A System-Oriented Approach for the Optimal Control of Process Chains under Stochastic Influences
NASA Astrophysics Data System (ADS)
Senn, Melanie; Schäfer, Julian; Pollak, Jürgen; Link, Norbert
2011-09-01
Process chains in manufacturing consist of multiple connected processes in terms of dynamic systems. The properties of a product passing through such a process chain are influenced by the transformation of each single process. There exist various methods for the control of individual processes, such as classical state controllers from cybernetics or function mapping approaches realized by statistical learning. These controllers ensure that a desired state is obtained at process end despite of variations in the input and disturbances. The interactions between the single processes are thereby neglected, but play an important role in the optimization of the entire process chain. We divide the overall optimization into two phases: (1) the solution of the optimization problem by Dynamic Programming to find the optimal control variable values for each process for any encountered end state of its predecessor and (2) the application of the optimal control variables at runtime for the detected initial process state. The optimization problem is solved by selecting adequate control variables for each process in the chain backwards based on predefined quality requirements for the final product. For the demonstration of the proposed concept, we have chosen a process chain from sheet metal manufacturing with simplified transformation functions.
Economic-Oriented Stochastic Optimization in Advanced Process Control of Chemical Processes
Dobos, László; Király, András; Abonyi, János
2012-01-01
Finding the optimal operating region of chemical processes is an inevitable step toward improving economic performance. Usually the optimal operating region is situated close to process constraints related to product quality or process safety requirements. Higher profit can be realized only by assuring a relatively low frequency of violation of these constraints. A multilevel stochastic optimization framework is proposed to determine the optimal setpoint values of control loops with respect to predetermined risk levels, uncertainties, and costs of violation of process constraints. The proposed framework is realized as direct search-type optimization of Monte-Carlo simulation of the controlled process. The concept is illustrated throughout by a well-known benchmark problem related to the control of a linear dynamical system and the model predictive control of a more complex nonlinear polymerization process. PMID:23213298
Tchamna, Rodrigue; Lee, Moonyong
2018-01-01
This paper proposes a novel optimization-based approach for the design of an industrial two-term proportional-integral (PI) controller for the optimal regulatory control of unstable processes subjected to three common operational constraints related to the process variable, manipulated variable and its rate of change. To derive analytical design relations, the constrained optimal control problem in the time domain was transformed into an unconstrained optimization problem in a new parameter space via an effective parameterization. The resulting optimal PI controller has been verified to yield optimal performance and stability of an open-loop unstable first-order process under operational constraints. The proposed analytical design method explicitly takes into account the operational constraints in the controller design stage and also provides useful insights into the optimal controller design. Practical procedures for designing optimal PI parameters and a feasible constraint set exclusive of complex optimization steps are also proposed. The proposed controller was compared with several other PI controllers to illustrate its performance. The robustness of the proposed controller against plant-model mismatch has also been investigated. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Quantum optimal control with automatic differentiation using graphics processors
NASA Astrophysics Data System (ADS)
Leung, Nelson; Abdelhafez, Mohamed; Chakram, Srivatsan; Naik, Ravi; Groszkowski, Peter; Koch, Jens; Schuster, David
We implement quantum optimal control based on automatic differentiation and harness the acceleration afforded by graphics processing units (GPUs). Automatic differentiation allows us to specify advanced optimization criteria and incorporate them into the optimization process with ease. We will describe efficient techniques to optimally control weakly anharmonic systems that are commonly encountered in circuit QED, including coupled superconducting transmon qubits and multi-cavity circuit QED systems. These systems allow for a rich variety of control schemes that quantum optimal control is well suited to explore.
Optimization Control of the Color-Coating Production Process for Model Uncertainty
He, Dakuo; Wang, Zhengsong; Yang, Le; Mao, Zhizhong
2016-01-01
Optimized control of the color-coating production process (CCPP) aims at reducing production costs and improving economic efficiency while meeting quality requirements. However, because optimization control of the CCPP is hampered by model uncertainty, a strategy that considers model uncertainty is proposed. Previous work has introduced a mechanistic model of CCPP based on process analysis to simulate the actual production process and generate process data. The partial least squares method is then applied to develop predictive models of film thickness and economic efficiency. To manage the model uncertainty, the robust optimization approach is introduced to improve the feasibility of the optimized solution. Iterative learning control is then utilized to further refine the model uncertainty. The constrained film thickness is transformed into one of the tracked targets to overcome the drawback that traditional iterative learning control cannot address constraints. The goal setting of economic efficiency is updated continuously according to the film thickness setting until this reaches its desired value. Finally, fuzzy parameter adjustment is adopted to ensure that the economic efficiency and film thickness converge rapidly to their optimized values under the constraint conditions. The effectiveness of the proposed optimization control strategy is validated by simulation results. PMID:27247563
Optimization Control of the Color-Coating Production Process for Model Uncertainty.
He, Dakuo; Wang, Zhengsong; Yang, Le; Mao, Zhizhong
2016-01-01
Optimized control of the color-coating production process (CCPP) aims at reducing production costs and improving economic efficiency while meeting quality requirements. However, because optimization control of the CCPP is hampered by model uncertainty, a strategy that considers model uncertainty is proposed. Previous work has introduced a mechanistic model of CCPP based on process analysis to simulate the actual production process and generate process data. The partial least squares method is then applied to develop predictive models of film thickness and economic efficiency. To manage the model uncertainty, the robust optimization approach is introduced to improve the feasibility of the optimized solution. Iterative learning control is then utilized to further refine the model uncertainty. The constrained film thickness is transformed into one of the tracked targets to overcome the drawback that traditional iterative learning control cannot address constraints. The goal setting of economic efficiency is updated continuously according to the film thickness setting until this reaches its desired value. Finally, fuzzy parameter adjustment is adopted to ensure that the economic efficiency and film thickness converge rapidly to their optimized values under the constraint conditions. The effectiveness of the proposed optimization control strategy is validated by simulation results.
NASA Astrophysics Data System (ADS)
Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.
1991-03-01
To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).
Optimal regulation in systems with stochastic time sampling
NASA Technical Reports Server (NTRS)
Montgomery, R. C.; Lee, P. S.
1980-01-01
An optimal control theory that accounts for stochastic variable time sampling in a distributed microprocessor based flight control system is presented. The theory is developed by using a linear process model for the airplane dynamics and the information distribution process is modeled as a variable time increment process where, at the time that information is supplied to the control effectors, the control effectors know the time of the next information update only in a stochastic sense. An optimal control problem is formulated and solved for the control law that minimizes the expected value of a quadratic cost function. The optimal cost obtained with a variable time increment Markov information update process where the control effectors know only the past information update intervals and the Markov transition mechanism is almost identical to that obtained with a known and uniform information update interval.
A Taguchi approach on optimal process control parameters for HDPE pipe extrusion process
NASA Astrophysics Data System (ADS)
Sharma, G. V. S. S.; Rao, R. Umamaheswara; Rao, P. Srinivasa
2017-06-01
High-density polyethylene (HDPE) pipes find versatile applicability for transportation of water, sewage and slurry from one place to another. Hence, these pipes undergo tremendous pressure by the fluid carried. The present work entails the optimization of the withstanding pressure of the HDPE pipes using Taguchi technique. The traditional heuristic methodology stresses on a trial and error approach and relies heavily upon the accumulated experience of the process engineers for determining the optimal process control parameters. This results in setting up of less-than-optimal values. Hence, there arouse a necessity to determine optimal process control parameters for the pipe extrusion process, which can ensure robust pipe quality and process reliability. In the proposed optimization strategy, the design of experiments (DoE) are conducted wherein different control parameter combinations are analyzed by considering multiple setting levels of each control parameter. The concept of signal-to-noise ratio ( S/ N ratio) is applied and ultimately optimum values of process control parameters are obtained as: pushing zone temperature of 166 °C, Dimmer speed at 08 rpm, and Die head temperature to be 192 °C. Confirmation experimental run is also conducted to verify the analysis and research result and values proved to be in synchronization with the main experimental findings and the withstanding pressure showed a significant improvement from 0.60 to 1.004 Mpa.
Liu, Ping; Li, Guodong; Liu, Xinggao
2015-09-01
Control vector parameterization (CVP) is an important approach of the engineering optimization for the industrial dynamic processes. However, its major defect, the low optimization efficiency caused by calculating the relevant differential equations in the generated nonlinear programming (NLP) problem repeatedly, limits its wide application in the engineering optimization for the industrial dynamic processes. A novel highly effective control parameterization approach, fast-CVP, is first proposed to improve the optimization efficiency for industrial dynamic processes, where the costate gradient formulae is employed and a fast approximate scheme is presented to solve the differential equations in dynamic process simulation. Three well-known engineering optimization benchmark problems of the industrial dynamic processes are demonstrated as illustration. The research results show that the proposed fast approach achieves a fine performance that at least 90% of the computation time can be saved in contrast to the traditional CVP method, which reveals the effectiveness of the proposed fast engineering optimization approach for the industrial dynamic processes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Yan, Bin-Jun; Guo, Zheng-Tai; Qu, Hai-Bin; Zhao, Bu-Chang; Zhao, Tao
2013-06-01
In this work, a feedforward control strategy basing on the concept of quality by design was established for the manufacturing process of traditional Chinese medicine to reduce the impact of the quality variation of raw materials on drug. In the research, the ethanol precipitation process of Danhong injection was taken as an application case of the method established. Box-Behnken design of experiments was conducted. Mathematical models relating the attributes of the concentrate, the process parameters and the quality of the supernatants produced were established. Then an optimization model for calculating the best process parameters basing on the attributes of the concentrate was built. The quality of the supernatants produced by ethanol precipitation with optimized and non-optimized process parameters were compared. The results showed that using the feedforward control strategy for process parameters optimization can control the quality of the supernatants effectively. The feedforward control strategy proposed can enhance the batch-to-batch consistency of the supernatants produced by ethanol precipitation.
Andrés-Toro, B; Girón-Sierra, J M; Fernández-Blanco, P; López-Orozco, J A; Besada-Portas, E
2004-04-01
This paper describes empirical research on the model, optimization and supervisory control of beer fermentation. Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathematical models that consider realistic industrial conditions were not available, a new mathematical model design involving industrial conditions was first developed. Batch fermentations are multiobjective dynamic processes that must be guided along optimal paths to obtain good results. The paper describes a direct way to apply a Pareto set approach with multiobjective evolutionary algorithms (MOEAs). Successful finding of optimal ways to drive these processes were reported. Once obtained, the mathematical fermentation model was used to optimize the fermentation process by using an intelligent control based on certain rules.
Integrated controls design optimization
Lou, Xinsheng; Neuschaefer, Carl H.
2015-09-01
A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.
Instrumentation for optimizing an underground coal-gasification process
NASA Astrophysics Data System (ADS)
Seabaugh, W.; Zielinski, R. E.
1982-06-01
While the United States has a coal resource base of 6.4 trillion tons, only seven percent is presently recoverable by mining. The process of in-situ gasification can recover another twenty-eight percent of the vast resource, however, viable technology must be developed for effective in-situ recovery. The key to this technology is system that can optimize and control the process in real-time. An instrumentation system is described that optimizes the composition of the injection gas, controls the in-situ process and conditions the product gas for maximum utilization. The key elements of this system are Monsanto PRISM Systems, a real-time analytical system, and a real-time data acquisition and control system. This system provides from complete automation of the process but can easily be overridden by manual control. The use of this cost effective system can provide process optimization and is an effective element in developing a viable in-situ technology.
Aircraft adaptive learning control
NASA Technical Reports Server (NTRS)
Lee, P. S. T.; Vanlandingham, H. F.
1979-01-01
The optimal control theory of stochastic linear systems is discussed in terms of the advantages of distributed-control systems, and the control of randomly-sampled systems. An optimal solution to longitudinal control is derived and applied to the F-8 DFBW aircraft. A randomly-sampled linear process model with additive process and noise is developed.
Taguchi Method Applied in Optimization of Shipley SJR 5740 Positive Resist Deposition
NASA Technical Reports Server (NTRS)
Hui, A.; Blosiu, J. O.; Wiberg, D. V.
1998-01-01
Taguchi Methods of Robust Design presents a way to optimize output process performance through an organized set of experiments by using orthogonal arrays. Analysis of variance and signal-to-noise ratio is used to evaluate the contribution of each of the process controllable parameters in the realization of the process optimization. In the photoresist deposition process, there are numerous controllable parameters that can affect the surface quality and thickness of the final photoresist layer.
Tuning of PID controller using optimization techniques for a MIMO process
NASA Astrophysics Data System (ADS)
Thulasi dharan, S.; Kavyarasan, K.; Bagyaveereswaran, V.
2017-11-01
In this paper, two processes were considered one is Quadruple tank process and the other is CSTR (Continuous Stirred Tank Reactor) process. These are majorly used in many industrial applications for various domains, especially, CSTR in chemical plants.At first mathematical model of both the process is to be done followed by linearization of the system due to MIMO process and controllers are the major part to control the whole process to our desired point as per the applications so the tuning of the controller plays a major role among the whole process. For tuning of parameters we use two optimizations techniques like Particle Swarm Optimization, Genetic Algorithm. The above techniques are majorly used in different applications to obtain which gives the best among all, we use these techniques to obtain the best tuned values among many. Finally, we will compare the performance of the each process with both the techniques.
Chopped random-basis quantum optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caneva, Tommaso; Calarco, Tommaso; Montangero, Simone
2011-08-15
In this work, we describe in detail the chopped random basis (CRAB) optimal control technique recently introduced to optimize time-dependent density matrix renormalization group simulations [P. Doria, T. Calarco, and S. Montangero, Phys. Rev. Lett. 106, 190501 (2011)]. Here, we study the efficiency of this control technique in optimizing different quantum processes and we show that in the considered cases we obtain results equivalent to those obtained via different optimal control methods while using less resources. We propose the CRAB optimization as a general and versatile optimal control technique.
NASA Astrophysics Data System (ADS)
Leung, Nelson; Abdelhafez, Mohamed; Koch, Jens; Schuster, David
2017-04-01
We implement a quantum optimal control algorithm based on automatic differentiation and harness the acceleration afforded by graphics processing units (GPUs). Automatic differentiation allows us to specify advanced optimization criteria and incorporate them in the optimization process with ease. We show that the use of GPUs can speedup calculations by more than an order of magnitude. Our strategy facilitates efficient numerical simulations on affordable desktop computers and exploration of a host of optimization constraints and system parameters relevant to real-life experiments. We demonstrate optimization of quantum evolution based on fine-grained evaluation of performance at each intermediate time step, thus enabling more intricate control on the evolution path, suppression of departures from the truncated model subspace, as well as minimization of the physical time needed to perform high-fidelity state preparation and unitary gates.
A Data-Driven Solution for Performance Improvement
NASA Technical Reports Server (NTRS)
2002-01-01
Marketed as the "Software of the Future," Optimal Engineering Systems P.I. EXPERT(TM) technology offers statistical process control and optimization techniques that are critical to businesses looking to restructure or accelerate operations in order to gain a competitive edge. Kennedy Space Center granted Optimal Engineering Systems the funding and aid necessary to develop a prototype of the process monitoring and improvement software. Completion of this prototype demonstrated that it was possible to integrate traditional statistical quality assurance tools with robust optimization techniques in a user- friendly format that is visually compelling. Using an expert system knowledge base, the software allows the user to determine objectives, capture constraints and out-of-control processes, predict results, and compute optimal process settings.
Das, Saptarshi; Pan, Indranil; Das, Shantanu
2015-09-01
An optimal trade-off design for fractional order (FO)-PID controller is proposed with a Linear Quadratic Regulator (LQR) based technique using two conflicting time domain objectives. A class of delayed FO systems with single non-integer order element, exhibiting both sluggish and oscillatory open loop responses, have been controlled here. The FO time delay processes are handled within a multi-objective optimization (MOO) formalism of LQR based FOPID design. A comparison is made between two contemporary approaches of stabilizing time-delay systems withinLQR. The MOO control design methodology yields the Pareto optimal trade-off solutions between the tracking performance and total variation (TV) of the control signal. Tuning rules are formed for the optimal LQR-FOPID controller parameters, using median of the non-dominated Pareto solutions to handle delayed FO processes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Optimal Control of Micro Grid Operation Mode Seamless Switching Based on Radau Allocation Method
NASA Astrophysics Data System (ADS)
Chen, Xiaomin; Wang, Gang
2017-05-01
The seamless switching process of micro grid operation mode directly affects the safety and stability of its operation. According to the switching process from island mode to grid-connected mode of micro grid, we establish a dynamic optimization model based on two grid-connected inverters. We use Radau allocation method to discretize the model, and use Newton iteration method to obtain the optimal solution. Finally, we implement the optimization mode in MATLAB and get the optimal control trajectory of the inverters.
Adaptive hybrid optimal quantum control for imprecisely characterized systems.
Egger, D J; Wilhelm, F K
2014-06-20
Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful.
Hierarchical optimal control of large-scale nonlinear chemical processes.
Ramezani, Mohammad Hossein; Sadati, Nasser
2009-01-01
In this paper, a new approach is presented for optimal control of large-scale chemical processes. In this approach, the chemical process is decomposed into smaller sub-systems at the first level, and a coordinator at the second level, for which a two-level hierarchical control strategy is designed. For this purpose, each sub-system in the first level can be solved separately, by using any conventional optimization algorithm. In the second level, the solutions obtained from the first level are coordinated using a new gradient-type strategy, which is updated by the error of the coordination vector. The proposed algorithm is used to solve the optimal control problem of a complex nonlinear chemical stirred tank reactor (CSTR), where its solution is also compared with the ones obtained using the centralized approach. The simulation results show the efficiency and the capability of the proposed hierarchical approach, in finding the optimal solution, over the centralized method.
A multiple objective optimization approach to quality control
NASA Technical Reports Server (NTRS)
Seaman, Christopher Michael
1991-01-01
The use of product quality as the performance criteria for manufacturing system control is explored. The goal in manufacturing, for economic reasons, is to optimize product quality. The problem is that since quality is a rather nebulous product characteristic, there is seldom an analytic function that can be used as a measure. Therefore standard control approaches, such as optimal control, cannot readily be applied. A second problem with optimizing product quality is that it is typically measured along many dimensions: there are many apsects of quality which must be optimized simultaneously. Very often these different aspects are incommensurate and competing. The concept of optimality must now include accepting tradeoffs among the different quality characteristics. These problems are addressed using multiple objective optimization. It is shown that the quality control problem can be defined as a multiple objective optimization problem. A controller structure is defined using this as the basis. Then, an algorithm is presented which can be used by an operator to interactively find the best operating point. Essentially, the algorithm uses process data to provide the operator with two pieces of information: (1) if it is possible to simultaneously improve all quality criteria, then determine what changes to the process input or controller parameters should be made to do this; and (2) if it is not possible to improve all criteria, and the current operating point is not a desirable one, select a criteria in which a tradeoff should be made, and make input changes to improve all other criteria. The process is not operating at an optimal point in any sense if no tradeoff has to be made to move to a new operating point. This algorithm ensures that operating points are optimal in some sense and provides the operator with information about tradeoffs when seeking the best operating point. The multiobjective algorithm was implemented in two different injection molding scenarios: tuning of process controllers to meet specified performance objectives and tuning of process inputs to meet specified quality objectives. Five case studies are presented.
On-Board Real-Time Optimization Control for Turbo-Fan Engine Life Extending
NASA Astrophysics Data System (ADS)
Zheng, Qiangang; Zhang, Haibo; Miao, Lizhen; Sun, Fengyong
2017-11-01
A real-time optimization control method is proposed to extend turbo-fan engine service life. This real-time optimization control is based on an on-board engine mode, which is devised by a MRR-LSSVR (multi-input multi-output recursive reduced least squares support vector regression method). To solve the optimization problem, a FSQP (feasible sequential quadratic programming) algorithm is utilized. The thermal mechanical fatigue is taken into account during the optimization process. Furthermore, to describe the engine life decaying, a thermal mechanical fatigue model of engine acceleration process is established. The optimization objective function not only contains the sub-item which can get fast response of the engine, but also concludes the sub-item of the total mechanical strain range which has positive relationship to engine fatigue life. Finally, the simulations of the conventional optimization control which just consider engine acceleration performance or the proposed optimization method have been conducted. The simulations demonstrate that the time of the two control methods from idle to 99.5 % of the maximum power are equal. However, the engine life using the proposed optimization method could be surprisingly increased by 36.17 % compared with that using conventional optimization control.
Real-Time Optimal Flood Control Decision Making and Risk Propagation Under Multiple Uncertainties
NASA Astrophysics Data System (ADS)
Zhu, Feilin; Zhong, Ping-An; Sun, Yimeng; Yeh, William W.-G.
2017-12-01
Multiple uncertainties exist in the optimal flood control decision-making process, presenting risks involving flood control decisions. This paper defines the main steps in optimal flood control decision making that constitute the Forecast-Optimization-Decision Making (FODM) chain. We propose a framework for supporting optimal flood control decision making under multiple uncertainties and evaluate risk propagation along the FODM chain from a holistic perspective. To deal with uncertainties, we employ stochastic models at each link of the FODM chain. We generate synthetic ensemble flood forecasts via the martingale model of forecast evolution. We then establish a multiobjective stochastic programming with recourse model for optimal flood control operation. The Pareto front under uncertainty is derived via the constraint method coupled with a two-step process. We propose a novel SMAA-TOPSIS model for stochastic multicriteria decision making. Then we propose the risk assessment model, the risk of decision-making errors and rank uncertainty degree to quantify the risk propagation process along the FODM chain. We conduct numerical experiments to investigate the effects of flood forecast uncertainty on optimal flood control decision making and risk propagation. We apply the proposed methodology to a flood control system in the Daduhe River basin in China. The results indicate that the proposed method can provide valuable risk information in each link of the FODM chain and enable risk-informed decisions with higher reliability.
Optimal control of thermally coupled Navier Stokes equations
NASA Technical Reports Server (NTRS)
Ito, Kazufumi; Scroggs, Jeffrey S.; Tran, Hien T.
1994-01-01
The optimal boundary temperature control of the stationary thermally coupled incompressible Navier-Stokes equation is considered. Well-posedness and existence of the optimal control and a necessary optimality condition are obtained. Optimization algorithms based on the augmented Lagrangian method with second order update are discussed. A test example motivated by control of transport process in the high pressure vapor transport (HVPT) reactor is presented to demonstrate the applicability of our theoretical results and proposed algorithm.
The trade-off between morphology and control in the co-optimized design of robots.
Rosendo, Andre; von Atzigen, Marco; Iida, Fumiya
2017-01-01
Conventionally, robot morphologies are developed through simulations and calculations, and different control methods are applied afterwards. Assuming that simulations and predictions are simplified representations of our reality, how sure can roboticists be that the chosen morphology is the most adequate for the possible control choices in the real-world? Here we study the influence of the design parameters in the creation of a robot with a Bayesian morphology-control (MC) co-optimization process. A robot autonomously creates child robots from a set of possible design parameters and uses Bayesian Optimization (BO) to infer the best locomotion behavior from real world experiments. Then, we systematically change from an MC co-optimization to a control-only (C) optimization, which better represents the traditional way that robots are developed, to explore the trade-off between these two methods. We show that although C processes can greatly improve the behavior of poor morphologies, such agents are still outperformed by MC co-optimization results with as few as 25 iterations. Our findings, on one hand, suggest that BO should be used in the design process of robots for both morphological and control parameters to reach optimal performance, and on the other hand, point to the downfall of current design methods in face of new search techniques.
The trade-off between morphology and control in the co-optimized design of robots
Iida, Fumiya
2017-01-01
Conventionally, robot morphologies are developed through simulations and calculations, and different control methods are applied afterwards. Assuming that simulations and predictions are simplified representations of our reality, how sure can roboticists be that the chosen morphology is the most adequate for the possible control choices in the real-world? Here we study the influence of the design parameters in the creation of a robot with a Bayesian morphology-control (MC) co-optimization process. A robot autonomously creates child robots from a set of possible design parameters and uses Bayesian Optimization (BO) to infer the best locomotion behavior from real world experiments. Then, we systematically change from an MC co-optimization to a control-only (C) optimization, which better represents the traditional way that robots are developed, to explore the trade-off between these two methods. We show that although C processes can greatly improve the behavior of poor morphologies, such agents are still outperformed by MC co-optimization results with as few as 25 iterations. Our findings, on one hand, suggest that BO should be used in the design process of robots for both morphological and control parameters to reach optimal performance, and on the other hand, point to the downfall of current design methods in face of new search techniques. PMID:29023482
Precup, Radu-Emil; David, Radu-Codrut; Petriu, Emil M; Radac, Mircea-Bogdan; Preitl, Stefan
2014-11-01
This paper suggests a new generation of optimal PI controllers for a class of servo systems characterized by saturation and dead zone static nonlinearities and second-order models with an integral component. The objective functions are expressed as the integral of time multiplied by absolute error plus the weighted sum of the integrals of output sensitivity functions of the state sensitivity models with respect to two process parametric variations. The PI controller tuning conditions applied to a simplified linear process model involve a single design parameter specific to the extended symmetrical optimum (ESO) method which offers the desired tradeoff to several control system performance indices. An original back-calculation and tracking anti-windup scheme is proposed in order to prevent the integrator wind-up and to compensate for the dead zone nonlinearity of the process. The minimization of the objective functions is carried out in the framework of optimization problems with inequality constraints which guarantee the robust stability with respect to the process parametric variations and the controller robustness. An adaptive gravitational search algorithm (GSA) solves the optimization problems focused on the optimal tuning of the design parameter specific to the ESO method and of the anti-windup tracking gain. A tuning method for PI controllers is proposed as an efficient approach to the design of resilient control systems. The tuning method and the PI controllers are experimentally validated by the adaptive GSA-based tuning of PI controllers for the angular position control of a laboratory servo system.
Discrete-time Markovian-jump linear quadratic optimal control
NASA Technical Reports Server (NTRS)
Chizeck, H. J.; Willsky, A. S.; Castanon, D.
1986-01-01
This paper is concerned with the optimal control of discrete-time linear systems that possess randomly jumping parameters described by finite-state Markov processes. For problems having quadratic costs and perfect observations, the optimal control laws and expected costs-to-go can be precomputed from a set of coupled Riccati-like matrix difference equations. Necessary and sufficient conditions are derived for the existence of optimal constant control laws which stabilize the controlled system as the time horizon becomes infinite, with finite optimal expected cost.
Switching and optimizing control for coal flotation process based on a hybrid model
Dong, Zhiyong; Wang, Ranfeng; Fan, Minqiang; Fu, Xiang
2017-01-01
Flotation is an important part of coal preparation, and the flotation column is widely applied as efficient flotation equipment. This process is complex and affected by many factors, with the froth depth and reagent dosage being two of the most important and frequently manipulated variables. This paper proposes a new method of switching and optimizing control for the coal flotation process. A hybrid model is built and evaluated using industrial data. First, wavelet analysis and principal component analysis (PCA) are applied for signal pre-processing. Second, a control model for optimizing the set point of the froth depth is constructed based on fuzzy control, and a control model is designed to optimize the reagent dosages based on expert system. Finally, the least squares-support vector machine (LS-SVM) is used to identify the operating conditions of the flotation process and to select one of the two models (froth depth or reagent dosage) for subsequent operation according to the condition parameters. The hybrid model is developed and evaluated on an industrial coal flotation column and exhibits satisfactory performance. PMID:29040305
NASA Astrophysics Data System (ADS)
Xing, Xi; Rey-de-Castro, Roberto; Rabitz, Herschel
2014-12-01
Optimally shaped femtosecond laser pulses can often be effectively identified in adaptive feedback quantum control experiments, but elucidating the underlying control mechanism can be a difficult task requiring significant additional analysis. We introduce landscape Hessian analysis (LHA) as a practical experimental tool to aid in elucidating control mechanism insights. This technique is applied to the dissociative ionization of CH2BrI using shaped fs laser pulses for optimization of the absolute yields of ionic fragments as well as their ratios for the competing processes of breaking the C-Br and C-I bonds. The experimental results suggest that these nominally complex problems can be reduced to a low-dimensional control space with insights into the control mechanisms. While the optimal yield for some fragments is dominated by a non-resonant intensity-driven process, the optimal generation of other fragments maa difficult task requiring significant additionaly be explained by a non-resonant process coupled to few level resonant dynamics. Theoretical analysis and modeling is consistent with the experimental observations.
