Preliminary supersonic flight test evaluation of performance seeking control
NASA Technical Reports Server (NTRS)
Orme, John S.; Gilyard, Glenn B.
1993-01-01
Digital flight and engine control, powerful onboard computers, and sophisticated controls techniques may improve aircraft performance by maximizing fuel efficiency, maximizing thrust, and extending engine life. An adaptive performance seeking control system for optimizing the quasi-steady state performance of an F-15 aircraft was developed and flight tested. This system has three optimization modes: minimum fuel, maximum thrust, and minimum fan turbine inlet temperature. Tests of the minimum fuel and fan turbine inlet temperature modes were performed at a constant thrust. Supersonic single-engine flight tests of the three modes were conducted using varied after burning power settings. At supersonic conditions, the performance seeking control law optimizes the integrated airframe, inlet, and engine. At subsonic conditions, only the engine is optimized. Supersonic flight tests showed improvements in thrust of 9 percent, increases in fuel savings of 8 percent, and reductions of up to 85 deg R in turbine temperatures for all three modes. The supersonic performance seeking control structure is described and preliminary results of supersonic performance seeking control tests are given. These findings have implications for improving performance of civilian and military aircraft.
Traveling-Wave Tube Cold-Test Circuit Optimization Using CST MICROWAVE STUDIO
NASA Technical Reports Server (NTRS)
Chevalier, Christine T.; Kory, Carol L.; Wilson, Jeffrey D.; Wintucky, Edwin G.; Dayton, James A., Jr.
2003-01-01
The internal optimizer of CST MICROWAVE STUDIO (MWS) was used along with an application-specific Visual Basic for Applications (VBA) script to develop a method to optimize traveling-wave tube (TWT) cold-test circuit performance. The optimization procedure allows simultaneous optimization of circuit specifications including on-axis interaction impedance, bandwidth or geometric limitations. The application of Microwave Studio to TWT cold-test circuit optimization is described.
Selection of optimal sensors for predicting performance of polymer electrolyte membrane fuel cell
NASA Astrophysics Data System (ADS)
Mao, Lei; Jackson, Lisa
2016-10-01
In this paper, sensor selection algorithms are investigated based on a sensitivity analysis, and the capability of optimal sensors in predicting PEM fuel cell performance is also studied using test data. The fuel cell model is developed for generating the sensitivity matrix relating sensor measurements and fuel cell health parameters. From the sensitivity matrix, two sensor selection approaches, including the largest gap method, and exhaustive brute force searching technique, are applied to find the optimal sensors providing reliable predictions. Based on the results, a sensor selection approach considering both sensor sensitivity and noise resistance is proposed to find the optimal sensor set with minimum size. Furthermore, the performance of the optimal sensor set is studied to predict fuel cell performance using test data from a PEM fuel cell system. Results demonstrate that with optimal sensors, the performance of PEM fuel cell can be predicted with good quality.
UHPC for Blast and Ballistic Protection, Explosion Testing and Composition Optimization
NASA Astrophysics Data System (ADS)
Bibora, P.; Drdlová, M.; Prachař, V.; Sviták, O.
2017-10-01
The realization of high performance concrete resistant to detonation is the aim and expected outcome of the presented project, which is oriented to development of construction materials for larger objects as protective walls and bunkers. Use of high-strength concrete (HSC / HPC - “high strength / performance concrete”) and high-fiber reinforced concrete (UHPC / UHPFC -“Ultra High Performance Fiber Reinforced Concrete”) seems to be optimal for this purpose of research. The paper describes the research phase of the project, in which we focused on the selection of specific raw materials and chemical additives, including determining the most suitable type and amount of distributed fiber reinforcement. Composition of UHPC was optimized during laboratory manufacture of test specimens to obtain the best desired physical- mechanical properties of developed high performance concretes. In connection with laboratory testing, explosion field tests of UHPC specimens were performed and explosion resistance of laboratory produced UHPC testing boards was investigated.
Gobin, Oliver C; Schüth, Ferdi
2008-01-01
Genetic algorithms are widely used to solve and optimize combinatorial problems and are more often applied for library design in combinatorial chemistry. Because of their flexibility, however, their implementation can be challenging. In this study, the influence of the representation of solid catalysts on the performance of genetic algorithms was systematically investigated on the basis of a new, constrained, multiobjective, combinatorial test problem with properties common to problems in combinatorial materials science. Constraints were satisfied by penalty functions, repair algorithms, or special representations. The tests were performed using three state-of-the-art evolutionary multiobjective algorithms by performing 100 optimization runs for each algorithm and test case. Experimental data obtained during the optimization of a noble metal-free solid catalyst system active in the selective catalytic reduction of nitric oxide with propene was used to build up a predictive model to validate the results of the theoretical test problem. A significant influence of the representation on the optimization performance was observed. Binary encodings were found to be the preferred encoding in most of the cases, and depending on the experimental test unit, repair algorithms or penalty functions performed best.
Testing the Limits of Optimizing Dual-Task Performance in Younger and Older Adults
Strobach, Tilo; Frensch, Peter; Müller, Herrmann Josef; Schubert, Torsten
2012-01-01
Impaired dual-task performance in younger and older adults can be improved with practice. Optimal conditions even allow for a (near) elimination of this impairment in younger adults. However, it is unknown whether such (near) elimination is the limit of performance improvements in older adults. The present study tests this limit in older adults under conditions of (a) a high amount of dual-task training and (b) training with simplified component tasks in dual-task situations. The data showed that a high amount of dual-task training in older adults provided no evidence for an improvement of dual-task performance to the optimal dual-task performance level achieved by younger adults. However, training with simplified component tasks in dual-task situations exclusively in older adults provided a similar level of optimal dual-task performance in both age groups. Therefore through applying a testing the limits approach, we demonstrated that older adults improved dual-task performance to the same level as younger adults at the end of training under very specific conditions. PMID:22408613
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnis Judzis
2003-01-01
This document details the progress to date on the ''OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING'' contract for the quarter starting October 2002 through December 2002. Even though we are awaiting the optimization portion of the testing program, accomplishments included the following: (1) Smith International participated in the DOE Mud Hammer program through full scale benchmarking testing during the week of 4 November 2003. (2) TerraTek acknowledges Smith International, BP America, PDVSA, and ConocoPhillips for cost-sharing the Smith benchmarking tests allowing extension of the contract to add to themore » benchmarking testing program. (3) Following the benchmark testing of the Smith International hammer, representatives from DOE/NETL, TerraTek, Smith International and PDVSA met at TerraTek in Salt Lake City to review observations, performance and views on the optimization step for 2003. (4) The December 2002 issue of Journal of Petroleum Technology (Society of Petroleum Engineers) highlighted the DOE fluid hammer testing program and reviewed last years paper on the benchmark performance of the SDS Digger and Novatek hammers. (5) TerraTek's Sid Green presented a technical review for DOE/NETL personnel in Morgantown on ''Impact Rock Breakage'' and its importance on improving fluid hammer performance. Much discussion has taken place on the issues surrounding mud hammer performance at depth conditions.« less
NASA Astrophysics Data System (ADS)
Huang, Bo; Hsieh, Chen-Yu; Golnaraghi, Farid; Moallem, Mehrdad
2015-11-01
In this paper a vehicle suspension system with energy harvesting capability is developed, and an analytical methodology for the optimal design of the system is proposed. The optimization technique provides design guidelines for determining the stiffness and damping coefficients aimed at the optimal performance in terms of ride comfort and energy regeneration. The corresponding performance metrics are selected as root-mean-square (RMS) of sprung mass acceleration and expectation of generated power. The actual road roughness is considered as the stochastic excitation defined by ISO 8608:1995 standard road profiles and used in deriving the optimization method. An electronic circuit is proposed to provide variable damping in the real-time based on the optimization rule. A test-bed is utilized and the experiments under different driving conditions are conducted to verify the effectiveness of the proposed method. The test results suggest that the analytical approach is credible in determining the optimality of system performance.
Optimized Non-Obstructive Particle Damping (NOPD) Treatment for Composite Honeycomb Structures
NASA Technical Reports Server (NTRS)
Panossian, H.
2008-01-01
Non-Obstructive Particle Damping (NOPD) technology is a passive vibration damping approach whereby metallic or non-metallic particles in spherical or irregular shapes, of heavy or light consistency, and even liquid particles are placed inside cavities or attached to structures by an appropriate means at strategic locations, to absorb vibration energy. The objective of the work described herein is the development of a design optimization procedure and discussion of test results for such a NOPD treatment on honeycomb (HC) composite structures, based on finite element modeling (FEM) analyses, optimization and tests. Modeling and predictions were performed and tests were carried out to correlate the test data with the FEM. The optimization procedure consisted of defining a global objective function, using finite difference methods, to determine the optimal values of the design variables through quadratic linear programming. The optimization process was carried out by targeting the highest dynamic displacements of several vibration modes of the structure and finding an optimal treatment configuration that will minimize them. An optimal design was thus derived and laboratory tests were conducted to evaluate its performance under different vibration environments. Three honeycomb composite beams, with Nomex core and aluminum face sheets, empty (untreated), uniformly treated with NOPD, and optimally treated with NOPD, according to the analytically predicted optimal design configuration, were tested in the laboratory. It is shown that the beam with optimal treatment has the lowest response amplitude. Described below are results of modal vibration tests and FEM analyses from predictions of the modal characteristics of honeycomb beams under zero, 50% uniform treatment and an optimal NOPD treatment design configuration and verification with test data.
Experimental test of an online ion-optics optimizer
NASA Astrophysics Data System (ADS)
Amthor, A. M.; Schillaci, Z. M.; Morrissey, D. J.; Portillo, M.; Schwarz, S.; Steiner, M.; Sumithrarachchi, Ch.
2018-07-01
A technique has been developed and tested to automatically adjust multiple electrostatic or magnetic multipoles on an ion optical beam line - according to a defined optimization algorithm - until an optimal tune is found. This approach simplifies the process of determining high-performance optical tunes, satisfying a given set of optical properties, for an ion optical system. The optimization approach is based on the particle swarm method and is entirely model independent, thus the success of the optimization does not depend on the accuracy of an extant ion optical model of the system to be optimized. Initial test runs of a first order optimization of a low-energy (<60 keV) all-electrostatic beamline at the NSCL show reliable convergence of nine quadrupole degrees of freedom to well-performing tunes within a reasonable number of trial solutions, roughly 500, with full beam optimization run times of roughly two hours. Improved tunes were found both for quasi-local optimizations and for quasi-global optimizations, indicating a good ability of the optimizer to find a solution with or without a well defined set of initial multipole settings.
Comparison of genetic algorithm methods for fuel management optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1995-12-31
The CIGARO system was developed for genetic algorithm fuel management optimization. Tests are performed to find the best fuel location swap mutation operator probability and to compare genetic algorithm to a truly random search method. Tests showed the fuel swap probability should be between 0% and 10%, and a 50% definitely hampered the optimization. The genetic algorithm performed significantly better than the random search method, which did not even satisfy the peak normalized power constraint.
Celik, Yuksel; Ulker, Erkan
2013-01-01
Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms.
Optimal Bayesian Adaptive Design for Test-Item Calibration.
van der Linden, Wim J; Ren, Hao
2015-06-01
An optimal adaptive design for test-item calibration based on Bayesian optimality criteria is presented. The design adapts the choice of field-test items to the examinees taking an operational adaptive test using both the information in the posterior distributions of their ability parameters and the current posterior distributions of the field-test parameters. Different criteria of optimality based on the two types of posterior distributions are possible. The design can be implemented using an MCMC scheme with alternating stages of sampling from the posterior distributions of the test takers' ability parameters and the parameters of the field-test items while reusing samples from earlier posterior distributions of the other parameters. Results from a simulation study demonstrated the feasibility of the proposed MCMC implementation for operational item calibration. A comparison of performances for different optimality criteria showed faster calibration of substantial numbers of items for the criterion of D-optimality relative to A-optimality, a special case of c-optimality, and random assignment of items to the test takers.
NASA Astrophysics Data System (ADS)
Baranowski, Z.; Canali, L.; Toebbicke, R.; Hrivnac, J.; Barberis, D.
2017-10-01
This paper reports on the activities aimed at improving the architecture and performance of the ATLAS EventIndex implementation in Hadoop. The EventIndex contains tens of billions of event records, each of which consists of ∼100 bytes, all having the same probability to be searched or counted. Data formats represent one important area for optimizing the performance and storage footprint of applications based on Hadoop. This work reports on the production usage and on tests using several data formats including Map Files, Apache Parquet, Avro, and various compression algorithms. The query engine plays also a critical role in the architecture. We report also on the use of HBase for the EventIndex, focussing on the optimizations performed in production and on the scalability tests. Additional engines that have been tested include Cloudera Impala, in particular for its SQL interface, and the optimizations for data warehouse workloads and reports.
The extension of the thermal-vacuum test optimization program to multiple flights
NASA Technical Reports Server (NTRS)
Williams, R. E.; Byrd, J.
1981-01-01
The thermal vacuum test optimization model developed to provide an approach to the optimization of a test program based on prediction of flight performance with a single flight option in mind is extended to consider reflight as in space shuttle missions. The concept of 'utility', developed under the name of 'availability', is used to follow performance through the various options encountered when the capabilities of reflight and retrievability of space shuttle are available. Also, a 'lost value' model is modified to produce a measure of the probability of a mission's success, achieving a desired utility using a minimal cost test strategy. The resulting matrix of probabilities and their associated costs provides a means for project management to evaluate various test and reflight strategies.
A Modified Mean Gray Wolf Optimization Approach for Benchmark and Biomedical Problems.
Singh, Narinder; Singh, S B
2017-01-01
A modified variant of gray wolf optimization algorithm, namely, mean gray wolf optimization algorithm has been developed by modifying the position update (encircling behavior) equations of gray wolf optimization algorithm. The proposed variant has been tested on 23 standard benchmark well-known test functions (unimodal, multimodal, and fixed-dimension multimodal), and the performance of modified variant has been compared with particle swarm optimization and gray wolf optimization. Proposed algorithm has also been applied to the classification of 5 data sets to check feasibility of the modified variant. The results obtained are compared with many other meta-heuristic approaches, ie, gray wolf optimization, particle swarm optimization, population-based incremental learning, ant colony optimization, etc. The results show that the performance of modified variant is able to find best solutions in terms of high level of accuracy in classification and improved local optima avoidance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnis Judzis
2004-07-01
This document details the progress to date on the ''OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING'' contract for the quarter starting April 2004 through June 2004. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). The latest indication is that the Novatek tool would be ready for retesting only 4Q 2004 or later. Smith International's hammer was tested in April of 2004 (2Q 2004 report). Accomplishments included the following: (1) TerraTek re-tested the ''optimized'' fluid hammermore » provided by Smith International during April 2004. Many improvements in mud hammer rates of penetration were noted over Phase 1 benchmark testing from November 2002. (2) Shell Exploration and Production in The Hague was briefed on various drilling performance projects including Task 8 ''Cutter Impact Testing''. Shell interest and willingness to assist in the test matrix as an Industry Advisor is appreciated. (3) TerraTek participated in a DOE/NETL Review meeting at Morgantown on April 15, 2004. The discussions were very helpful and a program related to the Mud Hammer optimization project was noted--Terralog modeling work on percussion tools. (4) Terralog's Dr. Gang Han witnessed some of the full-scale optimization testing of the Smith International hammer in order to familiarize him with downhole tools. TerraTek recommends that modeling first start with single cutters/inserts and progress in complexity. (5) The final equipment problem on the impact testing task was resolved through the acquisition of a high data rate laser based displacement instrument. (6) TerraTek provided Novatek much engineering support for the future re-testing of their optimized tool. Work was conducted on slip ring [electrical] specifications and tool collar sealing in the testing vessel with a reconfigured flow system on Novatek's collar.« less
Optimal configuration of power grid sources based on optimal particle swarm algorithm
NASA Astrophysics Data System (ADS)
Wen, Yuanhua
2018-04-01
In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.
NASA Astrophysics Data System (ADS)
Koreanschi, Andreea
In order to answer the problem of 'how to reduce the aerospace industry's environment footprint?' new morphing technologies were developed. These technologies were aimed at reducing the aircraft's fuel consumption through reduction of the wing drag. The morphing concept used in the present research consists of replacing the conventional aluminium upper surface of the wing with a flexible composite skin for morphing abilities. For the ATR-42 'Morphing wing' project, the wing models were manufactured entirely from composite materials and the morphing region was optimized for flexibility. In this project two rigid wing models and an active morphing wing model were designed, manufactured and wind tunnel tested. For the CRIAQ MDO 505 project, a full scale wing-tip equipped with two types of ailerons, conventional and morphing, was designed, optimized, manufactured, bench and wind tunnel tested. The morphing concept was applied on a real wing internal structure and incorporated aerodynamic, structural and control constraints specific to a multidisciplinary approach. Numerical optimization, aerodynamic analysis and experimental validation were performed for both the CRIAQ MDO 505 full scale wing-tip demonstrator and the ATR-42 reduced scale wing models. In order to improve the aerodynamic performances of the ATR-42 and CRIAQ MDO 505 wing airfoils, three global optimization algorithms were developed, tested and compared. The three algorithms were: the genetic algorithm, the artificial bee colony and the gradient descent. The algorithms were coupled with the two-dimensional aerodynamic solver XFoil. XFoil is known for its rapid convergence, robustness and use of the semi-empirical e n method for determining the position of the flow transition from laminar to turbulent. Based on the performance comparison between the algorithms, the genetic algorithm was chosen for the optimization of the ATR-42 and CRIAQ MDO 505 wing airfoils. The optimization algorithm was improved during the CRIAQ MDO 505 project for convergence speed by introducing a two-step cross-over function. Structural constraints were introduced in the algorithm at each aero-structural optimization interaction, allowing a better manipulation of the algorithm and giving it more capabilities of morphing combinations. The CRIAQ MDO 505 project envisioned a morphing aileron concept for the morphing upper surface wing. For this morphing aileron concept, two optimization methods were developed. The methods used the already developed genetic algorithm and each method had a different design concept. The first method was based on the morphing upper surface concept, using actuation points to achieve the desired shape. The second method was based on the hinge rotation concept of the conventional aileron but applied at multiple nodes along the aileron camber to achieve the desired shape. Both methods were constrained by manufacturing and aerodynamic requirements. The purpose of the morphing aileron methods was to obtain an aileron shape with a smoother pressure distribution gradient during deflection than the conventional aileron. The aerodynamic optimization results were used for the structural optimization and design of the wing, particularly the flexible composite skin. Due to the structural changes performed on the initial wing-tip structure, an aeroelastic behaviour analysis, more specific on flutter phenomenon, was performed. The analyses were done to ensure the structural integrity of the wing-tip demonstrator during wind tunnel tests. Three wind tunnel tests were performed for the CRIAQ MDO 505 wing-tip demonstrator at the IAR-NRC subsonic wind tunnel facility in Ottawa. The first two tests were performed for the wing-tip equipped with conventional aileron. The purpose of these tests was to validate the control system designed for the morphing upper surface, the numerical optimization and aerodynamic analysis and to evaluate the optimization efficiency on the boundary layer behaviour and the wing drag. The third set of wind tunnel tests was performed on the wing-tip equipped with a morphing aileron. The purpose of this test was to evaluate the performances of the morphing aileron, in conjunction with the active morphing upper surface, and their effect on the lift, drag and boundary layer behaviour. Transition data, obtained from Infrared Thermography, and pressure data, extracted from Kulite and pressure taps recordings, were used to validate the numerical optimization and aerodynamic performances of the wing-tip demonstrator. A set of wind tunnel tests was performed on the ATR-42 rigid wing models at the Price-Paidoussis subsonic wind tunnel at Ecole de technologie Superieure. The results from the pressure taps recordings were used to validate the numerical optimization. A second derivative of the pressure distribution method was applied to evaluate the transition region on the upper surface of the wing models for comparison with the numerical transition values. (Abstract shortened by ProQuest.).
Functional performance testing for power and return to sports.
Manske, Robert; Reiman, Michael
2013-05-01
Functional performance testing of athletes can determine physical limitations that may affect sporting activities. Optimal functional performance testing simulates the athlete's activity. A Medline search from 1960 to 2012 was implemented with the keywords functional testing, functional impairment testing, and functional performance testing in the English language. Each author also undertook independent searches of article references. Functional performance tests can bridge the gap between general physical tests and full, unrestricted athletic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenhoover, W.A.; Stouffer, M.R.; Withum, J.A.
1994-12-01
The objective of this research project is to develop second-generation duct injection technology as a cost-effective SO{sub 2} control option for the 1990 Clean Air Act Amendments. Research is focused on the Advanced Coolside process, which has shown the potential for achieving the performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. In Subtask 2.2, Design Optimization, process improvement was sought by optimizing sorbent recycle and by optimizing process equipment for reduced cost. The pilot plant recycle testing showed that 90% SO{sub 2} removal could be achieved at sorbent utilizations up to 75%. This testing also showed thatmore » the Advanced Coolside process has the potential to achieve very high removal efficiency (90 to greater than 99%). Two alternative contactor designs were developed, tested and optimized through pilot plant testing; the improved designs will reduce process costs significantly, while maintaining operability and performance essential to the process. Also, sorbent recycle handling equipment was optimized to reduce cost.« less
Celik, Yuksel; Ulker, Erkan
2013-01-01
Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms. PMID:23935416
NASA Astrophysics Data System (ADS)
Powell, Keith B.; Vaitheeswaran, Vidhya
2010-07-01
The MMT observatory has recently implemented and tested an optimal wavefront controller for the NGS adaptive optics system. Open loop atmospheric data collected at the telescope is used as the input to a MATLAB based analytical model. The model uses nonlinear constrained minimization to determine controller gains and optimize the system performance. The real-time controller performing the adaptive optics close loop operation is implemented on a dedicated high performance PC based quad core server. The controller algorithm is written in C and uses the GNU scientific library for linear algebra. Tests at the MMT confirmed the optimal controller significantly reduced the residual RMS wavefront compared with the previous controller. Significant reductions in image FWHM and increased peak intensities were obtained in J, H and K-bands. The optimal PID controller is now operating as the baseline wavefront controller for the MMT NGS-AO system.
Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization
Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali
2014-01-01
Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584
Neuroimaging markers associated with maintenance of optimal memory performance in late-life.
Dekhtyar, Maria; Papp, Kathryn V; Buckley, Rachel; Jacobs, Heidi I L; Schultz, Aaron P; Johnson, Keith A; Sperling, Reisa A; Rentz, Dorene M
2017-06-01
Age-related memory decline has been well-documented; however, some individuals reach their 8th-10th decade while maintaining strong memory performance. To determine which demographic and biomarker factors differentiated top memory performers (aged 75+, top 20% for memory) from their peers and whether top memory performance was maintained over 3 years. Clinically normal adults (n=125, CDR=0; age: 79.5±3.57 years) from the Harvard Aging Brain Study underwent cognitive testing and neuroimaging (amyloid PET, MRI) at baseline and 3-year follow-up. Participants were grouped into Optimal (n=25) vs. Typical (n=100) performers using performance on 3 challenging memory measures. Non-parametric tests were used to compare groups. There were no differences in age, sex, or education between Optimal vs. Typical performers. The Optimal group performed better in Processing Speed (p=0.016) and Executive Functioning (p<0.001). Optimal performers had larger hippocampal volumes at baseline compared with Typical Performers (p=0.027) but no differences in amyloid burden (p=0.442). Twenty-three of the 25 Optimal performers had longitudinal data and16 maintained top memory performance while 7 declined. Non-Maintainers additionally declined in Executive Functioning but not Processing Speed. Longitudinally, there were no hippocampal volume differences between Maintainers and Non-Maintainers, however Non-Maintainers exhibited higher amyloid burden at baseline in contrast with Maintainers (p=0.008). Excellent memory performance in late life does not guarantee protection against cognitive decline. Those who maintain an optimal memory into the 8th and 9th decades may have lower levels of AD pathology. Copyright © 2017. Published by Elsevier Ltd.
Optimization of structures on the basis of fracture mechanics and reliability criteria
NASA Technical Reports Server (NTRS)
Heer, E.; Yang, J. N.
1973-01-01
Systematic summary of factors which are involved in optimization of given structural configuration is part of report resulting from study of analysis of objective function. Predicted reliability of performance of finished structure is sharply dependent upon results of coupon tests. Optimization analysis developed by study also involves expected cost of proof testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, W.E.
1999-02-10
Evolutionary programs (EPs) and evolutionary pattern search algorithms (EPSAS) are two general classes of evolutionary methods for optimizing on continuous domains. The relative performance of these methods has been evaluated on standard global optimization test functions, and these results suggest that EPSAs more robustly converge to near-optimal solutions than EPs. In this paper we evaluate the relative performance of EPSAs and EPs on a real-world application: flexible ligand binding in the Autodock docking software. We compare the performance of these methods on a suite of docking test problems. Our results confirm that EPSAs and EPs have comparable performance, and theymore » suggest that EPSAs may be more robust on larger, more complex problems.« less
On the Optimization of Aerospace Plane Ascent Trajectory
NASA Astrophysics Data System (ADS)
Al-Garni, Ahmed; Kassem, Ayman Hamdy
A hybrid heuristic optimization technique based on genetic algorithms and particle swarm optimization has been developed and tested for trajectory optimization problems with multi-constraints and a multi-objective cost function. The technique is used to calculate control settings for two types for ascending trajectories (constant dynamic pressure and minimum-fuel-minimum-heat) for a two-dimensional model of an aerospace plane. A thorough statistical analysis is done on the hybrid technique to make comparisons with both basic genetic algorithms and particle swarm optimization techniques with respect to convergence and execution time. Genetic algorithm optimization showed better execution time performance while particle swarm optimization showed better convergence performance. The hybrid optimization technique, benefiting from both techniques, showed superior robust performance compromising convergence trends and execution time.
Functional Performance Testing for Power and Return to Sports
Manske, Robert; Reiman, Michael
2013-01-01
Context: Functional performance testing of athletes can determine physical limitations that may affect sporting activities. Optimal functional performance testing simulates the athlete’s activity. Evidence Acquisition: A Medline search from 1960 to 2012 was implemented with the keywords functional testing, functional impairment testing, and functional performance testing in the English language. Each author also undertook independent searches of article references. Conclusion: Functional performance tests can bridge the gap between general physical tests and full, unrestricted athletic activity. PMID:24427396
Wieser, Karl; Erschbamer, Matthias; Neuhofer, Stefan; Ek, Eugene T; Gerber, Christian; Meyer, Dominik C
2012-10-01
The purposes of this study were (1) to establish a reproducible, standardized testing protocol to evaluate the performance of different shaver systems and blades in a controlled, laboratory setting, and (2) to determine the optimal use of different blades with respect to the influence of contact pressure and speed of blade rotation. A holding device was developed for reproducible testing of soft-tissue (tendon and meniscal) resection performance in a submerged environment, after loading of the shaver with interchangeable weights. The Karl Storz Powershaver S2 (Karl Storz, Tuttlingen, Germany), the Stryker Power Shaver System (Stryker, Kalamazoo, MI), and the Dyonics Power Shaver System (Smith & Nephew, Andover, MA) were tested, with different 5.5-mm shaver blades and varied contact pressure and rotation speed. For quality testing, serrated shaver blades were evaluated at 40× image magnification. Overall, more than 150 test cycles were performed. No significant differences could be detected between comparable blade types from different manufacturers. Shavers with a serrated inner blade and smooth outer blade performed significantly better than the standard smooth resectors (P < .001). Teeth on the outer layer of the blade did not lead to any further improvement of resection (P = .482). Optimal contact pressure ranged between 6 and 8 N, and optimal speed was found to be 2,000 to 2,500 rpm. Minimal blunting of the shaver blades occurred after soft-tissue resection; however, with bone resection, progressive blunting of the shaver blades was observed. Arthroscopic shavers can be tested in a controlled setting. The performance of the tested shaver types appears to be fairly independent of the manufacturer. For tendon resection, a smooth outer blade and serrated inner blade were optimal. This is one of the first established independent and quantitative assessments of arthroscopic shaver systems and blades. We believe that this study will assist the surgeon in choosing the optimal tool for the desired effect. Copyright © 2012 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Implementation and Performance Issues in Collaborative Optimization
NASA Technical Reports Server (NTRS)
Braun, Robert; Gage, Peter; Kroo, Ilan; Sobieski, Ian
1996-01-01
Collaborative optimization is a multidisciplinary design architecture that is well-suited to large-scale multidisciplinary optimization problems. This paper compares this approach with other architectures, examines the details of the formulation, and some aspects of its performance. A particular version of the architecture is proposed to better accommodate the occurrence of multiple feasible regions. The use of system level inequality constraints is shown to increase the convergence rate. A series of simple test problems, demonstrated to challenge related optimization architectures, is successfully solved with collaborative optimization.
In-flight performance optimization for rotorcraft with redundant controls
NASA Astrophysics Data System (ADS)
Ozdemir, Gurbuz Taha
A conventional helicopter has limits on performance at high speeds because of the limitations of main rotor, such as compressibility issues on advancing side or stall issues on retreating side. Auxiliary lift and thrust components have been suggested to improve performance of the helicopter substantially by reducing the loading on the main rotor. Such a configuration is called the compound rotorcraft. Rotor speed can also be varied to improve helicopter performance. In addition to improved performance, compound rotorcraft and variable RPM can provide a much larger degree of control redundancy. This additional redundancy gives the opportunity to further enhance performance and handling qualities. A flight control system is designed to perform in-flight optimization of redundant control effectors on a compound rotorcraft in order to minimize power required and extend range. This "Fly to Optimal" (FTO) control law is tested in simulation using the GENHEL model. A model of the UH-60, a compound version of the UH-60A with lifting wing and vectored thrust ducted propeller (VTDP), and a generic compound version of the UH-60A with lifting wing and propeller were developed and tested in simulation. A model following dynamic inversion controller is implemented for inner loop control of roll, pitch, yaw, heave, and rotor RPM. An outer loop controller regulates airspeed and flight path during optimization. A Golden Section search method was used to find optimal rotor RPM on a conventional helicopter, where the single redundant control effector is rotor RPM. The FTO builds off of the Adaptive Performance Optimization (APO) method of Gilyard by performing low frequency sweeps on a redundant control for a fixed wing aircraft. A method based on the APO method was used to optimize trim on a compound rotorcraft with several redundant control effectors. The controller can be used to optimize rotor RPM and compound control effectors through flight test or simulations in order to establish a schedule. The method has been expanded to search a two-dimensional control space. Simulation results demonstrate the ability to maximize range by optimizing stabilator deflection and an airspeed set point. Another set of results minimize power required in high speed flight by optimizing collective pitch and stabilator deflection. Results show that the control laws effectively hold the flight condition while the FTO method is effective at improving performance. Optimizations show there can be issues when the control laws regulating altitude push the collective control towards it limits. So a modification was made to the control law to regulate airspeed and altitude using propeller pitch and angle of attack while the collective is held fixed or used as an optimization variable. A dynamic trim limit avoidance algorithm is applied to avoid control saturation in other axes during optimization maneuvers. Range and power optimization FTO simulations are compared with comprehensive sweeps of trim solutions and FTO optimization shown to be effective and reliable in reaching an optimal when optimizing up to two redundant controls. Use of redundant controls is shown to be beneficial for improving performance. The search method takes almost 25 minutes of simulated flight for optimization to be complete. The optimization maneuver itself can sometimes drive the power required to high values, so a power limit is imposed to restrict the search to avoid conditions where power is more than5% higher than that of the initial trim state. With this modification, the time the optimization maneuver takes to complete is reduced down to 21 minutes without any significant change in the optimal power value.
(Too) optimistic about optimism: the belief that optimism improves performance.
Tenney, Elizabeth R; Logg, Jennifer M; Moore, Don A
2015-03-01
A series of experiments investigated why people value optimism and whether they are right to do so. In Experiments 1A and 1B, participants prescribed more optimism for someone implementing decisions than for someone deliberating, indicating that people prescribe optimism selectively, when it can affect performance. Furthermore, participants believed optimism improved outcomes when a person's actions had considerable, rather than little, influence over the outcome (Experiment 2). Experiments 3 and 4 tested the accuracy of this belief; optimism improved persistence, but it did not improve performance as much as participants expected. Experiments 5A and 5B found that participants overestimated the relationship between optimism and performance even when their focus was not on optimism exclusively. In summary, people prescribe optimism when they believe it has the opportunity to improve the chance of success-unfortunately, people may be overly optimistic about just how much optimism can do. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Performance seeking control program overview
NASA Technical Reports Server (NTRS)
Orme, John S.
1995-01-01
The Performance Seeking Control (PSC) program evolved from a series of integrated propulsion-flight control research programs flown at NASA Dryden Flight Research Center (DFRC) on an F-15. The first of these was the Digital Electronic Engine Control (DEEC) program and provided digital engine controls suitable for integration. The DEEC and digital electronic flight control system of the NASA F-15 were ideally suited for integrated controls research. The Advanced Engine Control System (ADECS) program proved that integrated engine and aircraft control could improve overall system performance. The objective of the PSC program was to advance the technology for a fully integrated propulsion flight control system. Whereas ADECS provided single variable control for an average engine, PSC controlled multiple propulsion system variables while adapting to the measured engine performance. PSC was developed as a model-based, adaptive control algorithm and included four optimization modes: minimum fuel flow at constant thrust, minimum turbine temperature at constant thrust, maximum thrust, and minimum thrust. Subsonic and supersonic flight testing were conducted at NASA Dryden covering the four PSC optimization modes and over the full throttle range. Flight testing of the PSC algorithm, conducted in a series of five flight test phases, has been concluded at NASA Dryden covering all four of the PSC optimization modes. Over a three year period and five flight test phases 72 research flights were conducted. The primary objective of flight testing was to exercise each PSC optimization mode and quantify the resulting performance improvements.
Predicting Short-Term Remembering as Boundedly Optimal Strategy Choice.
Howes, Andrew; Duggan, Geoffrey B; Kalidindi, Kiran; Tseng, Yuan-Chi; Lewis, Richard L
2016-07-01
It is known that, on average, people adapt their choice of memory strategy to the subjective utility of interaction. What is not known is whether an individual's choices are boundedly optimal. Two experiments are reported that test the hypothesis that an individual's decisions about the distribution of remembering between internal and external resources are boundedly optimal where optimality is defined relative to experience, cognitive constraints, and reward. The theory makes predictions that are tested against data, not fitted to it. The experiments use a no-choice/choice utility learning paradigm where the no-choice phase is used to elicit a profile of each participant's performance across the strategy space and the choice phase is used to test predicted choices within this space. They show that the majority of individuals select strategies that are boundedly optimal. Further, individual differences in what people choose to do are successfully predicted by the analysis. Two issues are discussed: (a) the performance of the minority of participants who did not find boundedly optimal adaptations, and (b) the possibility that individuals anticipate what, with practice, will become a bounded optimal strategy, rather than what is boundedly optimal during training. Copyright © 2015 Cognitive Science Society, Inc.
Optimal Stratification of Item Pools in a-Stratified Computerized Adaptive Testing.
ERIC Educational Resources Information Center
Chang, Hua-Hua; van der Linden, Wim J.
2003-01-01
Developed a method based on 0-1 linear programming to stratify an item pool optimally for use in alpha-stratified adaptive testing. Applied the method to a previous item pool from the computerized adaptive test of the Graduate Record Examinations. Results show the new method performs well in practical situations. (SLD)
Reliability based design optimization: Formulations and methodologies
NASA Astrophysics Data System (ADS)
Agarwal, Harish
Modern products ranging from simple components to complex systems should be designed to be optimal and reliable. The challenge of modern engineering is to ensure that manufacturing costs are reduced and design cycle times are minimized while achieving requirements for performance and reliability. If the market for the product is competitive, improved quality and reliability can generate very strong competitive advantages. Simulation based design plays an important role in designing almost any kind of automotive, aerospace, and consumer products under these competitive conditions. Single discipline simulations used for analysis are being coupled together to create complex coupled simulation tools. This investigation focuses on the development of efficient and robust methodologies for reliability based design optimization in a simulation based design environment. Original contributions of this research are the development of a novel efficient and robust unilevel methodology for reliability based design optimization, the development of an innovative decoupled reliability based design optimization methodology, the application of homotopy techniques in unilevel reliability based design optimization methodology, and the development of a new framework for reliability based design optimization under epistemic uncertainty. The unilevel methodology for reliability based design optimization is shown to be mathematically equivalent to the traditional nested formulation. Numerical test problems show that the unilevel methodology can reduce computational cost by at least 50% as compared to the nested approach. The decoupled reliability based design optimization methodology is an approximate technique to obtain consistent reliable designs at lesser computational expense. Test problems show that the methodology is computationally efficient compared to the nested approach. A framework for performing reliability based design optimization under epistemic uncertainty is also developed. A trust region managed sequential approximate optimization methodology is employed for this purpose. Results from numerical test studies indicate that the methodology can be used for performing design optimization under severe uncertainty.
Grayscale Optical Correlator Workbench
NASA Technical Reports Server (NTRS)
Hanan, Jay; Zhou, Hanying; Chao, Tien-Hsin
2006-01-01
Grayscale Optical Correlator Workbench (GOCWB) is a computer program for use in automatic target recognition (ATR). GOCWB performs ATR with an accurate simulation of a hardware grayscale optical correlator (GOC). This simulation is performed to test filters that are created in GOCWB. Thus, GOCWB can be used as a stand-alone ATR software tool or in combination with GOC hardware for building (target training), testing, and optimization of filters. The software is divided into three main parts, denoted filter, testing, and training. The training part is used for assembling training images as input to a filter. The filter part is used for combining training images into a filter and optimizing that filter. The testing part is used for testing new filters and for general simulation of GOC output. The current version of GOCWB relies on the mathematical software tools from MATLAB binaries for performing matrix operations and fast Fourier transforms. Optimization of filters is based on an algorithm, known as OT-MACH, in which variables specified by the user are parameterized and the best filter is selected on the basis of an average result for correct identification of targets in multiple test images.
Optimization of OT-MACH Filter Generation for Target Recognition
NASA Technical Reports Server (NTRS)
Johnson, Oliver C.; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin
2009-01-01
An automatic Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter generator for use in a gray-scale optical correlator (GOC) has been developed for improved target detection at JPL. While the OT-MACH filter has been shown to be an optimal filter for target detection, actually solving for the optimum is too computationally intensive for multiple targets. Instead, an adaptive step gradient descent method was tested to iteratively optimize the three OT-MACH parameters, alpha, beta, and gamma. The feedback for the gradient descent method was a composite of the performance measures, correlation peak height and peak to side lobe ratio. The automated method generated and tested multiple filters in order to approach the optimal filter quicker and more reliably than the current manual method. Initial usage and testing has shown preliminary success at finding an approximation of the optimal filter, in terms of alpha, beta, gamma values. This corresponded to a substantial improvement in detection performance where the true positive rate increased for the same average false positives per image.
Guided particle swarm optimization method to solve general nonlinear optimization problems
NASA Astrophysics Data System (ADS)
Abdelhalim, Alyaa; Nakata, Kazuhide; El-Alem, Mahmoud; Eltawil, Amr
2018-04-01
The development of hybrid algorithms is becoming an important topic in the global optimization research area. This article proposes a new technique in hybridizing the particle swarm optimization (PSO) algorithm and the Nelder-Mead (NM) simplex search algorithm to solve general nonlinear unconstrained optimization problems. Unlike traditional hybrid methods, the proposed method hybridizes the NM algorithm inside the PSO to improve the velocities and positions of the particles iteratively. The new hybridization considers the PSO algorithm and NM algorithm as one heuristic, not in a sequential or hierarchical manner. The NM algorithm is applied to improve the initial random solution of the PSO algorithm and iteratively in every step to improve the overall performance of the method. The performance of the proposed method was tested over 20 optimization test functions with varying dimensions. Comprehensive comparisons with other methods in the literature indicate that the proposed solution method is promising and competitive.
Bertollo, Maurizio; Bortoli, Laura; Gramaccioni, Gianfranco; Hanin, Yuri; Comani, Silvia; Robazza, Claudio
2013-06-01
The main purposes of the present study were to substantiate the existence of the four types of performance categories (i.e., optimal-automatic, optimal-controlled, suboptimal-controlled, and suboptimal-automatic) as hypothesised in the multi-action plan (MAP) model, and to investigate whether some specific affective, behavioural, psychophysiological, and postural trends may typify each type of performance. A 20-year-old athlete of the Italian shooting team, and a 46-year-old athlete of the Italian dart-throwing team participated in the study. Athletes were asked to identify the core components of the action and then to execute a large number of shots/flights. A 2 × 2 (optimal/suboptimal × automated/controlled) within subjects multivariate analysis of variance was performed to test the differences among the four types of performance. Findings provided preliminary evidence of psychophysiological and postural differences among four performance categories as conceptualized within the MAP model. Monitoring the entire spectrum of psychophysiological and behavioural features related to the different types of performance is important to develop and implement biofeedback and neurofeedback techniques aimed at helping athletes to identify individual zones of optimal functioning and to enhance their performance.
Increasing Optimism Protects Against Pain-Induced Impairment in Task-Shifting Performance.
Boselie, Jantine J L M; Vancleef, Linda M G; Peters, Madelon L
2017-04-01
Persistent pain can lead to difficulties in executive task performance. Three core executive functions that are often postulated are inhibition, updating, and shifting. Optimism, the tendency to expect that good things happen in the future, has been shown to protect against pain-induced performance deterioration in executive function updating. This study tested whether this protective effect of a temporary optimistic state by means of a writing and visualization exercise extended to executive function shifting. A 2 (optimism: optimism vs no optimism) × 2 (pain: pain vs no pain) mixed factorial design was conducted. Participants (N = 61) completed a shifting task once with and once without concurrent painful heat stimulation after an optimism or neutral manipulation. Results showed that shifting performance was impaired when experimental heat pain was applied during task execution, and that optimism counteracted pain-induced deterioration in task-shifting performance. Experimentally-induced heat pain impairs shifting task performance and manipulated optimism or induced optimism counteracted this pain-induced performance deterioration. Identifying psychological factors that may diminish the negative effect of persistent pain on the ability to function in daily life is imperative. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
Evolutionary optimization methods for accelerator design
NASA Astrophysics Data System (ADS)
Poklonskiy, Alexey A.
Many problems from the fields of accelerator physics and beam theory can be formulated as optimization problems and, as such, solved using optimization methods. Despite growing efficiency of the optimization methods, the adoption of modern optimization techniques in these fields is rather limited. Evolutionary Algorithms (EAs) form a relatively new and actively developed optimization methods family. They possess many attractive features such as: ease of the implementation, modest requirements on the objective function, a good tolerance to noise, robustness, and the ability to perform a global search efficiently. In this work we study the application of EAs to problems from accelerator physics and beam theory. We review the most commonly used methods of unconstrained optimization and describe the GATool, evolutionary algorithm and the software package, used in this work, in detail. Then we use a set of test problems to assess its performance in terms of computational resources, quality of the obtained result, and the tradeoff between them. We justify the choice of GATool as a heuristic method to generate cutoff values for the COSY-GO rigorous global optimization package for the COSY Infinity scientific computing package. We design the model of their mutual interaction and demonstrate that the quality of the result obtained by GATool increases as the information about the search domain is refined, which supports the usefulness of this model. We Giscuss GATool's performance on the problems suffering from static and dynamic noise and study useful strategies of GATool parameter tuning for these and other difficult problems. We review the challenges of constrained optimization with EAs and methods commonly used to overcome them. We describe REPA, a new constrained optimization method based on repairing, in exquisite detail, including the properties of its two repairing techniques: REFIND and REPROPT. We assess REPROPT's performance on the standard constrained optimization test problems for EA with a variety of different configurations and suggest optimal default parameter values based on the results. Then we study the performance of the REPA method on the same set of test problems and compare the obtained results with those of several commonly used constrained optimization methods with EA. Based on the obtained results, particularly on the outstanding performance of REPA on test problem that presents significant difficulty for other reviewed EAs, we conclude that the proposed method is useful and competitive. We discuss REPA parameter tuning for difficult problems and critically review some of the problems from the de-facto standard test problem set for the constrained optimization with EA. In order to demonstrate the practical usefulness of the developed method, we study several problems of accelerator design and demonstrate how they can be solved with EAs. These problems include a simple accelerator design problem (design a quadrupole triplet to be stigmatically imaging, find all possible solutions), a complex real-life accelerator design problem (an optimization of the front end section for the future neutrino factory), and a problem of the normal form defect function optimization which is used to rigorously estimate the stability of the beam dynamics in circular accelerators. The positive results we obtained suggest that the application of EAs to problems from accelerator theory can be very beneficial and has large potential. The developed optimization scenarios and tools can be used to approach similar problems.
2012-01-01
Backgound Treatment of confirmed malaria patients with Artemisinin-based Combination Therapy (ACT) at remote areas is the goal of many anti-malaria programs. Introduction of effective and affordable malaria Rapid Diagnosis Test (RDT) in remote areas could be an alternative tool for malaria case management. This study aimed to assess performance of the OptiMAL dipstick for rapid malaria diagnosis in children under five. Methods Malaria symptomatic and asymptomatic children were recruited in a passive manner in two community clinics (CCs). Malaria diagnosis by microscopy and RDT were performed. Performance of the tests was determined. Results RDT showed similar ability (61.2%) to accurately diagnose malaria as microscopy (61.1%). OptiMAL showed a high level of sensitivity and specificity, compared with microscopy, during both transmission seasons (high & low), with a sensitivity of 92.9% vs. 74.9% and a specificity of 77.2% vs. 87.5%. Conclusion By improving the performance of the test through accurate and continuous quality control of the device in the field, OptiMAL could be suitable for use at CCs for the management and control of malaria. PMID:22647557
Urine sampling and collection system optimization and testing
NASA Technical Reports Server (NTRS)
Fogal, G. L.; Geating, J. A.; Koesterer, M. G.
1975-01-01
A Urine Sampling and Collection System (USCS) engineering model was developed to provide for the automatic collection, volume sensing and sampling of urine from each micturition. The purpose of the engineering model was to demonstrate verification of the system concept. The objective of the optimization and testing program was to update the engineering model, to provide additional performance features and to conduct system testing to determine operational problems. Optimization tasks were defined as modifications to minimize system fluid residual and addition of thermoelectric cooling.
Optimization of a matched-filter receiver for frequency hopping code acquisition in jamming
NASA Astrophysics Data System (ADS)
Pawlowski, P. R.; Polydoros, A.
A matched-filter receiver for frequency hopping (FH) code acquisition is optimized when either partial-band tone jamming or partial-band Gaussian noise jamming is present. The receiver is matched to a segment of the FH code sequence, sums hard per-channel decisions to form a test, and uses multiple tests to verify acquisition. The length of the matched filter and the number of verification tests are fixed. Optimization is then choosing thresholds to maximize performance based upon the receiver's degree of knowledge about the jammer ('side-information'). Four levels of side-information are considered, ranging from none to complete. The latter level results in a constant-false-alarm-rate (CFAR) design. At each level, performance sensitivity to threshold choice is analyzed. Robust thresholds are chosen to maximize performance as the jammer varies its power distribution, resulting in simple design rules which aid threshold selection. Performance results, which show that optimum distributions for the jammer power over the total FH bandwidth exist, are presented.
CONORBIT: constrained optimization by radial basis function interpolation in trust regions
Regis, Rommel G.; Wild, Stefan M.
2016-09-26
Here, this paper presents CONORBIT (CONstrained Optimization by Radial Basis function Interpolation in Trust regions), a derivative-free algorithm for constrained black-box optimization where the objective and constraint functions are computationally expensive. CONORBIT employs a trust-region framework that uses interpolating radial basis function (RBF) models for the objective and constraint functions, and is an extension of the ORBIT algorithm. It uses a small margin for the RBF constraint models to facilitate the generation of feasible iterates, and extensive numerical tests confirm that such a margin is helpful in improving performance. CONORBIT is compared with other algorithms on 27 test problems, amore » chemical process optimization problem, and an automotive application. Numerical results show that CONORBIT performs better than COBYLA, a sequential penalty derivative-free method, an augmented Lagrangian method, a direct search method, and another RBF-based algorithm on the test problems and on the automotive application.« less
Design and Manufacturing of Composite Tower Structure for Wind Turbine Equipment
NASA Astrophysics Data System (ADS)
Park, Hyunbum
2018-02-01
This study proposes the composite tower design process for large wind turbine equipment. In this work, structural design of tower and analysis using finite element method was performed. After structural design, prototype blade manufacturing and test was performed. The used material is a glass fiber and epoxy resin composite. And also, sand was used in the middle part. The optimized structural design and analysis was performed. The parameter for optimized structural design is weight reduction and safety of structure. Finally, structure of tower will be confirmed by structural test.
Optimization of batteries for plug-in hybrid electric vehicles
NASA Astrophysics Data System (ADS)
English, Jeffrey Robb
This thesis presents a method to quickly determine the optimal battery for an electric vehicle given a set of vehicle characteristics and desired performance metrics. The model is based on four independent design variables: cell count, cell capacity, state-of-charge window, and battery chemistry. Performance is measured in seven categories: cost, all-electric range, maximum speed, acceleration, battery lifetime, lifetime greenhouse gas emissions, and charging time. The performance of each battery is weighted according to a user-defined objective function to determine its overall fitness. The model is informed by a series of battery tests performed on scaled-down battery samples. Seven battery chemistries were tested for capacity at different discharge rates, maximum output power at different charge levels, and performance in a real-world automotive duty cycle. The results of these tests enable a prediction of the performance of the battery in an automobile. Testing was performed at both room temperature and low temperature to investigate the effects of battery temperature on operation. The testing highlighted differences in behavior between lithium, nickel, and lead based batteries. Battery performance decreased with temperature across all samples with the largest effect on nickel-based chemistries. Output power also decreased with lead acid batteries being the least affected by temperature. Lithium-ion batteries were found to be highly efficient (>95%) under a vehicular duty cycle; nickel and lead batteries have greater losses. Low temperatures hindered battery performance and resulted in accelerated failure in several samples. Lead acid, lead tin, and lithium nickel alloy batteries were unable to complete the low temperature testing regime without losing significant capacity and power capability. This is a concern for their applicability in electric vehicles intended for cold climates which have to maintain battery temperature during long periods of inactivity. Three sample optimizations were performed: a compact car, a, truck, and a sports car. The compact car benefits from increased battery capacity despite the associated higher cost. The truck returned the smallest possible battery of each chemistry, indicating that electrification is not advisable. The sports car optimization resulted in the largest possible battery, indicating large performance from increased electrification. These results mirror the current state of the electric vehicle market.
Fundamental differences between optimization code test problems in engineering applications
NASA Technical Reports Server (NTRS)
Eason, E. D.
1984-01-01
The purpose here is to suggest that there is at least one fundamental difference between the problems used for testing optimization codes and the problems that engineers often need to solve; in particular, the level of precision that can be practically achieved in the numerical evaluation of the objective function, derivatives, and constraints. This difference affects the performance of optimization codes, as illustrated by two examples. Two classes of optimization problem were defined. Class One functions and constraints can be evaluated to a high precision that depends primarily on the word length of the computer. Class Two functions and/or constraints can only be evaluated to a moderate or a low level of precision for economic or modeling reasons, regardless of the computer word length. Optimization codes have not been adequately tested on Class Two problems. There are very few Class Two test problems in the literature, while there are literally hundreds of Class One test problems. The relative performance of two codes may be markedly different for Class One and Class Two problems. Less sophisticated direct search type codes may be less likely to be confused or to waste many function evaluations on Class Two problems. The analysis accuracy and minimization performance are related in a complex way that probably varies from code to code. On a problem where the analysis precision was varied over a range, the simple Hooke and Jeeves code was more efficient at low precision while the Powell code was more efficient at high precision.
Design of multi-energy Helds coupling testing system of vertical axis wind power system
NASA Astrophysics Data System (ADS)
Chen, Q.; Yang, Z. X.; Li, G. S.; Song, L.; Ma, C.
2016-08-01
The conversion efficiency of wind energy is the focus of researches and concerns as one of the renewable energy. The present methods of enhancing the conversion efficiency are mostly improving the wind rotor structure, optimizing the generator parameters and energy storage controller and so on. Because the conversion process involves in energy conversion of multi-energy fields such as wind energy, mechanical energy and electrical energy, the coupling effect between them will influence the overall conversion efficiency. In this paper, using system integration analysis technology, a testing system based on multi-energy field coupling (MEFC) of vertical axis wind power system is proposed. When the maximum efficiency of wind rotor is satisfied, it can match to the generator function parameters according to the output performance of wind rotor. The voltage controller can transform the unstable electric power to the battery on the basis of optimizing the parameters such as charging times, charging voltage. Through the communication connection and regulation of the upper computer system (UCS), it can make the coupling parameters configure to an optimal state, and it improves the overall conversion efficiency. This method can test the whole wind turbine (WT) performance systematically and evaluate the design parameters effectively. It not only provides a testing method for system structure design and parameter optimization of wind rotor, generator and voltage controller, but also provides a new testing method for the whole performance optimization of vertical axis wind energy conversion system (WECS).
An optimized proportional-derivative controller for the human upper extremity with gravity.
Jagodnik, Kathleen M; Blana, Dimitra; van den Bogert, Antonie J; Kirsch, Robert F
2015-10-15
When Functional Electrical Stimulation (FES) is used to restore movement in subjects with spinal cord injury (SCI), muscle stimulation patterns should be selected to generate accurate and efficient movements. Ideally, the controller for such a neuroprosthesis will have the simplest architecture possible, to facilitate translation into a clinical setting. In this study, we used the simulated annealing algorithm to optimize two proportional-derivative (PD) feedback controller gain sets for a 3-dimensional arm model that includes musculoskeletal dynamics and has 5 degrees of freedom and 22 muscles, performing goal-oriented reaching movements. Controller gains were optimized by minimizing a weighted sum of position errors, orientation errors, and muscle activations. After optimization, gain performance was evaluated on the basis of accuracy and efficiency of reaching movements, along with three other benchmark gain sets not optimized for our system, on a large set of dynamic reaching movements for which the controllers had not been optimized, to test ability to generalize. Robustness in the presence of weakened muscles was also tested. The two optimized gain sets were found to have very similar performance to each other on all metrics, and to exhibit significantly better accuracy, compared with the three standard gain sets. All gain sets investigated used physiologically acceptable amounts of muscular activation. It was concluded that optimization can yield significant improvements in controller performance while still maintaining muscular efficiency, and that optimization should be considered as a strategy for future neuroprosthesis controller design. Published by Elsevier Ltd.
Multicompare tests of the performance of different metaheuristics in EEG dipole source localization.
Escalona-Vargas, Diana Irazú; Lopez-Arevalo, Ivan; Gutiérrez, David
2014-01-01
We study the use of nonparametric multicompare statistical tests on the performance of simulated annealing (SA), genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE), when used for electroencephalographic (EEG) source localization. Such task can be posed as an optimization problem for which the referred metaheuristic methods are well suited. Hence, we evaluate the localization's performance in terms of metaheuristics' operational parameters and for a fixed number of evaluations of the objective function. In this way, we are able to link the efficiency of the metaheuristics with a common measure of computational cost. Our results did not show significant differences in the metaheuristics' performance for the case of single source localization. In case of localizing two correlated sources, we found that PSO (ring and tree topologies) and DE performed the worst, then they should not be considered in large-scale EEG source localization problems. Overall, the multicompare tests allowed to demonstrate the little effect that the selection of a particular metaheuristic and the variations in their operational parameters have in this optimization problem.
All-in-one model for designing optimal water distribution pipe networks
NASA Astrophysics Data System (ADS)
Aklog, Dagnachew; Hosoi, Yoshihiko
2017-05-01
This paper discusses the development of an easy-to-use, all-in-one model for designing optimal water distribution networks. The model combines different optimization techniques into a single package in which a user can easily choose what optimizer to use and compare the results of different optimizers to gain confidence in the performances of the models. At present, three optimization techniques are included in the model: linear programming (LP), genetic algorithm (GA) and a heuristic one-by-one reduction method (OBORM) that was previously developed by the authors. The optimizers were tested on a number of benchmark problems and performed very well in terms of finding optimal or near-optimal solutions with a reasonable computation effort. The results indicate that the model effectively addresses the issues of complexity and limited performance trust associated with previous models and can thus be used for practical purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnis Judzis
2004-04-01
This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting January 2004 through March 2004. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). The latest indication is that the Novatek tool would be ready for retesting only 3Q 2004. Smith International's hammer will be tested in April of 2004 (2Q 2004 report). Accomplishments included the following: (1) TerraTek presented a paper for publication inmore » conjunction with a peer review at the GTI Natural Gas Technologies Conference February 10, 2004. Manuscripts and associated presentation material were delivered on schedule. The paper was entitled ''Mud Hammer Performance Optimization''. (2) Shell Exploration and Production continued to express high interest in the ''cutter impact'' testing program Task 8. Hughes Christensen supplied inserts for this testing program. (3) TerraTek hosted an Industry/DOE planning meeting to finalize a testing program for ''Cutter Impact Testing--Understanding Rock Breakage with Bits'' on February 13, 2004. (4) Formal dialogue with Terralog was initiated. Terralog has recently been awarded a DOE contract to model hammer mechanics with TerraTek as a sub-contractor. (5) Novatek provided the DOE with a schedule to complete their new fluid hammer and test it at TerraTek.« less
Development of optimized, graded-permeability axial groove heat pipes
NASA Technical Reports Server (NTRS)
Kapolnek, Michael R.; Holmes, H. Rolland
1988-01-01
Heat pipe performance can usually be improved by uniformly varying or grading wick permeability from end to end. A unique and cost effective method for grading the permeability of an axial groove heat pipe is described - selective chemical etching of the pipe casing. This method was developed and demonstrated on a proof-of-concept test article. The process improved the test article's performance by 50 percent. Further improvement is possible through the use of optimally etched grooves.
Gaussian process regression for geometry optimization
NASA Astrophysics Data System (ADS)
Denzel, Alexander; Kästner, Johannes
2018-03-01
We implemented a geometry optimizer based on Gaussian process regression (GPR) to find minimum structures on potential energy surfaces. We tested both a two times differentiable form of the Matérn kernel and the squared exponential kernel. The Matérn kernel performs much better. We give a detailed description of the optimization procedures. These include overshooting the step resulting from GPR in order to obtain a higher degree of interpolation vs. extrapolation. In a benchmark against the Limited-memory Broyden-Fletcher-Goldfarb-Shanno optimizer of the DL-FIND library on 26 test systems, we found the new optimizer to generally reduce the number of required optimization steps.
Soft-Decision Decoding of Binary Linear Block Codes Based on an Iterative Search Algorithm
NASA Technical Reports Server (NTRS)
Lin, Shu; Kasami, Tadao; Moorthy, H. T.
1997-01-01
This correspondence presents a suboptimum soft-decision decoding scheme for binary linear block codes based on an iterative search algorithm. The scheme uses an algebraic decoder to iteratively generate a sequence of candidate codewords one at a time using a set of test error patterns that are constructed based on the reliability information of the received symbols. When a candidate codeword is generated, it is tested based on an optimality condition. If it satisfies the optimality condition, then it is the most likely (ML) codeword and the decoding stops. If it fails the optimality test, a search for the ML codeword is conducted in a region which contains the ML codeword. The search region is determined by the current candidate codeword and the reliability of the received symbols. The search is conducted through a purged trellis diagram for the given code using the Viterbi algorithm. If the search fails to find the ML codeword, a new candidate is generated using a new test error pattern, and the optimality test and search are renewed. The process of testing and search continues until either the MEL codeword is found or all the test error patterns are exhausted and the decoding process is terminated. Numerical results show that the proposed decoding scheme achieves either practically optimal performance or a performance only a fraction of a decibel away from the optimal maximum-likelihood decoding with a significant reduction in decoding complexity compared with the Viterbi decoding based on the full trellis diagram of the codes.
High-Frequency Axial Fatigue Test Procedures for Spectrum Loading
2016-07-20
histories can be performed at frequencies much higher than standard servo-hydraulic test frames by using a test frame that is optimized to run at higher...by using a test frame that is optimized to run at higher frequencies. AIR 4.3 has conducted a research program to develop a test capability for...Applied Research (BAR) program (219BAR-10-008) was initiated in 2010. The program investigated the influence of a generic rotorcraft main rotor blade root
DOT National Transportation Integrated Search
2011-11-01
A series of sled tests was conducted to examine the performance of booster seats under belt geometries representing the range found in the rear seats of current vehicles. Twelve tests were performed with the standard 6YO Hybrid III ATD and 29 tests w...
