimated in terms of the deviation of the corresponding immunization strategy from the optimal immunization strategy. The proposed optimal immunization scheme is justified, because it can achieve a low level of infections at a low cost.

  2. Integrating Predictive Modeling with Control System Design for Managed Aquifer Recharge and Recovery Applications

    NASA Astrophysics Data System (ADS)

    Drumheller, Z. W.; Regnery, J.; Lee, J. H.; Illangasekare, T. H.; Kitanidis, P. K.; Smits, K. M.

    2014-12-01

    Aquifers around the world show troubling signs of irreversible depletion and seawater intrusion as climate change, population growth, and urbanization led to reduced natural recharge rates and overuse. Scientists and engineers have begun to re-investigate the technology of managed aquifer recharge and recovery (MAR) as a means to increase the reliability of the diminishing and increasingly variable groundwater supply. MAR systems offer the possibility of naturally increasing groundwater storage while improving the quality of impaired water used for recharge. Unfortunately, MAR systems remain wrought with operational challenges related to the quality and quantity of recharged and recovered water stemming from a lack of data-driven, real-time control. Our project seeks to ease the operational challenges of MAR facilities through the implementation of active sensor networks, adaptively calibrated flow and transport models, and simulation-based meta-heuristic control optimization methods. The developed system works by continually collecting hydraulic and water quality data from a sensor network embedded within the aquifer. The data is fed into an inversion algorithm, which calibrates the parameters and initial conditions of a predictive flow and transport model. The calibrated model is passed to a meta-heuristic control optimization algorithm (e.g. genetic algorithm) to execute the simulations and determine the best course of action, i.e., the optimal pumping policy for current aquifer conditions. The optimal pumping policy is manually or autonomously applied. During operation, sensor data are used to assess the accuracy of the optimal prediction and augment the pumping strategy as needed. At laboratory-scale, a small (18"H x 46"L) and an intermediate (6'H x 16'L) two-dimensional synthetic aquifer were constructed and outfitted with sensor networks. Data collection and model inversion components were developed and sensor data were validated by analytical measurements.

  3. Optimal Refueling Pattern Search for a CANDU Reactor Using a Genetic Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quang Binh, DO; Gyuhong, ROH; Hangbok, CHOI

    2006-07-01

    This paper presents the results from the application of genetic algorithms to a refueling optimization of a Canada deuterium uranium (CANDU) reactor. This work aims at making a mathematical model of the refueling optimization problem including the objective function and constraints and developing a method based on genetic algorithms to solve the problem. The model of the optimization problem and the proposed method comply with the key features of the refueling strategy of the CANDU reactor which adopts an on-power refueling operation. In this study, a genetic algorithm combined with an elitism strategy was used to automatically search for themore » refueling patterns. The objective of the optimization was to maximize the discharge burn-up of the refueling bundles, minimize the maximum channel power, or minimize the maximum change in the zone controller unit (ZCU) water levels. A combination of these objectives was also investigated. The constraints include the discharge burn-up, maximum channel power, maximum bundle power, channel power peaking factor and the ZCU water level. A refueling pattern that represents the refueling rate and channels was coded by a one-dimensional binary chromosome, which is a string of binary numbers 0 and 1. A computer program was developed in FORTRAN 90 running on an HP 9000 workstation to conduct the search for the optimal refueling patterns for a CANDU reactor at the equilibrium state. The results showed that it was possible to apply genetic algorithms to automatically search for the refueling channels of the CANDU reactor. The optimal refueling patterns were compared with the solutions obtained from the AUTOREFUEL program and the results were consistent with each other. (authors)« less

  4. Resolving Off-Nominal Situations in Schedule-Based Terminal Area Operations: Results from a Human-in-the-Loop Simulation

    NASA Technical Reports Server (NTRS)

    Mercer, Joey; Callantine, Todd; Martin, Lynne

    2012-01-01

    A recent human-in-the-loop simulation in the Airspace Operations Laboratory (AOL) at NASA's Ames Research Center investigated the robustness of Controller-Managed Spacing (CMS) operations. CMS refers to AOL-developed controller tools and procedures for enabling arrivals to conduct efficient Optimized Profile Descents with sustained high throughput. The simulation provided a rich data set for examining how a traffic management supervisor and terminal-area controller participants used the CMS tools and coordinated to respond to off-nominal events. This paper proposes quantitative measures for characterizing the participants responses. Case studies of go-around events, replicated during the simulation, provide insights into the strategies employed and the role the CMS tools played in supporting them.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    T.R. McJunkin; R.L. Boring; M.A. McQueen

    Situational awareness in the operations and supervision of a industrial system means that decision making entity, whether machine or human, have the important data presented in a timely manner. An optimal presentation of information such that the operator has the best opportunity accurately interpret and react to anomalies due to system degradation, failures or adversaries. Anticipated problems are a matter for system design; however, the paper will focus on concepts for situational awareness enhancement for a human operator when the unanticipated or unaddressed event types occur. Methodology for human machine interface development and refinement strategy is described for a syntheticmore » fuels plant model. A novel concept for adaptively highlighting the most interesting information in the system and a plan for testing the methodology is described.« less

  6. Earth-Moon Libration Point Orbit Stationkeeping: Theory, Modeling and Operations

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Pavlak, Thomas A.; Haapala, Amanda F.; Howell, Kathleen C.; Woodard, Mark A.

    2013-01-01

    Collinear Earth-Moon libration points have emerged as locations with immediate applications. These libration point orbits are inherently unstable and must be maintained regularly which constrains operations and maneuver locations. Stationkeeping is challenging due to relatively short time scales for divergence effects of large orbital eccentricity of the secondary body, and third-body perturbations. Using the Acceleration Reconnection and Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) mission orbit as a platform, the fundamental behavior of the trajectories is explored using Poincare maps in the circular restricted three-body problem. Operational stationkeeping results obtained using the Optimal Continuation Strategy are presented and compared to orbit stability information generated from mode analysis based in dynamical systems theory.

  7. Analysis of a combined heating and cooling system model under different operating strategies

    NASA Astrophysics Data System (ADS)

    Dzierzgowski, Mieczysław; Zwierzchowski, Ryszard

    2017-11-01

    The paper presents an analysis of a combined heating and cooling system model under different operating strategies. Cooling demand for air conditioning purposes has grown steadily in Poland since the early 1990s. The main clients are large office buildings and shopping malls in downtown locations. Increased demand for heat in the summer would mitigate a number of problems regarding District Heating System (DHS) operation at minimum power, affecting the average annual price of heat (in summertime the share of costs related to transport losses is a strong cost factor). In the paper, computer simulations were performed for different supply network water temperature, assuming as input, real changes in the parameters of the DHS (heat demand, flow rates, etc.). On the basis of calculations and taking into account investment costs of the Absorption Refrigeration System (ARS) and the Thermal Energy Storage (TES) system, an optimal capacity of the TES system was proposed to ensure smooth and efficient operation of the District Heating Plant (DHP). Application of ARS with the TES system in the DHS in question increases net profit by 19.4%, reducing the cooling price for consumers by 40%.

  8. Computing Optimal Stochastic Portfolio Execution Strategies: A Parametric Approach Using Simulations

    NASA Astrophysics Data System (ADS)

    Moazeni, Somayeh; Coleman, Thomas F.; Li, Yuying

    2010-09-01

    Computing optimal stochastic portfolio execution strategies under appropriate risk consideration presents great computational challenge. We investigate a parametric approach for computing optimal stochastic strategies using Monte Carlo simulations. This approach allows reduction in computational complexity by computing coefficients for a parametric representation of a stochastic dynamic strategy based on static optimization. Using this technique, constraints can be similarly handled using appropriate penalty functions. We illustrate the proposed approach to minimize the expected execution cost and Conditional Value-at-Risk (CVaR).

  9. Improving lactate metabolism in an intensified CHO culture process: productivity and product quality considerations.

    PubMed

    Xu, Sen; Hoshan, Linda; Chen, Hao

    2016-11-01

    In this study, we discussed the development and optimization of an intensified CHO culture process, highlighting medium and control strategies to improve lactate metabolism. A few strategies, including supplementing glucose with other sugars (fructose, maltose, and galactose), controlling glucose level at <0.2 mM, and supplementing medium with copper sulfate, were found to be effective in reducing lactate accumulation. Among them, copper sulfate supplementation was found to be critical for process optimization when glucose was in excess. When copper sulfate was supplemented in the new process, two-fold increase in cell density (66.5 ± 8.4 × 10(6) cells/mL) and titer (11.9 ± 0.6 g/L) was achieved. Productivity and product quality attributes differences between batch, fed-batch, and concentrated fed-batch cultures were discussed. The importance of process and cell metabolism understanding when adapting the existing process to a new operational mode was demonstrated in the study.

  10. Congestion Pricing for Aircraft Pushback Slot Allocation.

    PubMed

    Liu, Lihua; Zhang, Yaping; Liu, Lan; Xing, Zhiwei

    2017-01-01

    In order to optimize aircraft pushback management during rush hour, aircraft pushback slot allocation based on congestion pricing is explored while considering monetary compensation based on the quality of the surface operations. First, the concept of the "external cost of surface congestion" is proposed, and a quantitative study on the external cost is performed. Then, an aircraft pushback slot allocation model for minimizing the total surface cost is established. An improved discrete differential evolution algorithm is also designed. Finally, a simulation is performed on Xinzheng International Airport using the proposed model. By comparing the pushback slot control strategy based on congestion pricing with other strategies, the advantages of the proposed model and algorithm are highlighted. In addition to reducing delays and optimizing the delay distribution, the model and algorithm are better suited for use for actual aircraft pushback management during rush hour. Further, it is also observed they do not result in significant increases in the surface cost. These results confirm the effectiveness and suitability of the proposed model and algorithm.

  11. Research on UAV Intelligent Obstacle Avoidance Technology During Inspection of Transmission Line

    NASA Astrophysics Data System (ADS)

    Wei, Chuanhu; Zhang, Fei; Yin, Chaoyuan; Liu, Yue; Liu, Liang; Li, Zongyu; Wang, Wanguo

    Autonomous obstacle avoidance of unmanned aerial vehicle (hereinafter referred to as UAV) in electric power line inspection process has important significance for operation safety and economy for UAV intelligent inspection system of transmission line as main content of UAV intelligent inspection system on transmission line. In the paper, principles of UAV inspection obstacle avoidance technology of transmission line are introduced. UAV inspection obstacle avoidance technology based on particle swarm global optimization algorithm is proposed after common obstacle avoidance technologies are studied. Stimulation comparison is implemented with traditional UAV inspection obstacle avoidance technology which adopts artificial potential field method. Results show that UAV inspection strategy of particle swarm optimization algorithm, adopted in the paper, is prominently better than UAV inspection strategy of artificial potential field method in the aspects of obstacle avoidance effect and the ability of returning to preset inspection track after passing through the obstacle. An effective method is provided for UAV inspection obstacle avoidance of transmission line.

  12. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering.