Honing process optimization algorithms
NASA Astrophysics Data System (ADS)
Kadyrov, Ramil R.; Charikov, Pavel N.; Pryanichnikova, Valeria V.
2018-03-01
This article considers the relevance of honing processes for creating high-quality mechanical engineering products. The features of the honing process are revealed and such important concepts as the task for optimization of honing operations, the optimal structure of the honing working cycles, stepped and stepless honing cycles, simulation of processing and its purpose are emphasized. It is noted that the reliability of the mathematical model determines the quality parameters of the honing process control. An algorithm for continuous control of the honing process is proposed. The process model reliably describes the machining of a workpiece in a sufficiently wide area and can be used to operate the CNC machine CC743.
Optimal Synthesis of Compliant Mechanisms using Subdivision and Commercial FEA (DETC2004-57497)
NASA Technical Reports Server (NTRS)
Hull, Patrick V.; Canfield, Stephen
2004-01-01
The field of distributed-compliance mechanisms has seen significant work in developing suitable topology optimization tools for their design. These optimal design tools have grown out of the techniques of structural optimization. This paper will build on the previous work in topology optimization and compliant mechanism design by proposing an alternative design space parameterization through control points and adding another step to the process, that of subdivision. The control points allow a specific design to be represented as a solid model during the optimization process. The process of subdivision creates an additional number of control points that help smooth the surface (for example a C(sup 2) continuous surface depending on the method of subdivision chosen) creating a manufacturable design free of some traditional numerical instabilities. Note that these additional control points do not add to the number of design parameters. This alternative parameterization and description as a solid model effectively and completely separates the design variables from the analysis variables during the optimization procedure. The motivation behind this work is to create an automated design tool from task definition to functional prototype created on a CNC or rapid-prototype machine. This paper will describe the proposed compliant mechanism design process and will demonstrate the procedure on several examples common in the literature.
Control and optimization system
Xinsheng, Lou
2013-02-12
A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Energy Center Structure Optimization by using Smart Technologies in Process Control System
NASA Astrophysics Data System (ADS)
Shilkina, Svetlana V.
2018-03-01
The article deals with practical application of fuzzy logic methods in process control systems. A control object - agroindustrial greenhouse complex, which includes its own energy center - is considered. The paper analyzes object power supply options taking into account connection to external power grids and/or installation of own power generating equipment with various layouts. The main problem of a greenhouse facility basic process is extremely uneven power consumption, which forces to purchase redundant generating equipment idling most of the time, which quite negatively affects project profitability. Energy center structure optimization is largely based on solving the object process control system construction issue. To cut investor’s costs it was proposed to optimize power consumption by building an energy-saving production control system based on a fuzzy logic controller. The developed algorithm of automated process control system functioning ensured more even electric and thermal energy consumption, allowed to propose construction of the object energy center with a smaller number of units due to their more even utilization. As a result, it is shown how practical use of microclimate parameters fuzzy control system during object functioning leads to optimization of agroindustrial complex energy facility structure, which contributes to a significant reduction in object construction and operation costs.
NASA Technical Reports Server (NTRS)
Gern, Frank; Vicroy, Dan D.; Mulani, Sameer B.; Chhabra, Rupanshi; Kapania, Rakesh K.; Schetz, Joseph A.; Brown, Derrell; Princen, Norman H.
2014-01-01
Traditional methods of control allocation optimization have shown difficulties in exploiting the full potential of controlling large arrays of control devices on innovative air vehicles. Artificial neutral networks are inspired by biological nervous systems and neurocomputing has successfully been applied to a variety of complex optimization problems. This project investigates the potential of applying neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) aircraft concepts to minimize control power, hinge moments, and actuator forces, while keeping system weights within acceptable limits. The main objective of this project is to develop a proof-of-concept process suitable to demonstrate the potential of using neurocomputing for optimizing actuation power for aircraft featuring multiple independently actuated control surfaces. A Nastran aeroservoelastic finite element model is used to generate a learning database of hinge moment and actuation power characteristics for an array of flight conditions and control surface deflections. An artificial neural network incorporating a genetic algorithm then uses this training data to perform control allocation optimization for the investigated aircraft configuration. The phase I project showed that optimization results for the sum of required hinge moments are improved by more than 12% over the best Nastran solution by using the neural network optimization process.
Optimal control of nutrition restricted dynamics model of Microalgae biomass growth model
NASA Astrophysics Data System (ADS)
Ratianingsih, R.; Azim; Nacong, N.; Resnawati; Mardlijah; Widodo, B.
2017-12-01
The biomass of the microalgae is very potential to be proposed as an alternative renewable energy resources because it could be extracted into lipid. Afterward, the lipid could be processed to get the biodiesel or bioethanol. The extraction of the biomass on lipid synthesis process is very important to be studied because the process just gives some amount of lipid. A mathematical model of restricted microalgae biomass growth just gives 1/3 proportion of lipid with respect to the biomass in the synthesis process. An optimal control is designed to raise the ratio between the number of lipid formation and the microalgae biomass to be used in synthesis process. The minimum/ Pontryagin maximum principle is used to get the optimal lipid production. The simulation shows that the optimal lipid formation could be reach by simultaneously controlling the carbon dioxide, in the respiration and photosynthesis the process, and intake nutrition rates of liquid waste and urea substrate. The production of controlled microalgae lipid could be increase 6.5 times comparing to the uncontrolled one.
Multi-disciplinary optimization of aeroservoelastic systems
NASA Technical Reports Server (NTRS)
Karpel, Mordechay
1990-01-01
Efficient analytical and computational tools for simultaneous optimal design of the structural and control components of aeroservoelastic systems are presented. The optimization objective is to achieve aircraft performance requirements and sufficient flutter and control stability margins with a minimal weight penalty and without violating the design constraints. Analytical sensitivity derivatives facilitate an efficient optimization process which allows a relatively large number of design variables. Standard finite element and unsteady aerodynamic routines are used to construct a modal data base. Minimum State aerodynamic approximations and dynamic residualization methods are used to construct a high accuracy, low order aeroservoelastic model. Sensitivity derivatives of flutter dynamic pressure, control stability margins and control effectiveness with respect to structural and control design variables are presented. The performance requirements are utilized by equality constraints which affect the sensitivity derivatives. A gradient-based optimization algorithm is used to minimize an overall cost function. A realistic numerical example of a composite wing with four controls is used to demonstrate the modeling technique, the optimization process, and their accuracy and efficiency.
Multidisciplinary optimization of aeroservoelastic systems using reduced-size models
NASA Technical Reports Server (NTRS)
Karpel, Mordechay
1992-01-01
Efficient analytical and computational tools for simultaneous optimal design of the structural and control components of aeroservoelastic systems are presented. The optimization objective is to achieve aircraft performance requirements and sufficient flutter and control stability margins with a minimal weight penalty and without violating the design constraints. Analytical sensitivity derivatives facilitate an efficient optimization process which allows a relatively large number of design variables. Standard finite element and unsteady aerodynamic routines are used to construct a modal data base. Minimum State aerodynamic approximations and dynamic residualization methods are used to construct a high accuracy, low order aeroservoelastic model. Sensitivity derivatives of flutter dynamic pressure, control stability margins and control effectiveness with respect to structural and control design variables are presented. The performance requirements are utilized by equality constraints which affect the sensitivity derivatives. A gradient-based optimization algorithm is used to minimize an overall cost function. A realistic numerical example of a composite wing with four controls is used to demonstrate the modeling technique, the optimization process, and their accuracy and efficiency.
Impulsive Control for Continuous-Time Markov Decision Processes: A Linear Programming Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufour, F., E-mail: dufour@math.u-bordeaux1.fr; Piunovskiy, A. B., E-mail: piunov@liv.ac.uk
2016-08-15
In this paper, we investigate an optimization problem for continuous-time Markov decision processes with both impulsive and continuous controls. We consider the so-called constrained problem where the objective of the controller is to minimize a total expected discounted optimality criterion associated with a cost rate function while keeping other performance criteria of the same form, but associated with different cost rate functions, below some given bounds. Our model allows multiple impulses at the same time moment. The main objective of this work is to study the associated linear program defined on a space of measures including the occupation measures ofmore » the controlled process and to provide sufficient conditions to ensure the existence of an optimal control.« less
NASA Astrophysics Data System (ADS)
Pershin, I. M.; Pervukhin, D. A.; Ilyushin, Y. V.; Afanaseva, O. V.
2017-10-01
The article considers the important issue of designing the distributed systems of hydrolithospere processes management. Control effects on the hydrolithospere processes are implemented by a set of extractive wells. The article shows how to determine the optimal number of extractive wells that provide a distributed control impact on the management object.
Design of optimal buffer layers for CuInGaSe2 thin-film solar cells(Conference Presentation)
NASA Astrophysics Data System (ADS)
Lordi, Vincenzo; Varley, Joel B.; He, Xiaoqing; Rockett, Angus A.; Bailey, Jeff; Zapalac, Geordie H.; Mackie, Neil; Poplavskyy, Dmitry; Bayman, Atiye
2016-09-01
Optimizing the buffer layer in manufactured thin-film PV is essential to maximize device efficiency. Here, we describe a combined synthesis, characterization, and theory effort to design optimal buffers based on the (Cd,Zn)(O,S) alloy system for CIGS devices. Optimization of buffer composition and absorber/buffer interface properties in light of several competing requirements for maximum device efficiency were performed, along with process variations to control the film and interface quality. The most relevant buffer properties controlling performance include band gap, conduction band offset with absorber, dopability, interface quality, and film crystallinity. Control of an all-PVD deposition process enabled variation of buffer composition, crystallinity, doping, and quality of the absorber/buffer interface. Analytical electron microscopy was used to characterize the film composition and morphology, while hybrid density functional theory was used to predict optimal compositions and growth parameters based on computed material properties. Process variations were developed to produce layers with controlled crystallinity, varying from amorphous to fully epitaxial, depending primarily on oxygen content. Elemental intermixing between buffer and absorber, particularly involving Cd and Cu, also is controlled and significantly affects device performance. Secondary phase formation at the interface is observed for some conditions and may be detrimental depending on the morphology. Theoretical calculations suggest optimal composition ranges for the buffer based on a suite of computed properties and drive process optimizations connected with observed film properties. Prepared by LLNL under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Ji, Yu; Sheng, Wanxing; Jin, Wei; Wu, Ming; Liu, Haitao; Chen, Feng
2018-02-01
A coordinated optimal control method of active and reactive power of distribution network with distributed PV cluster based on model predictive control is proposed in this paper. The method divides the control process into long-time scale optimal control and short-time scale optimal control with multi-step optimization. The models are transformed into a second-order cone programming problem due to the non-convex and nonlinear of the optimal models which are hard to be solved. An improved IEEE 33-bus distribution network system is used to analyse the feasibility and the effectiveness of the proposed control method
Development of Chemical Process Design and Control for ...
This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy. The implemented control strategy combines a biologically inspired method with optimal control concepts for finding more sustainable operating trajectories. The sustainability assessment of process operating points is carried out by using the U.S. E.P.A.’s Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Objective Process Evaluator (GREENSCOPE) tool that provides scores for the selected indicators in the economic, material efficiency, environmental and energy areas. The indicator scores describe process performance on a sustainability measurement scale, effectively determining which operating point is more sustainable if there are more than several steady states for one specific product manufacturing. Through comparisons between a representative benchmark and the optimal steady-states obtained through implementation of the proposed controller, a systematic decision can be made in terms of whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous fermentation process for fuel production, whose materi
Fast machine-learning online optimization of ultra-cold-atom experiments.
Wigley, P B; Everitt, P J; van den Hengel, A; Bastian, J W; Sooriyabandara, M A; McDonald, G D; Hardman, K S; Quinlivan, C D; Manju, P; Kuhn, C C N; Petersen, I R; Luiten, A N; Hope, J J; Robins, N P; Hush, M R
2016-05-16
We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our 'learner' discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system.
Fast machine-learning online optimization of ultra-cold-atom experiments
Wigley, P. B.; Everitt, P. J.; van den Hengel, A.; Bastian, J. W.; Sooriyabandara, M. A.; McDonald, G. D.; Hardman, K. S.; Quinlivan, C. D.; Manju, P.; Kuhn, C. C. N.; Petersen, I. R.; Luiten, A. N.; Hope, J. J.; Robins, N. P.; Hush, M. R.
2016-01-01
We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our ‘learner’ discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system. PMID:27180805
Information distribution in distributed microprocessor based flight control systems
NASA Technical Reports Server (NTRS)
Montgomery, R. C.; Lee, P. S.
1977-01-01
This paper presents an optimal control theory that accounts for variable time intervals in the information distribution to control effectors in a distributed microprocessor based flight control system. The theory is developed using a linear process model for the aircraft dynamics and the information distribution process is modeled as a variable time increment process where, at the time that information is supplied to the control effectors, the control effectors know the time of the next information update only in a stochastic sense. An optimal control problem is formulated and solved that provides the control law that minimizes the expected value of a quadratic cost function. An example is presented where the theory is applied to the control of the longitudinal motions of the F8-DFBW aircraft. Theoretical and simulation results indicate that, for the example problem, the optimal cost obtained using a variable time increment Markov information update process where the control effectors know only the past information update intervals and the Markov transition mechanism is almost identical to that obtained using a known uniform information update interval.
Fuzzy logic control and optimization system
Lou, Xinsheng [West Hartford, CT
2012-04-17
A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Abdelkarim, Noha; Mohamed, Amr E; El-Garhy, Ahmed M; Dorrah, Hassen T
2016-01-01
The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller.
Mohamed, Amr E.; Dorrah, Hassen T.
2016-01-01
The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller. PMID:27807444
An Optimized Trajectory Planning for Welding Robot
NASA Astrophysics Data System (ADS)
Chen, Zhilong; Wang, Jun; Li, Shuting; Ren, Jun; Wang, Quan; Cheng, Qunchao; Li, Wentao
2018-03-01
In order to improve the welding efficiency and quality, this paper studies the combined planning between welding parameters and space trajectory for welding robot and proposes a trajectory planning method with high real-time performance, strong controllability and small welding error. By adding the virtual joint at the end-effector, the appropriate virtual joint model is established and the welding process parameters are represented by the virtual joint variables. The trajectory planning is carried out in the robot joint space, which makes the control of the welding process parameters more intuitive and convenient. By using the virtual joint model combined with the B-spline curve affine invariant, the welding process parameters are indirectly controlled by controlling the motion curve of the real joint. To solve the optimal time solution as the goal, the welding process parameters and joint space trajectory joint planning are optimized.
Analytical optimal pulse shapes obtained with the aid of genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrero, Rubén D., E-mail: rdguerrerom@unal.edu.co; Arango, Carlos A.; Reyes, Andrés
2015-09-28
We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding themore » interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenhoover, W.A.; Stouffer, M.R.; Withum, J.A.
1994-12-01
The objective of this research project is to develop second-generation duct injection technology as a cost-effective SO{sub 2} control option for the 1990 Clean Air Act Amendments. Research is focused on the Advanced Coolside process, which has shown the potential for achieving the performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. In Subtask 2.2, Design Optimization, process improvement was sought by optimizing sorbent recycle and by optimizing process equipment for reduced cost. The pilot plant recycle testing showed that 90% SO{sub 2} removal could be achieved at sorbent utilizations up to 75%. This testing also showed thatmore » the Advanced Coolside process has the potential to achieve very high removal efficiency (90 to greater than 99%). Two alternative contactor designs were developed, tested and optimized through pilot plant testing; the improved designs will reduce process costs significantly, while maintaining operability and performance essential to the process. Also, sorbent recycle handling equipment was optimized to reduce cost.« less
Genetic Algorithm Optimizes Q-LAW Control Parameters
NASA Technical Reports Server (NTRS)
Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard
2008-01-01
A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.
Optimal control of raw timber production processes
Ivan Kolenka
1978-01-01
This paper demonstrates the possibility of optimal planning and control of timber harvesting activ-ities with mathematical optimization models. The separate phases of timber harvesting are represented by coordinated models which can be used to select the optimal decision for the execution of any given phase. The models form a system whose components are connected and...
Modeling and Advanced Control for Sustainable Process Systems
This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-insp...
Optimal control of the gear shifting process for shift smoothness in dual-clutch transmissions
NASA Astrophysics Data System (ADS)
Li, Guoqiang; Görges, Daniel
2018-03-01
The control of the transmission system in vehicles is significant for the driving comfort. In order to design a controller for smooth shifting and comfortable driving, a dynamic model of a dual-clutch transmission is presented in this paper. A finite-time linear quadratic regulator is proposed for the optimal control of the two friction clutches in the torque phase for the upshift process. An integral linear quadratic regulator is introduced to regulate the relative speed difference between the engine and the slipping clutch under the optimization of the input torque during the inertia phase. The control objective focuses on smoothing the upshift process so as to improve the driving comfort. Considering the available sensors in vehicles for feedback control, an observer design is presented to track the immeasurable variables. Simulation results show that the jerk can be reduced both in the torque phase and inertia phase, indicating good shift performance. Furthermore, compared with conventional controllers for the upshift process, the proposed control method can reduce shift jerk and improve shift quality.
Optimizing a mobile robot control system using GPU acceleration
NASA Astrophysics Data System (ADS)
Tuck, Nat; McGuinness, Michael; Martin, Fred
2012-01-01
This paper describes our attempt to optimize a robot control program for the Intelligent Ground Vehicle Competition (IGVC) by running computationally intensive portions of the system on a commodity graphics processing unit (GPU). The IGVC Autonomous Challenge requires a control program that performs a number of different computationally intensive tasks ranging from computer vision to path planning. For the 2011 competition our Robot Operating System (ROS) based control system would not run comfortably on the multicore CPU on our custom robot platform. The process of profiling the ROS control program and selecting appropriate modules for porting to run on a GPU is described. A GPU-targeting compiler, Bacon, is used to speed up development and help optimize the ported modules. The impact of the ported modules on overall performance is discussed. We conclude that GPU optimization can free a significant amount of CPU resources with minimal effort for expensive user-written code, but that replacing heavily-optimized library functions is more difficult, and a much less efficient use of time.
Neural dynamic programming and its application to control systems
NASA Astrophysics Data System (ADS)
Seong, Chang-Yun
There are few general practical feedback control methods for nonlinear MIMO (multi-input-multi-output) systems, although such methods exist for their linear counterparts. Neural Dynamic Programming (NDP) is proposed as a practical design method of optimal feedback controllers for nonlinear MIMO systems. NDP is an offspring of both neural networks and optimal control theory. In optimal control theory, the optimal solution to any nonlinear MIMO control problem may be obtained from the Hamilton-Jacobi-Bellman equation (HJB) or the Euler-Lagrange equations (EL). The two sets of equations provide the same solution in different forms: EL leads to a sequence of optimal control vectors, called Feedforward Optimal Control (FOC); HJB yields a nonlinear optimal feedback controller, called Dynamic Programming (DP). DP produces an optimal solution that can reject disturbances and uncertainties as a result of feedback. Unfortunately, computation and storage requirements associated with DP solutions can be problematic, especially for high-order nonlinear systems. This dissertation presents an approximate technique for solving the DP problem based on neural network techniques that provides many of the performance benefits (e.g., optimality and feedback) of DP and benefits from the numerical properties of neural networks. We formulate neural networks to approximate optimal feedback solutions whose existence DP justifies. We show the conditions under which NDP closely approximates the optimal solution. Finally, we introduce the learning operator characterizing the learning process of the neural network in searching the optimal solution. The analysis of the learning operator provides not only a fundamental understanding of the learning process in neural networks but also useful guidelines for selecting the number of weights of the neural network. As a result, NDP finds---with a reasonable amount of computation and storage---the optimal feedback solutions to nonlinear MIMO control problems that would be very difficult to solve with DP. NDP was demonstrated on several applications such as the lateral autopilot logic for a Boeing 747, the minimum fuel control of a double-integrator plant with bounded control, the backward steering of a two-trailer truck, and the set-point control of a two-link robot arm.
Performance Optimization Control of ECH using Fuzzy Inference Application
NASA Astrophysics Data System (ADS)
Dubey, Abhay Kumar
Electro-chemical honing (ECH) is a hybrid electrolytic precision micro-finishing technology that, by combining physico-chemical actions of electro-chemical machining and conventional honing processes, provides the controlled functional surfaces-generation and fast material removal capabilities in a single operation. Process multi-performance optimization has become vital for utilizing full potential of manufacturing processes to meet the challenging requirements being placed on the surface quality, size, tolerances and production rate of engineering components in this globally competitive scenario. This paper presents an strategy that integrates the Taguchi matrix experimental design, analysis of variances and fuzzy inference system (FIS) to formulate a robust practical multi-performance optimization methodology for complex manufacturing processes like ECH, which involve several control variables. Two methodologies one using a genetic algorithm tuning of FIS (GA-tuned FIS) and another using an adaptive network based fuzzy inference system (ANFIS) have been evaluated for a multi-performance optimization case study of ECH. The actual experimental results confirm their potential for a wide range of machining conditions employed in ECH.
An optimizing start-up strategy for a bio-methanator.
Sbarciog, Mihaela; Loccufier, Mia; Vande Wouwer, Alain
2012-05-01
This paper presents an optimizing start-up strategy for a bio-methanator. The goal of the control strategy is to maximize the outflow rate of methane in anaerobic digestion processes, which can be described by a two-population model. The methodology relies on a thorough analysis of the system dynamics and involves the solution of two optimization problems: steady-state optimization for determining the optimal operating point and transient optimization. The latter is a classical optimal control problem, which can be solved using the maximum principle of Pontryagin. The proposed control law is of the bang-bang type. The process is driven from an initial state to a small neighborhood of the optimal steady state by switching the manipulated variable (dilution rate) from the minimum to the maximum value at a certain time instant. Then the dilution rate is set to the optimal value and the system settles down in the optimal steady state. This control law ensures the convergence of the system to the optimal steady state and substantially increases its stability region. The region of attraction of the steady state corresponding to maximum production of methane is considerably enlarged. In some cases, which are related to the possibility of selecting the minimum dilution rate below a certain level, the stability region of the optimal steady state equals the interior of the state space. Aside its efficiency, which is evaluated not only in terms of biogas production but also from the perspective of treatment of the organic load, the strategy is also characterized by simplicity, being thus appropriate for implementation in real-life systems. Another important advantage is its generality: this technique may be applied to any anaerobic digestion process, for which the acidogenesis and methanogenesis are, respectively, characterized by Monod and Haldane kinetics.
Polyhedral Interpolation for Optimal Reaction Control System Jet Selection
NASA Technical Reports Server (NTRS)
Gefert, Leon P.; Wright, Theodore
2014-01-01
An efficient algorithm is described for interpolating optimal values for spacecraft Reaction Control System jet firing duty cycles. The algorithm uses the symmetrical geometry of the optimal solution to reduce the number of calculations and data storage requirements to a level that enables implementation on the small real time flight control systems used in spacecraft. The process minimizes acceleration direction errors, maximizes control authority, and minimizes fuel consumption.
Control Improvement for Jump-Diffusion Processes with Applications to Finance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baeuerle, Nicole, E-mail: nicole.baeuerle@kit.edu; Rieder, Ulrich, E-mail: ulrich.rieder@uni-ulm.de
2012-02-15
We consider stochastic control problems with jump-diffusion processes and formulate an algorithm which produces, starting from a given admissible control {pi}, a new control with a better value. If no improvement is possible, then {pi} is optimal. Such an algorithm is well-known for discrete-time Markov Decision Problems under the name Howard's policy improvement algorithm. The idea can be traced back to Bellman. Here we show with the help of martingale techniques that such an algorithm can also be formulated for stochastic control problems with jump-diffusion processes. As an application we derive some interesting results in financial portfolio optimization.
PSO-tuned PID controller for coupled tank system via priority-based fitness scheme
NASA Astrophysics Data System (ADS)
Jaafar, Hazriq Izzuan; Hussien, Sharifah Yuslinda Syed; Selamat, Nur Asmiza; Abidin, Amar Faiz Zainal; Aras, Mohd Shahrieel Mohd; Nasir, Mohamad Na'im Mohd; Bohari, Zul Hasrizal
2015-05-01
The industrial applications of Coupled Tank System (CTS) are widely used especially in chemical process industries. The overall process is require liquids to be pumped, stored in the tank and pumped again to another tank. Nevertheless, the level of liquid in tank need to be controlled and flow between two tanks must be regulated. This paper presents development of an optimal PID controller for controlling the desired liquid level of the CTS. Two method of Particle Swarm Optimization (PSO) algorithm will be tested in optimizing the PID controller parameters. These two methods of PSO are standard Particle Swarm Optimization (PSO) and Priority-based Fitness Scheme in Particle Swarm Optimization (PFPSO). Simulation is conducted within Matlab environment to verify the performance of the system in terms of settling time (Ts), steady state error (SSE) and overshoot (OS). It has been demonstrated that implementation of PSO via Priority-based Fitness Scheme (PFPSO) for this system is potential technique to control the desired liquid level and improve the system performances compared with standard PSO.
Numerical research of the optimal control problem in the semi-Markov inventory model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorshenin, Andrey K.; Belousov, Vasily V.; Shnourkoff, Peter V.
2015-03-10
This paper is devoted to the numerical simulation of stochastic system for inventory management products using controlled semi-Markov process. The results of a special software for the system’s research and finding the optimal control are presented.
Global optimization for quantum dynamics of few-fermion systems
NASA Astrophysics Data System (ADS)
Li, Xikun; Pecak, Daniel; Sowiński, Tomasz; Sherson, Jacob; Nielsen, Anne E. B.
2018-03-01
Quantum state preparation is vital to quantum computation and quantum information processing tasks. In adiabatic state preparation, the target state is theoretically obtained with nearly perfect fidelity if the control parameter is tuned slowly enough. As this, however, leads to slow dynamics, it is often desirable to be able to carry out processes more rapidly. In this work, we employ two global optimization methods to estimate the quantum speed limit for few-fermion systems confined in a one-dimensional harmonic trap. Such systems can be produced experimentally in a well-controlled manner. We determine the optimized control fields and achieve a reduction in the ramping time of more than a factor of four compared to linear ramping. We also investigate how robust the fidelity is to small variations of the control fields away from the optimized shapes.
Event-driven time-optimal control for a class of discontinuous bioreactors.