Optimal quantum networks and one-shot entropies
NASA Astrophysics Data System (ADS)
Chiribella, Giulio; Ebler, Daniel
2016-09-01
We develop a semidefinite programming method for the optimization of quantum networks, including both causal networks and networks with indefinite causal structure. Our method applies to a broad class of performance measures, defined operationally in terms of interative tests set up by a verifier. We show that the optimal performance is equal to a max relative entropy, which quantifies the informativeness of the test. Building on this result, we extend the notion of conditional min-entropy from quantum states to quantum causal networks. The optimization method is illustrated in a number of applications, including the inversion, charge conjugation, and controlization of an unknown unitary dynamics. In the non-causal setting, we show a proof-of-principle application to the maximization of the winning probability in a non-causal quantum game.
Optimization of a miniature Maglev ventricular assist device for pediatric circulatory support.
Zhang, Juntao; Koert, Andrew; Gellman, Barry; Gempp, Thomas M; Dasse, Kurt A; Gilbert, Richard J; Griffith, Bartley P; Wu, Zhongjun J
2007-01-01
A miniature Maglev blood pump based on magnetically levitated bearingless technology is being developed and optimized for pediatric patients. We performed impeller optimization by characterizing the hemodynamic and hemocompatibility performances using a combined computational and experimental approach. Both three-dimensional flow features and hemolytic characteristics were analyzed using computational fluid dynamics (CFD) modeling. Hydraulic pump performances and hemolysis levels of three different impeller designs were quantified and compared numerically. Two pump prototypes were constructed from the two impeller designs and experimentally tested. Comparison of CFD predictions with experimental results showed good agreement. The optimized impeller remarkably increased overall pump hydraulic output by more than 50% over the initial design. The CFD simulation demonstrated a clean and streamlined flow field in the main flow path. The numerical results by hemolysis model indicated no significant high shear stress regions. Through the use of CFD analysis and bench-top testing, the small pediatric pump was optimized to achieve a low level of blood damage and improved hydraulic performance and efficiency. The Maglev pediatric blood pump is innovative due to its small size, very low priming volume, excellent hemodynamic and hematologic performance, and elimination of seal-related and bearing-related failures due to adoption of magnetically levitated bearingless motor technology, making it ideal for pediatric applications.
Composite panel development at JPL
NASA Technical Reports Server (NTRS)
Mcelroy, Paul; Helms, Rich
1988-01-01
Parametric computer studies can be use in a cost effective manner to determine optimized composite mirror panel designs. An InterDisciplinary computer Model (IDM) was created to aid in the development of high precision reflector panels for LDR. The materials properties, thermal responses, structural geometries, and radio/optical precision are synergistically analyzed for specific panel designs. Promising panels designs are fabricated and tested so that comparison with panel test results can be used to verify performance prediction models and accommodate design refinement. The iterative approach of computer design and model refinement with performance testing and materials optimization has shown good results for LDR panels.
SFDT-1 Camera Pointing and Sun-Exposure Analysis and Flight Performance
NASA Technical Reports Server (NTRS)
White, Joseph; Dutta, Soumyo; Striepe, Scott
2015-01-01
The Supersonic Flight Dynamics Test (SFDT) vehicle was developed to advance and test technologies of NASA's Low Density Supersonic Decelerator (LDSD) Technology Demonstration Mission. The first flight test (SFDT-1) occurred on June 28, 2014. In order to optimize the usefulness of the camera data, analysis was performed to optimize parachute visibility in the camera field of view during deployment and inflation and to determine the probability of sun-exposure issues with the cameras given the vehicle heading and launch time. This paper documents the analysis, results and comparison with flight video of SFDT-1.
Lockheed L-1011 Test Station installation in support of the Adaptive Performance Optimization flight
NASA Technical Reports Server (NTRS)
1997-01-01
Technicians John Huffman, Phil Gonia and Mike Kerner of NASA's Dryden Flight Research Center, Edwards, California, carefully insert a monitor into the Research Engineering Test Station during installation of equipment for the Adaptive Performance Optimization experiment aboard Orbital Sciences Corporation's Lockheed L-1011 in Bakersfield, California, May, 6, 1997. The Adaptive Performance Optimization project is designed to reduce the aerodynamic drag of large subsonic transport aircraft by varying the camber of the wing through real-time adjustment of flaps or ailerons in response to changing flight conditions. Reducing the drag will improve aircraft efficiency and performance, resulting in signifigant fuel savings for the nation's airlines worth hundreds of millions of dollars annually. Flights for the NASA experiment will occur periodically over the next couple of years on the modified wide-bodied jetliner, with all flights flown out of Bakersfield's Meadows Field. The experiment is part of Dryden's Advanced Subsonic Transport Aircraft Research program.
Preliminary flight evaluation of an engine performance optimization algorithm
NASA Technical Reports Server (NTRS)
Lambert, H. H.; Gilyard, G. B.; Chisholm, J. D.; Kerr, L. J.
1991-01-01
A performance seeking control (PSC) algorithm has undergone initial flight test evaluation in subsonic operation of a PW 1128 engined F-15. This algorithm is designed to optimize the quasi-steady performance of an engine for three primary modes: (1) minimum fuel consumption; (2) minimum fan turbine inlet temperature (FTIT); and (3) maximum thrust. The flight test results have verified a thrust specific fuel consumption reduction of 1 pct., up to 100 R decreases in FTIT, and increases of as much as 12 pct. in maximum thrust. PSC technology promises to be of value in next generation tactical and transport aircraft.
Does unbelted safety requirement affect protection for belted occupants?
Hu, Jingwen; Klinich, Kathleen D; Manary, Miriam A; Flannagan, Carol A C; Narayanaswamy, Prabha; Reed, Matthew P; Andreen, Margaret; Neal, Mark; Lin, Chin-Hsu
2017-05-29
Federal regulations in the United States require vehicles to meet occupant performance requirements with unbelted test dummies. Removing the test requirements with unbelted occupants might encourage the deployment of seat belt interlocks and allow restraint optimization to focus on belted occupants. The objective of this study is to compare the performance of restraint systems optimized for belted-only occupants with those optimized for both belted and unbelted occupants using computer simulations and field crash data analyses. In this study, 2 validated finite element (FE) vehicle/occupant models (a midsize sedan and a midsize SUV) were selected. Restraint design optimizations under standardized crash conditions (U.S.-NCAP and FMVSS 208) with and without unbelted requirements were conducted using Hybrid III (HIII) small female and midsize male anthropomorphic test devices (ATDs) in both vehicles on both driver and right front passenger positions. A total of 10 to 12 design parameters were varied in each optimization using a combination of response surface method (RSM) and genetic algorithm. To evaluate the field performance of restraints optimized with and without unbelted requirements, 55 frontal crash conditions covering a greater variety of crash types than those in the standardized crashes were selected. A total of 1,760 FE simulations were conducted for the field performance evaluation. Frontal crashes in the NASS-CDS database from 2002 to 2012 were used to develop injury risk curves and to provide the baseline performance of current restraint system and estimate the injury risk change by removing the unbelted requirement. Unbelted requirements do not affect the optimal seat belt and airbag design parameters in 3 out of 4 vehicle/occupant position conditions, except for the SUV passenger side. Overall, compared to the optimal designs with unbelted requirements, optimal designs without unbelted requirements generated the same or lower total injury risks for belted occupants depending on statistical methods used for the analysis, but they could also increase the total injury risks for unbelted occupants. This study demonstrated potential for reducing injury risks to belted occupants if the unbelted requirements are eliminated. Further investigations are necessary to confirm these findings.
An optimized implementation of a fault-tolerant clock synchronization circuit
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo
1995-01-01
A fault-tolerant clock synchronization circuit was designed and tested. A comparison to a previous design and the procedure followed to achieve the current optimization are included. The report also includes a description of the system and the results of tests performed to study the synchronization and fault-tolerant characteristics of the implementation.
Optimal design of a shear magnetorheological damper for turning vibration suppression
NASA Astrophysics Data System (ADS)
Zhou, Y.; Zhang, Y. L.
2013-09-01
The intelligent material, so-called magnetorheological (MR) fluid, is utilized to control turning vibration. According to the structure of a common lathe CA6140, a shear MR damper is conceived by designing its structure and magnetic circuit. The vibration suppression effect of the damper is proved with dynamic analysis and simulation. Further, the magnetic circuit of the damper is optimized with the ANSYS parametric design language (APDL). In the optimization course, the area of the magnetic circuit and the damping force are considered. After optimization, the damper’s structure and its efficiency of electrical energy consumption are improved. Additionally, a comparative study on damping forces acquired from the initial and optimal design is conducted. A prototype of the developed MR damper is fabricated and magnetic tests are performed to measure the magnetic flux intensities and the residual magnetism in four damping gaps. Then, the testing results are compared with the simulated results. Finally, the suppressing vibration experimental system is set up and cylindrical turning experiments are performed to investigate the working performance of the MR damper.
NASA Technical Reports Server (NTRS)
Hahne, David E.; Glaab, Louis J.
1999-01-01
An investigation was performed to evaluate leading-and trailing-edge flap deflections for optimal aerodynamic performance of a High-Speed Civil Transport concept during takeoff and approach-to-landing conditions. The configuration used for this study was designed by the Douglas Aircraft Company during the 1970's. A 0.1-scale model of this configuration was tested in the Langley 30- by 60-Foot Tunnel with both the original leading-edge flap system and a new leading-edge flap system, which was designed with modem computational flow analysis and optimization tools. Leading-and trailing-edge flap deflections were generated for the original and modified leading-edge flap systems with the computational flow analysis and optimization tools. Although wind tunnel data indicated improvements in aerodynamic performance for the analytically derived flap deflections for both leading-edge flap systems, perturbations of the analytically derived leading-edge flap deflections yielded significant additional improvements in aerodynamic performance. In addition to the aerodynamic performance optimization testing, stability and control data were also obtained. An evaluation of the crosswind landing capability of the aircraft configuration revealed that insufficient lateral control existed as a result of high levels of lateral stability. Deflection of the leading-and trailing-edge flaps improved the crosswind landing capability of the vehicle considerably; however, additional improvements are required.
NASA Astrophysics Data System (ADS)
Wang, Ping; Wu, Guangqiang
2013-03-01
Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO.
Multiobjective Optimization Using a Pareto Differential Evolution Approach
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Differential Evolution is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. In this paper, the Differential Evolution algorithm is extended to multiobjective optimization problems by using a Pareto-based approach. The algorithm performs well when applied to several test optimization problems from the literature.
Performance, optimization, and latest development of the SRI family of rotary cryocoolers
NASA Astrophysics Data System (ADS)
Dovrtel, Klemen; Megušar, Franc
2017-05-01
In this paper the SRI family of Le-tehnika rotary cryocoolers is presented (SRI401, SRI423/SRI421 and SRI474). The Stirling coolers cooling power range starts from 0.25W to 0.75W at 77K with available temperature range from 60K to 150K and are fitted to typical dewar detector sizes and powers supply voltages. The DDCA performance optimizing procedure is presented. The procedure includes cooler steady state performance mapping and optimization and cooldown optimization. The current cryogenic performance status and reliability evaluation method and figures are presented on the existing and new units. The latest improved SRI401 demonstrated MTTF close to 25'000 hours and the test is still on going.
Shriner, Susan A; VanDalen, Kaci K; Root, J Jeffrey; Sullivan, Heather J
2016-02-01
The availability of a validated commercial assay is an asset for any wildlife investigation. However, commercial products are often developed for use in livestock and are not optimized for wildlife. Consequently, it is incumbent upon researchers and managers to apply commercial products appropriately to optimize program outcomes. We tested more than 800 serum samples from mallards for antibodies to influenza A virus with the IDEXX AI MultiS-Screen Ab test to evaluate assay performance. Applying the test per manufacturer's recommendations resulted in good performance with 84% sensitivity and 100% specificity. However, performance was improved to 98% sensitivity and 98% specificity by increasing the recommended cut-off. Using this alternative threshold for identifying positive and negative samples would greatly improve sample classification, especially for field samples collected months after infection when antibody titers have waned from the initial primary immune response. Furthermore, a threshold that balances sensitivity and specificity reduces estimation bias in seroprevalence estimates. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Rahnamay Naeini, M.; Sadegh, M.; AghaKouchak, A.; Hsu, K. L.; Sorooshian, S.; Yang, T.
2017-12-01
Meta-Heuristic optimization algorithms have gained a great deal of attention in a wide variety of fields. Simplicity and flexibility of these algorithms, along with their robustness, make them attractive tools for solving optimization problems. Different optimization methods, however, hold algorithm-specific strengths and limitations. Performance of each individual algorithm obeys the "No-Free-Lunch" theorem, which means a single algorithm cannot consistently outperform all possible optimization problems over a variety of problems. From users' perspective, it is a tedious process to compare, validate, and select the best-performing algorithm for a specific problem or a set of test cases. In this study, we introduce a new hybrid optimization framework, entitled Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL), which combines the strengths of different evolutionary algorithms (EAs) in a parallel computing scheme, and allows users to select the most suitable algorithm tailored to the problem at hand. The concept of SC-SAHEL is to execute different EAs as separate parallel search cores, and let all participating EAs to compete during the course of the search. The newly developed SC-SAHEL algorithm is designed to automatically select, the best performing algorithm for the given optimization problem. This algorithm is rigorously effective in finding the global optimum for several strenuous benchmark test functions, and computationally efficient as compared to individual EAs. We benchmark the proposed SC-SAHEL algorithm over 29 conceptual test functions, and two real-world case studies - one hydropower reservoir model and one hydrological model (SAC-SMA). Results show that the proposed framework outperforms individual EAs in an absolute majority of the test problems, and can provide competitive results to the fittest EA algorithm with more comprehensive information during the search. The proposed framework is also flexible for merging additional EAs, boundary-handling techniques, and sampling schemes, and has good potential to be used in Water-Energy system optimal operation and management.
Dausey, David J; Chandra, Anita; Schaefer, Agnes G; Bahney, Ben; Haviland, Amelia; Zakowski, Sarah; Lurie, Nicole
2008-09-01
We tested telephone-based disease surveillance systems in local health departments to identify system characteristics associated with consistent and timely responses to urgent case reports. We identified a stratified random sample of 74 health departments and conducted a series of unannounced tests of their telephone-based surveillance systems. We used regression analyses to identify system characteristics that predicted fast connection with an action officer (an appropriate public health professional). Optimal performance in consistently connecting callers with an action officer in 30 minutes or less was achieved by 31% of participating health departments. Reaching a live person upon dialing, regardless of who that person was, was the strongest predictor of optimal performance both in being connected with an action officer and in consistency of connection times. Health departments can achieve optimal performance in consistently connecting a caller with an action officer in 30 minutes or less and may improve performance by using a telephone-based disease surveillance system in which the phone is answered by a live person at all times.
Discharge characteristics of 300 ampere-hour Ni-Zn traction cells
NASA Technical Reports Server (NTRS)
Ewashinka, J. G.
1979-01-01
Preliminary tests were performed on 300 amphere-hour nickel-zinc cells containing the Lewis improved inorganic-organic (I/O) separator. These cells also have other design features included to optimize performance and cycle life. The tests carried out were formation tests and characteristic discharge tests. Information obtained include case temperature and maximum power delivered.
Lockheed L-1011 Test Station on-board in support of the Adaptive Performance Optimization flight res
NASA Technical Reports Server (NTRS)
1997-01-01
This console and its compliment of computers, monitors and commmunications equipment make up the Research Engineering Test Station, the nerve center for a new aerodynamics experiment being conducted by NASA's Dryden Flight Research Center, Edwards, California. The equipment is installed on a modified Lockheed L-1011 Tristar jetliner operated by Orbital Sciences Corp., of Dulles, Va., for Dryden's Adaptive Performance Optimization project. The experiment seeks to improve the efficiency of long-range jetliners by using small movements of the ailerons to improve the aerodynamics of the wing at cruise conditions. About a dozen research flights in the Adaptive Performance Optimization project are planned over the next two to three years. Improving the aerodynamic efficiency should result in equivalent reductions in fuel usage and costs for airlines operating large, wide-bodied jetliners.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnis Judzis
2003-07-01
This document details the progress to date on the ''OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING'' contract for the quarter starting April 2003 through June 2003. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). Accomplishments included the following: (1) Hughes Christensen has recently expressed interest in the possibility of a program to examine cutter impact testing, which would be useful in a better understanding of the physics of rock impact. Their interest however is notmore » necessarily fluid hammers, but to use the information for drilling bit development. (2) Novatek (cost sharing supplier of tools) has informed the DOE project manager that their tool may not be ready for ''optimization'' testing late summer 2003 (August-September timeframe) as originally anticipated. During 3Q Novatek plans to meet with TerraTek to discuss progress with their tool for 4Q 2003 testing. (3) A task for an addendum to the hammer project related to cutter impact studies was written during 2Q 2003. (4) Smith International internally is upgrading their hammer for the optimization testing phase. One currently known area of improvement is their development program to significantly increase the hammer blow energy.« less
Multidisciplinary Shape Optimization of a Composite Blended Wing Body Aircraft
NASA Astrophysics Data System (ADS)
Boozer, Charles Maxwell
A multidisciplinary shape optimization tool coupling aerodynamics, structure, and performance was developed for battery powered aircraft. Utilizing high-fidelity computational fluid dynamics analysis tools and a structural wing weight tool, coupled based on the multidisciplinary feasible optimization architecture; aircraft geometry is modified in the optimization of the aircraft's range or endurance. The developed tool is applied to three geometries: a hybrid blended wing body, delta wing UAS, the ONERA M6 wing, and a modified ONERA M6 wing. First, the optimization problem is presented with the objective function, constraints, and design vector. Next, the tool's architecture and the analysis tools that are utilized are described. Finally, various optimizations are described and their results analyzed for all test subjects. Results show that less computationally expensive inviscid optimizations yield positive performance improvements using planform, airfoil, and three-dimensional degrees of freedom. From the results obtained through a series of optimizations, it is concluded that the newly developed tool is both effective at improving performance and serves as a platform ready to receive additional performance modules, further improving its computational design support potential.
Case study on impact performance optimization of hydraulic breakers.
Noh, Dae-Kyung; Kang, Young-Ky; Cho, Jae-Sang; Jang, Joo-Sup
2016-01-01
In order to expand the range of activities of an excavator, attachments, such as hydraulic breakers have been developed to be applied to buckets. However, it is very difficult to predict the dynamic behavior of hydraulic impact devices such as breakers because of high non-linearity. Thus, the purpose of this study is to optimize the impact performance of hydraulic breakers. The ultimate goal of the optimization is to increase the impact energy and impact frequency and to reduce the pressure pulsation of the supply and return lines. The optimization results indicated that the four parameters used to optimize the impact performance of the breaker showed considerable improvement over the results reported in the literature. A test was also conducted and the results were compared with those obtained through optimization in order to verify the optimization results. The comparison showed an average relative error of 8.24 %, which seems to be in good agreement. The results of this study can be used to optimize the impact performance of hydraulic impact devices such as breakers, thus facilitating its application to excavators and increasing the range of activities of an excavator.
Parametric tests of a 40-Ah bipolar nickel-hydrogen battery
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1986-01-01
A series of tests were performed to characterize battery performance relating to certain operating parameters which include charge current, discharge current, temperature, and pressure. The parameters were varied to confirm battery design concepts and to determine optimal operating conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnis Judzis
2002-10-01
This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting July 2002 through September 2002. Even though we are awaiting the optimization portion of the testing program, accomplishments include the following: (1) Smith International agreed to participate in the DOE Mud Hammer program. (2) Smith International chromed collars for upcoming benchmark tests at TerraTek, now scheduled for 4Q 2002. (3) ConocoPhillips had a field trial of the Smith fluid hammer offshore Vietnam. The hammer functioned properly, though themore » well encountered hole conditions and reaming problems. ConocoPhillips plan another field trial as a result. (4) DOE/NETL extended the contract for the fluid hammer program to allow Novatek to ''optimize'' their much delayed tool to 2003 and to allow Smith International to add ''benchmarking'' tests in light of SDS Digger Tools' current financial inability to participate. (5) ConocoPhillips joined the Industry Advisors for the mud hammer program. (6) TerraTek acknowledges Smith International, BP America, PDVSA, and ConocoPhillips for cost-sharing the Smith benchmarking tests allowing extension of the contract to complete the optimizations.« less
A thermal vacuum test optimization procedure
NASA Technical Reports Server (NTRS)
Kruger, R.; Norris, H. P.
1979-01-01
An analytical model was developed that can be used to establish certain parameters of a thermal vacuum environmental test program based on an optimization of program costs. This model is in the form of a computer program that interacts with a user insofar as the input of certain parameters. The program provides the user a list of pertinent information regarding an optimized test program and graphs of some of the parameters. The model is a first attempt in this area and includes numerous simplifications. The model appears useful as a general guide and provides a way for extrapolating past performance to future missions.
Using string invariants for prediction searching for optimal parameters
NASA Astrophysics Data System (ADS)
Bundzel, Marek; Kasanický, Tomáš; Pinčák, Richard
2016-02-01
We have developed a novel prediction method based on string invariants. The method does not require learning but a small set of parameters must be set to achieve optimal performance. We have implemented an evolutionary algorithm for the parametric optimization. We have tested the performance of the method on artificial and real world data and compared the performance to statistical methods and to a number of artificial intelligence methods. We have used data and the results of a prediction competition as a benchmark. The results show that the method performs well in single step prediction but the method's performance for multiple step prediction needs to be improved. The method works well for a wide range of parameters.
NASA Astrophysics Data System (ADS)
Dang, Jie; Chen, Hao
2016-12-01
The methodology and procedures are discussed on designing merchant ships to achieve fully-integrated and optimized hull-propulsion systems by using asymmetric aftbodies. Computational fluid dynamics (CFD) has been used to evaluate the powering performance through massive calculations with automatic deformation algorisms for the hull forms and the propeller blades. Comparative model tests of the designs to the optimized symmetric hull forms have been carried out to verify the efficiency gain. More than 6% improvement on the propulsive efficiency of an oil tanker has been measured during the model tests. Dedicated sea-trials show good agreement with the predicted performance from the test results.
Simulated Annealing in the Variable Landscape
NASA Astrophysics Data System (ADS)
Hasegawa, Manabu; Kim, Chang Ju
An experimental analysis is conducted to test whether the appropriate introduction of the smoothness-temperature schedule enhances the optimizing ability of the MASSS method, the combination of the Metropolis algorithm (MA) and the search-space smoothing (SSS) method. The test is performed on two types of random traveling salesman problems. The results show that the optimization performance of the MA is substantially improved by a single smoothing alone and slightly more by a single smoothing with cooling and by a de-smoothing process with heating. The performance is compared to that of the parallel tempering method and a clear advantage of the idea of smoothing is observed depending on the problem.
Performance optimization of helicopter rotor blades
NASA Technical Reports Server (NTRS)
Walsh, Joanne L.
1991-01-01
As part of a center-wide activity at NASA Langley Research Center to develop multidisciplinary design procedures by accounting for discipline interactions, a performance design optimization procedure is developed. The procedure optimizes the aerodynamic performance of rotor blades by selecting the point of taper initiation, root chord, taper ratio, and maximum twist which minimize hover horsepower while not degrading forward flight performance. The procedure uses HOVT (a strip theory momentum analysis) to compute the horse power required for hover and the comprehensive helicopter analysis program CAMRAD to compute the horsepower required for forward flight and maneuver. The optimization algorithm consists of the general purpose optimization program CONMIN and approximate analyses. Sensitivity analyses consisting of derivatives of the objective function and constraints are carried out by forward finite differences. The procedure is applied to a test problem which is an analytical model of a wind tunnel model of a utility rotor blade.
Actively controlled shaft seals for aerospace applications
NASA Astrophysics Data System (ADS)
Salant, Richard F.
The objective of years 4 and 5 of this project (1992 and 1993) is to determine experimentally the behavior and operating characteristics of a controllable mechanical seal, and to identify potential problem areas. A controllable mechanical seal is one in which the thickness of the lubricating film separating the sealing surfaces is adjustable, and can be controlled by an electronic control system, based on information supplied by sensors that monitor the condition of the film. This work builds upon work done during years 1-3, in which a controllable mechanical seal was designed, analyzed, and fabricated. At the beginning of year 4, the mechanical seal and test rig was assembled, and preliminary testing begun. The five major tasks of years 4 and 5 encompass instrumentation, configuration changes of the mechanical seal to optimize its performance, systematic steady state tests, systematic transient tests, and a final report. During this reporting period, significant progress was made on instrumenting the test rig and modifying the design to optimize the seal's performance. Initial steady state tests were also performed.
NASA Technical Reports Server (NTRS)
Gilyard, Glenn; Espana, Martin
1994-01-01
Increasing competition among airline manufacturers and operators has highlighted the issue of aircraft efficiency. Fewer aircraft orders have led to an all-out efficiency improvement effort among the manufacturers to maintain if not increase their share of the shrinking number of aircraft sales. Aircraft efficiency is important in airline profitability and is key if fuel prices increase from their current low. In a continuing effort to improve aircraft efficiency and develop an optimal performance technology base, NASA Dryden Flight Research Center developed and flight tested an adaptive performance seeking control system to optimize the quasi-steady-state performance of the F-15 aircraft. The demonstrated technology is equally applicable to transport aircraft although with less improvement. NASA Dryden, in transitioning this technology to transport aircraft, is specifically exploring the feasibility of applying adaptive optimal control techniques to performance optimization of redundant control effectors. A simulation evaluation of a preliminary control law optimizes wing-aileron camber for minimum net aircraft drag. Two submodes are evaluated: one to minimize fuel and the other to maximize velocity. This paper covers the status of performance optimization of the current fleet of subsonic transports. Available integrated controls technologies are reviewed to define approaches using active controls. A candidate control law for adaptive performance optimization is presented along with examples of algorithm operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon Tibbitts; Arnis Judzis
2001-10-01
This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting July 2001 through September 2001. Accomplishments to date include the following: TerraTek highlighted DOE's National Energy Technology Laboratory effort on Mud Hammer Optimization at the recent Annual Conference and Exhibition for the Society of Petroleum Engineers. The original exhibit scheduled by NETL was canceled due to events surrounding the September tragedies in the US. TerraTek has completed analysis of drilling performance (rates of penetration, hydraulics, etc.) for themore » Phase One testing which was completed at the beginning of July. TerraTek jointly with the Industry Advisory Board for this project and DOE/NETL conducted a lessons learned meeting to transfer technology vital for the next series of performance tests. Both hammer suppliers benefited from the testing program and are committed to pursue equipment improvements and ''optimization'' in accordance with the scope of work. An abstract for a proposed publication by the society of Petroleum Engineers/International Association of Drilling Contractors jointly sponsored Drilling Conference was accepted as an alternate paper. Technology transfer is encouraged by the DOE in this program, thus plans are underway to prepare the paper for this prestigious venue.« less
Theoretical model for design and analysis of protectional eyewear.
Zelzer, B; Speck, A; Langenbucher, A; Eppig, T
2013-05-01
Protectional eyewear has to fulfill both mechanical and optical stress tests. To pass those optical tests the surfaces of safety spectacles have to be optimized to minimize optical aberrations. Starting with the surface data of three measured safety spectacles, a theoretical spectacle model (four spherical surfaces) is recalculated first and then optimized while keeping the front surface unchanged. Next to spherical power, astigmatic power and prism imbalance we used the wavefront error (five different viewing directions) to simulate the optical performance and to optimize the safety spectacle geometries. All surfaces were spherical (maximum global deviation 'peak-to-valley' between the measured surface and the best-fit sphere: 0.132mm). Except the spherical power of the model Axcont (-0.07m(-1)) all simulated optical performance before optimization was better than the limits defined by standards. The optimization reduced the wavefront error by 1% to 0.150 λ (Windor/Infield), by 63% to 0.194 λ (Axcont/Bolle) and by 55% to 0.199 λ (2720/3M) without dropping below the measured thickness. The simulated optical performance of spectacle designs could be improved when using a smart optimization. A good optical design counteracts degradation by parameter variation throughout the manufacturing process. Copyright © 2013. Published by Elsevier GmbH.
Optimizing point-of-care testing in clinical systems management.
Kost, G J
1998-01-01
The goal of improving medical and economic outcomes calls for leadership based on fundamental principles. The manager of clinical systems works collaboratively within the acute care center to optimize point-of-care testing through systematic approaches such as integrative strategies, algorithms, and performance maps. These approaches are effective and efficacious for critically ill patients. Optimizing point-of-care testing throughout the entire health-care system is inherently more difficult. There is potential to achieve high-quality testing, integrated disease management, and equitable health-care delivery. Despite rapid change and economic uncertainty, a macro-strategic, information-integrated, feedback-systems, outcomes-oriented approach is timely, challenging, effective, and uplifting to the creative human spirit.
Optimization Model for Web Based Multimodal Interactive Simulations.
Halic, Tansel; Ahn, Woojin; De, Suvranu
2015-07-15
This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update . In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach.
Optimization Model for Web Based Multimodal Interactive Simulations
Halic, Tansel; Ahn, Woojin; De, Suvranu
2015-01-01
This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update. In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach. PMID:26085713
ERIC Educational Resources Information Center
Wu, Jason H.; Hoy, Wayne K.; Tarter, C. John
2013-01-01
Purpose: The purpose of this research is twofold: to test a theory of academic optimism in Taiwan elementary schools and to expand the theory by adding new variables, collective responsibility and enabling school structure, to the model. Design/methodology/approach: Structural equation modeling was used to test, refine, and expand an…
A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM.
Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei; Song, Houbing
2018-01-15
Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model's performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM's parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models' performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors.
Model-Based Thermal System Design Optimization for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Cataldo, Giuseppe; Niedner, Malcolm B.; Fixsen, Dale J.; Moseley, Samuel H.
2017-01-01
Spacecraft thermal model validation is normally performed by comparing model predictions with thermal test data and reducing their discrepancies to meet the mission requirements. Based on thermal engineering expertise, the model input parameters are adjusted to tune the model output response to the test data. The end result is not guaranteed to be the best solution in terms of reduced discrepancy and the process requires months to complete. A model-based methodology was developed to perform the validation process in a fully automated fashion and provide mathematical bases to the search for the optimal parameter set that minimizes the discrepancies between model and data. The methodology was successfully applied to several thermal subsystems of the James Webb Space Telescope (JWST). Global or quasiglobal optimal solutions were found and the total execution time of the model validation process was reduced to about two weeks. The model sensitivities to the parameters, which are required to solve the optimization problem, can be calculated automatically before the test begins and provide a library for sensitivity studies. This methodology represents a crucial commodity when testing complex, large-scale systems under time and budget constraints. Here, results for the JWST Core thermal system will be presented in detail.
Model-based thermal system design optimization for the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
Cataldo, Giuseppe; Niedner, Malcolm B.; Fixsen, Dale J.; Moseley, Samuel H.
2017-10-01
Spacecraft thermal model validation is normally performed by comparing model predictions with thermal test data and reducing their discrepancies to meet the mission requirements. Based on thermal engineering expertise, the model input parameters are adjusted to tune the model output response to the test data. The end result is not guaranteed to be the best solution in terms of reduced discrepancy and the process requires months to complete. A model-based methodology was developed to perform the validation process in a fully automated fashion and provide mathematical bases to the search for the optimal parameter set that minimizes the discrepancies between model and data. The methodology was successfully applied to several thermal subsystems of the James Webb Space Telescope (JWST). Global or quasiglobal optimal solutions were found and the total execution time of the model validation process was reduced to about two weeks. The model sensitivities to the parameters, which are required to solve the optimization problem, can be calculated automatically before the test begins and provide a library for sensitivity studies. This methodology represents a crucial commodity when testing complex, large-scale systems under time and budget constraints. Here, results for the JWST Core thermal system will be presented in detail.
Experimental Performance Evaluation of a Supersonic Turbine for Rocket Engine Applications
NASA Technical Reports Server (NTRS)
Snellgrove, Lauren M.; Griffin, Lisa W.; Sieja, James P.; Huber, Frank W.
2003-01-01
In order to mitigate the risk of rocket propulsion development, efficient, accurate, detailed fluid dynamics analysis and testing of the turbomachinery is necessary. To support this requirement, a task was developed at NASA Marshall Space Flight Center (MSFC) to improve turbine aerodynamic performance through the application of advanced design and analysis tools. These tools were applied to optimize a supersonic turbine design suitable for a reusable launch vehicle (RLV). The hot gas path and blading were redesigned-to obtain an increased efficiency. The goal of the demonstration was to increase the total-to- static efficiency of the turbine by eight points over the baseline design. A sub-scale, cold flow test article modeling the final optimized turbine was designed, manufactured, and tested in air at MSFC s Turbine Airflow Facility. Extensive on- and off- design point performance data, steady-state data, and unsteady blade loading data were collected during testing.
Design optimization of a high specific speed Francis turbine runner
NASA Astrophysics Data System (ADS)
Enomoto, Y.; Kurosawa, S.; Kawajiri, H.
2012-11-01
Francis turbine is used in many hydroelectric power stations. This paper presents the development of hydraulic performance in a high specific speed Francis turbine runner. In order to achieve the improvements of turbine efficiency throughout a wide operating range, a new runner design method which combines the latest Computational Fluid Dynamics (CFD) and a multi objective optimization method with an existing design system was applied in this study. The validity of the new design system was evaluated by model performance tests. As the results, it was confirmed that the optimized runner presented higher efficiency compared with an originally designed runner. Besides optimization of runner, instability vibration which occurred at high part load operating condition was investigated by model test and gas-liquid two-phase flow analysis. As the results, it was confirmed that the instability vibration was caused by oval cross section whirl which was caused by recirculation flow near runner cone wall.
Detection of fatigue cracks by nondestructive testing methods
NASA Technical Reports Server (NTRS)
Anderson, R. T.; Delacy, T. J.; Stewart, R. C.
1973-01-01
The effectiveness was assessed of various NDT methods to detect small tight cracks by randomly introducing fatigue cracks into aluminum sheets. The study included optimizing NDT methods calibrating NDT equipment with fatigue cracked standards, and evaluating a number of cracked specimens by the optimized NDT methods. The evaluations were conducted by highly trained personnel, provided with detailed procedures, in order to minimize the effects of human variability. These personnel performed the NDT on the test specimens without knowledge of the flaw locations and reported on the flaws detected. The performance of these tests was measured by comparing the flaws detected against the flaws present. The principal NDT methods utilized were radiographic, ultrasonic, penetrant, and eddy current. Holographic interferometry, acoustic emission monitoring, and replication methods were also applied on a reduced number of specimens. Generally, the best performance was shown by eddy current, ultrasonic, penetrant and holographic tests. Etching provided no measurable improvement, while proof loading improved flaw detectability. Data are shown that quantify the performances of the NDT methods applied.
The impact of chief executive officer optimism on hospital strategic decision making.
Langabeer, James R; Yao, Emery
2012-01-01
Previous strategic decision making research has focused mostly on the analytical positioning approach, which broadly emphasizes an alignment between rationality and the external environment. In this study, we propose that hospital chief executive optimism (or the general tendency to expect positive future outcomes) will moderate the relationship between comprehensively rational decision-making process and organizational performance. The purpose of this study was to explore the impact that dispositional optimism has on the well-established relationship between rational decision-making processes and organizational performance. Specifically, we hypothesized that optimism will moderate the relationship between the level of rationality and the organization's performance. We further suggest that this relationship will be more negative for those with high, as opposed to low, optimism. We surveyed 168 hospital CEOs and used moderated hierarchical regression methods to statically test our hypothesis. On the basis of a survey study of 168 hospital CEOs, we found evidence of a complex interplay of optimism in the rationality-organizational performance relationship. More specifically, we found that the two-way interactions between optimism and rational decision making were negatively associated with performance and that where optimism was the highest, the rationality-performance relationship was the most negative. Executive optimism was positively associated with organizational performance. We also found that greater perceived environmental turbulence, when interacting with optimism, did not have a significant interaction effect on the rationality-performance relationship. These findings suggest potential for broader participation in strategic processes and the use of organizational development techniques that assess executive disposition and traits for recruitment processes, because CEO optimism influences hospital-level processes. Research implications include incorporating greater use of behavior and cognition constructs to better depict decision-making processes in complex organizations like hospitals.
ODECS -- A computer code for the optimal design of S.I. engine control strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arsie, I.; Pianese, C.; Rizzo, G.
1996-09-01
The computer code ODECS (Optimal Design of Engine Control Strategies) for the design of Spark Ignition engine control strategies is presented. This code has been developed starting from the author`s activity in this field, availing of some original contributions about engine stochastic optimization and dynamical models. This code has a modular structure and is composed of a user interface for the definition, the execution and the analysis of different computations performed with 4 independent modules. These modules allow the following calculations: (1) definition of the engine mathematical model from steady-state experimental data; (2) engine cycle test trajectory corresponding to amore » vehicle transient simulation test such as ECE15 or FTP drive test schedule; (3) evaluation of the optimal engine control maps with a steady-state approach; (4) engine dynamic cycle simulation and optimization of static control maps and/or dynamic compensation strategies, taking into account dynamical effects due to the unsteady fluxes of air and fuel and the influences of combustion chamber wall thermal inertia on fuel consumption and emissions. Moreover, in the last two modules it is possible to account for errors generated by a non-deterministic behavior of sensors and actuators and the related influences on global engine performances, and compute robust strategies, less sensitive to stochastic effects. In the paper the four models are described together with significant results corresponding to the simulation and the calculation of optimal control strategies for dynamic transient tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnis Judzis
2006-03-01
Operators continue to look for ways to improve hard rock drilling performance through emerging technologies. A consortium of Department of Energy, operator and industry participants put together an effort to test and optimize mud driven fluid hammers as one emerging technology that has shown promise to increase penetration rates in hard rock. The thrust of this program has been to test and record the performance of fluid hammers in full scale test conditions including, hard formations at simulated depth, high density/high solids drilling muds, and realistic fluid power levels. This paper details the testing and results of testing two 7more » 3/4 inch diameter mud hammers with 8 1/2 inch hammer bits. A Novatek MHN5 and an SDS Digger FH185 mud hammer were tested with several bit types, with performance being compared to a conventional (IADC Code 537) tricone bit. These tools functionally operated in all of the simulated downhole environments. The performance was in the range of the baseline ticone or better at lower borehole pressures, but at higher borehole pressures the performance was in the lower range or below that of the baseline tricone bit. A new drilling mode was observed, while operating the MHN5 mud hammer. This mode was noticed as the weight on bit (WOB) was in transition from low to high applied load. During this new ''transition drilling mode'', performance was substantially improved and in some cases outperformed the tricone bit. Improvements were noted for the SDS tool while drilling with a more aggressive bit design. Future work includes the optimization of these or the next generation tools for operating in higher density and higher borehole pressure conditions and improving bit design and technology based on the knowledge gained from this test program.« less
°Enhancing High Temperature Anode Performance with 2° Anchoring Phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Robert A.; Sofie, Stephen W.; Amendola, Roberta
2015-10-01
Project accomplishments included developing and optimizing strength testing of aluminum titanate (ALT)-doped Ni-YSZ materials and identified the dopant levels that optimized mechanical strength and enhanced electrochemical performance. We also optimized our ability to fabricate electrolyte supported button cells with anodes consisting of powders provided by Fuel Cell Energy. In several instances, those anodes were infiltrated with ALT and tested with hydrogen for 30 hours at 800°C at an applied potential of 0.4 V. Our research activities were focused in three areas: 1) mechanical strength testing on as prepared and reducced nickel-YSZ structures that were either free of a dopant ormore » prepared by mechanically mixing in ALT at various weight percents (up to 10 wt%); 2) 24-hour electrochemical testing of electroylte supported cells having anodes made from Ni/YSZ and Ni/YSZ/ALT anodes with specific attention focused on modeling degradation rates; and 3) operando EIS and optical testing of both in-house fabricated devices as well as membrane electrode assemblies that were acquired from commercial vendors.« less
Forecasting of dissolved oxygen in the Guanting reservoir using an optimized NGBM (1,1) model.
An, Yan; Zou, Zhihong; Zhao, Yanfei
2015-03-01
An optimized nonlinear grey Bernoulli model was proposed by using a particle swarm optimization algorithm to solve the parameter optimization problem. In addition, each item in the first-order accumulated generating sequence was set in turn as an initial condition to determine which alternative would yield the highest forecasting accuracy. To test the forecasting performance, the optimized models with different initial conditions were then used to simulate dissolved oxygen concentrations in the Guanting reservoir inlet and outlet (China). The empirical results show that the optimized model can remarkably improve forecasting accuracy, and the particle swarm optimization technique is a good tool to solve parameter optimization problems. What's more, the optimized model with an initial condition that performs well in in-sample simulation may not do as well as in out-of-sample forecasting. Copyright © 2015. Published by Elsevier B.V.
Development and testing of the cancer multidisciplinary team meeting observational tool (MDT-MOT)
Harris, Jenny; Taylor, Cath; Sevdalis, Nick; Jalil, Rozh; Green, James S.A.
2016-01-01
Abstract Objective To develop a tool for independent observational assessment of cancer multidisciplinary team meetings (MDMs), and test criterion validity, inter-rater reliability/agreement and describe performance. Design Clinicians and experts in teamwork used a mixed-methods approach to develop and refine the tool. Study 1 observers rated pre-determined optimal/sub-optimal MDM film excerpts and Study 2 observers independently rated video-recordings of 10 MDMs. Setting Study 2 included 10 cancer MDMs in England. Participants Testing was undertaken by 13 health service staff and a clinical and non-clinical observer. Intervention None. Main Outcome Measures Tool development, validity, reliability/agreement and variability in MDT performance. Results Study 1: Observers were able to discriminate between optimal and sub-optimal MDM performance (P ≤ 0.05). Study 2: Inter-rater reliability was good for 3/10 domains. Percentage of absolute agreement was high (≥80%) for 4/10 domains and percentage agreement within 1 point was high for 9/10 domains. Four MDTs performed well (scored 3+ in at least 8/10 domains), 5 MDTs performed well in 6–7 domains and 1 MDT performed well in only 4 domains. Leadership and chairing of the meeting, the organization and administration of the meeting, and clinical decision-making processes all varied significantly between MDMs (P ≤ 0.01). Conclusions MDT-MOT demonstrated good criterion validity. Agreement between clinical and non-clinical observers (within one point on the scale) was high but this was inconsistent with reliability coefficients and warrants further investigation. If further validated MDT-MOT might provide a useful mechanism for the routine assessment of MDMs by the local workforce to drive improvements in MDT performance. PMID:27084499
Development and testing of the cancer multidisciplinary team meeting observational tool (MDT-MOT).
Harris, Jenny; Taylor, Cath; Sevdalis, Nick; Jalil, Rozh; Green, James S A
2016-06-01
To develop a tool for independent observational assessment of cancer multidisciplinary team meetings (MDMs), and test criterion validity, inter-rater reliability/agreement and describe performance. Clinicians and experts in teamwork used a mixed-methods approach to develop and refine the tool. Study 1 observers rated pre-determined optimal/sub-optimal MDM film excerpts and Study 2 observers independently rated video-recordings of 10 MDMs. Study 2 included 10 cancer MDMs in England. Testing was undertaken by 13 health service staff and a clinical and non-clinical observer. None. Tool development, validity, reliability/agreement and variability in MDT performance. Study 1: Observers were able to discriminate between optimal and sub-optimal MDM performance (P ≤ 0.05). Study 2: Inter-rater reliability was good for 3/10 domains. Percentage of absolute agreement was high (≥80%) for 4/10 domains and percentage agreement within 1 point was high for 9/10 domains. Four MDTs performed well (scored 3+ in at least 8/10 domains), 5 MDTs performed well in 6-7 domains and 1 MDT performed well in only 4 domains. Leadership and chairing of the meeting, the organization and administration of the meeting, and clinical decision-making processes all varied significantly between MDMs (P ≤ 0.01). MDT-MOT demonstrated good criterion validity. Agreement between clinical and non-clinical observers (within one point on the scale) was high but this was inconsistent with reliability coefficients and warrants further investigation. If further validated MDT-MOT might provide a useful mechanism for the routine assessment of MDMs by the local workforce to drive improvements in MDT performance. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.
Decoupled CFD-based optimization of efficiency and cavitation performance of a double-suction pump
NASA Astrophysics Data System (ADS)
Škerlavaj, A.; Morgut, M.; Jošt, D.; Nobile, E.
2017-04-01
In this study the impeller geometry of a double-suction pump ensuring the best performances in terms of hydraulic efficiency and reluctance of cavitation is determined using an optimization strategy, which was driven by means of the modeFRONTIER optimization platform. The different impeller shapes (designs) are modified according to the optimization parameters and tested with a computational fluid dynamics (CFD) software, namely ANSYS CFX. The simulations are performed using a decoupled approach, where only the impeller domain region is numerically investigated for computational convenience. The flow losses in the volute are estimated on the base of the velocity distribution at the impeller outlet. The best designs are then validated considering the computationally more expensive full geometry CFD model. The overall results show that the proposed approach is suitable for quick impeller shape optimization.
Thrust stand evaluation of engine performance improvement algorithms in an F-15 airplane
NASA Technical Reports Server (NTRS)
Conners, Timothy R.
1992-01-01
Results are presented from the evaluation of the performance seeking control (PSC) optimization algorithm developed by Smith et al. (1990) for F-15 aircraft, which optimizes the quasi-steady-state performance of an F100 derivative turbofan engine for several modes of operation. The PSC algorithm uses onboard software engine model that calculates thrust, stall margin, and other unmeasured variables for use in the optimization. Comparisons are presented between the load cell measurements, PSC onboard model thrust calculations, and posttest state variable model computations. Actual performance improvements using the PSC algorithm are presented for its various modes. The results of using PSC algorithm are compared with similar test case results using the HIDEC algorithm.
Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Litt, Jonathan (Technical Monitor); Ray, Asok
2004-01-01
This report presents an application of the recently developed theory of optimal Discrete Event Supervisory (DES) control that is based on a signed real measure of regular languages. The DES control techniques are validated on an aircraft gas turbine engine simulation test bed. The test bed is implemented on a networked computer system in which two computers operate in the client-server mode. Several DES controllers have been tested for engine performance and reliability.
An Evaluation of the Sniffer Global Optimization Algorithm Using Standard Test Functions
NASA Astrophysics Data System (ADS)
Butler, Roger A. R.; Slaminka, Edward E.
1992-03-01
The performance of Sniffer—a new global optimization algorithm—is compared with that of Simulated Annealing. Using the number of function evaluations as a measure of efficiency, the new algorithm is shown to be significantly better at finding the global minimum of seven standard test functions. Several of the test functions used have many local minima and very steep walls surrounding the global minimum. Such functions are intended to thwart global minimization algorithms.
NASA Technical Reports Server (NTRS)
Welstead, Jason
2014-01-01
This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.
An improved genetic algorithm for designing optimal temporal patterns of neural stimulation
NASA Astrophysics Data System (ADS)
Cassar, Isaac R.; Titus, Nathan D.; Grill, Warren M.
2017-12-01
Objective. Electrical neuromodulation therapies typically apply constant frequency stimulation, but non-regular temporal patterns of stimulation may be more effective and more efficient. However, the design space for temporal patterns is exceedingly large, and model-based optimization is required for pattern design. We designed and implemented a modified genetic algorithm (GA) intended for design optimal temporal patterns of electrical neuromodulation. Approach. We tested and modified standard GA methods for application to designing temporal patterns of neural stimulation. We evaluated each modification individually and all modifications collectively by comparing performance to the standard GA across three test functions and two biophysically-based models of neural stimulation. Main results. The proposed modifications of the GA significantly improved performance across the test functions and performed best when all were used collectively. The standard GA found patterns that outperformed fixed-frequency, clinically-standard patterns in biophysically-based models of neural stimulation, but the modified GA, in many fewer iterations, consistently converged to higher-scoring, non-regular patterns of stimulation. Significance. The proposed improvements to standard GA methodology reduced the number of iterations required for convergence and identified superior solutions.
Flight-Test Validation and Flying Qualities Evaluation of a Rotorcraft UAV Flight Control System
NASA Technical Reports Server (NTRS)
Mettler, Bernard; Tuschler, Mark B.; Kanade, Takeo
2000-01-01
This paper presents a process of design and flight-test validation and flying qualities evaluation of a flight control system for a rotorcraft-based unmanned aerial vehicle (RUAV). The keystone of this process is an accurate flight-dynamic model of the aircraft, derived by using system identification modeling. The model captures the most relevant dynamic features of our unmanned rotorcraft, and explicitly accounts for the presence of a stabilizer bar. Using the identified model we were able to determine the performance margins of our original control system and identify limiting factors. The performance limitations were addressed and the attitude control system was 0ptimize.d for different three performance levels: slow, medium, fast. The optimized control laws will be implemented in our RUAV. We will first determine the validity of our control design approach by flight test validating our optimized controllers. Subsequently, we will fly a series of maneuvers with the three optimized controllers to determine the level of flying qualities that can be attained. The outcome enable us to draw important conclusions on the flying qualities requirements for small-scale RUAVs.
NASA Technical Reports Server (NTRS)
Axdahl, Erik L.
2015-01-01
Removing human interaction from design processes by using automation may lead to gains in both productivity and design precision. This memorandum describes efforts to incorporate high fidelity numerical analysis tools into an automated framework and applying that framework to applications of practical interest. The purpose of this effort was to integrate VULCAN-CFD into an automated, DAKOTA-enabled framework with a proof-of-concept application being the optimization of supersonic test facility nozzles. It was shown that the optimization framework could be deployed on a high performance computing cluster with the flow of information handled effectively to guide the optimization process. Furthermore, the application of the framework to supersonic test facility nozzle flowpath design and optimization was demonstrated using multiple optimization algorithms.
Regenerative Life Support Systems Test Bed performance - Lettuce crop characterization
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Edeen, Marybeth A.; Eckhardt, Bradley D.
1992-01-01
System performance in terms of human life support requirements was evaluated for two crops of lettuce (Lactuca sative cv. Waldmann's Green) grown in the Regenerative Life Support Systems Test Bed. Each crop, grown in separate pots under identical environmental and cultural conditions, was irrigated with half-strength Hoagland's nutrient solution, with the frequency of irrigation being increased as the crop aged over the 30-day crop tests. Averaging over both crop tests, the test bed met the requirements of 2.1 person-days of oxygen production, 2.4 person-days of CO2 removal, and 129 person-days of potential potable water production. Gains in the mass of water and O2 produced and CO2 removed could be achieved by optimizing environmental conditions to increase plant growth rate and by optimizing cultural management methods.
A comparative review of methods for comparing means using partially paired data.
Guo, Beibei; Yuan, Ying
2017-06-01
In medical experiments with the objective of testing the equality of two means, data are often partially paired by design or because of missing data. The partially paired data represent a combination of paired and unpaired observations. In this article, we review and compare nine methods for analyzing partially paired data, including the two-sample t-test, paired t-test, corrected z-test, weighted t-test, pooled t-test, optimal pooled t-test, multiple imputation method, mixed model approach, and the test based on a modified maximum likelihood estimate. We compare the performance of these methods through extensive simulation studies that cover a wide range of scenarios with different effect sizes, sample sizes, and correlations between the paired variables, as well as true underlying distributions. The simulation results suggest that when the sample size is moderate, the test based on the modified maximum likelihood estimator is generally superior to the other approaches when the data is normally distributed and the optimal pooled t-test performs the best when the data is not normally distributed, with well-controlled type I error rates and high statistical power; when the sample size is small, the optimal pooled t-test is to be recommended when both variables have missing data and the paired t-test is to be recommended when only one variable has missing data.
A hybrid Jaya algorithm for reliability-redundancy allocation problems
NASA Astrophysics Data System (ADS)
Ghavidel, Sahand; Azizivahed, Ali; Li, Li
2018-04-01
This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching-learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability-redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series-parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30-100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results.
Ryan, Denise S; Sia, Rose K; Stutzman, Richard D; Pasternak, Joseph F; Howard, Robin S; Howell, Christopher L; Maurer, Tana; Torres, Mark F; Bower, Kraig S
2017-01-01
To compare visual performance, marksmanship performance, and threshold target identification following wavefront-guided (WFG) versus wavefront-optimized (WFO) photorefractive keratectomy (PRK). In this prospective, randomized clinical trial, active duty U.S. military Soldiers, age 21 or over, electing to undergo PRK were randomized to undergo WFG (n = 27) or WFO (n = 27) PRK for myopia or myopic astigmatism. Binocular visual performance was assessed preoperatively and 1, 3, and 6 months postoperatively: Super Vision Test high contrast, Super Vision Test contrast sensitivity (CS), and 25% contrast acuity with night vision goggle filter. CS function was generated testing at five spatial frequencies. Marksmanship performance in low light conditions was evaluated in a firing tunnel. Target detection and identification performance was tested for probability of identification of varying target sets and probability of detection of humans in cluttered environments. Visual performance, CS function, marksmanship, and threshold target identification demonstrated no statistically significant differences over time between the two treatments. Exploratory regression analysis of firing range tasks at 6 months showed no significant differences or correlations between procedures. Regression analysis of vehicle and handheld probability of identification showed a significant association with pretreatment performance. Both WFG and WFO PRK results translate to excellent and comparable visual and military performance. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
Expected p-values in light of an ROC curve analysis applied to optimal multiple testing procedures.
Vexler, Albert; Yu, Jihnhee; Zhao, Yang; Hutson, Alan D; Gurevich, Gregory
2017-01-01
Many statistical studies report p-values for inferential purposes. In several scenarios, the stochastic aspect of p-values is neglected, which may contribute to drawing wrong conclusions in real data experiments. The stochastic nature of p-values makes their use to examine the performance of given testing procedures or associations between investigated factors to be difficult. We turn our focus on the modern statistical literature to address the expected p-value (EPV) as a measure of the performance of decision-making rules. During the course of our study, we prove that the EPV can be considered in the context of receiver operating characteristic (ROC) curve analysis, a well-established biostatistical methodology. The ROC-based framework provides a new and efficient methodology for investigating and constructing statistical decision-making procedures, including: (1) evaluation and visualization of properties of the testing mechanisms, considering, e.g. partial EPVs; (2) developing optimal tests via the minimization of EPVs; (3) creation of novel methods for optimally combining multiple test statistics. We demonstrate that the proposed EPV-based approach allows us to maximize the integrated power of testing algorithms with respect to various significance levels. In an application, we use the proposed method to construct the optimal test and analyze a myocardial infarction disease dataset. We outline the usefulness of the "EPV/ROC" technique for evaluating different decision-making procedures, their constructions and properties with an eye towards practical applications.
A Standard Platform for Testing and Comparison of MDAO Architectures
NASA Technical Reports Server (NTRS)
Gray, Justin S.; Moore, Kenneth T.; Hearn, Tristan A.; Naylor, Bret A.
2012-01-01
The Multidisciplinary Design Analysis and Optimization (MDAO) community has developed a multitude of algorithms and techniques, called architectures, for performing optimizations on complex engineering systems which involve coupling between multiple discipline analyses. These architectures seek to efficiently handle optimizations with computationally expensive analyses including multiple disciplines. We propose a new testing procedure that can provide a quantitative and qualitative means of comparison among architectures. The proposed test procedure is implemented within the open source framework, OpenMDAO, and comparative results are presented for five well-known architectures: MDF, IDF, CO, BLISS, and BLISS-2000. We also demonstrate how using open source soft- ware development methods can allow the MDAO community to submit new problems and architectures to keep the test suite relevant.
Microhard MHX2420 Orbital Performance Evaluation Using RT Logic T400CS
NASA Technical Reports Server (NTRS)
TintoreGazulla, Oriol; Lombardi, Mark
2012-01-01
RT Logic allows simulation of Ground Station - satellite communications: Static tests have been successful. Dynamic tests have been performed for simple passes. Future dynamic tests are needed to simulate real orbit communications. Satellite attitude changes antenna gain. Atmospheric and rain losses need to be added. STK Plug-in will be the next step to improve the dynamic tests. There is a possibility of running longer simulations. Simulation of different losses available in the STK Plug-in. Microhard optimization: Effect of Microhard settings on the data throughput have been understood. Optimized settings improve data throughput for LEO communications. Longer hop intervals make transfer of larger packets more efficient (more time between hops in frequency). Use of FEC (Reed-Solomon) reduces the number of retransmissions for long-range or noisy communications.
Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster
NASA Technical Reports Server (NTRS)
Story, George
2015-01-01
Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. One remaining issue is the cost of hybrids versus the existing launch propulsion systems. This paper will review the known state-of-the-art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost.
Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster
NASA Technical Reports Server (NTRS)
Story, George
2014-01-01
Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and later on solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. A remaining issue is the cost of hybrids vs the existing launch propulsion systems. This paper will review the known state of the art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost.
Nishida, Yoshifumi; Kobayashi, Hiromi; Nishida, Hideo; Sugimura, Kazuyuki
2013-05-01
The effect of the design parameters of a return channel on the performance of a multistage centrifugal compressor was numerically investigated, and the shape of the return channel was optimized using a multiobjective optimization method based on a genetic algorithm to improve the performance of the centrifugal compressor. The results of sensitivity analysis using Latin hypercube sampling suggested that the inlet-to-outlet area ratio of the return vane affected the total pressure loss in the return channel, and that the inlet-to-outlet radius ratio of the return vane affected the outlet flow angle from the return vane. Moreover, this analysis suggested that the number of return vanes affected both the loss and the flow angle at the outlet. As a result of optimization, the number of return vane was increased from 14 to 22 and the area ratio was decreased from 0.71 to 0.66. The radius ratio was also decreased from 2.1 to 2.0. Performance tests on a centrifugal compressor with two return channels (the original design and optimized design) were carried out using two-stage test apparatus. The measured flow distribution exhibited a swirl flow in the center region and a reversed swirl flow near the hub and shroud sides. The exit flow of the optimized design was more uniform than that of the original design. For the optimized design, the overall two-stage efficiency and pressure coefficient were increased by 0.7% and 1.5%, respectively. Moreover, the second-stage efficiency and pressure coefficient were respectively increased by 1.0% and 3.2%. It is considered that the increase in the second-stage efficiency was caused by the increased uniformity of the flow, and the rise in the pressure coefficient was caused by a decrease in the residual swirl flow. It was thus concluded from the numerical and experimental results that the optimized return channel improved the performance of the multistage centrifugal compressor.
ERIC Educational Resources Information Center
Fejoh, Johnson; Faniran, Victoria Loveth
2016-01-01
This study investigated the impact of in-service training and staff development on workers' job performance and optimal productivity in public secondary schools in Osun State, Nigeria. The study used the ex-post-facto research design. Three research questions and three hypotheses were generated and tested using questionnaire items adapted from…
Performance seeking control excitation mode
NASA Technical Reports Server (NTRS)
Schkolnik, Gerard
1995-01-01
Flight testing of the performance seeking control (PSC) excitation mode was successfully completed at NASA Dryden on the F-15 highly integrated digital electronic control (HIDEC) aircraft. Although the excitation mode was not one of the original objectives of the PSC program, it was rapidly prototyped and implemented into the architecture of the PSC algorithm, allowing valuable and timely research data to be gathered. The primary flight test objective was to investigate the feasibility of a future measurement-based performance optimization algorithm. This future algorithm, called AdAPT, which stands for adaptive aircraft performance technology, generates and applies excitation inputs to selected control effectors. Fourier transformations are used to convert measured response and control effector data into frequency domain models which are mapped into state space models using multiterm frequency matching. Formal optimization principles are applied to produce an integrated, performance optimal effector suite. The key technical challenge of the measurement-based approach is the identification of the gradient of the performance index to the selected control effector. This concern was addressed by the excitation mode flight test. The AdAPT feasibility study utilized the PSC excitation mode to apply separate sinusoidal excitation trims to the controls - one aircraft, inlet first ramp (cowl), and one engine, throat area. Aircraft control and response data were recorded using on-board instrumentation and analyzed post-flight. Sensor noise characteristics, axial acceleration performance gradients, and repeatability were determined. Results were compared to pilot comments to assess the ride quality. Flight test results indicate that performance gradients were identified at all flight conditions, sensor noise levels were acceptable at the frequencies of interest, and excitations were generally not sensed by the pilot.
Klute, G K; Tasch, U; Geselowitz, D B
1992-04-01
This paper addresses the development and testing of an optimal position feedback controller for the Penn State electric ventricular-assist device (EVAD). The control law is designed to minimize the expected value of the EVAD's power consumption for a targeted patient population. The closed-loop control law is implemented on an Intel 8096 microprocessor and in vitro test runs show that this controller improves the EVAD's efficiency by 15-21%, when compared with the performance of the currently used feedforward control scheme.
Evaluation of the Lateral Performance of Roof Truss-to-Wall Connections in Light-Frame Wood Systems
Andrew DeRenzis; Vladimir Kochkin; Xiping Wang
2012-01-01
This testing program was designed to benchmark the performance of traditional roof systems and incrementally improved roof-to-wall systems with the goal of developing connection solutions that are optimized for performance and constructability. Nine full-size roof systems were constructed and tested with various levels and types of heel detailing to measure the lateral...