    PubMed

    Crook, Nathan C; Schmitz, Alexander C; Alper, Hal S

    2014-05-16

    Reduction of endogenous gene expression is a fundamental operation of metabolic engineering, yet current methods for gene knockdown (i.e., genome editing) remain laborious and slow, especially in yeast. In contrast, RNA interference allows facile and tunable gene knockdown via a simple plasmid transformation step, enabling metabolic engineers to rapidly prototype knockdown strategies in multiple strains before expending significant cost to undertake genome editing. Although RNAi is naturally present in a myriad of eukaryotes, it has only been recently implemented in Saccharomyces cerevisiae as a heterologous pathway and so has not yet been optimized as a metabolic engineering tool. In this study, we elucidate a set of design principles for the construction of hairpin RNA expression cassettes in yeast and implement RNA interference to quickly identify routes for improvement of itaconic acid production in this organism. The approach developed here enables rapid prototyping of knockdown strategies and thus accelerates and reduces the cost of the design-build-test cycle in yeast.

  13. Congestion Pricing for Aircraft Pushback Slot Allocation

    PubMed Central

    Zhang, Yaping

    2017-01-01

    In order to optimize aircraft pushback management during rush hour, aircraft pushback slot allocation based on congestion pricing is explored while considering monetary compensation based on the quality of the surface operations. First, the concept of the “external cost of surface congestion” is proposed, and a quantitative study on the external cost is performed. Then, an aircraft pushback slot allocation model for minimizing the total surface cost is established. An improved discrete differential evolution algorithm is also designed. Finally, a simulation is performed on Xinzheng International Airport using the proposed model. By comparing the pushback slot control strategy based on congestion pricing with other strategies, the advantages of the proposed model and algorithm are highlighted. In addition to reducing delays and optimizing the delay distribution, the model and algorithm are better suited for use for actual aircraft pushback management during rush hour. Further, it is also observed they do not result in significant increases in the surface cost. These results confirm the effectiveness and suitability of the proposed model and algorithm. PMID:28114429

  14. How can surgical training benefit from theories of skilled motor development, musical skill acquisition and performance psychology?

    PubMed

    McCaskie, Andrew W; Kenny, Dianna T; Deshmukh, Sandeep

    2011-05-02

    Trainee surgeons must acquire expert status in the context of reduced hours, reduced operating room time and the need to learn complex skills involving screen-mediated techniques, computers and robotics. Ever more sophisticated surgical simulation strategies have been helpful in providing surgeons with the opportunity to practise, but not all of these strategies are widely available. Similarities in the motor skills required in skilled musical performance and surgery suggest that models of music learning, and particularly skilled motor development, may be applicable in training surgeons. More attention should be paid to factors associated with optimal arousal and optimal performance in surgical training - lessons learned from helping anxious musicians optimise performance and manage anxiety may also be transferable to trainee surgeons. The ways in which the trainee surgeon moves from novice to expert need to be better understood so that this process can be expedited using current knowledge in other disciplines requiring the performance of complex fine motor tasks with high cognitive load under pressure.

  15. Decomposition and control of complex systems - Application to the analysis and control of industrial and economic systems /energy production/ with limited supplies

    NASA Astrophysics Data System (ADS)

    de Coligny, M.

    Optimized control strategies are developed for industrial installations where many variables of energy supply and storage are involved, with a particular focus on characteristics of a solar central tower power plant. It is shown that optimal regulation resides in controlling all disturbances which occur in a limited domain of the entire system, using robust control schemes. Choosing a command is then dependent on defining precise operational limits as constraints on the machines' performances. Attention is given to the development of variational principles used for the elements of the command logic. Particular consideration is given to a limited supply in storage in spatial and temporal terms. Commands for alterations in functions are then available on-line, and discontinuities are not a feature of the control system. The strategy is applied to the case of a field of heliostats and a central tower themal receiver showing that management is possible on the basis of a sliding horizon.

  16. Integration of vaccine supply chains with other health commodity supply chains: a framework for decision making.

    PubMed

    Yadav, Prashant; Lydon, Patrick; Oswald, Julianna; Dicko, Modibo; Zaffran, Michel

    2014-11-28

    One of the primary objectives of National Immunization Programs is to strengthen and optimize immunization supply chains so that vaccines are delivered to the end recipients effectively, efficiently and sustainably. As a result of larger investments in global health and a wider portfolio of vaccines, global agencies are recognizing the need for vaccine supply chains to operate at their most optimal levels. Integration with other supply chains is often presented as a strategy to improve efficiency. However, it remains unclear if the proposed benefits from integration of vaccine supply chains with other supply chains will outweigh the costs. This paper provides a framework for deciding where such integration offers the most significant benefits. It also cautions about the pitfalls of integration as a one size fits all strategy. It also highlights the need for systematic collection of cost and efficiency data in order to understand the value of integration and other such initiatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Helicopter Flight Procedures for Community Noise Reduction

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric

    2017-01-01

    A computationally efficient, semiempirical noise model suitable for maneuvering flight noise prediction is used to evaluate the community noise impact of practical variations on several helicopter flight procedures typical of normal operations. Turns, "quick-stops," approaches, climbs, and combinations of these maneuvers are assessed. Relatively small variations in flight procedures are shown to cause significant changes to Sound Exposure Levels over a wide area. Guidelines are developed for helicopter pilots intended to provide effective strategies for reducing the negative effects of helicopter noise on the community. Finally, direct optimization of flight trajectories is conducted to identify low noise optimal flight procedures and quantify the magnitude of community noise reductions that can be obtained through tailored helicopter flight procedures. Physically realizable optimal turns and approaches are identified that achieve global noise reductions of as much as 10 dBA Sound Exposure Level.

  18. Optimal tracking and second order sliding power control of the DFIG wind turbine

    NASA Astrophysics Data System (ADS)

    Abdeddaim, S.; Betka, A.; Charrouf, O.

    2017-02-01

    In the present paper, an optimal operation of a grid-connected variable speed wind turbine equipped with a Doubly Fed Induction Generator (DFIG) is presented. The proposed cascaded nonlinear controller is designed to perform two main objectives. In the outer loop, a maximum power point tracking (MPPT) algorithm based on fuzzy logic theory is designed to permanently extract the optimal aerodynamic energy, whereas in the inner loop, a second order sliding mode control (2-SM) is applied to achieve smooth regulation of both stator active and reactive powers quantities. The obtained simulation results show a permanent track of the MPP point regardless of the turbine power-speed slope moreover the proposed sliding mode control strategy presents attractive features such as chattering-free, compared to the conventional first order sliding technique (1-SM).

  19. Process control integration requirements for advanced life support systems applicable to manned space missions

    NASA Technical Reports Server (NTRS)

    Spurlock, Paul; Spurlock, Jack M.; Evanich, Peggy L.

    1991-01-01

    An overview of recent developments in process-control technology which might have applications in future advanced life support systems for long-duration space operations is presented. Consideration is given to design criteria related to control system selection and optimization, and process-control interfacing methodology. Attention is also given to current life support system process control strategies, innovative sensors, instrumentation and control, and innovations in process supervision.

  20. A Framework for Matching User Needs to an Optimal Level of Office Automation

    DTIC Science & Technology

    1988-06-01

    TECHNOSTRESS Craig Brod coins the term " technostress " to describe the emotional stress induced by the introduction of new technology. (Brod, 1984, pp. 28... Technostress has a very negative effect on the productivity of people who use OA systems. Common indicators of technostress are very slow learning... technostress using a strategy which divides adaptation to computers into three phases called orientation, operations and mastery. 59 1. Orientation The

  1. Open and Shut: The Case for Optimizing Air Component Resilient Basing Strategies in an Anti-Access/Area Denial Operating Environment

    DTIC Science & Technology

    2018-04-09

    The research focuses on gaps in current doctrine, command relationships, command and control, force structure of ABO forces, posture, training for...identifying conceptual challenges and methodologies to address them as well as describing areas for further research . 15. SUBJECT TERMS Airbase Opening...Denial environment. The research focuses on gaps in current doctrine, command relationships, command and control, force structure of ABO forces

  2. Advanced Research Workshop on Fundamentals of Electronic Nanosystems Held in St. Petersburg, Russia on 25 June-1 July 2005

    DTIC Science & Technology

    2005-01-01

    qubits . Suppression of Superconductivity in Granular Metals Igor Beloborodov Argonne National Laboratory, USA We investigate the suppression of...Russia Various strategies for extending coherence times of superconducting qubits have been proposed. We analyze the effect of fluctuations on a... qubit operated at an optimal point in the free- induction decay and the spin-echo-like experiments. Motivated by the recent experimental findings we

  3. Optimal Multi-scale Demand-side Management for Continuous Power-Intensive Processes

    NASA Astrophysics Data System (ADS)

    Mitra, Sumit

    With the advent of deregulation in electricity markets and an increasing share of intermittent power generation sources, the profitability of industrial consumers that operate power-intensive processes has become directly linked to the variability in energy prices. Thus, for industrial consumers that are able to adjust to the fluctuations, time-sensitive electricity prices (as part of so-called Demand-Side Management (DSM) in the smart grid) offer potential economical incentives. In this thesis, we introduce optimization models and decomposition strategies for the multi-scale Demand-Side Management of continuous power-intensive processes. On an operational level, we derive a mode formulation for scheduling under time-sensitive electricity prices. The formulation is applied to air separation plants and cement plants to minimize the operating cost. We also describe how a mode formulation can be used for industrial combined heat and power plants that are co-located at integrated chemical sites to increase operating profit by adjusting their steam and electricity production according to their inherent flexibility. Furthermore, a robust optimization formulation is developed to address the uncertainty in electricity prices by accounting for correlations and multiple ranges in the realization of the random variables. On a strategic level, we introduce a multi-scale model that provides an understanding of the value of flexibility of the current plant configuration and the value of additional flexibility in terms of retrofits for Demand-Side Management under product demand uncertainty. The integration of multiple time scales leads to large-scale two-stage stochastic programming problems, for which we need to apply decomposition strategies in order to obtain a good solution within a reasonable amount of time. Hence, we describe two decomposition schemes that can be applied to solve two-stage stochastic programming problems: First, a hybrid bi-level decomposition scheme with novel Lagrangean-type and subset-type cuts to strengthen the relaxation. Second, an enhanced cross-decomposition scheme that integrates Benders decomposition and Lagrangean decomposition on a scenario basis. To demonstrate the effectiveness of our developed methodology, we provide several industrial case studies throughout the thesis.

  4. Optimal Correlations in Many-Body Quantum Systems

    NASA Astrophysics Data System (ADS)

    Amico, L.; Rossini, D.; Hamma, A.; Korepin, V. E.

    2012-06-01

    Information and correlations in a quantum system are closely related through the process of measurement. We explore such relation in a many-body quantum setting, effectively bridging between quantum metrology and condensed matter physics. To this aim we adopt the information-theory view of correlations and study the amount of correlations after certain classes of positive-operator-valued measurements are locally performed. As many-body systems, we consider a one-dimensional array of interacting two-level systems (a spin chain) at zero temperature, where quantum effects are most pronounced. We demonstrate how the optimal strategy to extract the correlations depends on the quantum phase through a subtle interplay between local interactions and coherence.

  5. Quality effort decision in service supply chain with quality preference based on quantum game

    NASA Astrophysics Data System (ADS)

    Zhang, Cuihua; Xing, Peng; Wang, Jianwei

    2015-04-01

    Service quality preference behaviors of both members are considered in service supply chain (SSC) including a service integrator and a service provider with stochastic demand. Through analysis of service quality cost and revenue, the utility functions are established on service quality effort degree and service quality preference level in integrated and decentralized SSC. Nash equilibrium and quantum game are used to optimize the models. By comparing the different solutions, the optimal strategies are obtained in SSC with quality preference. Then some numerical examples are studied and the changing trend of service quality effort is further analyzed by the influence of the entanglement operator and quality preferences.