Moreno, Jaime A; Betancur, Manuel J; Buitrón, Germán; Moreno-Andrade, Iván
2006-07-05
Discontinuous bioreactors may be further optimized for processing inhibitory substrates using a convenient fed-batch mode. To do so the filling rate must be controlled in such a way as to push the reaction rate to its maximum value, by increasing the substrate concentration just up to the point where inhibition begins. However, an exact optimal controller requires measuring several variables (e.g., substrate concentrations in the feed and in the tank) and also good model knowledge (e.g., yield and kinetic parameters), requirements rarely satisfied in real applications. An environmentally important case, that exemplifies all these handicaps, is toxicant wastewater treatment. There the lack of online practical pollutant sensors may allow unforeseen high shock loads to be fed to the bioreactor, causing biomass inhibition that slows down the treatment process and, in extreme cases, even renders the biological process useless. In this work an event-driven time-optimal control (ED-TOC) is proposed to circumvent these limitations. We show how to detect a "there is inhibition" event by using some computable function of the available measurements. This event drives the ED-TOC to stop the filling. Later, by detecting the symmetric event, "there is no inhibition," the ED-TOC may restart the filling. A fill-react cycling then maintains the process safely hovering near its maximum reaction rate, allowing a robust and practically time-optimal operation of the bioreactor. An experimental study case of a wastewater treatment process application is presented. There the dissolved oxygen concentration was used to detect the events needed to drive the controller. (c) 2006 Wiley Periodicals, Inc.
Availability Control for Means of Transport in Decisive Semi-Markov Models of Exploitation Process
NASA Astrophysics Data System (ADS)
Migawa, Klaudiusz
2012-12-01
The issues presented in this research paper refer to problems connected with the control process for exploitation implemented in the complex systems of exploitation for technical objects. The article presents the description of the method concerning the control availability for technical objects (means of transport) on the basis of the mathematical model of the exploitation process with the implementation of the decisive processes by semi-Markov. The presented method means focused on the preparing the decisive for the exploitation process for technical objects (semi-Markov model) and after that specifying the best control strategy (optimal strategy) from among possible decisive variants in accordance with the approved criterion (criteria) of the activity evaluation of the system of exploitation for technical objects. In the presented method specifying the optimal strategy for control availability in the technical objects means a choice of a sequence of control decisions made in individual states of modelled exploitation process for which the function being a criterion of evaluation reaches the extreme value. In order to choose the optimal control strategy the implementation of the genetic algorithm was chosen. The opinions were presented on the example of the exploitation process of the means of transport implemented in the real system of the bus municipal transport. The model of the exploitation process for the means of transports was prepared on the basis of the results implemented in the real transport system. The mathematical model of the exploitation process was built taking into consideration the fact that the model of the process constitutes the homogenous semi-Markov process.
Intelligent system of coordination and control for manufacturing
NASA Astrophysics Data System (ADS)
Ciortea, E. M.
2016-08-01
This paper wants shaping an intelligent system monitoring and control, which leads to optimizing material and information flows of the company. The paper presents a model for tracking and control system using intelligent real. Production system proposed for simulation analysis provides the ability to track and control the process in real time. Using simulation models be understood: the influence of changes in system structure, commands influence on the general condition of the manufacturing process conditions influence the behavior of some system parameters. Practical character consists of tracking and real-time control of the technological process. It is based on modular systems analyzed using mathematical models, graphic-analytical sizing, configuration, optimization and simulation.
NASA Technical Reports Server (NTRS)
Baron, S.; Levison, W. H.
1977-01-01
Application of the optimal control model of the human operator to problems in display analysis is discussed. Those aspects of the model pertaining to the operator-display interface and to operator information processing are reviewed and discussed. The techniques are then applied to the analysis of advanced display/control systems for a Terminal Configured Vehicle. Model results are compared with those obtained in a large, fixed-base simulation.
NASA Astrophysics Data System (ADS)
Vikram, K. Arun; Ratnam, Ch; Lakshmi, VVK; Kumar, A. Sunny; Ramakanth, RT
2018-02-01
Meta-heuristic multi-response optimization methods are widely in use to solve multi-objective problems to obtain Pareto optimal solutions during optimization. This work focuses on optimal multi-response evaluation of process parameters in generating responses like surface roughness (Ra), surface hardness (H) and tool vibration displacement amplitude (Vib) while performing operations like tangential and orthogonal turn-mill processes on A-axis Computer Numerical Control vertical milling center. Process parameters like tool speed, feed rate and depth of cut are considered as process parameters machined over brass material under dry condition with high speed steel end milling cutters using Taguchi design of experiments (DOE). Meta-heuristic like Dragonfly algorithm is used to optimize the multi-objectives like ‘Ra’, ‘H’ and ‘Vib’ to identify the optimal multi-response process parameters combination. Later, the results thus obtained from multi-objective dragonfly algorithm (MODA) are compared with another multi-response optimization technique Viz. Grey relational analysis (GRA).
PID controller tuning using metaheuristic optimization algorithms for benchmark problems
NASA Astrophysics Data System (ADS)
Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.
2017-11-01
This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckdahn, Rainer, E-mail: Rainer.Buckdahn@univ-brest.fr; Li, Juan, E-mail: juanli@sdu.edu.cn; Ma, Jin, E-mail: jinma@usc.edu
In this paper we study the optimal control problem for a class of general mean-field stochastic differential equations, in which the coefficients depend, nonlinearly, on both the state process as well as of its law. In particular, we assume that the control set is a general open set that is not necessary convex, and the coefficients are only continuous on the control variable without any further regularity or convexity. We validate the approach of Peng (SIAM J Control Optim 2(4):966–979, 1990) by considering the second order variational equations and the corresponding second order adjoint process in this setting, and wemore » extend the Stochastic Maximum Principle of Buckdahn et al. (Appl Math Optim 64(2):197–216, 2011) to this general case.« less
Bioreactor performance: a more scientific approach for practice.
Lübbert, A; Bay Jørgensen, S
2001-02-13
In practice, the performance of a biochemical conversion process, i.e. the bioreactor performance, is essentially determined by the benefit/cost ratio. The benefit is generally defined in terms of the amount of the desired product produced and its market price. Cost reduction is the major objective in biochemical engineering. There are two essential engineering approaches to minimizing the cost of creating a particular product in an existing plant. One is to find a control path or operational procedure that optimally uses the dynamics of the process and copes with the many constraints restricting production. The other is to remove or lower the constraints by constructive improvements of the equipment and/or the microorganisms. This paper focuses on the first approach, dealing with optimization of the operational procedure and the measures by which one can ensure that the process adheres to the predetermined path. In practice, feedforward control is the predominant control mode applied. However, as it is frequently inadequate for optimal performance, feedback control may also be employed. Relevant aspects of such performance optimization are discussed.
Using Markov Models of Fault Growth Physics and Environmental Stresses to Optimize Control Actions
NASA Technical Reports Server (NTRS)
Bole, Brian; Goebel, Kai; Vachtsevanos, George
2012-01-01
A generalized Markov chain representation of fault dynamics is presented for the case that available modeling of fault growth physics and future environmental stresses can be represented by two independent stochastic process models. A contrived but representatively challenging example will be presented and analyzed, in which uncertainty in the modeling of fault growth physics is represented by a uniformly distributed dice throwing process, and a discrete random walk is used to represent uncertain modeling of future exogenous loading demands to be placed on the system. A finite horizon dynamic programming algorithm is used to solve for an optimal control policy over a finite time window for the case that stochastic models representing physics of failure and future environmental stresses are known, and the states of both stochastic processes are observable by implemented control routines. The fundamental limitations of optimization performed in the presence of uncertain modeling information are examined by comparing the outcomes obtained from simulations of an optimizing control policy with the outcomes that would be achievable if all modeling uncertainties were removed from the system.
Moore, J H
1995-06-01
A genetic algorithm for instrumentation control and optimization was developed using the LabVIEW graphical programming environment. The usefulness of this methodology for the optimization of a closed loop control instrument is demonstrated with minimal complexity and the programming is presented in detail to facilitate its adaptation to other LabVIEW applications. Closed loop control instruments have variety of applications in the biomedical sciences including the regulation of physiological processes such as blood pressure. The program presented here should provide a useful starting point for those wishing to incorporate genetic algorithm approaches to LabVIEW mediated optimization of closed loop control instruments.
Optimal control of laser-induced spin-orbit mediated ultrafast demagnetization
NASA Astrophysics Data System (ADS)
Elliott, P.; Krieger, K.; Dewhurst, J. K.; Sharma, S.; Gross, E. K. U.
2016-01-01
Laser induced ultrafast demagnetization is the process whereby the magnetic moment of a ferromagnetic material is seen to drop significantly on a timescale of 10-100 s of femtoseconds due to the application of a strong laser pulse. If this phenomenon can be harnessed for future technology, it offers the possibility for devices operating at speeds several orders of magnitude faster than at present. A key component to successful transfer of such a process to technology is the controllability of the process, i.e. that it can be tuned in order to overcome the practical and physical limitations imposed on the system. In this paper, we demonstrate that the spin-orbit mediated form of ultrafast demagnetization recently investigated (Krieger et al 2015 J. Chem. Theory Comput. 11 4870) by ab initio time-dependent density functional theory (TDDFT) can be controlled. To do so we use quantum optimal control theory (OCT) to couple our TDDFT simulations to the optimization machinery of OCT. We show that a laser pulse can be found which maximizes the loss of moment within a given time interval while subject to several practical and physical constraints. Furthermore we also include a constraint on the fluence of the laser pulses and find the optimal pulse that combines significant demagnetization with a desire for less powerful pulses. These calculations demonstrate optimal control is possible for spin-orbit mediated ultrafast demagnetization and lays the foundation for future optimizations/simulations which can incorporate even more constraints.
NASA Astrophysics Data System (ADS)
Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine
2012-09-01
The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.
NASA Astrophysics Data System (ADS)
Boughari, Yamina
New methodologies have been developed to optimize the integration, testing and certification of flight control systems, an expensive process in the aerospace industry. This thesis investigates the stability of the Cessna Citation X aircraft without control, and then optimizes two different flight controllers from design to validation. The aircraft's model was obtained from the data provided by the Research Aircraft Flight Simulator (RAFS) of the Cessna Citation business aircraft. To increase the stability and control of aircraft systems, optimizations of two different flight control designs were performed: 1) the Linear Quadratic Regulation and the Proportional Integral controllers were optimized using the Differential Evolution algorithm and the level 1 handling qualities as the objective function. The results were validated for the linear and nonlinear aircraft models, and some of the clearance criteria were investigated; and 2) the Hinfinity control method was applied on the stability and control augmentation systems. To minimize the time required for flight control design and its validation, an optimization of the controllers design was performed using the Differential Evolution (DE), and the Genetic algorithms (GA). The DE algorithm proved to be more efficient than the GA. New tools for visualization of the linear validation process were also developed to reduce the time required for the flight controller assessment. Matlab software was used to validate the different optimization algorithms' results. Research platforms of the aircraft's linear and nonlinear models were developed, and compared with the results of flight tests performed on the Research Aircraft Flight Simulator. Some of the clearance criteria of the optimized H-infinity flight controller were evaluated, including its linear stability, eigenvalues, and handling qualities criteria. Nonlinear simulations of the maneuvers criteria were also investigated during this research to assess the Cessna Citation X's flight controller clearance, and therefore, for its anticipated certification.
Hayashibe, Mitsuhiro; Shimoda, Shingo
2014-01-01
A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach. PMID:24616695
Hayashibe, Mitsuhiro; Shimoda, Shingo
2014-01-01
A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach.
A CPS Based Optimal Operational Control System for Fused Magnesium Furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Tian-you; Wu, Zhi-wei; Wang, Hong
Fused magnesia smelting for fused magnesium furnace (FMF) is an energy intensive process with high temperature and comprehensive complexities. Its operational index namely energy consumption per ton (ECPT) is defined as the consumed electrical energy per ton of acceptable quality and is difficult to measure online. Moreover, the dynamics of ECPT cannot be precisely modelled mathematically. The model parameters of the three-phase currents of the electrodes such as the molten pool level, its variation rate and resistance are uncertain and nonlinear functions of the changes in both the smelting process and the raw materials composition. In this paper, an integratedmore » optimal operational control algorithm proposed is composed of a current set-point control, a current switching control and a self-optimized tuning mechanism. The tight conjoining of and coordination between the computational resources including the integrated optimal operational control, embedded software, industrial cloud, wireless communication and the physical resources of FMF constitutes a cyber-physical system (CPS) based embedded optimal operational control system. Successful application of this system has been made for a production line with ten fused magnesium furnaces in a factory in China, leading to a significant reduced ECPT.« less
NASA Astrophysics Data System (ADS)
Golinko, I. M.; Kovrigo, Yu. M.; Kubrak, A. I.
2014-03-01
An express method for optimally tuning analog PI and PID controllers is considered. An integral quality criterion with minimizing the control output is proposed for optimizing control systems. The suggested criterion differs from existing ones in that the control output applied to the technological process is taken into account in a correct manner, due to which it becomes possible to maximally reduce the expenditure of material and/or energy resources in performing control of industrial equipment sets. With control organized in such manner, smaller wear and longer service life of control devices are achieved. A unimodal nature of the proposed criterion for optimally tuning a controller is numerically demonstrated using the methods of optimization theory. A functional interrelation between the optimal controller parameters and dynamic properties of a controlled plant is numerically determined for a single-loop control system. The results obtained from simulation of transients in a control system carried out using the proposed and existing functional dependences are compared with each other. The proposed calculation formulas differ from the existing ones by a simple structure and highly accurate search for the optimal controller tuning parameters. The obtained calculation formulas are recommended for being used by specialists in automation for design and optimization of control systems.
Fuel consumption optimization for smart hybrid electric vehicle during a car-following process
NASA Astrophysics Data System (ADS)
Li, Liang; Wang, Xiangyu; Song, Jian
2017-03-01
Hybrid electric vehicles (HEVs) provide large potential to save energy and reduce emission, and smart vehicles bring out great convenience and safety for drivers. By combining these two technologies, vehicles may achieve excellent performances in terms of dynamic, economy, environmental friendliness, safety, and comfort. Hence, a smart hybrid electric vehicle (s-HEV) is selected as a platform in this paper to study a car-following process with optimizing the fuel consumption. The whole process is a multi-objective optimal problem, whose optimal solution is not just adding an energy management strategy (EMS) to an adaptive cruise control (ACC), but a deep fusion of these two methods. The problem has more restricted conditions, optimal objectives, and system states, which may result in larger computing burden. Therefore, a novel fuel consumption optimization algorithm based on model predictive control (MPC) is proposed and some search skills are adopted in receding horizon optimization to reduce computing burden. Simulations are carried out and the results indicate that the fuel consumption of proposed method is lower than that of the ACC+EMS method on the condition of ensuring car-following performances.
NASA Technical Reports Server (NTRS)
Spurlock, Paul; Spurlock, Jack M.; Evanich, Peggy L.
1991-01-01
An overview of recent developments in process-control technology which might have applications in future advanced life support systems for long-duration space operations is presented. Consideration is given to design criteria related to control system selection and optimization, and process-control interfacing methodology. Attention is also given to current life support system process control strategies, innovative sensors, instrumentation and control, and innovations in process supervision.
Optimal robust control strategy of a solid oxide fuel cell system
NASA Astrophysics Data System (ADS)
Wu, Xiaojuan; Gao, Danhui
2018-01-01
Optimal control can ensure system safe operation with a high efficiency. However, only a few papers discuss optimal control strategies for solid oxide fuel cell (SOFC) systems. Moreover, the existed methods ignore the impact of parameter uncertainty on system instantaneous performance. In real SOFC systems, several parameters may vary with the variation of operation conditions and can not be identified exactly, such as load current. Therefore, a robust optimal control strategy is proposed, which involves three parts: a SOFC model with parameter uncertainty, a robust optimizer and robust controllers. During the model building process, boundaries of the uncertain parameter are extracted based on Monte Carlo algorithm. To achieve the maximum efficiency, a two-space particle swarm optimization approach is employed to obtain optimal operating points, which are used as the set points of the controllers. To ensure the SOFC safe operation, two feed-forward controllers and a higher-order robust sliding mode controller are presented to control fuel utilization ratio, air excess ratio and stack temperature afterwards. The results show the proposed optimal robust control method can maintain the SOFC system safe operation with a maximum efficiency under load and uncertainty variations.
NASA Astrophysics Data System (ADS)
Bez'iazychnyi, V. F.
The paper is concerned with the problem of optimizing the machining of aircraft engine parts in order to satisfy certain requirements for tool wear, machining precision and surface layer characteristics, and hardening depth. A generalized multiple-objective function and its computer implementation are developed which make it possible to optimize the machining process without the use of experimental data. Alternative methods of controlling the machining process are discussed.
On the use of PGD for optimal control applied to automated fibre placement
NASA Astrophysics Data System (ADS)
Bur, N.; Joyot, P.
2017-10-01
Automated Fibre Placement (AFP) is an incipient manufacturing process for composite structures. Despite its concep-tual simplicity it involves many complexities related to the necessity of melting the thermoplastic at the interface tape-substrate, ensuring the consolidation that needs the diffusion of molecules and control the residual stresses installation responsible of the residual deformations of the formed parts. The optimisation of the process and the determination of the process window cannot be achieved in a traditional way since it requires a plethora of trials/errors or numerical simulations, because there are many parameters involved in the characterisation of the material and the process. Using reduced order modelling such as the so called Proper Generalised Decomposition method, allows the construction of multi-parametric solution taking into account many parameters. This leads to virtual charts that can be explored on-line in real time in order to perform process optimisation or on-line simulation-based control. Thus, for a given set of parameters, determining the power leading to an optimal temperature becomes easy. However, instead of controlling the power knowing the temperature field by particularizing an abacus, we propose here an approach based on optimal control: we solve by PGD a dual problem from heat equation and optimality criteria. To circumvent numerical issue due to ill-conditioned system, we propose an algorithm based on Uzawa's method. That way, we are able to solve the dual problem, setting the desired state as an extra-coordinate in the PGD framework. In a single computation, we get both the temperature field and the required heat flux to reach a parametric optimal temperature on a given zone.
NASA Astrophysics Data System (ADS)
Marcozzi, Michael D.
2008-12-01
We consider theoretical and approximation aspects of the stochastic optimal control of ultradiffusion processes in the context of a prototype model for the selling price of a European call option. Within a continuous-time framework, the dynamic management of a portfolio of assets is effected through continuous or point control, activation costs, and phase delay. The performance index is derived from the unique weak variational solution to the ultraparabolic Hamilton-Jacobi equation; the value function is the optimal realization of the performance index relative to all feasible portfolios. An approximation procedure based upon a temporal box scheme/finite element method is analyzed; numerical examples are presented in order to demonstrate the viability of the approach.
Hussein, Husnah; Williams, David J; Liu, Yang
2015-07-01
A systematic design of experiments (DOE) approach was used to optimize the perfusion process of a tri-axial bioreactor designed for translational tissue engineering exploiting mechanical stimuli and mechanotransduction. Four controllable design parameters affecting the perfusion process were identified in a cause-effect diagram as potential improvement opportunities. A screening process was used to separate out the factors that have the largest impact from the insignificant ones. DOE was employed to find the settings of the platen design, return tubing configuration and the elevation difference that minimise the load on the pump and variation in the perfusion process and improve the controllability of the perfusion pressures within the prescribed limits. DOE was very effective for gaining increased knowledge of the perfusion process and optimizing the process for improved functionality. It is hypothesized that the optimized perfusion system will result in improved biological performance and consistency.
Development of Chemical Process Design and Control for Sustainability
This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy....
Chen, Jianjun; Frey, H Christopher
2004-12-15
Methods for optimization of process technologies considering the distinction between variability and uncertainty are developed and applied to case studies of NOx control for Integrated Gasification Combined Cycle systems. Existing methods of stochastic optimization (SO) and stochastic programming (SP) are demonstrated. A comparison of SO and SP results provides the value of collecting additional information to reduce uncertainty. For example, an expected annual benefit of 240,000 dollars is estimated if uncertainty can be reduced before a final design is chosen. SO and SP are typically applied to uncertainty. However, when applied to variability, the benefit of dynamic process control is obtained. For example, an annual savings of 1 million dollars could be achieved if the system is adjusted to changes in process conditions. When variability and uncertainty are treated distinctively, a coupled stochastic optimization and programming method and a two-dimensional stochastic programming method are demonstrated via a case study. For the case study, the mean annual benefit of dynamic process control is estimated to be 700,000 dollars, with a 95% confidence range of 500,000 dollars to 940,000 dollars. These methods are expected to be of greatest utility for problems involving a large commitment of resources, for which small differences in designs can produce large cost savings.
Linear-Quadratic-Gaussian Regulator Developed for a Magnetic Bearing
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.
2002-01-01
Linear-Quadratic-Gaussian (LQG) control is a modern state-space technique for designing optimal dynamic regulators. It enables us to trade off regulation performance and control effort, and to take into account process and measurement noise. The Structural Mechanics and Dynamics Branch at the NASA Glenn Research Center has developed an LQG control for a fault-tolerant magnetic bearing suspension rig to optimize system performance and to reduce the sensor and processing noise. The LQG regulator consists of an optimal state-feedback gain and a Kalman state estimator. The first design step is to seek a state-feedback law that minimizes the cost function of regulation performance, which is measured by a quadratic performance criterion with user-specified weighting matrices, and to define the tradeoff between regulation performance and control effort. The next design step is to derive a state estimator using a Kalman filter because the optimal state feedback cannot be implemented without full state measurement. Since the Kalman filter is an optimal estimator when dealing with Gaussian white noise, it minimizes the asymptotic covariance of the estimation error.
Optimal control of photoelectron emission by realistic waveforms
NASA Astrophysics Data System (ADS)
Solanpää, J.; Ciappina, M. F.; Räsänen, E.
2017-09-01
Recent experimental techniques in multicolor waveform synthesis allow the temporal shaping of strong femtosecond laser pulses with applications in the control of quantum mechanical processes in atoms, molecules, and nanostructures. Prediction of the shapes of the optimal waveforms can be done computationally using quantum optimal control theory. In this work we demonstrate the control of above-threshold photoemission of one-dimensional hydrogen model with pulses feasible for experimental waveform synthesis. By mixing different spectral channels and thus lowering the intensity requirements for individual channels, the resulting optimal pulses can extend the cutoff energies by at least up to 50% and bring up the electron yield by several orders of magnitude. Insights into the electron dynamics for optimized photoelectron emission are obtained with a semiclassical two-step model.
Optimal control of multiphoton ionization dynamics of small alkali aggregates
NASA Astrophysics Data System (ADS)
Lindinger, A.; Bartelt, A.; Lupulescu, C.; Vajda, S.; Woste, Ludger
2003-11-01
We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters like wavelength range or its phase and amplitude; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photo-chemical process. First, we present the vibrational dynamics of bound electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced ioniziation experiments were carried out. The controllability of 3-photon ionization pathways is investigated on the model-like systems NaK and K2. A closed learning loop for adaptive feedback control is used to find the optimal fs pulse shape. Sinusoidal parameterizations of the spectral phase modulation are investigated in regard to the obtained optimal field. By reducing the number of parameters and thereby the complexity of the phase moduation, optimal pulse shapes can be generated that carry fingerprints of the molecule's dynamical properties. This enables to find "understandable" optimal pulse forms and offers the possiblity to gain insight into the photo-induced control process. Characteristic motions of the involved wave packets are proposed to explain the optimized dynamic dissociation pathways.
Fuzzy efficiency optimization of AC induction motors
NASA Technical Reports Server (NTRS)
Jani, Yashvant; Sousa, Gilberto; Turner, Wayne; Spiegel, Ron; Chappell, Jeff
1993-01-01
This paper describes the early states of work to implement a fuzzy logic controller to optimize the efficiency of AC induction motor/adjustable speed drive (ASD) systems running at less than optimal speed and torque conditions. In this paper, the process by which the membership functions of the controller were tuned is discussed and a controller which operates on frequency as well as voltage is proposed. The membership functions for this dual-variable controller are sketched. Additional topics include an approach for fuzzy logic to motor current control which can be used with vector-controlled drives. Incorporation of a fuzzy controller as an application-specific integrated circuit (ASIC) microchip is planned.
Li, Mingjie; Zhou, Ping; Wang, Hong; ...
2017-09-19
As one of the most important unit in the papermaking industry, the high consistency (HC) refining system is confronted with challenges such as improving pulp quality, energy saving, and emissions reduction in its operation processes. Here in this correspondence, an optimal operation of HC refining system is presented using nonlinear multiobjective model predictive control strategies that aim at set-point tracking objective of pulp quality, economic objective, and specific energy (SE) consumption objective, respectively. First, a set of input and output data at different times are employed to construct the subprocess model of the state process model for the HC refiningmore » system, and then the Wiener-type model can be obtained through combining the mechanism model of Canadian Standard Freeness and the state process model that determines their structures based on Akaike information criterion. Second, the multiobjective optimization strategy that optimizes both the set-point tracking objective of pulp quality and SE consumption is proposed simultaneously, which uses NSGA-II approach to obtain the Pareto optimal set. Furthermore, targeting at the set-point tracking objective of pulp quality, economic objective, and SE consumption objective, the sequential quadratic programming method is utilized to produce the optimal predictive controllers. In conclusion, the simulation results demonstrate that the proposed methods can make the HC refining system provide a better performance of set-point tracking of pulp quality when these predictive controllers are employed. In addition, while the optimal predictive controllers orienting with comprehensive economic objective and SE consumption objective, it has been shown that they have significantly reduced the energy consumption.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingjie; Zhou, Ping; Wang, Hong
As one of the most important unit in the papermaking industry, the high consistency (HC) refining system is confronted with challenges such as improving pulp quality, energy saving, and emissions reduction in its operation processes. Here in this correspondence, an optimal operation of HC refining system is presented using nonlinear multiobjective model predictive control strategies that aim at set-point tracking objective of pulp quality, economic objective, and specific energy (SE) consumption objective, respectively. First, a set of input and output data at different times are employed to construct the subprocess model of the state process model for the HC refiningmore » system, and then the Wiener-type model can be obtained through combining the mechanism model of Canadian Standard Freeness and the state process model that determines their structures based on Akaike information criterion. Second, the multiobjective optimization strategy that optimizes both the set-point tracking objective of pulp quality and SE consumption is proposed simultaneously, which uses NSGA-II approach to obtain the Pareto optimal set. Furthermore, targeting at the set-point tracking objective of pulp quality, economic objective, and SE consumption objective, the sequential quadratic programming method is utilized to produce the optimal predictive controllers. In conclusion, the simulation results demonstrate that the proposed methods can make the HC refining system provide a better performance of set-point tracking of pulp quality when these predictive controllers are employed. In addition, while the optimal predictive controllers orienting with comprehensive economic objective and SE consumption objective, it has been shown that they have significantly reduced the energy consumption.« less
Intelligent Control of Micro Grid: A Big Data-Based Control Center
NASA Astrophysics Data System (ADS)
Liu, Lu; Wang, Yanping; Liu, Li; Wang, Zhiseng
2018-01-01
In this paper, a structure of micro grid system with big data-based control center is introduced. Energy data from distributed generation, storage and load are analized through the control center, and from the results new trends will be predicted and applied as a feedback to optimize the control. Therefore, each step proceeded in micro grid can be adjusted and orgnized in a form of comprehensive management. A framework of real-time data collection, data processing and data analysis will be proposed by employing big data technology. Consequently, a integrated distributed generation and a optimized energy storage and transmission process can be implemented in the micro grid system.
Benyamini, Miri; Zacksenhouse, Miriam
2015-01-01
Recent experiments with brain-machine-interfaces (BMIs) indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus, we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.
Benyamini, Miri; Zacksenhouse, Miriam
2015-01-01
Recent experiments with brain-machine-interfaces (BMIs) indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus, we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal. PMID:26042002
Torque-based optimal acceleration control for electric vehicle
NASA Astrophysics Data System (ADS)
Lu, Dongbin; Ouyang, Minggao
2014-03-01
The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control.