Modified artificial bee colony algorithm for reactive power optimization
NASA Astrophysics Data System (ADS)
Sulaiman, Noorazliza; Mohamad-Saleh, Junita; Abro, Abdul Ghani
2015-05-01
Bio-inspired algorithms (BIAs) implemented to solve various optimization problems have shown promising results which are very important in this severely complex real-world. Artificial Bee Colony (ABC) algorithm, a kind of BIAs has demonstrated tremendous results as compared to other optimization algorithms. This paper presents a new modified ABC algorithm referred to as JA-ABC3 with the aim to enhance convergence speed and avoid premature convergence. The proposed algorithm has been simulated on ten commonly used benchmarks functions. Its performance has also been compared with other existing ABC variants. To justify its robust applicability, the proposed algorithm has been tested to solve Reactive Power Optimization problem. The results have shown that the proposed algorithm has superior performance to other existing ABC variants e.g. GABC, BABC1, BABC2, BsfABC dan IABC in terms of convergence speed. Furthermore, the proposed algorithm has also demonstrated excellence performance in solving Reactive Power Optimization problem.
Analysis and optimization of population annealing
NASA Astrophysics Data System (ADS)
Amey, Christopher; Machta, Jonathan
2018-03-01
Population annealing is an easily parallelizable sequential Monte Carlo algorithm that is well suited for simulating the equilibrium properties of systems with rough free-energy landscapes. In this work we seek to understand and improve the performance of population annealing. We derive several useful relations between quantities that describe the performance of population annealing and use these relations to suggest methods to optimize the algorithm. These optimization methods were tested by performing large-scale simulations of the three-dimensional (3D) Edwards-Anderson (Ising) spin glass and measuring several observables. The optimization methods were found to substantially decrease the amount of computational work necessary as compared to previously used, unoptimized versions of population annealing. We also obtain more accurate values of several important observables for the 3D Edwards-Anderson model.
Optimizing area under the ROC curve using semi-supervised learning
Wang, Shijun; Li, Diana; Petrick, Nicholas; Sahiner, Berkman; Linguraru, Marius George; Summers, Ronald M.
2014-01-01
Receiver operating characteristic (ROC) analysis is a standard methodology to evaluate the performance of a binary classification system. The area under the ROC curve (AUC) is a performance metric that summarizes how well a classifier separates two classes. Traditional AUC optimization techniques are supervised learning methods that utilize only labeled data (i.e., the true class is known for all data) to train the classifiers. In this work, inspired by semi-supervised and transductive learning, we propose two new AUC optimization algorithms hereby referred to as semi-supervised learning receiver operating characteristic (SSLROC) algorithms, which utilize unlabeled test samples in classifier training to maximize AUC. Unlabeled samples are incorporated into the AUC optimization process, and their ranking relationships to labeled positive and negative training samples are considered as optimization constraints. The introduced test samples will cause the learned decision boundary in a multidimensional feature space to adapt not only to the distribution of labeled training data, but also to the distribution of unlabeled test data. We formulate the semi-supervised AUC optimization problem as a semi-definite programming problem based on the margin maximization theory. The proposed methods SSLROC1 (1-norm) and SSLROC2 (2-norm) were evaluated using 34 (determined by power analysis) randomly selected datasets from the University of California, Irvine machine learning repository. Wilcoxon signed rank tests showed that the proposed methods achieved significant improvement compared with state-of-the-art methods. The proposed methods were also applied to a CT colonography dataset for colonic polyp classification and showed promising results.1 PMID:25395692
Optimizing area under the ROC curve using semi-supervised learning.
Wang, Shijun; Li, Diana; Petrick, Nicholas; Sahiner, Berkman; Linguraru, Marius George; Summers, Ronald M
2015-01-01
Receiver operating characteristic (ROC) analysis is a standard methodology to evaluate the performance of a binary classification system. The area under the ROC curve (AUC) is a performance metric that summarizes how well a classifier separates two classes. Traditional AUC optimization techniques are supervised learning methods that utilize only labeled data (i.e., the true class is known for all data) to train the classifiers. In this work, inspired by semi-supervised and transductive learning, we propose two new AUC optimization algorithms hereby referred to as semi-supervised learning receiver operating characteristic (SSLROC) algorithms, which utilize unlabeled test samples in classifier training to maximize AUC. Unlabeled samples are incorporated into the AUC optimization process, and their ranking relationships to labeled positive and negative training samples are considered as optimization constraints. The introduced test samples will cause the learned decision boundary in a multidimensional feature space to adapt not only to the distribution of labeled training data, but also to the distribution of unlabeled test data. We formulate the semi-supervised AUC optimization problem as a semi-definite programming problem based on the margin maximization theory. The proposed methods SSLROC1 (1-norm) and SSLROC2 (2-norm) were evaluated using 34 (determined by power analysis) randomly selected datasets from the University of California, Irvine machine learning repository. Wilcoxon signed rank tests showed that the proposed methods achieved significant improvement compared with state-of-the-art methods. The proposed methods were also applied to a CT colonography dataset for colonic polyp classification and showed promising results.
A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM
Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei
2018-01-01
Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model’s performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM’s parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models’ performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors. PMID:29342942
Performance of Optimized Actuator and Sensor Arrays in an Active Noise Control System
NASA Technical Reports Server (NTRS)
Palumbo, D. L.; Padula, S. L.; Lyle, K. H.; Cline, J. H.; Cabell, R. H.
1996-01-01
Experiments have been conducted in NASA Langley's Acoustics and Dynamics Laboratory to determine the effectiveness of optimized actuator/sensor architectures and controller algorithms for active control of harmonic interior noise. Tests were conducted in a large scale fuselage model - a composite cylinder which simulates a commuter class aircraft fuselage with three sections of trim panel and a floor. Using an optimization technique based on the component transfer functions, combinations of 4 out of 8 piezoceramic actuators and 8 out of 462 microphone locations were evaluated against predicted performance. A combinatorial optimization technique called tabu search was employed to select the optimum transducer arrays. Three test frequencies represent the cases of a strong acoustic and strong structural response, a weak acoustic and strong structural response and a strong acoustic and weak structural response. Noise reduction was obtained using a Time Averaged/Gradient Descent (TAGD) controller. Results indicate that the optimization technique successfully predicted best and worst case performance. An enhancement of the TAGD control algorithm was also evaluated. The principal components of the actuator/sensor transfer functions were used in the PC-TAGD controller. The principal components are shown to be independent of each other while providing control as effective as the standard TAGD.
Strong stabilization servo controller with optimization of performance criteria.
Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor
2011-07-01
Synthesis of a simple robust controller with a pole placement technique and a H(∞) metrics is the method used for control of a servo mechanism with BLDC and BDC electric motors. The method includes solving a polynomial equation on the basis of the chosen characteristic polynomial using the Manabe standard polynomial form and parametric solutions. Parametric solutions are introduced directly into the structure of the servo controller. On the basis of the chosen parametric solutions the robustness of a closed-loop system is assessed through uncertainty models and assessment of the norm ‖•‖(∞). The design procedure and the optimization are performed with a genetic algorithm differential evolution - DE. The DE optimization method determines a suboptimal solution throughout the optimization on the basis of a spectrally square polynomial and Šiljak's absolute stability test. The stability of the designed controller during the optimization is being checked with Lipatov's stability condition. Both utilized approaches: Šiljak's test and Lipatov's condition, check the robustness and stability characteristics on the basis of the polynomial's coefficients, and are very convenient for automated design of closed-loop control and for application in optimization algorithms such as DE. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Thermal Performance of Cryogenic Multilayer Insulation at Various Layer Spacings
NASA Technical Reports Server (NTRS)
Johnson, Wesley Louis
2010-01-01
Multilayer insulation (MLI) has been shown to be the best performing cryogenic insulation system at high vacuum (less that 10 (exp 3) torr), and is widely used on spaceflight vehicles. Over the past 50 years, many investigations into MLI have yielded a general understanding of the many variables that are associated with MLI. MLI has been shown to be a function of variables such as warm boundary temperature, the number of reflector layers, and the spacer material in between reflectors, the interstitial gas pressure and the interstitial gas. Since the conduction between reflectors increases with the thickness of the spacer material, yet the radiation heat transfer is inversely proportional to the number of layers, it stands to reason that the thermal performance of MLI is a function of the number of layers per thickness, or layer density. Empirical equations that were derived based on some of the early tests showed that the conduction term was proportional to the layer density to a power. This power depended on the material combination and was determined by empirical test data. Many authors have graphically shown such optimal layer density, but none have provided any data at such low densities, or any method of determining this density. Keller, Cunnington, and Glassford showed MLI thermal performance as a function of layer density of high layer densities, but they didn't show a minimal layer density or any data below the supposed optimal layer density. However, it was recently discovered that by manipulating the derived empirical equations and taking a derivative with respect to layer density yields a solution for on optimal layer density. Various manufacturers have begun manufacturing MLI at densities below the optimal density. They began this based on the theory that increasing the distance between layers lowered the conductive heat transfer and they had no limitations on volume. By modifying the circumference of these blankets, the layer density can easily be varied. The simplest method of determining the thermal performance of MLI at cryogenic temperature is by boil-off calorimetry. Several blankets were procured and tested at various layer densities at the Cryogenics Test Laboratory at Kennedy Space Center. The densities that the blankets were tested over covered a wide range of layer densities including the analytical minimum. Several of the blankets were tested at the same insulation thickness while changing the layer density (thus a different number of reflector layers). Optimizing the layer density of multilayer insulation systems for heat transfer would remove a layer density from the complex method of designing such insulation systems. Additional testing was performed at various warm boundary temperatures and pressures. The testing and analysis was performed to simplify the analysis of cryogenic thermal insulation systems. This research was funded by the National Aeronautics and Space Administration's Exploration Technology Development Program's Cryogenic Fluid Management Project
Nuclear fuel management optimization using genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1995-07-01
The code independent genetic algorithm reactor optimization (CIGARO) system has been developed to optimize nuclear reactor loading patterns. It uses genetic algorithms (GAs) and a code-independent interface, so any reactor physics code (e.g., CASMO-3/SIMULATE-3) can be used to evaluate the loading patterns. The system is compared to other GA-based loading pattern optimizers. Tests were carried out to maximize the beginning of cycle k{sub eff} for a pressurized water reactor core loading with a penalty function to limit power peaking. The CIGARO system performed well, increasing the k{sub eff} after lowering the peak power. Tests of a prototype parallel evaluation methodmore » showed the potential for a significant speedup.« less
Affordable Development and Optimization of CERMET Fuels for NTP Ground Testing
NASA Technical Reports Server (NTRS)
Hickman, Robert R.; Broadway, Jeramie W.; Mireles, Omar R.
2014-01-01
CERMET fuel materials for Nuclear Thermal Propulsion (NTP) are currently being developed at NASA's Marshall Space Flight Center. The work is part of NASA's Advanced Space Exploration Systems Nuclear Cryogenic Propulsion Stage (NCPS) Project. The goal of the FY12-14 project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of an NTP system. A key enabling technology for an NCPS system is the fabrication of a stable high temperature nuclear fuel form. Although much of the technology was demonstrated during previous programs, there are currently no qualified fuel materials or processes. The work at MSFC is focused on developing critical materials and process technologies for manufacturing robust, full-scale CERMET fuels. Prototypical samples are being fabricated and tested in flowing hot hydrogen to understand processing and performance relationships. As part of this initial demonstration task, a final full scale element test will be performed to validate robust designs. The next phase of the project will focus on continued development and optimization of the fuel materials to enable future ground testing. The purpose of this paper is to provide a detailed overview of the CERMET fuel materials development plan. The overall CERMET fuel development path is shown in Figure 2. The activities begin prior to ATP for a ground reactor or engine system test and include materials and process optimization, hot hydrogen screening, material property testing, and irradiation testing. The goal of the development is to increase the maturity of the fuel form and reduce risk. One of the main accomplishmens of the current AES FY12-14 project was to develop dedicated laboratories at MSFC for the fabrication and testing of full length fuel elements. This capability will enable affordable, near term development and optimization of the CERMET fuels for future ground testing. Figure 2 provides a timeline of the development and optimization tasks for the AES FY15-17 follow on program.
Simen, Patrick; Contreras, David; Buck, Cara; Hu, Peter; Holmes, Philip; Cohen, Jonathan D
2009-12-01
The drift-diffusion model (DDM) implements an optimal decision procedure for stationary, 2-alternative forced-choice tasks. The height of a decision threshold applied to accumulating information on each trial determines a speed-accuracy tradeoff (SAT) for the DDM, thereby accounting for a ubiquitous feature of human performance in speeded response tasks. However, little is known about how participants settle on particular tradeoffs. One possibility is that they select SATs that maximize a subjective rate of reward earned for performance. For the DDM, there exist unique, reward-rate-maximizing values for its threshold and starting point parameters in free-response tasks that reward correct responses (R. Bogacz, E. Brown, J. Moehlis, P. Holmes, & J. D. Cohen, 2006). These optimal values vary as a function of response-stimulus interval, prior stimulus probability, and relative reward magnitude for correct responses. We tested the resulting quantitative predictions regarding response time, accuracy, and response bias under these task manipulations and found that grouped data conformed well to the predictions of an optimally parameterized DDM.
Li, Desheng
2014-01-01
This paper proposes a novel variant of cooperative quantum-behaved particle swarm optimization (CQPSO) algorithm with two mechanisms to reduce the search space and avoid the stagnation, called CQPSO-DVSA-LFD. One mechanism is called Dynamic Varying Search Area (DVSA), which takes charge of limiting the ranges of particles' activity into a reduced area. On the other hand, in order to escape the local optima, Lévy flights are used to generate the stochastic disturbance in the movement of particles. To test the performance of CQPSO-DVSA-LFD, numerical experiments are conducted to compare the proposed algorithm with different variants of PSO. According to the experimental results, the proposed method performs better than other variants of PSO on both benchmark test functions and the combinatorial optimization issue, that is, the job-shop scheduling problem.
NASA Astrophysics Data System (ADS)
Gish, Andrew
2015-11-01
Ducts (also called shrouds) have been shown to improve performance of hydrokinetic turbines in some situations, bringing the power coefficient (Cp) closer to the Betz limit. Here we investigate optimization of the duct design as well as the addition of stator blades upstream of the turbine rotor to introduce pre-swirl in the flow. A small scale three-bladed turbine was tested in a towing tank. Three cases (bare turbine, with duct, and with duct and stators) were tested over a range of flow speeds. Important parameters include duct cross-sectional shape, blade-duct gap, stator cross-sectional shape, and stator angle. For each test, Cp was evaluated as a function of tip speed ratio (TSR). Experimental results were compared with numerical simulations. Results indicate that ducts and stators can improve performance at slower flow speeds and lower the stall speed compared to a bare turbine, but may degrade performance at higher speeds. Ongoing efforts to optimize duct and stator configurations will be discussed.
Performance Review of Harmony Search, Differential Evolution and Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Mohan Pandey, Hari
2017-08-01
Metaheuristic algorithms are effective in the design of an intelligent system. These algorithms are widely applied to solve complex optimization problems, including image processing, big data analytics, language processing, pattern recognition and others. This paper presents a performance comparison of three meta-heuristic algorithms, namely Harmony Search, Differential Evolution, and Particle Swarm Optimization. These algorithms are originated altogether from different fields of meta-heuristics yet share a common objective. The standard benchmark functions are used for the simulation. Statistical tests are conducted to derive a conclusion on the performance. The key motivation to conduct this research is to categorize the computational capabilities, which might be useful to the researchers.
NASA Astrophysics Data System (ADS)
Welch, Kevin; Leonard, Jerry; Jones, Richard D.
2010-08-01
Increasingly stringent requirements on the performance of diffractive optical elements (DOEs) used in wafer scanner illumination systems are driving continuous improvements in their associated manufacturing processes. Specifically, these processes are designed to improve the output pattern uniformity of off-axis illumination systems to minimize degradation in the ultimate imaging performance of a lithographic tool. In this paper, we discuss performance improvements in both photolithographic patterning and RIE etching of fused silica diffractive optical structures. In summary, optimized photolithographic processes were developed to increase critical dimension uniformity and featuresize linearity across the substrate. The photoresist film thickness was also optimized for integration with an improved etch process. This etch process was itself optimized for pattern transfer fidelity, sidewall profile (wall angle, trench bottom flatness), and across-wafer etch depth uniformity. Improvements observed with these processes on idealized test structures (for ease of analysis) led to their implementation in product flows, with comparable increases in performance and yield on customer designs.
Gasquoine, Philip G; Weimer, Amy A; Amador, Arnoldo
2017-04-01
To measure specificity as failure rates for non-clinical, bilingual, Mexican Americans on three popular performance validity measures: (a) the language format Reliable Digit Span; (b) visual-perceptual format Test of Memory Malingering; and (c) visual-perceptual format Dot Counting, using optimal/suboptimal effort cut scores developed for monolingual, English-speakers. Participants were 61 consecutive referrals, aged between 18 and 65 years, with <16 years of education who were subjectively bilingual (confirmed via formal assessment) and chose the language of assessment, Spanish or English, for the performance validity tests. Failure rates were 38% for Reliable Digit Span, 3% for the Test of Memory Malingering, and 7% for Dot Counting. For Reliable Digit Span, the failure rates for Spanish (46%) and English (31%) languages of administration did not differ significantly. Optimal/suboptimal effort cut scores derived for monolingual English-speakers can be used with Spanish/English bilinguals when using the visual-perceptual format Test of Memory Malingering and Dot Counting. The high failure rate for Reliable Digit Span suggests it should not be used as a performance validity measure with Spanish/English bilinguals, irrespective of the language of test administration, Spanish or English.
Counteracting Obstacles with Optimistic Predictions
ERIC Educational Resources Information Center
Zhang, Ying; Fishbach, Ayelet
2010-01-01
This research tested for counteractive optimism: a self-control strategy of generating optimistic predictions of future goal attainment in order to overcome anticipated obstacles in goal pursuit. In support of the counteractive optimism model, participants in 5 studies predicted better performance, more time invested in goal activities, and lower…
An Optimized Control for LLC Resonant Converter with Wide Load Range
NASA Astrophysics Data System (ADS)
Xi, Xia; Qian, Qinsong
2017-05-01
This paper presents an optimized control which makes LLC resonant converters operate with a wider load range and provides good closed-loop performance. The proposed control employs two paralleled digital compensations to guarantee the good closed-loop performance in a wide load range during the steady state, an optimized trajectory control will take over to change the gate-driving signals immediately at the load transients. Finally, the proposed control has been implemented and tested on a 150W 200kHz 400V/24V LLC resonant converter and the result validates the proposed method.
T-38C Optimal Landing Technique Determination (Project Talon Spot)
2010-05-01
USAF TPS, Class 09B. All objectives of the test were met. 15. SUBJECT TERMS T-38 Aircraft , T-38C Aircraft , J85-GE-5 engine, landing performance... aircraft crossed the threshold. The requesting agency was Headquarters AETC/A3FV, through the USAF TPS. The responsible test organization was the 412...13197 (Figure 1) instrumented test aircraft were flown. The USAF TPS personnel performed all testing at USAF Plant 42 in Palmdale, CA and Edwards
Proprioceptive isokinetic exercise test
NASA Technical Reports Server (NTRS)
Dempster, P. T.; Bernauer, E. M.; Bond, M.; Greenleaf, J. E.
1993-01-01
Proprioception, the reception of stimuli within the body that indicates position, is an important mechanism for optimal human performance. People exposed to prolonged bed rest, microgravity, or other deconditioning situations usually experience reduced proprioceptor and kinesthetic stimuli that compromise body balance, posture, and equilibrium. A new proprioceptive test is described that utilizes the computer-driven LIDO isokinetic ergometer. An overview of the computer logic, software, and testing procedure for this proprioceptive test, which can be performed with the arms or legs, is described.
QCGAT mixer compound exhaust system design and static big model test report
NASA Technical Reports Server (NTRS)
Blackmore, W. L.; Thompson, C. E.
1978-01-01
A mixer exhaust system was designed to meet the proposed performance and exhaust jet noise goals for the AiResearch QCGAT engine. Some 0.35 scale models of the various nozzles were fabricated and aerodynamically and acoustically tested. Preliminary optimization, engine cycle matching, model test data and analysis are presented. A final mixer exhaust system is selected for optimum performance for the overall flight regime.
Optimal sequence of tests for the mediastinal staging of non-small cell lung cancer.
Luque, Manuel; Díez, Francisco Javier; Disdier, Carlos
2016-01-26
Non-small cell lung cancer (NSCLC) is the most prevalent type of lung cancer and the most difficult to predict. When there are no distant metastases, the optimal therapy depends mainly on whether there are malignant lymph nodes in the mediastinum. Given the vigorous debate among specialists about which tests should be used, our goal was to determine the optimal sequence of tests for each patient. We have built an influence diagram (ID) that represents the possible tests, their costs, and their outcomes. This model is equivalent to a decision tree containing millions of branches. In the first evaluation, we only took into account the clinical outcomes (effectiveness). In the second, we used a willingness-to-pay of € 30,000 per quality adjusted life year (QALY) to convert economic costs into effectiveness. We assigned a second-order probability distribution to each parameter in order to conduct several types of sensitivity analysis. Two strategies were obtained using two different criteria. When considering only effectiveness, a positive computed tomography (CT) scan must be followed by a transbronchial needle aspiration (TBNA), an endobronchial ultrasound (EBUS), and an endoscopic ultrasound (EUS). When the CT scan is negative, a positron emission tomography (PET), EBUS, and EUS are performed. If the TBNA or the PET is positive, then a mediastinoscopy is performed only if the EBUS and EUS are negative. If the TBNA or the PET is negative, then a mediastinoscopy is performed only if the EBUS and the EUS give contradictory results. When taking into account economic costs, a positive CT scan is followed by a TBNA; an EBUS is done only when the CT scan or the TBNA is negative. This recommendation of performing a TBNA in certain cases should be discussed by the pneumology community because TBNA is a cheap technique that could avoid an EBUS, an expensive test, for many patients. We have determined the optimal sequence of tests for the mediastinal staging of NSCLC by considering sensitivity, specificity, and the economic cost of each test. The main novelty of our study is the recommendation of performing TBNA whenever the CT scan is positive. Our model is publicly available so that different experts can populate it with their own parameters and re-examine its conclusions. It is therefore proposed as an evidence-based instrument for reaching a consensus.
Heinsch, Stephen C.; Das, Siba R.; Smanski, Michael J.
2018-01-01
Increasing the final titer of a multi-gene metabolic pathway can be viewed as a multivariate optimization problem. While numerous multivariate optimization algorithms exist, few are specifically designed to accommodate the constraints posed by genetic engineering workflows. We present a strategy for optimizing expression levels across an arbitrary number of genes that requires few design-build-test iterations. We compare the performance of several optimization algorithms on a series of simulated expression landscapes. We show that optimal experimental design parameters depend on the degree of landscape ruggedness. This work provides a theoretical framework for designing and executing numerical optimization on multi-gene systems. PMID:29535690
A Comparison of Trajectory Optimization Methods for the Impulsive Minimum Fuel Rendezvous Problem
NASA Technical Reports Server (NTRS)
Hughes, Steven P.; Mailhe, Laurie M.; Guzman, Jose J.
2003-01-01
In this paper we present, a comparison of trajectory optimization approaches for the minimum fuel rendezvous problem. Both indirect and direct methods are compared for a variety of test cases. The indirect approach is based on primer vector theory. The direct approaches are implemented numerically and include Sequential Quadratic Programming (SQP). Quasi- Newton and Nelder-Meade Simplex. Several cost function parameterizations are considered for the direct approach. We choose one direct approach that appears to be the most flexible. Both the direct and indirect methods are applied to a variety of test cases which are chosen to demonstrate the performance of each method in different flight regimes. The first test case is a simple circular-to-circular coplanar rendezvous. The second test case is an elliptic-to-elliptic line of apsides rotation. The final test case is an orbit phasing maneuver sequence in a highly elliptic orbit. For each test case we present a comparison of the performance of all methods we consider in this paper.
Acquisition of decision making criteria: reward rate ultimately beats accuracy.
Balci, Fuat; Simen, Patrick; Niyogi, Ritwik; Saxe, Andrew; Hughes, Jessica A; Holmes, Philip; Cohen, Jonathan D
2011-02-01
Speed-accuracy trade-offs strongly influence the rate of reward that can be earned in many decision-making tasks. Previous reports suggest that human participants often adopt suboptimal speed-accuracy trade-offs in single session, two-alternative forced-choice tasks. We investigated whether humans acquired optimal speed-accuracy trade-offs when extensively trained with multiple signal qualities. When performance was characterized in terms of decision time and accuracy, our participants eventually performed nearly optimally in the case of higher signal qualities. Rather than adopting decision criteria that were individually optimal for each signal quality, participants adopted a single threshold that was nearly optimal for most signal qualities. However, setting a single threshold for different coherence conditions resulted in only negligible decrements in the maximum possible reward rate. Finally, we tested two hypotheses regarding the possible sources of suboptimal performance: (1) favoring accuracy over reward rate and (2) misestimating the reward rate due to timing uncertainty. Our findings provide support for both hypotheses, but also for the hypothesis that participants can learn to approach optimality. We find specifically that an accuracy bias dominates early performance, but diminishes greatly with practice. The residual discrepancy between optimal and observed performance can be explained by an adaptive response to uncertainty in time estimation.
Zhang, Liping; Zheng, Yanling; Wang, Kai; Zhang, Xueliang; Zheng, Yujian
2014-06-01
In this paper, by using a particle swarm optimization algorithm to solve the optimal parameter estimation problem, an improved Nash nonlinear grey Bernoulli model termed PSO-NNGBM(1,1) is proposed. To test the forecasting performance, the optimized model is applied for forecasting the incidence of hepatitis B in Xinjiang, China. Four models, traditional GM(1,1), grey Verhulst model (GVM), original nonlinear grey Bernoulli model (NGBM(1,1)) and Holt-Winters exponential smoothing method, are also established for comparison with the proposed model under the criteria of mean absolute percentage error and root mean square percent error. The prediction results show that the optimized NNGBM(1,1) model is more accurate and performs better than the traditional GM(1,1), GVM, NGBM(1,1) and Holt-Winters exponential smoothing method. Copyright © 2014. Published by Elsevier Ltd.
Experimental optimization of the FireFly 600 photovoltaic off-grid system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyson, William Earl; Orozco, Ron; Ralph, Mark E.
2003-10-01
A comprehensive evaluation and experimental optimization of the FireFly{trademark} 600 off-grid photovoltaic system manufactured by Energia Total, Ltd. was conducted at Sandia National Laboratories in May and June of 2001. This evaluation was conducted at the request of the manufacturer and addressed performance of individual system components, overall system functionality and performance, safety concerns, and compliance with applicable codes and standards. A primary goal of the effort was to identify areas for improvement in performance, reliability, and safety. New system test procedures were developed during the effort.
Risk Mitigation Testing with the BepiColombo MPO SADA
NASA Astrophysics Data System (ADS)
Zemann, J.; Heinrich, B.; Skulicz, A.; Madsen, M.; Weisenstein, W.; Modugno, F.; Althaus, F.; Panhofer, T.; Osterseher, G.
2013-09-01
A Solar Array (SA) Drive Assembly (SADA) for the BepiColombo mission is being developed and qualified at RUAG Space Zürich (RSSZ). The system is consisting of the Solar Array Drive Mechanism (SADM) and the Solar Array Drive Electronics (SADE) which is subcontracted to RUAG Space Austria (RSA).This paper deals with the risk mitigation activities and the lesson learnt from this development. In specific following topics substantiated by bread board (BB) test results will be addressed in detail:Slipring Bread Board Test: Verification of lifetime and electrical performance of carbon brush technology Potentiometer BB Tests: Focus on lifetime verification (> 650000 revolution) and accuracy requirement SADM EM BB Test: Subcomponent (front-bearing and gearbox) characterization; complete test campaign equivalent to QM test.EM SADM/ SADE Combined Test: Verification of combined performance (accuracy, torque margin) and micro-vibration testing of SADA systemSADE Bread Board Test: Parameter optimization; Test campaign equivalent to QM testThe main improvements identified in frame of BB testing and already implemented in the SADM EM/QM and SADE EQM are:• Improved preload device for gearbox• Improved motor ball-bearing assembly• Position sensor improvements• Calibration process for potentiometer• SADE motor controller optimization toachieve required running smoothness• Overall improvement of test equipment.
THERMAL DEPOLYMERIZATION OF POSTCONSUMER PLASTICS
The University of North Dakota Energy & Environmental Research Center (EERC) performed two series of tests to evaluate process conditions for thermal depolymerization of postconsumer plastics. The objective of the first test series was to provide data for optimization of reactio...
Mieres, Jennifer H; Shaw, Leslee J; Hendel, Robert C; Heller, Gary V
2009-01-01
Coronary artery disease remains the leading cause of morbidity and mortality in women. The optimal non-invasive test for evaluation of ischemic heart disease in women is unknown. Although current guidelines support the choice of the exercise tolerance test (ETT) as a first line test for women with a normal baseline ECG and adequate exercise capabilities, supportive data for this recommendation are controversial. The what is the optimal method for ischemia evaluation in women? (WOMEN) study was designed to determine the optimal non-invasive strategy for CAD risk detection of intermediate and high risk women presenting with chest pain or equivalent symptoms suggestive of ischemic heart disease. The study will prospectively compare the 2-year event rates in women capable of performing exercise treadmill testing or Tc-99 m tetrofosmin SPECT myocardial perfusion imaging (MPI). The study will enroll women presenting for the evaluation of chest pain or anginal equivalent symptoms who are capable of performing >5 METs of exercise while at intermediate-high pretest risk for ischemic heart disease who will be randomized to either ETT testing alone or with Tc-99 m tetrofosmin SPECT MPI. The null hypothesis for this project is that the exercise ECG has the same negative predictive value for risk detection as gated myocardial perfusion SPECT in women. The primary aim is to compare 2-year cardiac event rates in women randomized to SPECT MPI to those randomized to ETT. The WOMEN study seeks to provide objective information for guidelines for the evaluation of symptomatic women with an intermediate-high likelihood for CAD.
Longin, C Friedrich H; Utz, H Friedrich; Reif, Jochen C; Schipprack, Wolfgang; Melchinger, Albrecht E
2006-03-01
Optimum allocation of resources is of fundamental importance for the efficiency of breeding programs. The objectives of our study were to (1) determine the optimum allocation for the number of lines and test locations in hybrid maize breeding with doubled haploids (DHs) regarding two optimization criteria, the selection gain deltaG(k) and the probability P(k) of identifying superior genotypes, (2) compare both optimization criteria including their standard deviations (SDs), and (3) investigate the influence of production costs of DHs on the optimum allocation. For different budgets, number of finally selected lines, ratios of variance components, and production costs of DHs, the optimum allocation of test resources under one- and two-stage selection for testcross performance with a given tester was determined by using Monte Carlo simulations. In one-stage selection, lines are tested in field trials in a single year. In two-stage selection, optimum allocation of resources involves evaluation of (1) a large number of lines in a small number of test locations in the first year and (2) a small number of the selected superior lines in a large number of test locations in the second year, thereby maximizing both optimization criteria. Furthermore, to have a realistic chance of identifying a superior genotype, the probability P(k) of identifying superior genotypes should be greater than 75%. For budgets between 200 and 5,000 field plot equivalents, P(k) > 75% was reached only for genotypes belonging to the best 5% of the population. As the optimum allocation for P(k)(5%) was similar to that for deltaG(k), the choice of the optimization criterion was not crucial. The production costs of DHs had only a minor effect on the optimum number of locations and on values of the optimization criteria.
SGC Tests for Influence of Material Composition on Compaction Characteristic of Asphalt Mixtures
Chen, Qun
2013-01-01
Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture) was studied using Superpave gyratory compactor (SGC) simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes. PMID:23818830
SGC tests for influence of material composition on compaction characteristic of asphalt mixtures.
Chen, Qun; Li, Yuzhi
2013-01-01
Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture) was studied using Superpave gyratory compactor (SGC) simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes.
Li, Desheng
2014-01-01
This paper proposes a novel variant of cooperative quantum-behaved particle swarm optimization (CQPSO) algorithm with two mechanisms to reduce the search space and avoid the stagnation, called CQPSO-DVSA-LFD. One mechanism is called Dynamic Varying Search Area (DVSA), which takes charge of limiting the ranges of particles' activity into a reduced area. On the other hand, in order to escape the local optima, Lévy flights are used to generate the stochastic disturbance in the movement of particles. To test the performance of CQPSO-DVSA-LFD, numerical experiments are conducted to compare the proposed algorithm with different variants of PSO. According to the experimental results, the proposed method performs better than other variants of PSO on both benchmark test functions and the combinatorial optimization issue, that is, the job-shop scheduling problem. PMID:24851085
On Per-Phase Topology Control and Switching in Emerging Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Mousavi, Mirrasoul J.
This paper presents a new concept and approach for topology control and switching in distribution systems by extending the traditional circuit switching to laterals and single-phase loads. Voltage unbalance and other key performance indicators including voltage magnitudes, line loading, and energy losses are used to characterize and demonstrate the technical value of optimizing system topology on a per-phase basis in response to feeder conditions. The near-optimal per-phase topology control is defined as a series of hierarchical optimization problems. The proposed approach is respectively applied to IEEE 13-bus and 123-bus test systems for demonstration, which included the impact of integrating electricmore » vehicles (EVs) in the test circuit. It is concluded that the proposed approach can be effectively leveraged to improve voltage profiles with electric vehicles, the extent of which depends upon the performance of the base case without EVs.« less
Zhu, Tian; Cao, Shuyi; Su, Pin-Chih; Patel, Ram; Shah, Darshan; Chokshi, Heta B; Szukala, Richard; Johnson, Michael E; Hevener, Kirk E
2013-09-12
A critical analysis of virtual screening results published between 2007 and 2011 was performed. The activity of reported hit compounds from over 400 studies was compared to their hit identification criteria. Hit rates and ligand efficiencies were calculated to assist in these analyses, and the results were compared with factors such as the size of the virtual library and the number of compounds tested. A series of promiscuity, druglike, and ADMET filters were applied to the reported hits to assess the quality of compounds reported, and a careful analysis of a subset of the studies that presented hit optimization was performed. These data allowed us to make several practical recommendations with respect to selection of compounds for experimental testing, definition of hit identification criteria, and general virtual screening hit criteria to allow for realistic hit optimization. A key recommendation is the use of size-targeted ligand efficiency values as hit identification criteria.
Aero/structural tailoring of engine blades (AERO/STAEBL)
NASA Technical Reports Server (NTRS)
Brown, K. W.
1988-01-01
This report describes the Aero/Structural Tailoring of Engine Blades (AERO/STAEBL) program, which is a computer code used to perform engine fan and compressor blade aero/structural numerical optimizations. These optimizations seek a blade design of minimum operating cost that satisfies realistic blade design constraints. This report documents the overall program (i.e., input, optimization procedures, approximate analyses) and also provides a detailed description of the validation test cases.
Optical performance of random anti-reflection structured surfaces (rARSS) on spherical lenses
NASA Astrophysics Data System (ADS)
Taylor, Courtney D.
Random anti-reflection structured surfaces (rARSS) have been reported to improve transmittance of optical-grade fused silica planar substrates to values greater than 99%. These textures are fabricated directly on the substrates using reactive-ion/inductively-coupled plasma etching (RIE/ICP) techniques, and often result in transmitted spectra with no measurable interference effects (fringes) for a wide range of wavelengths. The RIE/ICP processes used in the fabrication process to etch the rARSS is anisotropic and thus well suited for planar components. The improvement in spectral transmission has been found to be independent of optical incidence angles for values from 0° to +/-30°. Qualifying and quantifying the rARSS performance on curved substrates, such as convex lenses, is required to optimize the fabrication of the desired AR effect on optical-power elements. In this work, rARSS was fabricated on fused silica plano-convex (PCX) and plano-concave (PCV) lenses using a planar-substrate optimized RIE process to maximize optical transmission in the range from 500 to 1100 nm. An additional set of lenses were etched in a non-optimized ICP process to provide additional comparisons. Results are presented from optical transmission and beam propagation tests (optimized lenses only) of rARSS lenses for both TE and TM incident polarizations at a wavelength of 633 nm and over a 70° full field of view in both singlet and doublet configurations. These results suggest optimization of the fabrication process is not required, mainly due to the wide angle-of-incidence AR tolerance performance of the rARSS lenses. Non-optimized recipe lenses showed low transmission enhancement, and confirmed the need to optimized etch recipes prior to process transfer of PCX/PCV lenses. Beam propagation tests indicated no major beam degradation through the optimized lens elements. Scanning electron microscopy (SEM) images confirmed different structure between optimized and non-optimized samples. SEM images also indicated isotropically-oriented surface structures on both types of lenses.
Inert gas ion thruster development
NASA Technical Reports Server (NTRS)
Ramsey, W. D.
1980-01-01
Two 12 cm magneto-electrostatic containment (MESC) ion thrusters were performance mapped with argon and xenon. The first, hexagonal, thruster produced optimized performance of 48.5to 79 percent argon mass utilization efficiencies at discharge energies of 240 to 425 eV/ion, respectively, Xenon mass utilization efficiencies of 78 to 95 percent were observed at discharge energies of 220 to 290 eV/ion with the same optimized hexagonal thruster. Changes to the cathode baffle reduced the discharge anode potential during xenon operation from approximately 40 volts to about 30 volts. Preliminary tests conducted with the second, hemispherical, MESC thruster showed a nonuniform anode magnetic field adversely affected thruster performance. This performance degradation was partially overcome by changes in the boundary anode placement. Conclusions drawn the hemispherical thruster tests gave insights into the plasma processes in the MESC discharge that will aid in the design of future thrusters.
NASA Technical Reports Server (NTRS)
Jenkins, R. M.
1983-01-01
The present effort represents an extension of previous work wherein a calculation model for performing rapid pitchline optimization of axial gas turbine geometry, including blade profiles, is developed. The model requires no specification of geometric constraints. Output includes aerodynamic performance (adiabatic efficiency), hub-tip flow-path geometry, blade chords, and estimates of blade shape. Presented herein is a verification of the aerodynamic performance portion of the model, whereby detailed turbine test-rig data, including rig geometry, is input to the model to determine whether tested performance can be predicted. An array of seven (7) NASA single-stage axial gas turbine configurations is investigated, ranging in size from 0.6 kg/s to 63.8 kg/s mass flow and in specific work output from 153 J/g to 558 J/g at design (hot) conditions; stage loading factor ranges from 1.15 to 4.66.
Investigation into Improvement for Anti-Rollover Propensity of SUV
NASA Astrophysics Data System (ADS)
Xiong, Fei; Lan, Fengchong; Chen, Jiqing; Yang, Yuedong
2017-05-01
Currently, many research from domestic and foreign on improving anti-rollover performance of vehicle mainly focus on the electronic control of auxiliary equipment, do not make full use of suspension layout to optimize anti-rollover performance of vehicle. This investigation into anti-rollover propensity improvement concentrates on the vehicle parameters greatly influencing on anti-rollover propensity of vehicle. A simulation based on fishhook procedure is used to perform design trials and evaluations aimed at ensuring an optimal balance between vehicle's design parameters and various engineering capacities, the anti-rollover propensity is optimized at the detailed design stage of a new SUV model. Firstly a four-DOF theoretical kinematic model is established, then a complete multi-body dynamics model built in ADAMS/car based on the whole vehicle parameters is correlated to the objective handing and stability test results of a mule car. Secondly, in fishhook test simulations, the Design of Experiments method is used to quantify the effect of the vehicle parameters on the anti-rollover performance. By means of the simulation, the roll center height of front suspension should be more than 30 mm, that of rear suspension less than 150 mm, and the HCG less than 620 mm for the SUV. The ratio of front to rear suspension roll stiffness should be ranged from 1.4 to 1.6 for the SUV. As a result, at the detailed design stage of product, the anti-rollover performance of vehicle can be improved by optimizing chassis and integrated vehicle parameters.
Takahashi, Hidekazu; Haraguchi, Naotsugu; Nishimura, Junichi; Hata, Taishi; Matsuda, Chu; Yamamoto, Hirofumi; Mizushima, Tsunekazu; Mori, Masaki; Doki, Yuichiro; Nakajima, Kiyokazu
2018-06-01
Modern electrosurgical tools have a specific coagulation mode called "soft coagulation". However, soft coagulation has not been widely accepted for surgical operations. To optimize the soft coagulation environment, we developed a novel suction device integrated with an electrosurgical probe, called the "Suction ball coagulator" (SBC). In this study, we aimed to optimize the SBC design with a prototyping process involving a bench test and preclinical study; then, we aimed to demonstrate the feasibility, safety, and potential effectiveness of the SBC for laparoscopic surgery in clinical settings. SBC prototyping was performed with a bench test. Device optimization was performed in a preclinical study with a domestic swine bleeding model. Then, SBC was tested in a clinical setting during 17 clinical laparoscopic colorectal surgeries. In the bench tests, two tip hole sizes and patterns showed a good suction capacity. The preclinical study indicated the best tip shape for accuracy. In clinical use, no device-related adverse event was observed. Moreover, the SBC was feasible for prompt hemostasis and blunt dissections. In addition, SBC could evacuate vapors generated by tissue ablation using electroprobe during laparoscopic surgery. We successfully developed a novel, integrated suction/coagulation probe for hemostasis and commercialized it.
NASA Astrophysics Data System (ADS)
Jung, Sang-Young
Design procedures for aircraft wing structures with control surfaces are presented using multidisciplinary design optimization. Several disciplines such as stress analysis, structural vibration, aerodynamics, and controls are considered simultaneously and combined for design optimization. Vibration data and aerodynamic data including those in the transonic regime are calculated by existing codes. Flutter analyses are performed using those data. A flutter suppression method is studied using control laws in the closed-loop flutter equation. For the design optimization, optimization techniques such as approximation, design variable linking, temporary constraint deletion, and optimality criteria are used. Sensitivity derivatives of stresses and displacements for static loads, natural frequency, flutter characteristics, and control characteristics with respect to design variables are calculated for an approximate optimization. The objective function is the structural weight. The design variables are the section properties of the structural elements and the control gain factors. Existing multidisciplinary optimization codes (ASTROS* and MSC/NASTRAN) are used to perform single and multiple constraint optimizations of fully built up finite element wing structures. Three benchmark wing models are developed and/or modified for this purpose. The models are tested extensively.
Automatic Parameter Tuning for the Morpheus Vehicle Using Particle Swarm Optimization
NASA Technical Reports Server (NTRS)
Birge, B.
2013-01-01
A high fidelity simulation using a PC based Trick framework has been developed for Johnson Space Center's Morpheus test bed flight vehicle. There is an iterative development loop of refining and testing the hardware, refining the software, comparing the software simulation to hardware performance and adjusting either or both the hardware and the simulation to extract the best performance from the hardware as well as the most realistic representation of the hardware from the software. A Particle Swarm Optimization (PSO) based technique has been developed that increases speed and accuracy of the iterative development cycle. Parameters in software can be automatically tuned to make the simulation match real world subsystem data from test flights. Special considerations for scale, linearity, discontinuities, can be all but ignored with this technique, allowing fast turnaround both for simulation tune up to match hardware changes as well as during the test and validation phase to help identify hardware issues. Software models with insufficient control authority to match hardware test data can be immediately identified and using this technique requires very little to no specialized knowledge of optimization, freeing model developers to concentrate on spacecraft engineering. Integration of the PSO into the Morpheus development cycle will be discussed as well as a case study highlighting the tool's effectiveness.
ERIC Educational Resources Information Center
Liu, Boquan; Polce, Evan; Sprott, Julien C.; Jiang, Jack J.
2018-01-01
Purpose: The purpose of this study is to introduce a chaos level test to evaluate linear and nonlinear voice type classification method performances under varying signal chaos conditions without subjective impression. Study Design: Voice signals were constructed with differing degrees of noise to model signal chaos. Within each noise power, 100…
Vaccaro, G; Pelaez, J I; Gil, J A
2016-07-01
Objective masticatory performance assessment using two-coloured specimens relies on image processing techniques; however, just a few approaches have been tested and no comparative studies are reported. The aim of this study was to present a selection procedure of the optimal image analysis method for masticatory performance assessment with a given two-coloured chewing gum. Dentate participants (n = 250; 25 ± 6·3 years) chewed red-white chewing gums for 3, 6, 9, 12, 15, 18, 21 and 25 cycles (2000 samples). Digitalised images of retrieved specimens were analysed using 122 image processing methods (IPMs) based on feature extraction algorithms (pixel values and histogram analysis). All IPMs were tested following the criteria of: normality of measurements (Kolmogorov-Smirnov), ability to detect differences among mixing states (anova corrected with post hoc Bonferroni) and moderate-to-high correlation with the number of cycles (Spearman's Rho). The optimal IPM was chosen using multiple criteria decision analysis (MCDA). Measurements provided by all IPMs proved to be normally distributed (P < 0·05), 116 proved sensible to mixing states (P < 0·05), and 35 showed moderate-to-high correlation with the number of cycles (|ρ| > 0·5; P < 0·05). The variance of the histogram of the Hue showed the highest correlation with the number of cycles (ρ = 0·792; P < 0·0001) and the highest MCDA score (optimal). The proposed procedure proved to be reliable and able to select the optimal approach among multiple IPMs. This experiment may be reproduced to identify the optimal approach for each case of locally available test foods. © 2016 John Wiley & Sons Ltd.
Sakuma, Kaname; Tanaka, Akira; Mataga, Izumi
2016-12-01
The collagen gel droplet-embedded culture drug sensitivity test (CD-DST) is an anticancer drug sensitivity test that uses a method of three-dimensional culture of extremely small samples, and it is suited to primary cultures of human cancer cells. It is a useful method for oral squamous cell carcinoma (OSCC), in which the cancer tissues available for testing are limited. However, since the optimal contact concentrations of anticancer drugs have yet to be established in OSCC, CD-DST for detecting drug sensitivities of OSCC is currently performed by applying the optimal contact concentrations for stomach cancer. In the present study, squamous carcinoma cell lines from human oral cancer were used to investigate the optimal contact concentrations of cisplatin (CDDP) and fluorouracil (5-FU) during CD-DST for OSCC. CD-DST was performed in 7 squamous cell carcinoma cell lines derived from human oral cancers (Ca9-22, HSC-3, HSC-4, HO-1-N-1, KON, OSC-19 and SAS) using CDDP (0.15, 0.3, 1.25, 2.5, 5.0 and 10.0 µg/ml) and 5-FU (0.4, 0.9, 1.8, 3.8, 7.5, 15.0 and 30.0 µg/ml), and the optimal contact concentrations were calculated from the clinical response rate of OSCC to single-drug treatment and the in vitro efficacy rate curve. The optimal concentrations were 0.5 µg/ml for CDDP and 0.7 µg/ml for 5-FU. The antitumor efficacy of CDDP at this optimal contact concentration in CD-DST was compared to the antitumor efficacy in the nude mouse method. The T/C values, which were calculated as the ratio of the colony volume of the treatment group and the colony volume of the control group, at the optimal contact concentration of CDDP and of the nude mouse method were almost in agreement (P<0.05) and predicted clinical efficacy, indicating that the calculated optimal contact concentration is valid. Therefore, chemotherapy for OSCC based on anticancer drug sensitivity tests offers patients a greater freedom of choice and is likely to assume a greater importance in the selection of treatment from the perspectives of function preservation and quality of life, as well as representing a treatment option for unresectable, intractable or recurrent cases.
Farmer, George D; Janssen, Christian P; Nguyen, Anh T; Brumby, Duncan P
2018-04-01
We test people's ability to optimize performance across two concurrent tasks. Participants performed a number entry task while controlling a randomly moving cursor with a joystick. Participants received explicit feedback on their performance on these tasks in the form of a single combined score. This payoff function was varied between conditions to change the value of one task relative to the other. We found that participants adapted their strategy for interleaving the two tasks, by varying how long they spent on one task before switching to the other, in order to achieve the near maximum payoff available in each condition. In a second experiment, we show that this behavior is learned quickly (within 2-3 min over several discrete trials) and remained stable for as long as the payoff function did not change. The results of this work show that people are adaptive and flexible in how they prioritize and allocate attention in a dual-task setting. However, it also demonstrates some of the limits regarding people's ability to optimize payoff functions. Copyright © 2017 The Authors. Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.
Hybrid Active/Passive Jet Engine Noise Suppression System
NASA Technical Reports Server (NTRS)
Parente, C. A.; Arcas, N.; Walker, B. E.; Hersh, A. S.; Rice, E. J.
1999-01-01
A novel adaptive segmented liner concept has been developed that employs active control elements to modify the in-duct sound field to enhance the tone-suppressing performance of passive liner elements. This could potentially allow engine designs that inherently produce more tone noise but less broadband noise, or could allow passive liner designs to more optimally address high frequency broadband noise. A proof-of-concept validation program was undertaken, consisting of the development of an adaptive segmented liner that would maximize attenuation of two radial modes in a circular or annular duct. The liner consisted of a leading active segment with dual annuli of axially spaced active Helmholtz resonators, followed by an optimized passive liner and then an array of sensing microphones. Three successively complex versions of the adaptive liner were constructed and their performances tested relative to the performance of optimized uniform passive and segmented passive liners. The salient results of the tests were: The adaptive segmented liner performed well in a high flow speed model fan inlet environment, was successfully scaled to a high sound frequency and successfully attenuated three radial modes using sensor and active resonator arrays that were designed for a two mode, lower frequency environment.
NASA Astrophysics Data System (ADS)
Wei, Xianggeng; Li, Jiang; He, Guoqiang
2017-04-01
The vortex valve solid variable thrust motor is a new solid motor which can achieve Vehicle system trajectory optimization and motor energy management. Numerical calculation was performed to investigate the influence of vortex chamber diameter, vortex chamber shape, and vortex chamber height of the vortex valve solid variable thrust motor on modulation performance. The test results verified that the calculation results are consistent with laboratory results with a maximum error of 9.5%. The research drew the following major conclusions: the optimal modulation performance was achieved in a cylindrical vortex chamber, increasing the vortex chamber diameter improved the modulation performance of the vortex valve solid variable thrust motor, optimal modulation performance could be achieved when the height of the vortex chamber is half of the vortex chamber outlet diameter, and the hot gas control flow could result in an enhancement of modulation performance. The results can provide the basis for establishing the design method of the vortex valve solid variable thrust motor.
Parallel File System I/O Performance Testing On LANL Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiens, Isaac Christian; Green, Jennifer Kathleen
2016-08-18
These are slides from a presentation on parallel file system I/O performance testing on LANL clusters. I/O is a known bottleneck for HPC applications. Performance optimization of I/O is often required. This summer project entailed integrating IOR under Pavilion and automating the results analysis. The slides cover the following topics: scope of the work, tools utilized, IOR-Pavilion test workflow, build script, IOR parameters, how parameters are passed to IOR, *run_ior: functionality, Python IOR-Output Parser, Splunk data format, Splunk dashboard and features, and future work.
20 Meter Solar Sail Analysis and Correlation
NASA Technical Reports Server (NTRS)
Taleghani, B.; Lively, P.; Banik, J.; Murphy, D.; Trautt, T.
2005-01-01
This presentation discusses studies conducted to determine the element type and size that best represents a 20-meter solar sail under ground-test load conditions, the performance of test/Analysis correlation by using Static Shape Optimization Method for Q4 sail, and system dynamic. TRIA3 elements better represent wrinkle patterns than do QUAD3 elements Baseline, ten-inch elements are small enough to accurately represent sail shape, and baseline TRIA3 mesh requires a reasonable computation time of 8 min. 21 sec. In the test/analysis correlation by using Static shape optimization method for Q4 sail, ten parameters were chosen and varied during optimization. 300 sail models were created with random parameters. A response surfaces for each targets which were created based on the varied parameters. Parameters were optimized based on response surface. Deflection shape comparison for 0 and 22.5 degrees yielded a 4.3% and 2.1% error respectively. For the system dynamic study testing was done on the booms without the sails attached. The nominal boom properties produced a good correlation to test data the frequencies were within 10%. Boom dominated analysis frequencies and modes compared well with the test results.
Optimization and large scale computation of an entropy-based moment closure
NASA Astrophysics Data System (ADS)
Kristopher Garrett, C.; Hauck, Cory; Hill, Judith
2015-12-01
We present computational advances and results in the implementation of an entropy-based moment closure, MN, in the context of linear kinetic equations, with an emphasis on heterogeneous and large-scale computing platforms. Entropy-based closures are known in several cases to yield more accurate results than closures based on standard spectral approximations, such as PN, but the computational cost is generally much higher and often prohibitive. Several optimizations are introduced to improve the performance of entropy-based algorithms over previous implementations. These optimizations include the use of GPU acceleration and the exploitation of the mathematical properties of spherical harmonics, which are used as test functions in the moment formulation. To test the emerging high-performance computing paradigm of communication bound simulations, we present timing results at the largest computational scales currently available. These results show, in particular, load balancing issues in scaling the MN algorithm that do not appear for the PN algorithm. We also observe that in weak scaling tests, the ratio in time to solution of MN to PN decreases.
Microhard MHX 2420 Orbital Performance Evaluation Using RT Logic T400CS
NASA Technical Reports Server (NTRS)
Kearney, Stuart; Lombardi, Mark; Attai, Watson; Oyadomari, Ken; Al Rumhi, Ahmed Saleh Nasser; Rakotonarivo, Sebastien; Chardon, Loic; Gazulla, Oriol Tintore; Wolfe, Jasper; Salas, AlbertoGuillen;
2012-01-01
A major upfront cost of building low cost Nanosatellites is the communications sub-system. Most radios built for space missions cost over $4,000 per unit. This exceeds many budgets. One possible cost effective solution is the Microhard MHX2420, a commercial off-the-shelf transceiver with a unit cost under $1000. This paper aims to support the Nanosatellite community seeking an inexpensive radio by characterizing Microhard's performance envelope. Though not intended for space operations, the ability to test edge cases and increase average data transfer speeds through optimization positions this radio as a solution for Nanosatellite communications by expanding usage to include more missions. The second objective of this paper is to test and verify the optimal radio settings for the most common cases to improve downlinking. All tests were conducted with the aid of the RT Logic T400CS, a hardware-in-the-loop channel simulator designed to emulate real-world radio frequency (RF) link effects. This study provides recommended settings to optimize the downlink speed as well as the environmental parameters that cause the link to fail.
Optimization and large scale computation of an entropy-based moment closure
Hauck, Cory D.; Hill, Judith C.; Garrett, C. Kristopher
2015-09-10
We present computational advances and results in the implementation of an entropy-based moment closure, M N, in the context of linear kinetic equations, with an emphasis on heterogeneous and large-scale computing platforms. Entropy-based closures are known in several cases to yield more accurate results than closures based on standard spectral approximations, such as P N, but the computational cost is generally much higher and often prohibitive. Several optimizations are introduced to improve the performance of entropy-based algorithms over previous implementations. These optimizations include the use of GPU acceleration and the exploitation of the mathematical properties of spherical harmonics, which aremore » used as test functions in the moment formulation. To test the emerging high-performance computing paradigm of communication bound simulations, we present timing results at the largest computational scales currently available. Lastly, these results show, in particular, load balancing issues in scaling the M N algorithm that do not appear for the P N algorithm. We also observe that in weak scaling tests, the ratio in time to solution of M N to P N decreases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oswald, R.; Morris, J.
1994-11-01
The objective of this subcontract over its three-year duration is to advance Solarex`s photovoltaic manufacturing technologies, reduce its a-Si:H module production costs, increase module performance and expand the Solarex commercial production capacity. Solarex shall meet these objectives by improving the deposition and quality of the transparent front contact, by optimizing the laser patterning process, scaling-up the semiconductor deposition process, improving the back contact deposition, scaling-up and improving the encapsulation and testing of its a-Si:H modules. In the Phase 2 portion of this subcontract, Solarex focused on improving deposition of the front contact, investigating alternate feed stocks for the front contact,more » maximizing throughput and area utilization for all laser scribes, optimizing a-Si:H deposition equipment to achieve uniform deposition over large-areas, optimizing the triple-junction module fabrication process, evaluating the materials to deposit the rear contact, and optimizing the combination of isolation scribe and encapsulant to pass the wet high potential test. Progress is reported on the following: Front contact development; Laser scribe process development; Amorphous silicon based semiconductor deposition; Rear contact deposition process; Frit/bus/wire/frame; Materials handling; and Environmental test, yield and performance analysis.« less
Optimal Weight Assignment for a Chinese Signature File.
ERIC Educational Resources Information Center
Liang, Tyne; And Others
1996-01-01
Investigates the performance of a character-based Chinese text retrieval scheme in which monogram keys and bigram keys are encoded into document signatures. Tests and verifies the theoretical predictions of the optimal weight assignments and the minimal false hit rate in experiments using a real Chinese corpus for disyllabic queries of different…
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Owens, Lewis R.; Lin, John C.
2006-01-01
This research will investigate the use of Design-of-Experiments (DOE) in the development of an optimal passive flow control vane design for a boundary-layer-ingesting (BLI) offset inlet in transonic flow. This inlet flow control is designed to minimize the engine fan-face distortion levels and first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. Numerical simulations of the BLI inlet are computed using the Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, developed at NASA. These simulations are used to generate the numerical experiments for the DOE response surface model. In this investigation, two DOE optimizations were performed using a D-Optimal Response Surface model. The first DOE optimization was performed using four design factors which were vane height and angles-of-attack for two groups of vanes. One group of vanes was placed at the bottom of the inlet and a second group symmetrically on the sides. The DOE design was performed for a BLI inlet with a free-stream Mach number of 0.85 and a Reynolds number of 2 million, based on the length of the fan-face diameter, matching an experimental wind tunnel BLI inlet test. The first DOE optimization required a fifth order model having 173 numerical simulation experiments and was able to reduce the DC60 baseline distortion from 64% down to 4.4%, while holding the pressure recovery constant. A second DOE optimization was performed holding the vanes heights at a constant value from the first DOE optimization with the two vane angles-of-attack as design factors. This DOE only required a second order model fit with 15 numerical simulation experiments and reduced DC60 to 3.5% with small decreases in the fourth and fifth harmonic amplitudes. The second optimal vane design was tested at the NASA Langley 0.3- Meter Transonic Cryogenic Tunnel in a BLI inlet experiment. The experimental results showed a 80% reduction of DPCP(sub avg), the circumferential distortion level at the engine fan-face.
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Owens, Lewis R., Jr.; Lin, John C.
2006-01-01
This research will investigate the use of Design-of-Experiments (DOE) in the development of an optimal passive flow control vane design for a boundary-layer-ingesting (BLI) offset inlet in transonic flow. This inlet flow control is designed to minimize the engine fan face distortion levels and first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. Numerical simulations of the BLI inlet are computed using the Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, developed at NASA. These simulations are used to generate the numerical experiments for the DOE response surface model. In this investigation, two DOE optimizations were performed using a D-Optimal Response Surface model. The first DOE optimization was performed using four design factors which were vane height and angles-of-attack for two groups of vanes. One group of vanes was placed at the bottom of the inlet and a second group symmetrically on the sides. The DOE design was performed for a BLI inlet with a free-stream Mach number of 0.85 and a Reynolds number of 2 million, based on the length of the fan face diameter, matching an experimental wind tunnel BLI inlet test. The first DOE optimization required a fifth order model having 173 numerical simulation experiments and was able to reduce the DC60 baseline distortion from 64% down to 4.4%, while holding the pressure recovery constant. A second DOE optimization was performed holding the vanes heights at a constant value from the first DOE optimization with the two vane angles-of-attack as design factors. This DOE only required a second order model fit with 15 numerical simulation experiments and reduced DC60 to 3.5% with small decreases in the fourth and fifth harmonic amplitudes. The second optimal vane design was tested at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel in a BLI inlet experiment. The experimental results showed a 80% reduction of DPCPavg, the circumferential distortion level at the engine fan face.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Black; Arnis Judzis
2005-09-30
This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2004 through September 2005. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for amore » next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all Phase 1 testing and is planning Phase 2 development.« less
Todd, Christopher A; Greene, Kelli M; Yu, Xuesong; Ozaki, Daniel A; Gao, Hongmei; Huang, Yunda; Wang, Maggie; Li, Gary; Brown, Ronald; Wood, Blake; D'Souza, M Patricia; Gilbert, Peter; Montefiori, David C; Sarzotti-Kelsoe, Marcella
2012-01-31
Recent advances in assay technology have led to major improvements in how HIV-1 neutralizing antibodies are measured. A luciferase reporter gene assay performed in TZM-bl (JC53bl-13) cells has been optimized and validated. Because this assay has been adopted by multiple laboratories worldwide, an external proficiency testing program was developed to ensure data equivalency across laboratories performing this neutralizing antibody assay for HIV/AIDS vaccine clinical trials. The program was optimized by conducting three independent rounds of testing, with an increased level of stringency from the first to third round. Results from the participating domestic and international laboratories improved each round as factors that contributed to inter-assay variability were identified and minimized. Key contributors to increased agreement were experience among laboratories and standardization of reagents. A statistical qualification rule was developed using a simulation procedure based on the three optimization rounds of testing, where a laboratory qualifies if at least 25 of the 30 ID50 values lie within the acceptance ranges. This ensures no more than a 20% risk that a participating laboratory fails to qualify when it should, as defined by the simulation procedure. Five experienced reference laboratories were identified and tested a series of standardized reagents to derive the acceptance ranges for pass-fail criteria. This Standardized Proficiency Testing Program is the first available for the evaluation and documentation of assay equivalency for laboratories performing HIV-1 neutralizing antibody assays and may provide guidance for the development of future proficiency testing programs for other assay platforms. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Otake, Y.; Murphy, R. J.; Grupp, R. B.; Sato, Y.; Taylor, R. H.; Armand, M.