  6. Convex Optimization over Classes of Multiparticle Entanglement

    NASA Astrophysics Data System (ADS)

    Shang, Jiangwei; Gühne, Otfried

    2018-02-01

    A well-known strategy to characterize multiparticle entanglement utilizes the notion of stochastic local operations and classical communication (SLOCC), but characterizing the resulting entanglement classes is difficult. Given a multiparticle quantum state, we first show that Gilbert's algorithm can be adapted to prove separability or membership in a certain entanglement class. We then present two algorithms for convex optimization over SLOCC classes. The first algorithm uses a simple gradient approach, while the other one employs the accelerated projected-gradient method. For demonstration, the algorithms are applied to the likelihood-ratio test using experimental data on bound entanglement of a noisy four-photon Smolin state [Phys. Rev. Lett. 105, 130501 (2010), 10.1103/PhysRevLett.105.130501].

  7. Inventory-transportation integrated optimization for maintenance spare parts of high-speed trains

    PubMed Central

    Wang, Jiaxi; Wang, Huasheng; Wang, Zhongkai; Li, Jian; Lin, Ruixi; Xiao, Jie; Wu, Jianping

    2017-01-01

    This paper presents a 0–1 programming model aimed at obtaining the optimal inventory policy and transportation mode for maintenance spare parts of high-speed trains. To obtain the model parameters for occasionally-replaced spare parts, a demand estimation method based on the maintenance strategies of China’s high-speed railway system is proposed. In addition, we analyse the shortage time using PERT, and then calculate the unit time shortage cost from the viewpoint of train operation revenue. Finally, a real-world case study from Shanghai Depot is conducted to demonstrate our method. Computational results offer an effective and efficient decision support for inventory managers. PMID:28472097

  8. A multi-year analysis of spillway survival for juvenile salmonids as a function of spill bay operations at McNary Dam, Washington and Oregon, 2004-09

    USGS Publications Warehouse

    Adams, Noah S.; Hansel, Hal C.; Perry, Russell W.; Evans, Scott D.

    2012-01-01

    We analyzed 6 years (2004-09) of passage and survival data collected at McNary Dam to examine how spill bay operations affect survival of juvenile salmonids passing through the spillway at McNary Dam. We also examined the relations between spill bay operations and survival through the juvenile fish bypass in an attempt to determine if survival through the bypass is influenced by spill bay operations. We used a Cormack-Jolly-Seber release-recapture model (CJS model) to determine how the survival of juvenile salmonids passing through McNary Dam relates to spill bay operations. Results of these analyses, while not designed to yield predictive models, can be used to help develop dam-operation strategies that optimize juvenile salmonid survival. For example, increasing total discharge typically had a positive effect on both spillway and bypass survival for all species except sockeye salmon (Oncorhynchus nerka). Likewise, an increase in spill bay discharge improved spillway survival for yearling Chinook salmon (Oncorhynchus tshawytscha), and an increase in spillway discharge positively affected spillway survival for juvenile steelhead (Oncorhynchus mykiss). The strong linear relation between increased spill and increased survival indicates that increasing the amount of water through the spillway is one strategy that could be used to improve spillway survival for yearling Chinook salmon and juvenile steelhead. However, increased spill did not improve spillway survival for subyearling Chinook salmon and sockeye salmon. Our results indicate that a uniform spill pattern would provide the highest spillway survival and bypass survival for subyearling Chinook salmon. Conversely, a predominantly south spill pattern provided the highest spillway survival for yearling Chinook salmon and juvenile steelhead. Although spill pattern was not a factor for spillway survival of sockeye salmon, spill bay operations that optimize passage through the north and south spill bays maximized spillway survival for this species. Bypass survival of yearling Chinook salmon could be improved by optimizing conditions to facilitate bypass passage at night, but the method to do so is not apparent from this analysis because photoperiod was the only factor affecting bypass survival based on the best and only supported model. Bypass survival of juvenile steelhead would benefit from lower water temperatures and increased total and spillway discharge. Likewise, subyearling Chinook salmon bypass survival would improve with lower water temperatures, increased total discharge, and a uniform spill pattern.

  9. Impact of Airspace Charges on Transatlantic Aircraft Trajectories

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Ng, Hok K.; Linke, Florian; Chen, Neil Y.

    2015-01-01

    Aircraft flying over the airspace of different countries are subject to over-flight charges. These charges vary from country to country. Airspace charges, while necessary to support the communication, navigation and surveillance services, may lead to aircraft flying routes longer than wind-optimal routes and produce additional carbon dioxide and other gaseous emissions. This paper develops an optimal route between city pairs by modifying the cost function to include an airspace cost whenever an aircraft flies through a controlled airspace without landing or departing from that airspace. It is assumed that the aircraft will fly the trajectory at a constant cruise altitude and constant speed. The computationally efficient optimal trajectory is derived by solving a non-linear optimal control problem. The operational strategies investigated in this study for minimizing aircraft fuel burn and emissions include flying fuel-optimal routes and flying cost-optimal routes that may completely or partially reduce airspace charges en route. The results in this paper use traffic data for transatlantic flights during July 2012. The mean daily savings in over-flight charges, fuel cost and total operation cost during the period are 17.6 percent, 1.6 percent, and 2.4 percent respectively, along the cost- optimal trajectories. The transatlantic flights can potentially save $600,000 in fuel cost plus $360,000 in over-flight charges daily by flying the cost-optimal trajectories. In addition, the aircraft emissions can be potentially reduced by 2,070 metric tons each day. The airport pairs and airspace regions that have the highest potential impacts due to airspace charges are identified for possible reduction of fuel burn and aircraft emissions for the transatlantic flights. The results in the paper show that the impact of the variation in fuel price on the optimal routes is to reduce the difference between wind-optimal and cost-optimal routes as the fuel price increases. The additional fuel consumption is quantified using the 30 percent variation in fuel prices during March 2014 to March 2015.

  10. Power Allocation Based on Data Classification in Wireless Sensor Networks

    PubMed Central

    Wang, Houlian; Zhou, Gongbo

    2017-01-01

    Limited node energy in wireless sensor networks is a crucial factor which affects the monitoring of equipment operation and working conditions in coal mines. In addition, due to heterogeneous nodes and different data acquisition rates, the number of arriving packets in a queue network can differ, which may lead to some queue lengths reaching the maximum value earlier compared with others. In order to tackle these two problems, an optimal power allocation strategy based on classified data is proposed in this paper. Arriving data is classified into dissimilar classes depending on the number of arriving packets. The problem is formulated as a Lyapunov drift optimization with the objective of minimizing the weight sum of average power consumption and average data class. As a result, a suboptimal distributed algorithm without any knowledge of system statistics is presented. The simulations, conducted in the perfect channel state information (CSI) case and the imperfect CSI case, reveal that the utility can be pushed arbitrarily close to optimal by increasing the parameter V, but with a corresponding growth in the average delay, and that other tunable parameters W and the classification method in the interior of utility function can trade power optimality for increased average data class. The above results show that data in a high class has priorities to be processed than data in a low class, and energy consumption can be minimized in this resource allocation strategy. PMID:28498346

  11. Improving carbohydrate production of Chlorella sorokiniana NIES-2168 through semi-continuous process coupled with mixotrophic cultivation.

    PubMed

    Wang, Yue; Chiu, Sheng-Yi; Ho, Shih-Hsin; Liu, Zhuo; Hasunuma, Tomohisa; Chang, Ting-Ting; Chang, Kuan-Fu; Chang, Jo-Shu; Ren, Nan-Qi; Kondo, Akihiko

    2016-08-01

    Biofuels from microalgae is now a hot issue of great potential. However, achieving high starch productivity with photoautotrophic microalgae is still challenging. A feasible approach to enhance the growth and target product of microalgae is to conduct mixotrophic cultivation. The appropriate acetate addition combined with CO2 supply as dual carbon sources (i.e., mixotrophic cultivation) could enhance the cell growth of some microalgae species, but the effect of acetate-mediated mixotrophic culture mode on carbohydrate accumulation in microalgae remains unclear. Moreover, there is still lack of the information concerning how to increase the productivity of carbohydrates from microalgae under acetate-amended mixotrophic cultivation and how to optimize the engineering strategies to achieve the goal. This study was undertaken to develop an optimal acetate-contained mixotrophic cultivation system coupled with effective operation strategies to markedly improve the carbohydrate productivity of Chlorella sorokiniana NIES-2168. The optimal carbohydrate productivity of 695 mg/L/d was obtained, which is the highest value ever reported. The monosaccharide in the accumulated carbohydrates is mainly glucose (i.e., 85-90%), which is very suitable for bio-alcohols fermentation. Hence, by applying the optimal process developed in this study, C. sorokiniana NIES-2168 has a high potential to serve as a feedstock for subsequent biofuels conversion. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Optimal strategy analysis based on robust predictive control for inventory system with random demand

    NASA Astrophysics Data System (ADS)

    Saputra, Aditya; Widowati, Sutrisno

    2017-12-01

    In this paper, the optimal strategy for a single product single supplier inventory system with random demand is analyzed by using robust predictive control with additive random parameter. We formulate the dynamical system of this system as a linear state space with additive random parameter. To determine and analyze the optimal strategy for the given inventory system, we use robust predictive control approach which gives the optimal strategy i.e. the optimal product volume that should be purchased from the supplier for each time period so that the expected cost is minimal. A numerical simulation is performed with some generated random inventory data. We simulate in MATLAB software where the inventory level must be controlled as close as possible to a set point decided by us. From the results, robust predictive control model provides the optimal strategy i.e. the optimal product volume that should be purchased and the inventory level was followed the given set point.

  13. Engine With Regression and Neural Network Approximators Designed

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    2001-01-01

    At the NASA Glenn Research Center, the NASA engine performance program (NEPP, ref. 1) and the design optimization testbed COMETBOARDS (ref. 2) with regression and neural network analysis-approximators have been coupled to obtain a preliminary engine design methodology. The solution to a high-bypass-ratio subsonic waverotor-topped turbofan engine, which is shown in the preceding figure, was obtained by the simulation depicted in the following figure. This engine is made of 16 components mounted on two shafts with 21 flow stations. The engine is designed for a flight envelope with 47 operating points. The design optimization utilized both neural network and regression approximations, along with the cascade strategy (ref. 3). The cascade used three algorithms in sequence: the method of feasible directions, the sequence of unconstrained minimizations technique, and sequential quadratic programming. The normalized optimum thrusts obtained by the three methods are shown in the following figure: the cascade algorithm with regression approximation is represented by a triangle, a circle is shown for the neural network solution, and a solid line indicates original NEPP results. The solutions obtained from both approximate methods lie within one standard deviation of the benchmark solution for each operating point. The simulation improved the maximum thrust by 5 percent. The performance of the linear regression and neural network methods as alternate engine analyzers was found to be satisfactory for the analysis and operation optimization of air-breathing propulsion engines (ref. 4).

  14. Strategies to optimize the performance of Robotic-assisted ­laparoscopic hysterectomy

    PubMed Central

    Lambrou, N.; Diaz, R.E.; Hinoul, P.; Parris, D.; Shoemaker, K.; Yoo, A.; Schwiers, M.