Microscopic heat engine and control of work fluctuations
NASA Astrophysics Data System (ADS)
Xiao, Gaoyang
In this thesis, we study novel behaviors of microscopic work and heat in systems involving few degrees of freedom. We firstly report that a quantum Carnot cycle should consist of two isothermal processes and two mechanical adiabatic processes if we want to maximize its heat-to-work conversion efficiency. We then find that the efficiency can be further optimized, and it is generally system specific, lower than the Carnot efficiency, and dependent upon both temperatures of the cold and hot reservoirs. We then move on to the studies the fluctuations of microscopic work. We find a principle of minimal work fluctuations related to the Jarzynski equality. In brief, an adiabatic process without energy level crossing yields the minimal fluctuations in exponential work, given a thermally isolated system initially prepared at thermal equilibrium. Finally, we investigate an optimal control approach to suppress the work fluctuations and accelerate the adiabatic processes. This optimal control approach can apply to wide variety of systems even when we do not have full knowledge of the systems.
Application of high-performance computing to numerical simulation of human movement
NASA Technical Reports Server (NTRS)
Anderson, F. C.; Ziegler, J. M.; Pandy, M. G.; Whalen, R. T.
1995-01-01
We have examined the feasibility of using massively-parallel and vector-processing supercomputers to solve large-scale optimization problems for human movement. Specifically, we compared the computational expense of determining the optimal controls for the single support phase of gait using a conventional serial machine (SGI Iris 4D25), a MIMD parallel machine (Intel iPSC/860), and a parallel-vector-processing machine (Cray Y-MP 8/864). With the human body modeled as a 14 degree-of-freedom linkage actuated by 46 musculotendinous units, computation of the optimal controls for gait could take up to 3 months of CPU time on the Iris. Both the Cray and the Intel are able to reduce this time to practical levels. The optimal solution for gait can be found with about 77 hours of CPU on the Cray and with about 88 hours of CPU on the Intel. Although the overall speeds of the Cray and the Intel were found to be similar, the unique capabilities of each machine are better suited to different portions of the computational algorithm used. The Intel was best suited to computing the derivatives of the performance criterion and the constraints whereas the Cray was best suited to parameter optimization of the controls. These results suggest that the ideal computer architecture for solving very large-scale optimal control problems is a hybrid system in which a vector-processing machine is integrated into the communication network of a MIMD parallel machine.
Dynamics and control of DNA sequence amplification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marimuthu, Karthikeyan; Chakrabarti, Raj, E-mail: raj@pmc-group.com, E-mail: rajc@andrew.cmu.edu; Division of Fundamental Research, PMC Advanced Technology, Mount Laurel, New Jersey 08054
2014-10-28
DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reactionmore » are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.« less
Anaerobic digestion of food waste: A review focusing on process stability.
Li, Lei; Peng, Xuya; Wang, Xiaoming; Wu, Di
2018-01-01
Food waste (FW) is rich in biomass energy, and increasing numbers of national programs are being established to recover energy from FW using anaerobic digestion (AD). However process instability is a common operational issue for AD of FW. Process monitoring and control as well as microbial management can be used to control instability and increase the energy conversion efficiency of anaerobic digesters. Here, we review research progress related to these methods and identify existing limitations to efficient AD; recommendations for future research are also discussed. Process monitoring and control are suitable for evaluating the current operational status of digesters, whereas microbial management can facilitate early diagnosis and process optimization. Optimizing and combining these two methods are necessary to improve AD efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Combined Optimal Control System for excavator electric drive
NASA Astrophysics Data System (ADS)
Kurochkin, N. S.; Kochetkov, V. P.; Platonova, E. V.; Glushkin, E. Y.; Dulesov, A. S.
2018-03-01
The article presents a synthesis of the combined optimal control algorithms of the AC drive rotation mechanism of the excavator. Synthesis of algorithms consists in the regulation of external coordinates - based on the theory of optimal systems and correction of the internal coordinates electric drive using the method "technical optimum". The research shows the advantage of optimal combined control systems for the electric rotary drive over classical systems of subordinate regulation. The paper presents a method for selecting the optimality criterion of coefficients to find the intersection of the range of permissible values of the coordinates of the control object. There is possibility of system settings by choosing the optimality criterion coefficients, which allows one to select the required characteristics of the drive: the dynamic moment (M) and the time of the transient process (tpp). Due to the use of combined optimal control systems, it was possible to significantly reduce the maximum value of the dynamic moment (M) and at the same time - reduce the transient time (tpp).
Zhang, Hang; Xu, Qingyan; Liu, Baicheng
2014-01-01
The rapid development of numerical modeling techniques has led to more accurate results in modeling metal solidification processes. In this study, the cellular automaton-finite difference (CA-FD) method was used to simulate the directional solidification (DS) process of single crystal (SX) superalloy blade samples. Experiments were carried out to validate the simulation results. Meanwhile, an intelligent model based on fuzzy control theory was built to optimize the complicate DS process. Several key parameters, such as mushy zone width and temperature difference at the cast-mold interface, were recognized as the input variables. The input variables were functioned with the multivariable fuzzy rule to get the output adjustment of withdrawal rate (v) (a key technological parameter). The multivariable fuzzy rule was built, based on the structure feature of casting, such as the relationship between section area, and the delay time of the temperature change response by changing v, and the professional experience of the operator as well. Then, the fuzzy controlling model coupled with CA-FD method could be used to optimize v in real-time during the manufacturing process. The optimized process was proven to be more flexible and adaptive for a steady and stray-grain free DS process. PMID:28788535
Emergency strategy optimization for the environmental control system in manned spacecraft
NASA Astrophysics Data System (ADS)
Li, Guoxiang; Pang, Liping; Liu, Meng; Fang, Yufeng; Zhang, Helin
2018-02-01
It is very important for a manned environmental control system (ECS) to be able to reconfigure its operation strategy in emergency conditions. In this article, a multi-objective optimization is established to design the optimal emergency strategy for an ECS in an insufficient power supply condition. The maximum ECS lifetime and the minimum power consumption are chosen as the optimization objectives. Some adjustable key variables are chosen as the optimization variables, which finally represent the reconfigured emergency strategy. The non-dominated sorting genetic algorithm-II is adopted to solve this multi-objective optimization problem. Optimization processes are conducted at four different carbon dioxide partial pressure control levels. The study results show that the Pareto-optimal frontiers obtained from this multi-objective optimization can represent the relationship between the lifetime and the power consumption of the ECS. Hence, the preferred emergency operation strategy can be recommended for situations when there is suddenly insufficient power.
Design Considerations of Polishing Lap for Computer-Controlled Cylindrical Polishing Process
NASA Technical Reports Server (NTRS)
Khan, Gufran S.; Gubarev, Mikhail; Arnold, William; Ramsey, Brian D.
2009-01-01
This paper establishes a relationship between the polishing process parameters and the generation of mid spatial-frequency error. The consideration of the polishing lap design to optimize the process in order to keep residual errors to a minimum and optimization of the process (speeds, stroke, etc.) and to keep the residual mid spatial-frequency error to a minimum, is also presented.
Rand, Miya K; Shimansky, Yury P
2013-03-01
A quantitative model of optimal transport-aperture coordination (TAC) during reach-to-grasp movements has been developed in our previous studies. The utilization of that model for data analysis allowed, for the first time, to examine the phase dependence of the precision demand specified by the CNS for neurocomputational information processing during an ongoing movement. It was shown that the CNS utilizes a two-phase strategy for movement control. That strategy consists of reducing the precision demand for neural computations during the initial phase, which decreases the cost of information processing at the expense of lower extent of control optimality. To successfully grasp the target object, the CNS increases precision demand during the final phase, resulting in higher extent of control optimality. In the present study, we generalized the model of optimal TAC to a model of optimal coordination between X and Y components of point-to-point planar movements (XYC). We investigated whether the CNS uses the two-phase control strategy for controlling those movements, and how the strategy parameters depend on the prescribed movement speed, movement amplitude and the size of the target area. The results indeed revealed a substantial similarity between the CNS's regulation of TAC and XYC. First, the variability of XYC within individual trials was minimal, meaning that execution noise during the movement was insignificant. Second, the inter-trial variability of XYC was considerable during the majority of the movement time, meaning that the precision demand for information processing was lowered, which is characteristic for the initial phase. That variability significantly decreased, indicating higher extent of control optimality, during the shorter final movement phase. The final phase was the longest (shortest) under the most (least) challenging combination of speed and accuracy requirements, fully consistent with the concept of the two-phase control strategy. This paper further discussed the relationship between motor variability and XYC variability.
NASA Technical Reports Server (NTRS)
Welstead, Jason
2014-01-01
This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.
Ma, Ning; Yu, Angela J
2016-01-01
Inhibitory control, the ability to stop or modify preplanned actions under changing task conditions, is an important component of cognitive functions. Two lines of models of inhibitory control have previously been proposed for human response in the classical stop-signal task, in which subjects must inhibit a default go response upon presentation of an infrequent stop signal: (1) the race model, which posits two independent go and stop processes that race to determine the behavioral outcome, go or stop; and (2) an optimal decision-making model, which posits that observers decides whether and when to go based on continually (Bayesian) updated information about both the go and stop stimuli. In this work, we probe the relationship between go and stop processing by explicitly manipulating the discrimination difficulty of the go stimulus. While the race model assumes the go and stop processes are independent, and therefore go stimulus discriminability should not affect the stop stimulus processing, we simulate the optimal model to show that it predicts harder go discrimination should result in longer go reaction time (RT), lower stop error rate, as well as faster stop-signal RT. We then present novel behavioral data that validate these model predictions. The results thus favor a fundamentally inseparable account of go and stop processing, in a manner consistent with the optimal model, and contradicting the independence assumption of the race model. More broadly, our findings contribute to the growing evidence that the computations underlying inhibitory control are systematically modulated by cognitive influences in a Bayes-optimal manner, thus opening new avenues for interpreting neural responses underlying inhibitory control.
Reduced state feedback gain computation. [optimization and control theory for aircraft control
NASA Technical Reports Server (NTRS)
Kaufman, H.
1976-01-01
Because application of conventional optimal linear regulator theory to flight controller design requires the capability of measuring and/or estimating the entire state vector, it is of interest to consider procedures for computing controls which are restricted to be linear feedback functions of a lower dimensional output vector and which take into account the presence of measurement noise and process uncertainty. Therefore, a stochastic linear model that was developed is presented which accounts for aircraft parameter and initial uncertainty, measurement noise, turbulence, pilot command and a restricted number of measurable outputs. Optimization with respect to the corresponding output feedback gains was performed for both finite and infinite time performance indices without gradient computation by using Zangwill's modification of a procedure originally proposed by Powell. Results using a seventh order process show the proposed procedures to be very effective.
Ant colony system algorithm for the optimization of beer fermentation control.
Xiao, Jie; Zhou, Ze-Kui; Zhang, Guang-Xin
2004-12-01
Beer fermentation is a dynamic process that must be guided along a temperature profile to obtain the desired results. Ant colony system algorithm was applied to optimize the kinetic model of this process. During a fixed period of fermentation time, a series of different temperature profiles of the mixture were constructed. An optimal one was chosen at last. Optimal temperature profile maximized the final ethanol production and minimized the byproducts concentration and spoilage risk. The satisfactory results obtained did not require much computation effort.
A Numerical Optimization Approach for Tuning Fuzzy Logic Controllers
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Garg, Devendra P.
1998-01-01
This paper develops a method to tune fuzzy controllers using numerical optimization. The main attribute of this approach is that it allows fuzzy logic controllers to be tuned to achieve global performance requirements. Furthermore, this approach allows design constraints to be implemented during the tuning process. The method tunes the controller by parameterizing the membership functions for error, change-in-error and control output. The resulting parameters form a design vector which is iteratively changed to minimize an objective function. The minimal objective function results in an optimal performance of the system. A spacecraft mounted science instrument line-of-sight pointing control is used to demonstrate results.
Meta-control of combustion performance with a data mining approach
NASA Astrophysics Data System (ADS)
Song, Zhe
Large scale combustion process is complex and proposes challenges of optimizing its performance. Traditional approaches based on thermal dynamics have limitations on finding optimal operational regions due to time-shift nature of the process. Recent advances in information technology enable people collect large volumes of process data easily and continuously. The collected process data contains rich information about the process and, to some extent, represents a digital copy of the process over time. Although large volumes of data exist in industrial combustion processes, they are not fully utilized to the level where the process can be optimized. Data mining is an emerging science which finds patterns or models from large data sets. It has found many successful applications in business marketing, medical and manufacturing domains The focus of this dissertation is on applying data mining to industrial combustion processes, and ultimately optimizing the combustion performance. However the philosophy, methods and frameworks discussed in this research can also be applied to other industrial processes. Optimizing an industrial combustion process has two major challenges. One is the underlying process model changes over time and obtaining an accurate process model is nontrivial. The other is that a process model with high fidelity is usually highly nonlinear, solving the optimization problem needs efficient heuristics. This dissertation is set to solve these two major challenges. The major contribution of this 4-year research is the data-driven solution to optimize the combustion process, where process model or knowledge is identified based on the process data, then optimization is executed by evolutionary algorithms to search for optimal operating regions.
Fuzzy Adaptive Control for Intelligent Autonomous Space Exploration Problems
NASA Technical Reports Server (NTRS)
Esogbue, Augustine O.
1998-01-01
The principal objective of the research reported here is the re-design, analysis and optimization of our newly developed neural network fuzzy adaptive controller model for complex processes capable of learning fuzzy control rules using process data and improving its control through on-line adaption. The learned improvement is according to a performance objective function that provides evaluative feedback; this performance objective is broadly defined to meet long-range goals over time. Although fuzzy control had proven effective for complex, nonlinear, imprecisely-defined processes for which standard models and controls are either inefficient, impractical or cannot be derived, the state of the art prior to our work showed that procedures for deriving fuzzy control, however, were mostly ad hoc heuristics. The learning ability of neural networks was exploited to systematically derive fuzzy control and permit on-line adaption and in the process optimize control. The operation of neural networks integrates very naturally with fuzzy logic. The neural networks which were designed and tested using simulation software and simulated data, followed by realistic industrial data were reconfigured for application on several platforms as well as for the employment of improved algorithms. The statistical procedures of the learning process were investigated and evaluated with standard statistical procedures (such as ANOVA, graphical analysis of residuals, etc.). The computational advantage of dynamic programming-like methods of optimal control was used to permit on-line fuzzy adaptive control. Tests for the consistency, completeness and interaction of the control rules were applied. Comparisons to other methods and controllers were made so as to identify the major advantages of the resulting controller model. Several specific modifications and extensions were made to the original controller. Additional modifications and explorations have been proposed for further study. Some of these are in progress in our laboratory while others await additional support. All of these enhancements will improve the attractiveness of the controller as an effective tool for the on line control of an array of complex process environments.
Results of an integrated structure/control law design sensitivity analysis
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.
1989-01-01
A design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations is discussed. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changes in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient than finite difference methods for the computation of the equivalent sensitivity information.
NASA Astrophysics Data System (ADS)
Sun, Chao; Zhang, Chunran; Gu, Xinfeng; Liu, Bin
2017-10-01
Constraints of the optimization objective are often unable to be met when predictive control is applied to industrial production process. Then, online predictive controller will not find a feasible solution or a global optimal solution. To solve this problem, based on Back Propagation-Auto Regressive with exogenous inputs (BP-ARX) combined control model, nonlinear programming method is used to discuss the feasibility of constrained predictive control, feasibility decision theorem of the optimization objective is proposed, and the solution method of soft constraint slack variables is given when the optimization objective is not feasible. Based on this, for the interval control requirements of the controlled variables, the slack variables that have been solved are introduced, the adaptive weighted interval predictive control algorithm is proposed, achieving adaptive regulation of the optimization objective and automatically adjust of the infeasible interval range, expanding the scope of the feasible region, and ensuring the feasibility of the interval optimization objective. Finally, feasibility and effectiveness of the algorithm is validated through the simulation comparative experiments.
Continuous Firefly Algorithm for Optimal Tuning of Pid Controller in Avr System
NASA Astrophysics Data System (ADS)
Bendjeghaba, Omar
2014-01-01
This paper presents a tuning approach based on Continuous firefly algorithm (CFA) to obtain the proportional-integral- derivative (PID) controller parameters in Automatic Voltage Regulator system (AVR). In the tuning processes the CFA is iterated to reach the optimal or the near optimal of PID controller parameters when the main goal is to improve the AVR step response characteristics. Conducted simulations show the effectiveness and the efficiency of the proposed approach. Furthermore the proposed approach can improve the dynamic of the AVR system. Compared with particle swarm optimization (PSO), the new CFA tuning method has better control system performance in terms of time domain specifications and set-point tracking.
Optimal control design of turbo spin‐echo sequences with applications to parallel‐transmit systems
Hoogduin, Hans; Hajnal, Joseph V.; van den Berg, Cornelis A. T.; Luijten, Peter R.; Malik, Shaihan J.
2016-01-01
Purpose The design of turbo spin‐echo sequences is modeled as a dynamic optimization problem which includes the case of inhomogeneous transmit radiofrequency fields. This problem is efficiently solved by optimal control techniques making it possible to design patient‐specific sequences online. Theory and Methods The extended phase graph formalism is employed to model the signal evolution. The design problem is cast as an optimal control problem and an efficient numerical procedure for its solution is given. The numerical and experimental tests address standard multiecho sequences and pTx configurations. Results Standard, analytically derived flip angle trains are recovered by the numerical optimal control approach. New sequences are designed where constraints on radiofrequency total and peak power are included. In the case of parallel transmit application, the method is able to calculate the optimal echo train for two‐dimensional and three‐dimensional turbo spin echo sequences in the order of 10 s with a single central processing unit (CPU) implementation. The image contrast is maintained through the whole field of view despite inhomogeneities of the radiofrequency fields. Conclusion The optimal control design sheds new light on the sequence design process and makes it possible to design sequences in an online, patient‐specific fashion. Magn Reson Med 77:361–373, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine PMID:26800383
An optimal open/closed-loop control method with application to a pre-stressed thin duralumin plate
NASA Astrophysics Data System (ADS)
Nadimpalli, Sruthi Raju
The excessive vibrations of a pre-stressed duralumin plate, suppressed by a combination of open-loop and closed-loop controls, also known as open/closed-loop control, is studied in this thesis. The two primary steps involved in this process are: Step (I) with an assumption that the closed-loop control law is proportional, obtain the optimal open-loop control by direct minimization of the performance measure consisting of energy at terminal time and a penalty on open-loop control force via calculus of variations. If the performance measure also involves a penalty on closed-loop control effort then a Fourier based method is utilized. Step (II) the energy at terminal time is minimized numerically to obtain optimal values of feedback gains. The optimal closed-loop control gains obtained are used to describe the displacement and the velocity of open-loop, closed-loop and open/closed-loop controlled duralumin plate.
Image processing occupancy sensor
Brackney, Larry J.
2016-09-27
A system and method of detecting occupants in a building automation system environment using image based occupancy detection and position determinations. In one example, the system includes an image processing occupancy sensor that detects the number and position of occupants within a space that has controllable building elements such as lighting and ventilation diffusers. Based on the position and location of the occupants, the system can finely control the elements to optimize conditions for the occupants, optimize energy usage, among other advantages.
NASA Astrophysics Data System (ADS)
Bashiri, Mahdi; Farshbaf-Geranmayeh, Amir; Mogouie, Hamed
2013-11-01
In this paper, a new method is proposed to optimize a multi-response optimization problem based on the Taguchi method for the processes where controllable factors are the smaller-the-better (STB)-type variables and the analyzer desires to find an optimal solution with smaller amount of controllable factors. In such processes, the overall output quality of the product should be maximized while the usage of the process inputs, the controllable factors, should be minimized. Since all possible combinations of factors' levels, are not considered in the Taguchi method, the response values of the possible unpracticed treatments are estimated using the artificial neural network (ANN). The neural network is tuned by the central composite design (CCD) and the genetic algorithm (GA). Then data envelopment analysis (DEA) is applied for determining the efficiency of each treatment. Although the important issue for implementation of DEA is its philosophy, which is maximization of outputs versus minimization of inputs, this important issue has been neglected in previous similar studies in multi-response problems. Finally, the most efficient treatment is determined using the maximin weight model approach. The performance of the proposed method is verified in a plastic molding process. Moreover a sensitivity analysis has been done by an efficiency estimator neural network. The results show efficiency of the proposed approach.
NASA Astrophysics Data System (ADS)
Okazaki, Yuji; Uno, Takanori; Asai, Hideki
In this paper, we propose an optimization system with parallel processing for reducing electromagnetic interference (EMI) on electronic control unit (ECU). We adopt simulated annealing (SA), genetic algorithm (GA) and taboo search (TS) to seek optimal solutions, and a Spice-like circuit simulator to analyze common-mode current. Therefore, the proposed system can determine the adequate combinations of the parasitic inductance and capacitance values on printed circuit board (PCB) efficiently and practically, to reduce EMI caused by the common-mode current. Finally, we apply the proposed system to an example circuit to verify the validity and efficiency of the system.
Optimal teaching strategy in periodic impulsive knowledge dissemination system.
Liu, Dan-Qing; Wu, Zhen-Qiang; Wang, Yu-Xin; Guo, Qiang; Liu, Jian-Guo
2017-01-01
Accurately describing the knowledge dissemination process is significant to enhance the performance of personalized education. In this study, considering the effect of periodic teaching activities on the learning process, we propose a periodic impulsive knowledge dissemination system to regenerate the knowledge dissemination process. Meanwhile, we put forward learning effectiveness which is an outcome of a trade-off between the benefits and costs raised by knowledge dissemination as objective function. Further, we investigate the optimal teaching strategy which can maximize learning effectiveness, to obtain the optimal effect of knowledge dissemination affected by the teaching activities. We solve this dynamic optimization problem by optimal control theory and get the optimization system. At last we numerically solve this system in several practical examples to make the conclusions intuitive and specific. The optimal teaching strategy proposed in this paper can be applied widely in the optimization problem of personal education and beneficial for enhancing the effect of knowledge dissemination.
Optimal teaching strategy in periodic impulsive knowledge dissemination system
Liu, Dan-Qing; Wu, Zhen-Qiang; Wang, Yu-Xin; Guo, Qiang
2017-01-01
Accurately describing the knowledge dissemination process is significant to enhance the performance of personalized education. In this study, considering the effect of periodic teaching activities on the learning process, we propose a periodic impulsive knowledge dissemination system to regenerate the knowledge dissemination process. Meanwhile, we put forward learning effectiveness which is an outcome of a trade-off between the benefits and costs raised by knowledge dissemination as objective function. Further, we investigate the optimal teaching strategy which can maximize learning effectiveness, to obtain the optimal effect of knowledge dissemination affected by the teaching activities. We solve this dynamic optimization problem by optimal control theory and get the optimization system. At last we numerically solve this system in several practical examples to make the conclusions intuitive and specific. The optimal teaching strategy proposed in this paper can be applied widely in the optimization problem of personal education and beneficial for enhancing the effect of knowledge dissemination. PMID:28665961
NASA Astrophysics Data System (ADS)
Mangaud, E.; Puthumpally-Joseph, R.; Sugny, D.; Meier, C.; Atabek, O.; Desouter-Lecomte, M.
2018-04-01
Optimal control theory is implemented with fully converged hierarchical equations of motion (HEOM) describing the time evolution of an open system density matrix strongly coupled to the bath in a spin-boson model. The populations of the two-level sub-system are taken as control objectives; namely, their revivals or exchange when switching off the field. We, in parallel, analyze how the optimal electric field consequently modifies the information back flow from the environment through different non-Markovian witnesses. Although the control field has a dipole interaction with the central sub-system only, its indirect influence on the bath collective mode dynamics is probed through HEOM auxiliary matrices, revealing a strong correlation between control and dissipation during a non-Markovian process. A heterojunction is taken as an illustrative example for modeling in a realistic way the two-level sub-system parameters and its spectral density function leading to a non-perturbative strong coupling regime with the bath. Although, due to strong system-bath couplings, control performances remain rather modest, the most important result is a noticeable increase of the non-Markovian bath response induced by the optimally driven processes.
Ludwig, T; Kern, P; Bongards, M; Wolf, C
2011-01-01
The optimization of relaxation and filtration times of submerged microfiltration flat modules in membrane bioreactors used for municipal wastewater treatment is essential for efficient plant operation. However, the optimization and control of such plants and their filtration processes is a challenging problem due to the underlying highly nonlinear and complex processes. This paper presents the use of genetic algorithms for this optimization problem in conjunction with a fully calibrated simulation model, as computational intelligence methods are perfectly suited to the nonconvex multi-objective nature of the optimization problems posed by these complex systems. The simulation model is developed and calibrated using membrane modules from the wastewater simulation software GPS-X based on the Activated Sludge Model No.1 (ASM1). Simulation results have been validated at a technical reference plant. They clearly show that filtration process costs for cleaning and energy can be reduced significantly by intelligent process optimization.
Tuning rules for robust FOPID controllers based on multi-objective optimization with FOPDT models.
Sánchez, Helem Sabina; Padula, Fabrizio; Visioli, Antonio; Vilanova, Ramon
2017-01-01
In this paper a set of optimally balanced tuning rules for fractional-order proportional-integral-derivative controllers is proposed. The control problem of minimizing at once the integrated absolute error for both the set-point and the load disturbance responses is addressed. The control problem is stated as a multi-objective optimization problem where a first-order-plus-dead-time process model subject to a robustness, maximum sensitivity based, constraint has been considered. A set of Pareto optimal solutions is obtained for different normalized dead times and then the optimal balance between the competing objectives is obtained by choosing the Nash solution among the Pareto-optimal ones. A curve fitting procedure has then been applied in order to generate suitable tuning rules. Several simulation results show the effectiveness of the proposed approach. Copyright © 2016. Published by Elsevier Ltd.
Statistical process control using optimized neural networks: a case study.
Addeh, Jalil; Ebrahimzadeh, Ata; Azarbad, Milad; Ranaee, Vahid
2014-09-01
The most common statistical process control (SPC) tools employed for monitoring process changes are control charts. A control chart demonstrates that the process has altered by generating an out-of-control signal. This study investigates the design of an accurate system for the control chart patterns (CCPs) recognition in two aspects. First, an efficient system is introduced that includes two main modules: feature extraction module and classifier module. In the feature extraction module, a proper set of shape features and statistical feature are proposed as the efficient characteristics of the patterns. In the classifier module, several neural networks, such as multilayer perceptron, probabilistic neural network and radial basis function are investigated. Based on an experimental study, the best classifier is chosen in order to recognize the CCPs. Second, a hybrid heuristic recognition system is introduced based on cuckoo optimization algorithm (COA) algorithm to improve the generalization performance of the classifier. The simulation results show that the proposed algorithm has high recognition accuracy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Optimal control solutions to sodic soil reclamation
NASA Astrophysics Data System (ADS)
Mau, Yair; Porporato, Amilcare
2016-05-01
We study the reclamation process of a sodic soil by irrigation with water amended with calcium cations. In order to explore the entire range of time-dependent strategies, this task is framed as an optimal control problem, where the amendment rate is the control and the total rehabilitation time is the quantity to be minimized. We use a minimalist model of vertically averaged soil salinity and sodicity, in which the main feedback controlling the dynamics is the nonlinear coupling of soil water and exchange complex, given by the Gapon equation. We show that the optimal solution is a bang-bang control strategy, where the amendment rate is discontinuously switched along the process from a maximum value to zero. The solution enables a reduction in remediation time of about 50%, compared with the continuous use of good-quality irrigation water. Because of its general structure, the bang-bang solution is also shown to work for the reclamation of other soil conditions, such as saline-sodic soils. The novelty in our modeling approach is the capability of searching the entire "strategy space" for optimal time-dependent protocols. The optimal solutions found for the minimalist model can be then fine-tuned by experiments and numerical simulations, applicable to realistic conditions that include spatial variability and heterogeneities.