2015-03-01
A robust atlas-to-subject registration using a statistical deformation model (SDM) is presented. The SDM uses statistics of voxel-wise displacement learned from pre-computed deformation vectors of a training dataset. This allows an atlas instance to be directly translated into an intensity volume and compared with a patient's intensity volume. Rigid and nonrigid transformation parameters were simultaneously optimized via the Covariance Matrix Adaptation - Evolutionary Strategy (CMA-ES), with image similarity used as the objective function. The algorithm was tested on CT volumes of the pelvis from 55 female subjects. A performance comparison of the CMA-ES and Nelder-Mead downhill simplex optimization algorithms with the mutual information and normalized cross correlation similarity metrics was conducted. Simulation studies using synthetic subjects were performed, as well as leave-one-out cross validation studies. Both studies suggested that mutual information and CMA-ES achieved the best performance. The leave-one-out test demonstrated 4.13 mm error with respect to the true displacement field, and 26,102 function evaluations in 180 seconds, on average.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon Tibbitts; Arnis Judzis
2001-04-01
This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting January 2001 through March 2001. Accomplishments to date include the following: (1) On January 9th of 2001, details of the Mud Hammer Drilling Performance Testing Project were presented at a ''kick-off'' meeting held in Morgantown. (2) A preliminary test program was formulated and prepared for presentation at a meeting of the advisory board in Houston on the 8th of February. (3) The meeting was held with the advisorymore » board reviewing the test program in detail. (4) Consensus was achieved and the approved test program was initiated after thorough discussion. (5) This new program outlined the details of the drilling tests as well as scheduling the test program for the weeks of 14th and 21st of May 2001. (6) All the tasks were initiated for a completion to coincide with the test schedule. (7) By the end of March the hardware had been designed and the majority was either being fabricated or completed. (8) The rock was received and cored into cylinders.« less
Siódmiak, Tomasz; Mangelings, Debby; Vander Heyden, Yvan; Ziegler-Borowska, Marta; Marszałł, Michał Piotr
2015-03-01
Lipases form Candida rugosa and Candida antarctica were tested for their application in the enzymatic kinetic resolution of (R,S)-flurbiprofen by enantioselective esterification. Successful chromatographic separation with well-resolved peaks of (R)- and (S)-flurbiprofen and their esters was achieved in one run on chiral stationary phases by high-performance liquid chromatography (HPLC). In this study screening of enzymes was performed, and Novozym 435 was selected as an optimal catalyst for obtaining products with high enantiopurity. Additionally, the influence of organic solvents (dichloromethane, dichloroethane, dichloropropane, and methyl tert-butyl ether), primary alcohols (methanol, ethanol, n-propanol, and n-butanol), reaction time, and temperature on the enantiomeric ratio and conversion was tested. The high values of enantiomeric ratio (E in the range of 51.3-90.5) of the esterification of (R,S)-flurbiprofen were obtained for all tested alcohols using Novozym 435, which have a great significance in the field of biotechnological synthesis of drugs. The optimal temperature range for the performed reactions was from 37 to 45 °C. As a result of the optimization, (R)-flurbiprofen methyl ester was obtained with a high optical purity, eep = 96.3 %, after 96 h of incubation. The enantiomeric ratio of the reaction was E = 90.5 and conversion was C = 35.7 %.
Preparation of Permanent Mold Coating Using Magnesia Powder for Magnesium Alloys
NASA Astrophysics Data System (ADS)
Guo, Guangsi; Wang, Guangtai; Yu, Haifeng; Ye, Sheng
A kind of permanent mold coating for magnesium alloy was developed using magnesia powder and diatomite as refractory aggregate. The properties of the coating were tested and analyzed by various ingredients. The final ingredient was determined through the tests which are to find out the optimal proportion of two kinds of aggregate and the influences to coating properties by changing the proportion of binder and suspending agents. The experimental results shown that the permanent mold coating performed good properties on magnesium alloys when the optimized ratio of magnesia powder and diatomite was 6: 4, and the integrated property is very excellent when the coating was prepared with 2 percent of sodium bentonite, 0.4 percent of CMC, 7 percent of sodium hexametaphosphate, and 7 percent of sodium silicate. The excellent performance has also been proved by actual casting test.
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Gilyard, Glenn B.; Myers, Lawrence P.
1990-01-01
Integration of propulsion and flight control systems and their optimization offers significant performance improvements. Research programs were conducted which have developed new propulsion and flight control integration concepts, implemented designs on high-performance airplanes, demonstrated these designs in flight, and measured the performance improvements. These programs, first on the YF-12 airplane, and later on the F-15, demonstrated increased thrust, reduced fuel consumption, increased engine life, and improved airplane performance; with improvements in the 5 to 10 percent range achieved with integration and with no changes to hardware. The design, software and hardware developments, and testing requirements were shown to be practical.
Adly, Amr A.; Abd-El-Hafiz, Salwa K.
2014-01-01
Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper. PMID:26257939
Adly, Amr A; Abd-El-Hafiz, Salwa K
2015-05-01
Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, William D.; Hay, Michael S.
Solubility testing with actual High Level Waste tank sludge has been conducted in order to evaluate several alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge sluicing efforts. Tests were conducted with archived Savannah River Site (SRS) radioactive sludge solids that had been retrieved from Tank 5F in order to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent toward dissolving the bulk non-radioactive waste components. Solubility tests were performed by direct sludge contact with the oxalic/nitric acid reagent and with sludge that had beenmore » pretreated and acidified with dilute nitric acid. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid following current baseline tank chemical cleaning methods. One goal of testing with the optimized reagent was to compare the total amounts of oxalic acid and water required for sludge dissolution using the baseline and optimized cleaning methods. A second objective was to compare the two methods with regard to the dissolution of actinide species known to be drivers for SRS tank closure Performance Assessments (PA). Additionally, solubility tests were conducted with Tank 5 sludge using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species.« less
Keeping Your Compressor Healthy: Developing the Right Lubricant Formulation is the Key
NASA Astrophysics Data System (ADS)
Karnaz, Joseph A.; Kultgen, Derek W.
2015-08-01
Selecting the correct compressor lubricant is crucial to the duration of the compressor and the refrigerant systems’ useful life. However, developing an optimized lubricant for a refrigeration system requires a multitude of screenings and tests. The compatibility and stability of the lubricant with the refrigerant and compressor components needs to be examined at various accelerated conditions. The lubricant and refrigerant working viscosity must be determined at various refrigerant concentrations, temperatures and pressures as the diluted refrigerant in the lubricant has a significant effect on the viscosity. The correct lubricant formulation needs to be investigated for optimal performance. A compressor lubricant can provide many benefits to a refrigeration system such as bearing durability, sealing, and increased efficiency. Sometimes it is necessary to formulate the lubricant in order to optimize system performance. Specifically, this study investigated anti-wear properties of different oil additives to create a more robust refrigeration system. Many different additives and concentrations were considered and screened. Pending a successful screen test; these different additives’ anti-wear properties were analyzed using bench top tribology tests. To reduce uncertainty and provide more in-situ results the different additives were operated in a refrigerant compressor on a gas-loop testing apparatus. Oil samples were taken periodically during the test duration for analysis. Lastly, upon test completion the compressors were dismantled and the parts were examined to determine the effectiveness of the anti-wear additives.
NASA Astrophysics Data System (ADS)
Uhlemann, Sebastian; Wilkinson, Paul B.; Maurer, Hansruedi; Wagner, Florian M.; Johnson, Timothy C.; Chambers, Jonathan E.
2018-07-01
Within geoelectrical imaging, the choice of measurement configurations and electrode locations is known to control the image resolution. Previous work has shown that optimized survey designs can provide a model resolution that is superior to standard survey designs. This paper demonstrates a methodology to optimize resolution within a target area, while limiting the number of required electrodes, thereby selecting optimal electrode locations. This is achieved by extending previous work on the `Compare-R' algorithm, which by calculating updates to the resolution matrix optimizes the model resolution in a target area. Here, an additional weighting factor is introduced that allows to preferentially adding measurement configurations that can be acquired on a given set of electrodes. The performance of the optimization is tested on two synthetic examples and verified with a laboratory study. The effect of the weighting factor is investigated using an acquisition layout comprising a single line of electrodes. The results show that an increasing weight decreases the area of improved resolution, but leads to a smaller number of electrode positions. Imaging results superior to a standard survey design were achieved using 56 per cent fewer electrodes. The performance was also tested on a 3-D acquisition grid, where superior resolution within a target at the base of an embankment was achieved using 22 per cent fewer electrodes than a comparable standard survey. The effect of the underlying resistivity distribution on the performance of the optimization was investigated and it was shown that even strong resistivity contrasts only have minor impact. The synthetic results were verified in a laboratory tank experiment, where notable image improvements were achieved. This work shows that optimized surveys can be designed that have a resolution superior to standard survey designs, while requiring significantly fewer electrodes. This methodology thereby provides a means for improving the efficiency of geoelectrical imaging.
NASA Astrophysics Data System (ADS)
Uhlemann, Sebastian; Wilkinson, Paul B.; Maurer, Hansruedi; Wagner, Florian M.; Johnson, Timothy C.; Chambers, Jonathan E.
2018-03-01
Within geoelectrical imaging, the choice of measurement configurations and electrode locations is known to control the image resolution. Previous work has shown that optimized survey designs can provide a model resolution that is superior to standard survey designs. This paper demonstrates a methodology to optimize resolution within a target area, while limiting the number of required electrodes, thereby selecting optimal electrode locations. This is achieved by extending previous work on the `Compare-R' algorithm, which by calculating updates to the resolution matrix optimizes the model resolution in a target area. Here, an additional weighting factor is introduced that allows to preferentially adding measurement configurations that can be acquired on a given set of electrodes. The performance of the optimization is tested on two synthetic examples and verified with a laboratory study. The effect of the weighting factor is investigated using an acquisition layout comprising a single line of electrodes. The results show that an increasing weight decreases the area of improved resolution, but leads to a smaller number of electrode positions. Imaging results superior to a standard survey design were achieved using 56 per cent fewer electrodes. The performance was also tested on a 3D acquisition grid, where superior resolution within a target at the base of an embankment was achieved using 22 per cent fewer electrodes than a comparable standard survey. The effect of the underlying resistivity distribution on the performance of the optimization was investigated and it was shown that even strong resistivity contrasts only have minor impact. The synthetic results were verified in a laboratory tank experiment, where notable image improvements were achieved. This work shows that optimized surveys can be designed that have a resolution superior to standard survey designs, while requiring significantly fewer electrodes. This methodology thereby provides a means for improving the efficiency of geoelectrical imaging.
Simulated parallel annealing within a neighborhood for optimization of biomechanical systems.
Higginson, J S; Neptune, R R; Anderson, F C
2005-09-01
Optimization problems for biomechanical systems have become extremely complex. Simulated annealing (SA) algorithms have performed well in a variety of test problems and biomechanical applications; however, despite advances in computer speed, convergence to optimal solutions for systems of even moderate complexity has remained prohibitive. The objective of this study was to develop a portable parallel version of a SA algorithm for solving optimization problems in biomechanics. The algorithm for simulated parallel annealing within a neighborhood (SPAN) was designed to minimize interprocessor communication time and closely retain the heuristics of the serial SA algorithm. The computational speed of the SPAN algorithm scaled linearly with the number of processors on different computer platforms for a simple quadratic test problem and for a more complex forward dynamic simulation of human pedaling.
NASA Astrophysics Data System (ADS)
Venkateswara Rao, B.; Kumar, G. V. Nagesh; Chowdary, D. Deepak; Bharathi, M. Aruna; Patra, Stutee
2017-07-01
This paper furnish the new Metaheuristic algorithm called Cuckoo Search Algorithm (CSA) for solving optimal power flow (OPF) problem with minimization of real power generation cost. The CSA is found to be the most efficient algorithm for solving single objective optimal power flow problems. The CSA performance is tested on IEEE 57 bus test system with real power generation cost minimization as objective function. Static VAR Compensator (SVC) is one of the best shunt connected device in the Flexible Alternating Current Transmission System (FACTS) family. It has capable of controlling the voltage magnitudes of buses by injecting the reactive power to system. In this paper SVC is integrated in CSA based Optimal Power Flow to optimize the real power generation cost. SVC is used to improve the voltage profile of the system. CSA gives better results as compared to genetic algorithm (GA) in both without and with SVC conditions.
High capacity demonstration of honeycomb panel heat pipes
NASA Technical Reports Server (NTRS)
Tanzer, H. J.
1989-01-01
The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.
A new inertia weight control strategy for particle swarm optimization
NASA Astrophysics Data System (ADS)
Zhu, Xianming; Wang, Hongbo
2018-04-01
Particle Swarm Optimization is a member of swarm intelligence algorithms, which is inspired by the behavior of bird flocks. The inertia weight, one of the most important parameters of PSO, is crucial for PSO, for it balances the performance of exploration and exploitation of the algorithm. This paper proposes a new inertia weight control strategy and PSO with this new strategy is tested by four benchmark functions. The results shows that the new strategy provides the PSO with better performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorgensen, S.
Testing the behavior of metals in extreme environments is not always feasible, so material scientists use models to try and predict the behavior. To achieve accurate results it is necessary to use the appropriate model and material-specific parameters. This research evaluated the performance of six material models available in the MIDAS database [1] to determine at which temperatures and strain-rates they perform best, and to determine to which experimental data their parameters were optimized. Additionally, parameters were optimized for the Johnson-Cook model using experimental data from Lassila et al [2].
Liu, Boquan; Polce, Evan; Sprott, Julien C; Jiang, Jack J
2018-05-17
The purpose of this study is to introduce a chaos level test to evaluate linear and nonlinear voice type classification method performances under varying signal chaos conditions without subjective impression. Voice signals were constructed with differing degrees of noise to model signal chaos. Within each noise power, 100 Monte Carlo experiments were applied to analyze the output of jitter, shimmer, correlation dimension, and spectrum convergence ratio. The computational output of the 4 classifiers was then plotted against signal chaos level to investigate the performance of these acoustic analysis methods under varying degrees of signal chaos. A diffusive behavior detection-based chaos level test was used to investigate the performances of different voice classification methods. Voice signals were constructed by varying the signal-to-noise ratio to establish differing signal chaos conditions. Chaos level increased sigmoidally with increasing noise power. Jitter and shimmer performed optimally when the chaos level was less than or equal to 0.01, whereas correlation dimension was capable of analyzing signals with chaos levels of less than or equal to 0.0179. Spectrum convergence ratio demonstrated proficiency in analyzing voice signals with all chaos levels investigated in this study. The results of this study corroborate the performance relationships observed in previous studies and, therefore, demonstrate the validity of the validation test method. The presented chaos level validation test could be broadly utilized to evaluate acoustic analysis methods and establish the most appropriate methodology for objective voice analysis in clinical practice.
DECIDE: a software for computer-assisted evaluation of diagnostic test performance.
Chiecchio, A; Bo, A; Manzone, P; Giglioli, F
1993-05-01
The evaluation of the performance of clinical tests is a complex problem involving different steps and many statistical tools, not always structured in an organic and rational system. This paper presents a software which provides an organic system of statistical tools helping evaluation of clinical test performance. The program allows (a) the building and the organization of a working database, (b) the selection of the minimal set of tests with the maximum information content, (c) the search of the model best fitting the distribution of the test values, (d) the selection of optimal diagnostic cut-off value of the test for every positive/negative situation, (e) the evaluation of performance of the combinations of correlated and uncorrelated tests. The uncertainty associated with all the variables involved is evaluated. The program works in a MS-DOS environment with EGA or higher performing graphic card.
NASA Technical Reports Server (NTRS)
Clark, R. T.; Mccallister, R. D.
1982-01-01
The particular coding option identified as providing the best level of coding gain performance in an LSI-efficient implementation was the optimal constraint length five, rate one-half convolutional code. To determine the specific set of design parameters which optimally matches this decoder to the LSI constraints, a breadboard MCD (maximum-likelihood convolutional decoder) was fabricated and used to generate detailed performance trade-off data. The extensive performance testing data gathered during this design tradeoff study are summarized, and the functional and physical MCD chip characteristics are presented.
NASA Technical Reports Server (NTRS)
Orme, John S.; Gilyard, Glenn B.
1992-01-01
Integrated engine-airframe optimal control technology may significantly improve aircraft performance. This technology requires a reliable and accurate parameter estimator to predict unmeasured variables. To develop this technology base, NASA Dryden Flight Research Facility (Edwards, CA), McDonnell Aircraft Company (St. Louis, MO), and Pratt & Whitney (West Palm Beach, FL) have developed and flight-tested an adaptive performance seeking control system which optimizes the quasi-steady-state performance of the F-15 propulsion system. This paper presents flight and ground test evaluations of the propulsion system parameter estimation process used by the performance seeking control system. The estimator consists of a compact propulsion system model and an extended Kalman filter. The extended Laman filter estimates five engine component deviation parameters from measured inputs. The compact model uses measurements and Kalman-filter estimates as inputs to predict unmeasured propulsion parameters such as net propulsive force and fan stall margin. The ability to track trends and estimate absolute values of propulsion system parameters was demonstrated. For example, thrust stand results show a good correlation, especially in trends, between the performance seeking control estimated and measured thrust.
Constellation labeling optimization for bit-interleaved coded APSK
NASA Astrophysics Data System (ADS)
Xiang, Xingyu; Mo, Zijian; Wang, Zhonghai; Pham, Khanh; Blasch, Erik; Chen, Genshe
2016-05-01
This paper investigates the constellation and mapping optimization for amplitude phase shift keying (APSK) modulation, which is deployed in Digital Video Broadcasting Satellite - Second Generation (DVB-S2) and Digital Video Broadcasting - Satellite services to Handhelds (DVB-SH) broadcasting standards due to its merits of power and spectral efficiency together with the robustness against nonlinear distortion. The mapping optimization is performed for 32-APSK according to combined cost functions related to Euclidean distance and mutual information. A Binary switching algorithm and its modified version are used to minimize the cost function and the estimated error between the original and received data. The optimized constellation mapping is tested by combining DVB-S2 standard Low-Density Parity-Check (LDPC) codes in both Bit-Interleaved Coded Modulation (BICM) and BICM with iterative decoding (BICM-ID) systems. The simulated results validate the proposed constellation labeling optimization scheme which yields better performance against conventional 32-APSK constellation defined in DVB-S2 standard.
Optomechanical study and optimization of cantilever plate dynamics
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
1995-06-01
Optimum dynamic characteristics of an aluminum cantilever plate containing holes of different sizes and located at arbitrary positions on the plate are studied computationally and experimentally. The objective function of this optimization is the minimization/maximization of the natural frequencies of the plate in terms of such design variable s as the sizes and locations of the holes. The optimization process is performed using the finite element method and mathematical programming techniques in order to obtain the natural frequencies and the optimum conditions of the plate, respectively. The modal behavior of the resultant optimal plate layout is studied experimentally through the use of holographic interferometry techniques. Comparisons of the computational and experimental results show that good agreement between theory and test is obtained. The comparisons also show that the combined, or hybrid use of experimental and computational techniques complement each other and prove to be a very efficient tool for performing optimization studies of mechanical components.
Bai, Mingsian R; Hsieh, Ping-Ju; Hur, Kur-Nan
2009-02-01
The performance of the minimum mean-square error noise reduction (MMSE-NR) algorithm in conjunction with time-recursive averaging (TRA) for noise estimation is found to be very sensitive to the choice of two recursion parameters. To address this problem in a more systematic manner, this paper proposes an optimization method to efficiently search the optimal parameters of the MMSE-TRA-NR algorithms. The objective function is based on a regression model, whereas the optimization process is carried out with the simulated annealing algorithm that is well suited for problems with many local optima. Another NR algorithm proposed in the paper employs linear prediction coding as a preprocessor for extracting the correlated portion of human speech. Objective and subjective tests were undertaken to compare the optimized MMSE-TRA-NR algorithm with several conventional NR algorithms. The results of subjective tests were processed by using analysis of variance to justify the statistic significance. A post hoc test, Tukey's Honestly Significant Difference, was conducted to further assess the pairwise difference between the NR algorithms.
Optimization of a chemical identification algorithm
NASA Astrophysics Data System (ADS)
Chyba, Thomas H.; Fisk, Brian; Gunning, Christin; Farley, Kevin; Polizzi, Amber; Baughman, David; Simpson, Steven; Slamani, Mohamed-Adel; Almassy, Robert; Da Re, Ryan; Li, Eunice; MacDonald, Steve; Slamani, Ahmed; Mitchell, Scott A.; Pendell-Jones, Jay; Reed, Timothy L.; Emge, Darren
2010-04-01
A procedure to evaluate and optimize the performance of a chemical identification algorithm is presented. The Joint Contaminated Surface Detector (JCSD) employs Raman spectroscopy to detect and identify surface chemical contamination. JCSD measurements of chemical warfare agents, simulants, toxic industrial chemicals, interferents and bare surface backgrounds were made in the laboratory and under realistic field conditions. A test data suite, developed from these measurements, is used to benchmark algorithm performance throughout the improvement process. In any one measurement, one of many possible targets can be present along with interferents and surfaces. The detection results are expressed as a 2-category classification problem so that Receiver Operating Characteristic (ROC) techniques can be applied. The limitations of applying this framework to chemical detection problems are discussed along with means to mitigate them. Algorithmic performance is optimized globally using robust Design of Experiments and Taguchi techniques. These methods require figures of merit to trade off between false alarms and detection probability. Several figures of merit, including the Matthews Correlation Coefficient and the Taguchi Signal-to-Noise Ratio are compared. Following the optimization of global parameters which govern the algorithm behavior across all target chemicals, ROC techniques are employed to optimize chemical-specific parameters to further improve performance.
OpenMP Parallelization and Optimization of Graph-Based Machine Learning Algorithms
Meng, Zhaoyi; Koniges, Alice; He, Yun Helen; ...
2016-09-21
In this paper, we investigate the OpenMP parallelization and optimization of two novel data classification algorithms. The new algorithms are based on graph and PDE solution techniques and provide significant accuracy and performance advantages over traditional data classification algorithms in serial mode. The methods leverage the Nystrom extension to calculate eigenvalue/eigenvectors of the graph Laplacian and this is a self-contained module that can be used in conjunction with other graph-Laplacian based methods such as spectral clustering. We use performance tools to collect the hotspots and memory access of the serial codes and use OpenMP as the parallelization language to parallelizemore » the most time-consuming parts. Where possible, we also use library routines. We then optimize the OpenMP implementations and detail the performance on traditional supercomputer nodes (in our case a Cray XC30), and test the optimization steps on emerging testbed systems based on Intel’s Knights Corner and Landing processors. We show both performance improvement and strong scaling behavior. Finally, a large number of optimization techniques and analyses are necessary before the algorithm reaches almost ideal scaling.« less
Wang, Chia-Chi; Yang, Ming-Ta; Lu, Kang-Hao; Chan, Kuei-Hui
2016-03-04
Creatine plays an important role in muscle energy metabolism. Postactivation potentiation (PAP) is a phenomenon that can acutely increase muscle power, but it is an individualized process that is influenced by muscle fatigue. This study examined the effects of creatine supplementation on explosive performance and the optimal individual PAP time during a set of complex training bouts. Thirty explosive athletes performed tests of back squat for one repetition maximum (1RM) strength and complex training bouts for determining the individual optimal timing of PAP, height and peak power of a counter movement jump before and after the supplementation. Subjects were assigned to a creatine or placebo group and then consumed 20 g of creatine or carboxymethyl cellulose per day for six days. After the supplementation, the 1RM strength in the creatine group significantly increased (p < 0.05). The optimal individual PAP time in the creatine group was also significant earlier than the pre-supplementation and post-supplementation of the placebo group (p < 0.05). There was no significant difference in jump performance between the groups. This study demonstrates that creatine supplementation improves maximal muscle strength and the optimal individual PAP time of complex training but has no effect on explosive performance.
Wang, Chia-Chi; Yang, Ming-Ta; Lu, Kang-Hao; Chan, Kuei-Hui
2016-01-01
Creatine plays an important role in muscle energy metabolism. Postactivation potentiation (PAP) is a phenomenon that can acutely increase muscle power, but it is an individualized process that is influenced by muscle fatigue. This study examined the effects of creatine supplementation on explosive performance and the optimal individual PAP time during a set of complex training bouts. Thirty explosive athletes performed tests of back squat for one repetition maximum (1RM) strength and complex training bouts for determining the individual optimal timing of PAP, height and peak power of a counter movement jump before and after the supplementation. Subjects were assigned to a creatine or placebo group and then consumed 20 g of creatine or carboxymethyl cellulose per day for six days. After the supplementation, the 1RM strength in the creatine group significantly increased (p < 0.05). The optimal individual PAP time in the creatine group was also significant earlier than the pre-supplementation and post-supplementation of the placebo group (p < 0.05). There was no significant difference in jump performance between the groups. This study demonstrates that creatine supplementation improves maximal muscle strength and the optimal individual PAP time of complex training but has no effect on explosive performance. PMID:26959056
Information fusion based techniques for HEVC
NASA Astrophysics Data System (ADS)
Fernández, D. G.; Del Barrio, A. A.; Botella, Guillermo; Meyer-Baese, Uwe; Meyer-Baese, Anke; Grecos, Christos
2017-05-01
Aiming at the conflict circumstances of multi-parameter H.265/HEVC encoder system, the present paper introduces the analysis of many optimizations' set in order to improve the trade-off between quality, performance and power consumption for different reliable and accurate applications. This method is based on the Pareto optimization and has been tested with different resolutions on real-time encoders.
ERIC Educational Resources Information Center
Simen, Patrick; Contreras, David; Buck, Cara; Hu, Peter; Holmes, Philip; Cohen, Jonathan D.
2009-01-01
The drift-diffusion model (DDM) implements an optimal decision procedure for stationary, 2-alternative forced-choice tasks. The height of a decision threshold applied to accumulating information on each trial determines a speed-accuracy tradeoff (SAT) for the DDM, thereby accounting for a ubiquitous feature of human performance in speeded response…
High Temperature Shear Horizontal Electromagnetic Acoustic Transducer for Guided Wave Inspection
Kogia, Maria; Gan, Tat-Hean; Balachandran, Wamadeva; Livadas, Makis; Kappatos, Vassilios; Szabo, Istvan; Mohimi, Abbas; Round, Andrew
2016-01-01
Guided Wave Testing (GWT) using novel Electromagnetic Acoustic Transducers (EMATs) is proposed for the inspection of large structures operating at high temperatures. To date, high temperature EMATs have been developed only for thickness measurements and they are not suitable for GWT. A pair of water-cooled EMATs capable of exciting and receiving Shear Horizontal (SH0) waves for GWT with optimal high temperature properties (up to 500 °C) has been developed. Thermal and Computational Fluid Dynamic (CFD) simulations of the EMAT design have been performed and experimentally validated. The optimal thermal EMAT design, material selection and operating conditions were calculated. The EMAT was successfully tested regarding its thermal and GWT performance from ambient temperature to 500 °C. PMID:27110792
Topology optimization in acoustics and elasto-acoustics via a level-set method
NASA Astrophysics Data System (ADS)
Desai, J.; Faure, A.; Michailidis, G.; Parry, G.; Estevez, R.
2018-04-01
Optimizing the shape and topology (S&T) of structures to improve their acoustic performance is quite challenging. The exact position of the structural boundary is usually of critical importance, which dictates the use of geometric methods for topology optimization instead of standard density approaches. The goal of the present work is to investigate different possibilities for handling topology optimization problems in acoustics and elasto-acoustics via a level-set method. From a theoretical point of view, we detail two equivalent ways to perform the derivation of surface-dependent terms and propose a smoothing technique for treating problems of boundary conditions optimization. In the numerical part, we examine the importance of the surface-dependent term in the shape derivative, neglected in previous studies found in the literature, on the optimal designs. Moreover, we test different mesh adaptation choices, as well as technical details related to the implicit surface definition in the level-set approach. We present results in two and three-space dimensions.
Mission and system optimization of nuclear electric propulsion vehicles for lunar and Mars missions
NASA Technical Reports Server (NTRS)
Gilland, James H.
1991-01-01
The detailed mission and system optimization of low thrust electric propulsion missions is a complex, iterative process involving interaction between orbital mechanics and system performance. Through the use of appropriate approximations, initial system optimization and analysis can be performed for a range of missions. The intent of these calculations is to provide system and mission designers with simple methods to assess system design without requiring access or detailed knowledge of numerical calculus of variations optimizations codes and methods. Approximations for the mission/system optimization of Earth orbital transfer and Mars mission have been derived. Analyses include the variation of thruster efficiency with specific impulse. Optimum specific impulse, payload fraction, and power/payload ratios are calculated. The accuracy of these methods is tested and found to be reasonable for initial scoping studies. Results of optimization for Space Exploration Initiative lunar cargo and Mars missions are presented for a range of power system and thruster options.
Optimization of Ultrasonic Fabric Cleaning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hand, T.E.
The fundamental purpose of this project was to research and develop a process that would reduce the cost and improve the environmental efficiency of the present dry-cleaning industry. This second phase of research (see report KCP-94-1006 for information gathered during the first phase) was intended to allow the optimal integration of all factors of ultrasonic fabric cleaning. For this phase, Garment Care performed an extensive literature search and gathered data from other researchers worldwide. The Garment Care-AlliedSignal team developed the requirements for a prototype cleaning tank for studies and acquired that tank and the additional equipment required to use itmore » properly. Garment Care and AlliedSignal acquired the transducers and generators from Surftran Martin-Walter in Sterling Heights, Michigan. Amway's Kelly Haley developed the test protocol, supplied hundreds of test swatches, gathered the data on the swatches before and after the tests, assisted with the cleaning tests, and prepared the final analysis of the results. AlliedSignal personnel, in conjunction with Amway and Garment Care staff, performed all the tests. Additional planning is under way for future testing by outside research facilities. The final results indicated repeatable performance and good results for single layered fabric swatches. Swatches that were cleaned as a ''sandwich,'' that is, three or more layers.« less
NASA Technical Reports Server (NTRS)
Nguyen, D. T.; Al-Nasra, M.; Zhang, Y.; Baddourah, M. A.; Agarwal, T. K.; Storaasli, O. O.; Carmona, E. A.
1991-01-01
Several parallel-vector computational improvements to the unconstrained optimization procedure are described which speed up the structural analysis-synthesis process. A fast parallel-vector Choleski-based equation solver, pvsolve, is incorporated into the well-known SAP-4 general-purpose finite-element code. The new code, denoted PV-SAP, is tested for static structural analysis. Initial results on a four processor CRAY 2 show that using pvsolve reduces the equation solution time by a factor of 14-16 over the original SAP-4 code. In addition, parallel-vector procedures for the Golden Block Search technique and the BFGS method are developed and tested for nonlinear unconstrained optimization. A parallel version of an iterative solver and the pvsolve direct solver are incorporated into the BFGS method. Preliminary results on nonlinear unconstrained optimization test problems, using pvsolve in the analysis, show excellent parallel-vector performance indicating that these parallel-vector algorithms can be used in a new generation of finite-element based structural design/analysis-synthesis codes.
A Framework for Robust Multivariable Optimization of Integrated Circuits in Space Applications
NASA Technical Reports Server (NTRS)
DuMonthier, Jeffrey; Suarez, George
2013-01-01
Application Specific Integrated Circuit (ASIC) design for space applications involves multiple challenges of maximizing performance, minimizing power and ensuring reliable operation in extreme environments. This is a complex multidimensional optimization problem which must be solved early in the development cycle of a system due to the time required for testing and qualification severely limiting opportunities to modify and iterate. Manual design techniques which generally involve simulation at one or a small number of corners with a very limited set of simultaneously variable parameters in order to make the problem tractable are inefficient and not guaranteed to achieve the best possible results within the performance envelope defined by the process and environmental requirements. What is required is a means to automate design parameter variation, allow the designer to specify operational constraints and performance goals, and to analyze the results in a way which facilitates identifying the tradeoffs defining the performance envelope over the full set of process and environmental corner cases. The system developed by the Mixed Signal ASIC Group (MSAG) at the Goddard Space Flight Center is implemented as framework of software modules, templates and function libraries. It integrates CAD tools and a mathematical computing environment, and can be customized for new circuit designs with only a modest amount of effort as most common tasks are already encapsulated. Customization is required for simulation test benches to determine performance metrics and for cost function computation. Templates provide a starting point for both while toolbox functions minimize the code required. Once a test bench has been coded to optimize a particular circuit, it is also used to verify the final design. The combination of test bench and cost function can then serve as a template for similar circuits or be re-used to migrate the design to different processes by re-running it with the new process specific device models. The system has been used in the design of time to digital converters for laser ranging and time-of-flight mass spectrometry to optimize analog, mixed signal and digital circuits such as charge sensitive amplifiers, comparators, delay elements, radiation tolerant dual interlocked (DICE) flip-flops and two of three voter gates.
A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition
Sánchez, Daniela; Melin, Patricia
2017-01-01
A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition. PMID:28894461
A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition.
Sánchez, Daniela; Melin, Patricia; Castillo, Oscar
2017-01-01
A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition.
A Comprehensive Review of Swarm Optimization Algorithms
2015-01-01
Many swarm optimization algorithms have been introduced since the early 60’s, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches. PMID:25992655
Optimization and evaluation of a proportional derivative controller for planar arm movement.
Jagodnik, Kathleen M; van den Bogert, Antonie J
2010-04-19
In most clinical applications of functional electrical stimulation (FES), the timing and amplitude of electrical stimuli have been controlled by open-loop pattern generators. The control of upper extremity reaching movements, however, will require feedback control to achieve the required precision. Here we present three controllers using proportional derivative (PD) feedback to stimulate six arm muscles, using two joint angle sensors. Controllers were first optimized and then evaluated on a computational arm model that includes musculoskeletal dynamics. Feedback gains were optimized by minimizing a weighted sum of position errors and muscle forces. Generalizability of the controllers was evaluated by performing movements for which the controller was not optimized, and robustness was tested via model simulations with randomly weakened muscles. Robustness was further evaluated by adding joint friction and doubling the arm mass. After optimization with a properly weighted cost function, all PD controllers performed fast, accurate, and robust reaching movements in simulation. Oscillatory behavior was seen after improper tuning. Performance improved slightly as the complexity of the feedback gain matrix increased. Copyright 2009 Elsevier Ltd. All rights reserved.
Optimization and evaluation of a proportional derivative controller for planar arm movement
Jagodnik, Kathleen M.; van den Bogert, Antonie J.
2013-01-01
In most clinical applications of functional electrical stimulation (FES), the timing and amplitude of electrical stimuli have been controlled by open-loop pattern generators. The control of upper extremity reaching movements, however, will require feedback control to achieve the required precision. Here we present three controllers using proportional derivative (PD) feedback to stimulate six arm muscles, using two joint angle sensors. Controllers were first optimized and then evaluated on a computational arm model that includes musculoskeletal dynamics. Feedback gains were optimized by minimizing a weighted sum of position errors and muscle forces. Generalizability of the controllers was evaluated by performing movements for which the controller was not optimized, and robustness was tested via model simulations with randomly weakened muscles. Robustness was further evaluated by adding joint friction and doubling the arm mass. After optimization with a properly weighted cost function, all PD controllers performed fast, accurate, and robust reaching movements in simulation. Oscillatory behavior was seen after improper tuning. Performance improved slightly as the complexity of the feedback gain matrix increased. PMID:20097345
1993-06-01
radius aid 20 minutes of comibat follovcu by retum to the carrer . A conical-flow waweider served as the starting pount for the aircraft configuration. A...design, test meia adj p teat paramieter siekction were studied for planned low speed wind and water tunnel tests as well as performance predictions fir die... planned win~d tunnel tests. 14. SUBJECT TERMS 15. NUMBER OF PAGES Waveniders, Hypersonics, Aircraft Design 82 `16. PRICE CODE 17. SECURITY
Konikoff, Jacob; Brookmeyer, Ron; Longosz, Andrew F.; Cousins, Matthew M.; Celum, Connie; Buchbinder, Susan P.; Seage, George R.; Kirk, Gregory D.; Moore, Richard D.; Mehta, Shruti H.; Margolick, Joseph B.; Brown, Joelle; Mayer, Kenneth H.; Koblin, Beryl A.; Justman, Jessica E.; Hodder, Sally L.; Quinn, Thomas C.; Eshleman, Susan H.; Laeyendecker, Oliver
2013-01-01
Background A limiting antigen avidity enzyme immunoassay (HIV-1 LAg-Avidity assay) was recently developed for cross-sectional HIV incidence estimation. We evaluated the performance of the LAg-Avidity assay alone and in multi-assay algorithms (MAAs) that included other biomarkers. Methods and Findings Performance of testing algorithms was evaluated using 2,282 samples from individuals in the United States collected 1 month to >8 years after HIV seroconversion. The capacity of selected testing algorithms to accurately estimate incidence was evaluated in three longitudinal cohorts. When used in a single-assay format, the LAg-Avidity assay classified some individuals infected >5 years as assay positive and failed to provide reliable incidence estimates in cohorts that included individuals with long-term infections. We evaluated >500,000 testing algorithms, that included the LAg-Avidity assay alone and MAAs with other biomarkers (BED capture immunoassay [BED-CEIA], BioRad-Avidity assay, HIV viral load, CD4 cell count), varying the assays and assay cutoffs. We identified an optimized 2-assay MAA that included the LAg-Avidity and BioRad-Avidity assays, and an optimized 4-assay MAA that included those assays, as well as HIV viral load and CD4 cell count. The two optimized MAAs classified all 845 samples from individuals infected >5 years as MAA negative and estimated incidence within a year of sample collection. These two MAAs produced incidence estimates that were consistent with those from longitudinal follow-up of cohorts. A comparison of the laboratory assay costs of the MAAs was also performed, and we found that the costs associated with the optimal two assay MAA were substantially less than with the four assay MAA. Conclusions The LAg-Avidity assay did not perform well in a single-assay format, regardless of the assay cutoff. MAAs that include the LAg-Avidity and BioRad-Avidity assays, with or without viral load and CD4 cell count, provide accurate incidence estimates. PMID:24386116
NASA Technical Reports Server (NTRS)
Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan
2014-01-01
ATA-002 Technical Team has successfully designed, developed, tested and assessed the SLS Pathfinder propulsion systems for the Main Base Heating Test Program. Major Outcomes of the Pathfinder Test Program: Reach 90% of full-scale chamber pressure Achieved all engine/motor design parameter requirements Reach steady plume flow behavior in less than 35 msec Steady chamber pressure for 60 to 100 msec during engine/motor operation Similar model engine/motor performance to full-scale SLS system Mitigated nozzle throat and combustor thermal erosion Test data shows good agreement with numerical prediction codes Next phase of the ATA-002 Test Program Design & development of the SLS OML for the Main Base Heating Test Tweak BSRM design to optimize performance Tweak CS-REM design to increase robustness MSFC Aerosciences and CUBRC have the capability to develop sub-scale propulsion systems to meet desired performance requirements for short-duration testing.
NASA Astrophysics Data System (ADS)
Arya, L. D.; Koshti, Atul
2018-05-01
This paper investigates the Distributed Generation (DG) capacity optimization at location based on the incremental voltage sensitivity criteria for sub-transmission network. The Modified Shuffled Frog Leaping optimization Algorithm (MSFLA) has been used to optimize the DG capacity. Induction generator model of DG (wind based generating units) has been considered for study. Standard test system IEEE-30 bus has been considered for the above study. The obtained results are also validated by shuffled frog leaping algorithm and modified version of bare bones particle swarm optimization (BBExp). The performance of MSFLA has been found more efficient than the other two algorithms for real power loss minimization problem.
Morningness/Eveningness and School Performance among Spanish Adolescents: Further Evidence
ERIC Educational Resources Information Center
Escribano, Cristina; Diaz-Morales, Juan Francisco; Delgado, Pedro; Collado, Ma. Jose
2012-01-01
Adolescents shift their time of day preferences from morning to evening during puberty when school schedule becomes earlier. Given that a better performance is obtained when individuals are tested at times that are in synchrony with their chronotype, and optimal sleep duration is positively associated with academic performance, evening-types may…
Bi-directional thruster development and test report
NASA Technical Reports Server (NTRS)
Jacot, A. D.; Bushnell, G. S.; Anderson, T. M.
1990-01-01
The design, calibration and testing of a cold gas, bi-directional throttlable thruster are discussed. The thruster consists of an electro-pneumatic servovalve exhausting through opposite nozzles with a high gain pressure feedback loop to optimize performance. The thruster force was measured to determine hysteresis and linearity. Integral gain was used to maximize performance for linearity, hysteresis, and minimum thrust requirements. Proportional gain provided high dynamic response (bandwidth and phase lag). Thruster performance is very important since the thrusters are intended to be used for active control.
NASA Astrophysics Data System (ADS)
Boughari, Yamina
New methodologies have been developed to optimize the integration, testing and certification of flight control systems, an expensive process in the aerospace industry. This thesis investigates the stability of the Cessna Citation X aircraft without control, and then optimizes two different flight controllers from design to validation. The aircraft's model was obtained from the data provided by the Research Aircraft Flight Simulator (RAFS) of the Cessna Citation business aircraft. To increase the stability and control of aircraft systems, optimizations of two different flight control designs were performed: 1) the Linear Quadratic Regulation and the Proportional Integral controllers were optimized using the Differential Evolution algorithm and the level 1 handling qualities as the objective function. The results were validated for the linear and nonlinear aircraft models, and some of the clearance criteria were investigated; and 2) the Hinfinity control method was applied on the stability and control augmentation systems. To minimize the time required for flight control design and its validation, an optimization of the controllers design was performed using the Differential Evolution (DE), and the Genetic algorithms (GA). The DE algorithm proved to be more efficient than the GA. New tools for visualization of the linear validation process were also developed to reduce the time required for the flight controller assessment. Matlab software was used to validate the different optimization algorithms' results. Research platforms of the aircraft's linear and nonlinear models were developed, and compared with the results of flight tests performed on the Research Aircraft Flight Simulator. Some of the clearance criteria of the optimized H-infinity flight controller were evaluated, including its linear stability, eigenvalues, and handling qualities criteria. Nonlinear simulations of the maneuvers criteria were also investigated during this research to assess the Cessna Citation X's flight controller clearance, and therefore, for its anticipated certification.
Chung, Jung Wha; Kim, Beom Hee; Lee, Chung Seop; Kim, Gi Hyun; Sohn, Hyung Rae; Min, Bo Young; Song, Joon Chang; Park, Hyun Kyung; Jang, Eun Sun; Yoon, Hyuk; Kim, Jaihwan; Shin, Cheol Min; Park, Young Soo; Hwang, Jin-Hyeok; Jeong, Sook-Hyang; Kim, Nayoung; Lee, Dong Ho; Lee, Jaebong; Ahn, Soyeon
2016-01-01
Although alpha-fetoprotein (AFP) is the most widely used biomarker in hepatocellular carcinoma (HCC) surveillance, disease activity may also increase AFP levels in chronic hepatitis B (CHB). Since nucleos(t)ide analog (NA) therapy may reduce not only HBV viral loads and transaminase levels but also the falsely elevated AFP levels in CHB, we tried to determine whether exposure to NA therapy influences AFP performance and whether selective application can optimize the performance of AFP testing in CHB during HCC surveillance. A retrospective cohort of 6,453 CHB patients who received HCC surveillance was constructed from the electronic clinical data warehouse. Covariates of AFP elevation were determined from 53,137 AFP measurements, and covariate-specific receiver operating characteristics regression analysis revealed that albumin levels and exposure to NA therapy were independent determinants of AFP performance. C statistics were largest in patients with albumin levels ≥ 3.7 g/dL who were followed without NA therapy during study period, whereas AFP performance was poorest when tested in patients with NA therapy during study and albumin levels were < 3.7 g/dL (difference in C statics = 0.35, p < 0.0001). Contrary to expectation, CHB patients with current or recent exposure to NA therapy showed poorer performance of AFP during HCC surveillance. Combination of concomitant albumin levels and status of NA therapy can identify subgroup of CHB patients who will show optimized AFP performance. PMID:27997559
Extensions of D-optimal Minimal Designs for Symmetric Mixture Models.
Li, Yanyan; Raghavarao, Damaraju; Chervoneva, Inna
2017-01-01
The purpose of mixture experiments is to explore the optimum blends of mixture components, which will provide desirable response characteristics in finished products. D-optimal minimal designs have been considered for a variety of mixture models, including Scheffé's linear, quadratic, and cubic models. Usually, these D-optimal designs are minimally supported since they have just as many design points as the number of parameters. Thus, they lack the degrees of freedom to perform the Lack of Fit tests. Also, the majority of the design points in D-optimal minimal designs are on the boundary: vertices, edges, or faces of the design simplex. Also a new strategy for adding multiple interior points for symmetric mixture models is proposed. We compare the proposed designs with Cornell (1986) two ten-point designs for the Lack of Fit test by simulations.
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Norcross, Jason R.; Gernhardt, Michael L.
2009-01-01
NASA's Constellation Program has plans to return to the Moon within the next 10 years. Although reaching the Moon during the Apollo Program was a remarkable human engineering achievement, fewer than 20 extravehicular activities (EVAs) were performed. Current projections indicate that the next lunar exploration program will require thousands of EVAs, which will require spacesuits that are better optimized for human performance. Limited mobility and dexterity, and the position of the center of gravity (CG) are a few of many features of the Apollo suit that required significant crew compensation to accomplish the objectives. Development of a new EVA suit system will ideally result in performance close to or better than that in shirtsleeves at 1 G, i.e., in "a suit that is a pleasure to work in, one that you would want to go out and explore in on your day off." Unlike the Shuttle program, in which only a fraction of the crew perform EVA, the Constellation program will require that all crewmembers be able to perform EVA. As a result, suits must be built to accommodate and optimize performance for a larger range of crew anthropometry, strength, and endurance. To address these concerns, NASA has begun a series of tests to better understand the factors affecting human performance and how to utilize various lunar gravity simulation environments available for testing.
Novel characterization method of impedance cardiography signals using time-frequency distributions.
Escrivá Muñoz, Jesús; Pan, Y; Ge, S; Jensen, E W; Vallverdú, M
2018-03-16
The purpose of this document is to describe a methodology to select the most adequate time-frequency distribution (TFD) kernel for the characterization of impedance cardiography signals (ICG). The predominant ICG beat was extracted from a patient and was synthetized using time-frequency variant Fourier approximations. These synthetized signals were used to optimize several TFD kernels according to a performance maximization. The optimized kernels were tested for noise resistance on a clinical database. The resulting optimized TFD kernels are presented with their performance calculated using newly proposed methods. The procedure explained in this work showcases a new method to select an appropriate kernel for ICG signals and compares the performance of different time-frequency kernels found in the literature for the case of ICG signals. We conclude that, for ICG signals, the performance (P) of the spectrogram with either Hanning or Hamming windows (P = 0.780) and the extended modified beta distribution (P = 0.765) provided similar results, higher than the rest of analyzed kernels. Graphical abstract Flowchart for the optimization of time-frequency distribution kernels for impedance cardiography signals.
Zhu, Tian; Cao, Shuyi; Su, Pin-Chih; Patel, Ram; Shah, Darshan; Chokshi, Heta B.; Szukala, Richard; Johnson, Michael E.; Hevener, Kirk E.
2013-01-01
A critical analysis of virtual screening results published between 2007 and 2011 was performed. The activity of reported hit compounds from over 400 studies was compared to their hit identification criteria. Hit rates and ligand efficiencies were calculated to assist in these analyses and the results were compared with factors such as the size of the virtual library and the number of compounds tested. A series of promiscuity, drug-like, and ADMET filters were applied to the reported hits to assess the quality of compounds reported and a careful analysis of a subset of the studies which presented hit optimization was performed. This data allowed us to make several practical recommendations with respect to selection of compounds for experimental testing, defining hit identification criteria, and general virtual screening hit criteria to allow for realistic hit optimization. A key recommendation is the use of size-targeted ligand efficiency values as hit identification criteria. PMID:23688234
NASA Astrophysics Data System (ADS)
Rajalakshmi, N.; Padma Subramanian, D.; Thamizhavel, K.
2015-03-01
The extent of real power loss and voltage deviation associated with overloaded feeders in radial distribution system can be reduced by reconfiguration. Reconfiguration is normally achieved by changing the open/closed state of tie/sectionalizing switches. Finding optimal switch combination is a complicated problem as there are many switching combinations possible in a distribution system. Hence optimization techniques are finding greater importance in reducing the complexity of reconfiguration problem. This paper presents the application of firefly algorithm (FA) for optimal reconfiguration of radial distribution system with distributed generators (DG). The algorithm is tested on IEEE 33 bus system installed with DGs and the results are compared with binary genetic algorithm. It is found that binary FA is more effective than binary genetic algorithm in achieving real power loss reduction and improving voltage profile and hence enhancing the performance of radial distribution system. Results are found to be optimum when DGs are added to the test system, which proved the impact of DGs on distribution system.
Ayres, Cynthia; Mahat, Ganga; Atkins, Robert
2013-01-01
To examine variables influencing the positive health practices (PHP) of Filipino college students to gain a better understanding of health practices in this ethnic/racial group. Cross-sectional study tested theoretical relationships postulated among (a) PHP, (b) social support (SS), (c) optimism, and (d) acculturation. A sample of Filipino college students (N = 226) aged 18 to 21 was obtained in June 2009. Participants completed 4 instruments. Statistical analyses were performed using SPSS 16.0. Positive correlations were found between PHP and SS (r = .39, p = .01) and optimism and PHP (r = .36, p = .01). No correlation was found between PHP and acculturation. Optimism and SS predicted performance of PHP (R (2) = .18, F[2, 221] = 24.927, p < .001). A difference was found in acculturation levels between participants who grew up in the United States (t[223] = 4.5, p < .001) and those who did not. Findings help health practitioners and educators to better understand the underlying factors that influence PHP in this population.
Automatic threshold optimization in nonlinear energy operator based spike detection.
Malik, Muhammad H; Saeed, Maryam; Kamboh, Awais M
2016-08-01
In neural spike sorting systems, the performance of the spike detector has to be maximized because it affects the performance of all subsequent blocks. Non-linear energy operator (NEO), is a popular spike detector due to its detection accuracy and its hardware friendly architecture. However, it involves a thresholding stage, whose value is usually approximated and is thus not optimal. This approximation deteriorates the performance in real-time systems where signal to noise ratio (SNR) estimation is a challenge, especially at lower SNRs. In this paper, we propose an automatic and robust threshold calculation method using an empirical gradient technique. The method is tested on two different datasets. The results show that our optimized threshold improves the detection accuracy in both high SNR and low SNR signals. Boxplots are presented that provide a statistical analysis of improvements in accuracy, for instance, the 75th percentile was at 98.7% and 93.5% for the optimized NEO threshold and traditional NEO threshold, respectively.
Parameter optimization of differential evolution algorithm for automatic playlist generation problem
NASA Astrophysics Data System (ADS)
Alamag, Kaye Melina Natividad B.; Addawe, Joel M.
2017-11-01
With the digitalization of music, the number of collection of music increased largely and there is a need to create lists of music that filter the collection according to user preferences, thus giving rise to the Automatic Playlist Generation Problem (APGP). Previous attempts to solve this problem include the use of search and optimization algorithms. If a music database is very large, the algorithm to be used must be able to search the lists thoroughly taking into account the quality of the playlist given a set of user constraints. In this paper we perform an evolutionary meta-heuristic optimization algorithm, Differential Evolution (DE) using different combination of parameter values and select the best performing set when used to solve four standard test functions. Performance of the proposed algorithm is then compared with normal Genetic Algorithm (GA) and a hybrid GA with Tabu Search. Numerical simulations are carried out to show better results from Differential Evolution approach with the optimized parameter values.
Performance seeking control: Program overview and future directions
NASA Technical Reports Server (NTRS)
Gilyard, Glenn B.; Orme, John S.
1993-01-01
A flight test evaluation of the performance-seeking control (PSC) algorithm on the NASA F-15 highly integrated digital electronic control research aircraft was conducted for single-engine operation at subsonic and supersonic speeds. The model-based PSC system was developed with three optimization modes: minimum fuel flow at constant thrust, minimum turbine temperature at constant thrust, and maximum thrust at maximum dry and full afterburner throttle settings. Subsonic and supersonic flight testing were conducted at the NASA Dryden Flight Research Facility covering the three PSC optimization modes and over the full throttle range. Flight results show substantial benefits. In the maximum thrust mode, thrust increased up to 15 percent at subsonic and 10 percent at supersonic flight conditions. The minimum fan turbine inlet temperature mode reduced temperatures by more than 100 F at high altitudes. The minimum fuel flow mode results decreased fuel consumption up to 2 percent in the subsonic regime and almost 10 percent supersonically. These results demonstrate that PSC technology can benefit the next generation of fighter or transport aircraft. NASA Dryden is developing an adaptive aircraft performance technology system that is measurement based and uses feedback to ensure optimality. This program will address the technical weaknesses identified in the PSC program and will increase performance gains.
NASA Astrophysics Data System (ADS)
Lederman, Dror; Zheng, Bin; Wang, Xingwei; Wang, Xiao Hui; Gur, David
2011-03-01
We have developed a multi-probe resonance-frequency electrical impedance spectroscope (REIS) system to detect breast abnormalities. Based on assessing asymmetry in REIS signals acquired between left and right breasts, we developed several machine learning classifiers to classify younger women (i.e., under 50YO) into two groups of having high and low risk for developing breast cancer. In this study, we investigated a new method to optimize performance based on the area under a selected partial receiver operating characteristic (ROC) curve when optimizing an artificial neural network (ANN), and tested whether it could improve classification performance. From an ongoing prospective study, we selected a dataset of 174 cases for whom we have both REIS signals and diagnostic status verification. The dataset includes 66 "positive" cases recommended for biopsy due to detection of highly suspicious breast lesions and 108 "negative" cases determined by imaging based examinations. A set of REIS-based feature differences, extracted from the two breasts using a mirror-matched approach, was computed and constituted an initial feature pool. Using a leave-one-case-out cross-validation method, we applied a genetic algorithm (GA) to train the ANN with an optimal subset of features. Two optimization criteria were separately used in GA optimization, namely the area under the entire ROC curve (AUC) and the partial area under the ROC curve, up to a predetermined threshold (i.e., 90% specificity). The results showed that although the ANN optimized using the entire AUC yielded higher overall performance (AUC = 0.83 versus 0.76), the ANN optimized using the partial ROC area criterion achieved substantially higher operational performance (i.e., increasing sensitivity level from 28% to 48% at 95% specificity and/ or from 48% to 58% at 90% specificity).
Optimization of MLS receivers for multipath environments
NASA Technical Reports Server (NTRS)
Mcalpine, G. A.; Highfill, J. H., III
1979-01-01
The angle tracking problems in microwave landing system receivers along with a receiver design capable of optimal performance in the multipath environments found in air terminal areas were studied. Included were various theoretical and evaluative studies like: (1) signal model development; (2) derivation of optimal receiver structures; and (3) development and use of computer simulations for receiver algorithm evaluation. The development of an experimental receiver for flight testing is presented. An overview of the work and summary of principal results and conclusions are reported.
Solving the optimal attention allocation problem in manual control
NASA Technical Reports Server (NTRS)
Kleinman, D. L.
1976-01-01
Within the context of the optimal control model of human response, analytic expressions for the gradients of closed-loop performance metrics with respect to human operator attention allocation are derived. These derivatives serve as the basis for a gradient algorithm that determines the optimal attention that a human should allocate among several display indicators in a steady-state manual control task. Application of the human modeling techniques are made to study the hover control task for a CH-46 VTOL flight tested by NASA.
NASA Astrophysics Data System (ADS)
Yu, Long; Druckenbrod, Markus; Greve, Martin; Wang, Ke-qi; Abdel-Maksoud, Moustafa
2015-10-01
A fully automated optimization process is provided for the design of ducted propellers under open water conditions, including 3D geometry modeling, meshing, optimization algorithm and CFD analysis techniques. The developed process allows the direct integration of a RANSE solver in the design stage. A practical ducted propeller design case study is carried out for validation. Numerical simulations and open water tests are fulfilled and proved that the optimum ducted propeller improves hydrodynamic performance as predicted.
Optimization Strategies for Sensor and Actuator Placement
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Kincaid, Rex K.
1999-01-01
This paper provides a survey of actuator and sensor placement problems from a wide range of engineering disciplines and a variety of applications. Combinatorial optimization methods are recommended as a means for identifying sets of actuators and sensors that maximize performance. Several sample applications from NASA Langley Research Center, such as active structural acoustic control, are covered in detail. Laboratory and flight tests of these applications indicate that actuator and sensor placement methods are effective and important. Lessons learned in solving these optimization problems can guide future research.
Optimal placement and sizing of wind / solar based DG sources in distribution system
NASA Astrophysics Data System (ADS)
Guan, Wanlin; Guo, Niao; Yu, Chunlai; Chen, Xiaoguang; Yu, Haiyang; Liu, Zhipeng; Cui, Jiapeng
2017-06-01
Proper placement and sizing of Distributed Generation (DG) in distribution system can obtain maximum potential benefits. This paper proposes quantum particle swarm algorithm (QPSO) based wind turbine generation unit (WTGU) and photovoltaic (PV) array placement and sizing approach for real power loss reduction and voltage stability improvement of distribution system. Performance modeling of wind and solar generation system are described and classified into PQ\\PQ (V)\\PI type models in power flow. Considering the WTGU and PV based DGs in distribution system is geographical restrictive, the optimal area and DG capacity limits of each bus in the setting area need to be set before optimization, the area optimization method is proposed . The method has been tested on IEEE 33-bus radial distribution systems to demonstrate the performance and effectiveness of the proposed method.
Comparison of global optimization approaches for robust calibration of hydrologic model parameters
NASA Astrophysics Data System (ADS)
Jung, I. W.
2015-12-01
Robustness of the calibrated parameters of hydrologic models is necessary to provide a reliable prediction of future performance of watershed behavior under varying climate conditions. This study investigated calibration performances according to the length of calibration period, objective functions, hydrologic model structures and optimization methods. To do this, the combination of three global optimization methods (i.e. SCE-UA, Micro-GA, and DREAM) and four hydrologic models (i.e. SAC-SMA, GR4J, HBV, and PRMS) was tested with different calibration periods and objective functions. Our results showed that three global optimization methods provided close calibration performances under different calibration periods, objective functions, and hydrologic models. However, using the agreement of index, normalized root mean square error, Nash-Sutcliffe efficiency as the objective function showed better performance than using correlation coefficient and percent bias. Calibration performances according to different calibration periods from one year to seven years were hard to generalize because four hydrologic models have different levels of complexity and different years have different information content of hydrological observation. Acknowledgements This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
Makizako, Hyuma; Shimada, Hiroyuki; Doi, Takehiko; Tsutsumimoto, Kota; Nakakubo, Sho; Hotta, Ryo; Suzuki, Takao
2017-04-01
Lower extremity functioning is important for maintaining activity in elderly people. Optimal cutoff points for standard measurements of lower extremity functioning would help identify elderly people who are not disabled but have a high risk of developing disability. The purposes of this study were: (1) to determine the optimal cutoff points of the Five-Times Sit-to-Stand Test and the Timed "Up & Go" Test for predicting the development of disability and (2) to examine the impact of poor performance on both tests on the prediction of the risk of disability in elderly people dwelling in the community. This was a prospective cohort study. A population of 4,335 elderly people dwelling in the community (mean age = 71.7 years; 51.6% women) participated in baseline assessments. Participants were monitored for 2 years for the development of disability. During the 2-year follow-up period, 161 participants (3.7%) developed disability. The optimal cutoff points of the Five-Times Sit-to-Stand Test and the Timed "Up & Go" Test for predicting the development of disability were greater than or equal to 10 seconds and greater than or equal to 9 seconds, respectively. Participants with poor performance on the Five-Times Sit-to-Stand Test (hazard ratio = 1.88; 95% CI = 1.11-3.20), the Timed "Up & Go" Test (hazard ratio = 2.24; 95% CI = 1.42-3.53), or both tests (hazard ratio = 2.78; 95% CI = 1.78-4.33) at the baseline assessment had a significantly higher risk of developing disability than participants who had better lower extremity functioning. All participants had good initial functioning and participated in assessments on their own. Causes of disability were not assessed. Assessments of lower extremity functioning with the Five-Times Sit-to-Stand Test and the Timed "Up & Go" Test, especially poor performance on both tests, were good predictors of future disability in elderly people dwelling in the community. © 2017 American Physical Therapy Association
ERIC Educational Resources Information Center
Dillon, Ronna F.