    2014-01-01

    A hybrid technique of robot-assisted, laparoscopic hysterectomy using the ENSEAL® Tissue Sealing Device is described in a retrospective, consecutive, observational case series. Over a 45 month period, 590 robot-assisted total laparoscopic hysterectomies +/- oophorectomy for benign and malignant indications were performed by a single surgeon with a bedside assistant at a tertiary healthcare center. Patient demographics, indications for surgery, comorbidities, primary and secondary surgical procedures, total operative and surgical time, estimated blood loss (EBL), length of stay (LOS), complications, transfusions and subsequent readmissions were analyzed. The overall complication rate was 5.9% with 35 patients experiencing 69 complications. Mean (SD) surgery time, operating room (OR) time, EBL, and LOS for the entire cohort were 75.5 (39.42) minutes, 123.8 (41.15) minutes, 83.1 (71.29) millilitres, and 1.2 (0.93) days, respectively. Mean surgery time in the first year (2009) was 91.6 minutes, which declined significantly each year by 18.0, 19.0, and 24.3 minutes, respectively. EBL and LOS did not vary ­significantly across the entire series. Using the cumulative sum method, an optimization curve for surgery time was evaluated, with three distinct optimization phases observed. In summary, the use of an advanced laparoscopic tissue-sealing device by a bedside surgical assistant provided an improved operative efficiency and reliable vessel sealing during robotic hysterectomy. PMID:25374656

  15. Optimal Padding for the Two-Dimensional Fast Fourier Transform

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.; Aronstein, David L.; Smith, Jeffrey S.

    2011-01-01

    One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4-10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512 512. Using a 540 540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256x256 grid worked best. A Core2Duo computer preferred either a 1040x1040 (15 percent faster) or a 1008x1008 (30 percent faster) grid. There are many industries that can benefit from this algorithm, including optics, image-processing, signal-processing, and engineering applications.

  16. Cost-effective cloud computing: a case study using the comparative genomics tool, roundup.

    PubMed

    Kudtarkar, Parul; Deluca, Todd F; Fusaro, Vincent A; Tonellato, Peter J; Wall, Dennis P

    2010-12-22

    Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize the computation of a large-scale comparative genomics resource-Roundup-using cloud computing, describe the proper operating principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness to ensure maximal computation at minimal costs. Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced genomes on Amazon's Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service, Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order of the jobs to be submitted. We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon's computing cloud, a computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant benefit to labs seeking to take advantage of the cloud as an alternative to local computing infrastructure.

  17. Mixed-Strategy Chance Constrained Optimal Control

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro; Kuwata, Yoshiaki; Balaram, J.

    2013-01-01

    This paper presents a novel chance constrained optimal control (CCOC) algorithm that chooses a control action probabilistically. A CCOC problem is to find a control input that minimizes the expected cost while guaranteeing that the probability of violating a set of constraints is below a user-specified threshold. We show that a probabilistic control approach, which we refer to as a mixed control strategy, enables us to obtain a cost that is better than what deterministic control strategies can achieve when the CCOC problem is nonconvex. The resulting mixed-strategy CCOC problem turns out to be a convexification of the original nonconvex CCOC problem. Furthermore, we also show that a mixed control strategy only needs to "mix" up to two deterministic control actions in order to achieve optimality. Building upon an iterative dual optimization, the proposed algorithm quickly converges to the optimal mixed control strategy with a user-specified tolerance.

  18. The LSST operations simulator

    NASA Astrophysics Data System (ADS)

    Delgado, Francisco; Saha, Abhijit; Chandrasekharan, Srinivasan; Cook, Kem; Petry, Catherine; Ridgway, Stephen

    2014-08-01

    The Operations Simulator for the Large Synoptic Survey Telescope (LSST; http://www.lsst.org) allows the planning of LSST observations that obey explicit science driven observing specifications, patterns, schema, and priorities, while optimizing against the constraints placed by design-specific opto-mechanical system performance of the telescope facility, site specific conditions as well as additional scheduled and unscheduled downtime. It has a detailed model to simulate the external conditions with real weather history data from the site, a fully parameterized kinematic model for the internal conditions of the telescope, camera and dome, and serves as a prototype for an automatic scheduler for the real time survey operations with LSST. The Simulator is a critical tool that has been key since very early in the project, to help validate the design parameters of the observatory against the science requirements and the goals from specific science programs. A simulation run records the characteristics of all observations (e.g., epoch, sky position, seeing, sky brightness) in a MySQL database, which can be queried for any desired purpose. Derivative information digests of the observing history are made with an analysis package called Simulation Survey Tools for Analysis and Reporting (SSTAR). Merit functions and metrics have been designed to examine how suitable a specific simulation run is for several different science applications. Software to efficiently compare the efficacy of different survey strategies for a wide variety of science applications using such a growing set of metrics is under development. A recent restructuring of the code allows us to a) use "look-ahead" strategies that avoid cadence sequences that cannot be completed due to observing constraints; and b) examine alternate optimization strategies, so that the most efficient scheduling algorithm(s) can be identified and used: even few-percent efficiency gains will create substantive scientific opportunity. The enhanced simulator is being used to assess the feasibility of desired observing cadences, study the impact of changing science program priorities and assist with performance margin investigations of the LSST system.

  19. Novel phased isolation ditch system for enhanced nutrient removal and its optimal operating strategy.

    PubMed

    Hong, K i-Ho; Chang, Duk; Hur, Joon-Moo; Han, Sang-Bae

    2003-01-01

    Phased isolation ditch system with intrachannel clarifier is a simplified novel oxidation ditch system enhancing simultaneous removal of biological nitrogen and phosphorus in municipal wastewater. The system employs two ditches with intra-clarifier, and eliminates external final clarifier, additional preanaerobic reactor, and recycle of sludge and nitrified effluent. Separation of anoxic, anaerobic, and aerobic phases can be accomplished by alternating flow and intermittent aeration. Its pilot-scale system operated at HRTs of 10-21 h, SRTs of 15-41 days, and a cycle times of 2-8 h showed removals of BOD, TN, and TP in the range of mixed liquor temperature above 10 degrees C as high as 88-97, 70-84, and 65-90%, respectively. As the SRTs became longer, the effluent TN decreased dramatically, whereas the effluent TP increased. Higher nitrogen removal was accomplished at shorter cycle times, while better phosphorus removal was achieved in longer cycle times. Optimal system operating strategies maximizing the performance and satisfying both the best nitrogen and phosphorus removals included HRTs ranged 10-14 h, SRTs ranged 25-30 days, and a cycle time of 4 h at the mixed liquor temperature above 10 degrees C. Thus, complete phase separation in a cycle maximizing phosphorus release and uptake as well as nitrification and denitrification was accomplished by scheduling of alternating flow and intermittent aeration in the simplified process scheme. Especially, temporal phase separation for phosphorus release without additional anaerobic reactor was successfully accomplished during anaerobic period without any nitrate interference and carbon-limiting.

  20. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: a tutorial review. Part II. Practical considerations.

    PubMed

    Leclercq, Amélie; Nonell, Anthony; Todolí Torró, José Luis; Bresson, Carole; Vio, Laurent; Vercouter, Thomas; Chartier, Frédéric

    2015-07-23

    Inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are increasingly used to carry out analyses in organic/hydro-organic matrices. The introduction of such matrices into ICP sources is particularly challenging and can be the cause of numerous drawbacks. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP sources. Part I provided theoretical considerations associated with the physico-chemical properties of such matrices, in an attempt to understand the induced phenomena. Part II of this tutorial review is dedicated to more practical considerations on instrumentation, instrumental and operating parameters, as well as analytical strategies for elemental quantification in such matrices. Two important issues are addressed in this part: the first concerns the instrumentation and optimization of instrumental and operating parameters, pointing out (i) the description, benefits and drawbacks of different kinds of nebulization and desolvation devices and the impact of more specific instrumental parameters such as the injector characteristics and the material used for the cone; and, (ii) the optimization of operating parameters, for both ICP-OES and ICP-MS. Even if it is at the margin of this tutorial review, Electrothermal Vaporization and Laser Ablation will also be shortly described. The second issue is devoted to the analytical strategies for elemental quantification in such matrices, with particular insight into the isotope dilution technique, particularly used in speciation analysis by ICP-coupled separation techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Optimal vaccination strategies and rational behaviour in seasonal epidemics.

    PubMed

    Doutor, Paulo; Rodrigues, Paula; Soares, Maria do Céu; Chalub, Fabio A C C

    2016-12-01

    We consider a SIRS model with time dependent transmission rate. We assume time dependent vaccination which confers the same immunity as natural infection. We study two types of vaccination strategies: (i) optimal vaccination, in the sense that it minimizes the effort of vaccination in the set of vaccination strategies for which, for any sufficiently small perturbation of the disease free state, the number of infectious individuals is monotonically decreasing; (ii) Nash-equilibria strategies where all individuals simultaneously minimize the joint risk of vaccination versus the risk of the disease. The former case corresponds to an optimal solution for mandatory vaccinations, while the second corresponds to the equilibrium to be expected if vaccination is fully voluntary. We are able to show the existence of both optimal and Nash strategies in a general setting. In general, these strategies will not be functions but Radon measures. For specific forms of the transmission rate, we provide explicit formulas for the optimal and the Nash vaccination strategies.

  2. Evolutionary algorithms for multi-objective optimization: fuzzy preference aggregation and multisexual EAs

    NASA Astrophysics Data System (ADS)

    Bonissone, Stefano R.

    2001-11-01

    There are many approaches to solving multi-objective optimization problems using evolutionary algorithms. We need to select methods for representing and aggregating preferences, as well as choosing strategies for searching in multi-dimensional objective spaces. First we suggest the use of linguistic variables to represent preferences and the use of fuzzy rule systems to implement tradeoff aggregations. After a review of alternatives EA methods for multi-objective optimizations, we explore the use of multi-sexual genetic algorithms (MSGA). In using a MSGA, we need to modify certain parts of the GAs, namely the selection and crossover operations. The selection operator groups solutions according to their gender tag to prepare them for crossover. The crossover is modified by appending a gender tag at the end of the chromosome. We use single and double point crossovers. We determine the gender of the offspring by the amount of genetic material provided by each parent. The parent that contributed the most to the creation of a specific offspring determines the gender that the offspring will inherit. This is still a work in progress, and in the conclusion we examine many future extensions and experiments.

  3. The Conference Proceedings of the 1998 Air Transport Research Group (ATRG) of the WCTR Society. Volume 2

    NASA Technical Reports Server (NTRS)

    Oum, Tae Hoon (Editor); Bowen, Brent D. (Editor)

    1998-01-01

    Contents include the following: Airport choice in a multiple airport region: an empirical analysis for the San Francisco bay area. Liberalization of the westeuropian aviation: choice of a new hub airport for an airline. Austin Bergstrom airport traffic control tower establishment of a major activity level tower. A study to optimize the environmental capacity of Amsterdam airport schiphol.Airport performance in stakeholder involvement and communication strategies: a comparison of major Australian and North American air carrier and general aviation airports. Airport planning and location.Location of international airport and regional development. A simulation technique for analysis of Brasilian airport passanger terminal building.Multimodal airport access in Japan. Planning surface access provision at major airports Airline economics and the inclusion of environmental costs on airport hub pricing: a theoretical analysis. Airport financing and user charge systems in the USA. Optimal demand for operating lease of aircraft. Aircraft leasing industry and social welfare.The development of performance indicators for airports: a management perspective. Study about operational effect of the "security check-in" implantation in Brasilian international airports.Austin Bergstrom west loop cable system.and Optimal resource allocation model for airport passanger terminals.