Uncertainty, learning, and the optimal management of wildlife
Williams, B.K.
2001-01-01
Wildlife management is limited by uncontrolled and often unrecognized environmental variation, by limited capabilities to observe and control animal populations, and by a lack of understanding about the biological processes driving population dynamics. In this paper I describe a comprehensive framework for management that includes multiple models and likelihood values to account for structural uncertainty, along with stochastic factors to account for environmental variation, random sampling, and partial controllability. Adaptive optimization is developed in terms of the optimal control of incompletely understood populations, with the expected value of perfect information measuring the potential for improving control through learning. The framework for optimal adaptive control is generalized by including partial observability and non-adaptive, sample-based updating of model likelihoods. Passive adaptive management is derived as a special case of constrained adaptive optimization, representing a potentially efficient suboptimal alternative that nonetheless accounts for structural uncertainty.
Method of Optimizing the Construction of Machining, Assembly and Control Devices
NASA Astrophysics Data System (ADS)
Iordache, D. M.; Costea, A.; Niţu, E. L.; Rizea, A. D.; Babă, A.
2017-10-01
Industry dynamics, driven by economic and social requirements, must generate more interest in technological optimization, capable of ensuring a steady development of advanced technical means to equip machining processes. For these reasons, the development of tools, devices, work equipment and control, as well as the modernization of machine tools, is the certain solution to modernize production systems that require considerable time and effort. This type of approach is also related to our theoretical, experimental and industrial applications of recent years, presented in this paper, which have as main objectives the elaboration and use of mathematical models, new calculation methods, optimization algorithms, new processing and control methods, as well as some structures for the construction and configuration of technological equipment with a high level of performance and substantially reduced costs..
Hernandez, Wilmar
2007-01-01
In this paper a survey on recent applications of optimal signal processing techniques to improve the performance of mechanical sensors is made. Here, a comparison between classical filters and optimal filters for automotive sensors is made, and the current state of the art of the application of robust and optimal control and signal processing techniques to the design of the intelligent (or smart) sensors that today's cars need is presented through several experimental results that show that the fusion of intelligent sensors and optimal signal processing techniques is the clear way to go. However, the switch between the traditional methods of designing automotive sensors and the new ones cannot be done overnight because there are some open research issues that have to be solved. This paper draws attention to one of the open research issues and tries to arouse researcher's interest in the fusion of intelligent sensors and optimal signal processing techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Advani, S.H.; Lee, T.S.; Moon, H.
1992-10-01
The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracturemore » toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Advani, S.H.; Lee, T.S.; Moon, H.
1992-10-01
The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracturemore » toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.« less
Wang, Jun-Sheng; Yang, Guang-Hong
2017-07-25
This paper studies the optimal output-feedback control problem for unknown linear discrete-time systems with stochastic measurement and process noise. A dithered Bellman equation with the innovation covariance matrix is constructed via the expectation operator given in the form of a finite summation. On this basis, an output-feedback-based approximate dynamic programming method is developed, where the terms depending on the innovation covariance matrix are available with the aid of the innovation covariance matrix identified beforehand. Therefore, by iterating the Bellman equation, the resulting value function can converge to the optimal one in the presence of the aforementioned noise, and the nearly optimal control laws are delivered. To show the effectiveness and the advantages of the proposed approach, a simulation example and a velocity control experiment on a dc machine are employed.
Flight-Test Validation and Flying Qualities Evaluation of a Rotorcraft UAV Flight Control System
NASA Technical Reports Server (NTRS)
Mettler, Bernard; Tuschler, Mark B.; Kanade, Takeo
2000-01-01
This paper presents a process of design and flight-test validation and flying qualities evaluation of a flight control system for a rotorcraft-based unmanned aerial vehicle (RUAV). The keystone of this process is an accurate flight-dynamic model of the aircraft, derived by using system identification modeling. The model captures the most relevant dynamic features of our unmanned rotorcraft, and explicitly accounts for the presence of a stabilizer bar. Using the identified model we were able to determine the performance margins of our original control system and identify limiting factors. The performance limitations were addressed and the attitude control system was 0ptimize.d for different three performance levels: slow, medium, fast. The optimized control laws will be implemented in our RUAV. We will first determine the validity of our control design approach by flight test validating our optimized controllers. Subsequently, we will fly a series of maneuvers with the three optimized controllers to determine the level of flying qualities that can be attained. The outcome enable us to draw important conclusions on the flying qualities requirements for small-scale RUAVs.
NASA Technical Reports Server (NTRS)
Nobbs, Steven G.
1995-01-01
An overview of the performance seeking control (PSC) algorithm and details of the important components of the algorithm are given. The onboard propulsion system models, the linear programming optimization, and engine control interface are described. The PSC algorithm receives input from various computers on the aircraft including the digital flight computer, digital engine control, and electronic inlet control. The PSC algorithm contains compact models of the propulsion system including the inlet, engine, and nozzle. The models compute propulsion system parameters, such as inlet drag and fan stall margin, which are not directly measurable in flight. The compact models also compute sensitivities of the propulsion system parameters to change in control variables. The engine model consists of a linear steady state variable model (SSVM) and a nonlinear model. The SSVM is updated with efficiency factors calculated in the engine model update logic, or Kalman filter. The efficiency factors are used to adjust the SSVM to match the actual engine. The propulsion system models are mathematically integrated to form an overall propulsion system model. The propulsion system model is then optimized using a linear programming optimization scheme. The goal of the optimization is determined from the selected PSC mode of operation. The resulting trims are used to compute a new operating point about which the optimization process is repeated. This process is continued until an overall (global) optimum is reached before applying the trims to the controllers.
Potential use of advanced process control for safety purposes during attack of a process plant.
Whiteley, James R
2006-03-17
Many refineries and commodity chemical plants employ advanced process control (APC) systems to improve throughputs and yields. These APC systems utilize empirical process models for control purposes and enable operation closer to constraints than can be achieved with traditional PID regulatory feedback control. Substantial economic benefits are typically realized from the addition of APC systems. This paper considers leveraging the control capabilities of existing APC systems to minimize the potential impact of a terrorist attack on a process plant (e.g., petroleum refinery). Two potential uses of APC are described. The first is a conventional application of APC and involves automatically moving the process to a reduced operating rate when an attack first begins. The second is a non-conventional application and involves reconfiguring the APC system to optimize safety rather than economics. The underlying intent in both cases is to reduce the demands on the operator to allow focus on situation assessment and optimal response planning. An overview of APC is provided along with a brief description of the modifications required for the proposed new applications of the technology.
Control of Finite-State, Finite Memory Stochastic Systems
NASA Technical Reports Server (NTRS)
Sandell, Nils R.
1974-01-01
A generalized problem of stochastic control is discussed in which multiple controllers with different data bases are present. The vehicle for the investigation is the finite state, finite memory (FSFM) stochastic control problem. Optimality conditions are obtained by deriving an equivalent deterministic optimal control problem. A FSFM minimum principle is obtained via the equivalent deterministic problem. The minimum principle suggests the development of a numerical optimization algorithm, the min-H algorithm. The relationship between the sufficiency of the minimum principle and the informational properties of the problem are investigated. A problem of hypothesis testing with 1-bit memory is investigated to illustrate the application of control theoretic techniques to information processing problems.
Improving scanner wafer alignment performance by target optimization
NASA Astrophysics Data System (ADS)
Leray, Philippe; Jehoul, Christiane; Socha, Robert; Menchtchikov, Boris; Raghunathan, Sudhar; Kent, Eric; Schoonewelle, Hielke; Tinnemans, Patrick; Tuffy, Paul; Belen, Jun; Wise, Rich
2016-03-01
In the process nodes of 10nm and below, the patterning complexity along with the processing and materials required has resulted in a need to optimize alignment targets in order to achieve the required precision, accuracy and throughput performance. Recent industry publications on the metrology target optimization process have shown a move from the expensive and time consuming empirical methodologies, towards a faster computational approach. ASML's Design for Control (D4C) application, which is currently used to optimize YieldStar diffraction based overlay (DBO) metrology targets, has been extended to support the optimization of scanner wafer alignment targets. This allows the necessary process information and design methodology, used for DBO target designs, to be leveraged for the optimization of alignment targets. In this paper, we show how we applied this computational approach to wafer alignment target design. We verify the correlation between predictions and measurements for the key alignment performance metrics and finally show the potential alignment and overlay performance improvements that an optimized alignment target could achieve.
Online adaptation and over-trial learning in macaque visuomotor control.
Braun, Daniel A; Aertsen, Ad; Paz, Rony; Vaadia, Eilon; Rotter, Stefan; Mehring, Carsten
2011-01-01
When faced with unpredictable environments, the human motor system has been shown to develop optimized adaptation strategies that allow for online adaptation during the control process. Such online adaptation is to be contrasted to slower over-trial learning that corresponds to a trial-by-trial update of the movement plan. Here we investigate the interplay of both processes, i.e., online adaptation and over-trial learning, in a visuomotor experiment performed by macaques. We show that simple non-adaptive control schemes fail to perform in this task, but that a previously suggested adaptive optimal feedback control model can explain the observed behavior. We also show that over-trial learning as seen in learning and aftereffect curves can be explained by learning in a radial basis function network. Our results suggest that both the process of over-trial learning and the process of online adaptation are crucial to understand visuomotor learning.
Online Adaptation and Over-Trial Learning in Macaque Visuomotor Control
Braun, Daniel A.; Aertsen, Ad; Paz, Rony; Vaadia, Eilon; Rotter, Stefan; Mehring, Carsten
2011-01-01
When faced with unpredictable environments, the human motor system has been shown to develop optimized adaptation strategies that allow for online adaptation during the control process. Such online adaptation is to be contrasted to slower over-trial learning that corresponds to a trial-by-trial update of the movement plan. Here we investigate the interplay of both processes, i.e., online adaptation and over-trial learning, in a visuomotor experiment performed by macaques. We show that simple non-adaptive control schemes fail to perform in this task, but that a previously suggested adaptive optimal feedback control model can explain the observed behavior. We also show that over-trial learning as seen in learning and aftereffect curves can be explained by learning in a radial basis function network. Our results suggest that both the process of over-trial learning and the process of online adaptation are crucial to understand visuomotor learning. PMID:21720526
NASA Astrophysics Data System (ADS)
Saavedra, Juan Alejandro
Quality Control (QC) and Quality Assurance (QA) strategies vary significantly across industries in the manufacturing sector depending on the product being built. Such strategies range from simple statistical analysis and process controls, decision-making process of reworking, repairing, or scraping defective product. This study proposes an optimal QC methodology in order to include rework stations during the manufacturing process by identifying the amount and location of these workstations. The factors that are considered to optimize these stations are cost, cycle time, reworkability and rework benefit. The goal is to minimize the cost and cycle time of the process, but increase the reworkability and rework benefit. The specific objectives of this study are: (1) to propose a cost estimation model that includes energy consumption, and (2) to propose an optimal QC methodology to identify quantity and location of rework workstations. The cost estimation model includes energy consumption as part of the product direct cost. The cost estimation model developed allows the user to calculate product direct cost as the quality sigma level of the process changes. This provides a benefit because a complete cost estimation calculation does not need to be performed every time the processes yield changes. This cost estimation model is then used for the QC strategy optimization process. In order to propose a methodology that provides an optimal QC strategy, the possible factors that affect QC were evaluated. A screening Design of Experiments (DOE) was performed on seven initial factors and identified 3 significant factors. It reflected that one response variable was not required for the optimization process. A full factorial DOE was estimated in order to verify the significant factors obtained previously. The QC strategy optimization is performed through a Genetic Algorithm (GA) which allows the evaluation of several solutions in order to obtain feasible optimal solutions. The GA evaluates possible solutions based on cost, cycle time, reworkability and rework benefit. Finally it provides several possible solutions because this is a multi-objective optimization problem. The solutions are presented as chromosomes that clearly state the amount and location of the rework stations. The user analyzes these solutions in order to select one by deciding which of the four factors considered is most important depending on the product being manufactured or the company's objective. The major contribution of this study is to provide the user with a methodology used to identify an effective and optimal QC strategy that incorporates the number and location of rework substations in order to minimize direct product cost, and cycle time, and maximize reworkability, and rework benefit.
Optimal control of build height utilizing optical profilometry in cold spray deposits
NASA Astrophysics Data System (ADS)
Chakraborty, Abhijit; Shishkin, Sergey; Birnkrant, Michael J.
2017-04-01
Part-to-part variability and poor part quality due to failure to maintain geometric specifications pose a challenge for adopting Additive Manufacturing (AM) as a viable manufacturing process. In recent years, In-process Monitoring and Control (InPMC) has received a lot of attention as an approach to overcome these obstacles. The ability to sense geometry of the deposited layers accurately enables effective process monitoring and control of AM application. This paper demonstrates an application of geometry sensing technique for the coating deposition Cold Spray process, where solid powders are accelerated through a nozzle, collides with the substrate and adheres to it. Often the deposited surface has shape irregularities. This paper proposes an approach to suppress the iregularities by controlling the deposition height. An analytical control-oriented model is developed that expresses the resulting height of deposit as an integral function of nozzle velocity and angle. In order to obtain height information at each layer, a Micro-Epsilon laser line scanner was used for surface profiling after each deposition. This surface profile information, specifically the layer height, was then fed back to an optimal control algorithm which manipulated the nozzle speed to control the layer height to a pre specified height. While the problem is heavily nonlinear, we were able to transform it into equivalent Optimal Control problem linear w.r.t. input. That enabled development of two solution methods: one is fast and approximate, while another is more accurate but still efficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beltran, C; Kamal, H
Purpose: To provide a multicriteria optimization algorithm for intensity modulated radiation therapy using pencil proton beam scanning. Methods: Intensity modulated radiation therapy using pencil proton beam scanning requires efficient optimization algorithms to overcome the uncertainties in the Bragg peaks locations. This work is focused on optimization algorithms that are based on Monte Carlo simulation of the treatment planning and use the weights and the dose volume histogram (DVH) control points to steer toward desired plans. The proton beam treatment planning process based on single objective optimization (representing a weighted sum of multiple objectives) usually leads to time-consuming iterations involving treatmentmore » planning team members. We proved a time efficient multicriteria optimization algorithm that is developed to run on NVIDIA GPU (Graphical Processing Units) cluster. The multicriteria optimization algorithm running time benefits from up-sampling of the CT voxel size of the calculations without loss of fidelity. Results: We will present preliminary results of Multicriteria optimization for intensity modulated proton therapy based on DVH control points. The results will show optimization results of a phantom case and a brain tumor case. Conclusion: The multicriteria optimization of the intensity modulated radiation therapy using pencil proton beam scanning provides a novel tool for treatment planning. Work support by a grant from Varian Inc.« less
Liu, Derong; Wang, Ding; Wang, Fei-Yue; Li, Hongliang; Yang, Xiong
2014-12-01
In this paper, the infinite horizon optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems is investigated using neural-network-based online solution of Hamilton-Jacobi-Bellman (HJB) equation. By establishing an appropriate bounded function and defining a modified cost function, the optimal robust guaranteed cost control problem is transformed into an optimal control problem. It can be observed that the optimal cost function of the nominal system is nothing but the optimal guaranteed cost of the original uncertain system. A critic neural network is constructed to facilitate the solution of the modified HJB equation corresponding to the nominal system. More importantly, an additional stabilizing term is introduced for helping to verify the stability, which reinforces the updating process of the weight vector and reduces the requirement of an initial stabilizing control. The uniform ultimate boundedness of the closed-loop system is analyzed by using the Lyapunov approach as well. Two simulation examples are provided to verify the effectiveness of the present control approach.
Model-Based PAT for Quality Management in Pharmaceuticals Freeze-Drying: State of the Art
Fissore, Davide
2017-01-01
Model-based process analytical technologies can be used for the in-line control and optimization of a pharmaceuticals freeze-drying process, as well as for the off-line design of the process, i.e., the identification of the optimal operating conditions. This paper aims at presenting the state of the art in this field, focusing, particularly, on three groups of systems, namely, those based on the temperature measurement (i.e., the soft sensor), on the chamber pressure measurement (i.e., the systems based on the test of pressure rise and of pressure decrease), and on the sublimation flux estimate (i.e., the tunable diode laser absorption spectroscopy and the valveless monitoring system). The application of these systems for in-line process optimization (e.g., using a model predictive control algorithm) and to get a true quality by design (e.g., through the off-line calculation of the design space of the process) is presented and discussed. PMID:28224123
Peng, Jiansheng; Meng, Fanmei; Ai, Yuncan
2013-06-01
The artificial neural network (ANN) and genetic algorithm (GA) were combined to optimize the fermentation process for enhancing production of marine bacteriocin 1701 in a 5-L-stirred-tank. Fermentation time, pH value, dissolved oxygen level, temperature and turbidity were used to construct a "5-10-1" ANN topology to identify the nonlinear relationship between fermentation parameters and the antibiotic effects (shown as in inhibition diameters) of bacteriocin 1701. The predicted values by the trained ANN model were coincided with the observed ones (the coefficient of R(2) was greater than 0.95). As the fermentation time was brought in as one of the ANN input nodes, fermentation parameters could be optimized by stages through GA, and an optimal fermentation process control trajectory was created. The production of marine bacteriocin 1701 was significantly improved by 26% under the guidance of fermentation control trajectory that was optimized by using of combined ANN-GA method. Copyright © 2013 Elsevier Ltd. All rights reserved.
Multiobjective optimization of low impact development stormwater controls
NASA Astrophysics Data System (ADS)
Eckart, Kyle; McPhee, Zach; Bolisetti, Tirupati
2018-07-01
Green infrastructure such as Low Impact Development (LID) controls are being employed to manage the urban stormwater and restore the predevelopment hydrological conditions besides improving the stormwater runoff water quality. Since runoff generation and infiltration processes are nonlinear, there is a need for identifying optimal combination of LID controls. A coupled optimization-simulation model was developed by linking the U.S. EPA Stormwater Management Model (SWMM) to the Borg Multiobjective Evolutionary Algorithm (Borg MOEA). The coupled model is capable of performing multiobjective optimization which uses SWMM simulations as a tool to evaluate potential solutions to the optimization problem. The optimization-simulation tool was used to evaluate low impact development (LID) stormwater controls. A SWMM model was developed, calibrated, and validated for a sewershed in Windsor, Ontario and LID stormwater controls were tested for three different return periods. LID implementation strategies were optimized using the optimization-simulation model for five different implementation scenarios for each of the three storm events with the objectives of minimizing peak flow in the stormsewers, reducing total runoff, and minimizing cost. For the sewershed in Windsor, Ontario, the peak run off and total volume of the runoff were found to reduce by 13% and 29%, respectively.
APC implementation in Chandra Asri - ethylene plant
NASA Astrophysics Data System (ADS)
Sidiq, Mochamad; Mustofa, Ali
2017-05-01
Nowadays, the modern process plants are continuously improved for maximizing production, Optimization of the energy and raw material and reducing the risk. Due to many disturbances appearance between the process units, hence, the failure of one unit might have a bad effect on the overall productivity. Ethylene Plant have significant opportunities for using Advanced Process Control (APC) technologies to improve operation stability, push closer to quality or equipment limit, and improve the capability of process units to handle disturbances. APC implementation had considered a best answer for solving multivariable control problem. PT. Chandra Asri Petrochemical, Tbk (CAP) operates a large naphtha cracker complex at Cilegon, Indonesia. To optimize the plant operation and to enhance the benefit, Chandra Asri has been decided to implement Advance Process Control (APC) for ethylene plant. The APC implementation technology scopes at CAP are as follows: 1. Hot Section : Furnaces, Quench Tower 2. Cold Section : Demethanizer, Deethanizer, Acetylene Converter, Ethylene Fractionator, Depropanizer, Propylene Fractionator, Debutanizer
Carius, Lisa; Rumschinski, Philipp; Faulwasser, Timm; Flockerzi, Dietrich; Grammel, Hartmut; Findeisen, Rolf
2014-04-01
Microaerobic (oxygen-limited) conditions are critical for inducing many important microbial processes in industrial or environmental applications. At very low oxygen concentrations, however, the process performance often suffers from technical limitations. Available dissolved oxygen measurement techniques are not sensitive enough and thus control techniques, that can reliable handle these conditions, are lacking. Recently, we proposed a microaerobic process control strategy, which overcomes these restrictions and allows to assess different degrees of oxygen limitation in bioreactor batch cultivations. Here, we focus on the design of a control strategy for the automation of oxygen-limited continuous cultures using the microaerobic formation of photosynthetic membranes (PM) in Rhodospirillum rubrum as model phenomenon. We draw upon R. rubrum since the considered phenomenon depends on the optimal availability of mixed-carbon sources, hence on boundary conditions which make the process performance challenging. Empirically assessing these specific microaerobic conditions is scarcely practicable as such a process reacts highly sensitive to changes in the substrate composition and the oxygen availability in the culture broth. Therefore, we propose a model-based process control strategy which allows to stabilize steady-states of cultures grown under these conditions. As designing the appropriate strategy requires a detailed knowledge of the system behavior, we begin by deriving and validating an unstructured process model. This model is used to optimize the experimental conditions, and identify properties of the system which are critical for process performance. The derived model facilitates the good process performance via the proposed optimal control strategy. In summary the presented model-based control strategy allows to access and maintain microaerobic steady-states of interest and to precisely and efficiently transfer the culture from one stable microaerobic steady-state into another. Therefore, the presented approach is a valuable tool to study regulatory mechanisms of microaerobic phenomena in response to oxygen limitation alone. Biotechnol. Bioeng. 2014;111: 734-747. © 2013 Wiley Periodicals, Inc. © 2013 Wiley Periodicals, Inc.
Trends in Process Analytical Technology: Present State in Bioprocessing.
Jenzsch, Marco; Bell, Christian; Buziol, Stefan; Kepert, Felix; Wegele, Harald; Hakemeyer, Christian
2017-08-04
Process analytical technology (PAT), the regulatory initiative for incorporating quality in pharmaceutical manufacturing, is an area of intense research and interest. If PAT is effectively applied to bioprocesses, this can increase process understanding and control, and mitigate the risk from substandard drug products to both manufacturer and patient. To optimize the benefits of PAT, the entire PAT framework must be considered and each elements of PAT must be carefully selected, including sensor and analytical technology, data analysis techniques, control strategies and algorithms, and process optimization routines. This chapter discusses the current state of PAT in the biopharmaceutical industry, including several case studies demonstrating the degree of maturity of various PAT tools. Graphical Abstract Hierarchy of QbD components.
Parameter meta-optimization of metaheuristics of solving specific NP-hard facility location problem
NASA Astrophysics Data System (ADS)
Skakov, E. S.; Malysh, V. N.
2018-03-01
The aim of the work is to create an evolutionary method for optimizing the values of the control parameters of metaheuristics of solving the NP-hard facility location problem. A system analysis of the tuning process of optimization algorithms parameters is carried out. The problem of finding the parameters of a metaheuristic algorithm is formulated as a meta-optimization problem. Evolutionary metaheuristic has been chosen to perform the task of meta-optimization. Thus, the approach proposed in this work can be called “meta-metaheuristic”. Computational experiment proving the effectiveness of the procedure of tuning the control parameters of metaheuristics has been performed.
A new strategy of glucose supply in a microbial fermentation model
NASA Astrophysics Data System (ADS)
Kasbawati, Gunawan, A. Y.; Sidarto, K. A.; Hertadi, R.
2015-09-01
Strategy of glucose supply to achieve an optimal productivity of ethanol production of a yeast cell is one of the main features in a microbial fermentation process. Beside a known continuous glucose supply, in this study we consider a new supply strategy so called the on-off supply. An optimal control theory is applied to the fermentation system to find the optimal rate of glucose supply and time of supply. The optimization problem is solved numerically using Differential Evolutionary algorithm. We find two alternative solutions that we can choose to get the similar result: either long period process with low supply or short period process with high glucose supply.
Hybrid Quantum-Classical Approach to Quantum Optimal Control.
Li, Jun; Yang, Xiaodong; Peng, Xinhua; Sun, Chang-Pu
2017-04-14
A central challenge in quantum computing is to identify more computational problems for which utilization of quantum resources can offer significant speedup. Here, we propose a hybrid quantum-classical scheme to tackle the quantum optimal control problem. We show that the most computationally demanding part of gradient-based algorithms, namely, computing the fitness function and its gradient for a control input, can be accomplished by the process of evolution and measurement on a quantum simulator. By posing queries to and receiving answers from the quantum simulator, classical computing devices update the control parameters until an optimal control solution is found. To demonstrate the quantum-classical scheme in experiment, we use a seven-qubit nuclear magnetic resonance system, on which we have succeeded in optimizing state preparation without involving classical computation of the large Hilbert space evolution.
Li, Nailu; Mu, Anle; Yang, Xiyun; Magar, Kaman T; Liu, Chao
2018-05-01
The optimal tuning of adaptive flap controller can improve adaptive flap control performance on uncertain operating environments, but the optimization process is usually time-consuming and it is difficult to design proper optimal tuning strategy for the flap control system (FCS). To solve this problem, a novel adaptive flap controller is designed based on a high-efficient differential evolution (DE) identification technique and composite adaptive internal model control (CAIMC) strategy. The optimal tuning can be easily obtained by DE identified inverse of the FCS via CAIMC structure. To achieve fast tuning, a high-efficient modified adaptive DE algorithm is proposed with new mutant operator and varying range adaptive mechanism for the FCS identification. A tradeoff between optimized adaptive flap control and low computation cost is successfully achieved by proposed controller. Simulation results show the robustness of proposed method and its superiority to conventional adaptive IMC (AIMC) flap controller and the CAIMC flap controllers using other DE algorithms on various uncertain operating conditions. The high computation efficiency of proposed controller is also verified based on the computation time on those operating cases. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Deterministic Computer-Controlled Polishing Process for High-Energy X-Ray Optics
NASA Technical Reports Server (NTRS)
Khan, Gufran S.; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian
2010-01-01
A deterministic computer-controlled polishing process for large X-ray mirror mandrels is presented. Using tool s influence function and material removal rate extracted from polishing experiments, design considerations of polishing laps and optimized operating parameters are discussed
Das, Saptarshi; Pan, Indranil; Das, Shantanu
2013-07-01
Fuzzy logic based PID controllers have been studied in this paper, considering several combinations of hybrid controllers by grouping the proportional, integral and derivative actions with fuzzy inferencing in different forms. Fractional order (FO) rate of error signal and FO integral of control signal have been used in the design of a family of decomposed hybrid FO fuzzy PID controllers. The input and output scaling factors (SF) along with the integro-differential operators are tuned with real coded genetic algorithm (GA) to produce optimum closed loop performance by simultaneous consideration of the control loop error index and the control signal. Three different classes of fractional order oscillatory processes with various levels of relative dominance between time constant and time delay have been used to test the comparative merits of the proposed family of hybrid fractional order fuzzy PID controllers. Performance comparison of the different FO fuzzy PID controller structures has been done in terms of optimal set-point tracking, load disturbance rejection and minimal variation of manipulated variable or smaller actuator requirement etc. In addition, multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used to study the Pareto optimal trade-offs between the set point tracking and control signal, and the set point tracking and load disturbance performance for each of the controller structure to handle the three different types of processes. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Optimized method for manufacturing large aspheric surfaces
NASA Astrophysics Data System (ADS)
Zhou, Xusheng; Li, Shengyi; Dai, Yifan; Xie, Xuhui
2007-12-01
Aspheric optics are being used more and more widely in modern optical systems, due to their ability of correcting aberrations, enhancing image quality, enlarging the field of view and extending the range of effect, while reducing the weight and volume of the system. With optical technology development, we have more pressing requirement to large-aperture and high-precision aspheric surfaces. The original computer controlled optical surfacing (CCOS) technique cannot meet the challenge of precision and machining efficiency. This problem has been thought highly of by researchers. Aiming at the problem of original polishing process, an optimized method for manufacturing large aspheric surfaces is put forward. Subsurface damage (SSD), full aperture errors and full band of frequency errors are all in control of this method. Lesser SSD depth can be gained by using little hardness tool and small abrasive grains in grinding process. For full aperture errors control, edge effects can be controlled by using smaller tools and amendment model with material removal function. For full band of frequency errors control, low frequency errors can be corrected with the optimized material removal function, while medium-high frequency errors by using uniform removing principle. With this optimized method, the accuracy of a K9 glass paraboloid mirror can reach rms 0.055 waves (where a wave is 0.6328μm) in a short time. The results show that the optimized method can guide large aspheric surface manufacturing effectively.