The relationship of cognitive style variables and conditions of test administration was investigated in cognitive assessments of hearing-impaired children, aged six through eleven. One hundred-twenty children were given the Raven Coloured Progressive Matrices (CPM) and a Piagetian battery under one of six conditions of testing: (1) standard; (2)…
Cheng, Wen-Chang
2012-01-01
In this paper we propose a robust lane detection and tracking method by combining particle filters with the particle swarm optimization method. This method mainly uses the particle filters to detect and track the local optimum of the lane model in the input image and then seeks the global optimal solution of the lane model by a particle swarm optimization method. The particle filter can effectively complete lane detection and tracking in complicated or variable lane environments. However, the result obtained is usually a local optimal system status rather than the global optimal system status. Thus, the particle swarm optimization method is used to further refine the global optimal system status in all system statuses. Since the particle swarm optimization method is a global optimization algorithm based on iterative computing, it can find the global optimal lane model by simulating the food finding way of fish school or insects under the mutual cooperation of all particles. In verification testing, the test environments included highways and ordinary roads as well as straight and curved lanes, uphill and downhill lanes, lane changes, etc. Our proposed method can complete the lane detection and tracking more accurately and effectively then existing options. PMID:23235453
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962
NASA Astrophysics Data System (ADS)
Nath, Nayani Kishore
2017-08-01
The throat back up liners is used to protect the nozzle structural members from the severe thermal environment in solid rocket nozzles. The throat back up liners is made with E-glass phenolic prepregs by tape winding process. The objective of this work is to demonstrate the optimization of process parameters of tape winding process to achieve better insulative resistance using Taguchi's robust design methodology. In this method four control factors machine speed, roller pressure, tape tension, tape temperature that were investigated for the tape winding process. The presented work was to study the cogency and acceptability of Taguchi's methodology in manufacturing of throat back up liners. The quality characteristic identified was Back wall temperature. Experiments carried out using L 9 ' (34) orthogonal array with three levels of four different control factors. The test results were analyzed using smaller the better criteria for Signal to Noise ratio in order to optimize the process. The experimental results were analyzed conformed and successfully used to achieve the minimum back wall temperature of the throat back up liners. The enhancement in performance of the throat back up liners was observed by carrying out the oxy-acetylene tests. The influence of back wall temperature on the performance of throat back up liners was verified by ground firing test.
Improving Sensorimotor Function and Adaptation using Stochastic Vestibular Stimulation
NASA Technical Reports Server (NTRS)
Galvan, R. C.; Bloomberg, J. J.; Mulavara, A. P.; Clark, T. K.; Merfeld, D. M.; Oman, C. M.
2014-01-01
Astronauts experience sensorimotor changes during adaption to G-transitions that occur when entering and exiting microgravity. Post space flight, these sensorimotor disturbances can include postural and gait instability, visual performance changes, manual control disruptions, spatial disorientation, and motion sickness, all of which can hinder the operational capabilities of the astronauts. Crewmember safety would be significantly increased if sensorimotor changes brought on by gravitational changes could be mitigated and adaptation could be facilitated. The goal of this research is to investigate and develop the use of electrical stochastic vestibular stimulation (SVS) as a countermeasure to augment sensorimotor function and facilitate adaptation. For this project, SVS will be applied via electrodes on the mastoid processes at imperceptible amplitude levels. We hypothesize that SVS will improve sensorimotor performance through the phenomena of stochastic resonance, which occurs when the response of a nonlinear system to a weak input signal is optimized by the application of a particular nonzero level of noise. In line with the theory of stochastic resonance, a specific optimal level of SVS will be found and tested for each subject [1]. Three experiments are planned to investigate the use of SVS in sensory-dependent tasks and performance. The first experiment will aim to demonstrate stochastic resonance in the vestibular system through perception based motion recognition thresholds obtained using a 6-degree of freedom Stewart platform in the Jenks Vestibular Laboratory at Massachusetts Eye and Ear Infirmary. A range of SVS amplitudes will be applied to each subject and the subjectspecific optimal SVS level will be identified as that which results in the lowest motion recognition threshold, through previously established, well developed methods [2,3,4]. The second experiment will investigate the use of optimal SVS in facilitating sensorimotor adaptation to system disturbances. Subjects will adapt to wearing minifying glasses, resulting in decreased vestibular ocular reflex (VOR) gain. The VOR gain will then be intermittently measured while the subject readapts to normal vision, with and without optimal SVS. We expect that optimal SVS will cause a steepening of the adaptation curve. The third experiment will test the use of optimal SVS in an operationally relevant aerospace task, using the tilt translation sled at NASA Johnson Space Center, a test platform capable of recreating the tilt-gain and tilt-translation illusions associated with landing of a spacecraft post-space flight. In this experiment, a perception based manual control measure will be used to compare performance with and without optimal SVS. We expect performance to improve in this task when optimal SVS is applied. The ultimate goal of this work is to systematically investigate and further understand the potential benefits of stochastic vestibular stimulation in the context of human space flight so that it may be used in the future as a component of a comprehensive countermeasure plan for adaptation to G-transitions.
Large Scale Multi-area Static/Dynamic Economic Dispatch using Nature Inspired Optimization
NASA Astrophysics Data System (ADS)
Pandit, Manjaree; Jain, Kalpana; Dubey, Hari Mohan; Singh, Rameshwar
2017-04-01
Economic dispatch (ED) ensures that the generation allocation to the power units is carried out such that the total fuel cost is minimized and all the operating equality/inequality constraints are satisfied. Classical ED does not take transmission constraints into consideration, but in the present restructured power systems the tie-line limits play a very important role in deciding operational policies. ED is a dynamic problem which is performed on-line in the central load dispatch centre with changing load scenarios. The dynamic multi-area ED (MAED) problem is more complex due to the additional tie-line, ramp-rate and area-wise power balance constraints. Nature inspired (NI) heuristic optimization methods are gaining popularity over the traditional methods for complex problems. This work presents the modified particle swarm optimization (PSO) based techniques where parameter automation is effectively used for improving the search efficiency by avoiding stagnation to a sub-optimal result. This work validates the performance of the PSO variants with traditional solver GAMS for single as well as multi-area economic dispatch (MAED) on three test cases of a large 140-unit standard test system having complex constraints.
Optimization of cDNA-AFLP experiments using genomic sequence data.
Kivioja, Teemu; Arvas, Mikko; Saloheimo, Markku; Penttilä, Merja; Ukkonen, Esko
2005-06-01
cDNA amplified fragment length polymorphism (cDNA-AFLP) is one of the few genome-wide level expression profiling methods capable of finding genes that have not yet been cloned or even predicted from sequence but have interesting expression patterns under the studied conditions. In cDNA-AFLP, a complex cDNA mixture is divided into small subsets using restriction enzymes and selective PCR. A large cDNA-AFLP experiment can require a substantial amount of resources, such as hundreds of PCR amplifications and gel electrophoresis runs, followed by manual cutting of a large number of bands from the gels. Our aim was to test whether this workload can be reduced by rational design of the experiment. We used the available genomic sequence information to optimize cDNA-AFLP experiments beforehand so that as many transcripts as possible could be profiled with a given amount of resources. Optimization of the selection of both restriction enzymes and selective primers for cDNA-AFLP experiments has not been performed previously. The in silico tests performed suggest that substantial amounts of resources can be saved by the optimization of cDNA-AFLP experiments.
Setup optimization toward accurate ageing studies of gas filled detectors
NASA Astrophysics Data System (ADS)
Abuhoza, A.; Schmidt, H. R.; Biswas, S.; Frankenfeld, U.; Hehner, J.; Schmidt, C. J.
2013-08-01
An infrastructure has been set up at the GSI detector laboratory to study the influence of construction materials on the ageing properties of gas filled detectors, such as multi-wire proportional chamber (MWPC), gas electron multiplier (GEM). Optimization of an ageing setup was performed by observing the variation of the normalized gain obtained using two identical MWPCs. An accuracy in the relative gain measurement below 1% has been achieved by monitoring environmental conditions and by systematic improvements of the measuring equipment. Ageing test of fiberglass G11 has been performed.
The amphipod Hyalella azteca is commonly used to assess the toxicity of sediments and waters. However, laboratories have reported varying success in maintaining healthy cultures and in obtaining consistent growth and reproduction (where applicable), especially during tests...
Basner, Mathias; Rubinstein, Joshua
2011-01-01
Objective To evaluate the ability of a 3-min Psychomotor Vigilance Test (PVT) to predict fatigue related performance decrements on a simulated luggage screening task (SLST). Methods Thirty-six healthy non-professional subjects (mean age 30.8 years, 20 female) participated in a 4 day laboratory protocol including a 34 hour period of total sleep deprivation with PVT and SLST testing every 2 hours. Results Eleven and 20 lapses (355 ms threshold) on the PVT optimally divided SLST performance into high, medium, and low performance bouts with significantly decreasing threat detection performance A′. Assignment to the different SLST performance groups replicated homeostatic and circadian patterns during total sleep deprivation. Conclusions The 3 min PVT was able to predict performance on a simulated luggage screening task. Fitness-for-duty feasibility should now be tested in professional screeners and operational environments. PMID:21912278
Basner, Mathias; Rubinstein, Joshua
2011-10-01
To evaluate the ability of a 3-minute Psychomotor Vigilance Test (PVT) to predict fatigue-related performance decrements on a simulated luggage-screening task (SLST). Thirty-six healthy nonprofessional subjects (mean age = 30.8 years, 20 women) participated in a 4-day laboratory protocol including a 34-hour period of total sleep deprivation with PVT and SLST testing every 2 hours. Eleven and 20 lapses (355-ms threshold) on the PVT optimally divided SLST performance into high-, medium-, and low-performance bouts with significantly decreasing threat detection performance A'. Assignment to the different SLST performance groups replicated homeostatic and circadian patterns during total sleep deprivation. The 3-minute PVT was able to predict performance on a simulated luggage-screening task. Fitness-for-duty feasibility should now be tested in professional screeners and operational environments.
Carozzi, Francesca Maria; Del Mistro, Annarosa; Cuschieri, Kate; Frayle, Helena; Sani, Cristina; Burroni, Elena
2016-03-01
This review aims to highlight the importance of Quality Assurance for Laboratories performing HPV test for Cervical Cancer Screening. An HPV test, to be used as primary screening test, must be validated according to international criteria, based on comparison of its clinical accuracy to HC2 or GP5+/6+ PCR-EIA tests. The number of validated platforms is increasing and appropriate Quality Assurance Programs (QAPs) which can interrogate longitudinal robustness and quality are paramount. This document describes the following topics: (1) the characteristics of an HPV laboratory and the personnel training needs, to ensure an elevated quality of the entire process and the optimal use of the resources; (2) the Quality Assurance, as both internal (IQA) and external quality assessment (EQA) systems, to be implemented and performed, and the description of the existing EQAs, including limitations; (3) general considerations for an optimal EQA program for hrHPV primary screening Due to the importance of Quality Assurance for this field, international efforts are necessary to improve QA International Collaboration. Copyright © 2015 Elsevier B.V. All rights reserved.
Correlations of Platooning Track Test and Wind Tunnel Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lammert, Michael P.; Kelly, Kenneth J.; Yanowitz, Janet
In this report, the National Renewable Energy Laboratory analyzed results from multiple, independent truck platooning projects to compare and contrast track test results with wind tunnel test results conducted by Lawrence Livermore National Laboratory (LLNL). Some highlights from the report include compiled data, and results from four independent SAE J1321 full-size track test campaigns that were compared to LLNL wind tunnel testing results. All platooning scenarios tested demonstrated significant fuel savings with good correlation relative to following distances, but there are still unanswered questions and clear opportunities for system optimization. NOx emissions showed improvements from NREL tests in 2014 tomore » Auburn tests in 2015 with respect to J1321 platooning track testing of Peloton system. NREL evaluated data from Volpe's Naturalistic Study of Truck Following Behavior, which showed minimal impact of naturalistic background platooning. We found significant correlation between multiple track studies, wind tunnel tests, and computational fluid dynamics, but also showed that there is more to learn regarding close formation and longer-distance effects. We also identified potential areas for further research and development, including development of advanced aerodynamic designs optimized for platooning, measurement of platoon system performance in traffic conditions, impact of vehicle lateral offsets on platooning performance, and characterization of the national potential for platooning based on fleet operational characteristics.« less
Hwang, S H; Yi, T W; Cho, K H; Lee, I M; Yoon, C S
2011-09-01
To test a performance of the microbiological safety cabinets (MSCs) according to the type of MSCs in microbial laboratories. Tests were carried out to assess the performance of 31 MSCs in 14 different facilities, including six different biological test laboratories in six hospitals and eight different laboratories in three universities. The following tests were performed on the MSCs: the downflow test, intake velocity test, high-efficiency particulate air filter leak test and the airflow smoke pattern test. These performance tests were carried out in accordance with the standard procedures. Only 23% of Class II A1 (8), A2 (19) and unknown MSCs (4) passed these performance tests. The main reasons for the failure of MSCs were inappropriate intake velocity (65%), leakage in the HEPA filter sealing (50%), unbalanced airflow smoke pattern in the cabinets (39%) and inappropriate downflow (27%). This study showed that routine checks of MSCs are important to detect and strengthen the weak spots that frequently develop, as observed during the evaluation of the MSCs of various institutions. Routine evaluation and maintenance of MSCs are critical for optimizing performance. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.
Reduce, Reuse, Recycle: The Longitudinal Value of Local Cut Scores Using State Test Data
ERIC Educational Resources Information Center
Nelson, Peter M.; Van Norman, Ethan R.; VanDerHeyden, Amanda
2017-01-01
We used existing reading (n = 1,498) and math (n = 2,260) data to evaluate state test scores for screening middle school students. In Phase 1, state test data were used to create a research-derived cut score that was optimal for predicting state test performance the following year. In Phase 2, those cut scores were applied with future cohorts.…
Optimizing DER Participation in Inertial and Primary-Frequency Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Zhao, Changhong; Guggilam, Swaroop
This paper develops an approach to enable the optimal participation of distributed energy resources (DERs) in inertial and primary-frequency response alongside conventional synchronous generators. Leveraging a reduced-order model description of frequency dynamics, DERs' synthetic inertias and droop coefficients are designed to meet time-domain performance objectives of frequency overshoot and steady-state regulation. Furthermore, an optimization-based method centered around classical economic dispatch is developed to ensure that DERs share the power injections for inertial- and primary-frequency response in proportion to their power ratings. Simulations for a modified New England test-case system composed of ten synchronous generators and six instances of the IEEEmore » 37-node test feeder with frequency-responsive DERs validate the design strategy.« less
NASA Astrophysics Data System (ADS)
He, Yaoyao; Yang, Shanlin; Xu, Qifa
2013-07-01
In order to solve the model of short-term cascaded hydroelectric system scheduling, a novel chaotic particle swarm optimization (CPSO) algorithm using improved logistic map is introduced, which uses the water discharge as the decision variables combined with the death penalty function. According to the principle of maximum power generation, the proposed approach makes use of the ergodicity, symmetry and stochastic property of improved logistic chaotic map for enhancing the performance of particle swarm optimization (PSO) algorithm. The new hybrid method has been examined and tested on two test functions and a practical cascaded hydroelectric system. The experimental results show that the effectiveness and robustness of the proposed CPSO algorithm in comparison with other traditional algorithms.
Effect of flame-tube head structure on combustion chamber performance
NASA Technical Reports Server (NTRS)
Gu, Minqqi
1986-01-01
The experimental combustion performance of a premixed, pilot-type flame tube with various head structures is discussed. The test study covers an extensive area: efficiency of the combustion chamber, quality of the outlet temperature field, limit of the fuel-lean blowout, ignition performance at ground starting, and carbon deposition. As a result of these tests, a nozzle was found which fits the premixed pilot flame tube well. The use of this nozzle optimized the performance of the combustion chamber. The tested models had premixed pilot chambers with two types of air-film-cooling structures, six types of venturi-tube structures, and secondary fuel nozzles with two small spray-cone angles.
Boeing's variable geometry chevron: morphing aerospace structures for jet noise reduction
NASA Astrophysics Data System (ADS)
Calkins, Frederick T.; Mabe, James H.; Butler, George W.
2006-03-01
Boeing is applying cutting edge smart material actuators to the next generation morphing technologies for aircraft. This effort has led to the Variable Geometry Chevrons (VGC), which utilize compact, light weight, and robust shape memory alloy (SMA) actuators. These actuators morph the shape of chevrons on the trailing edge of a jet engine in order to optimize acoustic and performance objectives at multiple flight conditions. We have demonstrated a technical readiness level of 7 by successfully flight testing the VGCs on a Boeing 777-300ER with GE-115B engines. In this paper we describe the VGC design, development and performance during flight test. Autonomous operation of the VGCs, which did not require a control system or aircraft power, was demonstrated. A parametric study was conducted showing the influence of VGC configurations on shockcell generated cabin noise reduction during cruise. The VGC system provided a robust test vehicle to explore chevron configurations for community and shockcell noise reduction. Most importantly, the VGC concept demonstrated an exciting capability to optimize jet nozzle performance at multiple flight conditions.
A Bell-Curved Based Algorithm for Mixed Continuous and Discrete Structural Optimization
NASA Technical Reports Server (NTRS)
Kincaid, Rex K.; Weber, Michael; Sobieszczanski-Sobieski, Jaroslaw
2001-01-01
An evolutionary based strategy utilizing two normal distributions to generate children is developed to solve mixed integer nonlinear programming problems. This Bell-Curve Based (BCB) evolutionary algorithm is similar in spirit to (mu + mu) evolutionary strategies and evolutionary programs but with fewer parameters to adjust and no mechanism for self adaptation. First, a new version of BCB to solve purely discrete optimization problems is described and its performance tested against a tabu search code for an actuator placement problem. Next, the performance of a combined version of discrete and continuous BCB is tested on 2-dimensional shape problems and on a minimum weight hub design problem. In the latter case the discrete portion is the choice of the underlying beam shape (I, triangular, circular, rectangular, or U).
Test results of the LARP Nb$$_3$$Sn quadrupole HQ03a
DiMarco, J.; G. Ambrosio; Chlachidze, G.; ...
2016-03-09
The US LHC Accelerator Research Program (LARP) has been developingmore » $$Nb_3Sn$$ quadrupoles of progressively increasing performance for the high luminosity upgrade of the Large Hadron Collider. The 120 mm aperture High-field Quadrupole (HQ) models are the last step in the R&D phase supporting the development of the new IR Quadrupoles (MQXF). Three series of HQ coils were fabricated and assembled in a shell-based support structure, progressively optimizing the design and fabrication process. The final set of coils consistently applied the optimized design solutions, and was assembled in the HQ03a model. Furthermore, this paper reports a summary of the HQ03a test results, including training, mechanical performance, field quality and quench studies.« less
Optimizing physical energy functions for protein folding.
Fujitsuka, Yoshimi; Takada, Shoji; Luthey-Schulten, Zaida A; Wolynes, Peter G
2004-01-01
We optimize a physical energy function for proteins with the use of the available structural database and perform three benchmark tests of the performance: (1) recognition of native structures in the background of predefined decoy sets of Levitt, (2) de novo structure prediction using fragment assembly sampling, and (3) molecular dynamics simulations. The energy parameter optimization is based on the energy landscape theory and uses a Monte Carlo search to find a set of parameters that seeks the largest ratio deltaE(s)/DeltaE for all proteins in a training set simultaneously. Here, deltaE(s) is the stability gap between the native and the average in the denatured states and DeltaE is the energy fluctuation among these states. Some of the energy parameters optimized are found to show significant correlation with experimentally observed quantities: (1) In the recognition test, the optimized function assigns the lowest energy to either the native or a near-native structure among many decoy structures for all the proteins studied. (2) Structure prediction with the fragment assembly sampling gives structure models with root mean square deviation less than 6 A in one of the top five cluster centers for five of six proteins studied. (3) Structure prediction using molecular dynamics simulation gives poorer performance, implying the importance of having a more precise description of local structures. The physical energy function solely inferred from a structural database neither utilizes sequence information from the family of the target nor the outcome of the secondary structure prediction but can produce the correct native fold for many small proteins. Copyright 2003 Wiley-Liss, Inc.
Particle swarm optimization: an alternative in marine propeller optimization?
NASA Astrophysics Data System (ADS)
Vesting, F.; Bensow, R. E.
2018-01-01
This article deals with improving and evaluating the performance of two evolutionary algorithm approaches for automated engineering design optimization. Here a marine propeller design with constraints on cavitation nuisance is the intended application. For this purpose, the particle swarm optimization (PSO) algorithm is adapted for multi-objective optimization and constraint handling for use in propeller design. Three PSO algorithms are developed and tested for the optimization of four commercial propeller designs for different ship types. The results are evaluated by interrogating the generation medians and the Pareto front development. The same propellers are also optimized utilizing the well established NSGA-II genetic algorithm to provide benchmark results. The authors' PSO algorithms deliver comparable results to NSGA-II, but converge earlier and enhance the solution in terms of constraints violation.
Terrestrial Testing of the CapiBRIC, a Microgravity Optimized Brine Processor
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.; Callahan, Michael R.; Weislogel, Mark M.
2016-01-01
Utilizing geometry based static phase separation exhibited in the radial vaned capillary drying tray, a system was conceived to recover water from brine. This technology has been named the Capillary BRIC; abbreviated CapiBRIC. The CapiBRIC utilizes a capillary drying tray within a drying chamber. Water is recovered from clean water vapor evaporating from the free surface leaving waste brine solids behind. A novel approach of optimizing the containment geometry to support passive capillary flow and static phase separation provides the opportunity for a low power system that is not as susceptible to fouling as membranes or other technologies employing physical barriers across the free brine surface to achieve phase separation in microgravity. Having been optimized for operation in microgravity, full-scale testing of the CapiBRIC as designed cannot be performed on the ground as the force of gravity would dominate over the capillary forces. However, subscale units relevant to full-scale design were used to characterize fill rates, containment stability, and interaction with a variable volume reservoir in the PSU Dryden Drop Tower (DDT) facility. PSU also using tested units scaled such that capillary forces dominated in a 1-g environment to characterize evaporation from a free-surface in 1-g upward, sideways and downward orientations. In order to augment the subscale testing performed by PSU, a full scale 1-g analogue of the CapiBRIC drying unit was initiated to help validate performance predictions regarding expected water recovery ratio, estimated processing time, and interface definitions for inlets, outlets, and internal processes, including vent gas composition. This paper describes the design, development and test of the terrestrial CapiBRIC prototypes.
Comparison of parameters of modern cooled and uncooled thermal cameras
NASA Astrophysics Data System (ADS)
Bareła, Jarosław; Kastek, Mariusz; Firmanty, Krzysztof; Krupiński, Michał
2017-10-01
During the design of a system employing thermal cameras one always faces a problem of choosing the camera types best suited for the task. In many cases such a choice is far from optimal one, and there are several reasons for that. System designers often favor tried and tested solution they are used to. They do not follow the latest developments in the field of infrared technology and sometimes their choices are based on prejudice and not on facts. The paper presents the results of measurements of basic parameters of MWIR and LWIR thermal cameras, carried out in a specialized testing laboratory. The measured parameters are decisive in terms of image quality generated by thermal cameras. All measurements were conducted according to current procedures and standards. However the camera settings were not optimized for a specific test conditions or parameter measurements. Instead the real settings used in normal camera operations were applied to obtain realistic camera performance figures. For example there were significant differences between measured values of noise parameters and catalogue data provided by manufacturers, due to the application of edge detection filters to increase detection and recognition ranges. The purpose of this paper is to provide help in choosing the optimal thermal camera for particular application, answering the question whether to opt for cheaper microbolometer device or apply slightly better (in terms of specifications) yet more expensive cooled unit. Measurements and analysis were performed by qualified personnel with several dozen years of experience in both designing and testing of thermal camera systems with both cooled and uncooled focal plane arrays. Cameras of similar array sizes and optics were compared, and for each tested group the best performing devices were selected.
NASA Astrophysics Data System (ADS)
Medi, Bijan; Kazi, Monzure-Khoda; Amanullah, Mohammad
2013-06-01
Chromatography has been established as the method of choice for the separation and purification of optically pure drugs which has a market size of about 250 billion USD. Single column chromatography (SCC) is commonly used in the development and testing phase of drug development while multi-column Simulated Moving Bed (SMB) chromatography is more suitable for large scale production due to its continuous nature. In this study, optimal performance of SCC and SMB processes for the separation of optical isomers under linear and overloaded separation conditions has been investigated. The performance indicators, namely productivity and desorbent requirement have been compared under geometric similarity for the separation of a mixture of guaifenesin, and Tröger's base enantiomers. SCC process has been analyzed under equilibrium assumption i.e., assuming infinite column efficiency, and zero dispersion, and its optimal performance parameters are compared with the optimal prediction of an SMB process by triangle theory. Simulation results obtained using actual experimental data indicate that SCC may compete with SMB in terms of productivity depending on the molecules to be separated. Besides, insights into the process performances in terms of degree of freedom and relationship between the optimal operating point and solubility limit of the optical isomers have been ascertained. This investigation enables appropriate selection of single or multi-column chromatographic processes based on column packing properties and isotherm parameters.
A new improved artificial bee colony algorithm for ship hull form optimization
NASA Astrophysics Data System (ADS)
Huang, Fuxin; Wang, Lijue; Yang, Chi
2016-04-01
The artificial bee colony (ABC) algorithm is a relatively new swarm intelligence-based optimization algorithm. Its simplicity of implementation, relatively few parameter settings and promising optimization capability make it widely used in different fields. However, it has problems of slow convergence due to its solution search equation. Here, a new solution search equation based on a combination of the elite solution pool and the block perturbation scheme is proposed to improve the performance of the algorithm. In addition, two different solution search equations are used by employed bees and onlooker bees to balance the exploration and exploitation of the algorithm. The developed algorithm is validated by a set of well-known numerical benchmark functions. It is then applied to optimize two ship hull forms with minimum resistance. The tested results show that the proposed new improved ABC algorithm can outperform the ABC algorithm in most of the tested problems.
Frequency optimization in the eddy current test for high purity niobium
NASA Astrophysics Data System (ADS)
Joung, Mijoung; Jung, Yoochul; Kim, Hyungjin
2017-01-01
The eddy current test (ECT) is frequently used as a non-destructive method to check for the defects of high purity niobium (RRR300, Residual Resistivity Ratio) in a superconducting radio frequency (SRF) cavity. Determining an optimal frequency corresponding to specific material properties and probe specification is a very important step. The ECT experiments for high purity Nb were performed to determine the optimal frequency using the standard sample of high purity Nb having artificial defects. The target depth was considered with the treatment step that the niobium receives as the SRF cavity material. The results were analysed via the selectivity that led to a specific result, depending on the size of the defects. According to the results, the optimal frequency was determined to be 200 kHz, and a few features of the ECT for the high purity Nb were observed.
NASA Astrophysics Data System (ADS)
Rosas, Pedro; Wagemans, Johan; Ernst, Marc O.; Wichmann, Felix A.
2005-05-01
A number of models of depth-cue combination suggest that the final depth percept results from a weighted average of independent depth estimates based on the different cues available. The weight of each cue in such an average is thought to depend on the reliability of each cue. In principle, such a depth estimation could be statistically optimal in the sense of producing the minimum-variance unbiased estimator that can be constructed from the available information. Here we test such models by using visual and haptic depth information. Different texture types produce differences in slant-discrimination performance, thus providing a means for testing a reliability-sensitive cue-combination model with texture as one of the cues to slant. Our results show that the weights for the cues were generally sensitive to their reliability but fell short of statistically optimal combination - we find reliability-based reweighting but not statistically optimal cue combination.
Energy extraction from atmospheric turbulence to improve flight vehicle performance
NASA Astrophysics Data System (ADS)
Patel, Chinmay Karsandas
Small 'bird-sized' Unmanned Aerial Vehicles (UAVs) have now become practical due to technological advances in embedded electronics, miniature sensors and actuators, and propulsion systems. Birds are known to take advantage of wind currents to conserve energy and fly long distances without flapping their wings. This dissertation explores the possibility of improving the performance of small UAVs by extracting the energy available in atmospheric turbulence. An aircraft can gain energy from vertical gusts by increasing its lift in regions of updraft and reducing its lift in downdrafts - a concept that has been known for decades. Starting with a simple model of a glider flying through a sinusoidal gust, a parametric optimization approach is used to compute the minimum gust amplitude and optimal control input required for the glider to sustain flight without losing energy. For small UAVs using optimal control inputs, sinusoidal gusts with amplitude of 10--15% of the cruise speed are sufficient to keep the aircraft aloft. The method is then modified and extended to include random gusts that are representative of natural turbulence. A procedure to design optimal control laws for energy extraction from realistic gust profiles is developed using a Genetic Algorithm (GA). A feedback control law is designed to perform well over a variety of random gusts, and not be tailored for one particular gust. A small UAV flying in vertical turbulence is shown to obtain average energy savings of 35--40% with the use of a simple control law. The design procedure is also extended to determine optimal control laws for sinusoidal as well as turbulent lateral gusts. The theoretical work is complemented by experimental validation using a small autonomous UAV. The development of a lightweight autopilot and UAV platform is presented. Flight test results show that active control of the lift of an autonomous glider resulted in approximately 46% average energy savings compared to glides with fixed control surfaces. Statistical analysis of test samples shows that 19% of the active control test runs resulted in no energy loss, thus demonstrating the potential of the 'gust soaring' concept to dramatically improve the performance of small UAVs.
Genetic evolutionary taboo search for optimal marker placement in infrared patient setup
NASA Astrophysics Data System (ADS)
Riboldi, M.; Baroni, G.; Spadea, M. F.; Tagaste, B.; Garibaldi, C.; Cambria, R.; Orecchia, R.; Pedotti, A.
2007-09-01
In infrared patient setup adequate selection of the external fiducial configuration is required for compensating inner target displacements (target registration error, TRE). Genetic algorithms (GA) and taboo search (TS) were applied in a newly designed approach to optimal marker placement: the genetic evolutionary taboo search (GETS) algorithm. In the GETS paradigm, multiple solutions are simultaneously tested in a stochastic evolutionary scheme, where taboo-based decision making and adaptive memory guide the optimization process. The GETS algorithm was tested on a group of ten prostate patients, to be compared to standard optimization and to randomly selected configurations. The changes in the optimal marker configuration, when TRE is minimized for OARs, were specifically examined. Optimal GETS configurations ensured a 26.5% mean decrease in the TRE value, versus 19.4% for conventional quasi-Newton optimization. Common features in GETS marker configurations were highlighted in the dataset of ten patients, even when multiple runs of the stochastic algorithm were performed. Including OARs in TRE minimization did not considerably affect the spatial distribution of GETS marker configurations. In conclusion, the GETS algorithm proved to be highly effective in solving the optimal marker placement problem. Further work is needed to embed site-specific deformation models in the optimization process.
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783
Wang, Yu-Tzu; Huang, Shao-Fu; Fang, Yu-Ting; Huang, Shou-Chieh; Cheng, Hwei-Fang; Chen, Chih-Hao; Wang, Po-Fang; Lin, Chun-Li
2018-01-01
This study performs a structural optimization of anatomical thin titanium mesh (ATTM) plate and optimal designed ATTM plate fabricated using additive manufacturing (AM) to verify its stabilization under fatigue testing. Finite element (FE) analysis was used to simulate the structural bending resistance of a regular ATTM plate. The Taguchi method was employed to identify the significance of each design factor in controlling the deflection and determine an optimal combination of designed factors. The optimal designed ATTM plate with patient-matched facial contour was fabricated using AM and applied to a ZMC comminuted fracture to evaluate the resting maxillary micromotion/strain under fatigue testing. The Taguchi analysis found that the ATTM plate required a designed internal hole distance to be 0.9 mm, internal hole diameter to be 1 mm, plate thickness to be 0.8 mm, and plate height to be 10 mm. The designed plate thickness factor primarily dominated the bending resistance up to 78% importance. The averaged micromotion (displacement) and strain of the maxillary bone showed that ZMC fracture fixation using the miniplate was significantly higher than those using the AM optimal designed ATTM plate. This study concluded that the optimal designed ATTM plate with enough strength to resist the bending effect can be obtained by combining FE and Taguchi analyses. The optimal designed ATTM plate with patient-matched facial contour fabricated using AM provides superior stabilization for ZMC comminuted fractured bone segments.
Testing and Validating Gadget2 for GPUs
NASA Astrophysics Data System (ADS)
Wibking, Benjamin; Holley-Bockelmann, K.; Berlind, A. A.
2013-01-01
We are currently upgrading a version of Gadget2 (Springel et al., 2005) that is optimized for NVIDIA's CUDA GPU architecture (Frigaard, unpublished) to work with the latest libraries and graphics cards. Preliminary tests of its performance indicate a ~40x speedup in the particle force tree approximation calculation, with overall speedup of 5-10x for cosmological simulations run with GPUs compared to running on the same CPU cores without GPU acceleration. We believe this speedup can be reasonably increased by an additional factor of two with futher optimization, including overlap of computation on CPU and GPU. Tests of single-precision GPU numerical fidelity currently indicate accuracy of the mass function and the spectral power density to within a few percent of extended-precision CPU results with the unmodified form of Gadget. Additionally, we plan to test and optimize the GPU code for Millenium-scale "grand challenge" simulations of >10^9 particles, a scale that has been previously untested with this code, with the aid of the NSF XSEDE flagship GPU-based supercomputing cluster codenamed "Keeneland." Current work involves additional validation of numerical results, extending the numerical precision of the GPU calculations to double precision, and evaluating performance/accuracy tradeoffs. We believe that this project, if successful, will yield substantial computational performance benefits to the N-body research community as the next generation of GPU supercomputing resources becomes available, both increasing the electrical power efficiency of ever-larger computations (making simulations possible a decade from now at scales and resolutions unavailable today) and accelerating the pace of research in the field.
Preliminary test data using the MOS DRO with Si:In detector material
NASA Technical Reports Server (NTRS)
Fowler, A. M.; Britt, J. P.; Joyce, R. R.; Probst, R. G.; Gates, J. L.
1986-01-01
The initial testing performed on the Hughes Metal Oxide Semiconductor Direct Readout (MOS DRO) with a Si:In extrinsic infrared array is described. The testing to date was of a screening nature and the results are primarily qualitative rather than quantitative. At a later date the performance optimization phase will be initiated. An encouraging result is that this response is strongly dependent on the detector temperature, to the extent that thermal transients introduced during the chip readout will affect the performance. A responsivity of 1 A/W at 2.2 microns with a bias of 15 volts, which is well below what is optimum bias, was obtained.
NASA Astrophysics Data System (ADS)
Kirchner-Bossi, Nicolas; Porté-Agel, Fernando
2017-04-01
Wind turbine wakes can significantly disrupt the performance of further downstream turbines in a wind farm, thus seriously limiting the overall wind farm power output. Such effect makes the layout design of a wind farm to play a crucial role on the whole performance of the project. An accurate definition of the wake interactions added to a computationally compromised layout optimization strategy can result in an efficient resource when addressing the problem. This work presents a novel soft-computing approach to optimize the wind farm layout by minimizing the overall wake effects that the installed turbines exert on one another. An evolutionary algorithm with an elitist sub-optimization crossover routine and an unconstrained (continuous) turbine positioning set up is developed and tested over an 80-turbine offshore wind farm over the North Sea off Denmark (Horns Rev I). Within every generation of the evolution, the wind power output (cost function) is computed through a recently developed and validated analytical wake model with a Gaussian profile velocity deficit [1], which has shown to outperform the traditionally employed wake models through different LES simulations and wind tunnel experiments. Two schemes with slightly different perimeter constraint conditions (full or partial) are tested. Results show, compared to the baseline, gridded layout, a wind power output increase between 5.5% and 7.7%. In addition, it is observed that the electric cable length at the facilities is reduced by up to 21%. [1] Bastankhah, Majid, and Fernando Porté-Agel. "A new analytical model for wind-turbine wakes." Renewable Energy 70 (2014): 116-123.
Optimizing urine drug testing for monitoring medication compliance in pain management.
Melanson, Stacy E F; Ptolemy, Adam S; Wasan, Ajay D
2013-12-01
It can be challenging to successfully monitor medication compliance in pain management. Clinicians and laboratorians need to collaborate to optimize patient care and maximize operational efficiency. The test menu, assay cutoffs, and testing algorithms utilized in the urine drug testing panels should be periodically reviewed and tailored to the patient population to effectively assess compliance and avoid unnecessary testing and cost to the patient. Pain management and pathology collaborated on an important quality improvement initiative to optimize urine drug testing for monitoring medication compliance in pain management. We retrospectively reviewed 18 months of data from our pain management center. We gathered data on test volumes, positivity rates, and the frequency of false positive results. We also reviewed the clinical utility of our testing algorithms, assay cutoffs, and adulterant panel. In addition, the cost of each component was calculated. The positivity rate for ethanol and 3,4-methylenedioxymethamphetamine were <1% so we eliminated this testing from our panel. We also lowered the screening cutoff for cocaine to meet the clinical needs of the pain management center. In addition, we changed our testing algorithm for 6-acetylmorphine, benzodiazepines, and methadone. For example, due the high rate of false negative results using our immunoassay-based benzodiazepine screen, we removed the screening portion of the algorithm and now perform benzodiazepine confirmation up front in all specimens by liquid chromatography-tandem mass spectrometry. Conducting an interdisciplinary quality improvement project allowed us to optimize our testing panel for monitoring medication compliance in pain management and reduce cost. Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Petronevich, V. V.
2016-10-01
The paper observes the issues related to the increase of efficiency and information content of experimental research in transonic wind tunnels (WT). In particular, questions of optimizing the WT Data Acquisition and Control Systems (DACS) to provide the continuous mode test method are discussed. The problem of Mach number (M number) stabilization in the test section of the large transonic compressor-type wind tunnels at subsonic flow conditions with continuous change of the aircraft model angle of attack is observed on the example of T-128 wind tunnel. To minimize the signals distortion in T-128 DACS measurement channels the optimal MGCplus filter settings of the data acquisition system used in T-128 wind tunnel to measure loads were experimentally determined. As a result of the tests performed a good agreement of the results of balance measurements for pitch/pause and continuous test modes was obtained. Carrying out balance tests for pitch/pause and continuous test methods was provided by the regular data acquisition and control system of T-128 wind tunnel with unified software package POTOK. The architecture and functional abilities of POTOK software package are observed.
Development of Pelton turbine using numerical simulation
NASA Astrophysics Data System (ADS)
Patel, K.; Patel, B.; Yadav, M.; Foggia, T.
2010-08-01
This paper describes recent research and development activities in the field of Pelton turbine design. Flow inside Pelton turbine is most complex due to multiphase (mixture of air and water) and free surface in nature. Numerical calculation is useful to understand flow physics as well as effect of geometry on flow. The optimized design is obtained using in-house special optimization loop. Either single phase or two phase unsteady numerical calculation could be performed. Numerical results are used to visualize the flow pattern in the water passage and to predict performance of Pelton turbine at full load as well as at part load. Model tests are conducted to determine performance of turbine and it shows good agreement with numerically predicted performance.
The freshwater amphipod Hyalella azteca is a common organism used for sediment toxicity testing in the United States and elsewhere. Standard methods for 10-d and 42-d toxicity tests with H. azteca were last revised and published by USEPA/ASTM in 2000. Under the methods in the man...
The freshwater amphipod, Hyalella azteca, is a common organism used for sediment toxicity testing. Standard methods for 10-d and 42-d sediment toxicity tests with H. azteca were last revised and published by USEPA/ASTM in 2000. While Hyalella azteca methods exist for sediment tox...
Hologram interferometry in automotive component vibration testing
NASA Astrophysics Data System (ADS)
Brown, Gordon M.; Forbes, Jamie W.; Marchi, Mitchell M.; Wales, Raymond R.
1993-02-01
An ever increasing variety of automotive component vibration testing is being pursued at Ford Motor Company, U.S.A. The driving force for use of hologram interferometry in these tests is the continuing need to design component structures to meet more stringent functional performance criteria. Parameters such as noise and vibration, sound quality, and reliability must be optimized for the lightest weight component possible. Continually increasing customer expectations and regulatory pressures on fuel economy and safety mandate that vehicles be built from highly optimized components. This paper includes applications of holographic interferometry for powertrain support structure tuning, body panel noise reduction, wiper system noise and vibration path analysis, and other vehicle component studies.
High Fidelity Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Results
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David
2007-01-01
Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronie response provides a bridge between electrically heated testing and fueled nuclear testing, providing a better assessment of system integration issues, characterization of integrated system response times and response characteristics, and assessment of potential design improvements' at a relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design can developed. Test results presented in this paper correspond to a "first cut" simulator design for a potential liquid metal (NaK) cooled reactor design that could be applied for Lunar surface power. Proposed refinements to this simulator design are also presented.
A Structural Health Monitoring Software Tool for Optimization, Diagnostics and Prognostics
2011-01-01
A Structural Health Monitoring Software Tool for Optimization, Diagnostics and Prognostics Seth S . Kessler1, Eric B. Flynn2, Christopher T...technology more accessible, and commercially practical. 1. INTRODUCTION Currently successful laboratory non- destructive testing and monitoring...PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES
Thermal/structural Tailoring of Engine Blades (T/SEAEBL). Theoretical Manual
NASA Technical Reports Server (NTRS)
Brown, K. W.; Clevenger, W. B.
1994-01-01
The Thermal/Structural Tailoring of Engine Blades (T/STAEBL) system is a family of computer programs executed by a control program. The T/STAEBL system performs design optimizations of cooled, hollow turbine blades and vanes. This manual describes the T/STAEBL data block structure and system organization. The approximate analysis and optimization modules are detailed, and a validation test case is provided.
Thermal/structural tailoring of engine blades (T/SEAEBL). Theoretical manual
NASA Astrophysics Data System (ADS)
Brown, K. W.; Clevenger, W. B.
1994-03-01
The Thermal/Structural Tailoring of Engine Blades (T/STAEBL) system is a family of computer programs executed by a control program. The T/STAEBL system performs design optimizations of cooled, hollow turbine blades and vanes. This manual describes the T/STAEBL data block structure and system organization. The approximate analysis and optimization modules are detailed, and a validation test case is provided.
ERIC Educational Resources Information Center
O'Leary, Timothy P.; Brown, Richard E.
2013-01-01
We have previously shown that apparatus design can affect visual-spatial cue use and memory performance of mice on the Barnes maze. The present experiment extends these findings by determining the optimal behavioral measures and test procedure for analyzing visuo-spatial learning and memory in three different Barnes maze designs. Male and female…
NASA Technical Reports Server (NTRS)
Ramsey, W. D.
1978-01-01
THe original 12 cm hexagonal magneto-electrostatic containment discharge chamber has been optimized for argon and xenon operation. Argon mass utilization efficiencies of 65 to 77 percent were achieved at keeper-plus-main discharge energy consumptions of 200 to 458 eV/ion, respectively. Xenon performance of 84 to 96 percent mass utilization was realized at 203 to 350 eV/ion. The optimization process and test results are discussed.
NASA Technical Reports Server (NTRS)
1974-01-01
Weight and cost optimized EOS communication links are determined for 2.25, 7.25, 14.5, 21, and 60 GHz systems and for a 10.6 micron homodyne detection laser system. EOS to ground links are examined for 556, 834, and 1112 km EOS orbits, with ground terminals at the Network Test and Tracking Facility and at Goldstone. Optimized 21 GHz and 10.6 micron links are also examined. For the EOS to Tracking and Data Relay Satellite to ground link, signal-to-noise ratios of the uplink and downlink are also optimized for minimum overall cost or spaceborne weight. Finally, the optimized 21 GHz EOS to ground link is determined for various precipitation rates. All system performance parameters and mission dependent constraints are presented, as are the system cost and weight functional dependencies. The features and capabilities of the computer program to perform the foregoing analyses are described.
Optimization and performance of the Robert Stobie Spectrograph Near-InfraRed detector system
NASA Astrophysics Data System (ADS)
Mosby, Gregory; Indahl, Briana; Eggen, Nathan; Wolf, Marsha; Hooper, Eric; Jaehnig, Kurt; Thielman, Don; Burse, Mahesh
2018-01-01
At the University of Wisconsin-Madison, we are building and testing the near-infrared (NIR) spectrograph for the Southern African Large Telescope-RSS-NIR. RSS-NIR will be an enclosed cooled integral field spectrograph. The RSS-NIR detector system uses a HAWAII-2RG (H2RG) HgCdTe detector from Teledyne controlled by the SIDECAR ASIC and an Inter-University Centre for Astronomy and Astrophysics (IUCCA) ISDEC card. We have successfully characterized and optimized the detector system and report on the optimization steps and performance of the system. We have reduced the CDS read noise to ˜20 e- for 200 kHz operation by optimizing ASIC settings. We show an additional factor of 3 reduction of read noise using Fowler sampling techniques and a factor of 2 reduction using up-the-ramp group sampling techniques. We also provide calculations to quantify the conditions for sky-limited observations using these sampling techniques.
NASA Astrophysics Data System (ADS)
Meier, E.; Biedron, S. G.; LeBlanc, G.; Morgan, M. J.
2011-03-01
This paper reports the results of an advanced algorithm for the optimization of electron beam parameters in Free Electron Laser (FEL) Linacs. In the novel approach presented in this paper, the system uses state of the art developments in video games to mimic an operator's decisions to perform an optimization task when no prior knowledge, other than constraints on the actuators is available. The system was tested for the simultaneous optimization of the energy spread and the transmission of the Australian Synchrotron Linac. The proposed system successfully increased the transmission of the machine from 90% to 97% and decreased the energy spread of the beam from 1.04% to 0.91%. Results of a control experiment performed at the new FERMI@Elettra FEL is also reported, suggesting the adaptability of the scheme for beam-based control.
Optimization of an exchange-correlation density functional for water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritz, Michelle; Fernández-Serra, Marivi; Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794-3800
2016-06-14
We describe a method, that we call data projection onto parameter space (DPPS), to optimize an energy functional of the electron density, so that it reproduces a dataset of experimental magnitudes. Our scheme, based on Bayes theorem, constrains the optimized functional not to depart unphysically from existing ab initio functionals. The resulting functional maximizes the probability of being the “correct” parameterization of a given functional form, in the sense of Bayes theory. The application of DPPS to water sheds new light on why density functional theory has performed rather poorly for liquid water, on what improvements are needed, and onmore » the intrinsic limitations of the generalized gradient approximation to electron exchange and correlation. Finally, we present tests of our water-optimized functional, that we call vdW-DF-w, showing that it performs very well for a variety of condensed water systems.« less
Imamura, Teruhiko; Nitta, Daisuke; Kinugawa, Koichiro
2017-01-05
Adaptive servo-ventilation (ASV) therapy is a recent non-invasive positive pressure ventilation therapy that was developed for patients with heart failure (HF) refractory to optimal medical therapy. However, it is likely that ASV therapy at relatively higher pressure setting worsens some of the patients' prognosis compared with optimal medical therapy. Therefore, identification of optimal pressure settings of ASV therapy is warranted. We present the case of a 42-year-old male with HF, which was caused by dilated cardiomyopathy, who was admitted to our institution for evaluating his eligibility for heart transplantation. To identify the optimal pressure setting [peak end-expiratory pressure (PEEP) ramp test], we performed an ASV support test, during which the PEEP settings were set at levels ranging from 4 to 8 mmHg, and a heart rate variability (HRV) analysis using the MemCalc power spectral density method. Clinical parameters varied dramatically during the PEEP ramp test. Over incremental PEEP levels, pulmonary capillary wedge pressure, cardiac index and high-frequency level (reflecting parasympathetic activity) decreased; however, the low-frequency level increased along with increase in plasma noradrenaline concentrations. An inappropriately high PEEP setting may stimulate sympathetic nerve activity accompanied by decreased cardiac output. This was the first report on the PEEP ramp test during ASV therapy. Further research is warranted to determine whether use of optimal pressure settings using HRV analyses may improve the long-term prognosis of such patients.
2015-01-01
The standard artificial bee colony (ABC) algorithm involves exploration and exploitation processes which need to be balanced for enhanced performance. This paper proposes a new modified ABC algorithm named JA-ABC5 to enhance convergence speed and improve the ability to reach the global optimum by balancing exploration and exploitation processes. New stages have been proposed at the earlier stages of the algorithm to increase the exploitation process. Besides that, modified mutation equations have also been introduced in the employed and onlooker-bees phases to balance the two processes. The performance of JA-ABC5 has been analyzed on 27 commonly used benchmark functions and tested to optimize the reactive power optimization problem. The performance results have clearly shown that the newly proposed algorithm has outperformed other compared algorithms in terms of convergence speed and global optimum achievement. PMID:25879054
Sulaiman, Noorazliza; Mohamad-Saleh, Junita; Abro, Abdul Ghani
2015-01-01
The standard artificial bee colony (ABC) algorithm involves exploration and exploitation processes which need to be balanced for enhanced performance. This paper proposes a new modified ABC algorithm named JA-ABC5 to enhance convergence speed and improve the ability to reach the global optimum by balancing exploration and exploitation processes. New stages have been proposed at the earlier stages of the algorithm to increase the exploitation process. Besides that, modified mutation equations have also been introduced in the employed and onlooker-bees phases to balance the two processes. The performance of JA-ABC5 has been analyzed on 27 commonly used benchmark functions and tested to optimize the reactive power optimization problem. The performance results have clearly shown that the newly proposed algorithm has outperformed other compared algorithms in terms of convergence speed and global optimum achievement.
Display/control requirements for automated VTOL aircraft
NASA Technical Reports Server (NTRS)
Hoffman, W. C.; Kleinman, D. L.; Young, L. R.
1976-01-01
A systematic design methodology for pilot displays in advanced commercial VTOL aircraft was developed and refined. The analyst is provided with a step-by-step procedure for conducting conceptual display/control configurations evaluations for simultaneous monitoring and control pilot tasks. The approach consists of three phases: formulation of information requirements, configuration evaluation, and system selection. Both the monitoring and control performance models are based upon the optimal control model of the human operator. Extensions to the conventional optimal control model required in the display design methodology include explicit optimization of control/monitoring attention; simultaneous monitoring and control performance predictions; and indifference threshold effects. The methodology was applied to NASA's experimental CH-47 helicopter in support of the VALT program. The CH-47 application examined the system performance of six flight conditions. Four candidate configurations are suggested for evaluation in pilot-in-the-loop simulations and eventual flight tests.
NASA Astrophysics Data System (ADS)
Han, Jinhyup; Hwang, Soo Min; Go, Wooseok; Senthilkumar, S. T.; Jeon, Donghoon; Kim, Youngsik
2018-01-01
Cell design and optimization of the components, including active materials and passive components, play an important role in constructing robust, high-performance rechargeable batteries. Seawater batteries, which utilize earth-abundant and natural seawater as the active material in an open-structured cathode, require a new platform for building and testing the cells other than typical Li-ion coin-type or pouch-type cells. Herein, we present new findings based on our optimized cell. Engineering the cathode components-improving the wettability of cathode current collector and seawater catholyte flow-improves the battery performance (voltage efficiency). Optimizing the cell component and design is the key to identifying the electrochemical processes and reactions of active materials. Hence, the outcome of this research can provide a systematic study of potentially active materials used in seawater batteries and their effectiveness on the electrochemical performance.
Shen, L; Levine, S H; Catchen, G L
1987-07-01
This paper describes an optimization method for determining the beta dose distribution in tissue, and it describes the associated testing and verification. The method uses electron transport theory and optimization techniques to analyze the responses of a three-element thermoluminescent dosimeter (TLD) system. Specifically, the method determines the effective beta energy distribution incident on the dosimeter system, and thus the system performs as a beta spectrometer. Electron transport theory provides the mathematical model for performing the optimization calculation. In this calculation, parameters are determined that produce calculated doses for each of the chip/absorber components in the three-element TLD system. The resulting optimized parameters describe an effective incident beta distribution. This method can be used to determine the beta dose specifically at 7 mg X cm-2 or at any depth of interest. The doses at 7 mg X cm-2 in tissue determined by this method are compared to those experimentally determined using an extrapolation chamber. For a great variety of pure beta sources having different incident beta energy distributions, good agreement is found. The results are also compared to those produced by a commonly used empirical algorithm. Although the optimization method produces somewhat better results, the advantage of the optimization method is that its performance is not sensitive to the specific method of calibration.
High Efficiency Thermoelectric Radioisotope Power Systems
NASA Technical Reports Server (NTRS)
El-Genk, Mohamed; Saber, Hamed; Caillat, Thierry
2004-01-01
The work performed and whose results presented in this report is a joint effort between the University of New Mexico s Institute for Space and Nuclear Power Studies (ISNPS) and the Jet Propulsion Laboratory (JPL), California Institute of Technology. In addition to the development, design, and fabrication of skutterudites and skutterudites-based segmented unicouples this effort included conducting performance tests of these unicouples for hundreds of hours to verify theoretical predictions of the conversion efficiency. The performance predictions of these unicouples are obtained using 1-D and 3-D models developed for that purpose and for estimating the actual performance and side heat losses in the tests conducted at ISNPS. In addition to the performance tests, the development of the 1-D and 3-D models and the development of Advanced Radioisotope Power systems for Beginning-Of-Life (BOM) power of 108 We are carried out at ISNPS. The materials synthesis and fabrication of the unicouples are carried out at JPL. The research conducted at ISNPS is documented in chapters 2-5 and that conducted at JP, in documented in chapter 5. An important consideration in the design and optimization of segmented thermoelectric unicouples (STUs) is determining the relative lengths, cross-section areas, and the interfacial temperatures of the segments of the different materials in the n- and p-legs. These variables are determined using a genetic algorithm (GA) in conjunction with one-dimensional analytical model of STUs that is developed in chapter 2. Results indicated that when optimized for maximum conversion efficiency, the interfacial temperatures between various segments in a STU are close to those at the intersections of the Figure-Of-Merit (FOM), ZT, curves of the thermoelectric materials of the adjacent segments. When optimizing the STUs for maximum electrical power density, however, the interfacial temperatures are different from those at the intersections of the ZT curves, but close to those at the intersections the characteristic power, CP, curves of the thermoelectric materials of the adjacent segments (CP = T(sup 2)Zk and has a unit of W/m). Results also showed that the number of the segments in the n- and p-legs of the STUs optimized for maximum power density are generally fewer than when the same unicouples are optimized for maximum efficiency. These results are obtained using the 1-D optimization model of STUs that is detailed in chapter 2. A three-dimensional model of STUs is developed and incorporated into the ANSYS commercial software (chapter 3). The governing equations are solved, subject to the prescribed
Faron, Matthew L; Buchan, Blake W; Ledeboer, Nathan A
2017-12-01
Early initiation of effective antibiotics for septic patients is essential for patient survival. Matrix-assisted desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has revolutionized clinical microbiology for isolate identification and has the possibility to impact how blood culture testing is performed. This review discusses the various uses of MALDI-TOF MS for the identification and susceptibility testing of positive blood cultures, the performance of these methods, and the outcomes involved with its implementation. Copyright © 2017 American Society for Microbiology.
Snout allometry in seahorses: insights on optimisation of pivot feeding performance during ontogeny.
Roos, Gert; Van Wassenbergh, Sam; Herrel, Anthony; Adriaens, Dominique; Aerts, Peter
2010-07-01
As juvenile life-history stages are subjected to strong selection, these stages often show levels of performance approaching those of adults, or show a disproportionately rapid increase of performance with age. Although testing performance capacity in aquatic suction feeders is often problematic, in pivot feeders such as seahorses models have been proposed to estimate whether snout length is optimal to minimise the time needed to reach the prey. Here, we investigate whether the same model can also explain the snout lengths in an ontogenetic series of seahorses, explore how pivot feeding kinematics change during ontogeny, and test whether juveniles show disproportionate levels of performance. Our analysis shows that the dimensions of the snout change during ontogeny from short and broad to long and narrow. Model calculations show that the snout lengths of newborn and juvenile seahorses are nearly optimal for minimising prey reach time. However, in juveniles the centre of head rotation in the earth-bound frame of reference is located near the posterior end of the head, whereas in adults it is shifted forward and is located approximately above the eye. Modelling shows that this forward shift in the centre of rotation has the advantage of decreasing the moment of inertia and the torque required to rotate the head, but has the disadvantage of slightly increasing the time needed to reach the prey. Thus, the snout lengths of juvenile seahorses appear to be close to optimal, suggesting that they reach levels of performance close to adult levels, which illustrates the pervasive nature of selection on performance in juveniles.
Lv, Decheng
2012-01-01
Numerous researches demonstrated the possibility of derivation of Schwann-like (SC-like) cells in vitro from bone marrow stromal cells (BMSCs). However, the concentration of the induce factors were different in those studies, especially for the critical factors forskolin (FSK) and β-heregulin (HRG). Here, we used a new and useful method to build an integrated microfluidic chip for rapid analyses of the optimal combination between the induce factors FSK and HRG. The microfluidic device was mainly composed of an upstream concentration gradient generator (CGG) and a downstream cell culture module. Rat BMSCs were cultured in the cell chambers for 11 days at the different concentrations of induce factors generated by CGG. The result of immunofluorescence staining on-chip showed that the group of 4.00 µM FSK and 250.00 ng/ml HRG presented an optimal effect to promote the derivation of SC-like cells. Moreover, the optimal SC-like cells obtained on-chip were further tested using DRG co-culture and ELISA to detect their functional performance. Our findings demonstrate that SC-like cells could be obtained with high efficiency and functional performance in the optimal inducers combination. PMID:22880114
Tian, Xiliang; Wang, Shouyu; Zhang, Zhen; Lv, Decheng
2012-01-01
Numerous researches demonstrated the possibility of derivation of Schwann-like (SC-like) cells in vitro from bone marrow stromal cells (BMSCs). However, the concentration of the induce factors were different in those studies, especially for the critical factors forskolin (FSK) and β-heregulin (HRG). Here, we used a new and useful method to build an integrated microfluidic chip for rapid analyses of the optimal combination between the induce factors FSK and HRG. The microfluidic device was mainly composed of an upstream concentration gradient generator (CGG) and a downstream cell culture module. Rat BMSCs were cultured in the cell chambers for 11 days at the different concentrations of induce factors generated by CGG. The result of immunofluorescence staining on-chip showed that the group of 4.00 µM FSK and 250.00 ng/ml HRG presented an optimal effect to promote the derivation of SC-like cells. Moreover, the optimal SC-like cells obtained on-chip were further tested using DRG co-culture and ELISA to detect their functional performance. Our findings demonstrate that SC-like cells could be obtained with high efficiency and functional performance in the optimal inducers combination.
Zhou, Xiangyang; Zhao, Beilei; Gong, Guohao
2015-08-14
This paper presents a method based on co-simulation of a mechatronic system to optimize the control parameters of a two-axis inertially stabilized platform system (ISP) applied in an unmanned airship (UA), by which high control performance and reliability of the ISP system are achieved. First, a three-dimensional structural model of the ISP is built by using the three-dimensional parametric CAD software SOLIDWORKS(®); then, to analyze the system's kinematic and dynamic characteristics under operating conditions, dynamics modeling is conducted by using the multi-body dynamics software ADAMS™, thus the main dynamic parameters such as displacement, velocity, acceleration and reaction curve are obtained, respectively, through simulation analysis. Then, those dynamic parameters were input into the established MATLAB(®) SIMULINK(®) controller to simulate and test the performance of the control system. By these means, the ISP control parameters are optimized. To verify the methods, experiments were carried out by applying the optimized parameters to the control system of a two-axis ISP. The results show that the co-simulation by using virtual prototyping (VP) is effective to obtain optimized ISP control parameters, eventually leading to high ISP control performance.