  4. Optimal Keno Strategies and the Central Limit Theorem

    ERIC Educational Resources Information Center

    Johnson, Roger W.

    2006-01-01

    For the casino game Keno we determine optimal playing strategies. To decide such optimal strategies, both exact (hypergeometric) and approximate probability calculations are used. The approximate calculations are obtained via the Central Limit Theorem and simulation, and an important lesson about the application of the Central Limit Theorem is…

  5. Kronos Observatory Operations Challenges in a Lean Environment

    NASA Astrophysics Data System (ADS)

    Koratkar, Anuradha; Peterson, Bradley M.; Polidan, Ronald S.

    2003-02-01

    Kronos is a multiwavelength observatory designed to map the accretion disks and environments of supermassive black holes in various environments using the natural intrinsic variability of the accretion-driven sources. Kronos is envisaged as a Medium Explorer mission to NASA Office of Space Science under the Structure and Evolution of the Universe theme. We will achieve the Kronos science objectives by developing cost-effective techniques for obtaining and assimilating data from the research spacecraft and its subsequent work on the ground. The science operations assumptions for the mission are: (1 Need for flexible scheduling due to the variable nature of targets, (2) Large data volumes but minimal ground station contact, (3) Very small staff for operations. Our first assumption implies that we will have to consider an effective strategy to dynamically reprioritize the observing schedule to maximize science data acquisition. The flexibility we seek greatly increases the science return of the mission, because variability events can be properly captured. Our second assumption implies that we will have to develop some basic on-board analysis strategies to determine which data get downloaded. The small size of the operations staff implies that we need to "automate" as many routine processes of science operations as possible. In this paper we will discuss the various solutions that we are considering to optimize our operations and maximize science returns on the observatory.

  6. Production optimization of invertase by Lactobacillus brevis Mm-6 and its immobilization on alginate beads.

    PubMed

    Awad, Ghada E A; Amer, Hassan; El-Gammal, Eman W; Helmy, Wafaa A; Esawy, Mona A; Elnashar, Magdy M M

    2013-04-02

    A sequential optimization strategy, based on statistical experimental designs, was employed to enhance the production of invertase by Lactobacillus brevis Mm-6 isolated from breast milk. First, a 2-level Plackett-Burman design was applied to screen the bioprocess parameters that significantly influence the invertase production. The second optimization step was performed using fractional factorial design in order to optimize the amounts of variables have the highest positive significant effect on the invertase production. A maximal enzyme activity of 1399U/ml was more than five folds the activity obtained using the basal medium. Invertase was immobilized onto grafted alginate beads to improve the enzyme's stability. Immobilization process increased the operational temperature from 30 to 60°C compared to the free enzyme. The reusability test proved the durability of the grafted alginate beads for 15 cycles with retention of 100% of the immobilized enzyme activity to be more convenient for industrial uses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Performance Optimization Control of ECH using Fuzzy Inference Application

    NASA Astrophysics Data System (ADS)

    Dubey, Abhay Kumar

    Electro-chemical honing (ECH) is a hybrid electrolytic precision micro-finishing technology that, by combining physico-chemical actions of electro-chemical machining and conventional honing processes, provides the controlled functional surfaces-generation and fast material removal capabilities in a single operation. Process multi-performance optimization has become vital for utilizing full potential of manufacturing processes to meet the challenging requirements being placed on the surface quality, size, tolerances and production rate of engineering components in this globally competitive scenario. This paper presents an strategy that integrates the Taguchi matrix experimental design, analysis of variances and fuzzy inference system (FIS) to formulate a robust practical multi-performance optimization methodology for complex manufacturing processes like ECH, which involve several control variables. Two methodologies one using a genetic algorithm tuning of FIS (GA-tuned FIS) and another using an adaptive network based fuzzy inference system (ANFIS) have been evaluated for a multi-performance optimization case study of ECH. The actual experimental results confirm their potential for a wide range of machining conditions employed in ECH.

  8. A generic methodology for the optimisation of sewer systems using stochastic programming and self-optimizing control.

    PubMed

    Mauricio-Iglesias, Miguel; Montero-Castro, Ignacio; Mollerup, Ane L; Sin, Gürkan

    2015-05-15

    The design of sewer system control is a complex task given the large size of the sewer networks, the transient dynamics of the water flow and the stochastic nature of rainfall. This contribution presents a generic methodology for the design of a self-optimising controller in sewer systems. Such controller is aimed at keeping the system close to the optimal performance, thanks to an optimal selection of controlled variables. The definition of an optimal performance was carried out by a two-stage optimisation (stochastic and deterministic) to take into account both the overflow during the current rain event as well as the expected overflow given the probability of a future rain event. The methodology is successfully applied to design an optimising control strategy for a subcatchment area in Copenhagen. The results are promising and expected to contribute to the advance of the operation and control problem of sewer systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    NASA Astrophysics Data System (ADS)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  10. Design of optimal groundwater remediation systems under flexible environmental-standard constraints.

    PubMed

    Fan, Xing; He, Li; Lu, Hong-Wei; Li, Jing

    2015-01-01

    In developing optimal groundwater remediation strategies, limited effort has been exerted to solve the uncertainty in environmental quality standards. When such uncertainty is not considered, either over optimistic or over pessimistic optimization strategies may be developed, probably leading to the formulation of rigid remediation strategies. This study advances a mathematical programming modeling approach for optimizing groundwater remediation design. This approach not only prevents the formulation of over optimistic and over pessimistic optimization strategies but also provides a satisfaction level that indicates the degree to which the environmental quality standard is satisfied. Therefore the approach may be expected to be significantly more acknowledged by the decision maker than those who do not consider standard uncertainty. The proposed approach is applied to a petroleum-contaminated site in western Canada. Results from the case study show that (1) the peak benzene concentrations can always satisfy the environmental standard under the optimal strategy, (2) the pumping rates of all wells decrease under a relaxed standard or long-term remediation approach, (3) the pumping rates are less affected by environmental quality constraints under short-term remediation, and (4) increased flexible environmental standards have a reduced effect on the optimal remediation strategy.

  11. Timing of definitive fixation of major long bone fractures: Can fat embolism syndrome be prevented?

    PubMed

    Blokhuis, Taco J; Pape, Hans-Christoph; Frölke, Jan-Paul

    2017-06-01

    Fat embolism is common in patients with major fractures, but leads to devastating consequences, named fat embolism syndrome (FES) in some. Despite advances in treatment strategies regarding the timing of definitive fixation of major fractures, FES still occurs in patients. In this overview, current literature is reviewed and optimal treatment strategies for patients with multiple traumatic injuries, including major fractures, are discussed. Considering the multifactorial etiology of FES, including mechanical and biochemical pathways, FES cannot be prevented in all patients. However, screening for symptoms of FES should be standard in the pre-operative work-up of these patients, prior to definitive fixation of major fractures. Copyright © 2017. Published by Elsevier Ltd.

  12. Optimal Management of Geothermal Heat Extraction

    NASA Astrophysics Data System (ADS)

    Patel, I. H.; Bielicki, J. M.; Buscheck, T. A.

    2015-12-01

    Geothermal energy technologies use the constant heat flux from the subsurface in order to produce heat or electricity for societal use. As such, a geothermal energy system is not inherently variable, like systems based on wind and solar resources, and an operator can conceivably control the rate at which heat is extracted and used directly, or converted into a commodity that is used. Although geothermal heat is a renewable resource, this heat can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal (Rybach, 2003). For heat extraction used for commodities that are sold on the market, sustainability entails balancing the rate at which the reservoir renews with the rate at which heat is extracted and converted into profit, on a net present value basis. We present a model that couples natural resource economic approaches for managing renewable resources with simulations of geothermal reservoir performance in order to develop an optimal heat mining strategy that balances economic gain with the performance and renewability of the reservoir. Similar optimal control approaches have been extensively studied for renewable natural resource management of fisheries and forests (Bonfil, 2005; Gordon, 1954; Weitzman, 2003). Those models determine an optimal path of extraction of fish or timber, by balancing the regeneration of stocks of fish or timber that are not harvested with the profit from the sale of the fish or timber that is harvested. Our model balances the regeneration of reservoir temperature with the net proceeds from extracting heat and converting it to electricity that is sold to consumers. We used the Non-isothermal Unconfined-confined Flow and Transport (NUFT) model (Hao, Sun, & Nitao, 2011) to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are incorporated into the natural resource economics model to determine production strategies that maximize net present value given the performance of the geothermal resource.

  13. Hydroeconomic DSS for optimal hydrology-oriented forest management in semiarid areas

    NASA Astrophysics Data System (ADS)

    Garcia-Prats, A.; del Campo, A.; Pulido-Velazquez, M.

    2016-12-01

    In semiarid regions like the Mediterranean, managing the upper-catchment forests for water provision goals (hydrology-oriented silviculture) offers a strategy to increase the resilience of catchments to droughts and lower precipitation and higher evapotranspiration due to climate change. Understanding the effects of forest management on vegetation water use and groundwater recharge is particularly important in those regions. Despite the essential role that forests play in the water cycle on the provision of water resources, this contribution is often neither quantified nor explicitly valued. The aim of this work is to develop a novel decision support system (DSS) based on hydro-economic modelling, for assessing and designing the optimal integrated forest and water management for forested catchments. Hydro-economic modelling may support the design of economically efficient strategies integrating the hydrologic, engineering, environmental and economic aspects of water resources systems within a coherent framework. The optimization model explicitly integrates changes in water yield (increase n groundwater recharge) induced by the management of forest density, and the value of the additional water provided to the system. This latter component could serve as an indicator for the design of a "payment for environmental services" scheme in which groundwater beneficiaries could contribute towards funding and promoting efficient forest management operations. Besides, revenues from timber logging are also articulated in the modelling. The case study was an Aleppo pine forest in south-western Valencia province (Spain), using a typical 100-year rotation horizon. The model determines the optimal schedule of thinning interventions in the stands in order to maximize the total net benefits in the system (timber and water). Canopy cover and biomass evolution over time were simulated using growth and yield allometric equations specific for the species in Mediterranean conditions. Silvicultural operation costs were modelled using local cost databases. Groundwater recharge was simulated using HYDRUS, calibrated and validated with data from the experimental plots. This research reveal the potential of integrated water and forest policies and encourage their application by governments and policy makers.

  14. Capital optimization: linking investment with strategic intent.

    PubMed

    Fine, Allan; Bacchetti, J Alex

    2004-01-01

    With operating margins showing some improvement in 2003, Y2K being a distant memory, and many critical capital investment decisions delayed as long as possible, hospitals have been on a relative spending spree, building new facilities, renovating operating rooms and inpatient units, and investing in new medical and information technologies. However, with pressure on both cost and revenue expected to continue, if not increase, this spending spree may be short-lived, and hospitals must improve their capital planning efforts; align them with their mission, vision, and strategies; and ensure that capital is available when unplanned or even expected needs arise. This article explores some of the challenges that hospitals face in their capital planning efforts and, more importantly, suggests the necessity for hospitals to integrate capital and strategic planning. Capital planning must be driven by an organization's strategies; however, we also argue that an organization's ability to execute its strategies is highly dependent on the existence of a cohesive capital prioritization and planning process. In this article, we explore a number of issues critical to developing a comprehensive capital plan, including estimating capital costs, evaluating and designing strategies to contend with risk, saving for the proverbial "rainy day," and recognizing the role and value of philanthropy, while challenging some conventional thinking of hospital executives with respect to investment, growth, and planning.