A Dynamic Process Model for Optimizing the Hospital Environment Cash-Flow
NASA Astrophysics Data System (ADS)
Pater, Flavius; Rosu, Serban
2011-09-01
In this article is presented a new approach to some fundamental techniques of solving dynamic programming problems with the use of functional equations. We will analyze the problem of minimizing the cost of treatment in a hospital environment. Mathematical modeling of this process leads to an optimal control problem with a finite horizon.
Asymptotically suboptimal control of weakly interconnected dynamical systems
NASA Astrophysics Data System (ADS)
Dmitruk, N. M.; Kalinin, A. I.
2016-10-01
Optimal control problems for a group of systems with weak dynamical interconnections between its constituent subsystems are considered. A method for decentralized control is proposed which distributes the control actions between several controllers calculating in real time control inputs only for theirs subsystems based on the solution of the local optimal control problem. The local problem is solved by asymptotic methods that employ the representation of the weak interconnection by a small parameter. Combination of decentralized control and asymptotic methods allows to significantly reduce the dimension of the problems that have to be solved in the course of the control process.
Optimal Control of the Valve Based on Traveling Wave Method in the Water Hammer Process
NASA Astrophysics Data System (ADS)
Cao, H. Z.; Wang, F.; Feng, J. L.; Tan, H. P.
2011-09-01
Valve regulation is an effective method for process control during the water hammer. The principle of d'Alembert traveling wave theory was used in this paper to construct the exact analytical solution of the water hammer, and the optimal speed law of the valve that can reduce the water hammer pressure in the maximum extent was obtained. Combining this law with the valve characteristic curve, the principle corresponding to the valve opening changing with time was obtained, which can be used to guide the process of valve closing and to reduce the water hammer pressure in the maximum extent.
NASA Astrophysics Data System (ADS)
Azwar; Hussain, M. A.; Abdul-Wahab, A. K.; Zanil, M. F.; Mukhlishien
2018-03-01
One of major challenge in bio-hydrogen production process by using MEC process is nonlinear and highly complex system. This is mainly due to the presence of microbial interactions and highly complex phenomena in the system. Its complexity makes MEC system difficult to operate and control under optimal conditions. Thus, precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. In this work, two schemes for controlling the current and voltage of MEC were evaluated. The controllers evaluated are PID and Inverse neural network (NN) controller. The comparative study has been carried out under optimal condition for the production of bio-hydrogen gas wherein the controller output is based on the correlation of optimal current and voltage to the MEC. Various simulation tests involving multiple set-point changes and disturbances rejection have been evaluated and the performances of both controllers are discussed. The neural network-based controller results in fast response time and less overshoots while the offset effects are minimal. In conclusion, the Inverse neural network (NN)-based controllers provide better control performance for the MEC system compared to the PID controller.
Liu, Zeyu; Su, Zhetong; Yang, Ming; Zou, Wenquan
2010-10-01
To screen the factors that affect indirubin-generated significantly in the process of preparing indigo naturalis, optimize level combination and determine the optimum technology for indirubin-generated. Using concentration of indirubin (mg x g(-1)) that generated by fresh leaf as an index, Plackett-Burman design, Box-Behnken design response surface analysis as the statistical method, we screened the significantly influencing factors and the optimal level combination. The soaking and making indirubin process in preparing indigo naturalis was identified as the wax is not removed before immersion with immersion pH 7, solvent volume-leaf weight (mL: g)15, soaked not avoided light, soaking 48 h, temperature 60 degrees C, ventilation time of 180 min, and added ammonia water to adjust pH to 10.5. The soaking and making indirubin process in preparing indigo naturalis is optimized systematically. It clarify the various factors on the impact of the active ingredient indirubin which controlled by industrialized production become reality in the process of preparing indigo naturalis, at the same time, it lay the foundation for processing principle of indigo naturalis.
Correlations in state space can cause sub-optimal adaptation of optimal feedback control models.
Aprasoff, Jonathan; Donchin, Opher
2012-04-01
Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedback control (OFC) framework of control theory. OFC is a powerful tool for describing motor control, it does not describe adaptation. Some assume that adaptation of the forward model alone could explain motor adaptation, but this is widely understood to be overly simplistic. However, an adaptive optimal controller is difficult to implement. A reasonable alternative is to allow forward model adaptation to 're-tune' the controller. Our simulations show that, as expected, forward model adaptation alone does not produce optimal trajectories during reaching movements perturbed by force fields. However, they also show that re-optimizing the controller from the forward model can be sub-optimal. This is because, in a system with state correlations or redundancies, accurate prediction requires different information than optimal control. We find that adding noise to the movements that matches noise found in human data is enough to overcome this problem. However, since the state space for control of real movements is far more complex than in our simple simulations, the effects of correlations on re-adaptation of the controller from the forward model cannot be overlooked.
Co-optimization of CO 2 -EOR and Storage Processes under Geological Uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ampomah, William; Balch, Robert; Will, Robert
This paper presents an integrated numerical framework to co-optimize EOR and CO 2 storage performance in the Farnsworth field unit (FWU), Ochiltree County, Texas. The framework includes a field-scale compositional reservoir flow model, an uncertainty quantification model and a neural network optimization process. The reservoir flow model has been constructed based on the field geophysical, geological, and engineering data. A laboratory fluid analysis was tuned to an equation of state and subsequently used to predict the thermodynamic minimum miscible pressure (MMP). A history match of primary and secondary recovery processes was conducted to estimate the reservoir and multiphase flow parametersmore » as the baseline case for analyzing the effect of recycling produced gas, infill drilling and water alternating gas (WAG) cycles on oil recovery and CO 2 storage. A multi-objective optimization model was defined for maximizing both oil recovery and CO 2 storage. The uncertainty quantification model comprising the Latin Hypercube sampling, Monte Carlo simulation, and sensitivity analysis, was used to study the effects of uncertain variables on the defined objective functions. Uncertain variables such as bottom hole injection pressure, WAG cycle, injection and production group rates, and gas-oil ratio among others were selected. The most significant variables were selected as control variables to be used for the optimization process. A neural network optimization algorithm was utilized to optimize the objective function both with and without geological uncertainty. The vertical permeability anisotropy (Kv/Kh) was selected as one of the uncertain parameters in the optimization process. The simulation results were compared to a scenario baseline case that predicted CO 2 storage of 74%. The results showed an improved approach for optimizing oil recovery and CO 2 storage in the FWU. The optimization process predicted more than 94% of CO 2 storage and most importantly about 28% of incremental oil recovery. The sensitivity analysis reduced the number of control variables to decrease computational time. A risk aversion factor was used to represent results at various confidence levels to assist management in the decision-making process. The defined objective functions were proved to be a robust approach to co-optimize oil recovery and CO 2 storage. The Farnsworth CO 2 project will serve as a benchmark for future CO 2–EOR or CCUS projects in the Anadarko basin or geologically similar basins throughout the world.« less
Co-optimization of CO 2 -EOR and Storage Processes under Geological Uncertainty
Ampomah, William; Balch, Robert; Will, Robert; ...
2017-07-01
This paper presents an integrated numerical framework to co-optimize EOR and CO 2 storage performance in the Farnsworth field unit (FWU), Ochiltree County, Texas. The framework includes a field-scale compositional reservoir flow model, an uncertainty quantification model and a neural network optimization process. The reservoir flow model has been constructed based on the field geophysical, geological, and engineering data. A laboratory fluid analysis was tuned to an equation of state and subsequently used to predict the thermodynamic minimum miscible pressure (MMP). A history match of primary and secondary recovery processes was conducted to estimate the reservoir and multiphase flow parametersmore » as the baseline case for analyzing the effect of recycling produced gas, infill drilling and water alternating gas (WAG) cycles on oil recovery and CO 2 storage. A multi-objective optimization model was defined for maximizing both oil recovery and CO 2 storage. The uncertainty quantification model comprising the Latin Hypercube sampling, Monte Carlo simulation, and sensitivity analysis, was used to study the effects of uncertain variables on the defined objective functions. Uncertain variables such as bottom hole injection pressure, WAG cycle, injection and production group rates, and gas-oil ratio among others were selected. The most significant variables were selected as control variables to be used for the optimization process. A neural network optimization algorithm was utilized to optimize the objective function both with and without geological uncertainty. The vertical permeability anisotropy (Kv/Kh) was selected as one of the uncertain parameters in the optimization process. The simulation results were compared to a scenario baseline case that predicted CO 2 storage of 74%. The results showed an improved approach for optimizing oil recovery and CO 2 storage in the FWU. The optimization process predicted more than 94% of CO 2 storage and most importantly about 28% of incremental oil recovery. The sensitivity analysis reduced the number of control variables to decrease computational time. A risk aversion factor was used to represent results at various confidence levels to assist management in the decision-making process. The defined objective functions were proved to be a robust approach to co-optimize oil recovery and CO 2 storage. The Farnsworth CO 2 project will serve as a benchmark for future CO 2–EOR or CCUS projects in the Anadarko basin or geologically similar basins throughout the world.« less
Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa
2013-04-09
Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.
NASA Astrophysics Data System (ADS)
Shorikov, A. F.; Butsenko, E. V.
2017-10-01
This paper discusses the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. On the basis of network modeling proposed a new economic and mathematical model and a method for solving the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. Network economic and mathematical modeling allows you to determine the optimal time and calendar schedule for the implementation of the investment project and serves as an instrument to increase the economic potential and competitiveness of the enterprise. On a meaningful practical example, the processes of forming network models are shown, including the definition of the sequence of actions of a particular investment projecting process, the network-based work schedules are constructed. The calculation of the parameters of network models is carried out. Optimal (critical) paths have been formed and the optimal time for implementing the chosen technologies of the investment project has been calculated. It also shows the selection of the optimal technology from a set of possible technologies for project implementation, taking into account the time and cost of the work. The proposed model and method for solving the problem of managing investment projects can serve as a basis for the development, creation and application of appropriate computer information systems to support the adoption of managerial decisions by business people.
Depression screening optimization in an academic rural setting.
Aleem, Sohaib; Torrey, William C; Duncan, Mathew S; Hort, Shoshana J; Mecchella, John N
2015-01-01
Primary care plays a critical role in screening and management of depression. The purpose of this paper is to focus on leveraging the electronic health record (EHR) as well as work flow redesign to improve the efficiency and reliability of the process of depression screening in two adult primary care clinics of a rural academic institution in USA. The authors utilized various process improvement tools from lean six sigma methodology including project charter, swim lane process maps, critical to quality tree, process control charts, fishbone diagrams, frequency impact matrix, mistake proofing and monitoring plan in Define-Measure-Analyze-Improve-Control format. Interventions included change in depression screening tool, optimization of data entry in EHR. EHR data entry optimization; follow up of positive screen, staff training and EHR redesign. Depression screening rate for office-based primary care visits improved from 17.0 percent at baseline to 75.9 percent in the post-intervention control phase (p<0.001). Follow up of positive depression screen with Patient History Questionnaire-9 data collection remained above 90 percent. Duplication of depression screening increased from 0.6 percent initially to 11.7 percent and then decreased to 4.7 percent after optimization of data entry by patients and flow staff. Impact of interventions on clinical outcomes could not be evaluated. Successful implementation, sustainability and revision of a process improvement initiative to facilitate screening, follow up and management of depression in primary care requires accounting for voice of the process (performance metrics), system limitations and voice of the customer (staff and patients) to overcome various system, customer and human resource constraints.
Parameterized data-driven fuzzy model based optimal control of a semi-batch reactor.
Kamesh, Reddi; Rani, K Yamuna
2016-09-01
A parameterized data-driven fuzzy (PDDF) model structure is proposed for semi-batch processes, and its application for optimal control is illustrated. The orthonormally parameterized input trajectories, initial states and process parameters are the inputs to the model, which predicts the output trajectories in terms of Fourier coefficients. Fuzzy rules are formulated based on the signs of a linear data-driven model, while the defuzzification step incorporates a linear regression model to shift the domain from input to output domain. The fuzzy model is employed to formulate an optimal control problem for single rate as well as multi-rate systems. Simulation study on a multivariable semi-batch reactor system reveals that the proposed PDDF modeling approach is capable of capturing the nonlinear and time-varying behavior inherent in the semi-batch system fairly accurately, and the results of operating trajectory optimization using the proposed model are found to be comparable to the results obtained using the exact first principles model, and are also found to be comparable to or better than parameterized data-driven artificial neural network model based optimization results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Englander, Jacob
2016-01-01
Preliminary design of interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on notional high-thrust chemical and low-thrust electric propulsion missions. In the low-thrust case, the hybrid optimal control problem is augmented to include systems design optimization.
Co-optimization of lithographic and patterning processes for improved EPE performance
NASA Astrophysics Data System (ADS)
Maslow, Mark J.; Timoshkov, Vadim; Kiers, Ton; Jee, Tae Kwon; de Loijer, Peter; Morikita, Shinya; Demand, Marc; Metz, Andrew W.; Okada, Soichiro; Kumar, Kaushik A.; Biesemans, Serge; Yaegashi, Hidetami; Di Lorenzo, Paolo; Bekaert, Joost P.; Mao, Ming; Beral, Christophe; Larivière, Stephane
2017-03-01
Complimentary lithography is already being used for advanced logic patterns. The tight pitches for 1D Metal layers are expected to be created using spacer based multiple patterning ArF-i exposures and the more complex cut/block patterns are made using EUV exposures. At the same time, control requirements of CDU, pattern shift and pitch-walk are approaching sub-nanometer levels to meet edge placement error (EPE) requirements. Local variability, such as Line Edge Roughness (LER), Local CDU, and Local Placement Error (LPE), are dominant factors in the total Edge Placement error budget. In the lithography process, improving the imaging contrast when printing the core pattern has been shown to improve the local variability. In the etch process, it has been shown that the fusion of atomic level etching and deposition can also improve these local variations. Co-optimization of lithography and etch processing is expected to further improve the performance over individual optimizations alone. To meet the scaling requirements and keep process complexity to a minimum, EUV is increasingly seen as the platform for delivering the exposures for both the grating and the cut/block patterns beyond N7. In this work, we evaluated the overlay and pattern fidelity of an EUV block printed in a negative tone resist on an ArF-i SAQP grating. High-order Overlay modeling and corrections during the exposure can reduce overlay error after development, a significant component of the total EPE. During etch, additional degrees of freedom are available to improve the pattern placement error in single layer processes. Process control of advanced pitch nanoscale-multi-patterning techniques as described above is exceedingly complicated in a high volume manufacturing environment. Incorporating potential patterning optimizations into both design and HVM controls for the lithography process is expected to bring a combined benefit over individual optimizations. In this work we will show the EPE performance improvement for a 32nm pitch SAQP + block patterned Metal 2 layer by cooptimizing the lithography and etch processes. Recommendations for further improvements and alternative processes will be given.
Pinto Mariano, Adriano; Bastos Borba Costa, Caliane; de Franceschi de Angelis, Dejanira; Maugeri Filho, Francisco; Pires Atala, Daniel Ibraim; Wolf Maciel, Maria Regina; Maciel Filho, Rubens
2009-11-01
In this work, the mathematical optimization of a continuous flash fermentation process for the production of biobutanol was studied. The process consists of three interconnected units, as follows: fermentor, cell-retention system (tangential microfiltration), and vacuum flash vessel (responsible for the continuous recovery of butanol from the broth). The objective of the optimization was to maximize butanol productivity for a desired substrate conversion. Two strategies were compared for the optimization of the process. In one of them, the process was represented by a deterministic model with kinetic parameters determined experimentally and, in the other, by a statistical model obtained using the factorial design technique combined with simulation. For both strategies, the problem was written as a nonlinear programming problem and was solved with the sequential quadratic programming technique. The results showed that despite the very similar solutions obtained with both strategies, the problems found with the strategy using the deterministic model, such as lack of convergence and high computational time, make the use of the optimization strategy with the statistical model, which showed to be robust and fast, more suitable for the flash fermentation process, being recommended for real-time applications coupling optimization and control.
Envelopes of Sets of Measures, Tightness, and Markov Control Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Hernandez, J.; Hernandez-Lerma, O.
1999-11-15
We introduce upper and lower envelopes for sets of measures on an arbitrary topological space, which are then used to give a tightness criterion. These concepts are applied to show the existence of optimal policies for a class of Markov control processes.
Structural acoustic control of plates with variable boundary conditions: design methodology.
Sprofera, Joseph D; Cabell, Randolph H; Gibbs, Gary P; Clark, Robert L
2007-07-01
A method for optimizing a structural acoustic control system subject to variations in plate boundary conditions is provided. The assumed modes method is used to build a plate model with varying levels of rotational boundary stiffness to simulate the dynamics of a plate with uncertain edge conditions. A transducer placement scoring process, involving Hankel singular values, is combined with a genetic optimization routine to find spatial locations robust to boundary condition variation. Predicted frequency response characteristics are examined, and theoretically optimized results are discussed in relation to the range of boundary conditions investigated. Modeled results indicate that it is possible to minimize the impact of uncertain boundary conditions in active structural acoustic control by optimizing the placement of transducers with respect to those uncertainties.
Optimal Micro-Jet Flow Control for Compact Air Vehicle Inlets
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan
2004-01-01
The purpose of this study on micro-jet secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-jet secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low mass" micro-jet array designs. The term "low mass" micro-jet may refers to fluidic jets with total (integrated) mass flow ratios between 0.10 and 1.0 percent of the engine face mass flow. Therefore, this report examines optimal micro-jet array designs for compact inlets through a Response Surface Methodology.
Firmware Development Improves System Efficiency
NASA Technical Reports Server (NTRS)
Chern, E. James; Butler, David W.
1993-01-01
Most manufacturing processes require physical pointwise positioning of the components or tools from one location to another. Typical mechanical systems utilize either stop-and-go or fixed feed-rate procession to accomplish the task. The first approach achieves positional accuracy but prolongs overall time and increases wear on the mechanical system. The second approach sustains the throughput but compromises positional accuracy. A computer firmware approach has been developed to optimize this point wise mechanism by utilizing programmable interrupt controls to synchronize engineering processes 'on the fly'. This principle has been implemented in an eddy current imaging system to demonstrate the improvement. Software programs were developed that enable a mechanical controller card to transmit interrupts to a system controller as a trigger signal to initiate an eddy current data acquisition routine. The advantages are: (1) optimized manufacturing processes, (2) increased throughput of the system, (3) improved positional accuracy, and (4) reduced wear and tear on the mechanical system.
NASA Astrophysics Data System (ADS)
Balan, A. V.; Shivasankaran, N.; Magibalan, S.
2018-04-01
Low carbon steels used in chemical industries are frequently affected by corrosion. Cladding is a surfacing process used for depositing a thick layer of filler metal in a highly corrosive materials to achieve corrosion resistance. Flux cored arc welding (FCAW) is preferred in cladding process due to its augmented efficiency and higher deposition rate. In this cladding process, the effect of corrosion can be minimized by controlling the output responses such as minimizing dilution, penetration and maximizing bead width, reinforcement and ferrite number. This paper deals with the multi-objective optimization of flux cored arc welding responses by controlling the process parameters such as wire feed rate, welding speed, Nozzle to plate distance, welding gun angle for super duplex stainless steel material using simulated annealing technique. Regression equation has been developed and validated using ANOVA technique. The multi-objective optimization of weld bead parameters was carried out using simulated annealing to obtain optimum bead geometry for reducing corrosion. The potentiodynamic polarization test reveals the balanced formation of fine particles of ferrite and autenite content with desensitized nature of the microstructure in the optimized clad bead.
General Results in Optimal Control of Discrete-Time Nonlinear Stochastic Systems
1988-01-01
P. J. McLane, "Optimal Stochastic Control of Linear System. with State- and Control-Dependent Distur- bances," ZEEE Trans. 4uto. Contr., Vol. 16, No...Vol. 45, No. 1, pp. 359-362, 1987 (9] R. R. Mohler and W. J. Kolodziej, "An Overview of Stochastic Bilinear Control Processes," ZEEE Trans. Syst...34 J. of Math. anal. App.:, Vol. 47, pp. 156-161, 1974 [14) E. Yaz, "A Control Scheme for a Class of Discrete Nonlinear Stochastic Systems," ZEEE Trans
Mitchell, Peter D; Ratcliffe, Elizabeth; Hourd, Paul; Williams, David J; Thomas, Robert J
2014-12-01
It is well documented that cryopreservation and resuscitation of human embryonic stem cells (hESCs) is complex and ill-defined, and often suffers poor cell recovery and increased levels of undesirable cell differentiation. In this study we have applied Quality-by-Design (QbD) concepts to the critical processes of slow-freeze cryopreservation and resuscitation of hESC colony cultures. Optimized subprocesses were linked together to deliver a controlled complete process. We have demonstrated a rapid, high-throughput, and stable system for measurement of cell adherence and viability as robust markers of in-process and postrecovery cell state. We observed that measurement of adherence and viability of adhered cells at 1 h postseeding was predictive of cell proliferative ability up to 96 h in this system. Application of factorial design defined the operating spaces for cryopreservation and resuscitation, critically linking the performance of these two processes. Optimization of both processes resulted in enhanced reattachment and post-thaw viability, resulting in substantially greater recovery of cryopreserved, pluripotent cell colonies. This study demonstrates the importance of QbD concepts and tools for rapid, robust, and low-risk process design that can inform manufacturing controls and logistics.
NASA Astrophysics Data System (ADS)
Asplund, Erik; Klüner, Thorsten
2012-03-01
In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate Hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)], 10.1063/1.473950. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998), 10.1063/1.475576; Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)], 10.1063/1.1650297. To gain control of open quantum systems, the surrogate Hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ℏ = me = e = a0 = 1, have been used unless otherwise stated.
NASA Astrophysics Data System (ADS)
Assmann, Céline; Scott, Amanda; Biller, Dondra
2017-08-01
Organic measurements, such as biological oxygen demand (BOD) and chemical oxygen demand (COD) were developed decades ago in order to measure organics in water. Today, these time-consuming measurements are still used as parameters to check the water treatment quality; however, the time required to generate a result, ranging from hours to days, does not allow COD or BOD to be useful process control parameters - see (1) Standard Method 5210 B; 5-day BOD Test, 1997, and (2) ASTM D1252; COD Test, 2012. Online organic carbon monitoring allows for effective process control because results are generated every few minutes. Though it does not replace BOD or COD measurements still required for compliance reporting, it allows for smart, data-driven and rapid decision-making to improve process control and optimization or meet compliances. Thanks to the smart interpretation of generated data and the capability to now take real-time actions, municipal drinking water and wastewater treatment facility operators can positively impact their OPEX (operational expenditure) efficiencies and their capabilities to meet regulatory requirements. This paper describes how three municipal wastewater and drinking water plants gained process insights, and determined optimization opportunities thanks to the implementation of online total organic carbon (TOC) monitoring.
NASA Astrophysics Data System (ADS)
Gibson, Wayne H.; Levesque, Daniel
2000-03-01
This paper discusses how gamma irradiation plants are putting the latest advances in computer and information technology to use for better process control, cost savings, and strategic advantages. Some irradiator operations are gaining significant benefits by integrating computer technology and robotics with real-time information processing, multi-user databases, and communication networks. The paper reports on several irradiation facilities that are making good use of client/server LANs, user-friendly graphics interfaces, supervisory control and data acquisition (SCADA) systems, distributed I/O with real-time sensor devices, trending analysis, real-time product tracking, dynamic product scheduling, and automated dosimetry reading. These plants are lowering costs by fast and reliable reconciliation of dosimetry data, easier validation to GMP requirements, optimizing production flow, and faster release of sterilized products to market. There is a trend in the manufacturing sector towards total automation using "predictive process control". Real-time verification of process parameters "on-the-run" allows control parameters to be adjusted appropriately, before the process strays out of limits. Applying this technology to the gamma radiation process, control will be based on monitoring the key parameters such as time, and making adjustments during the process to optimize quality and throughput. Dosimetry results will be used as a quality control measurement rather than as a final monitor for the release of the product. Results are correlated with the irradiation process data to quickly and confidently reconcile variations. Ultimately, a parametric process control system utilizing responsive control, feedback and verification will not only increase productivity and process efficiency, but can also result in operating within tighter dose control set points.
Ochoa, Silvia; Yoo, Ahrim; Repke, Jens-Uwe; Wozny, Günter; Yang, Dae Ryook
2007-01-01
Despite many environmental advantages of using alcohol as a fuel, there are still serious questions about its economical feasibility when compared with oil-based fuels. The bioethanol industry needs to be more competitive, and therefore, all stages of its production process must be simple, inexpensive, efficient, and "easy" to control. In recent years, there have been significant improvements in process design, such as in the purification technologies for ethanol dehydration (molecular sieves, pressure swing adsorption, pervaporation, etc.) and in genetic modifications of microbial strains. However, a lot of research effort is still required in optimization and control, where the first step is the development of suitable models of the process, which can be used as a simulated plant, as a soft sensor or as part of the control algorithm. Thus, toward developing good, reliable, and simple but highly predictive models that can be used in the future for optimization and process control applications, in this paper an unstructured and a cybernetic model are proposed and compared for the simultaneous saccharification-fermentation process (SSF) for the production of ethanol from starch by a recombinant Saccharomyces cerevisiae strain. The cybernetic model proposed is a new one that considers the degradation of starch not only into glucose but also into dextrins (reducing sugars) and takes into account the intracellular reactions occurring inside the cells, giving a more detailed description of the process. Furthermore, an identification procedure based on the Metropolis Monte Carlo optimization method coupled with a sensitivity analysis is proposed for the identification of the model's parameters, employing experimental data reported in the literature.
NASA Technical Reports Server (NTRS)
Patten, William Neff
1989-01-01
There is an evident need to discover a means of establishing reliable, implementable controls for systems that are plagued by nonlinear and, or uncertain, model dynamics. The development of a generic controller design tool for tough-to-control systems is reported. The method utilizes a moving grid, time infinite element based solution of the necessary conditions that describe an optimal controller for a system. The technique produces a discrete feedback controller. Real time laboratory experiments are now being conducted to demonstrate the viability of the method. The algorithm that results is being implemented in a microprocessor environment. Critical computational tasks are accomplished using a low cost, on-board, multiprocessor (INMOS T800 Transputers) and parallel processing. Progress to date validates the methodology presented. Applications of the technique to the control of highly flexible robotic appendages are suggested.
Fermentation process using specific oxygen uptake rates as a process control
Van Hoek, Pim; Aristidou, Aristos; Rush, Brian J.
2016-08-30
Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.
Fermentation process using specific oxygen uptake rates as a process control
Van Hoek, Pim [Minnetonka, MN; Aristidou, Aristos [Maple Grove, MN; Rush, Brian [Minneapolis, MN
2011-05-10
Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.