Zhou, Xiangyang; Zhao, Beilei; Gong, Guohao
2015-01-01
This paper presents a method based on co-simulation of a mechatronic system to optimize the control parameters of a two-axis inertially stabilized platform system (ISP) applied in an unmanned airship (UA), by which high control performance and reliability of the ISP system are achieved. First, a three-dimensional structural model of the ISP is built by using the three-dimensional parametric CAD software SOLIDWORKS®; then, to analyze the system’s kinematic and dynamic characteristics under operating conditions, dynamics modeling is conducted by using the multi-body dynamics software ADAMS™, thus the main dynamic parameters such as displacement, velocity, acceleration and reaction curve are obtained, respectively, through simulation analysis. Then, those dynamic parameters were input into the established MATLAB® SIMULINK® controller to simulate and test the performance of the control system. By these means, the ISP control parameters are optimized. To verify the methods, experiments were carried out by applying the optimized parameters to the control system of a two-axis ISP. The results show that the co-simulation by using virtual prototyping (VP) is effective to obtain optimized ISP control parameters, eventually leading to high ISP control performance. PMID:26287210
Bénard, Florence; Barkun, Alan N; Martel, Myriam; von Renteln, Daniel
2018-01-07
To summarize and compare worldwide colorectal cancer (CRC) screening recommendations in order to identify similarities and disparities. A systematic literature search was performed using MEDLINE, EMBASE, Scopus, CENTRAL and ISI Web of knowledge identifying all average-risk CRC screening guideline publications within the last ten years and/or position statements published in the last 2 years. In addition, a hand-search of the webpages of National Gastroenterology Society websites, the National Guideline Clearinghouse, the BMJ Clinical Evidence website, Google and Google Scholar was performed. Fifteen guidelines were identified. Six guidelines were published in North America, four in Europe, four in Asia and one from the World Gastroenterology Organization. The majority of guidelines recommend screening average-risk individuals between ages 50 and 75 using colonoscopy (every 10 years), or flexible sigmoidoscopy (FS, every 5 years) or fecal occult blood test (FOBT, mainly the Fecal Immunochemical Test, annually or biennially). Disparities throughout the different guidelines are found relating to the use of colonoscopy, rank order between test, screening intervals and optimal age ranges for screening. Average risk individuals between 50 and 75 years should undergo CRC screening. Recommendations for optimal surveillance intervals, preferred tests/test cascade as well as the optimal timing when to start and stop screening differ regionally and should be considered for clinical decision making. Furthermore, local resource availability and patient preferences are important to increase CRC screening uptake, as any screening is better than none.
NASA Technical Reports Server (NTRS)
Manzella, David; Jacobson, David; Jankovsky, Robert
2001-01-01
A 2.3 kW stationary plasma thruster designed to operate at high voltage was tested at discharge voltages between 300 and 1250 V. Discharge specific impulses between 1600 and 3700 sec were demonstrated with thrust between 40 and 145 mN. Test data indicated that discharge voltage can be optimized for maximum discharge efficiency. The optimum discharge voltage was between 500 and 700 V for the various anode mass flow rates considered. The effect of operating voltage on optimal magnet field strength was investigated. The effect of cathode flow rate on thruster efficiency was considered for an 800 V discharge.
Gomes, Luciano T; Tada, Mauro S; Katsuragawa, Tony H; Povoa, Marinete M; Viana, Giselle Mr; Alecrim, Maria das Gracas C; De Santana-Filho, Frankllin S; Arcanjo, Ana Ruth L; Couto, Alvaro A R A; Calvosa, Vanja S P; Nery, Andreia F; Fontes, Cor J F
2013-03-14
In remote areas of the Amazon Region, diagnosis of malaria by microscopy is practically impossible. This study aimed to evaluate the performance of two rapid diagnostic tests (RDTs) targeting different malaria antigens stored at room temperature in the Brazilian Amazon Region. Performance of the OptiMal Pf/Pan test and ICT-Now Pf/Pan test was analyzed retrospectively in 1,627 and 1,602 blood samples, respectively. Tests were performed over a 15-month period. Kits were stored at room temperature in five community health centres located in the Brazilian Amazon Region. RDT results were compared with thick blood smear (TBS) results to determine sensitivity, specificity, and accuracy of the RDT. The sensitivities of the OptiMal Pf/Pan test were 79.7% for Plasmodium falciparum malaria diagnosis and 85.7% for non-P. falciparum infections. The results showed a crude agreement of 88.5% for P. falciparum, and 88.3% for non-P. falciparum infections (Kappa index = 0.74 and 0.75, respectively). For the ICT-Now Pf/Pan test (CI 95%), the sensitivities were 87.9% for P. falciparum malaria diagnosis and 72.5% for non-P. falciparum infection. Crude agreement between the ICT-Now Pf/Pan test and TBS was 91.4% for P. falciparum and 79.7% for non-P. falciparum infection. The Kappa index was 0.81 and 0.59 for the final diagnosis of P. falciparum and non-P. falciparum, respectively. Higher levels of parasitaemia were associated with higher crude agreement between RDT and TBS. The sensitivities of RDTs stored at room temperature over a 15-month period and performed in field conditions were lower than those previously reported.
NASA Technical Reports Server (NTRS)
Lombaerts, Thomas; Schuet, Stefan R.; Wheeler, Kevin; Acosta, Diana; Kaneshige, John
2013-01-01
This paper discusses an algorithm for estimating the safe maneuvering envelope of damaged aircraft. The algorithm performs a robust reachability analysis through an optimal control formulation while making use of time scale separation and taking into account uncertainties in the aerodynamic derivatives. Starting with an optimal control formulation, the optimization problem can be rewritten as a Hamilton- Jacobi-Bellman equation. This equation can be solved by level set methods. This approach has been applied on an aircraft example involving structural airframe damage. Monte Carlo validation tests have confirmed that this approach is successful in estimating the safe maneuvering envelope for damaged aircraft.
Daza, Iván G.; Bergasa, Luis M.; Bronte, Sebastián; Yebes, J. Javier; Almazán, Javier; Arroyo, Roberto
2014-01-01
This paper presents a non-intrusive approach for monitoring driver drowsiness using the fusion of several optimized indicators based on driver physical and driving performance measures, obtained from ADAS (Advanced Driver Assistant Systems) in simulated conditions. The paper is focused on real-time drowsiness detection technology rather than on long-term sleep/awake regulation prediction technology. We have developed our own vision system in order to obtain robust and optimized driver indicators able to be used in simulators and future real environments. These indicators are principally based on driver physical and driving performance skills. The fusion of several indicators, proposed in the literature, is evaluated using a neural network and a stochastic optimization method to obtain the best combination. We propose a new method for ground-truth generation based on a supervised Karolinska Sleepiness Scale (KSS). An extensive evaluation of indicators, derived from trials over a third generation simulator with several test subjects during different driving sessions, was performed. The main conclusions about the performance of single indicators and the best combinations of them are included, as well as the future works derived from this study. PMID:24412904
A Probe for Measuring Spacecraft Surface Potentials Using a Direct-Gate Field Effect Transistor.
1983-09-30
SURFACE POTENTIALS USING A DIRECT-GATE FIELD EFFECT TRANSISTOR Mark N. Horenstein Anton Havretic Trustees of Boston University 881 Commonwealth Avenue...1933 Transistor 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(&) ’_5 Mark N. Horenstein Anton Mavretic F19628-82-K-00 34...at AFGL. These tests can be considered the bench mark tests for device performance, with all elements of the monitoring system optimized to eliminate
Optimization of microwire/glass-fibre reinforced polymer composites for wind turbine application
NASA Astrophysics Data System (ADS)
Qin, F. X.; Peng, H. X.; Chen, Z.; Wang, H.; Zhang, J. W.; Hilton, G.
2013-11-01
We here report a comprehensive study of glass-fibre reinforced polymers (GFRP) incorporating ferromagnetic microwires for microwave absorption applications. With wire addition, a remarkable dependence of microwave absorption performance appears on the local properties of wires such as wire geometry and the mesostructure such as inter-wire spacing, as well as the embedded depth of the wires layer. The impact testing further demonstrates that the metallic microwires can to some extent improve the impact performance. Based on both the absorption and impact behavior, we propose an optimized design of the microwire/GFRP composites to achieve simultaneous best possible absorption and impact performance for multifunctional applications in aeronautical structures and wind turbines.
Optimal design of high-speed loading spindle based on ABAQUS
NASA Astrophysics Data System (ADS)
Yang, Xudong; Dong, Yu; Ge, Qingkuan; Yang, Hai
2017-12-01
The three-dimensional model of high-speed loading spindle is established by using ABAQUS’s modeling module. A finite element analysis model of high-speed loading spindle was established by using spring element to simulate bearing boundary condition. The static and dynamic performance of the spindle structure with different specifications of the rectangular spline and the different diameter neck of axle are studied in depth, and the influence of different spindle span on the static and dynamic performance of the high-speed loading spindle is studied. Finally, the optimal structure of the high-speed loading spindle is obtained. The results provide a theoretical basis for improving the overall performance of the test-bed
NASA Technical Reports Server (NTRS)
Cliff, Susan E.; Baker, Timothy J.; Hicks, Raymond M.; Reuther, James J.
1999-01-01
Two supersonic transport configurations designed by use of non-linear aerodynamic optimization methods are compared with a linearly designed baseline configuration. One optimized configuration, designated Ames 7-04, was designed at NASA Ames Research Center using an Euler flow solver, and the other, designated Boeing W27, was designed at Boeing using a full-potential method. The two optimized configurations and the baseline were tested in the NASA Langley Unitary Plan Supersonic Wind Tunnel to evaluate the non-linear design optimization methodologies. In addition, the experimental results are compared with computational predictions for each of the three configurations from the Enter flow solver, AIRPLANE. The computational and experimental results both indicate moderate to substantial performance gains for the optimized configurations over the baseline configuration. The computed performance changes with and without diverters and nacelles were in excellent agreement with experiment for all three models. Comparisons of the computational and experimental cruise drag increments for the optimized configurations relative to the baseline show excellent agreement for the model designed by the Euler method, but poorer comparisons were found for the configuration designed by the full-potential code.
Increasing power generation in horizontal axis wind turbines using optimized flow control
NASA Astrophysics Data System (ADS)
Cooney, John A., Jr.
In order to effectively realize future goals for wind energy, the efficiency of wind turbines must increase beyond existing technology. One direct method for achieving increased efficiency is by improving the individual power generation characteristics of horizontal axis wind turbines. The potential for additional improvement by traditional approaches is diminishing rapidly however. As a result, a research program was undertaken to assess the potential of using distributed flow control to increase power generation. The overall objective was the development of validated aerodynamic simulations and flow control approaches to improve wind turbine power generation characteristics. BEM analysis was conducted for a general set of wind turbine models encompassing last, current, and next generation designs. This analysis indicated that rotor lift control applied in Region II of the turbine power curve would produce a notable increase in annual power generated. This was achieved by optimizing induction factors along the rotor blade for maximum power generation. In order to demonstrate this approach and other advanced concepts, the University of Notre Dame established the Laboratory for Enhanced Wind Energy Design (eWiND). This initiative includes a fully instrumented meteorological tower and two pitch-controlled wind turbines. The wind turbines are representative in their design and operation to larger multi-megawatt turbines, but of a scale that allows rotors to be easily instrumented and replaced to explore new design concepts. Baseline data detailing typical site conditions and turbine operation is presented. To realize optimized performance, lift control systems were designed and evaluated in CFD simulations coupled with shape optimization tools. These were integrated into a systematic design methodology involving BEM simulations, CFD simulations and shape optimization, and selected experimental validation. To refine and illustrate the proposed design methodology, a complete design cycle was performed for the turbine model incorporated in the wind energy lab. Enhanced power generation was obtained through passive trailing edge shaping aimed at reaching lift and lift-to-drag goals predicted to optimize performance. These targets were determined by BEM analysis to improve power generation characteristics and annual energy production (AEP) for the wind turbine. A preliminary design was validated in wind tunnel experiments on a 2D rotor section in preparation for testing in the full atmospheric environment of the eWiND Laboratory. These tests were performed for the full-scale geometry and atmospheric conditions. Upon making additional improvements to the shape optimization tools, a series of trailing edge additions were designed to optimize power generation. The trailing edge additions were predicted to increase the AEP by up to 4.2% at the White Field site. The pieces were rapid-prototyped and installed on the wind turbine in March, 2014. Field tests are ongoing.
The 2.3 kW Ion Thruster Wear Test
NASA Technical Reports Server (NTRS)
Parkes, James; Rawlin, Vincent K.; Sovey, James S.; Kussmaul, Michael J.; Patterson, Michael J.
1995-01-01
A 30-cm diameter xenon ion thruster is under development at NASA to provide an ion propulsion option for auxiliary and primary propulsion on missions of national interest. Specific efforts include thruster design optimizations, component life testing and validation, and performance characterizations. Under this program, the ion thruster will be brought to engineering model development status. This paper describes the results of a 2.3-kW 2000-hour wear test performed to identify life limiting phenomena, measure the performance and characterize the operation of the thruster, and obtain wear, erosion, and surface contamination data. These data are being using as a data base for proceeding with additional life validation tests, and to provide input to flight thruster design requirements.
Westgard, Sten A
2016-06-01
To assess the analytical performance of instruments and methods through external quality assessment and proficiency testing data on the Sigma scale. A representative report from five different EQA/PT programs around the world (2 US, 1 Canadian, 1 UK, and 1 Australasian) was accessed. The instrument group standard deviations were used as surrogate estimates of instrument imprecision. Performance specifications from the US CLIA proficiency testing criteria were used to establish a common quality goal. Then Sigma-metrics were calculated to grade the analytical performance. Different methods have different Sigma-metrics for each analyte reviewed. Summary Sigma-metrics estimate the percentage of the chemistry analytes that are expected to perform above Five Sigma, which is where optimized QC design can be implemented. The range of performance varies from 37% to 88%, exhibiting significant differentiation between instruments and manufacturers. Median Sigmas for the different manufacturers in three analytes (albumin, glucose, sodium) showed significant differentiation. Chemistry tests are not commodities. Quality varies significantly from manufacturer to manufacturer, instrument to instrument, and method to method. The Sigma-assessments from multiple EQA/PT programs provide more insight into the performance of methods and instruments than any single program by itself. It is possible to produce a ranking of performance by manufacturer, instrument and individual method. Laboratories seeking optimal instrumentation would do well to consult this data as part of their decision-making process. To confirm that these assessments are stable and reliable, a longer term study should be conducted that examines more results over a longer time period. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Thrust stand evaluation of engine performance improvement algorithms in an F-15 airplane
NASA Technical Reports Server (NTRS)
Conners, Timothy R.
1992-01-01
An investigation is underway to determine the benefits of a new propulsion system optimization algorithm in an F-15 airplane. The performance seeking control (PSC) algorithm optimizes the quasi-steady-state performance of an F100 derivative turbofan engine for several modes of operation. The PSC algorithm uses an onboard software engine model that calculates thrust, stall margin, and other unmeasured variables for use in the optimization. As part of the PSC test program, the F-15 aircraft was operated on a horizontal thrust stand. Thrust was measured with highly accurate load cells. The measured thrust was compared to onboard model estimates and to results from posttest performance programs. Thrust changes using the various PSC modes were recorded. Those results were compared to benefits using the less complex highly integrated digital electronic control (HIDEC) algorithm. The PSC maximum thrust mode increased intermediate power thrust by 10 percent. The PSC engine model did very well at estimating measured thrust and closely followed the transients during optimization. Quantitative results from the evaluation of the algorithms and performance calculation models are included with emphasis on measured thrust results. The report presents a description of the PSC system and a discussion of factors affecting the accuracy of the thrust stand load measurements.
A Novel Particle Swarm Optimization Algorithm for Global Optimization
Wang, Chun-Feng; Liu, Kui
2016-01-01
Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire population in the current iteration is considered. Meanwhile, to avoid premature, an abandoned mechanism is used. Furthermore, for improving the global convergence speed of our algorithm, a chaotic search is adopted in the best solution of the current iteration. To verify the performance of our algorithm, standard test functions have been employed. The experimental results show that the algorithm is much more robust and efficient than some existing Particle Swarm Optimization algorithms. PMID:26955387
Optimization of Wireless Power Transfer Systems Enhanced by Passive Elements and Metasurfaces
NASA Astrophysics Data System (ADS)
Lang, Hans-Dieter; Sarris, Costas D.
2017-10-01
This paper presents a rigorous optimization technique for wireless power transfer (WPT) systems enhanced by passive elements, ranging from simple reflectors and intermedi- ate relays all the way to general electromagnetic guiding and focusing structures, such as metasurfaces and metamaterials. At its core is a convex semidefinite relaxation formulation of the otherwise nonconvex optimization problem, of which tightness and optimality can be confirmed by a simple test of its solutions. The resulting method is rigorous, versatile, and general -- it does not rely on any assumptions. As shown in various examples, it is able to efficiently and reliably optimize such WPT systems in order to find their physical limitations on performance, optimal operating parameters and inspect their working principles, even for a large number of active transmitters and passive elements.
The optimal design of UAV wing structure
NASA Astrophysics Data System (ADS)
Długosz, Adam; Klimek, Wiktor
2018-01-01
The paper presents an optimal design of UAV wing, made of composite materials. The aim of the optimization is to improve strength and stiffness together with reduction of the weight of the structure. Three different types of functionals, which depend on stress, stiffness and the total mass are defined. The paper presents an application of the in-house implementation of the evolutionary multi-objective algorithm in optimization of the UAV wing structure. Values of the functionals are calculated on the basis of results obtained from numerical simulations. Numerical FEM model, consisting of different composite materials is created. Adequacy of the numerical model is verified by results obtained from the experiment, performed on a tensile testing machine. Examples of multi-objective optimization by means of Pareto-optimal set of solutions are presented.
High-density fuel effects. Final report, September 1985-April 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizk, N.K.; Oechsie, V.L.; Ross, P.T.
1988-08-18
The purpose of this program was to determine, by combustor rig tests and data evaluation, the effects of the high-density fuel properties on the performance and durability of the Allison T56-A-15 combustion system. Four high-density fuels in addition to baseline JP4 were evaluated in the effort. The rig-test program included: nozzle-flow bench testing, aerothermal performance and wall temperature, flame stability and ignition, injector coking and plugging, and flow-transient effect. The data-evaluation effort involved the utilization of empirical correlations in addition to analytical multidimensional tools to analyze the performance of the combustor. The modifications required to optimize the performance with high-densitymore » fuels were suggested and the expected improvement in performance was evaluated.« less
Using Maximal Isometric Force to Determine the Optimal Load for Measuring Dynamic Muscle Power
NASA Technical Reports Server (NTRS)
Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason R.; Nash, Roxanne E.; Sinka, Joseph; Bloomberg, Jacob J.
2009-01-01
Maximal power output occurs when subjects perform ballistic exercises using loads of 30-50% of one-repetition maximum (1-RM). However, performing 1-RM testing prior to power measurement requires considerable time, especially when testing involves multiple exercises. Maximal isometric force (MIF), which requires substantially less time to measure than 1-RM, might be an acceptable alternative for determining the optimal load for power testing. PURPOSE: To determine the optimal load based on MIF for maximizing dynamic power output during leg press and bench press exercises. METHODS: Twenty healthy volunteers (12 men and 8 women; mean +/- SD age: 31+/-6 y; body mass: 72 +/- 15 kg) performed isometric leg press and bench press movements, during which MIF was measured using force plates. Subsequently, subjects performed ballistic leg press and bench press exercises using loads corresponding to 20%, 30%, 40%, 50%, and 60% of MIF presented in randomized order. Maximal instantaneous power was calculated during the ballistic exercise tests using force plates and position transducers. Repeated-measures ANOVA and Fisher LSD post hoc tests were used to determine the load(s) that elicited maximal power output. RESULTS: For the leg press power test, six subjects were unable to be tested at 20% and 30% MIF because these loads were less than the lightest possible load (i.e., the weight of the unloaded leg press sled assembly [31.4 kg]). For the bench press power test, five subjects were unable to be tested at 20% MIF because these loads were less than the weight of the unloaded aluminum bar (i.e., 11.4 kg). Therefore, these loads were excluded from analysis. A trend (p = 0.07) for a main effect of load existed for the leg press exercise, indicating that the 40% MIF load tended to elicit greater power output than the 60% MIF load (effect size = 0.38). A significant (p . 0.05) main effect of load existed for the bench press exercise; post hoc analysis indicated that the effect of load on power output was: 30% > 40% > 50% = 60%. CONCLUSION: Loads of 40% and 30% of MIF elicit maximal power output during dynamic leg presses and bench presses, respectively. These findings are similar to those obtained when loading is based on 1-RM.
Integrated testing system FiTest for diagnosis of PCBA
NASA Astrophysics Data System (ADS)
Bogdan, Arkadiusz; Lesniak, Adam
2016-12-01
This article presents the innovative integrated testing system FiTest for automatic, quick inspection of printed circuit board assemblies (PCBA) manufactured in Surface Mount Technology (SMT). Integration of Automatic Optical Inspection (AOI), In-Circuit Tests (ICT) and Functional Circuit Tests (FCT) resulted in universal hardware platform for testing variety of electronic circuits. The platform provides increased test coverage, decreased level of false calls and optimization of test duration. The platform is equipped with powerful algorithms performing tests in a stable and repetitive way and providing effective management of diagnosis.
This presentation will focus on validation testing performed on a three-lamp low-pressure high-output (LPHO) TrojanUVSwiftTM UV reactor using MS2, Bacillus Pumilus, and live adenovirus as the test microbes. An adjustable sensor was used to help determine the optimal sensor locati...
Code of Federal Regulations, 2010 CFR
2010-07-01
... which you sample and record gas-analyzer concentrations. (b) Measurement principles. This test verifies... appropriate frequency to prevent loss of information. This test also verifies that the measurement system... instructions. Adjust the measurement system as needed to optimize performance. Run this verification with the...
NASA Astrophysics Data System (ADS)
Bieniek, T.; Janczyk, G.; Dobrowolski, R.; Wojciechowska, K.; Malinowska, A.; Panas, A.; Nieprzecki, M.; Kłos, H.
2016-11-01
This paper covers research results on development of the cantilevers beams test structures for interconnects reliability and robustness investigation. Presented results include design, modelling, simulation, optimization and finally fabrication stage performed on 4 inch Si wafers using the ITE microfabrication facility. This paper also covers experimental results from the test structures characterization.
Optimal Appearance Model for Visual Tracking
Wang, Yuru; Jiang, Longkui; Liu, Qiaoyuan; Yin, Minghao
2016-01-01
Many studies argue that integrating multiple cues in an adaptive way increases tracking performance. However, what is the definition of adaptiveness and how to realize it remains an open issue. On the premise that the model with optimal discriminative ability is also optimal for tracking the target, this work realizes adaptiveness and robustness through the optimization of multi-cue integration models. Specifically, based on prior knowledge and current observation, a set of discrete samples are generated to approximate the foreground and background distribution. With the goal of optimizing the classification margin, an objective function is defined, and the appearance model is optimized by introducing optimization algorithms. The proposed optimized appearance model framework is embedded into a particle filter for a field test, and it is demonstrated to be robust against various kinds of complex tracking conditions. This model is general and can be easily extended to other parameterized multi-cue models. PMID:26789639
Distributed Wind Competitiveness Improvement Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. Manufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards. Thismore » fact sheet describes the CIP and funding awarded as part of the project.ufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards. This fact sheet describes the CIP and funding awarded as part of the project.« less
Simple Example of Backtest Overfitting (SEBO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
In the field of mathematical finance, a "backtest" is the usage of historical market data to assess the performance of a proposed trading strategy. It is a relatively simple matter for a present-day computer system to explore thousands, millions or even billions of variations of a proposed strategy, and pick the best performing variant as the "optimal" strategy "in sample" (i.e., on the input dataset). Unfortunately, such an "optimal" strategy often performs very poorly "out of sample" (i.e. on another dataset), because the parameters of the invest strategy have been oversit to the in-sample data, a situation known as "backtestmore » overfitting". While the mathematics of backtest overfitting has been examined in several recent theoretical studies, here we pursue a more tangible analysis of this problem, in the form of an online simulator tool. Given a input random walk time series, the tool develops an "optimal" variant of a simple strategy by exhaustively exploring all integer parameter values among a handful of parameters. That "optimal" strategy is overfit, since by definition a random walk is unpredictable. Then the tool tests the resulting "optimal" strategy on a second random walk time series. In most runs using our online tool, the "optimal" strategy derived from the first time series performs poorly on the second time series, demonstrating how hard it is not to overfit a backtest. We offer this online tool, "Simple Example of Backtest Overfitting (SEBO)", to facilitate further research in this area.« less
Fan, Mengbao; Wang, Qi; Cao, Binghua; Ye, Bo; Sunny, Ali Imam; Tian, Guiyun
2016-01-01
Eddy current testing is quite a popular non-contact and cost-effective method for nondestructive evaluation of product quality and structural integrity. Excitation frequency is one of the key performance factors for defect characterization. In the literature, there are many interesting papers dealing with wide spectral content and optimal frequency in terms of detection sensitivity. However, research activity on frequency optimization with respect to characterization performances is lacking. In this paper, an investigation into optimum excitation frequency has been conducted to enhance surface defect classification performance. The influences of excitation frequency for a group of defects were revealed in terms of detection sensitivity, contrast between defect features, and classification accuracy using kernel principal component analysis (KPCA) and a support vector machine (SVM). It is observed that probe signals are the most sensitive on the whole for a group of defects when excitation frequency is set near the frequency at which maximum probe signals are retrieved for the largest defect. After the use of KPCA, the margins between the defect features are optimum from the perspective of the SVM, which adopts optimal hyperplanes for structure risk minimization. As a result, the best classification accuracy is obtained. The main contribution is that the influences of excitation frequency on defect characterization are interpreted, and experiment-based procedures are proposed to determine the optimal excitation frequency for a group of defects rather than a single defect with respect to optimal characterization performances. PMID:27164112
Fan, Mengbao; Wang, Qi; Cao, Binghua; Ye, Bo; Sunny, Ali Imam; Tian, Guiyun
2016-05-07
Eddy current testing is quite a popular non-contact and cost-effective method for nondestructive evaluation of product quality and structural integrity. Excitation frequency is one of the key performance factors for defect characterization. In the literature, there are many interesting papers dealing with wide spectral content and optimal frequency in terms of detection sensitivity. However, research activity on frequency optimization with respect to characterization performances is lacking. In this paper, an investigation into optimum excitation frequency has been conducted to enhance surface defect classification performance. The influences of excitation frequency for a group of defects were revealed in terms of detection sensitivity, contrast between defect features, and classification accuracy using kernel principal component analysis (KPCA) and a support vector machine (SVM). It is observed that probe signals are the most sensitive on the whole for a group of defects when excitation frequency is set near the frequency at which maximum probe signals are retrieved for the largest defect. After the use of KPCA, the margins between the defect features are optimum from the perspective of the SVM, which adopts optimal hyperplanes for structure risk minimization. As a result, the best classification accuracy is obtained. The main contribution is that the influences of excitation frequency on defect characterization are interpreted, and experiment-based procedures are proposed to determine the optimal excitation frequency for a group of defects rather than a single defect with respect to optimal characterization performances.
Hydropower Generation Performance Testing at Plants in Thailand and Laos
Kern, Jamie; Hadjerioua, Boualem; Christian, Mark H.; ...
2017-04-01
An operational assessment of four hydropower plants in Southeast Asia revealed that gains in both energy production and water conservation could be achieved with little monetary investment through operational optimization efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lissner, Daniel N.; Edward, Lovelace C.
The purpose of the Free Flow Power (FFP) Water-to-Wire Project (Project) was to evaluate and optimize the performance, environmental compatibility, and cost factors of FFP hydrokinetic turbines through design analyses and deployments in test flumes and riverine locations.
Wideband Single Crystal Transducer for Bone Characterization
NASA Technical Reports Server (NTRS)
Sahul, Raffi
2015-01-01
Phase II objectives: Optimize the Phase I transducer for sensitivity; Test different transmit signals for optimum performance; Demonstrate compatibility with electronics; Confirm additional transducer capabilities over conventional systems by calibrating with other methods.
Hydropower Generation Performance Testing at Plants in Thailand and Laos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kern, Jamie; Hadjerioua, Boualem; Christian, Mark H.
An operational assessment of four hydropower plants in Southeast Asia revealed that gains in both energy production and water conservation could be achieved with little monetary investment through operational optimization efforts.
An improved harmony search algorithm with dynamically varying bandwidth
NASA Astrophysics Data System (ADS)
Kalivarapu, J.; Jain, S.; Bag, S.
2016-07-01
The present work demonstrates a new variant of the harmony search (HS) algorithm where bandwidth (BW) is one of the deciding factors for the time complexity and the performance of the algorithm. The BW needs to have both explorative and exploitative characteristics. The ideology is to use a large BW to search in the full domain and to adjust the BW dynamically closer to the optimal solution. After trying a series of approaches, a methodology inspired by the functioning of a low-pass filter showed satisfactory results. This approach was implemented in the self-adaptive improved harmony search (SIHS) algorithm and tested on several benchmark functions. Compared to the existing HS algorithm and its variants, SIHS showed better performance on most of the test functions. Thereafter, the algorithm was applied to geometric parameter optimization of a friction stir welding tool.
Design, analysis, and testing of a flexure-based vibration-assisted polishing device
NASA Astrophysics Data System (ADS)
Gu, Yan; Zhou, Yan; Lin, Jieqiong; Lu, Mingming; Zhang, Chenglong; Chen, Xiuyuan
2018-05-01
A vibration-assisted polishing device (VAPD) composed of leaf-spring and right-circular flexure hinges is proposed with the aim of realizing vibration-assisted machining along elliptical trajectories. To design the structure, energy methods and the finite-element method are used to calculate the performance of the proposed VAPD. An improved bacterial foraging optimization algorithm is used to optimize the structural parameters. In addition, the performance of the VAPD is tested experimentally. The experimental results indicate that the maximum strokes of the two directional mechanisms operating along the Z1 and Z2 directions are 29.5 μm and 29.3 μm, respectively, and the maximum motion resolutions are 10.05 nm and 10.01 nm, respectively. The maximum working bandwidth is 1,879 Hz, and the device has a good step response.
Parameter identification and optimization of slide guide joint of CNC machine tools
NASA Astrophysics Data System (ADS)
Zhou, S.; Sun, B. B.
2017-11-01
The joint surface has an important influence on the performance of CNC machine tools. In order to identify the dynamic parameters of slide guide joint, the parametric finite element model of the joint is established and optimum design method is used based on the finite element simulation and modal test. Then the mode that has the most influence on the dynamics of slip joint is found through harmonic response analysis. Take the frequency of this mode as objective, the sensitivity analysis of the stiffness of each joint surface is carried out using Latin Hypercube Sampling and Monte Carlo Simulation. The result shows that the vertical stiffness of slip joint surface constituted by the bed and the slide plate has the most obvious influence on the structure. Therefore, this stiffness is taken as the optimization variable and the optimal value is obtained through studying the relationship between structural dynamic performance and stiffness. Take the stiffness values before and after optimization into the FEM of machine tool, and it is found that the dynamic performance of the machine tool is improved.
Osaba, E; Carballedo, R; Diaz, F; Onieva, E; de la Iglesia, I; Perallos, A
2014-01-01
Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test.
Osaba, E.; Carballedo, R.; Diaz, F.; Onieva, E.; de la Iglesia, I.; Perallos, A.
2014-01-01
Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test. PMID:25165731
Peak Seeking Control for Reduced Fuel Consumption with Preliminary Flight Test Results
NASA Technical Reports Server (NTRS)
Brown, Nelson
2012-01-01
The Environmentally Responsible Aviation project seeks to accomplish the simultaneous reduction of fuel burn, noise, and emissions. A project at NASA Dryden Flight Research Center is contributing to ERAs goals by exploring the practical application of real-time trim configuration optimization for enhanced performance and reduced fuel consumption. This peak-seeking control approach is based on Newton-Raphson algorithm using a time-varying Kalman filter to estimate the gradient of the performance function. In real-time operation, deflection of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of a modified F-18 are directly optimized, and the horizontal stabilators and angle of attack are indirectly optimized. Preliminary results from three research flights are presented herein. The optimization system found a trim configuration that required approximately 3.5% less fuel flow than the baseline trim at the given flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These preliminary results show the algorithm has good performance and is expected to show similar results at other flight conditions and aircraft configurations.
Guo, Weian; Si, Chengyong; Xue, Yu; Mao, Yanfen; Wang, Lei; Wu, Qidi
2017-05-04
Particle Swarm Optimization (PSO) is a popular algorithm which is widely investigated and well implemented in many areas. However, the canonical PSO does not perform well in population diversity maintenance so that usually leads to a premature convergence or local optima. To address this issue, we propose a variant of PSO named Grouping PSO with Personal- Best-Position (Pbest) Guidance (GPSO-PG) which maintains the population diversity by preserving the diversity of exemplars. On one hand, we adopt uniform random allocation strategy to assign particles into different groups and in each group the losers will learn from the winner. On the other hand, we employ personal historical best position of each particle in social learning rather than the current global best particle. In this way, the exemplars diversity increases and the effect from the global best particle is eliminated. We test the proposed algorithm to the benchmarks in CEC 2008 and CEC 2010, which concern the large scale optimization problems (LSOPs). By comparing several current peer algorithms, GPSO-PG exhibits a competitive performance to maintain population diversity and obtains a satisfactory performance to the problems.
Geometry optimization for micro-pressure sensor considering dynamic interference
NASA Astrophysics Data System (ADS)
Yu, Zhongliang; Zhao, Yulong; Li, Lili; Tian, Bian; Li, Cun
2014-09-01
Presented is the geometry optimization for piezoresistive absolute micro-pressure sensor. A figure of merit called the performance factor (PF) is defined as a quantitative index to describe the comprehensive performances of a sensor including sensitivity, resonant frequency, and acceleration interference. Three geometries are proposed through introducing islands and sensitive beams into typical flat diaphragm. The stress distributions of sensitive elements are analyzed by finite element method. Multivariate fittings based on ANSYS simulation results are performed to establish the equations about surface stress, deflection, and resonant frequency. Optimization by MATLAB is carried out to determine the dimensions of the geometries. Convex corner undercutting is evaluated. Each PF of the three geometries with the determined dimensions is calculated and compared. Silicon bulk micromachining is utilized to fabricate the prototypes of the sensors. The outputs of the sensors under both static and dynamic conditions are tested. Experimental results demonstrate the rationality of the defined performance factor and reveal that the geometry with quad islands presents the highest PF of 210.947 Hz1/4. The favorable overall performances enable the sensor more suitable for altimetry.
NASA Astrophysics Data System (ADS)
Soni, Sourabh Kumar; Thomas, Benedict
2018-04-01
The term "weldability" has been used to describe a wide variety of characteristics when a material is subjected to welding. In our analysis we perform experimental investigation to estimate the tensile strength of welded joint strength and then optimization of welding process parameters by using taguchi method and Artificial Neural Network (ANN) tool in MINITAB and MATLAB software respectively. The study reveals the influence on weldability of steel by varying composition of steel by mechanical characterization. At first we prepare the samples of different grades of steel (EN8, EN 19, EN 24). The samples were welded together by metal inert gas welding process and then tensile testing on Universal testing machine (UTM) was conducted for the same to evaluate the tensile strength of the welded steel specimens. Further comparative study was performed to find the effects of welding parameter on quality of weld strength by employing Taguchi method and Neural Network tool. Finally we concluded that taguchi method and Neural Network Tool is much efficient technique for optimization.
Harmony search algorithm: application to the redundancy optimization problem
NASA Astrophysics Data System (ADS)
Nahas, Nabil; Thien-My, Dao
2010-09-01
The redundancy optimization problem is a well known NP-hard problem which involves the selection of elements and redundancy levels to maximize system performance, given different system-level constraints. This article presents an efficient algorithm based on the harmony search algorithm (HSA) to solve this optimization problem. The HSA is a new nature-inspired algorithm which mimics the improvization process of music players. Two kinds of problems are considered in testing the proposed algorithm, with the first limited to the binary series-parallel system, where the problem consists of a selection of elements and redundancy levels used to maximize the system reliability given various system-level constraints; the second problem for its part concerns the multi-state series-parallel systems with performance levels ranging from perfect operation to complete failure, and in which identical redundant elements are included in order to achieve a desirable level of availability. Numerical results for test problems from previous research are reported and compared. The results of HSA showed that this algorithm could provide very good solutions when compared to those obtained through other approaches.
FY 1993 report on aluminum-nitrate testing at the ETF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodman, M.D.D.; Wise, M.D.
1993-09-30
This report summarizes the progress of the Aluminum Nitrate Nonhydrate (ANN) testing program at the F/H-Area Effluent Treatment Facility (ETF) for Fiscal Year 1993. Three tests were conducted in the months of February, April, and September. The tests yielded data that validated earlier conclusions that the addition of ANN to non-routine feed has a positive effect on the performance of ETF`s submicron filtration unit. Performance was observed to increase from 30--309%, depending on the season. The data also supports SRTC`s earlier conclusion that an optimal aluminum concentration exists in the range of 30--40 ppm, and concentrations above this range beginmore » to retard filtration performance. A rudimentary mathematical model that would predict Stage 1 flux was also developed during FY93. The model allowed for a more concise comparison of filter test runs, as well as increase the efficiency of the testing program by allowing shorter test runs to be conducted. It is postulated that the model can be further optimized to include aluminum concentration and time of year as independent variables that determine Stage 1 flux. Such a model should unequivocally prove the merits of pretreating ETF`s wastewater with aluminum nitrate. To proceed with the development of the model, further testing is proposed with stringent control of the aluminum concentration in the feed. In order to account for seasonal effects, one test should be conducted each month for Fiscal Year 1994. High Level Waste Engineering requests permission to conduct these test runs according to the following schedule: conduct tests in even numbered months beginning with October with routine influent as it is collected from normal process sewer influents and conduct tests in odd numbered months beginning with November with non-routine feed from H-Retention Basin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gearhart, Jared Lee; Adair, Kristin Lynn; Durfee, Justin David.
When developing linear programming models, issues such as budget limitations, customer requirements, or licensing may preclude the use of commercial linear programming solvers. In such cases, one option is to use an open-source linear programming solver. A survey of linear programming tools was conducted to identify potential open-source solvers. From this survey, four open-source solvers were tested using a collection of linear programming test problems and the results were compared to IBM ILOG CPLEX Optimizer (CPLEX) [1], an industry standard. The solvers considered were: COIN-OR Linear Programming (CLP) [2], [3], GNU Linear Programming Kit (GLPK) [4], lp_solve [5] and Modularmore » In-core Nonlinear Optimization System (MINOS) [6]. As no open-source solver outperforms CPLEX, this study demonstrates the power of commercial linear programming software. CLP was found to be the top performing open-source solver considered in terms of capability and speed. GLPK also performed well but cannot match the speed of CLP or CPLEX. lp_solve and MINOS were considerably slower and encountered issues when solving several test problems.« less
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
For long linear block codes, maximum likelihood decoding based on full code trellises would be very hard to implement if not impossible. In this case, we may wish to trade error performance for the reduction in decoding complexity. Sub-optimum soft-decision decoding of a linear block code based on a low-weight sub-trellis can be devised to provide an effective trade-off between error performance and decoding complexity. This chapter presents such a suboptimal decoding algorithm for linear block codes. This decoding algorithm is iterative in nature and based on an optimality test. It has the following important features: (1) a simple method to generate a sequence of candidate code-words, one at a time, for test; (2) a sufficient condition for testing a candidate code-word for optimality; and (3) a low-weight sub-trellis search for finding the most likely (ML) code-word.
The system design and performance test of hybrid vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Dwiyantoro, Bambang Arip; Suphandani, Vivien
2017-04-01
Vertical axis wind turbine is a tool that is being developed to generate energy from wind. One cause is still little use of wind energy is the design of wind turbines that are less precise. Therefore in this study will be developed the system design of hybrid vertical axis wind turbine and tested performance with experimental methods. The design of hybrid turbine based on a straight bladed Darrieus turbine along with a double step Savonius turbine. The method used to design wind turbines is by studying literature, analyzing the critical parts of a wind turbine and the structure of the optimal design. Wind turbine prototype of the optimal design characteristic tests in the wind tunnel experimentally by varying the speed of the wind. From the experimental results show that the greater the wind speed, the greater the wind turbine rotation and torque is raised. The hybrid vertical axis wind turbine has much better self-starting and better conversion efficiency.
Jacobsen, Sonja; Patel, Pranav; Schmidt-Chanasit, Jonas; Leparc-Goffart, Isabelle; Teichmann, Anette; Zeller, Herve; Niedrig, Matthias
2016-03-01
Since the re-emergence of Chikungunya virus (CHIKV) in Reunion in 2005 and the recent outbreak in the Caribbean islands with an expansion to the Americas the CHIK diagnostic became very important. We evaluate the performance of laboratories regarding molecular and serological diagnostic of CHIK worldwide. A panel of 12 samples for molecular and 13 samples for serology were provided to 60 laboratories in 40 countries for evaluating the sensitivity and specificity of molecular and serology testing. The panel for molecular diagnostic testing was analysed by 56 laboratories returning 60 data sets of results whereas the 56 and 60 data sets were returned for IgG and IgM diagnostic from the participating laboratories. Twenty-three from 60 data sets performed optimal, 7 acceptable and 30 sets of results require improvement. From 50 data sets only one laboratory shows an optimal performance for IgM detection, followed by 9 data sets with acceptable and the rest need for improvement. From 46 IgG serology data sets 20 provide an optimal, 2 an acceptable and 24 require improvement performance. The evaluation of some of the diagnostic performances allows linking the quality of results to the in-house methods or commercial assays used. The external quality assurance for CHIK diagnostics provides a good overview on the laboratory performance regarding sensitivity and specificity for the molecular and serology diagnostic required for the quick and reliable analysis of suspected CHIK patients. Nearly half of the laboratories have to improve their diagnostic profile to achieve a better performance. Copyright © 2016 Z. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vogt, William C.; Zhou, Xuewen; Andriani, Rudy; Wear, Keith A.; Garra, Brian S.; Pfefer, Joshua
2018-02-01
Photoacoustic Imaging (PAI) is an emerging technology with strong potential for broad clinical applications from breast cancer detection to cerebral monitoring due to its ability to compute maps of blood oxygen saturation (SO2) distribution in deep tissues using multispectral imaging. However, no well-validated consensus test methods currently exist for evaluating oximetry-specific performance characteristics of PAI devices. We have developed a phantombased flow system capable of rapid SO2 adjustment to serve as a test bed for elucidation of factors impacting SO2 measurement and quantitative characterization of device performance. The flow system is comprised of a peristaltic pump, membrane oxygenator, oxygen and nitrogen gas, and in-line oxygen, pH, and temperature sensors that enable real-time estimation of SO2 reference values. Bovine blood was delivered through breast-relevant tissue phantoms containing vessel-mimicking fluid channels, which were imaged using a custom multispectral PAI system. Blood was periodically drawn for SO2 measurement in a clinical-grade CO-oximeter. We used this flow phantom system to evaluate the impact of device parameters (e.g.,wavelength-dependent fluence corrections) and tissue parameters (e.g. fluid channel depth, blood SO2, spectral coloring artifacts) on oximetry measurement accuracy. Results elucidated key challenges in PAI oximetry and device design trade-offs, which subsequently allowed for optimization of system performance. This approach provides a robust benchtop test platform that can support PAI oximetry device optimization, performance validation, and clinical translation, and may inform future development of consensus test methods for performance assessment of photoacoustic oximetry imaging systems.
Summary of Research 2000, Department of Aeronautics and Astronautics
2001-12-01
swept transonic blading, and to facilitate design optimization; (iii) to install and test an advanced transonic axial stage, and thereby establish the...limited) rotor design optimization can now be attempted. (iii) The Sanger (code-validation) compressor stage was rebuilt, re- instrumented and retested...34Investigation of the Performance of a CFD Designed Compressor Stage," Paper AIAA 2000-3205, presented at the 36th AIAA/ASME/SAE/ASEE Joint Propulsion
NASA Astrophysics Data System (ADS)
Knight, Travis W.; Anghaie, Samim
2002-11-01
Optimization of powder processing techniques were sought for the fabrication of single-phase, solid-solution mixed uranium/refractory metal carbide nuclear fuels - namely (U, Zr, Nb)C. These advanced, ultra-high temperature nuclear fuels have great potential for improved performance over graphite matrix, dispersed fuels tested in the Rover/NERVA program of the 1960s and early 1970s. Hypostoichiometric fuel samples with carbon-to-metal ratios of 0.98, uranium metal mole fractions of 5% and 10%, and porosities less than 5% were fabricated. These qualities should provide for the longest life and highest performance capability for these fuels. Study and optimization of processing methods were necessary to provide the quality assurance of samples for meaningful testing and assessment of performance for nuclear thermal propulsion applications. The processing parameters and benefits of enhanced sintering by uranium carbide liquid-phase sintering were established for the rapid and effective consolidation and formation of a solid-solution mixed carbide nuclear fuel.
Thermodynamics of Gas Turbine Cycles with Analytic Derivatives in OpenMDAO
NASA Technical Reports Server (NTRS)
Gray, Justin; Chin, Jeffrey; Hearn, Tristan; Hendricks, Eric; Lavelle, Thomas; Martins, Joaquim R. R. A.
2016-01-01
A new equilibrium thermodynamics analysis tool was built based on the CEA method using the OpenMDAO framework. The new tool provides forward and adjoint analytic derivatives for use with gradient based optimization algorithms. The new tool was validated against the original CEA code to ensure an accurate analysis and the analytic derivatives were validated against finite-difference approximations. Performance comparisons between analytic and finite difference methods showed a significant speed advantage for the analytic methods. To further test the new analysis tool, a sample optimization was performed to find the optimal air-fuel equivalence ratio, , maximizing combustion temperature for a range of different pressures. Collectively, the results demonstrate the viability of the new tool to serve as the thermodynamic backbone for future work on a full propulsion modeling tool.
Uncertainty-Based Multi-Objective Optimization of Groundwater Remediation Design
NASA Astrophysics Data System (ADS)
Singh, A.; Minsker, B.
2003-12-01
Management of groundwater contamination is a cost-intensive undertaking filled with conflicting objectives and substantial uncertainty. A critical source of this uncertainty in groundwater remediation design problems comes from the hydraulic conductivity values for the aquifer, upon which the prediction of flow and transport of contaminants are dependent. For a remediation solution to be reliable in practice it is important that it is robust over the potential error in the model predictions. This work focuses on incorporating such uncertainty within a multi-objective optimization framework, to get reliable as well as Pareto optimal solutions. Previous research has shown that small amounts of sampling within a single-objective genetic algorithm can produce highly reliable solutions. However with multiple objectives the noise can interfere with the basic operations of a multi-objective solver, such as determining non-domination of individuals, diversity preservation, and elitism. This work proposes several approaches to improve the performance of noisy multi-objective solvers. These include a simple averaging approach, taking samples across the population (which we call extended averaging), and a stochastic optimization approach. All the approaches are tested on standard multi-objective benchmark problems and a hypothetical groundwater remediation case-study; the best-performing approach is then tested on a field-scale case at Umatilla Army Depot.
Desaturation Patterns Detected by Oximetry in a Large Population of Athletes
ERIC Educational Resources Information Center
Garrido-Chamorro, Raul P.; Gonzalez-Lorenzo, Marta; Sirvent-Belando, Jose; Blasco-Lafarga, Cristina; Roche, Enrique
2009-01-01
Optimal exercise performance in well trained athletes can be affected by arterial oxygen saturation failure. Noninvasive detection of this phenomenon when performing a routine ergometric test can be a valuable tool for subsequent planning of the athlete's training, recovery, and nutrition. Oximetry has been used to this end. The authors studied…
DOT National Transportation Integrated Search
2009-08-01
The development and evaluation of low-cracking high-performance concrete (LC-HPC) for use in bridge decks : is described based on laboratory test results and experience gained during the construction of 14 bridges. This report : emphasizes the materi...
DOT National Transportation Integrated Search
2009-08-01
The development and evaluation of low-cracking high-performance concrete (LC-HPC) for use in bridge decks : is described based on laboratory test results and experience gained during the construction of 14 bridges. This report : emphasizes the materi...
Learning in the Laboratory: How Group Assignments Affect Motivation and Performance
ERIC Educational Resources Information Center
Belanger, John R.
2016-01-01
Team projects can optimize educational resources in a laboratory, but also create the potential for social loafing. Allowing students to choose their own groups could increase their motivation to learn and improve academic performance. To test this hypothesis, final grades and feedback from students were compared for the same course in two…
Air intakes for a probative missile of rocket ramjet
NASA Technical Reports Server (NTRS)
Laruelle, G.
1984-01-01
The methods employed to test air intakes for a supersonic guided ramjet powered missile being tested by ONERA are described. Both flight tests and wind tunnel tests were performed on instrumented rockets to verify the designs. Consideration as given to the number of intakes, with the goal of delivering the maximum pressure to the engine. The S2, S4, and S5 wind tunnels were operated at Mach nos. 1.5-3 for the tests, which were compartmentalized into fuselage-intake interaction, optimization of the intake shapes, and the intake performance. Tests were performed on the length and form of the ogive, the presence of grooves, the height of traps in the boundary layer, the types and number of intakes and the lengths and forms of diffusers. Attention was also given to the effects of sideslip, effects of the longitudinal and circumferential positions of the intakes were also examined. Near optimum performance was realized during Mach 2.2 test flights of the prototype rockets.
Unsteady CFD simulation for bucket design optimization of Pelton turbine runner
NASA Astrophysics Data System (ADS)
KUMASHIRO, Takashi; FUKUHARA, Haruki; TANI, Kiyohito
2016-11-01
To investigate flow patterns on the bucket of Pelton turbine runners is one of the important issues to improve the turbine performance. By studying the mechanism of loss generation on the flow around the bucket, it becomes possible to optimize the design of inner and outer bucket shape. For making it into study, computational fluid dynamics (CFD) is quite an effective method. It is normally used to simulate the flow in turbines and to expect the turbine performances in the development for many kind of water turbine including Pelton type. Especially in the bucket development, the numerical investigations are more useful than observations and measurements obtained in the model test to understand the transient flow patterns. In this paper, a numerical study on two different design buckets is introduced. The simplified analysis domain with consideration for reduction of computational load is also introduced. Furthermore the model tests of two buckets are also performed by using the same test equipment. As the results of the model test, a difference of turbine efficiency is clearly confirmed. The trend of calculated efficiencies on both buckets agrees with the experiment. To investigate the causes of that, the difference of unsteady flow patterns between two buckets is discussed based on the results of numerical analysis.
Ducrot, Virginie; Péry, Alexandre R R; Quéau, Hervé; Mons, Raphaël; Lafont, Michel; Garric, Jeanne
2007-10-01
This paper provides original collection, acclimatizing, rearing and toxicity test methods for the freshwater worm Branchiura sowerbyi, an alternative species to Tubifex tubifex for ecotoxicity evaluation of sediments. Influence of the substrate, type of food, and feeding level on individual performances was assessed in short-term tests, in order to set up optimal culture and test conditions. Low-size particles and high organic matter content favoured the growth and reproduction of B. sowerbyi. The relative contribution of sediments and fish food to the individual food intake was assessed using a foraging efficiency model based upon the dynamic energy budget theory. Individual performances were optimal when the substrate plus fish food provided the energy equivalent to 5 mg Tetramin per worm per day, which is the ad libitum food level for adults at 21 degrees C. The life-cycle of the worm was fully characterized using a life-cycle test conducted under the previously defined optimal conditions. Hatching rates were low (32%), whereas newborn and juveniles exhibited high survival (>80%) and growth (2.4 mg/day in juveniles) rates. Age at puberty was low (60 days) when compared to the maximal life span (1100 days) as predicted using a Weibull model. Adults reproduced every other month with a constant fecundity (0.16 cocoon/worm/day). The mean values of the life-cycle parameters and their variability and reproducibility among laboratory studies were discussed in order to identify relevant endpoints to be used in ecotoxicity tests. Survival, juvenile growth, and fecundity may constitute suitable test endpoints, whereas hatching rate and adult growth should not be used as endpoints in B. sowerbyi.
Assessment of peak power and short-term work capacity.
MacIntosh, Brian R; Rishaug, Peter; Svedahl, Krista
2003-02-01
The purpose of this study was to evaluate conditions for conducting a 30 s Wingate test such as load selection, and the method of starting the test (stationary or flying start). Nine male and four female athletes volunteered to be tested on four laboratory visits. Tests were performed on a modified Monark cycle ergometer (Varberg, Sweden) equipped with force transducers on the friction belt and an optical encoder for velocity measurement. Power was calculated with the moment of inertia (I) of the flywheel taken into consideration. One laboratory visit was used to determine individualized optimal resistance conditions. The other three visits were for performance of one of three Wingate tests: a flying start with 0.834 N x kg(-1) [85 g x kg(-1) body weight (BW)] resistance (FLY-0.8); a stationary start with 0.834 N x kg(-1) BW resistance (ST-0.8), or a stationary start with optimal resistance (ST-OPT). FLY-0.8 gave a lower (P<0.05) value for short-term work capacity [19,986 (827) J] than either ST-OPT [23,014 (1,167) J] or ST-0.8 [22,321 (1075) J]. Peak power output per pedal revolution was lower ( P<0.005) for FLY-0.8 [833 (40) W] than for either ST-0.8 [974 (57) W] or ST-OPT [989 (61) W]. The results of this study demonstrate that higher values for peak power and short-term work capacity are obtained with a test from a stationary start. It is apparently not necessary to use an individualized optimal resistance when I is considered in a Wingate test initiated from a standstill.
In Silico Evaluation of Pharmacokinetic Optimization for Antimitogram-Based Clinical Trials.
Haviari, Skerdi; You, Benoît; Tod, Michel
2018-04-01
Antimitograms are prototype in vitro tests for evaluating chemotherapeutic efficacy using patient-derived primary cancer cells. These tests might help optimize treatment from a pharmacodynamic standpoint by guiding treatment selection. However, they are technically challenging and require refinements and trials to demonstrate benefit to be widely used. In this study, we performed simulations aimed at exploring how to validate antimitograms and how to complement them by pharmacokinetic optimization. A generic model of advanced cancer, including pharmacokinetic-pharmacodynamic monitoring, was used to link dosing schedules with progression-free survival (PFS), as built from previously validated modules. This model was used to explore different possible situations in terms of pharmacokinetic variability, pharmacodynamic variability, and antimitogram performance. The model recapitulated tumor dynamics and standalone therapeutic drug monitoring efficacy consistent with published clinical results. Simulations showed that combining pharmacokinetic and pharmacodynamic optimization should increase PFS in a synergistic fashion. Simulated data were then used to compute required clinical trial sizes, which were 30% to 90% smaller when pharmacokinetic optimization was added to pharmacodynamic optimization. This improvement was observed even when pharmacokinetic optimization alone exhibited only modest benefit. Overall, our work illustrates the synergy derived from combining antimitograms with therapeutic drug monitoring, permitting a disproportionate reduction of the trial size required to prove a benefit on PFS. Accordingly, we suggest that strategies with benefits too small for standalone clinical trials could be validated in combination in a similar manner. Significance: This work offers a method to reduce the number of patients needed for a clinical trial to prove the hypothesized benefit of a drug to progression-free survival, possibly easing opportunities to evaluate combinations. Cancer Res; 78(7); 1873-82. ©2018 AACR . ©2018 American Association for Cancer Research.
Age-related cognitive decline as a function of daytime testing.
Puiu, Andrei Alexandru
2017-05-01
The current study investigates the effects of age, cognitive load, optimal time-of-day testing, and irrelevant background noise suppression on mental processing. One hundred and seventy-eight young (M = 22.97 years) and 114 old adults (M = 56.38 years) were assessed for implicit learning and speed of information processing under irrelevant sound interference early during daytime (7AM-2.30PM) or in the afternoons (3PM-midnight). No direct effect of irrelevant speech effect was found on implicit learning. An optimal time of testing per age group was identified according to the ability to suppress irrelevant auditory information. If no semantic meaning was derived from the sound conditions, irrelevant sound was easily inhibited leaving no room for declined cognitive performance. This suggests an intact phonological inhibition in older adults and a further circumvention of the phonological loop. However, when difficulty was increased, a widened performance gap between young and old people could be observed. Education modulated difficult performance irrespective of age. With increasing age, task demand fulfillment becomes a function of a limited time mechanism. If extraneous time is not adapted to cognitive skills and performance, higher order processing cannot be reached, rendering older adults slower than their younger counterparts.
Kumar, Navneet; Raj Chelliah, Thanga; Srivastava, S P
2015-07-01
Model Based Control (MBC) is one of the energy optimal controllers used in vector-controlled Induction Motor (IM) for controlling the excitation of motor in accordance with torque and speed. MBC offers energy conservation especially at part-load operation, but it creates ripples in torque and speed during load transition, leading to poor dynamic performance of the drive. This study investigates the opportunity for improving dynamic performance of a three-phase IM operating with MBC and proposes three control schemes: (i) MBC with a low pass filter (ii) torque producing current (iqs) injection in the output of speed controller (iii) Variable Structure Speed Controller (VSSC). The pre and post operation of MBC during load transition is also analyzed. The dynamic performance of a 1-hp, three-phase squirrel-cage IM with mine-hoist load diagram is tested. Test results are provided for the conventional field-oriented (constant flux) control and MBC (adjustable excitation) with proposed schemes. The effectiveness of proposed schemes is also illustrated for parametric variations. The test results and subsequent analysis confer that the motor dynamics improves significantly with all three proposed schemes in terms of overshoot/undershoot peak amplitude of torque and DC link power in addition to energy saving during load transitions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Electrolyzers Enhancing Flexibility in Electric Grids
Mohanpurkar, Manish; Luo, Yusheng; Terlip, Danny; ...
2017-11-10
This paper presents a real-time simulation with a hardware-in-the-loop (HIL)-based approach for verifying the performance of electrolyzer systems in providing grid support. Hydrogen refueling stations may use electrolyzer systems to generate hydrogen and are proposed to have the potential of becoming smarter loads that can proactively provide grid services. On the basis of experimental findings, electrolyzer systems with balance of plant are observed to have a high level of controllability and hence can add flexibility to the grid from the demand side. A generic front end controller (FEC) is proposed, which enables an optimal operation of the load on themore » basis of market and grid conditions. This controller has been simulated and tested in a real-time environment with electrolyzer hardware for a performance assessment. It can optimize the operation of electrolyzer systems on the basis of the information collected by a communication module. Real-time simulation tests are performed to verify the performance of the FEC-driven electrolyzers to provide grid support that enables flexibility, greater economic revenue, and grid support for hydrogen producers under dynamic conditions. In conclusion, the FEC proposed in this paper is tested with electrolyzers, however, it is proposed as a generic control topology that is applicable to any load.« less
Murdock, Kyle; Martin, Caitlin; Sun, Wei
2018-01-01
Flexure is an important mode of deformation for native and bioprosthetic heart valves. However, mechanical characterization of bioprosthetic leaflet materials has been done primarily through planar tensile testing. In this study, an integrated experimental and computational cantilever beam bending test was performed to characterize the flexural properties of glutaraldehyde-treated bovine and porcine pericardium of different thicknesses. A strain-invariant based structural constitutive model was used to model the pericardial mechanical behavior quantified through the bending tests of this study and the planar biaxial tests previously performed. The model parameters were optimized through an inverse finite element (FE) procedure in order to describe both sets of experimental data. The optimized material properties were implemented in FE simulations of transcatheter aortic valve (TAV) deformation. It was observed that porcine pericardium TAV leaflets experienced significantly more flexure than bovine when subjected to opening pressurization, and that the flexure may be overestimated using a constitutive model derived from purely planar tensile experimental data. Thus, modeling of a combination of flexural and biaxial tensile testing data may be necessary to more accurately describe the mechanical properties of pericardium, and to computationally investigate bioprosthetic leaflet function and design. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rosas, Samuel; Krill, Michael K; Amoo-Achampong, Kelms; Kwon, KiHyun; Nwachukwu, Benedict U; McCormick, Frank
2017-08-01
Clinical examination of the shoulder joint has gained attention as clinicians aim to use an evidence-based examination of the biceps tendon, with the desire for a proper diagnosis while minimizing costly imaging procedures. The purpose of this study is to create a decision tree analysis that enables the development of a clinical algorithm for diagnosing long head of biceps (LHB) pathology. A literature review of Level I and II diagnostic studies was conducted to extract characteristics of clinical tests for LHB pathology through a systematic review of PubMed, Medline, Ovid, and Cochrane Review databases. Tests were combined in series and parallel to determine sensitivities and specificities, and positive and negative likelihood ratios were determined for each combination using a subjective pretest probability. The "gold standard" for diagnosis in all included studies was arthroscopy or arthrotomy. The optimal testing modality was use of the uppercut test combined with the tenderness to palpation of the biceps tendon test. This combination achieved a sensitivity of 88.4% when performed in parallel and a specificity of 93.8% when performed in series. These tests used in combination optimize post-test probability accuracy greater than any single individual test. Performing the uppercut test and biceps groove tenderness to palpation test together has the highest sensitivity and specificity of known physical examinations maneuvers to aid in the diagnosis of LHB pathology compared with diagnostic arthroscopy (practical, evidence-based, comprehensive examination). A decision tree analysis aides in the practical, evidence-based, comprehensive examination diagnostic accuracy post-testing based on the ordinal scale pretest probability. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Evaluating Suit Fit Using Performance Degradation
NASA Technical Reports Server (NTRS)
Margerum, Sarah E.; Cowley, Matthew; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar
2012-01-01
The Mark III planetary technology demonstrator space suit can be tailored to an individual by swapping the modular components of the suit, such as the arms, legs, and gloves, as well as adding or removing sizing inserts in key areas. A method was sought to identify the transition from an ideal suit fit to a bad fit and how to quantify this breakdown using a metric of mobility-based human performance data. To this end, the degradation of the range of motion of the elbow and wrist of the suit as a function of suit sizing modifications was investigated to attempt to improve suit fit. The sizing range tested spanned optimal and poor fit and was adjusted incrementally in order to compare each joint angle across five different sizing configurations. Suited range of motion data were collected using a motion capture system for nine isolated and functional tasks utilizing the elbow and wrist joints. A total of four subjects were tested with motions involving both arms simultaneously as well as the right arm by itself. Findings indicated that no single joint drives the performance of the arm as a function of suit size; instead it is based on the interaction of multiple joints along a limb. To determine a size adjustment range where an individual can operate the suit at an acceptable level, a performance detriment limit was set. This user-selected limit reveals the task-dependent tolerance of the suit fit around optimal size. For example, the isolated joint motion indicated that the suit can deviate from optimal by as little as -0.6 in to -2.6 in before experiencing a 10% performance drop in the wrist or elbow joint. The study identified a preliminary method to quantify the impact of size on performance and developed a new way to gauge tolerances around optimal size.