  15. Enhancing power density of biophotovoltaics by decoupling storage and power delivery

    NASA Astrophysics Data System (ADS)

    Saar, Kadi L.; Bombelli, Paolo; Lea-Smith, David J.; Call, Toby; Aro, Eva-Mari; Müller, Thomas; Howe, Christopher J.; Knowles, Tuomas P. J.

    2018-01-01

    Biophotovoltaic devices (BPVs), which use photosynthetic organisms as active materials to harvest light, have a range of attractive features relative to synthetic and non-biological photovoltaics, including their environmentally friendly nature and ability to self-repair. However, efficiencies of BPVs are currently lower than those of synthetic analogues. Here, we demonstrate BPVs delivering anodic power densities of over 0.5 W m-2, a value five times that for previously described BPVs. We achieved this through the use of cyanobacterial mutants with increased electron export characteristics together with a microscale flow-based design that allowed independent optimization of the charging and power delivery processes, as well as membrane-free operation by exploiting laminar flow to separate the catholyte and anolyte streams. These results suggest that miniaturization of active elements and flow control for decoupled operation and independent optimization of the core processes involved in BPV design are effective strategies for enhancing power output and thus the potential of BPVs as viable systems for sustainable energy generation.

  16. Optimal installation locations for automated external defibrillators in Taipei 7-Eleven stores: using GIS and a genetic algorithm with a new stirring operator.

    PubMed

    Huang, Chung-Yuan; Wen, Tzai-Hung

    2014-01-01

    Immediate treatment with an automated external defibrillator (AED) increases out-of-hospital cardiac arrest (OHCA) patient survival potential. While considerable attention has been given to determining optimal public AED locations, spatial and temporal factors such as time of day and distance from emergency medical services (EMSs) are understudied. Here we describe a geocomputational genetic algorithm with a new stirring operator (GANSO) that considers spatial and temporal cardiac arrest occurrence factors when assessing the feasibility of using Taipei 7-Eleven stores as installation locations for AEDs. Our model is based on two AED conveyance modes, walking/running and driving, involving service distances of 100 and 300 meters, respectively. Our results suggest different AED allocation strategies involving convenience stores in urban settings. In commercial areas, such installations can compensate for temporal gaps in EMS locations when responding to nighttime OHCA incidents. In residential areas, store installations can compensate for long distances from fire stations, where AEDs are currently held in Taipei.

  17. A pragmatic decision model for inventory management with heterogeneous suppliers

    NASA Astrophysics Data System (ADS)

    Nakandala, Dilupa; Lau, Henry; Zhang, Jingjing; Gunasekaran, Angappa

    2018-05-01

    For enterprises, it is imperative that the trade-off between the cost of inventory and risk implications is managed in the most efficient manner. To explore this, we use the common example of a wholesaler operating in an environment where suppliers demonstrate heterogeneous reliability. The wholesaler has partial orders with dual suppliers and uses lateral transshipments. While supplier reliability is a key concern in inventory management, reliable suppliers are more expensive and investment in strategic approaches that improve supplier performance carries a high cost. Here we consider the operational strategy of dual sourcing with reliable and unreliable suppliers and model the total inventory cost where the likely scenario lead-time of the unreliable suppliers extends beyond the scheduling period. We then develop a Customized Integer Programming Optimization Model to determine the optimum size of partial orders with multiple suppliers. In addition to the objective of total cost optimization, this study takes into account the volatility of the cost associated with the uncertainty of an inventory system.

  18. A survey about methods dedicated to epistasis detection.

    PubMed

    Niel, Clément; Sinoquet, Christine; Dina, Christian; Rocheleau, Ghislain

    2015-01-01

    During the past decade, findings of genome-wide association studies (GWAS) improved our knowledge and understanding of disease genetics. To date, thousands of SNPs have been associated with diseases and other complex traits. Statistical analysis typically looks for association between a phenotype and a SNP taken individually via single-locus tests. However, geneticists admit this is an oversimplified approach to tackle the complexity of underlying biological mechanisms. Interaction between SNPs, namely epistasis, must be considered. Unfortunately, epistasis detection gives rise to analytic challenges since analyzing every SNP combination is at present impractical at a genome-wide scale. In this review, we will present the main strategies recently proposed to detect epistatic interactions, along with their operating principle. Some of these methods are exhaustive, such as multifactor dimensionality reduction, likelihood ratio-based tests or receiver operating characteristic curve analysis; some are non-exhaustive, such as machine learning techniques (random forests, Bayesian networks) or combinatorial optimization approaches (ant colony optimization, computational evolution system).

  19. Cloud Model-Based Artificial Immune Network for Complex Optimization Problem

    PubMed Central

    Wang, Mingan; Li, Jianming; Guo, Dongliang

    2017-01-01

    This paper proposes an artificial immune network based on cloud model (AINet-CM) for complex function optimization problems. Three key immune operators—cloning, mutation, and suppression—are redesigned with the help of the cloud model. To be specific, an increasing half cloud-based cloning operator is used to adjust the dynamic clone multipliers of antibodies, an asymmetrical cloud-based mutation operator is used to control the adaptive evolution of antibodies, and a normal similarity cloud-based suppressor is used to keep the diversity of the antibody population. To quicken the searching convergence, a dynamic searching step length strategy is adopted. For comparative study, a series of numerical simulations are arranged between AINet-CM and the other three artificial immune systems, that is, opt-aiNet, IA-AIS, and AAIS-2S. Furthermore, two industrial applications—finite impulse response (FIR) filter design and proportional-integral-differential (PID) controller tuning—are investigated and the results demonstrate the potential searching capability and practical value of the proposed AINet-CM algorithm. PMID:28630620

  20. A Shift From Resilience to Human Performance Optimization in Special Operations Training: Advancements in Theory and Practice.

    PubMed

    Park, Gloria H; Messina, Lauren A; Deuster, Patricia A

    Within the Department of Defense over the past decade, a focus on enhancing Warfighter resilience and readiness has increased. For Special Operation Forces (SOF), who bear unique burdens for training and deployment, programs like the Preservation of the Force and Family have been created to help support SOF and their family members in sustaining capabilities and enhancing resilience in the face of prolonged warfare. In this review, we describe the shift in focus from resilience to human performance optimization (HPO) and the benefits of human performance initiatives that include holistic fitness. We then describe strategies for advancing the application of HPO for future initiatives through tailoring and cultural adaptation, as well as advancing methods for measurement. By striving toward specificity and precision performance, SOF human performance programs can impact individual and team capabilities to a greater extent than in the past, as well as maintaining the well-being of SOF and their families across their careers and beyond. 2017.

  1. Optimization of Sensor Monitoring Strategies for Emissions

    NASA Astrophysics Data System (ADS)

    Klise, K. A.; Laird, C. D.; Downey, N.; Baker Hebert, L.; Blewitt, D.; Smith, G. R.

    2016-12-01

    Continuous or regularly scheduled monitoring has the potential to quickly identify changes in air quality. However, even with low-cost sensors, only a limited number of sensors can be placed to monitor airborne pollutants. The physical placement of these sensors and the sensor technology used can have a large impact on the performance of a monitoring strategy. Furthermore, sensors can be placed for different objectives, including maximum coverage, minimum time to detection or exposure, or to quantify emissions. Different objectives may require different monitoring strategies, which need to be evaluated by stakeholders before sensors are placed in the field. In this presentation, we outline methods to enhance ambient detection programs through optimal design of the monitoring strategy. These methods integrate atmospheric transport models with sensor characteristics, including fixed and mobile sensors, sensor cost and failure rate. The methods use site specific pre-computed scenarios which capture differences in meteorology, terrain, concentration averaging times, gas concentration, and emission characteristics. The pre-computed scenarios become input to a mixed-integer, stochastic programming problem that solves for sensor locations and types that maximize the effectiveness of the detection program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Comparison of optimization algorithms for the slow shot phase in HPDC

    NASA Astrophysics Data System (ADS)

    Frings, Markus; Berkels, Benjamin; Behr, Marek; Elgeti, Stefanie

    2018-05-01

    High-pressure die casting (HPDC) is a popular manufacturing process for aluminum processing. The slow shot phase in HPDC is the first phase of this process. During this phase, the molten metal is pushed towards the cavity under moderate plunger movement. The so-called shot curve describes this plunger movement. A good design of the shot curve is important to produce high-quality cast parts. Three partially competing process goals characterize the slow shot phase: (1) reducing air entrapment, (2) avoiding temperature loss, and (3) minimizing oxide caused by the air-aluminum contact. Due to the rough process conditions with high pressure and temperature, it is hard to design the shot curve experimentally. There exist a few design rules that are based on theoretical considerations. Nevertheless, the quality of the shot curve design still depends on the experience of the machine operator. To improve the shot curve it seems to be natural to use numerical optimization. This work compares different optimization strategies for the slow shot phase optimization. The aim is to find the best optimization approach on a simple test problem.

  3. A guided search genetic algorithm using mined rules for optimal affective product design

    NASA Astrophysics Data System (ADS)

    Fung, Chris K. Y.; Kwong, C. K.; Chan, Kit Yan; Jiang, H.

    2014-08-01

    Affective design is an important aspect of new product development, especially for consumer products, to achieve a competitive edge in the marketplace. It can help companies to develop new products that can better satisfy the emotional needs of customers. However, product designers usually encounter difficulties in determining the optimal settings of the design attributes for affective design. In this article, a novel guided search genetic algorithm (GA) approach is proposed to determine the optimal design attribute settings for affective design. The optimization model formulated based on the proposed approach applied constraints and guided search operators, which were formulated based on mined rules, to guide the GA search and to achieve desirable solutions. A case study on the affective design of mobile phones was conducted to illustrate the proposed approach and validate its effectiveness. Validation tests were conducted, and the results show that the guided search GA approach outperforms the GA approach without the guided search strategy in terms of GA convergence and computational time. In addition, the guided search optimization model is capable of improving GA to generate good solutions for affective design.

  4. Optimization of wearable microwave antenna with simplified electromagnetic model of the human body

    NASA Astrophysics Data System (ADS)

    Januszkiewicz, Łukasz; Barba, Paolo Di; Hausman, Sławomir

    2017-12-01

    In this paper the problem of optimization design of a microwave wearable antenna is investigated. Reference is made to a specific antenna design that is a wideband Vee antenna the geometry of which is characterized by 6 parameters. These parameters were automatically adjusted with an evolution strategy based algorithm EStra to obtain the impedance matching of the antenna located in the proximity of the human body. The antenna was designed to operate in the ISM (industrial, scientific, medical) band which covers the frequency range of 2.4 GHz up to 2.5 GHz. The optimization procedure used the finite-difference time-domain method based full-wave simulator with a simplified human body model. In the optimization procedure small movements of antenna towards or away of the human body that are likely to happen during real use were considered. The stability of the antenna parameters irrespective of the movements of the user's body is an important factor in wearable antenna design. The optimization procedure allowed obtaining good impedance matching for a given range of antenna distances with respect to the human body.