Fermentation process using specific oxygen uptake rates as a process control
Hoek, Van; Pim, Aristidou [Minnetonka, MN; Aristos, Rush [Maple Grove, MN; Brian, [Minneapolis, MN
2007-06-19
Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.
Fermentation process using specific oxygen uptake rates as a process control
Van Hoek, Pim; Aristidou, Aristos; Rush, Brian
2014-09-09
Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.
NASA Astrophysics Data System (ADS)
Monica, Z.; Sękala, A.; Gwiazda, A.; Banaś, W.
2016-08-01
Nowadays a key issue is to reduce the energy consumption of road vehicles. In particular solution one could find different strategies of energy optimization. The most popular but not sophisticated is so called eco-driving. In this strategy emphasized is particular behavior of drivers. In more sophisticated solution behavior of drivers is supported by control system measuring driving parameters and suggesting proper operation of the driver. The other strategy is concerned with application of different engineering solutions that aid optimization the process of energy consumption. Such systems take into consideration different parameters measured in real time and next take proper action according to procedures loaded to the control computer of a vehicle. The third strategy bases on optimization of the designed vehicle taking into account especially main sub-systems of a technical mean. In this approach the optimal level of energy consumption by a vehicle is obtained by synergetic results of individual optimization of particular constructional sub-systems of a vehicle. It is possible to distinguish three main sub-systems: the structural one the drive one and the control one. In the case of the structural sub-system optimization of the energy consumption level is related with the optimization or the weight parameter and optimization the aerodynamic parameter. The result is optimized body of a vehicle. Regarding the drive sub-system the optimization of the energy consumption level is related with the fuel or power consumption using the previously elaborated physical models. Finally the optimization of the control sub-system consists in determining optimal control parameters.
Microfluidics: a transformational tool for nanomedicine development and production.
Garg, Shyam; Heuck, Gesine; Ip, Shell; Ramsay, Euan
2016-11-01
Microfluidic devices are mircoscale fluidic circuits used to manipulate liquids at the nanoliter scale. The ability to control the mixing of fluids and the continuous nature of the process make it apt for solvent/antisolvent precipitation of drug-delivery nanoparticles. This review describes the use of numerous microfluidic designs for the formulation and production of lipid nanoparticles, liposomes and polymer nanoparticles to encapsulate and deliver small molecule or genetic payloads. The advantages of microfluidics are illustrated through examples from literature comparing conventional processes such as beaker and T-tube mixing to microfluidic approaches. Particular emphasis is placed on examples of microfluidic nanoparticle formulations that have been tested in vitro and in vivo. Fine control of process parameters afforded by microfluidics, allows unprecedented optimization of nanoparticle quality and encapsulation efficiency. Automation improves the reproducibility and optimization of formulations. Furthermore, the continuous nature of the microfluidic process is inherently scalable, allowing optimization at low volumes, which is advantageous with scarce or costly materials, as well as scale-up through process parallelization. Given these advantages, microfluidics is poised to become the new paradigm for nanomedicine formulation and production.
Topology Synthesis of Structures Using Parameter Relaxation and Geometric Refinement
NASA Technical Reports Server (NTRS)
Hull, P. V.; Tinker, M. L.
2007-01-01
Typically, structural topology optimization problems undergo relaxation of certain design parameters to allow the existence of intermediate variable optimum topologies. Relaxation permits the use of a variety of gradient-based search techniques and has been shown to guarantee the existence of optimal solutions and eliminate mesh dependencies. This Technical Publication (TP) will demonstrate the application of relaxation to a control point discretization of the design workspace for the structural topology optimization process. The control point parameterization with subdivision has been offered as an alternative to the traditional method of discretized finite element design domain. The principle of relaxation demonstrates the increased utility of the control point parameterization. One of the significant results of the relaxation process offered in this TP is that direct manufacturability of the optimized design will be maintained without the need for designer intervention or translation. In addition, it will be shown that relaxation of certain parameters may extend the range of problems that can be addressed; e.g., in permitting limited out-of-plane motion to be included in a path generation problem.
Process control systems: integrated for future process technologies
NASA Astrophysics Data System (ADS)
Botros, Youssry; Hajj, Hazem M.
2003-06-01
Process Control Systems (PCS) are becoming more crucial to the success of Integrated Circuit makers due to their direct impact on product quality, cost, and Fab output. The primary objective of PCS is to minimize variability by detecting and correcting non optimal performance. Current PCS implementations are considered disparate, where each PCS application is designed, deployed and supported separately. Each implementation targets a specific area of control such as equipment performance, wafer manufacturing, and process health monitoring. With Intel entering the nanometer technology era, tighter process specifications are required for higher yields and lower cost. This requires areas of control to be tightly coupled and integrated to achieve the optimal performance. This requirement can be achieved via consistent design and deployment of the integrated PCS. PCS integration will result in several benefits such as leveraging commonalities, avoiding redundancy, and facilitating sharing between implementations. This paper will address PCS implementations and focus on benefits and requirements of the integrated PCS. Intel integrated PCS Architecture will be then presented and its components will be briefly discussed. Finally, industry direction and efforts to standardize PCS interfaces that enable PCS integration will be presented.
Results of an integrated structure-control law design sensitivity analysis
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.
1988-01-01
Next generation air and space vehicle designs are driven by increased performance requirements, demanding a high level of design integration between traditionally separate design disciplines. Interdisciplinary analysis capabilities have been developed, for aeroservoelastic aircraft and large flexible spacecraft control for instance, but the requisite integrated design methods are only beginning to be developed. One integrated design method which has received attention is based on hierarchal problem decompositions, optimization, and design sensitivity analyses. This paper highlights a design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changess in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient that finite difference methods for the computation of the equivalent sensitivity information.
Stochastic Adaptive Estimation and Control.
1994-10-26
Marcus, "Language Stability and Stabilizability of Discrete Event Dynamical Systems ," SIAM Journal on Control and Optimization, 31, September 1993...in the hierarchical control of flexible manufacturing systems ; in this problem, the model involves a hybrid process in continuous time whose state is...of the average cost control problem for discrete- time Markov processes. Our exposition covers from finite to Borel state and action spaces and
Yeo, Sang-Hoon; Franklin, David W; Wolpert, Daniel M
2016-12-01
Movement planning is thought to be primarily determined by motor costs such as inaccuracy and effort. Solving for the optimal plan that minimizes these costs typically leads to specifying a time-varying feedback controller which both generates the movement and can optimally correct for errors that arise within a movement. However, the quality of the sensory feedback during a movement can depend substantially on the generated movement. We show that by incorporating such state-dependent sensory feedback, the optimal solution incorporates active sensing and is no longer a pure feedback process but includes a significant feedforward component. To examine whether people take into account such state-dependency in sensory feedback we asked people to make movements in which we controlled the reliability of sensory feedback. We made the visibility of the hand state-dependent, such that the visibility was proportional to the component of hand velocity in a particular direction. Subjects gradually adapted to such a sensory perturbation by making curved hand movements. In particular, they appeared to control the late visibility of the movement matching predictions of the optimal controller with state-dependent sensory noise. Our results show that trajectory planning is not only sensitive to motor costs but takes sensory costs into account and argues for optimal control of movement in which feedforward commands can play a significant role.
Run-to-Run Optimization Control Within Exact Inverse Framework for Scan Tracking.
Yeoh, Ivan L; Reinhall, Per G; Berg, Martin C; Chizeck, Howard J; Seibel, Eric J
2017-09-01
A run-to-run optimization controller uses a reduced set of measurement parameters, in comparison to more general feedback controllers, to converge to the best control point for a repetitive process. A new run-to-run optimization controller is presented for the scanning fiber device used for image acquisition and display. This controller utilizes very sparse measurements to estimate a system energy measure and updates the input parameterizations iteratively within a feedforward with exact-inversion framework. Analysis, simulation, and experimental investigations on the scanning fiber device demonstrate improved scan accuracy over previous methods and automatic controller adaptation to changing operating temperature. A specific application example and quantitative error analyses are provided of a scanning fiber endoscope that maintains high image quality continuously across a 20 °C temperature rise without interruption of the 56 Hz video.
Research Based on AMESim of Electro-hydraulic Servo Loading System
NASA Astrophysics Data System (ADS)
Li, Jinlong; Hu, Zhiyong
2017-09-01
Electro-hydraulic servo loading system is a subject studied by many scholars in the field of simulation and control at home and abroad. The electro-hydraulic servo loading system is a loading device simulation of stress objects by aerodynamic moment and other force in the process of movement, its function is all kinds of gas in the lab condition to analyze stress under dynamic load of objects. The purpose of this paper is the design of AMESim electro-hydraulic servo system, PID control technology is used to configure the parameters of the control system, complete the loading process under different conditions, the optimal design parameters, optimization of dynamic performance of the loading system.
Adaptive non-linear control for cancer therapy through a Fokker-Planck observer.
Shakeri, Ehsan; Latif-Shabgahi, Gholamreza; Esmaeili Abharian, Amir
2018-04-01
In recent years, many efforts have been made to present optimal strategies for cancer therapy through the mathematical modelling of tumour-cell population dynamics and optimal control theory. In many cases, therapy effect is included in the drift term of the stochastic Gompertz model. By fitting the model with empirical data, the parameters of therapy function are estimated. The reported research works have not presented any algorithm to determine the optimal parameters of therapy function. In this study, a logarithmic therapy function is entered in the drift term of the Gompertz model. Using the proposed control algorithm, the therapy function parameters are predicted and adaptively adjusted. To control the growth of tumour-cell population, its moments must be manipulated. This study employs the probability density function (PDF) control approach because of its ability to control all the process moments. A Fokker-Planck-based non-linear stochastic observer will be used to determine the PDF of the process. A cost function based on the difference between a predefined desired PDF and PDF of tumour-cell population is defined. Using the proposed algorithm, the therapy function parameters are adjusted in such a manner that the cost function is minimised. The existence of an optimal therapy function is also proved. The numerical results are finally given to demonstrate the effectiveness of the proposed method.
Grey Wolf based control for speed ripple reduction at low speed operation of PMSM drives.
Djerioui, Ali; Houari, Azeddine; Ait-Ahmed, Mourad; Benkhoris, Mohamed-Fouad; Chouder, Aissa; Machmoum, Mohamed
2018-03-01
Speed ripple at low speed-high torque operation of Permanent Magnet Synchronous Machine (PMSM) drives is considered as one of the major issues to be treated. The presented work proposes an efficient PMSM speed controller based on Grey Wolf (GW) algorithm to ensure a high-performance control for speed ripple reduction at low speed operation. The main idea of the proposed control algorithm is to propose a specific objective function in order to incorporate the advantage of fast optimization process of the GW optimizer. The role of GW optimizer is to find the optimal input controls that satisfy the speed tracking requirements. The synthesis methodology of the proposed control algorithm is detailed and the feasibility and performances of the proposed speed controller is confirmed by simulation and experimental results. The GW algorithm is a model-free controller and the parameters of its objective function are easy to be tuned. The GW controller is compared to PI one on real test bench. Then, the superiority of the first algorithm is highlighted. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Stochastic optimal control of non-stationary response of a single-degree-of-freedom vehicle model
NASA Astrophysics Data System (ADS)
Narayanan, S.; Raju, G. V.
1990-09-01
An active suspension system to control the non-stationary response of a single-degree-of-freedom (sdf) vehicle model with variable velocity traverse over a rough road is investigated. The suspension is optimized with respect to ride comfort and road holding, using stochastic optimal control theory. The ground excitation is modelled as a spatial homogeneous random process, being the output of a linear shaping filter to white noise. The effect of the rolling contact of the tyre is considered by an additional filter in cascade. The non-stationary response with active suspension is compared with that of a passive system.
Optimal Full Information Synthesis for Flexible Structures Implemented on Cray Supercomputers
NASA Technical Reports Server (NTRS)
Lind, Rick; Balas, Gary J.
1995-01-01
This paper considers an algorithm for synthesis of optimal controllers for full information feedback. The synthesis procedure reduces to a single linear matrix inequality which may be solved via established convex optimization algorithms. The computational cost of the optimization is investigated. It is demonstrated the problem dimension and corresponding matrices can become large for practical engineering problems. This algorithm represents a process that is impractical for standard workstations for large order systems. A flexible structure is presented as a design example. Control synthesis requires several days on a workstation but may be solved in a reasonable amount of time using a Cray supercomputer.
Optimization applications in aircraft engine design and test
NASA Technical Reports Server (NTRS)
Pratt, T. K.
1984-01-01
Starting with the NASA-sponsored STAEBL program, optimization methods based primarily upon the versatile program COPES/CONMIN were introduced over the past few years to a broad spectrum of engineering problems in structural optimization, engine design, engine test, and more recently, manufacturing processes. By automating design and testing processes, many repetitive and costly trade-off studies have been replaced by optimization procedures. Rather than taking engineers and designers out of the loop, optimization has, in fact, put them more in control by providing sophisticated search techniques. The ultimate decision whether to accept or reject an optimal feasible design still rests with the analyst. Feedback obtained from this decision process has been invaluable since it can be incorporated into the optimization procedure to make it more intelligent. On several occasions, optimization procedures have produced novel designs, such as the nonsymmetric placement of rotor case stiffener rings, not anticipated by engineering designers. In another case, a particularly difficult resonance contraint could not be satisfied using hand iterations for a compressor blade, when the STAEBL program was applied to the problem, a feasible solution was obtained in just two iterations.
Wang, Jie-Sheng; Han, Shuang
2015-01-01
For predicting the key technology indicators (concentrate grade and tailings recovery rate) of flotation process, a feed-forward neural network (FNN) based soft-sensor model optimized by the hybrid algorithm combining particle swarm optimization (PSO) algorithm and gravitational search algorithm (GSA) is proposed. Although GSA has better optimization capability, it has slow convergence velocity and is easy to fall into local optimum. So in this paper, the velocity vector and position vector of GSA are adjusted by PSO algorithm in order to improve its convergence speed and prediction accuracy. Finally, the proposed hybrid algorithm is adopted to optimize the parameters of FNN soft-sensor model. Simulation results show that the model has better generalization and prediction accuracy for the concentrate grade and tailings recovery rate to meet the online soft-sensor requirements of the real-time control in the flotation process. PMID:26583034
NASA Astrophysics Data System (ADS)
AsséMat, Elie; Machnes, Shai; Tannor, David; Wilhelm-Mauch, Frank
In part I, we presented the theoretic foundations of the GOAT algorithm for the optimal control of quantum systems. Here in part II, we focus on several applications of GOAT to superconducting qubits architecture. First, we consider a control-Z gate on Xmons qubits with an Erf parametrization of the optimal pulse. We show that a fast and accurate gate can be obtained with only 16 parameters, as compared to hundreds of parameters required in other algorithms. We present numerical evidences that such parametrization should allow an efficient in-situ calibration of the pulse. Next, we consider the flux-tunable coupler by IBM. We show optimization can be carried out in a more realistic model of the system than was employed in the original study, which is expected to further simplify the calibration process. Moreover, GOAT reduced the complexity of the optimal pulse to only 6 Fourier components, composed with analytic wrappers.
Das, Saptarshi; Pan, Indranil; Das, Shantanu; Gupta, Amitava
2012-03-01
Genetic algorithm (GA) has been used in this study for a new approach of suboptimal model reduction in the Nyquist plane and optimal time domain tuning of proportional-integral-derivative (PID) and fractional-order (FO) PI(λ)D(μ) controllers. Simulation studies show that the new Nyquist-based model reduction technique outperforms the conventional H(2)-norm-based reduced parameter modeling technique. With the tuned controller parameters and reduced-order model parameter dataset, optimum tuning rules have been developed with a test-bench of higher-order processes via genetic programming (GP). The GP performs a symbolic regression on the reduced process parameters to evolve a tuning rule which provides the best analytical expression to map the data. The tuning rules are developed for a minimum time domain integral performance index described by a weighted sum of error index and controller effort. From the reported Pareto optimal front of the GP-based optimal rule extraction technique, a trade-off can be made between the complexity of the tuning formulae and the control performance. The efficacy of the single-gene and multi-gene GP-based tuning rules has been compared with the original GA-based control performance for the PID and PI(λ)D(μ) controllers, handling four different classes of representative higher-order processes. These rules are very useful for process control engineers, as they inherit the power of the GA-based tuning methodology, but can be easily calculated without the requirement for running the computationally intensive GA every time. Three-dimensional plots of the required variation in PID/fractional-order PID (FOPID) controller parameters with reduced process parameters have been shown as a guideline for the operator. Parametric robustness of the reported GP-based tuning rules has also been shown with credible simulation examples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Data-driven gradient algorithm for high-precision quantum control
NASA Astrophysics Data System (ADS)
Wu, Re-Bing; Chu, Bing; Owens, David H.; Rabitz, Herschel
2018-04-01
In the quest to achieve scalable quantum information processing technologies, gradient-based optimal control algorithms (e.g., grape) are broadly used for implementing high-precision quantum gates, but their performance is often hindered by deterministic or random errors in the system model and the control electronics. In this paper, we show that grape can be taught to be more effective by jointly learning from the design model and the experimental data obtained from process tomography. The resulting data-driven gradient optimization algorithm (d-grape) can in principle correct all deterministic gate errors, with a mild efficiency loss. The d-grape algorithm may become more powerful with broadband controls that involve a large number of control parameters, while other algorithms usually slow down due to the increased size of the search space. These advantages are demonstrated by simulating the implementation of a two-qubit controlled-not gate.
Optimality study of a gust alleviation system for light wing-loading STOL aircraft
NASA Technical Reports Server (NTRS)
Komoda, M.
1976-01-01
An analytical study was made of an optimal gust alleviation system that employs a vertical gust sensor mounted forward of an aircraft's center of gravity. Frequency domain optimization techniques were employed to synthesize the optimal filters that process the corrective signals to the flaps and elevator actuators. Special attention was given to evaluating the effectiveness of lead time, that is, the time by which relative wind sensor information should lead the actual encounter of the gust. The resulting filter is expressed as an implicit function of the prescribed control cost. A numerical example for a light wing loading STOL aircraft is included in which the optimal trade-off between performance and control cost is systematically studied.
Optimization of Process Parameters of Edge Robotic Deburring with Force Control
NASA Astrophysics Data System (ADS)
Burghardt, A.; Szybicki, D.; Kurc, K.; Muszyńska, M.
2016-12-01
The issues addressed in the paper present a part of the scientific research conducted within the framework of the automation of the aircraft engine part manufacturing processes. The results of the research presented in the article provided information in which tolerances while using a robotic control station with the option of force control we can make edge deburring.
150-nm DR contact holes die-to-database inspection
NASA Astrophysics Data System (ADS)
Kuo, Shen C.; Wu, Clare; Eran, Yair; Staud, Wolfgang; Hemar, Shirley; Lindman, Ofer
2000-07-01
Using a failure analysis-driven yield enhancements concept, based on an optimization of the mask manufacturing process and UV reticle inspection is studied and shown to improve the contact layer quality. This is achieved by relating various manufacturing processes to very fine tuned contact defect detection. In this way, selecting an optimized manufacturing process with fine-tuned inspection setup is achieved in a controlled manner. This paper presents a study, performed on a specially designed test reticle, which simulates production contact layers of design rule 250nm, 180nm and 150nm. This paper focuses on the use of advanced UV reticle inspection techniques as part of the process optimization cycle. Current inspection equipment uses traditional and insufficient methods of small contact-hole inspection and review.
Optimal Micro-Vane Flow Control for Compact Air Vehicle Inlets
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan
2004-01-01
The purpose of this study on micro-vane secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-vane secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low unit strength" micro-effector arrays. "Low unit strength" micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion. Therefore, this report examines optimal micro-vane secondary flow control array designs for compact inlets through a Response Surface Methodology.
Topology synthesis and size optimization of morphing wing structures
NASA Astrophysics Data System (ADS)
Inoyama, Daisaku
This research demonstrates a novel topology and size optimization methodology for synthesis of distributed actuation systems with specific applications to morphing air vehicle structures. The main emphasis is placed on the topology and size optimization problem formulations and the development of computational modeling concepts. The analysis model is developed to meet several important criteria: It must allow a rigid-body displacement, as well as a variation in planform area, with minimum strain on structural members while retaining acceptable numerical stability for finite element analysis. Topology optimization is performed on a semi-ground structure with design variables that control the system configuration. In effect, the optimization process assigns morphing members as "soft" elements, non-morphing load-bearing members as "stiff' elements, and non-existent members as "voids." The optimization process also determines the optimum actuator placement, where each actuator is represented computationally by equal and opposite nodal forces with soft axial stiffness. In addition, the configuration of attachments that connect the morphing structure to a non-morphing structure is determined simultaneously. Several different optimization problem formulations are investigated to understand their potential benefits in solution quality, as well as meaningfulness of the formulations. Extensions and enhancements to the initial concept and problem formulations are made to accommodate multiple-configuration definitions. In addition, the principal issues on the external-load dependency and the reversibility of a design, as well as the appropriate selection of a reference configuration, are addressed in the research. The methodology to control actuator distributions and concentrations is also discussed. Finally, the strategy to transfer the topology solution to the sizing optimization is developed and cross-sectional areas of existent structural members are optimized under applied aerodynamic loads. That is, the optimization process is implemented in sequential order: The actuation system layout is first determined through multi-disciplinary topology optimization process, and then the thickness or cross-sectional area of each existent member is optimized under given constraints and boundary conditions. Sample problems are solved to demonstrate the potential capabilities of the presented methodology. The research demonstrates an innovative structural design procedure from a computational perspective and opens new insights into the potential design requirements and characteristics of morphing structures.
Risk-Sensitive Control of Pure Jump Process on Countable Space with Near Monotone Cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suresh Kumar, K., E-mail: suresh@math.iitb.ac.in; Pal, Chandan, E-mail: cpal@math.iitb.ac.in
2013-12-15
In this article, we study risk-sensitive control problem with controlled continuous time pure jump process on a countable space as state dynamics. We prove multiplicative dynamic programming principle, elliptic and parabolic Harnack’s inequalities. Using the multiplicative dynamic programing principle and the Harnack’s inequalities, we prove the existence and a characterization of optimal risk-sensitive control under the near monotone condition.
Optimal control of parametric oscillations of compressed flexible bars
NASA Astrophysics Data System (ADS)
Alesova, I. M.; Babadzanjanz, L. K.; Pototskaya, I. Yu.; Pupysheva, Yu. Yu.; Saakyan, A. T.
2018-05-01
In this paper the problem of damping of the linear systems oscillations with piece-wise constant control is solved. The motion of bar construction is reduced to the form described by Hill's differential equation using the Bubnov-Galerkin method. To calculate switching moments of the one-side control the method of sequential linear programming is used. The elements of the fundamental matrix of the Hill's equation are approximated by trigonometric series. Examples of the optimal control of the systems for various initial conditions and different number of control stages have been calculated. The corresponding phase trajectories and transient processes are represented.
Study of aerodynamic surface control of space shuttle boost and reentry, volume 1
NASA Technical Reports Server (NTRS)
Chang, C. J.; Connor, C. L.; Gill, G. P.
1972-01-01
The optimization technique is described which was used in the study for applying modern optimal control technology to the design of shuttle booster engine reaction control systems and aerodynamic control systems. Complete formulations are presented for both the ascent and reentry portions of the study. These formulations include derivations of the 6D perturbation equations of motion and the process followed in the control and blending law selections. A total hybrid software concept applied to the study is described in detail. Conclusions and recommendations based on the results of the study are included.
Adaptation to sensory-motor reflex perturbations is blind to the source of errors.
Hudson, Todd E; Landy, Michael S
2012-01-06
In the study of visual-motor control, perhaps the most familiar findings involve adaptation to externally imposed movement errors. Theories of visual-motor adaptation based on optimal information processing suppose that the nervous system identifies the sources of errors to effect the most efficient adaptive response. We report two experiments using a novel perturbation based on stimulating a visually induced reflex in the reaching arm. Unlike adaptation to an external force, our method induces a perturbing reflex within the motor system itself, i.e., perturbing forces are self-generated. This novel method allows a test of the theory that error source information is used to generate an optimal adaptive response. If the self-generated source of the visually induced reflex perturbation is identified, the optimal response will be via reflex gain control. If the source is not identified, a compensatory force should be generated to counteract the reflex. Gain control is the optimal response to reflex perturbation, both because energy cost and movement errors are minimized. Energy is conserved because neither reflex-induced nor compensatory forces are generated. Precision is maximized because endpoint variance is proportional to force production. We find evidence against source-identified adaptation in both experiments, suggesting that sensory-motor information processing is not always optimal.
Parameter optimization of electrochemical machining process using black hole algorithm
NASA Astrophysics Data System (ADS)
Singh, Dinesh; Shukla, Rajkamal
2017-12-01
Advanced machining processes are significant as higher accuracy in machined component is required in the manufacturing industries. Parameter optimization of machining processes gives optimum control to achieve the desired goals. In this paper, electrochemical machining (ECM) process is considered to evaluate the performance of the considered process using black hole algorithm (BHA). BHA considers the fundamental idea of a black hole theory and it has less operating parameters to tune. The two performance parameters, material removal rate (MRR) and overcut (OC) are considered separately to get optimum machining parameter settings using BHA. The variations of process parameters with respect to the performance parameters are reported for better and effective understanding of the considered process using single objective at a time. The results obtained using BHA are found better while compared with results of other metaheuristic algorithms, such as, genetic algorithm (GA), artificial bee colony (ABC) and bio-geography based optimization (BBO) attempted by previous researchers.
Larson, David B; Malarik, Remo J; Hall, Seth M; Podberesky, Daniel J
2013-10-01
To evaluate the effect of an automated computed tomography (CT) radiation dose optimization and process control system on the consistency of estimated image noise and size-specific dose estimates (SSDEs) of radiation in CT examinations of the chest, abdomen, and pelvis. This quality improvement project was determined not to constitute human subject research. An automated system was developed to analyze each examination immediately after completion, and to report individual axial-image-level and study-level summary data for patient size, image noise, and SSDE. The system acquired data for 4 months beginning October 1, 2011. Protocol changes were made by using parameters recommended by the prediction application, and 3 months of additional data were acquired. Preimplementation and postimplementation mean image noise and SSDE were compared by using unpaired t tests and F tests. Common-cause variation was differentiated from special-cause variation by using a statistical process control individual chart. A total of 817 CT examinations, 490 acquired before and 327 acquired after the initial protocol changes, were included in the study. Mean patient age and water-equivalent diameter were 12.0 years and 23.0 cm, respectively. The difference between actual and target noise increased from -1.4 to 0.3 HU (P < .01) and the standard deviation decreased from 3.9 to 1.6 HU (P < .01). Mean SSDE decreased from 11.9 to 7.5 mGy, a 37% reduction (P < .01). The process control chart identified several special causes of variation. Implementation of an automated CT radiation dose optimization system led to verifiable simultaneous decrease in image noise variation and SSDE. The automated nature of the system provides the opportunity for consistent CT radiation dose optimization on a broad scale. © RSNA, 2013.
The Design of Large Geothermally Powered Air-Conditioning Systems Using an Optimal Control Approach
NASA Astrophysics Data System (ADS)
Horowitz, F. G.; O'Bryan, L.