Hybrid bearings for LH2 and LO2 turbopumps
NASA Technical Reports Server (NTRS)
Butner, M. F.; Lee, F. C.
1985-01-01
Hybrid combinations of hydrostatic and ball bearings can improve bearing performance for liquid hydrogen and liquid oxygen turbopumps. Analytic studies were conducted to optimize hybrid bearing designs for the SSME-type turbopump conditions. A method to empirically determine damping coefficients was devised. Four hybrid bearing configurations were designed, and three were fabricated. Six hybrid and hydrostatic-only bearing configurations will be tested for steady-state and transient performance, and quantification of damping coefficients. The initial tests were conducted with the liquid hydrogen bearing.
Liquid Chromatography-Mass Spectrometry Interface for Detection of Extraterrestrial Organics
NASA Technical Reports Server (NTRS)
Southard, Adrian E.; Getty, Stephanie A.; Balvin, Manuel; Cook, Jamie E.; Espiritu, Ana Mellina; Kotecki, Carl; Towner, Deborah W.; Dworkin, J. P.; Glavin, Daniel P.; Mahaffy, Paul R.;
2014-01-01
The OASIS (Organics Analyzer for Sampling Icy surfaces) microchip enables electrospray or thermospray of analyte for subsequent analysis by the OASIS time-of-flight mass spectrometer. Electrospray of buffer solution containing the nucleobase adenine was performed using the microchip and detected by a commercial time-of-flight mass spectrometer. Future testing of thermospray and electrospray capability will be performed using a test fixture and vacuum chamber developed especially for optimization of ion spray at atmosphere and in low pressure environments.
A compact inflow control device for simulating flight fan noise
NASA Technical Reports Server (NTRS)
Homyak, L.; Mcardle, J. G.; Heidelberg, L. J.
1983-01-01
Inflow control device (ICD's) of various shapes and sizes have been used to simulate inflight fan tone noise during ground static tests. A small, simple inexpensive ICD design was optimized from previous design and fabrication techniques. This compact two-fan-diameter ICD exhibits satisfactory acoustic performance characteristics without causing noise attenuation or redirection. In addition, it generates no important new noise sources. Design and construction details of the compact ICD are discussed and acoustic performance test results are presented.
2010-09-01
for Applied Mathematics. Kennedy, R. C. (2009a). Clocking Windows netbook performance. Retrieved on 08/14/2010, from http...podcasts.infoworld.com/d/hardware/clocking-windows- netbook -performance-883?_kip_ipx=1177119066-1281460794 Kennedy, R. C. (2009b). OfficeBench 7: A cool new way to
Quiet eye training facilitates competitive putting performance in elite golfers.
Vine, Samuel J; Moore, Lee J; Wilson, Mark R
2011-01-01
The aim of this study was to examine the effectiveness of a brief quiet eye (QE) training intervention aimed at optimizing visuomotor control and putting performance of elite golfers under pressure, and in real competition. Twenty-two elite golfers (mean handicap 2.7) recorded putting statistics over 10 rounds of competitive golf before attending training individually. Having been randomly assigned to either a QE training or Control group, participants were fitted with an Applied Science Laboratories Mobile Eye tracker and performed 20 baseline (pre-test) putts from 10 ft. Training consisted of video feedback of their gaze behavior while they completed 20 putts; however the QE-trained group received additional instructions related to maintaining a longer QE period. Participants then recorded their putting statistics over a further 10 competitive rounds and re-visited the laboratory for retention and pressure tests of their visuomotor control and putting performance. Overall, the results were supportive of the efficacy of the QE training intervention. QE duration predicted 43% of the variance in putting performance, underlying its critical role in the visuomotor control of putting. The QE-trained group maintained their optimal QE under pressure conditions, whereas the Control group experienced reductions in QE when anxious, with subsequent effects on performance. Although their performance was similar in the pre-test, the QE-trained group holed more putts and left the ball closer to the hole on missed putts than their Control group counterparts in the pressure test. Importantly, these advantages transferred to the golf course, where QE-trained golfers made 1.9 fewer putts per round, compared to pre-training, whereas the Control group showed no change in their putting statistics. These results reveal that QE training, incorporated into a pre-shot routine, is an effective intervention to help golfers maintain control when anxious.
A comprehensive evaluation of strip performance in multiple blood glucose monitoring systems.
Katz, Laurence B; Macleod, Kirsty; Grady, Mike; Cameron, Hilary; Pfützner, Andreas; Setford, Steven
2015-05-01
Accurate self-monitoring of blood glucose is a key component of effective self-management of glycemic control. Accurate self-monitoring of blood glucose results are required for optimal insulin dosing and detection of hypoglycemia. However, blood glucose monitoring systems may be susceptible to error from test strip, user, environmental and pharmacological factors. This report evaluated 5 blood glucose monitoring systems that each use Verio glucose test strips for precision, effect of hematocrit and interferences in laboratory testing, and lay user and system accuracy in clinical testing according to the guidelines in ISO15197:2013(E). Performance of OneTouch(®) VerioVue™ met or exceeded standards described in ISO15197:2013 for precision, hematocrit performance and interference testing in a laboratory setting. Performance of OneTouch(®) Verio IQ™, OneTouch(®) Verio Pro™, OneTouch(®) Verio™, OneTouch(®) VerioVue™ and Omni Pod each met or exceeded accuracy standards for user performance and system accuracy in a clinical setting set forth in ISO15197:2013(E).
Gulati, Abhishek; Faed, James M; Isbister, Geoffrey K; Duffull, Stephen B
2015-10-01
Dosing of enoxaparin, like other anticoagulants, may result in bleeding following excessive doses and clot formation if the dose is too low. We recently showed that a factor Xa based clotting time test could potentially assess the effect of enoxaparin on the clotting system. However, the test did not perform well in subsequent individuals and effectiveness of an exogenous phospholipid, Actin FS, in reducing the variability in the clotting time was assessed. The aim of this work was to conduct an adaptive pilot study to determine the range of concentrations of Xa and Actin FS to take forward into a proof-of-concept study. A nonlinear parametric function was developed to describe the response surface over the factors of interest. An adaptive method was used to estimate the parameters using a D-optimal design criterion. In order to provide a reasonable probability of observing a success of the clotting time test, a P-optimal design criterion was incorporated using a loss function to describe the hybrid DP-optimality. The use of adaptive DP-optimality method resulted in an efficient estimation of model parameters using data from only 6 healthy volunteers. The use of response surface modelling identified a range of sets of Xa and Actin FS concentrations, any of which could be used for the proof-of-concept study. This study shows that parsimonious adaptive DP-optimal designs may provide both precise parameter estimates for response surface modelling as well as clinical confidence in the potential benefits of the study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnham, Laurie; Lave, Matthew Samuel; Stein, Joshua
This report provides a preliminary (three month) analysis for the SolarWorld system installed at the New Mexico Regional Test Center (RTC.) The 8.7kW, four-string system consists of four module types): bifacial, mono-crystalline, mono-crystalline glass-glass and polycrystalline. Overall, the SolarWorld system has performed well to date: most strings closely match their specification-sheet module temperature coefficients and Sandia 's f lash tests show that Pmax values are well within expectations. Although the polycrystalline modules underperformed, the results may be a function of light exposure, as well as mismatch within the string, and not a production flaw. The instantaneous bifacial gains for SolarWorldmore » 's Bisun modules were modest but it should be noted that the RTC racking is not optimized for bifacial modules, nor is albedo optimized at the site. Additional analysis, not only of the SolarWorld installation in New Mexico but of the SolarWorld installations at the Vermont and Florida RTCs will be provide much more information regarding the comparative performance of the four module types.« less
Freund, Jane E; Stetts, Deborah M
2010-10-01
The purpose of this study is to describe the effects of trunk stabilization training and locomotor training (LT) using body-weight support on a treadmill (BWST) and overground walking on balance, gait, self-reported function, and trunk muscle performance in an adult with severe ataxia secondary to brain injury. There are no studies on the effectiveness of these combined interventions in persons with ataxia. The subject was a 23-year-old male who had a traumatic brain injury 13 months prior. An A-B-A withdrawal single-system design was used. Outcome measures were Berg Balance Test (BBT), timed unsupported stance, Functional Ambulation Category (FAC), 10-meter walk test (10-MWT), Outpatient Physical Therapy Improvement in Movement Assessment Log (OPTIMAL), transverse abdominis (TrA) thickness, and isometric trunk endurance tests. Performance on the BBT, timed unsupported stance, FAC, 10-MWT, and OPTIMAL each improved after 10 weeks of intervention. In additions, TrA symmetry at rest improved as did right side-bridge endurance time. LT, using BWST and overground walking, and trunk stabilization training may be effective in improving balance, gait, function, and trunk performance in individuals with severe ataxia. Further research with additional subjects is indicated.
Liu, Chun; Kroll, Andreas
2016-01-01
Multi-robot task allocation determines the task sequence and distribution for a group of robots in multi-robot systems, which is one of constrained combinatorial optimization problems and more complex in case of cooperative tasks because they introduce additional spatial and temporal constraints. To solve multi-robot task allocation problems with cooperative tasks efficiently, a subpopulation-based genetic algorithm, a crossover-free genetic algorithm employing mutation operators and elitism selection in each subpopulation, is developed in this paper. Moreover, the impact of mutation operators (swap, insertion, inversion, displacement, and their various combinations) is analyzed when solving several industrial plant inspection problems. The experimental results show that: (1) the proposed genetic algorithm can obtain better solutions than the tested binary tournament genetic algorithm with partially mapped crossover; (2) inversion mutation performs better than other tested mutation operators when solving problems without cooperative tasks, and the swap-inversion combination performs better than other tested mutation operators/combinations when solving problems with cooperative tasks. As it is difficult to produce all desired effects with a single mutation operator, using multiple mutation operators (including both inversion and swap) is suggested when solving similar combinatorial optimization problems.
An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm.
Zhu, Qingling; Lin, Qiuzhen; Chen, Weineng; Wong, Ka-Chun; Coello Coello, Carlos A; Li, Jianqiang; Chen, Jianyong; Zhang, Jun
2017-09-01
The selection of swarm leaders (i.e., the personal best and global best), is important in the design of a multiobjective particle swarm optimization (MOPSO) algorithm. Such leaders are expected to effectively guide the swarm to approach the true Pareto optimal front. In this paper, we present a novel external archive-guided MOPSO algorithm (AgMOPSO), where the leaders for velocity update are all selected from the external archive. In our algorithm, multiobjective optimization problems (MOPs) are transformed into a set of subproblems using a decomposition approach, and then each particle is assigned accordingly to optimize each subproblem. A novel archive-guided velocity update method is designed to guide the swarm for exploration, and the external archive is also evolved using an immune-based evolutionary strategy. These proposed approaches speed up the convergence of AgMOPSO. The experimental results fully demonstrate the superiority of our proposed AgMOPSO in solving most of the test problems adopted, in terms of two commonly used performance measures. Moreover, the effectiveness of our proposed archive-guided velocity update method and immune-based evolutionary strategy is also experimentally validated on more than 30 test MOPs.
Extensions of D-optimal Minimal Designs for Symmetric Mixture Models
Raghavarao, Damaraju; Chervoneva, Inna
2017-01-01
The purpose of mixture experiments is to explore the optimum blends of mixture components, which will provide desirable response characteristics in finished products. D-optimal minimal designs have been considered for a variety of mixture models, including Scheffé's linear, quadratic, and cubic models. Usually, these D-optimal designs are minimally supported since they have just as many design points as the number of parameters. Thus, they lack the degrees of freedom to perform the Lack of Fit tests. Also, the majority of the design points in D-optimal minimal designs are on the boundary: vertices, edges, or faces of the design simplex. In This Paper, Extensions Of The D-Optimal Minimal Designs Are Developed For A General Mixture Model To Allow Additional Interior Points In The Design Space To Enable Prediction Of The Entire Response Surface Also a new strategy for adding multiple interior points for symmetric mixture models is proposed. We compare the proposed designs with Cornell (1986) two ten-point designs for the Lack of Fit test by simulations. PMID:29081574
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Kapernick, Richard
2007-01-01
Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer. and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics and assess potential design improvements at relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design is developed: this is followed by engineering design, fabrication, and testing to validate the overall design process. Test results presented in this paper correspond to a "first cut" simulator design for a potential liquid metal (NaK) cooled reactor design that could be applied for Lunar surface power. Proposed refinements to this simulator design are also presented.
High pressure compressor component performance report
NASA Technical Reports Server (NTRS)
Cline, S. J.; Fesler, W.; Liu, H. S.; Lovell, R. C.; Shaffer, S. J.
1983-01-01
A compressor optimization study defined a 10 stage configuration with a 22.6:1 pressure ratio, an adiabatic efficiency goal of 86.1%, and a polytropic efficiency of 90.6%; the corrected airflow is 53.5 kg/s. Subsequent component testing included three full scale tests: a six stage rig test, a 10 stage rig test, and another 10 stage rig test completed in the second quarter of 1982. Information from these tests is used to select the configuration for a core engine test and an integrated core/low spool test. The test results will also provide data base for the flight propulsion system. The results of the test series with both aerodynamic and mechanical performance of each compressor build are presented. The second 10 stage compressor adiabatic efficiency was 0.848 at a cruise operating point versus a test goal of 0.846.
Neural Network and Response Surface Methodology for Rocket Engine Component Optimization
NASA Technical Reports Server (NTRS)
Vaidyanathan, Rajkumar; Papita, Nilay; Shyy, Wei; Tucker, P. Kevin; Griffin, Lisa W.; Haftka, Raphael; Fitz-Coy, Norman; McConnaughey, Helen (Technical Monitor)
2000-01-01
The goal of this work is to compare the performance of response surface methodology (RSM) and two types of neural networks (NN) to aid preliminary design of two rocket engine components. A data set of 45 training points and 20 test points obtained from a semi-empirical model based on three design variables is used for a shear coaxial injector element. Data for supersonic turbine design is based on six design variables, 76 training, data and 18 test data obtained from simplified aerodynamic analysis. Several RS and NN are first constructed using the training data. The test data are then employed to select the best RS or NN. Quadratic and cubic response surfaces. radial basis neural network (RBNN) and back-propagation neural network (BPNN) are compared. Two-layered RBNN are generated using two different training algorithms, namely solverbe and solverb. A two layered BPNN is generated with Tan-Sigmoid transfer function. Various issues related to the training of the neural networks are addressed including number of neurons, error goals, spread constants and the accuracy of different models in representing the design space. A search for the optimum design is carried out using a standard gradient-based optimization algorithm over the response surfaces represented by the polynomials and trained neural networks. Usually a cubic polynominal performs better than the quadratic polynomial but exceptions have been noticed. Among the NN choices, the RBNN designed using solverb yields more consistent performance for both engine components considered. The training of RBNN is easier as it requires linear regression. This coupled with the consistency in performance promise the possibility of it being used as an optimization strategy for engineering design problems.
NASA Astrophysics Data System (ADS)
Suarez, Hernan; Zhang, Yan R.
2015-05-01
New radar applications need to perform complex algorithms and process large quantity of data to generate useful information for the users. This situation has motivated the search for better processing solutions that include low power high-performance processors, efficient algorithms, and high-speed interfaces. In this work, hardware implementation of adaptive pulse compression for real-time transceiver optimization are presented, they are based on a System-on-Chip architecture for Xilinx devices. This study also evaluates the performance of dedicated coprocessor as hardware accelerator units to speed up and improve the computation of computing-intensive tasks such matrix multiplication and matrix inversion which are essential units to solve the covariance matrix. The tradeoffs between latency and hardware utilization are also presented. Moreover, the system architecture takes advantage of the embedded processor, which is interconnected with the logic resources through the high performance AXI buses, to perform floating-point operations, control the processing blocks, and communicate with external PC through a customized software interface. The overall system functionality is demonstrated and tested for real-time operations using a Ku-band tested together with a low-cost channel emulator for different types of waveforms.
Multiobjective generalized extremal optimization algorithm for simulation of daylight illuminants
NASA Astrophysics Data System (ADS)
Kumar, Srividya Ravindra; Kurian, Ciji Pearl; Gomes-Borges, Marcos Eduardo
2017-10-01
Daylight illuminants are widely used as references for color quality testing and optical vision testing applications. Presently used daylight simulators make use of fluorescent bulbs that are not tunable and occupy more space inside the quality testing chambers. By designing a spectrally tunable LED light source with an optimal number of LEDs, cost, space, and energy can be saved. This paper describes an application of the generalized extremal optimization (GEO) algorithm for selection of the appropriate quantity and quality of LEDs that compose the light source. The multiobjective approach of this algorithm tries to get the best spectral simulation with minimum fitness error toward the target spectrum, correlated color temperature (CCT) the same as the target spectrum, high color rendering index (CRI), and luminous flux as required for testing applications. GEO is a global search algorithm based on phenomena of natural evolution and is especially designed to be used in complex optimization problems. Several simulations have been conducted to validate the performance of the algorithm. The methodology applied to model the LEDs, together with the theoretical basis for CCT and CRI calculation, is presented in this paper. A comparative result analysis of M-GEO evolutionary algorithm with the Levenberg-Marquardt conventional deterministic algorithm is also presented.
Design, Optimization, and Evaluation of Integrally-Stiffened Al-2139 Panel with Curved Stiffeners
NASA Technical Reports Server (NTRS)
Havens, David; Shiyekar, Sandeep; Norris, Ashley; Bird, R. Keith; Kapania, Rakesh K.; Olliffe, Robert
2011-01-01
A curvilinear stiffened panel was designed, manufactured, and tested in the Combined Load Test Fixture at NASA Langley Research Center. The panel is representative of a large wing engine pylon rib and was optimized for minimum mass subjected to three combined load cases. The optimization included constraints on web buckling, material yielding, crippling or local stiffener failure, and damage tolerance using a new analysis tool named EBF3PanelOpt. Testing was performed for the critical combined compression-shear loading configuration. The panel was loaded beyond initial buckling, and strains and out-of-plane displacements were extracted from a total of 20 strain gages and 6 linear variable displacement transducers. The VIC-3D system was utilized to obtain full field displacements/strains in the stiffened side of the panel. The experimental data were compared with the strains and out-of-plane deflections from a high fidelity nonlinear finite element analysis. The experimental data were also compared with linear elastic finite element results of the panel/test-fixture assembly. Overall, the panel buckled very near to the predicted load in the web regions.
NASA Astrophysics Data System (ADS)
Stisen, S.; Demirel, C.; Koch, J.
2017-12-01
Evaluation of performance is an integral part of model development and calibration as well as it is of paramount importance when communicating modelling results to stakeholders and the scientific community. There exists a comprehensive and well tested toolbox of metrics to assess temporal model performance in the hydrological modelling community. On the contrary, the experience to evaluate spatial performance is not corresponding to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study aims at making a contribution towards advancing spatial pattern oriented model evaluation for distributed hydrological models. This is achieved by introducing a novel spatial performance metric which provides robust pattern performance during model calibration. The promoted SPAtial EFficiency (spaef) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multi-component approach is necessary in order to adequately compare spatial patterns. spaef, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are tested in a spatial pattern oriented model calibration of a catchment model in Denmark. The calibration is constrained by a remote sensing based spatial pattern of evapotranspiration and discharge timeseries at two stations. Our results stress that stand-alone metrics tend to fail to provide holistic pattern information to the optimizer which underlines the importance of multi-component metrics. The three spaef components are independent which allows them to complement each other in a meaningful way. This study promotes the use of bias insensitive metrics which allow comparing variables which are related but may differ in unit in order to optimally exploit spatial observations made available by remote sensing platforms. We see great potential of spaef across environmental disciplines dealing with spatially distributed modelling.
Optimization of a Small-Scale Engine Using Plasma Enhanced Ignition
2013-03-01
PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...systems were tested in the small engine and their effects on engine performance determined through comparison with a regular spark discharge (thermal...pulse plasma discharge system purchased from Plasmatronics LLC. Air fuel ratio (λ units are used in this report) sweeps were performed at several
Thermal interface material characterization for cryogenic electronic packaging solutions
NASA Astrophysics Data System (ADS)
Dillon, A.; McCusker, K.; Van Dyke, J.; Isler, B.; Christiansen, M.
2017-12-01
As applications of superconducting logic technologies continue to grow, the need for efficient and reliable cryogenic packaging becomes crucial to development and testing. A trade study of materials was done to develop a practical understanding of the properties of interface materials around 4 K. While literature exists for varying interface tests, discrepancies are found in the reported performance of different materials and in the ranges of applied force in which they are optimal. In considering applications extending from top cooling a silicon chip to clamping a heat sink, a range of forces from approximately 44 N to approximately 445 N was chosen for testing different interface materials. For each range of forces a single material was identified to optimize the thermal conductance of the joint. Of the tested interfaces, indium foil clamped at approximately 445 N showed the highest thermal conductance. Results are presented from these characterizations and useful methodologies for efficient testing are defined.
Development and flight testing of UV optimized Photon Counting CCDs
NASA Astrophysics Data System (ADS)
Hamden, Erika T.
2018-06-01
I will discuss the latest results from the Hamden UV/Vis Detector Lab and our ongoing work using a UV optimized EMCCD in flight. Our lab is currently testing efficiency and performance of delta-doped, anti-reflection coated EMCCDs, in collaboration with JPL. The lab has been set-up to test quantum efficiency, dark current, clock-induced-charge, and read noise. I will describe our improvements to our circuit boards for lower noise, updates from a new, more flexible NUVU controller, and the integration of an EMCCD in the FIREBall-2 UV spectrograph. I will also briefly describe future plans to conduct radiation testing on delta-doped EMCCDs (both warm, unbiased and cold, biased configurations) thus summer and longer term plans for testing newer photon counting CCDs as I move the HUVD Lab to the University of Arizona in the Fall of 2018.
Genetic particle swarm parallel algorithm analysis of optimization arrangement on mistuned blades
NASA Astrophysics Data System (ADS)
Zhao, Tianyu; Yuan, Huiqun; Yang, Wenjun; Sun, Huagang
2017-12-01
This article introduces a method of mistuned parameter identification which consists of static frequency testing of blades, dichotomy and finite element analysis. A lumped parameter model of an engine bladed-disc system is then set up. A bladed arrangement optimization method, namely the genetic particle swarm optimization algorithm, is presented. It consists of a discrete particle swarm optimization and a genetic algorithm. From this, the local and global search ability is introduced. CUDA-based co-evolution particle swarm optimization, using a graphics processing unit, is presented and its performance is analysed. The results show that using optimization results can reduce the amplitude and localization of the forced vibration response of a bladed-disc system, while optimization based on the CUDA framework can improve the computing speed. This method could provide support for engineering applications in terms of effectiveness and efficiency.
2009 Navy ManTech Project Book
2009-01-01
pieces which are welded together, filled with syntactic foam , and welded to the sail and hull structure. The ManTech project was successful in...cladding has demonstrated the required performance characteristics . The testing demonstrated manufacturability of optical fibers with enhanced hard...using Liquid Injection Molding Simulation (LIMS) and Polyworx software tools for infusion set-up optimization. Test articles fabricated are
DOT National Transportation Integrated Search
2006-08-01
The objective of this study was to monitor and evaluate the performance of experimental full-depth repairs made with high-early-strength (HES) materials placed under Strategic Highway Research Program (SHRP) project C-206, Optimization of Highway Con...
Multi-mission Ni-H2 battery cell for the 1990's
NASA Technical Reports Server (NTRS)
Miller, Lee; Brill, Jack; Dodson, Gary
1989-01-01
A sufficient production, test and operational database is now available to permit design technology optimization for the next decade. The evolved battery cell design features standardized technology intended to support multiple type missions (e.g., both GEO and LEO). Design analyses and validation test cells demonstrate improved performance plus attractive specific-energy characteristics will be achieved.
Optimal Couple Projections for Domain Adaptive Sparse Representation-based Classification.
Zhang, Guoqing; Sun, Huaijiang; Porikli, Fatih; Liu, Yazhou; Sun, Quansen
2017-08-29
In recent years, sparse representation based classification (SRC) is one of the most successful methods and has been shown impressive performance in various classification tasks. However, when the training data has a different distribution than the testing data, the learned sparse representation may not be optimal, and the performance of SRC will be degraded significantly. To address this problem, in this paper, we propose an optimal couple projections for domain-adaptive sparse representation-based classification (OCPD-SRC) method, in which the discriminative features of data in the two domains are simultaneously learned with the dictionary that can succinctly represent the training and testing data in the projected space. OCPD-SRC is designed based on the decision rule of SRC, with the objective to learn coupled projection matrices and a common discriminative dictionary such that the between-class sparse reconstruction residuals of data from both domains are maximized, and the within-class sparse reconstruction residuals of data are minimized in the projected low-dimensional space. Thus, the resulting representations can well fit SRC and simultaneously have a better discriminant ability. In addition, our method can be easily extended to multiple domains and can be kernelized to deal with the nonlinear structure of data. The optimal solution for the proposed method can be efficiently obtained following the alternative optimization method. Extensive experimental results on a series of benchmark databases show that our method is better or comparable to many state-of-the-art methods.
A Complete Procedure for Predicting and Improving the Performance of HAWT's
NASA Astrophysics Data System (ADS)
Al-Abadi, Ali; Ertunç, Özgür; Sittig, Florian; Delgado, Antonio
2014-06-01
A complete procedure for predicting and improving the performance of the horizontal axis wind turbine (HAWT) has been developed. The first process is predicting the power extracted by the turbine and the derived rotor torque, which should be identical to that of the drive unit. The BEM method and a developed post-stall treatment for resolving stall-regulated HAWT is incorporated in the prediction. For that, a modified stall-regulated prediction model, which can predict the HAWT performance over the operating range of oncoming wind velocity, is derived from existing models. The model involves radius and chord, which has made it more general in applications for predicting the performance of different scales and rotor shapes of HAWTs. The second process is modifying the rotor shape by an optimization process, which can be applied to any existing HAWT, to improve its performance. A gradient- based optimization is used for adjusting the chord and twist angle distribution of the rotor blade to increase the extraction of the power while keeping the drive torque constant, thus the same drive unit can be kept. The final process is testing the modified turbine to predict its enhanced performance. The procedure is applied to NREL phase-VI 10kW as a baseline turbine. The study has proven the applicability of the developed model in predicting the performance of the baseline as well as the optimized turbine. In addition, the optimization method has shown that the power coefficient can be increased while keeping same design rotational speed.
NASA Astrophysics Data System (ADS)
Yamaguchi, Hideshi; Soeda, Takeshi
2015-03-01
A practical framework for an electron beam induced current (EBIC) technique has been established for conductive materials based on a numerical optimization approach. Although the conventional EBIC technique is useful for evaluating the distributions of dopants or crystal defects in semiconductor transistors, issues related to the reproducibility and quantitative capability of measurements using this technique persist. For instance, it is difficult to acquire high-quality EBIC images throughout continuous tests due to variation in operator skill or test environment. Recently, due to the evaluation of EBIC equipment performance and the numerical optimization of equipment items, the constant acquisition of high contrast images has become possible, improving the reproducibility as well as yield regardless of operator skill or test environment. The technique proposed herein is even more sensitive and quantitative than scanning probe microscopy, an imaging technique that can possibly damage the sample. The new technique is expected to benefit the electrical evaluation of fragile or soft materials along with LSI materials.
Aerospace engineering design by systematic decomposition and multilevel optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Barthelemy, J. F. M.; Giles, G. L.
1984-01-01
A method for systematic analysis and optimization of large engineering systems, by decomposition of a large task into a set of smaller subtasks that is solved concurrently is described. The subtasks may be arranged in hierarchical levels. Analyses are carried out in each subtask using inputs received from other subtasks, and are followed by optimizations carried out from the bottom up. Each optimization at the lower levels is augmented by analysis of its sensitivity to the inputs received from other subtasks to account for the couplings among the subtasks in a formal manner. The analysis and optimization operations alternate iteratively until they converge to a system design whose performance is maximized with all constraints satisfied. The method, which is still under development, is tentatively validated by test cases in structural applications and an aircraft configuration optimization.
The Design, Fabrication, and Testing of Composite Heat Exchange Coupons
NASA Technical Reports Server (NTRS)
Quade, Derek J.; Meador, Michael A.; Shin, Euy-Sik; Johnston, James C.; Kuczmarski, Maria A.
2011-01-01
Several heat exchanger (HX) test panels were designed, fabricated and tested at the NASA Glenn Research Center to explore the fabrication and performance of several designs for composite heat exchangers. The development of these light weight, high efficiency air-liquid test panels was attempted using polymer composites and carbon foam materials. The fundamental goal of this effort was to demonstrate the feasibility of the composite HX for various space exploration and thermal management applications including Orion CEV and Altair. The specific objectives of this work were to select optimum materials, designs, and to optimize fabrication procedures. After fabrication, the individual design concept prototypes were tested to determine their thermal performance and to guide the future development of full-size engineering development units (EDU). The overall test results suggested that the panel bonded with pre-cured composite laminates to KFOAM Grade L1 scored above the other designs in terms of ease of manufacture and performance.
Running with horizontal pulling forces: the benefits of towing.
Grabowski, Alena M; Kram, Rodger
2008-10-01
Towing, or running with a horizontal pulling force, is a common technique used by adventure racing teams. During an adventure race, the slowest person on a team determines the team's overall performance. To improve overall performance, a faster runner tows a slower runner with an elastic cord attached to their waists. Our purpose was to create and validate a model that predicts the optimal towing force needed by two runners to achieve their best overall performance. We modeled the effects of towing forces between two runners that differ in solo 10-km performance time and/or body mass. We calculated the overall time that could be saved with towing for running distances of 10, 20, and 42.2-km based on equations from previous research. Then, we empirically tested our 10-km model on 15 runners. Towing improved overall running performance considerably and our model accurately predicted this performance improvement. For example, if two runners (a 70 kg runner with a 35 min solo 10-km time and a 70-kg runner with a 50-min solo 10-km time) maintain an optimal towing force throughout a 10-km race, they can improve overall performance by 15%, saving almost 8 min. Ultimately, the race performance time and body mass of each runner determine the optimal towing force.
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.; Ellis, David; Singh, Jogender
2014-01-01
Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion chamber liner. Properties of optimized NARloy-Z-D composite material will also be presented.
Technologies for Decreasing Mining Losses
NASA Astrophysics Data System (ADS)
Valgma, Ingo; Väizene, Vivika; Kolats, Margit; Saarnak, Martin
2013-12-01
In case of stratified deposits like oil shale deposit in Estonia, mining losses depend on mining technologies. Current research focuses on extraction and separation possibilities of mineral resources. Selective mining, selective crushing and separation tests have been performed, showing possibilities of decreasing mining losses. Rock crushing and screening process simulations were used for optimizing rock fractions. In addition mine backfilling, fine separation, and optimized drilling and blasting have been analyzed. All tested methods show potential and depend on mineral usage. Usage in addition depends on the utilization technology. The questions like stability of the material flow and influences of the quality fluctuations to the final yield are raised.
Experimental Test Rig for Optimal Control of Flexible Space Robotic Arms
2016-12-01
was used to refine the test bed design and the experimental workflow. Three concepts incorporated various strategies to design a robust flexible link...used to refine the test bed design and the experimental workflow. Three concepts incorporated various strategies to design a robust flexible link... designed to perform the experimentation . The first and second concepts use traditional elastic springs in varying configurations while a third uses a
Dispositional optimism and coping strategies in patients with a kidney transplant.
Costa-Requena, Gemma; Cantarell-Aixendri, M Carmen; Parramon-Puig, Gemma; Serón-Micas, Daniel
2014-01-01
Dispositional optimism is a personal resource that determines the coping style and adaptive response to chronic diseases. The aim of this study was to assess the correlations between dispositional optimism and coping strategies in patients with recent kidney transplantation and evaluate the differences in the use of coping strategies in accordance with the level of dispositional optimism. Patients who were hospitalised in the nephrology department were selected consecutively after kidney transplantation was performed. The evaluation instruments were the Life Orientation Test-Revised, and the Coping Strategies Inventory. The data were analysed with central tendency measures, correlation analyses and means were compared using Student’s t-test. 66 patients with a kidney transplant participated in the study. The coping styles that characterised patients with a recent kidney transplantation were Social withdrawal and Problem avoidance. Correlations between dispositional optimism and coping strategies were significant in a positive direction in Problem-solving (p<.05) and Cognitive restructuring (p<.01), and inversely with Self-criticism (p<.05). Differences in dispositional optimism created significant differences in the Self-Criticism dimension (t=2.58; p<.01). Dispositional optimism scores provide differences in coping responses after kidney transplantation. Moreover, coping strategies may influence the patient’s perception of emotional wellbeing after kidney transplantation.
PSO-tuned PID controller for coupled tank system via priority-based fitness scheme
NASA Astrophysics Data System (ADS)
Jaafar, Hazriq Izzuan; Hussien, Sharifah Yuslinda Syed; Selamat, Nur Asmiza; Abidin, Amar Faiz Zainal; Aras, Mohd Shahrieel Mohd; Nasir, Mohamad Na'im Mohd; Bohari, Zul Hasrizal
2015-05-01
The industrial applications of Coupled Tank System (CTS) are widely used especially in chemical process industries. The overall process is require liquids to be pumped, stored in the tank and pumped again to another tank. Nevertheless, the level of liquid in tank need to be controlled and flow between two tanks must be regulated. This paper presents development of an optimal PID controller for controlling the desired liquid level of the CTS. Two method of Particle Swarm Optimization (PSO) algorithm will be tested in optimizing the PID controller parameters. These two methods of PSO are standard Particle Swarm Optimization (PSO) and Priority-based Fitness Scheme in Particle Swarm Optimization (PFPSO). Simulation is conducted within Matlab environment to verify the performance of the system in terms of settling time (Ts), steady state error (SSE) and overshoot (OS). It has been demonstrated that implementation of PSO via Priority-based Fitness Scheme (PFPSO) for this system is potential technique to control the desired liquid level and improve the system performances compared with standard PSO.
Application of Titration-Based Screening for the Rapid Pilot Testing of High-Throughput Assays.
Zhang, Ji-Hu; Kang, Zhao B; Ardayfio, Ophelia; Ho, Pei-i; Smith, Thomas; Wallace, Iain; Bowes, Scott; Hill, W Adam; Auld, Douglas S
2014-06-01
Pilot testing of an assay intended for high-throughput screening (HTS) with small compound sets is a necessary but often time-consuming step in the validation of an assay protocol. When the initial testing concentration is less than optimal, this can involve iterative testing at different concentrations to further evaluate the pilot outcome, which can be even more time-consuming. Quantitative HTS (qHTS) enables flexible and rapid collection of assay performance statistics, hits at different concentrations, and concentration-response curves in a single experiment. Here we describe the qHTS process for pilot testing in which eight-point concentration-response curves are produced using an interplate asymmetric dilution protocol in which the first four concentrations are used to represent the range of typical HTS screening concentrations and the last four concentrations are added for robust curve fitting to determine potency/efficacy values. We also describe how these data can be analyzed to predict the frequency of false-positives, false-negatives, hit rates, and confirmation rates for the HTS process as a function of screening concentration. By taking into account the compound pharmacology, this pilot-testing paradigm enables rapid assessment of the assay performance and choosing the optimal concentration for the large-scale HTS in one experiment. © 2013 Society for Laboratory Automation and Screening.
Optimal Verification of Entangled States with Local Measurements
NASA Astrophysics Data System (ADS)
Pallister, Sam; Linden, Noah; Montanaro, Ashley
2018-04-01
Consider the task of verifying that a given quantum device, designed to produce a particular entangled state, does indeed produce that state. One natural approach would be to characterize the output state by quantum state tomography, or alternatively, to perform some kind of Bell test, tailored to the state of interest. We show here that neither approach is optimal among local verification strategies for 2-qubit states. We find the optimal strategy in this case and show that quadratically fewer total measurements are needed to verify to within a given fidelity than in published results for quantum state tomography, Bell test, or fidelity estimation protocols. We also give efficient verification protocols for any stabilizer state. Additionally, we show that requiring that the strategy be constructed from local, nonadaptive, and noncollective measurements only incurs a constant-factor penalty over a strategy without these restrictions.
Vortex generator design for aircraft inlet distortion as a numerical optimization problem
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Levy, Ralph
1991-01-01
Aerodynamic compatibility of aircraft/inlet/engine systems is a difficult design problem for aircraft that must operate in many different flight regimes. Takeoff, subsonic cruise, supersonic cruise, transonic maneuvering, and high altitude loiter each place different constraints on inlet design. Vortex generators, small wing like sections mounted on the inside surfaces of the inlet duct, are used to control flow separation and engine face distortion. The design of vortex generator installations in an inlet is defined as a problem addressable by numerical optimization techniques. A performance parameter is suggested to account for both inlet distortion and total pressure loss at a series of design flight conditions. The resulting optimization problem is difficult since some of the design parameters take on integer values. If numerical procedures could be used to reduce multimillion dollar development test programs to a small set of verification tests, numerical optimization could have a significant impact on both cost and elapsed time to design new aircraft.
NASA Astrophysics Data System (ADS)
Johnson, Maike; Hübner, Stefan; Reichmann, Carsten; Schönberger, Manfred; Fiß, Michael
2017-06-01
Energy storage systems are a key technology for developing a more sustainable energy supply system and lowering overall CO2 emissions. Among the variety of storage technologies, high temperature phase change material (PCM) storage is a promising option with a wide range of applications. PCM storages using an extended finned tube storage concept have been designed and techno-economically optimized for solar thermal power plant operations. These finned tube components were experimentally tested in order to validate the optimized design and simulation models used. Analysis of the charging and discharging characteristics of the storage at the pilot scale gives insight into the heat distribution both axially as well as radially in the storage material, thereby allowing for a realistic validation of the design. The design was optimized for discharging of the storage, as this is the more critical operation mode in power plant applications. The data show good agreement between the model and the experiments for discharging.
Optimal design of a Φ760 mm lightweight SiC mirror and the flexural mount for a space telescope
NASA Astrophysics Data System (ADS)
Li, Zongxuan; Chen, Xue; Wang, Shaoju; Jin, Guang
2017-12-01
A flexural support technique for lightweighted Primary Mirror Assembly (PMA) of a space telescope is presented in this article. The proposed three-point flexural mount based on a cartwheel flexure can maintain the surface figure of the PMA in a horizontal optical testing layout. The on-orbit surface error of the PMA causes significant degradation in image quality. On-ground optical testing cannot determine the zero-gravity figure of the PMA due to surface distortion by gravity. We unveiled the crucial fact that through a delicate mounting structure design, the surface figure can remain constant precisely without inducing distinguishable astigmatism when PMA rotates with respect to the optical axis, and the figure can be considered as the zero-gravity surface figure on the orbit. A design case is described to show the lightweight design of a SiC mirror and the optimal flexural mounting. Topology optimization and integrated opto-mechanical analysis using the finite element method are utilized in the design process. The Primary Mirror and mounting structures were fabricated and assembled. After the PMA mirror surface was polished to λ/50 RMS, optical testing in different clocking configurations was performed, respectively, through rotating the PMA by multiple angles. Test results show that the surface figure remained invariant, indicating that gravity release on the orbit will not cause an additional surface error. Vibration tests including sweep sine and random vibration were also performed to validate the mechanical design. The requirements for the mounting technique in space were qualified.
Adaptation Method for Overall and Local Performances of Gas Turbine Engine Model
NASA Astrophysics Data System (ADS)
Kim, Sangjo; Kim, Kuisoon; Son, Changmin
2018-04-01
An adaptation method was proposed to improve the modeling accuracy of overall and local performances of gas turbine engine. The adaptation method was divided into two steps. First, the overall performance parameters such as engine thrust, thermal efficiency, and pressure ratio were adapted by calibrating compressor maps, and second, the local performance parameters such as temperature of component intersection and shaft speed were adjusted by additional adaptation factors. An optimization technique was used to find the correlation equation of adaptation factors for compressor performance maps. The multi-island genetic algorithm (MIGA) was employed in the present optimization. The correlations of local adaptation factors were generated based on the difference between the first adapted engine model and performance test data. The proposed adaptation method applied to a low-bypass ratio turbofan engine of 12,000 lb thrust. The gas turbine engine model was generated and validated based on the performance test data in the sea-level static condition. In flight condition at 20,000 ft and 0.9 Mach number, the result of adapted engine model showed improved prediction in engine thrust (overall performance parameter) by reducing the difference from 14.5 to 3.3%. Moreover, there was further improvement in the comparison of low-pressure turbine exit temperature (local performance parameter) as the difference is reduced from 3.2 to 0.4%.
Thermal/Structural Tailoring of Engine Blades (T/STAEBL) User's manual
NASA Technical Reports Server (NTRS)
Brown, K. W.
1994-01-01
The Thermal/Structural Tailoring of Engine Blades (T/STAEBL) system is a computer code that is able to perform numerical optimizations of cooled jet engine turbine blades and vanes. These optimizations seek an airfoil design of minimum operating cost that satisfies realistic design constraints. This report documents the organization of the T/STAEBL computer program, its design and analysis procedure, its optimization procedure, and provides an overview of the input required to run the program, as well as the computer resources required for its effective use. Additionally, usage of the program is demonstrated through a validation test case.
Thermal/Structural Tailoring of Engine Blades (T/STAEBL): User's manual
NASA Astrophysics Data System (ADS)
Brown, K. W.
1994-03-01
The Thermal/Structural Tailoring of Engine Blades (T/STAEBL) system is a computer code that is able to perform numerical optimizations of cooled jet engine turbine blades and vanes. These optimizations seek an airfoil design of minimum operating cost that satisfies realistic design constraints. This report documents the organization of the T/STAEBL computer program, its design and analysis procedure, its optimization procedure, and provides an overview of the input required to run the program, as well as the computer resources required for its effective use. Additionally, usage of the program is demonstrated through a validation test case.
Optimization through satisficing with prospects
NASA Astrophysics Data System (ADS)
Oyo, Kuratomo; Takahashi, Tatsuji
2017-07-01
As the broadening scope of reinforcement learning calls for a rational and more efficient heuristics, we test a satisficing strategy named RS, based on the theory of bounded rationality that considers the limited resources in agents. In K-armed bandit problems, despite its simpler form than the previous formalization of satisficing, RS shows better-than-optimal performances when the optimal aspiration level is given. We also show that RS shows a scalability for the number of actions, K, and an adaptability in the face of an infinite number of actions. It may be an efficient means for online learning in a complex or real environments.
Structural Tailoring of Advanced Turboprops (STAT)
NASA Technical Reports Server (NTRS)
Brown, Kenneth W.
1988-01-01
This interim report describes the progress achieved in the structural Tailoring of Advanced Turboprops (STAT) program which was developed to perform numerical optimizations on highly swept propfan blades. The optimization procedure seeks to minimize an objective function, defined as either direct operating cost or aeroelastic differences between a blade and its scaled model, by tuning internal and external geometry variables that must satisfy realistic blade design constraints. This report provides a detailed description of the input, optimization procedures, approximate analyses and refined analyses, as well as validation test cases for the STAT program. In addition, conclusions and recommendations are summarized.
The impact of crosstalk on three-dimensional laparoscopic performance and workload.
Sakata, Shinichiro; Grove, Philip M; Watson, Marcus O; Stevenson, Andrew R L
2017-10-01
This is the first study to explore the effects of crosstalk from 3D laparoscopic displays on technical performance and workload. We studied crosstalk at magnitudes that may have been tolerated during laparoscopic surgery. Participants were 36 voluntary doctors. To minimize floor effects, participants completed their surgery rotations, and a laparoscopic suturing course for surgical trainees. We used a counterbalanced, within-subjects design in which participants were randomly assigned to complete laparoscopic tasks in one of six unique testing sequences. In a simulation laboratory, participants were randomly assigned to complete laparoscopic 'navigation in space' and suturing tasks in three viewing conditions: 2D, 3D without ghosting and 3D with ghosting. Participants calibrated their exposure to crosstalk as the maximum level of ghosting that they could tolerate without discomfort. The Randot® Stereotest was used to verify stereoacuity. The study performance metric was time to completion. The NASA TLX was used to measure workload. Normal threshold stereoacuity (40-20 second of arc) was verified in all participants. Comparing optimal 3D with 2D viewing conditions, mean performance times were 2.8 and 1.6 times faster in laparoscopic navigation in space and suturing tasks respectively (p< .001). Comparing optimal 3D with suboptimal 3D viewing conditions, mean performance times were 2.9 times faster in both tasks (p< .001). Mean workload in 2D was 1.5 and 1.3 times greater than in optimal 3D viewing, for navigation in space and suturing tasks respectively (p< .001). Mean workload associated with suboptimal 3D was 1.3 times greater than optimal 3D in both laparoscopic tasks (p< .001). There was no significant relationship between the magnitude of ghosting score, laparoscopic performance and workload. Our findings highlight the advantages of 3D displays when used optimally, and their shortcomings when used sub-optimally, on both laparoscopic performance and workload.
An approach for aerodynamic optimization of transonic fan blades
NASA Astrophysics Data System (ADS)
Khelghatibana, Maryam
Aerodynamic design optimization of transonic fan blades is a highly challenging problem due to the complexity of flow field inside the fan, the conflicting design requirements and the high-dimensional design space. In order to address all these challenges, an aerodynamic design optimization method is developed in this study. This method automates the design process by integrating a geometrical parameterization method, a CFD solver and numerical optimization methods that can be applied to both single and multi-point optimization design problems. A multi-level blade parameterization is employed to modify the blade geometry. Numerical analyses are performed by solving 3D RANS equations combined with SST turbulence model. Genetic algorithms and hybrid optimization methods are applied to solve the optimization problem. In order to verify the effectiveness and feasibility of the optimization method, a singlepoint optimization problem aiming to maximize design efficiency is formulated and applied to redesign a test case. However, transonic fan blade design is inherently a multi-faceted problem that deals with several objectives such as efficiency, stall margin, and choke margin. The proposed multi-point optimization method in the current study is formulated as a bi-objective problem to maximize design and near-stall efficiencies while maintaining the required design pressure ratio. Enhancing these objectives significantly deteriorate the choke margin, specifically at high rotational speeds. Therefore, another constraint is embedded in the optimization problem in order to prevent the reduction of choke margin at high speeds. Since capturing stall inception is numerically very expensive, stall margin has not been considered as an objective in the problem statement. However, improving near-stall efficiency results in a better performance at stall condition, which could enhance the stall margin. An investigation is therefore performed on the Pareto-optimal solutions to demonstrate the relation between near-stall efficiency and stall margin. The proposed method is applied to redesign NASA rotor 67 for single and multiple operating conditions. The single-point design optimization showed +0.28 points improvement of isentropic efficiency at design point, while the design pressure ratio and mass flow are, respectively, within 0.12% and 0.11% of the reference blade. Two cases of multi-point optimization are performed: First, the proposed multi-point optimization problem is relaxed by removing the choke margin constraint in order to demonstrate the relation between near-stall efficiency and stall margin. An investigation on the Pareto-optimal solutions of this optimization shows that the stall margin has been increased with improving near-stall efficiency. The second multi-point optimization case is performed with considering all the objectives and constraints. One selected optimized design on the Pareto front presents +0.41, +0.56 and +0.9 points improvement in near-peak efficiency, near-stall efficiency and stall margin, respectively. The design pressure ratio and mass flow are, respectively, within 0.3% and 0.26% of the reference blade. Moreover the optimized design maintains the required choking margin. Detailed aerodynamic analyses are performed to investigate the effect of shape optimization on shock occurrence, secondary flows, tip leakage and shock/tip-leakage interactions in both single and multi-point optimizations.
Rajagopal, Rajinikanth; Béline, Fabrice
2011-05-01
This study aimed to develop a biochemical-test mainly to evaluate the hydrolytic-potential of different substrates and to apply this test to characterize various organic substrates. Outcome of this study can be used for optimization of the WWTPs through enhancement of N/P removal or anaerobic digestion. Out of four series of batch experiments, the first two tests were conducted to determine the optimal operating conditions (test duration, inoculum-ratio etc.) for the hydrolytic-potential test using secondary and synthetically-prepared sludges. Based on the results (generation of CODs, pH and VFA), test duration was fixed between 6 and 7d allowing to attain maximum hydrolysis and to avoid methanogenesis. Effect of inoculum-ratios on acid fermentation of sludge was not significantly noticed. Using this methodology, third and fourth tests were performed to characterize various organic substrates namely secondary, pre-treated sludge, pig and two different cattle slurries. VFA production was shown to be substantially dependent on substrates types. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayers, Katherine; Capuano, Christopher; Atanassov, Plamen
The quantitative goal of this project was to produce a high-performance anion exchange membrane water electrolyzer (AEM-WE) completely free of platinum group metals (PGMs), which could operate for at least 500 hours with less than 50 microV/hour degradation, at 500 mA/cm 2. To achieve this goal, work focused on the optimization of electrocatalyst conductivity, with dispersion and utilization in the membrane electrode assembly (MEA) improved through refinement of deposition techniques. Critical factors were also explored with significant work undertaken by Northeastern University to further understand catalyst-membrane-ionomer interfaces and how they differ from liquid electrolyte. Water management and optimal cell operationalmore » parameters were established through the design, fabrication, and test of a new test station at Proton specific for AEM evaluation. Additionally, AEM material stability and robustness at high potentials and gas evolution conditions were advanced at Penn State.« less
Difficult Decisions Made Easier
NASA Technical Reports Server (NTRS)
2006-01-01
NASA missions are extremely complex and prone to sudden, catastrophic failure if equipment falters or if an unforeseen event occurs. For these reasons, NASA trains to expect the unexpected. It tests its equipment and systems in extreme conditions, and it develops risk-analysis tests to foresee any possible problems. The Space Agency recently worked with an industry partner to develop reliability analysis software capable of modeling complex, highly dynamic systems, taking into account variations in input parameters and the evolution of the system over the course of a mission. The goal of this research was multifold. It included performance and risk analyses of complex, multiphase missions, like the insertion of the Mars Reconnaissance Orbiter; reliability analyses of systems with redundant and/or repairable components; optimization analyses of system configurations with respect to cost and reliability; and sensitivity analyses to identify optimal areas for uncertainty reduction or performance enhancement.
USDA-ARS?s Scientific Manuscript database
In this study, optimization, extension, and validation of a streamlined, qualitative and quantitative multiclass, multiresidue method was conducted to monitor great than100 veterinary drug residues in meat using ultrahigh-performance liquid chromatography – tandem mass spectrometry (UHPLC-MS/MS). I...
Page, Iain D; Richardson, Malcolm D; Denning, David W
2016-02-01
Chronic pulmonary aspergillosis (CPA) is estimated to affect 3 million persons worldwide. Aspergillus-specific IgG is a key component in CPA diagnosis. We aimed to establish the optimal diagnostic cut offs for CPA and the comparative performance of six assays in this context. Sera from 241 patients with CPA and 100 healthy blood donors were tested using five Aspergillus-specific IgG assays plus precipitin testing using Microgen Aspergillus antigens. Receiver operating characteristic (ROC) curve area under the curve (AUC) results were as follows: ThermoFisher Scientific ImmunoCAP 0.996 (95% confidence interval 0.992-1), Siemens Immulite 0.991 (0.982-1), Serion 0.973 (0.960-0.987), Dynamiker 0.918 (0.89-0.946) and Genesis 0.902 (0.871-0.933). Optimal CPA diagnostic cut-offs were; ImmunoCAP 20 mg/L (96% sensitivity, 98% specificity), Immulite 10 mg/L (96% sensitivity, 98% specificity), Serion 35 U/ml (90% sensitivity, 98% specificity), Dynamiker 65 AU/ml (77% sensitivity, 97% specificity) and Genesis 20 U/ml (75% sensitivity, 99% specificity). The precipitin test was 59% sensitive and 100% specific. ImmunoCAP and Immulite were statistically significantly superior to the other assays. Precipitins testing performed poorly. The currently accepted ImmunoCAP cut-off of 40 mg/L appears sub-optimal for CPA diagnosis and may require revision in this context. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Das, K.; Clune, T.; Kuo, K. S.; Mattmann, C. A.; Huang, T.; Duffy, D.; Yang, C. P.; Habermann, T.
2015-12-01
Data containers are infrastructures that facilitate storage, retrieval, and analysis of data sets. Big data applications in Earth Science require a mix of processing techniques, data sources and storage formats that are supported by different data containers. Some of the most popular data containers used in Earth Science studies are Hadoop, Spark, SciDB, AsterixDB, and RasDaMan. These containers optimize different aspects of the data processing pipeline and are, therefore, suitable for different types of applications. These containers are expected to undergo rapid evolution and the ability to re-test, as they evolve, is very important to ensure the containers are up to date and ready to be deployed to handle large volumes of observational data and model output. Our goal is to develop an evaluation plan for these containers to assess their suitability for Earth Science data processing needs. We have identified a selection of test cases that are relevant to most data processing exercises in Earth Science applications and we aim to evaluate these systems for optimal performance against each of these test cases. The use cases identified as part of this study are (i) data fetching, (ii) data preparation for multivariate analysis, (iii) data normalization, (iv) distance (kernel) computation, and (v) optimization. In this study we develop a set of metrics for performance evaluation, define the specifics of governance, and test the plan on current versions of the data containers. The test plan and the design mechanism are expandable to allow repeated testing with both new containers and upgraded versions of the ones mentioned above, so that we can gauge their utility as they evolve.
Press, Barry
2011-01-01
In vitro permeability assays are a valuable tool for scientists during lead compound optimization. As a majority of discovery projects are focused on the development of orally bioavailable drugs, correlation of in vitro permeability data to in vivo absorption results is critical for understanding the structural-physicochemical relationship (SPR) of drugs exhibiting low levels of absorption. For more than a decade, the Caco-2 screening assay has remained a popular, in vitro system to test compounds for both intestinal permeability and efflux liability. Despite advances in artificial membrane technology and in silico modeling systems, drug compounds still benefit from testing in cell-based epithelial monolayer assays for lead optimization. This chapter provides technical information for performing and optimizing the Caco-2 assay. In addition, techniques are discussed for dealing with some of the most pressing issues surrounding in vitro permeability assays (i.e., low aqueous solubility of test compounds and low postassay recovery). Insights are offered to help researchers avoid common pitfalls in the interpretation of in vitro permeability data, which can often lead to the perception of misleading results for correlation to in vivo data.
Ares I-X Test Flight Reference Trajectory Development
NASA Technical Reports Server (NTRS)
Starr, Brett R.; Gumbert, Clyde R.; Tartabini, Paul V.
2011-01-01
Ares I-X was the first test flight of NASA's Constellation Program's Ares I crew launch vehicle. Ares I is a two stage to orbit launch vehicle that provides crew access to low Earth orbit for NASA's future manned exploration missions. The Ares I first stage consists of a Shuttle solid rocket motor (SRM) modified to include an additional propellant segment and a liquid propellant upper stage with an Apollo J2X engine modified to increase its thrust capability. The modified propulsion systems were not available for the first test flight, thus the test had to be conducted with an existing Shuttle 4 segment reusable solid rocket motor (RSRM) and an inert Upper Stage. The test flight's primary objective was to demonstrate controllability of an Ares I vehicle during first stage boost and the ability to perform a successful separation. In order to demonstrate controllability, the Ares I-X ascent control algorithms had to maintain stable flight throughout a flight environment equivalent to Ares I. The goal of the test flight reference trajectory development was to design a boost trajectory using the existing RSRM that results in a flight environment equivalent to Ares I. A trajectory similarity metric was defined as the integrated difference between the Ares I and Ares I-X Mach versus dynamic pressure relationships. Optimization analyses were performed that minimized the metric by adjusting the inert upper stage weight and the ascent steering profile. The sensitivity of the optimal upper stage weight and steering profile to launch month was also investigated. A response surface approach was used to verify the optimization results. The analyses successfully defined monthly ascent trajectories that matched the Ares I reference trajectory dynamic pressure versus Mach number relationship to within 10% through Mach 3.5. The upper stage weight required to achieve the match was found to be feasible and varied less than 5% throughout the year. The paper will discuss the flight test requirements, provide Ares I-X vehicle background, discuss the optimization analyses used to meet the requirements, present analysis results, and compare the reference trajectory to the reconstructed flight trajectory.
Stochastic Averaging for Constrained Optimization With Application to Online Resource Allocation
NASA Astrophysics Data System (ADS)
Chen, Tianyi; Mokhtari, Aryan; Wang, Xin; Ribeiro, Alejandro; Giannakis, Georgios B.
2017-06-01
Existing approaches to resource allocation for nowadays stochastic networks are challenged to meet fast convergence and tolerable delay requirements. The present paper leverages online learning advances to facilitate stochastic resource allocation tasks. By recognizing the central role of Lagrange multipliers, the underlying constrained optimization problem is formulated as a machine learning task involving both training and operational modes, with the goal of learning the sought multipliers in a fast and efficient manner. To this end, an order-optimal offline learning approach is developed first for batch training, and it is then generalized to the online setting with a procedure termed learn-and-adapt. The novel resource allocation protocol permeates benefits of stochastic approximation and statistical learning to obtain low-complexity online updates with learning errors close to the statistical accuracy limits, while still preserving adaptation performance, which in the stochastic network optimization context guarantees queue stability. Analysis and simulated tests demonstrate that the proposed data-driven approach improves the delay and convergence performance of existing resource allocation schemes.
NASA Astrophysics Data System (ADS)
Polprasert, Jirawadee; Ongsakul, Weerakorn; Dieu, Vo Ngoc
2011-06-01
This paper proposes a self-organizing hierarchical particle swarm optimization (SPSO) with time-varying acceleration coefficients (TVAC) for solving economic dispatch (ED) problem with non-smooth functions including multiple fuel options (MFO) and valve-point loading effects (VPLE). The proposed SPSO with TVAC is the new approach optimizer and good performance for solving ED problems. It can handle the premature convergence of the problem by re-initialization of velocity whenever particles are stagnated in the search space. To properly control both local and global explorations of the swarm during the optimization process, the performance of TVAC is included. The proposed method is tested in different ED problems with non-smooth cost functions and the obtained results are compared to those from many other methods in the literature. The results have revealed that the proposed SPSO with TVAC is effective in finding higher quality solutions for non-smooth ED problems than many other methods.
NASA Astrophysics Data System (ADS)
Stoeckel, Gerhard P.; Doyle, Keith B.
2017-08-01
The Transiting Exoplanet Survey Satellite (TESS) is an instrument consisting of four, wide fieldof- view CCD cameras dedicated to the discovery of exoplanets around the brightest stars, and understanding the diversity of planets and planetary systems in our galaxy. Each camera utilizes a seven-element lens assembly with low-power and low-noise CCD electronics. Advanced multivariable optimization and numerical simulation capabilities accommodating arbitrarily complex objective functions have been added to the internally developed Lincoln Laboratory Integrated Modeling and Analysis Software (LLIMAS) and used to assess system performance. Various optical phenomena are accounted for in these analyses including full dn/dT spatial distributions in lenses and charge diffusion in the CCD electronics. These capabilities are utilized to design CCD shims for thermal vacuum chamber testing and flight, and verify comparable performance in both environments across a range of wavelengths, field points and temperature distributions. Additionally, optimizations and simulations are used for model correlation and robustness optimizations.