  5. Optimal helicopter trajectory planning for terrain following flight

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.

    1990-01-01

    Helicopters operating in high threat areas have to fly close to the earth surface to minimize the risk of being detected by the adversaries. Techniques are presented for low altitude helicopter trajectory planning. These methods are based on optimal control theory and appear to be implementable onboard in realtime. Second order necessary conditions are obtained to provide a criterion for finding the optimal trajectory when more than one extremal passes through a given point. A second trajectory planning method incorporating a quadratic performance index is also discussed. Trajectory planning problem is formulated as a differential game. The objective is to synthesize optimal trajectories in the presence of an actively maneuvering adversary. Numerical methods for obtaining solutions to these problems are outlined. As an alternative to numerical method, feedback linearizing transformations are combined with the linear quadratic game results to synthesize explicit nonlinear feedback strategies for helicopter pursuit-evasion. Some of the trajectories generated from this research are evaluated on a six-degree-of-freedom helicopter simulation incorporating an advanced autopilot. The optimal trajectory planning methods presented are also useful for autonomous land vehicle guidance.

  6. How to keep the Grid full and working with ATLAS production and physics jobs

    NASA Astrophysics Data System (ADS)

    Pacheco Pagés, A.; Barreiro Megino, F. H.; Cameron, D.; Fassi, F.; Filipcic, A.; Di Girolamo, A.; González de la Hoz, S.; Glushkov, I.; Maeno, T.; Walker, R.; Yang, W.; ATLAS Collaboration

    2017-10-01

    The ATLAS production system provides the infrastructure to process millions of events collected during the LHC Run 1 and the first two years of Run 2 using grid, clouds and high performance computing. We address in this contribution the strategies and improvements that have been implemented to the production system for optimal performance and to achieve the highest efficiency of available resources from operational perspective. We focus on the recent developments.

  7. Assessment of predictive performance in incomplete data by combining internal validation and multiple imputation.

    PubMed

    Wahl, Simone; Boulesteix, Anne-Laure; Zierer, Astrid; Thorand, Barbara; van de Wiel, Mark A

    2016-10-26

    Missing values are a frequent issue in human studies. In many situations, multiple imputation (MI) is an appropriate missing data handling strategy, whereby missing values are imputed multiple times, the analysis is performed in every imputed data set, and the obtained estimates are pooled. If the aim is to estimate (added) predictive performance measures, such as (change in) the area under the receiver-operating characteristic curve (AUC), internal validation strategies become desirable in order to correct for optimism. It is not fully understood how internal validation should be combined with multiple imputation. In a comprehensive simulation study and in a real data set based on blood markers as predictors for mortality, we compare three combination strategies: Val-MI, internal validation followed by MI on the training and test parts separately, MI-Val, MI on the full data set followed by internal validation, and MI(-y)-Val, MI on the full data set omitting the outcome followed by internal validation. Different validation strategies, including bootstrap und cross-validation, different (added) performance measures, and various data characteristics are considered, and the strategies are evaluated with regard to bias and mean squared error of the obtained performance estimates. In addition, we elaborate on the number of resamples and imputations to be used, and adopt a strategy for confidence interval construction to incomplete data. Internal validation is essential in order to avoid optimism, with the bootstrap 0.632+ estimate representing a reliable method to correct for optimism. While estimates obtained by MI-Val are optimistically biased, those obtained by MI(-y)-Val tend to be pessimistic in the presence of a true underlying effect. Val-MI provides largely unbiased estimates, with a slight pessimistic bias with increasing true effect size, number of covariates and decreasing sample size. In Val-MI, accuracy of the estimate is more strongly improved by increasing the number of bootstrap draws rather than the number of imputations. With a simple integrated approach, valid confidence intervals for performance estimates can be obtained. When prognostic models are developed on incomplete data, Val-MI represents a valid strategy to obtain estimates of predictive performance measures.

  8. Advancing the LSST Operations Simulator

    NASA Astrophysics Data System (ADS)

    Saha, Abhijit; Ridgway, S. T.; Cook, K. H.; Delgado, F.; Chandrasekharan, S.; Petry, C. E.; Operations Simulator Group

    2013-01-01

    The Operations Simulator for the Large Synoptic Survey Telescope (LSST; http://lsst.org) allows the planning of LSST observations that obey explicit science driven observing specifications, patterns, schema, and priorities, while optimizing against the constraints placed by design-specific opto-mechanical system performance of the telescope facility, site specific conditions (including weather and seeing), as well as additional scheduled and unscheduled downtime. A simulation run records the characteristics of all observations (e.g., epoch, sky position, seeing, sky brightness) in a MySQL database, which can be queried for any desired purpose. Derivative information digests of the observing history database are made with an analysis package called Simulation Survey Tools for Analysis and Reporting (SSTAR). Merit functions and metrics have been designed to examine how suitable a specific simulation run is for several different science applications. This poster reports recent work which has focussed on an architectural restructuring of the code that will allow us to a) use "look-ahead" strategies that avoid cadence sequences that cannot be completed due to observing constraints; and b) examine alternate optimization strategies, so that the most efficient scheduling algorithm(s) can be identified and used: even few-percent efficiency gains will create substantive scientific opportunity. The enhanced simulator will be used to assess the feasibility of desired observing cadences, study the impact of changing science program priorities, and assist with performance margin investigations of the LSST system.

  9. Cost Minimization for Joint Energy Management and Production Scheduling Using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Shah, Rahul H.

    Production costs account for the largest share of the overall cost of manufacturing facilities. With the U.S. industrial sector becoming more and more competitive, manufacturers are looking for more cost and resource efficient working practices. Operations management and production planning have shown their capability to dramatically reduce manufacturing costs and increase system robustness. When implementing operations related decision making and planning, two fields that have shown to be most effective are maintenance and energy. Unfortunately, the current research that integrates both is limited. Additionally, these studies fail to consider parameter domains and optimization on joint energy and maintenance driven production planning. Accordingly, production planning methodology that considers maintenance and energy is investigated. Two models are presented to achieve well-rounded operating strategy. The first is a joint energy and maintenance production scheduling model. The second is a cost per part model considering maintenance, energy, and production. The proposed methodology will involve a Time-of-Use electricity demand response program, buffer and holding capacity, station reliability, production rate, station rated power, and more. In practice, the scheduling problem can be used to determine a joint energy, maintenance, and production schedule. Meanwhile, the cost per part model can be used to: (1) test the sensitivity of the obtained optimal production schedule and its corresponding savings by varying key production system parameters; and (2) to determine optimal system parameter combinations when using the joint energy, maintenance, and production planning model. Additionally, a factor analysis on the system parameters is conducted and the corresponding performance of the production schedule under variable parameter conditions, is evaluated. Also, parameter optimization guidelines that incorporate maintenance and energy parameter decision making in the production planning framework are discussed. A modified Particle Swarm Optimization solution technique is adopted to solve the proposed scheduling problem. The algorithm is described in detail and compared to Genetic Algorithm. Case studies are presented to illustrate the benefits of using the proposed model and the effectiveness of the Particle Swarm Optimization approach. Numerical Experiments are implemented and analyzed to test the effectiveness of the proposed model. The proposed scheduling strategy can achieve savings of around 19 to 27 % in cost per part when compared to the baseline scheduling scenarios. By optimizing key production system parameters from the cost per part model, the baseline scenarios can obtain around 20 to 35 % in savings for the cost per part. These savings further increase by 42 to 55 % when system parameter optimization is integrated with the proposed scheduling problem. Using this method, the most influential parameters on the cost per part are the rated power from production, the production rate, and the initial machine reliabilities. The modified Particle Swarm Optimization algorithm adopted allows greater diversity and exploration compared to Genetic Algorithm for the proposed joint model which results in it being more computationally efficient in determining the optimal scheduling. While Genetic Algorithm could achieve a solution quality of 2,279.63 at an expense of 2,300 seconds in computational effort. In comparison, the proposed Particle Swarm Optimization algorithm achieved a solution quality of 2,167.26 in less than half the computation effort which is required by Genetic Algorithm.

  10. Smart distribution systems

    DOE PAGES

    Jiang, Yazhou; Liu, Chen -Ching; Xu, Yin

    2016-04-19

    The increasing importance of system reliability and resilience is changing the way distribution systems are planned and operated. To achieve a distribution system self-healing against power outages, emerging technologies and devices, such as remote-controlled switches (RCSs) and smart meters, are being deployed. The higher level of automation is transforming traditional distribution systems into the smart distribution systems (SDSs) of the future. The availability of data and remote control capability in SDSs provides distribution operators with an opportunity to optimize system operation and control. In this paper, the development of SDSs and resulting benefits of enhanced system capabilities are discussed. Amore » comprehensive survey is conducted on the state-of-the-art applications of RCSs and smart meters in SDSs. Specifically, a new method, called Temporal Causal Diagram (TCD), is used to incorporate outage notifications from smart meters for enhanced outage management. To fully utilize the fast operation of RCSs, the spanning tree search algorithm is used to develop service restoration strategies. Optimal placement of RCSs and the resulting enhancement of system reliability are discussed. Distribution system resilience with respect to extreme events is presented. Furthermore, test cases are used to demonstrate the benefit of SDSs. Active management of distributed generators (DGs) is introduced. Future research in a smart distribution environment is proposed.« less

  11. Transient particle emission measurement with optical techniques

    NASA Astrophysics Data System (ADS)

    Bermúdez, Vicente; Luján, José M.; Serrano, José R.; Pla, Benjamín

    2008-06-01

    Particulate matter is responsible for some respiratory and cardiovascular diseases. In addition, it is one of the most important pollutants of high-speed direct injection (HSDI) passenger car engines. Current legislation requires particulate dilution tunnels for particulate matter measuring. However for development work, dilution tunnels are expensive and sometimes not useful since they are not able to quantify real-time particulate emissions during transient operation. In this study, the use of a continuous measurement opacimeter and a fast response HFID is proven to be a good alternative to obtain instantaneous particle mass emissions during transient operation (due to particulate matter consisting mainly of soot and SOF). Some methods and correlations available from literature, but developed for steady conditions, are evaluated during transient operation by comparing with mini-tunnel measurements during the entire MVEG-A transient cycle. A new correlation was also derived from this evaluation. Results for soot and SOF (obtained from the new correlation proposed) are compared with soot and SOF captured with particulate filters, which have been separated by means of an SOF extraction method. Finally, as an example of ECU design strategies using these sort of correlations, the EGR valve opening is optimized during transient operation. The optimization is performed while simultaneously taking into account instantaneous fuel consumption, particulate emissions (calculated with the proposed correlation) and other regulated engine pollutants.

  12. A Steady-State Kalman Predictor-Based Filtering Strategy for Non-Overlapping Sub-Band Spectral Estimation

    PubMed Central

    Li, Zenghui; Xu, Bin; Yang, Jian; Song, Jianshe

    2015-01-01

    This paper focuses on suppressing spectral overlap for sub-band spectral estimation, with which we can greatly decrease the computational complexity of existing spectral estimation algorithms, such as nonlinear least squares spectral analysis and non-quadratic regularized sparse representation. Firstly, our study shows that the nominal ability of the high-order analysis filter to suppress spectral overlap is greatly weakened when filtering a finite-length sequence, because many meaningless zeros are used as samples in convolution operations. Next, an extrapolation-based filtering strategy is proposed to produce a series of estimates as the substitutions of the zeros and to recover the suppression ability. Meanwhile, a steady-state Kalman predictor is applied to perform a linearly-optimal extrapolation. Finally, several typical methods for spectral analysis are applied to demonstrate the effectiveness of the proposed strategy. PMID:25609038

  13. Model Predictive Control application for real time operation of controlled structures for the Water Authority Noorderzijlvest, The Netherlands

    NASA Astrophysics Data System (ADS)

    van Heeringen, Klaas-Jan; Gooijer, Jan; Knot, Floris; Talsma, Jan

    2015-04-01

    In the Netherlands, flood protection has always been a key issue to protect settlements against storm surges and riverine floods. Whereas flood protection traditionally focused on structural measures, nowadays the availability of meteorological and hydrological forecasts enable the application of more advanced real-time control techniques for operating the existing hydraulic infrastructure in an anticipatory and more efficient way. Model Predictive Control (MPC) is a powerful technique to derive optimal control variables with the help of model based predictions evaluated against a control objective. In a project for the regional water authority Noorderzijlvest in the north of the Netherlands, it has been shown that MPC can increase the safety level of the system during flood events by an anticipatory pre-release of water. Furthermore, energy costs of pumps can be reduced by making tactical use of the water storage and shifting pump activities during normal operating conditions to off-peak hours. In this way cheap energy is used in combination of gravity flow through gates during low tide periods. MPC has now been implemented for daily operational use of the whole water system of the water authority Noorderzijlvest. The system developed to a real time decision support system which not only supports the daily operation but is able to directly implement the optimal control settings at the structures. We explain how we set-up and calibrated a prediction model (RTC-Tools) that is accurate and fast enough for optimization purposes, and how we integrated it in the operational flood early warning system (Delft-FEWS). Beside the prediction model, the weights and the factors of the objective function are an important element of MPC, since they shape the control objective. We developed special features in Delft-FEWS to allow the operators to adjust the objective function in order to meet changing requirements and to evaluate different control strategies.

  14. Optimality of the barrier strategy in de Finetti's dividend problem for spectrally negative Lévy processes: An alternative approach

    NASA Astrophysics Data System (ADS)

    Yin, Chuancun; Wang, Chunwei

    2009-11-01

    The optimal dividend problem proposed in de Finetti [1] is to find the dividend-payment strategy that maximizes the expected discounted value of dividends which are paid to the shareholders until the company is ruined. Avram et al. [9] studied the case when the risk process is modelled by a general spectrally negative Lévy process and Loeffen [10] gave sufficient conditions under which the optimal strategy is of the barrier type. Recently Kyprianou et al. [11] strengthened the result of Loeffen [10] which established a larger class of Lévy processes for which the barrier strategy is optimal among all admissible ones. In this paper we use an analytical argument to re-investigate the optimality of barrier dividend strategies considered in the three recent papers.

  15. Towards Stochastic Optimization-Based Electric Vehicle Penetration in a Novel Archipelago Microgrid.

    PubMed

    Yang, Qingyu; An, Dou; Yu, Wei; Tan, Zhengan; Yang, Xinyu

    2016-06-17

    Due to the advantage of avoiding upstream disturbance and voltage fluctuation from a power transmission system, Islanded Micro-Grids (IMG) have attracted much attention. In this paper, we first propose a novel self-sufficient Cyber-Physical System (CPS) supported by Internet of Things (IoT) techniques, namely "archipelago micro-grid (MG)", which integrates the power grid and sensor networks to make the grid operation effective and is comprised of multiple MGs while disconnected with the utility grid. The Electric Vehicles (EVs) are used to replace a portion of Conventional Vehicles (CVs) to reduce CO 2 emission and operation cost. Nonetheless, the intermittent nature and uncertainty of Renewable Energy Sources (RESs) remain a challenging issue in managing energy resources in the system. To address these issues, we formalize the optimal EV penetration problem as a two-stage Stochastic Optimal Penetration (SOP) model, which aims to minimize the emission and operation cost in the system. Uncertainties coming from RESs (e.g., wind, solar, and load demand) are considered in the stochastic model and random parameters to represent those uncertainties are captured by the Monte Carlo-based method. To enable the reasonable deployment of EVs in each MGs, we develop two scheduling schemes, namely Unlimited Coordinated Scheme (UCS) and Limited Coordinated Scheme (LCS), respectively. An extensive simulation study based on a modified 9 bus system with three MGs has been carried out to show the effectiveness of our proposed schemes. The evaluation data indicates that our proposed strategy can reduce both the environmental pollution created by CO 2 emissions and operation costs in UCS and LCS.

  16. Towards Stochastic Optimization-Based Electric Vehicle Penetration in a Novel Archipelago Microgrid

    PubMed Central

    Yang, Qingyu; An, Dou; Yu, Wei; Tan, Zhengan; Yang, Xinyu

    2016-01-01

    Due to the advantage of avoiding upstream disturbance and voltage fluctuation from a power transmission system, Islanded Micro-Grids (IMG) have attracted much attention. In this paper, we first propose a novel self-sufficient Cyber-Physical System (CPS) supported by Internet of Things (IoT) techniques, namely “archipelago micro-grid (MG)”, which integrates the power grid and sensor networks to make the grid operation effective and is comprised of multiple MGs while disconnected with the utility grid. The Electric Vehicles (EVs) are used to replace a portion of Conventional Vehicles (CVs) to reduce CO2 emission and operation cost. Nonetheless, the intermittent nature and uncertainty of Renewable Energy Sources (RESs) remain a challenging issue in managing energy resources in the system. To address these issues, we formalize the optimal EV penetration problem as a two-stage Stochastic Optimal Penetration (SOP) model, which aims to minimize the emission and operation cost in the system. Uncertainties coming from RESs (e.g., wind, solar, and load demand) are considered in the stochastic model and random parameters to represent those uncertainties are captured by the Monte Carlo-based method. To enable the reasonable deployment of EVs in each MGs, we develop two scheduling schemes, namely Unlimited Coordinated Scheme (UCS) and Limited Coordinated Scheme (LCS), respectively. An extensive simulation study based on a modified 9 bus system with three MGs has been carried out to show the effectiveness of our proposed schemes. The evaluation data indicates that our proposed strategy can reduce both the environmental pollution created by CO2 emissions and operation costs in UCS and LCS. PMID:27322281

  17. Optimization Strategies for Bruch's Membrane Opening Minimum Rim Area Calculation: Sequential versus Simultaneous Minimization.

    PubMed

    Enders, Philip; Adler, Werner; Schaub, Friederike; Hermann, Manuel M; Diestelhorst, Michael; Dietlein, Thomas; Cursiefen, Claus; Heindl, Ludwig M

    2017-10-24

    To compare a simultaneously optimized continuous minimum rim surface parameter between Bruch's membrane opening (BMO) and the internal limiting membrane to the standard sequential minimization used for calculating the BMO minimum rim area in spectral domain optical coherence tomography (SD-OCT). In this case-control, cross-sectional study, 704 eyes of 445 participants underwent SD-OCT of the optic nerve head (ONH), visual field testing, and clinical examination. Globally and clock-hour sector-wise optimized BMO-based minimum rim area was calculated independently. Outcome parameters included BMO-globally optimized minimum rim area (BMO-gMRA) and sector-wise optimized BMO-minimum rim area (BMO-MRA). BMO area was 1.89 ± 0.05 mm 2 . Mean global BMO-MRA was 0.97 ± 0.34 mm 2 , mean global BMO-gMRA was 1.01 ± 0.36 mm 2 . Both parameters correlated with r = 0.995 (P < 0.001); mean difference was 0.04 mm 2 (P < 0.001). In all sectors, parameters differed by 3.0-4.2%. In receiver operating characteristics, the calculated area under the curve (AUC) to differentiate glaucoma was 0.873 for BMO-MRA, compared to 0.866 for BMO-gMRA (P = 0.004). Among ONH sectors, the temporal inferior location showed the highest AUC. Optimization strategies to calculate BMO-based minimum rim area led to significantly different results. Imposing an additional adjacency constraint within calculation of BMO-MRA does not improve diagnostic power. Global and temporal inferior BMO-MRA performed best in differentiating glaucoma patients.

  18. Virtual optical network mapping and core allocation in elastic optical networks using multi-core fibers

    NASA Astrophysics Data System (ADS)

    Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli

    2017-11-01

    Virtualization technology can greatly improve the efficiency of the networks by allowing the virtual optical networks to share the resources of the physical networks. However, it will face some challenges, such as finding the efficient strategies for virtual nodes mapping, virtual links mapping and spectrum assignment. It is even more complex and challenging when the physical elastic optical networks using multi-core fibers. To tackle these challenges, we establish a constrained optimization model to determine the optimal schemes of optical network mapping, core allocation and spectrum assignment. To solve the model efficiently, tailor-made encoding scheme, crossover and mutation operators are designed. Based on these, an efficient genetic algorithm is proposed to obtain the optimal schemes of the virtual nodes mapping, virtual links mapping, core allocation. The simulation experiments are conducted on three widely used networks, and the experimental results show the effectiveness of the proposed model and algorithm.

  19. Optimization techniques applied to passive measures for in-orbit spacecraft survivability

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.; Price, D. Marvin

    1991-01-01

    Spacecraft designers have always been concerned about the effects of meteoroid impacts on mission safety. The engineering solution to this problem has generally been to erect a bumper or shield placed outboard from the spacecraft wall to disrupt/deflect the incoming projectiles. Spacecraft designers have a number of tools at their disposal to aid in the design process. These include hypervelocity impact testing, analytic impact predictors, and hydrodynamic codes. Analytic impact predictors generally provide the best quick-look estimate of design tradeoffs. The most complete way to determine the characteristics of an analytic impact predictor is through optimization of the protective structures design problem formulated with the predictor of interest. Space Station Freedom protective structures design insight is provided through the coupling of design/material requirements, hypervelocity impact phenomenology, meteoroid and space debris environment sensitivities, optimization techniques and operations research strategies, and mission scenarios. Major results are presented.

  20. Achieving Optimal Self-Adaptivity for Dynamic Tuning of Organic Semiconductors through Resonance Engineering.

    PubMed

    Tao, Ye; Xu, Lijia; Zhang, Zhen; Chen, Runfeng; Li, Huanhuan; Xu, Hui; Zheng, Chao; Huang, Wei

    2016-08-03

    Current static-state explorations of organic semiconductors for optimal material properties and device performance are hindered by limited insights into the dynamically changed molecular states and charge transport and energy transfer processes upon device operation. Here, we propose a simple yet successful strategy, resonance variation-based dynamic adaptation (RVDA), to realize optimized self-adaptive properties in donor-resonance-acceptor molecules by engineering the resonance variation for dynamic tuning of organic semiconductors. Organic light-emitting diodes hosted by these RVDA materials exhibit remarkably high performance, with external quantum efficiencies up to 21.7% and favorable device stability. Our approach, which supports simultaneous realization of dynamically adapted and selectively enhanced properties via resonance engineering, illustrates a feasible design map for the preparation of smart organic semiconductors capable of dynamic structure and property modulations, promoting the studies of organic electronics from static to dynamic.

Top