Multijunction Solar Cell Technology for Mars Surface Applications
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris
2006-01-01
Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.
Recent advances in stellarator optimization
Gates, D. A.; Boozer, A. H.; Brown, T.; ...
2017-10-27
Computational optimization has revolutionized the field of stellarator design. To date, optimizations have focused primarily on optimization of neoclassical confinement and ideal MHD stability, although limited optimization of other parameters has also been performed. Here, we outline a select set of new concepts for stellarator optimization that, when taken as a group, present a significant step forward in the stellarator concept. One of the criticisms that has been leveled at existing methods of design is the complexity of the resultant field coils. Recently, a new coil optimization code—COILOPT++, which uses a spline instead of a Fourier representation of the coils,—wasmore » written and included in the STELLOPT suite of codes. The advantage of this method is that it allows the addition of real space constraints on the locations of the coils. The code has been tested by generating coil designs for optimized quasi-axisymmetric stellarator plasma configurations of different aspect ratios. As an initial exercise, a constraint that the windings be vertical was placed on large major radius half of the non-planar coils. Further constraints were also imposed that guaranteed that sector blanket modules could be removed from between the coils, enabling a sector maintenance scheme. Results of this exercise will be presented. New ideas on methods for the optimization of turbulent transport have garnered much attention since these methods have led to design concepts that are calculated to have reduced turbulent heat loss. We have explored possibilities for generating an experimental database to test whether the reduction in transport that is predicted is consistent with experimental observations. Thus, a series of equilibria that can be made in the now latent QUASAR experiment have been identified that will test the predicted transport scalings. Fast particle confinement studies aimed at developing a generalized optimization algorithm are also discussed. A new algorithm developed for the design of the scraper element on W7-X is presented along with ideas for automating the optimization approach.« less
Recent advances in stellarator optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gates, D. A.; Boozer, A. H.; Brown, T.
Computational optimization has revolutionized the field of stellarator design. To date, optimizations have focused primarily on optimization of neoclassical confinement and ideal MHD stability, although limited optimization of other parameters has also been performed. Here, we outline a select set of new concepts for stellarator optimization that, when taken as a group, present a significant step forward in the stellarator concept. One of the criticisms that has been leveled at existing methods of design is the complexity of the resultant field coils. Recently, a new coil optimization code—COILOPT++, which uses a spline instead of a Fourier representation of the coils,—wasmore » written and included in the STELLOPT suite of codes. The advantage of this method is that it allows the addition of real space constraints on the locations of the coils. The code has been tested by generating coil designs for optimized quasi-axisymmetric stellarator plasma configurations of different aspect ratios. As an initial exercise, a constraint that the windings be vertical was placed on large major radius half of the non-planar coils. Further constraints were also imposed that guaranteed that sector blanket modules could be removed from between the coils, enabling a sector maintenance scheme. Results of this exercise will be presented. New ideas on methods for the optimization of turbulent transport have garnered much attention since these methods have led to design concepts that are calculated to have reduced turbulent heat loss. We have explored possibilities for generating an experimental database to test whether the reduction in transport that is predicted is consistent with experimental observations. Thus, a series of equilibria that can be made in the now latent QUASAR experiment have been identified that will test the predicted transport scalings. Fast particle confinement studies aimed at developing a generalized optimization algorithm are also discussed. A new algorithm developed for the design of the scraper element on W7-X is presented along with ideas for automating the optimization approach.« less
Identification of vehicle suspension parameters by design optimization
NASA Astrophysics Data System (ADS)
Tey, J. Y.; Ramli, R.; Kheng, C. W.; Chong, S. Y.; Abidin, M. A. Z.
2014-05-01
The design of a vehicle suspension system through simulation requires accurate representation of the design parameters. These parameters are usually difficult to measure or sometimes unavailable. This article proposes an efficient approach to identify the unknown parameters through optimization based on experimental results, where the covariance matrix adaptation-evolutionary strategy (CMA-es) is utilized to improve the simulation and experimental results against the kinematic and compliance tests. This speeds up the design and development cycle by recovering all the unknown data with respect to a set of kinematic measurements through a single optimization process. A case study employing a McPherson strut suspension system is modelled in a multi-body dynamic system. Three kinematic and compliance tests are examined, namely, vertical parallel wheel travel, opposite wheel travel and single wheel travel. The problem is formulated as a multi-objective optimization problem with 40 objectives and 49 design parameters. A hierarchical clustering method based on global sensitivity analysis is used to reduce the number of objectives to 30 by grouping correlated objectives together. Then, a dynamic summation of rank value is used as pseudo-objective functions to reformulate the multi-objective optimization to a single-objective optimization problem. The optimized results show a significant improvement in the correlation between the simulated model and the experimental model. Once accurate representation of the vehicle suspension model is achieved, further analysis, such as ride and handling performances, can be implemented for further optimization.
Optimal and Adaptive Control of Flow in a Thermal Convection Loop
NASA Astrophysics Data System (ADS)
Yuen, Po Ki; Bau, Haim
1998-11-01
In theory and experiment, we use nonlinear and linear optimal and adaptive controllers to suppress the naturally occurring chaotic convection in a thermal convection loop. The thermal convection loop is a simple experimental analog of the Lorenz equations, and it provides a convenient platform for testing and comparing the performance of various control strategies in a fluid mechanical setting. The performance of the optimal and adaptive controllers is compared with that of a previously developed simple feedback controller (Singer, J., Wang, Y., & Bau, H., H., 1991, Physical Review Letters, 66,123-1125.)(Wang, Y., Singer, J., & Bau, H., H., 1992, J. Fluid Mechanics, 237, 479-498.), a nonlinear controller with a cubic nonlinearity(Yuen, P., & Bau, H., H., 1996, J. Fluid Mechanics, 317, 91-109.), and a neural net controller(Yuen, P., & Bau, H., H., 1998, Neural Networks, 11, 557 - 569, 1998.). It is demonstrated that an adaptive controller can perform successfully even when the system's model is not known.
Influence of architecture and material properties on vanadium redox flow battery performance
NASA Astrophysics Data System (ADS)
Houser, Jacob; Clement, Jason; Pezeshki, Alan; Mench, Matthew M.
2016-01-01
This publication reports a design optimization study of all-vanadium redox flow batteries (VRBs), including performance testing, distributed current measurements, and flow visualization. Additionally, a computational flow simulation is used to support the conclusions made from the experimental results. This study demonstrates that optimal flow field design is not simply related to the best architecture, but is instead a more complex interplay between architecture, electrode properties, electrolyte properties, and operating conditions which combine to affect electrode convective transport. For example, an interdigitated design outperforms a serpentine design at low flow rates and with a thin electrode, accessing up to an additional 30% of discharge capacity; but a serpentine design can match the available discharge capacity of the interdigitated design by increasing the flow rate or the electrode thickness due to differing responses between the two flow fields. The results of this study should be useful to design engineers seeking to optimize VRB systems through enhanced performance and reduced pressure drop.
An Effective Hybrid Evolutionary Algorithm for Solving the Numerical Optimization Problems
NASA Astrophysics Data System (ADS)
Qian, Xiaohong; Wang, Xumei; Su, Yonghong; He, Liu
2018-04-01
There are many different algorithms for solving complex optimization problems. Each algorithm has been applied successfully in solving some optimization problems, but not efficiently in other problems. In this paper the Cauchy mutation and the multi-parent hybrid operator are combined to propose a hybrid evolutionary algorithm based on the communication (Mixed Evolutionary Algorithm based on Communication), hereinafter referred to as CMEA. The basic idea of the CMEA algorithm is that the initial population is divided into two subpopulations. Cauchy mutation operators and multiple paternal crossover operators are used to perform two subpopulations parallelly to evolve recursively until the downtime conditions are met. While subpopulation is reorganized, the individual is exchanged together with information. The algorithm flow is given and the performance of the algorithm is compared using a number of standard test functions. Simulation results have shown that this algorithm converges significantly faster than FEP (Fast Evolutionary Programming) algorithm, has good performance in global convergence and stability and is superior to other compared algorithms.
Optimal Link Removal for Epidemic Mitigation: A Two-Way Partitioning Approach
Enns, Eva A.; Mounzer, Jeffrey J.; Brandeau, Margaret L.
2011-01-01
The structure of the contact network through which a disease spreads may influence the optimal use of resources for epidemic control. In this work, we explore how to minimize the spread of infection via quarantining with limited resources. In particular, we examine which links should be removed from the contact network, given a constraint on the number of removable links, such that the number of nodes which are no longer at risk for infection is maximized. We show how this problem can be posed as a non-convex quadratically constrained quadratic program (QCQP), and we use this formulation to derive a link removal algorithm. The performance of our QCQP-based algorithm is validated on small Erdős-Renyi and small-world random graphs, and then tested on larger, more realistic networks, including a real-world network of injection drug use. We show that our approach achieves near optimal performance and out-perform so ther intuitive link removal algorithms, such as removing links in order of edge centrality. PMID:22115862
Optimized PID control of depth of hypnosis in anesthesia.
Padula, Fabrizio; Ionescu, Clara; Latronico, Nicola; Paltenghi, Massimiliano; Visioli, Antonio; Vivacqua, Giulio
2017-06-01
This paper addresses the use of proportional-integral-derivative controllers for regulating the depth of hypnosis in anesthesia by using propofol administration and the bispectral index as a controlled variable. In fact, introducing an automatic control system might provide significant benefits for the patient in reducing the risk for under- and over-dosing. In this study, the controller parameters are obtained through genetic algorithms by solving a min-max optimization problem. A set of 12 patient models representative of a large population variance is used to test controller robustness. The worst-case performance in the considered population is minimized considering two different scenarios: the induction case and the maintenance case. Our results indicate that including a gain scheduling strategy enables optimal performance for induction and maintenance phases, separately. Using a single tuning to address both tasks may results in a loss of performance up to 102% in the induction phase and up to 31% in the maintenance phase. Further on, it is shown that a suitably designed low-pass filter on the controller output can handle the trade-off between the performance and the noise effect in the control variable. Optimally tuned PID controllers provide a fast induction time with an acceptable overshoot and a satisfactory disturbance rejection performance during maintenance. These features make them a very good tool for comparison when other control algorithms are developed. Copyright © 2017 Elsevier B.V. All rights reserved.
Parsa, Behnoosh; Terekhov, Alexander; Zatsiorsky, Vladimir M; Latash, Mark L
2017-02-01
We address the nature of unintentional changes in performance in two papers. This first paper tested a hypothesis that unintentional changes in performance variables during continuous tasks without visual feedback are due to two processes. First, there is a drift of the referent coordinate for the salient performance variable toward the actual coordinate of the effector. Second, there is a drift toward minimum of a cost function. We tested this hypothesis in four-finger isometric pressing tasks that required the accurate production of a combination of total moment and total force with natural and modified finger involvement. Subjects performed accurate force-moment production tasks under visual feedback, and then visual feedback was removed for some or all of the salient variables. Analytical inverse optimization was used to compute a cost function. Without visual feedback, both force and moment drifted slowly toward lower absolute magnitudes. Over 15 s, the force drop could reach 20% of its initial magnitude while moment drop could reach 30% of its initial magnitude. Individual finger forces could show drifts toward both higher and lower forces. The cost function estimated using the analytical inverse optimization reduced its value as a consequence of the drift. We interpret the results within the framework of hierarchical control with referent spatial coordinates for salient variables at each level of the hierarchy combined with synergic control of salient variables. The force drift is discussed as a natural relaxation process toward states with lower potential energy in the physical (physiological) system involved in the task.
Parsa, Behnoosh; Terekhov, Alexander; Zatsiorsky, Vladimir M.; Latash, Mark L.
2016-01-01
We address the nature of unintentional changes in performance in two papers. This first paper tested a hypothesis that unintentional changes in performance variables during continuous tasks without visual feedback are due to two processes. First, there is a drift of the referent coordinate for the salient performance variable toward the actual coordinate of the effector. Second, there is a drift toward minimum of a cost function. We tested this hypothesis in four-finger isometric pressing tasks that required the accurate production of a combination of total moment and total force with natural and modified finger involvement. Subjects performed accurate force/moment production tasks under visual feedback, and then visual feedback was removed for some or all of the salient variables. Analytical inverse optimization was used to compute a cost function. Without visual feedback, both force and moment drifted slowly toward lower absolute magnitudes. Over 15 s, the force drop could reach 20% of its initial magnitude while moment drop could reach 30% of its initial magnitude. Individual finger forces could show drifts toward both higher and lower forces. The cost function estimated using the analytical inverse optimization reduced its value as a consequence of the drift. We interpret the results within the framework of hierarchical control with referent spatial coordinates for salient variables at each level of the hierarchy combined with synergic control of salient variables. The force drift is discussed as a natural relaxation process toward states with lower potential energy in the physical (physiological) system involved in the task. PMID:27785549
Design Optimization of a Thermoelectric Cooling Module Using Finite Element Simulations
NASA Astrophysics Data System (ADS)
Abid, Muhammad; Somdalen, Ragnar; Rodrigo, Marina Sancho
2018-05-01
The thermoelectric industry is concerned about the size reduction, cooling performance and, ultimately, the production cost of thermoelectric modules. Optimization of the size and performance of a commercially available thermoelectric cooling module is considered using finite element simulations. Numerical simulations are performed on eight different three-dimensional geometries of a single thermocouple, and the results are further extended for a whole module as well. The maximum temperature rise at the hot and cold sides of a thermocouple is determined by altering its height and cross-sectional area. The influence of the soldering layer is analyzed numerically using temperature dependent and temperature independent thermoelectric properties of the solder material and the semiconductor pellets. Experiments are conducted to test the cooling performance of the thermoelectric module and the results are compared with the results obtained through simulations. Finally, cooling rate and maximum coefficient of performance (COPmax) are computed using convective and non-convective boundary conditions.
Shan, Haijun; Xu, Haojie; Zhu, Shanan; He, Bin
2015-10-21
For sensorimotor rhythms based brain-computer interface (BCI) systems, classification of different motor imageries (MIs) remains a crucial problem. An important aspect is how many scalp electrodes (channels) should be used in order to reach optimal performance classifying motor imaginations. While the previous researches on channel selection mainly focus on MI tasks paradigms without feedback, the present work aims to investigate the optimal channel selection in MI tasks paradigms with real-time feedback (two-class control and four-class control paradigms). In the present study, three datasets respectively recorded from MI tasks experiment, two-class control and four-class control experiments were analyzed offline. Multiple frequency-spatial synthesized features were comprehensively extracted from every channel, and a new enhanced method IterRelCen was proposed to perform channel selection. IterRelCen was constructed based on Relief algorithm, but was enhanced from two aspects: change of target sample selection strategy and adoption of the idea of iterative computation, and thus performed more robust in feature selection. Finally, a multiclass support vector machine was applied as the classifier. The least number of channels that yield the best classification accuracy were considered as the optimal channels. One-way ANOVA was employed to test the significance of performance improvement among using optimal channels, all the channels and three typical MI channels (C3, C4, Cz). The results show that the proposed method outperformed other channel selection methods by achieving average classification accuracies of 85.2, 94.1, and 83.2 % for the three datasets, respectively. Moreover, the channel selection results reveal that the average numbers of optimal channels were significantly different among the three MI paradigms. It is demonstrated that IterRelCen has a strong ability for feature selection. In addition, the results have shown that the numbers of optimal channels in the three different motor imagery BCI paradigms are distinct. From a MI task paradigm, to a two-class control paradigm, and to a four-class control paradigm, the number of required channels for optimizing the classification accuracy increased. These findings may provide useful information to optimize EEG based BCI systems, and further improve the performance of noninvasive BCI.
McCafferty, Sean J; Schwiegerling, Jim T
2015-04-01
Present an analysis methodology for developing and evaluating accommodating intraocular lenses incorporating a deformable interface. The next generation design of extruded gel interface intraocular lens is presented. A prototype based upon similar previously in vivo proven design was tested with measurements of actuation force, lens power, interface contour, optical transfer function, and visual Strehl ratio. Prototype verified mathematical models were used to optimize optical and mechanical design parameters to maximize the image quality and minimize the required force to accommodate. The prototype lens produced adequate image quality with the available physiologic accommodating force. The iterative mathematical modeling based upon the prototype yielded maximized optical and mechanical performance through maximum allowable gel thickness to extrusion diameter ratio, maximum feasible refractive index change at the interface, and minimum gel material properties in Poisson's ratio and Young's modulus. The design prototype performed well. It operated within the physiologic constraints of the human eye including the force available for full accommodative amplitude using the eye's natural focusing feedback, while maintaining image quality in the space available. The parameters that optimized optical and mechanical performance were delineated as those, which minimize both asphericity and actuation pressure. The design parameters outlined herein can be used as a template to maximize the performance of a deformable interface intraocular lens. The article combines a multidisciplinary basic science approach from biomechanics, optical science, and ophthalmology to optimize an intraocular lens design suitable for preliminary animal trials.
A Maximum-Likelihood Approach to Force-Field Calibration.
Zaborowski, Bartłomiej; Jagieła, Dawid; Czaplewski, Cezary; Hałabis, Anna; Lewandowska, Agnieszka; Żmudzińska, Wioletta; Ołdziej, Stanisław; Karczyńska, Agnieszka; Omieczynski, Christian; Wirecki, Tomasz; Liwo, Adam
2015-09-28
A new approach to the calibration of the force fields is proposed, in which the force-field parameters are obtained by maximum-likelihood fitting of the calculated conformational ensembles to the experimental ensembles of training system(s). The maximum-likelihood function is composed of logarithms of the Boltzmann probabilities of the experimental conformations, calculated with the current energy function. Because the theoretical distribution is given in the form of the simulated conformations only, the contributions from all of the simulated conformations, with Gaussian weights in the distances from a given experimental conformation, are added to give the contribution to the target function from this conformation. In contrast to earlier methods for force-field calibration, the approach does not suffer from the arbitrariness of dividing the decoy set into native-like and non-native structures; however, if such a division is made instead of using Gaussian weights, application of the maximum-likelihood method results in the well-known energy-gap maximization. The computational procedure consists of cycles of decoy generation and maximum-likelihood-function optimization, which are iterated until convergence is reached. The method was tested with Gaussian distributions and then applied to the physics-based coarse-grained UNRES force field for proteins. The NMR structures of the tryptophan cage, a small α-helical protein, determined at three temperatures (T = 280, 305, and 313 K) by Hałabis et al. ( J. Phys. Chem. B 2012 , 116 , 6898 - 6907 ), were used. Multiplexed replica-exchange molecular dynamics was used to generate the decoys. The iterative procedure exhibited steady convergence. Three variants of optimization were tried: optimization of the energy-term weights alone and use of the experimental ensemble of the folded protein only at T = 280 K (run 1); optimization of the energy-term weights and use of experimental ensembles at all three temperatures (run 2); and optimization of the energy-term weights and the coefficients of the torsional and multibody energy terms and use of experimental ensembles at all three temperatures (run 3). The force fields were subsequently tested with a set of 14 α-helical and two α + β proteins. Optimization run 1 resulted in better agreement with the experimental ensemble at T = 280 K compared with optimization run 2 and in comparable performance on the test set but poorer agreement of the calculated folding temperature with the experimental folding temperature. Optimization run 3 resulted in the best fit of the calculated ensembles to the experimental ones for the tryptophan cage but in much poorer performance on the training set, suggesting that use of a small α-helical protein for extensive force-field calibration resulted in overfitting of the data for this protein at the expense of transferability. The optimized force field resulting from run 2 was found to fold 13 of the 14 tested α-helical proteins and one small α + β protein with the correct topologies; the average structures of 10 of them were predicted with accuracies of about 5 Å C(α) root-mean-square deviation or better. Test simulations with an additional set of 12 α-helical proteins demonstrated that this force field performed better on α-helical proteins than the previous parametrizations of UNRES. The proposed approach is applicable to any problem of maximum-likelihood parameter estimation when the contributions to the maximum-likelihood function cannot be evaluated at the experimental points and the dimension of the configurational space is too high to construct histograms of the experimental distributions.
Compact Heat Exchanger Design and Testing for Advanced Reactors and Advanced Power Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiaodong; Zhang, Xiaoqin; Christensen, Richard
The goal of the proposed research is to demonstrate the thermal hydraulic performance of innovative surface geometries in compact heat exchangers used as intermediate heat exchangers (IHXs) and recuperators for the supercritical carbon dioxide (s-CO 2) Brayton cycle. Printed-circuit heat exchangers (PCHEs) are the primary compact heat exchangers of interest. The overall objectives are: To develop optimized PCHE designs for different working fluid combinations including helium to s-CO 2, liquid salt to s-CO 2, sodium to s-CO 2, and liquid salt to helium; To experimentally and numerically investigate thermal performance, thermal stress and failure mechanism of PCHEs under various transients;more » and To study diffusion bonding techniques for elevated-temperature alloys and examine post-test material integrity of the PCHEs. The project objectives were accomplished by defining and executing five different tasks corresponding to these specific objectives. The first task involved a thorough literature review and a selection of IHX candidates with different surface geometries as well as a summary of prototypic operational conditions. The second task involved optimization of PCHE design with numerical analyses of thermal-hydraulic performances and mechanical integrity. The subsequent task dealt with the development of testing facilities and engineering design of PCHE to be tested in s-CO 2 fluid conditions. The next task involved experimental investigation and validation of the thermal-hydraulic performances and thermal stress distribution of prototype PCHEs manufactured with particular surface geometries. The last task involved an investigation of diffusion bonding process and posttest destructive testing to validate mechanical design methods adopted in the design process. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed s-CO 2 test loop (STL) facility and s-CO 2 test facility at University of Wisconsin – Madison (UW).« less
Bassen, David M; Vilkhovoy, Michael; Minot, Mason; Butcher, Jonathan T; Varner, Jeffrey D
2017-01-25
Ensemble modeling is a promising approach for obtaining robust predictions and coarse grained population behavior in deterministic mathematical models. Ensemble approaches address model uncertainty by using parameter or model families instead of single best-fit parameters or fixed model structures. Parameter ensembles can be selected based upon simulation error, along with other criteria such as diversity or steady-state performance. Simulations using parameter ensembles can estimate confidence intervals on model variables, and robustly constrain model predictions, despite having many poorly constrained parameters. In this software note, we present a multiobjective based technique to estimate parameter or models ensembles, the Pareto Optimal Ensemble Technique in the Julia programming language (JuPOETs). JuPOETs integrates simulated annealing with Pareto optimality to estimate ensembles on or near the optimal tradeoff surface between competing training objectives. We demonstrate JuPOETs on a suite of multiobjective problems, including test functions with parameter bounds and system constraints as well as for the identification of a proof-of-concept biochemical model with four conflicting training objectives. JuPOETs identified optimal or near optimal solutions approximately six-fold faster than a corresponding implementation in Octave for the suite of test functions. For the proof-of-concept biochemical model, JuPOETs produced an ensemble of parameters that gave both the mean of the training data for conflicting data sets, while simultaneously estimating parameter sets that performed well on each of the individual objective functions. JuPOETs is a promising approach for the estimation of parameter and model ensembles using multiobjective optimization. JuPOETs can be adapted to solve many problem types, including mixed binary and continuous variable types, bilevel optimization problems and constrained problems without altering the base algorithm. JuPOETs is open source, available under an MIT license, and can be installed using the Julia package manager from the JuPOETs GitHub repository.
Research in Satellite-Fiber Network Interoperability
NASA Technical Reports Server (NTRS)
Edelson, Burt
1997-01-01
This four part report evaluated the performance of high data rate transmission links using the ACTS satellite, and to provide a preparatory test framework for two of the space science applications that have been approved for tests and demonstrations as part of the overall ACTS program. The test plan will provide guidance and information necessary to find the optimal values of the transmission parameters and then apply these parameters to specific applications. The first part will focus on the satellite-to-earth link. The second part is a set of tests to study the performance of ATM on the ACTS channel. The third and fourth parts of the test plan will cover the space science applications, Global Climate Modeling and Keck Telescope Acquisition Modeling and Control.
Ahmed, Sameh; Alqurshi, Abdulmalik; Mohamed, Abdel-Maaboud Ismail
2018-07-01
A new robust and reliable high-performance liquid chromatography (HPLC) method with multi-criteria decision making (MCDM) approach was developed to allow simultaneous quantification of atenolol (ATN) and nifedipine (NFD) in content uniformity testing. Felodipine (FLD) was used as an internal standard (I.S.) in this study. A novel marriage between a new interactive response optimizer and a HPLC method was suggested for multiple response optimizations of target responses. An interactive response optimizer was used as a decision and prediction tool for the optimal settings of target responses, according to specified criteria, based on Derringer's desirability. Four independent variables were considered in this study: Acetonitrile%, buffer pH and concentration along with column temperature. Eight responses were optimized: retention times of ATN, NFD, and FLD, resolutions between ATN/NFD and NFD/FLD, and plate numbers for ATN, NFD, and FLD. Multiple regression analysis was applied in order to scan the influences of the most significant variables for the regression models. The experimental design was set to give minimum retention times, maximum resolution and plate numbers. The interactive response optimizer allowed prediction of optimum conditions according to these criteria with a good composite desirability value of 0.98156. The developed method was validated according to the International Conference on Harmonization (ICH) guidelines with the aid of the experimental design. The developed MCDM-HPLC method showed superior robustness and resolution in short analysis time allowing successful simultaneous content uniformity testing of ATN and NFD in marketed capsules. The current work presents an interactive response optimizer as an efficient platform to optimize, predict responses, and validate HPLC methodology with tolerable design space for assay in quality control laboratories. Copyright © 2018 Elsevier B.V. All rights reserved.
Ringed Seal Search for Global Optimization via a Sensitive Search Model.
Saadi, Younes; Yanto, Iwan Tri Riyadi; Herawan, Tutut; Balakrishnan, Vimala; Chiroma, Haruna; Risnumawan, Anhar
2016-01-01
The efficiency of a metaheuristic algorithm for global optimization is based on its ability to search and find the global optimum. However, a good search often requires to be balanced between exploration and exploitation of the search space. In this paper, a new metaheuristic algorithm called Ringed Seal Search (RSS) is introduced. It is inspired by the natural behavior of the seal pup. This algorithm mimics the seal pup movement behavior and its ability to search and choose the best lair to escape predators. The scenario starts once the seal mother gives birth to a new pup in a birthing lair that is constructed for this purpose. The seal pup strategy consists of searching and selecting the best lair by performing a random walk to find a new lair. Affected by the sensitive nature of seals against external noise emitted by predators, the random walk of the seal pup takes two different search states, normal state and urgent state. In the normal state, the pup performs an intensive search between closely adjacent lairs; this movement is modeled via a Brownian walk. In an urgent state, the pup leaves the proximity area and performs an extensive search to find a new lair from sparse targets; this movement is modeled via a Levy walk. The switch between these two states is realized by the random noise emitted by predators. The algorithm keeps switching between normal and urgent states until the global optimum is reached. Tests and validations were performed using fifteen benchmark test functions to compare the performance of RSS with other baseline algorithms. The results show that RSS is more efficient than Genetic Algorithm, Particles Swarm Optimization and Cuckoo Search in terms of convergence rate to the global optimum. The RSS shows an improvement in terms of balance between exploration (extensive) and exploitation (intensive) of the search space. The RSS can efficiently mimic seal pups behavior to find best lair and provide a new algorithm to be used in global optimization problems.
NASA Astrophysics Data System (ADS)
Wu, Dongjun
Network industries have technologies characterized by a spatial hierarchy, the "network," with capital-intensive interconnections and time-dependent, capacity-limited flows of products and services through the network to customers. This dissertation studies service pricing, investment and business operating strategies for the electric power network. First-best solutions for a variety of pricing and investment problems have been studied. The evaluation of genetic algorithms (GA, which are methods based on the idea of natural evolution) as a primary means of solving complicated network problems, both w.r.t. pricing: as well as w.r.t. investment and other operating decisions, has been conducted. New constraint-handling techniques in GAs have been studied and tested. The actual application of such constraint-handling techniques in solving practical non-linear optimization problems has been tested on several complex network design problems with encouraging initial results. Genetic algorithms provide solutions that are feasible and close to optimal when the optimal solution is know; in some instances, the near-optimal solutions for small problems by the proposed GA approach can only be tested by pushing the limits of currently available non-linear optimization software. The performance is far better than several commercially available GA programs, which are generally inadequate in solving any of the problems studied in this dissertation, primarily because of their poor handling of constraints. Genetic algorithms, if carefully designed, seem very promising in solving difficult problems which are intractable by traditional analytic methods.
Implementation and thickness optimization of perpetual pavements in Ohio.
DOT National Transportation Integrated Search
2015-06-01
This report documents the performance of perpetual pavement structures constructed by the Ohio Department of Transportation. : Three perpetual pavement test sections on U.S. Route 23 in Delaware, Ohio (DEL-23) were constructed with AC thicknesses 11 ...
Optimization of seismic isolation systems via harmony search
NASA Astrophysics Data System (ADS)
Melih Nigdeli, Sinan; Bekdaş, Gebrail; Alhan, Cenk
2014-11-01
In this article, the optimization of isolation system parameters via the harmony search (HS) optimization method is proposed for seismically isolated buildings subjected to both near-fault and far-fault earthquakes. To obtain optimum values of isolation system parameters, an optimization program was developed in Matlab/Simulink employing the HS algorithm. The objective was to obtain a set of isolation system parameters within a defined range that minimizes the acceleration response of a seismically isolated structure subjected to various earthquakes without exceeding a peak isolation system displacement limit. Several cases were investigated for different isolation system damping ratios and peak displacement limitations of seismic isolation devices. Time history analyses were repeated for the neighbouring parameters of optimum values and the results proved that the parameters determined via HS were true optima. The performance of the optimum isolation system was tested under a second set of earthquakes that was different from the first set used in the optimization process. The proposed optimization approach is applicable to linear isolation systems. Isolation systems composed of isolation elements that are inherently nonlinear are the subject of a future study. Investigation of the optimum isolation system parameters has been considered in parametric studies. However, obtaining the best performance of a seismic isolation system requires a true optimization by taking the possibility of both near-fault and far-fault earthquakes into account. HS optimization is proposed here as a viable solution to this problem.
van Rossum, Huub H; Kemperman, Hans
2017-02-01
To date, no practical tools are available to obtain optimal settings for moving average (MA) as a continuous analytical quality control instrument. Also, there is no knowledge of the true bias detection properties of applied MA. We describe the use of bias detection curves for MA optimization and MA validation charts for validation of MA. MA optimization was performed on a data set of previously obtained consecutive assay results. Bias introduction and MA bias detection were simulated for multiple MA procedures (combination of truncation limits, calculation algorithms and control limits) and performed for various biases. Bias detection curves were generated by plotting the median number of test results needed for bias detection against the simulated introduced bias. In MA validation charts the minimum, median, and maximum numbers of assay results required for MA bias detection are shown for various bias. Their use was demonstrated for sodium, potassium, and albumin. Bias detection curves allowed optimization of MA settings by graphical comparison of bias detection properties of multiple MA. The optimal MA was selected based on the bias detection characteristics obtained. MA validation charts were generated for selected optimal MA and provided insight into the range of results required for MA bias detection. Bias detection curves and MA validation charts are useful tools for optimization and validation of MA procedures.
2014-01-01
Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP), which aims to minimize total service time, and proposes an iterated greedy (IG) algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set. PMID:25295295
Improved Test Planning and Analysis Through the Use of Advanced Statistical Methods
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Maxwell, Katherine A.; Glass, David E.; Vaughn, Wallace L.; Barger, Weston; Cook, Mylan
2016-01-01
The goal of this work is, through computational simulations, to provide statistically-based evidence to convince the testing community that a distributed testing approach is superior to a clustered testing approach for most situations. For clustered testing, numerous, repeated test points are acquired at a limited number of test conditions. For distributed testing, only one or a few test points are requested at many different conditions. The statistical techniques of Analysis of Variance (ANOVA), Design of Experiments (DOE) and Response Surface Methods (RSM) are applied to enable distributed test planning, data analysis and test augmentation. The D-Optimal class of DOE is used to plan an optimally efficient single- and multi-factor test. The resulting simulated test data are analyzed via ANOVA and a parametric model is constructed using RSM. Finally, ANOVA can be used to plan a second round of testing to augment the existing data set with new data points. The use of these techniques is demonstrated through several illustrative examples. To date, many thousands of comparisons have been performed and the results strongly support the conclusion that the distributed testing approach outperforms the clustered testing approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.
It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less
Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.
2016-07-26
It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less
Incentive-compatible demand-side management for smart grids based on review strategies
NASA Astrophysics Data System (ADS)
Xu, Jie; van der Schaar, Mihaela
2015-12-01
Demand-side load management is able to significantly improve the energy efficiency of smart grids. Since the electricity production cost depends on the aggregate energy usage of multiple consumers, an important incentive problem emerges: self-interested consumers want to increase their own utilities by consuming more than the socially optimal amount of energy during peak hours since the increased cost is shared among the entire set of consumers. To incentivize self-interested consumers to take the socially optimal scheduling actions, we design a new class of protocols based on review strategies. These strategies work as follows: first, a review stage takes place in which a statistical test is performed based on the daily prices of the previous billing cycle to determine whether or not the other consumers schedule their electricity loads in a socially optimal way. If the test fails, the consumers trigger a punishment phase in which, for a certain time, they adjust their energy scheduling in such a way that everybody in the consumer set is punished due to an increased price. Using a carefully designed protocol based on such review strategies, consumers then have incentives to take the socially optimal load scheduling to avoid entering this punishment phase. We rigorously characterize the impact of deploying protocols based on review strategies on the system's as well as the users' performance and determine the optimal design (optimal billing cycle, punishment length, etc.) for various smart grid deployment scenarios. Even though this paper considers a simplified smart grid model, our analysis provides important and useful insights for designing incentive-compatible demand-side management schemes based on aggregate energy usage information in a variety of practical scenarios.
Multi-mission Ni-H2 battery cells for the 1990's
NASA Technical Reports Server (NTRS)
Miller, Lee; Brill, Jack; Dodson, Gary
1989-01-01
A sufficient production, test and operational database is now available to permit design technology optimization for the next decade. The evolved battery cell design features standardized technology intended to support multiple type missions (e.g., both GEO and LEO). Design analysis and validation test cells demonstrate that improved performance plus attractive specific-energy characteristics will be achieved.
NASA Astrophysics Data System (ADS)
Yang, Kai Ke; Zhu, Ji Hong; Wang, Chuang; Jia, Dong Sheng; Song, Long Long; Zhang, Wei Hong
2018-05-01
The purpose of this paper is to investigate the structures achieved by topology optimization and their fabrications by 3D printing considering the particular features of material microstructures and macro mechanical performances. Combining Digital Image Correlation and Optical Microscope, this paper experimentally explored the anisotropies of stiffness and strength existing in the 3D printed polymer material using Stereolithography (SLA) and titanium material using Selective Laser Melting (SLM). The standard specimens and typical structures obtained by topology optimization were fabricated along different building directions. On the one hand, the experimental results of these SLA produced structures showed stable properties and obviously anisotropic rules in stiffness, ultimate strengths and places of fractures. Further structural designs were performed using topology optimization when the particular mechanical behaviors of SLA printed materials were considered, which resulted in better structural performances compared to the optimized designs using `ideal' isotropic material model. On the other hand, this paper tested the mechanical behaviors of SLM printed multiscale lattice structures which were fabricated using the same metal powder and the same machine. The structural stiffness values are generally similar while the strength behaviors show a difference, which are mainly due to the irregular surface quality of the tiny structural branches of the lattice. The above evidences clearly show that the consideration of the particular behaviors of 3D printed materials is therefore indispensable for structural design and optimization in order to improve the structural performance and strengthen their practical significance.
NASA Astrophysics Data System (ADS)
Yang, Kai Ke; Zhu, Ji Hong; Wang, Chuang; Jia, Dong Sheng; Song, Long Long; Zhang, Wei Hong
2018-02-01
The purpose of this paper is to investigate the structures achieved by topology optimization and their fabrications by 3D printing considering the particular features of material microstructures and macro mechanical performances. Combining Digital Image Correlation and Optical Microscope, this paper experimentally explored the anisotropies of stiffness and strength existing in the 3D printed polymer material using Stereolithography (SLA) and titanium material using Selective Laser Melting (SLM). The standard specimens and typical structures obtained by topology optimization were fabricated along different building directions. On the one hand, the experimental results of these SLA produced structures showed stable properties and obviously anisotropic rules in stiffness, ultimate strengths and places of fractures. Further structural designs were performed using topology optimization when the particular mechanical behaviors of SLA printed materials were considered, which resulted in better structural performances compared to the optimized designs using `ideal' isotropic material model. On the other hand, this paper tested the mechanical behaviors of SLM printed multiscale lattice structures which were fabricated using the same metal powder and the same machine. The structural stiffness values are generally similar while the strength behaviors show a difference, which are mainly due to the irregular surface quality of the tiny structural branches of the lattice. The above evidences clearly show that the consideration of the particular behaviors of 3D printed materials is therefore indispensable for structural design and optimization in order to improve the structural performance and strengthen their practical significance.
SPOKES: An end-to-end simulation facility for spectroscopic cosmological surveys
Nord, B.; Amara, A.; Refregier, A.; ...
2016-03-03
The nature of dark matter, dark energy and large-scale gravity pose some of the most pressing questions in cosmology today. These fundamental questions require highly precise measurements, and a number of wide-field spectroscopic survey instruments are being designed to meet this requirement. A key component in these experiments is the development of a simulation tool to forecast science performance, define requirement flow-downs, optimize implementation, demonstrate feasibility, and prepare for exploitation. We present SPOKES (SPectrOscopic KEn Simulation), an end-to-end simulation facility for spectroscopic cosmological surveys designed to address this challenge. SPOKES is based on an integrated infrastructure, modular function organization, coherentmore » data handling and fast data access. These key features allow reproducibility of pipeline runs, enable ease of use and provide flexibility to update functions within the pipeline. The cyclic nature of the pipeline offers the possibility to make the science output an efficient measure for design optimization and feasibility testing. We present the architecture, first science, and computational performance results of the simulation pipeline. The framework is general, but for the benchmark tests, we use the Dark Energy Spectrometer (DESpec), one of the early concepts for the upcoming project, the Dark Energy Spectroscopic Instrument (DESI). As a result, we discuss how the SPOKES framework enables a rigorous process to optimize and exploit spectroscopic survey experiments in order to derive high-precision cosmological measurements optimally.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nord, B.; Amara, A.; Refregier, A.
The nature of dark matter, dark energy and large-scale gravity pose some of the most pressing questions in cosmology today. These fundamental questions require highly precise measurements, and a number of wide-field spectroscopic survey instruments are being designed to meet this requirement. A key component in these experiments is the development of a simulation tool to forecast science performance, define requirement flow-downs, optimize implementation, demonstrate feasibility, and prepare for exploitation. We present SPOKES (SPectrOscopic KEn Simulation), an end-to-end simulation facility for spectroscopic cosmological surveys designed to address this challenge. SPOKES is based on an integrated infrastructure, modular function organization, coherentmore » data handling and fast data access. These key features allow reproducibility of pipeline runs, enable ease of use and provide flexibility to update functions within the pipeline. The cyclic nature of the pipeline offers the possibility to make the science output an efficient measure for design optimization and feasibility testing. We present the architecture, first science, and computational performance results of the simulation pipeline. The framework is general, but for the benchmark tests, we use the Dark Energy Spectrometer (DESpec), one of the early concepts for the upcoming project, the Dark Energy Spectroscopic Instrument (DESI). As a result, we discuss how the SPOKES framework enables a rigorous process to optimize and exploit spectroscopic survey experiments in order to derive high-precision cosmological measurements optimally.« less
Kennedy, Jacob J.; Whiteaker, Jeffrey R.; Schoenherr, Regine M.; Yan, Ping; Allison, Kimberly; Shipley, Melissa; Lerch, Melissa; Hoofnagle, Andrew N.; Baird, Geoffrey Stuart; Paulovich, Amanda G.
2016-01-01
Despite a clinical, economic, and regulatory imperative to develop companion diagnostics, precious few new biomarkers have been successfully translated into clinical use, due in part to inadequate protein assay technologies to support large-scale testing of hundreds of candidate biomarkers in formalin-fixed paraffin embedded (FFPE) tissues. While the feasibility of using targeted, multiple reaction monitoring-mass spectrometry (MRM-MS) for quantitative analyses of FFPE tissues has been demonstrated, protocols have not been systematically optimized for robust quantification across a large number of analytes, nor has the performance of peptide immuno-MRM been evaluated. To address this gap, we used a test battery approach coupled to MRM-MS with the addition of stable isotope labeled standard peptides (targeting 512 analytes) to quantitatively evaluate the performance of three extraction protocols in combination with three trypsin digestion protocols (i.e. 9 processes). A process based on RapiGest buffer extraction and urea-based digestion was identified to enable similar quantitation results from FFPE and frozen tissues. Using the optimized protocols for MRM-based analysis of FFPE tissues, median precision was 11.4% (across 249 analytes). There was excellent correlation between measurements made on matched FFPE and frozen tissues, both for direct MRM analysis (R2 = 0.94) and immuno-MRM (R2 = 0.89). The optimized process enables highly reproducible, multiplex, standardizable, quantitative MRM in archival tissue specimens. PMID:27462933
High speed civil transport: Sonic boom softening and aerodynamic optimization
NASA Technical Reports Server (NTRS)
Cheung, Samson
1994-01-01
An improvement in sonic boom extrapolation techniques has been the desire of aerospace designers for years. This is because the linear acoustic theory developed in the 60's is incapable of predicting the nonlinear phenomenon of shock wave propagation. On the other hand, CFD techniques are too computationally expensive to employ on sonic boom problems. Therefore, this research focused on the development of a fast and accurate sonic boom extrapolation method that solves the Euler equations for axisymmetric flow. This new technique has brought the sonic boom extrapolation techniques up to the standards of the 90's. Parallel computing is a fast growing subject in the field of computer science because of its promising speed. A new optimizer (IIOWA) for the parallel computing environment has been developed and tested for aerodynamic drag minimization. This is a promising method for CFD optimization making use of the computational resources of workstations, which unlike supercomputers can spend most of their time idle. Finally, the OAW concept is attractive because of its overall theoretical performance. In order to fully understand the concept, a wind-tunnel model was built and is currently being tested at NASA Ames Research Center. The CFD calculations performed under this cooperative agreement helped to identify the problem of the flow separation, and also aided the design by optimizing the wing deflection for roll trim.
Yan, Shuang-Tong; Xiao, Hai-Ying; Tian, Hui; Li, Chun-Lin; Fang, Fu-Sheng; Li, Xiao-Ying; Cheng, Xiao-Ling; Li, Nan; Miao, Xin-Yu; Yang, Yan; Wang, Liang-Chen; Zou, Xiao-Man; Ma, Fang-Ling; He, Yao; Sai, Xiao-Yong
2015-08-01
The aims were to compare the appropriate cutoffs of glycated hemoglobin (HbA1c) in a population of varying ages and to evaluate the performance of HbA1c for diagnosing diabetes and prediabetes. A total of 1064 participants in the young and middle-aged group and 1671 in the elderly group were included and underwent HbA1c testing and an oral glucose tolerance test (OGTT). Sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were calculated to evaluate the optimal HbA1c cutoffs. Kappa coefficients were used to test for agreement between HbA1c categorization and OGTT-based diagnoses. The optimal HbA1c cutoffs for diagnosing diabetes were 5.7% (39 mmol/mol) in the young and middle-aged group with a sensitivity of 66.7%, specificity of 86.7%, and AUC of 0.821 (95% CI: 0.686, 0.955) and 5.9% (41 mmol/mol) in the elderly group with a sensitivity of 80.4%, specificity of 73.3%, and AUC of 0.831 (0.801, 0.861). The optimal cutoffs for diagnosing prediabetes were 5.6% (38 mmol/mol) and 5.7% (39 mmol/mol) in the young and middle-aged group and in the elderly group, respectively. Agreement between the OGTT-based diagnosis of diabetes or prediabetes and the optimal HbA1c cutoff was low (all kappa coefficients <0.4). The combination of HbA1c and fasting plasma glucose increased diagnostic sensitivities or specificities. In conclusion, age-specific HbA1c cutoffs for diagnosing diabetes or prediabetes were appropriate. Furthermore, the performance of HbA1c for diagnosing diabetes and prediabetes was poor. HbA1c should be used in combination with traditional glucose criteria when detecting and diagnosing diabetes or prediabetes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Improvement of the GERDA Ge Detectors Energy Resolution by an Optimized Digital Signal Processing
NASA Astrophysics Data System (ADS)
Benato, G.; D'Andrea, V.; Cattadori, C.; Riboldi, S.
GERDA is a new generation experiment searching for neutrinoless double beta decay of 76Ge, operating at INFN Gran Sasso Laboratories (LNGS) since 2010. Coaxial and Broad Energy Germanium (BEGe) Detectors have been operated in liquid argon (LAr) in GERDA Phase I. In the framework of the second GERDA experimental phase, both the contacting technique, the connection to and the location of the front end readout devices are novel compared to those previously adopted, and several tests have been performed. In this work, starting from considerations on the energy scale stability of the GERDA Phase I calibrations and physics data sets, an optimized pulse filtering method has been developed and applied to the Phase II pilot tests data sets, and to few GERDA Phase I data sets. In this contribution the detector performances in term of energy resolution and time stability are here presented. The improvement of the energy resolution, compared to standard Gaussian shaping adopted for Phase I data analysis, is discussed and related to the optimized noise filtering capability. The result is an energy resolution better than 0.1% at 2.6 MeV for the BEGe detectors operated in the Phase II pilot tests and an improvement of the energy resolution in LAr of about 8% achieved on the GERDA Phase I calibration runs, compared to previous analysis algorithms.
NASA Astrophysics Data System (ADS)
Strunz, Richard; Herrmann, Jeffrey W.
2011-12-01
The hot fire test strategy for liquid rocket engines has always been a concern of space industry and agency alike because no recognized standard exists. Previous hot fire test plans focused on the verification of performance requirements but did not explicitly include reliability as a dimensioning variable. The stakeholders are, however, concerned about a hot fire test strategy that balances reliability, schedule, and affordability. A multiple criteria test planning model is presented that provides a framework to optimize the hot fire test strategy with respect to stakeholder concerns. The Staged Combustion Rocket Engine Demonstrator, a program of the European Space Agency, is used as example to provide the quantitative answer to the claim that a reduced thrust scale demonstrator is cost beneficial for a subsequent flight engine development. Scalability aspects of major subsystems are considered in the prior information definition inside the Bayesian framework. The model is also applied to assess the impact of an increase of the demonstrated reliability level on schedule and affordability.
Utilization of Renewable Energy to Meet New National Challenges in Energy and Climate Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momoh, James A.
The project aims to design a microgrid system to promote utilization of renewable energy resources such as wind and solar to address the national challenges in energy and climate change. Different optimization techniques and simulation software are used to study the performance of the renewable energy system under study. A series of research works performed under the grant Department of Energy (DOE) is presented. This grant opportunity affords Howard faculty, students, graduates, undergraduates, K-12, postdocs and visiting scholars to benefit state of the art research work. The research work has led to improve or advance understanding of new hardware technologies,more » software development and engineering optimization methods necessary and sufficient for handling probabilistic models and real-time computation and functions necessary for development of microgrid system. Consistent with State of Project Objective Howard University has partitioned the task into the following integrated activities: 1. Stochastic Model for RER and Load • Development of modeling Renewable Energy Resources (RER) and load which is used to perform distribution power flow study which leads to publication in refereed journals and conferences. The work was also published at the IEEE conference. 2. Stochastic optimization for voltage/Var • The development of voltage VAr optimization based on a review of existing knowledge in optimization led to the use of stochastic program and evolution of programming optimization method for V/VAr optimization. Papers were presented at the North America Power Systems Conference and the IEEE PES general meeting. 3. Modeling RER and Storage • Extending the concept of optimization method an RER with storage, such as the development of microgrid V/VAr and storage is performed. Several papers were published at the North America Power Systems Conference and the IEEE PES general meeting. 4. Power Game • Development of power game experiment using Labvolt to allow for hands on understanding of design and development of microgrid functions is performed. Publication were done by students at the end of their summer program. 5. Designing Microgrid Testbed • Example microgrid test bed is developed. In addition, function of the test bed are developed. The papers were presented at the North America Power Systems Conference and the IEEE general meeting. 6. Outreach Program • From the outreach program, topics from the project have been included in the revision of courses at Howard University, new book called Energy Processing and Smartgrid has being developed. • Hosted masters students from University of Denver to complete their projects with us. • Hosted high school students for early exposure for careers in STEM • Representations made in IEEE conferences to share the lessons learned in the use of micro grid to expose students to STEM education and research.« less
Development of a plasma sprayed ceramic gas path seal for high pressure turbine applications
NASA Technical Reports Server (NTRS)
Shiembob, L. T.
1977-01-01
The plasma sprayed graded layered yittria stabilized zirconia (ZrO2)/metal(CoCrAlY) seal system for gas turbine blade tip applications up to 1589 K (2400 F) seal temperatures was studied. Abradability, erosion, and thermal fatigue characteristics of the graded layered system were evaluated by rig tests. Satisfactory abradability and erosion resistance was demonstrated. Encouraging thermal fatigue tolerance was shown. Initial properties for the plasma sprayed materials in the graded, layered seal system was obtained, and thermal stress analyses were performed. Sprayed residual stresses were determined. Thermal stability of the sprayed layer materials was evaluated at estimated maximum operating temperatures in each layer. Anisotropic behavior in the layer thickness direction was demonstrated by all layers. Residual stresses and thermal stability effects were not included in the analyses. Analytical results correlated reasonably well with results of the thermal fatigue tests. Analytical application of the seal system to a typical gas turbine engine application predicted performance similar to rig specimen thermal fatigue performance. A model for predicting crack propagation in the sprayed ZrO2/CoCrAlY seal system was proposed, and recommendations for improving thermal fatigue resistance were made. Seal system layer thicknesses were analytically optimized to minimize thermal stresses in the abradability specimen during thermal fatigue testing. Rig tests on the optimized seal configuration demonstrated some improvement in thermal fatigue characteristics.
Cravotta, Charles A.; Ward, S.J.; Koury, Daniel J.; Koch, R.D.
2004-01-01
Limestone drains were constructed in 1995, 1997, and 2000 to treat acidic mine drainage (AMD) from the Orchard, Buck Mtn., and Hegins discharges, respectively, in the Swatara Creek Basin, Southern Anthracite Coalfield, east-central Pennsylvania. This report summarizes the construction characteristics and performance of each of the limestone drains on the basis of influent and effluent quality and laboratory tests of variables affecting limestone dissolution rates. Data for influent and effluent indicate substantial alkalinity production by the Orchard and Buck Mtn. limestone drains and only marginal benefits from the Hegins drain. Nevertheless, the annual alkalinity loading rates have progressively declined with age of all three systems. Collapsible-container (cubitainer) testing was conducted to evaluate current scenarios and possible options for reconstruction and maintenance of the limestone drains to optimize their long-term performance. The cubitainer tests indicated dissolution rates for the current configurations that were in agreement with field flux data (net loading) for alkalinity and dissolved calcium. The dissolution rates in cubitainers were larger for closed conditions than open conditions, but the rates were comparable for coated and uncoated limestone for a given condition. Models developed on the basis of the cubitainer testing indicate (1) exponential declines in limestone mass and corresponding alkalinity loading rates with increased age of limestone drains and (2) potential for improved performance with enlargement, complete burial, and/or regular flushing of the systems.
Salcedo-Sanz, S; Del Ser, J; Landa-Torres, I; Gil-López, S; Portilla-Figueras, J A
2014-01-01
This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems.
Accelerating IMRT optimization by voxel sampling
NASA Astrophysics Data System (ADS)
Martin, Benjamin C.; Bortfeld, Thomas R.; Castañon, David A.
2007-12-01
This paper presents a new method for accelerating intensity-modulated radiation therapy (IMRT) optimization using voxel sampling. Rather than calculating the dose to the entire patient at each step in the optimization, the dose is only calculated for some randomly selected voxels. Those voxels are then used to calculate estimates of the objective and gradient which are used in a randomized version of a steepest descent algorithm. By selecting different voxels on each step, we are able to find an optimal solution to the full problem. We also present an algorithm to automatically choose the best sampling rate for each structure within the patient during the optimization. Seeking further improvements, we experimented with several other gradient-based optimization algorithms and found that the delta-bar-delta algorithm performs well despite the randomness. Overall, we were able to achieve approximately an order of magnitude speedup on our test case as compared to steepest descent.
Reconfiguration of Smart Distribution Network in the Presence of Renewable DG’s Using GWO Algorithm
NASA Astrophysics Data System (ADS)
Siavash, M.; Pfeifer, C.; Rahiminejad, A.; Vahidi, B.
2017-08-01
In this paper, the optimal reconfiguration of smart distribution system is performed with the aim of active power loss reduction and voltage stability improvement. The distribution network is considered equipped with wind turbines and solar cells as Renewable DG’s (RDG’s). Because of the presence of smart metering devices, the network state is known accurately at any moment. Based on the network conditions (the amount of load and generation of RDG’s), the optimal configuration of the network is obtained. The optimization problem is solved using a recently introduced method known as Grey Wolf Optimizer (GWO). The proposed approach is applied on 69-bus radial test system and the results of the GWO are compared to those of Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). The results show the effectiveness of the proposed approach and the selected optimization method.
Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J. A.
2014-01-01
This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems. PMID:25147860
Research on damping properties optimization of variable-stiffness plate
NASA Astrophysics Data System (ADS)
Wen-kai, QI; Xian-tao, YIN; Cheng, SHEN
2016-09-01
This paper investigates damping optimization design of variable-stiffness composite laminated plate, which means fibre paths can be continuously curved and fibre angles are distinct for different regions. First, damping prediction model is developed based on modal dissipative energy principle and verified by comparing with modal testing results. Then, instead of fibre angles, the element stiffness and damping matrixes are translated to be design variables on the basis of novel Discrete Material Optimization (DMO) formulation, thus reducing the computation time greatly. Finally, the modal damping capacity of arbitrary order is optimized using MMA (Method of Moving Asymptotes) method. Meanwhile, mode tracking technique is employed to investigate the variation of modal shape. The convergent performance of interpolation function, first order specific damping capacity (SDC) optimization results and variation of modal shape in different penalty factor are discussed. The results show that the damping properties of the variable-stiffness plate can be increased by 50%-70% after optimization.
The optimization of concrete mixtures for use in highway applications
NASA Astrophysics Data System (ADS)
Moini, Mohamadreza
Portland cement concrete is most used commodity in the world after water. Major part of civil and transportation infrastructure including bridges, roadway pavements, dams, and buildings is made of concrete. In addition to this, concrete durability is often of major concerns. In 2013 American Society of Civil Engineers (ASCE) estimated that an annual investment of 170 billion on roads and 20.5 billion for bridges is needed on an annual basis to substantially improve the condition of infrastructure. Same article reports that one-third of America's major roads are in poor or mediocre condition [1]. However, portland cement production is recognized with approximately one cubic meter of carbon dioxide emission. Indeed, the proper and systematic design of concrete mixtures for highway applications is essential as concrete pavements represent up to 60% of interstate highway systems with heavier traffic loads. Combined principles of material science and engineering can provide adequate methods and tools to facilitate the concrete design and improve the existing specifications. In the same manner, the durability must be addressed in the design and enhancement of long-term performance. Concrete used for highway pavement applications has low cement content and can be placed at low slump. However, further reduction of cement content (e.g., versus current specifications of Wisconsin Department of Transportation to 315-338 kg/m 3 (530-570 lb/yd3) for mainstream concrete pavements and 335 kg/m3 (565 lb/yd3) for bridge substructure and superstructures) requires delicate design of the mixture to maintain the expected workability, overall performance, and long-term durability in the field. The design includes, but not limited to optimization of aggregates, supplementary cementitious materials (SCMs), chemical and air-entraining admixtures. This research investigated various theoretical and experimental methods of aggregate optimization applicable for the reduction of cement content. Conducted research enabled further reduction of cement contents to 250 kg/m3 (420 lb/yd3) as required for the design of sustainable concrete pavements. This research demonstrated that aggregate packing can be used in multiple ways as a tool to optimize the aggregates assemblies and achieve the optimal particle size distribution of aggregate blends. The SCMs, and air-entraining admixtures were selected to comply with existing WisDOT performance requirements and chemical admixtures were selected using the separate optimization study excluded from this thesis. The performance of different concrete mixtures was evaluated for fresh properties, strength development, and compressive and flexural strength ranging from 1 to 360 days. The methods and tools discussed in this research are applicable, but not limited to concrete pavement applications. The current concrete proportioning standards such as ACI 211 or current WisDOT roadway standard specifications (Part 5: Structures, Section 501: Concrete) for concrete have limited or no recommendations, methods or guidelines on aggregate optimization, the use of ternary aggregate blends (e.g., such as those used in asphalt industry), the optimization of SCMs (e.g., class F and C fly ash, slag, metakaolin, silica fume), modern superplasticizers (such as polycarboxylate ether, PCE) and air-entraining admixtures. This research has demonstrated that the optimization of concrete mixture proportions can be achieved by the use and proper selection of optimal aggregate blends and result in 12% to 35% reduction of cement content and also more than 50% enhancement of performance. To prove the proposed concrete proportioning method the following steps were performed: • The experimental aggregate packing was investigated using northern and southern source of aggregates from Wisconsin; • The theoretical aggregate packing models were utilized and results were compared with experiments; • Multiple aggregate optimization methods (e.g., optimal grading, coarseness chart) were studied and compared to aggregate packing results and performance of experimented concrete mixtures; • Optimal aggregate blends were selected and used for concrete mixtures; • The optimal dosage of admixtures were selected for three types of plasticizing and superplasticizing admixtures based on a separately conducted study; • The SCM dosages were selected based on current WisDOT specifications; • The optimal air-entraining admixture dosage was investigated based on performance of preliminary concrete mixtures; • Finally, optimal concrete mixtures were tested for fresh properties, compressive strength development, modulus of rupture, at early ages (1day) and ultimate ages (360 days). • Durability performance indicators for optimal concrete mixtures were also tested for resistance of concrete to rapid chloride permeability (RCP) at 30 days and 90 days and resistance to rapid freezing and thawing at 56 days.
NASA Astrophysics Data System (ADS)
Escartin, Terenz R.; Nano, Tomi F.; Cunningham, Ian A.
2016-03-01
The detective quantum efficiency (DQE), expressed as a function of spatial frequency, describes the ability of an x-ray detector to produce high signal-to-noise ratio (SNR) images. While regulatory and scientific communities have used the DQE as a primary metric for optimizing detector design, the DQE is rarely used by end users to ensure high system performance is maintained. Of concern is that image quality varies across different systems for the same exposures with no current measures available to describe system performance. Therefore, here we conducted an initial DQE measurement survey of clinical x-ray systems using a DQE-testing instrument to identify their range of performance. Following laboratory validation, experiments revealed that the DQE of five different systems under the same exposure level (8.0 μGy) ranged from 0.36 to 0.75 at low spatial frequencies, and 0.02 to 0.4 at high spatial frequencies (3.5 cycles/mm). Furthermore, the DQE dropped substantially with decreasing detector exposure by a factor of up to 1.5x in the lowest spatial frequency, and a factor of 10x at 3.5 cycles/mm due to the effect of detector readout noise. It is concluded that DQE specifications in purchasing decisions, combined with periodic DQE testing, are important factors to ensure patients receive the health benefits of high-quality images for low x-ray exposures.
Rizzetti, Tiele M; de Souza, Maiara P; Prestes, Osmar D; Adaime, Martha B; Zanella, Renato
2018-04-25
In this study a simple and fast multi-class method for the determination of veterinary drugs in bovine liver, kidney and muscle was developed. The method employed acetonitrile for extraction followed by clean-up with EMR-Lipid® sorbent and trichloracetic acid. Tests indicated that the use of TCA was most effective when added in the final step of the clean-up procedure instead of during extraction. Different sorbents were tested and optimized using central composite design and the analytes determined by ultra-high-performance liquid chromatographic-tandem mass spectrometry (UHPLC-MS/MS). The method was validated according the European Commission Decision 2002/657 presenting satisfactory results for 69 veterinary drugs in bovine liver and 68 compounds in bovine muscle and kidney. The method was applied in real samples and in proficiency tests and proved to be adequate for routine analysis. Residues of abamectin, doramectin, eprinomectin and ivermectin were found in samples of bovine muscle and only ivermectin in bovine liver. Copyright © 2017 Elsevier Ltd. All rights reserved.
2D and 3D Traveling Salesman Problem
ERIC Educational Resources Information Center
Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt
2011-01-01
When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…