2010-12-01
The direct use of geothermal energy from Hot Sedimentary Aquifer (HSA) systems for large scale air-conditioning projects involves many tradeoffs. Aspects contributing towards making design decisions for such systems include: the inadequately known permeability and thermal distributions underground; the combinatorial complexity of selecting pumping and chiller systems to match the underground conditions to the air-conditioning requirements; the future price variations of the electricity market; any uncertainties in future Carbon pricing; and the applicable discount rate for evaluating the financial worth of the project. Expanding upon the previous work of Horowitz and Hornby (2007), we take an optimal control approach to the design of such systems. By building a model of the HSA system, the drilling process, the pumping process, and the chilling operations, along with a specified objective function, we can write a Hamiltonian for the system. Using the standard techniques of optimal control, we use gradients of the Hamiltonian to find the optimal design for any given set of permeabilities, thermal distributions, and the other engineering and financial parameters. By using this approach, optimal system designs could potentially evolve in response to the actual conditions encountered during drilling. Because the granularity of some current models is so coarse, we will be able to compare our optimal control approach to an exhaustive search of parameter space. We will present examples from the conditions appropriate for the Perth Basin of Western Australia, where the WA Geothermal Centre of Excellence is involved with two large air-conditioning projects using geothermal water from deep aquifers at 75 to 95 degrees C.
Synchronic interval Gaussian mixed-integer programming for air quality management.
Cheng, Guanhui; Huang, Guohe Gordon; Dong, Cong
2015-12-15
To reveal the synchronism of interval uncertainties, the tradeoff between system optimality and security, the discreteness of facility-expansion options, the uncertainty of pollutant dispersion processes, and the seasonality of wind features in air quality management (AQM) systems, a synchronic interval Gaussian mixed-integer programming (SIGMIP) approach is proposed in this study. A robust interval Gaussian dispersion model is developed for approaching the pollutant dispersion process under interval uncertainties and seasonal variations. The reflection of synchronic effects of interval uncertainties in the programming objective is enabled through introducing interval functions. The proposition of constraint violation degrees helps quantify the tradeoff between system optimality and constraint violation under interval uncertainties. The overall optimality of system profits of an SIGMIP model is achieved based on the definition of an integrally optimal solution. Integer variables in the SIGMIP model are resolved by the existing cutting-plane method. Combining these efforts leads to an effective algorithm for the SIGMIP model. An application to an AQM problem in a region in Shandong Province, China, reveals that the proposed SIGMIP model can facilitate identifying the desired scheme for AQM. The enhancement of the robustness of optimization exercises may be helpful for increasing the reliability of suggested schemes for AQM under these complexities. The interrelated tradeoffs among control measures, emission sources, flow processes, receptors, influencing factors, and economic and environmental goals are effectively balanced. Interests of many stakeholders are reasonably coordinated. The harmony between economic development and air quality control is enabled. Results also indicate that the constraint violation degree is effective at reflecting the compromise relationship between constraint-violation risks and system optimality under interval uncertainties. This can help decision makers mitigate potential risks, e.g. insufficiency of pollutant treatment capabilities, exceedance of air quality standards, deficiency of pollution control fund, or imbalance of economic or environmental stress, in the process of guiding AQM. Copyright © 2015 Elsevier B.V. All rights reserved.
Rah, Jeong-Eun; Shin, Dongho; Oh, Do Hoon; Kim, Tae Hyun; Kim, Gwe-Ya
2014-09-01
To evaluate and improve the reliability of proton quality assurance (QA) processes and, to provide an optimal customized tolerance level using the statistical process control (SPC) methodology. The authors investigated the consistency check of dose per monitor unit (D/MU) and range in proton beams to see whether it was within the tolerance level of the daily QA process. This study analyzed the difference between the measured and calculated ranges along the central axis to improve the patient-specific QA process in proton beams by using process capability indices. The authors established a customized tolerance level of ±2% for D/MU and ±0.5 mm for beam range in the daily proton QA process. In the authors' analysis of the process capability indices, the patient-specific range measurements were capable of a specification limit of ±2% in clinical plans. SPC methodology is a useful tool for customizing the optimal QA tolerance levels and improving the quality of proton machine maintenance, treatment delivery, and ultimately patient safety.
Wang, Jie-sheng; Han, Shuang; Shen, Na-na
2014-01-01
For predicting the key technology indicators (concentrate grade and tailings recovery rate) of flotation process, an echo state network (ESN) based fusion soft-sensor model optimized by the improved glowworm swarm optimization (GSO) algorithm is proposed. Firstly, the color feature (saturation and brightness) and texture features (angular second moment, sum entropy, inertia moment, etc.) based on grey-level co-occurrence matrix (GLCM) are adopted to describe the visual characteristics of the flotation froth image. Then the kernel principal component analysis (KPCA) method is used to reduce the dimensionality of the high-dimensional input vector composed by the flotation froth image characteristics and process datum and extracts the nonlinear principal components in order to reduce the ESN dimension and network complex. The ESN soft-sensor model of flotation process is optimized by the GSO algorithm with congestion factor. Simulation results show that the model has better generalization and prediction accuracy to meet the online soft-sensor requirements of the real-time control in the flotation process. PMID:24982935
Integrated Arrival and Departure Schedule Optimization Under Uncertainty
NASA Technical Reports Server (NTRS)
Xue, Min; Zelinski, Shannon
2014-01-01
In terminal airspace, integrating arrivals and departures with shared waypoints provides the potential of improving operational efficiency by allowing direct routes when possible. Incorporating stochastic evaluation as a post-analysis process of deterministic optimization, and imposing a safety buffer in deterministic optimization, are two ways to learn and alleviate the impact of uncertainty and to avoid unexpected outcomes. This work presents a third and direct way to take uncertainty into consideration during the optimization. The impact of uncertainty was incorporated into cost evaluations when searching for the optimal solutions. The controller intervention count was computed using a heuristic model and served as another stochastic cost besides total delay. Costs under uncertainty were evaluated using Monte Carlo simulations. The Pareto fronts that contain a set of solutions were identified and the trade-off between delays and controller intervention count was shown. Solutions that shared similar delays but had different intervention counts were investigated. The results showed that optimization under uncertainty could identify compromise solutions on Pareto fonts, which is better than deterministic optimization with extra safety buffers. It helps decision-makers reduce controller intervention while achieving low delays.
NASA Astrophysics Data System (ADS)
Tofighi, Elham; Mahdizadeh, Amin
2016-09-01
This paper addresses the problem of automatic tuning of weighting coefficients for the nonlinear model predictive control (NMPC) of wind turbines. The choice of weighting coefficients in NMPC is critical due to their explicit impact on efficiency of the wind turbine control. Classically, these weights are selected based on intuitive understanding of the system dynamics and control objectives. The empirical methods, however, may not yield optimal solutions especially when the number of parameters to be tuned and the nonlinearity of the system increase. In this paper, the problem of determining weighting coefficients for the cost function of the NMPC controller is formulated as a two-level optimization process in which the upper- level PSO-based optimization computes the weighting coefficients for the lower-level NMPC controller which generates control signals for the wind turbine. The proposed method is implemented to tune the weighting coefficients of a NMPC controller which drives the NREL 5-MW wind turbine. The results are compared with similar simulations for a manually tuned NMPC controller. Comparison verify the improved performance of the controller for weights computed with the PSO-based technique.
Multi-objective optimization for model predictive control.
Wojsznis, Willy; Mehta, Ashish; Wojsznis, Peter; Thiele, Dirk; Blevins, Terry
2007-06-01
This paper presents a technique of multi-objective optimization for Model Predictive Control (MPC) where the optimization has three levels of the objective function, in order of priority: handling constraints, maximizing economics, and maintaining control. The greatest weights are assigned dynamically to control or constraint variables that are predicted to be out of their limits. The weights assigned for economics have to out-weigh those assigned for control objectives. Control variables (CV) can be controlled at fixed targets or within one- or two-sided ranges around the targets. Manipulated Variables (MV) can have assigned targets too, which may be predefined values or current actual values. This MV functionality is extremely useful when economic objectives are not defined for some or all the MVs. To achieve this complex operation, handle process outputs predicted to go out of limits, and have a guaranteed solution for any condition, the technique makes use of the priority structure, penalties on slack variables, and redefinition of the constraint and control model. An engineering implementation of this approach is shown in the MPC embedded in an industrial control system. The optimization and control of a distillation column, the standard Shell heavy oil fractionator (HOF) problem, is adequately achieved with this MPC.
Simulation of talking faces in the human brain improves auditory speech recognition
von Kriegstein, Katharina; Dogan, Özgür; Grüter, Martina; Giraud, Anne-Lise; Kell, Christian A.; Grüter, Thomas; Kleinschmidt, Andreas; Kiebel, Stefan J.
2008-01-01
Human face-to-face communication is essentially audiovisual. Typically, people talk to us face-to-face, providing concurrent auditory and visual input. Understanding someone is easier when there is visual input, because visual cues like mouth and tongue movements provide complementary information about speech content. Here, we hypothesized that, even in the absence of visual input, the brain optimizes both auditory-only speech and speaker recognition by harvesting speaker-specific predictions and constraints from distinct visual face-processing areas. To test this hypothesis, we performed behavioral and neuroimaging experiments in two groups: subjects with a face recognition deficit (prosopagnosia) and matched controls. The results show that observing a specific person talking for 2 min improves subsequent auditory-only speech and speaker recognition for this person. In both prosopagnosics and controls, behavioral improvement in auditory-only speech recognition was based on an area typically involved in face-movement processing. Improvement in speaker recognition was only present in controls and was based on an area involved in face-identity processing. These findings challenge current unisensory models of speech processing, because they show that, in auditory-only speech, the brain exploits previously encoded audiovisual correlations to optimize communication. We suggest that this optimization is based on speaker-specific audiovisual internal models, which are used to simulate a talking face. PMID:18436648
Optimization of IBF parameters based on adaptive tool-path algorithm
NASA Astrophysics Data System (ADS)
Deng, Wen Hui; Chen, Xian Hua; Jin, Hui Liang; Zhong, Bo; Hou, Jin; Li, An Qi
2018-03-01
As a kind of Computer Controlled Optical Surfacing(CCOS) technology. Ion Beam Figuring(IBF) has obvious advantages in the control of surface accuracy, surface roughness and subsurface damage. The superiority and characteristics of IBF in optical component processing are analyzed from the point of view of removal mechanism. For getting more effective and automatic tool path with the information of dwell time, a novel algorithm is proposed in this thesis. Based on the removal functions made through our IBF equipment and the adaptive tool-path, optimized parameters are obtained through analysis the residual error that would be created in the polishing process. A Φ600 mm plane reflector element was used to be a simulation instance. The simulation result shows that after four combinations of processing, the surface accuracy of PV (Peak Valley) value and the RMS (Root Mean Square) value was reduced to 4.81 nm and 0.495 nm from 110.22 nm and 13.998 nm respectively in the 98% aperture. The result shows that the algorithm and optimized parameters provide a good theoretical for high precision processing of IBF.
UAV path planning using artificial potential field method updated by optimal control theory
NASA Astrophysics Data System (ADS)
Chen, Yong-bo; Luo, Guan-chen; Mei, Yue-song; Yu, Jian-qiao; Su, Xiao-long
2016-04-01
The unmanned aerial vehicle (UAV) path planning problem is an important assignment in the UAV mission planning. Based on the artificial potential field (APF) UAV path planning method, it is reconstructed into the constrained optimisation problem by introducing an additional control force. The constrained optimisation problem is translated into the unconstrained optimisation problem with the help of slack variables in this paper. The functional optimisation method is applied to reform this problem into an optimal control problem. The whole transformation process is deduced in detail, based on a discrete UAV dynamic model. Then, the path planning problem is solved with the help of the optimal control method. The path following process based on the six degrees of freedom simulation model of the quadrotor helicopters is introduced to verify the practicability of this method. Finally, the simulation results show that the improved method is more effective in planning path. In the planning space, the length of the calculated path is shorter and smoother than that using traditional APF method. In addition, the improved method can solve the dead point problem effectively.
Springback optimization in automotive Shock Absorber Cup with Genetic Algorithm
NASA Astrophysics Data System (ADS)
Kakandikar, Ganesh; Nandedkar, Vilas
2018-02-01
Drawing or forming is a process normally used to achieve a required component form from a metal blank by applying a punch which radially draws the blank into the die by a mechanical or hydraulic action or combining both. When the component is drawn for more depth than the diameter, it is usually seen as deep drawing, which involves complicated states of material deformation. Due to the radial drawing of the material as it enters the die, radial drawing stress occurs in the flange with existence of the tangential compressive stress. This compression generates wrinkles in the flange. Wrinkling is unwanted phenomenon and can be controlled by application of a blank-holding force. Tensile stresses cause thinning in the wall region of the cup. Three main types of the errors occur in such a process are wrinkling, fracturing and springback. This paper reports a work focused on the springback and control. Due to complexity of the process, tool try-outs and experimentation may be costly, bulky and time consuming. Numerical simulation proves to be a good option for studying the process and developing a control strategy for reducing the springback. Finite-element based simulations have been used popularly for such purposes. In this study, the springback in deep drawing of an automotive Shock Absorber Cup is simulated with finite element method. Taguchi design of experiments and analysis of variance are used to analyze the influencing process parameters on the springback. Mathematical relations are developed to relate the process parameters and the resulting springback. The optimization problem is formulated for the springback, referring to the displacement magnitude in the selected sections. Genetic Algorithm is then applied for process optimization with an objective to minimize the springback. The results indicate that a better prediction of the springback and process optimization could be achieved with a combined use of these methods and tools.
Study on Coagulant Dosing Control System of Micro Vortex Water Treatment
NASA Astrophysics Data System (ADS)
Fengping, Hu; Qi, Fan; Wenjie, Hu; Xizhen, He; Hongling, Dai
2018-03-01
In view of the characteristics of nonlinearity, large time delay and multi disturbance in the process of coagulant dosing in water treatment, it is difficult to control the dosage of coagulant. According to the four indexes of raw water quality parameters (raw water flow, turbidity, pH value) and turbidity of sedimentation tank, the micro vortex coagulation dosing control model is constructed based on BP neural network and GA. The forecast results of BP neural network model are ideal, and after the optimization of GA, the prediction accuracy of the model is partly improved. The prediction error of the optimized network is ±0.5 mg/L, and has a better performance than non-optimized network.
Method and apparatus for manufacturing gas tags
Gross, K.C.; Laug, M.T.
1996-12-17
For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.
Method and apparatus for manufacturing gas tags
Gross, Kenny C.; Laug, Matthew T.
1996-01-01
For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.
Direct approach for bioprocess optimization in a continuous flat-bed photobioreactor system.
Kwon, Jong-Hee; Rögner, Matthias; Rexroth, Sascha
2012-11-30
Application of photosynthetic micro-organisms, such as cyanobacteria and green algae, for the carbon neutral energy production raises the need for cost-efficient photobiological processes. Optimization of these processes requires permanent control of many independent and mutably dependent parameters, for which a continuous cultivation approach has significant advantages. As central factors like the cell density can be kept constant by turbidostatic control, light intensity and iron content with its strong impact on productivity can be optimized. Both are key parameters due to their strong dependence on photosynthetic activity. Here we introduce an engineered low-cost 5 L flat-plate photobioreactor in combination with a simple and efficient optimization procedure for continuous photo-cultivation of microalgae. Based on direct determination of the growth rate at constant cell densities and the continuous measurement of O₂ evolution, stress conditions and their effect on the photosynthetic productivity can be directly observed. Copyright © 2012 Elsevier B.V. All rights reserved.
Response Ant Colony Optimization of End Milling Surface Roughness
Kadirgama, K.; Noor, M. M.; Abd Alla, Ahmed N.
2010-01-01
Metal cutting processes are important due to increased consumer demands for quality metal cutting related products (more precise tolerances and better product surface roughness) that has driven the metal cutting industry to continuously improve quality control of metal cutting processes. This paper presents optimum surface roughness by using milling mould aluminium alloys (AA6061-T6) with Response Ant Colony Optimization (RACO). The approach is based on Response Surface Method (RSM) and Ant Colony Optimization (ACO). The main objectives to find the optimized parameters and the most dominant variables (cutting speed, feedrate, axial depth and radial depth). The first order model indicates that the feedrate is the most significant factor affecting surface roughness. PMID:22294914
An optimal control approach to the design of moving flight simulators
NASA Technical Reports Server (NTRS)
Sivan, R.; Ish-Shalom, J.; Huang, J.-K.
1982-01-01
An abstract flight simulator design problem is formulated in the form of an optimal control problem, which is solved for the linear-quadratic-Gaussian special case using a mathematical model of the vestibular organs. The optimization criterion used is the mean-square difference between the physiological outputs of the vestibular organs of the pilot in the aircraft and the pilot in the simulator. The dynamical equations are linearized, and the output signal is modeled as a random process with rational power spectral density. The method described yields the optimal structure of the simulator's motion generator, or 'washout filter'. A two-degree-of-freedom flight simulator design, including single output simulations, is presented.
Shape Optimization for Navier-Stokes Equations with Algebraic Turbulence Model: Existence Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulicek, Miroslav; Haslinger, Jaroslav; Malek, Josef
2009-10-15
We study a shape optimization problem for the paper machine headbox which distributes a mixture of water and wood fibers in the paper making process. The aim is to find a shape which a priori ensures the given velocity profile on the outlet part. The mathematical formulation leads to an optimal control problem in which the control variable is the shape of the domain representing the header, the state problem is represented by a generalized stationary Navier-Stokes system with nontrivial mixed boundary conditions. In this paper we prove the existence of solutions both to the generalized Navier-Stokes system and tomore » the shape optimization problem.« less
Optimization of 15 parameters influencing the long-term survival of bacteria in aquatic systems
NASA Technical Reports Server (NTRS)
Obenhuber, D. C.
1993-01-01
NASA is presently engaged in the design and development of a water reclamation system for the future space station. A major concern in processing water is the control of microbial contamination. As a means of developing an optimal microbial control strategy, studies were undertaken to determine the type and amount of contamination which could be expected in these systems under a variety of changing environmental conditions. A laboratory-based Taguchi optimization experiment was conducted to determine the ideal settings for 15 parameters which influence the survival of six bacterial species in aquatic systems. The experiment demonstrated that the bacterial survival period could be decreased significantly by optimizing environmental conditions.
Minozzi, M; Bonora, S; Sergienko, A V; Vallone, G; Villoresi, P
2013-02-15
We present an efficient method for optimizing the spatial profile of entangled-photon wave function produced in a spontaneous parametric down conversion process. A deformable mirror that modifies a wavefront of a 404 nm CW diode laser pump interacting with a nonlinear β-barium borate type-I crystal effectively controls the profile of the joint biphoton function. The use of a feedback signal extracted from the biphoton coincidence rate is used to achieve the optimal wavefront shape. The optimization of the two-photon coupling into two, single spatial modes for correlated detection is used for a practical demonstration of this physical principle.
Computer control improves ethylene plant operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitehead, B.D.; Parnis, M.
ICIA Australia ordered a turnkey 250,000-tpy ethylene plant to be built at the Botany site, Sydney, Australia. Following a feasibility study, an additional order was placed for a process computer system for advanced process control and optimization. This article gives a broad outline of the process computer tasks, how the tasks were implemented, what problems were met, what lessons were learned and what results were achieved.
Multi-tasking arbitration and behaviour design for human-interactive robots
NASA Astrophysics Data System (ADS)
Kobayashi, Yuichi; Onishi, Masaki; Hosoe, Shigeyuki; Luo, Zhiwei
2013-05-01
Robots that interact with humans in household environments are required to handle multiple real-time tasks simultaneously, such as carrying objects, collision avoidance and conversation with human. This article presents a design framework for the control and recognition processes to meet these requirements taking into account stochastic human behaviour. The proposed design method first introduces a Petri net for synchronisation of multiple tasks. The Petri net formulation is converted to Markov decision processes and processed in an optimal control framework. Three tasks (safety confirmation, object conveyance and conversation) interact and are expressed by the Petri net. Using the proposed framework, tasks that normally tend to be designed by integrating many if-then rules can be designed in a systematic manner in a state estimation and optimisation framework from the viewpoint of the shortest time optimal control. The proposed arbitration method was verified by simulations and experiments using RI-MAN, which was developed for interactive tasks with humans.
NASA Astrophysics Data System (ADS)
Bania, Piotr; Baranowski, Jerzy
2018-02-01
Quantisation of signals is a ubiquitous property of digital processing. In many cases, it introduces significant difficulties in state estimation and in consequence control. Popular approaches either do not address properly the problem of system disturbances or lead to biased estimates. Our intention was to find a method for state estimation for stochastic systems with quantised and discrete observation, that is free of the mentioned drawbacks. We have formulated a general form of the optimal filter derived by a solution of Fokker-Planck equation. We then propose the approximation method based on Galerkin projections. We illustrate the approach for the Ornstein-Uhlenbeck process, and derive analytic formulae for the approximated optimal filter, also extending the results for the variant with control. Operation is illustrated with numerical experiments and compared with classical discrete-continuous Kalman filter. Results of comparison are substantially in favour of our approach, with over 20 times lower mean squared error. The proposed filter is especially effective for signal amplitudes comparable to the quantisation thresholds. Additionally, it was observed that for high order of approximation, state estimate is very close to the true process value. The results open the possibilities of further analysis, especially for more complex processes.
Capital dissipation minimization for a class of complex irreversible resource exchange processes
NASA Astrophysics Data System (ADS)
Xia, Shaojun; Chen, Lingen
2017-05-01
A model of a class of irreversible resource exchange processes (REPes) between a firm and a producer with commodity flow leakage from the producer to a competitive market is established in this paper. The REPes are assumed to obey the linear commodity transfer law (LCTL). Optimal price paths for capital dissipation minimization (CDM) (it can measure economic process irreversibility) are obtained. The averaged optimal control theory is used. The optimal REP strategy is also compared with other strategies, such as constant-firm-price operation and constant-commodity-flow operation, and effects of the amount of commodity transferred and the commodity flow leakage on the optimal REP strategy are also analyzed. The commodity prices of both the producer and the firm for the CDM of the REPes with commodity flow leakage change with the time exponentially.
Evolutionary Optimization of a Geometrically Refined Truss
NASA Technical Reports Server (NTRS)
Hull, P. V.; Tinker, M. L.; Dozier, G. V.
2007-01-01
Structural optimization is a field of research that has experienced noteworthy growth for many years. Researchers in this area have developed optimization tools to successfully design and model structures, typically minimizing mass while maintaining certain deflection and stress constraints. Numerous optimization studies have been performed to minimize mass, deflection, and stress on a benchmark cantilever truss problem. Predominantly traditional optimization theory is applied to this problem. The cross-sectional area of each member is optimized to minimize the aforementioned objectives. This Technical Publication (TP) presents a structural optimization technique that has been previously applied to compliant mechanism design. This technique demonstrates a method that combines topology optimization, geometric refinement, finite element analysis, and two forms of evolutionary computation: genetic algorithms and differential evolution to successfully optimize a benchmark structural optimization problem. A nontraditional solution to the benchmark problem is presented in this TP, specifically a geometrically refined topological solution. The design process begins with an alternate control mesh formulation, multilevel geometric smoothing operation, and an elastostatic structural analysis. The design process is wrapped in an evolutionary computing optimization toolset.
NASA Astrophysics Data System (ADS)
Ghosh, Nabendu; Kumar, Pradip; Nandi, Goutam
2016-10-01
Welding input process parameters play a very significant role in determining the quality of the welded joint. Only by properly controlling every element of the process can product quality be controlled. For better quality of MIG welding of Ferritic stainless steel AISI 409, precise control of process parameters, parametric optimization of the process parameters, prediction and control of the desired responses (quality indices) etc., continued and elaborate experiments, analysis and modeling are needed. A data of knowledge - base may thus be generated which may be utilized by the practicing engineers and technicians to produce good quality weld more precisely, reliably and predictively. In the present work, X-ray radiographic test has been conducted in order to detect surface and sub-surface defects of weld specimens made of Ferritic stainless steel. The quality of the weld has been evaluated in terms of yield strength, ultimate tensile strength and percentage of elongation of the welded specimens. The observed data have been interpreted, discussed and analyzed by considering ultimate tensile strength ,yield strength and percentage elongation combined with use of Grey-Taguchi methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haslinger, Jaroslav, E-mail: hasling@karlin.mff.cuni.cz; Stebel, Jan, E-mail: stebel@math.cas.cz
2011-04-15
We study the shape optimization problem for the paper machine headbox which distributes a mixture of water and wood fibers in the paper making process. The aim is to find a shape which a priori ensures the given velocity profile on the outlet part. The mathematical formulation leads to the optimal control problem in which the control variable is the shape of the domain representing the header, the state problem is represented by the generalized Navier-Stokes system with nontrivial boundary conditions. This paper deals with numerical aspects of the problem.
A stochastic optimal feedforward and feedback control methodology for superagility
NASA Technical Reports Server (NTRS)
Halyo, Nesim; Direskeneli, Haldun; Taylor, Deborah B.
1992-01-01
A new control design methodology is developed: Stochastic Optimal Feedforward and Feedback Technology (SOFFT). Traditional design techniques optimize a single cost function (which expresses the design objectives) to obtain both the feedforward and feedback control laws. This approach places conflicting demands on the control law such as fast tracking versus noise atttenuation/disturbance rejection. In the SOFFT approach, two cost functions are defined. The feedforward control law is designed to optimize one cost function, the feedback optimizes the other. By separating the design objectives and decoupling the feedforward and feedback design processes, both objectives can be achieved fully. A new measure of command tracking performance, Z-plots, is also developed. By analyzing these plots at off-nominal conditions, the sensitivity or robustness of the system in tracking commands can be predicted. Z-plots provide an important tool for designing robust control systems. The Variable-Gain SOFFT methodology was used to design a flight control system for the F/A-18 aircraft. It is shown that SOFFT can be used to expand the operating regime and provide greater performance (flying/handling qualities) throughout the extended flight regime. This work was performed under the NASA SBIR program. ICS plans to market the software developed as a new module in its commercial CACSD software package: ACET.
Active flutter suppression using optical output feedback digital controllers
NASA Technical Reports Server (NTRS)
1982-01-01
A method for synthesizing digital active flutter suppression controllers using the concept of optimal output feedback is presented. A convergent algorithm is employed to determine constrained control law parameters that minimize an infinite time discrete quadratic performance index. Low order compensator dynamics are included in the control law and the compensator parameters are computed along with the output feedback gain as part of the optimization process. An input noise adjustment procedure is used to improve the stability margins of the digital active flutter controller. Sample rate variation, prefilter pole variation, control structure variation and gain scheduling are discussed. A digital control law which accommodates computation delay can stabilize the wing with reasonable rms performance and adequate stability margins.
Extreme Learning Machine and Particle Swarm Optimization in optimizing CNC turning operation
NASA Astrophysics Data System (ADS)
Janahiraman, Tiagrajah V.; Ahmad, Nooraziah; Hani Nordin, Farah
2018-04-01
The CNC machine is controlled by manipulating cutting parameters that could directly influence the process performance. Many optimization methods has been applied to obtain the optimal cutting parameters for the desired performance function. Nonetheless, the industry still uses the traditional technique to obtain those values. Lack of knowledge on optimization techniques is the main reason for this issue to be prolonged. Therefore, the simple yet easy to implement, Optimal Cutting Parameters Selection System is introduced to help the manufacturer to easily understand and determine the best optimal parameters for their turning operation. This new system consists of two stages which are modelling and optimization. In modelling of input-output and in-process parameters, the hybrid of Extreme Learning Machine and Particle Swarm Optimization is applied. This modelling technique tend to converge faster than other artificial intelligent technique and give accurate result. For the optimization stage, again the Particle Swarm Optimization is used to get the optimal cutting parameters based on the performance function preferred by the manufacturer. Overall, the system can reduce the gap between academic world and the industry by introducing a simple yet easy to implement optimization technique. This novel optimization technique can give accurate result besides being the fastest technique.
Controlled supercontinua via spatial beam shaping
NASA Astrophysics Data System (ADS)
Zhdanova, Alexandra A.; Shen, Yujie; Thompson, Jonathan V.; Scully, Marlan O.; Yakovlev, Vladislav V.; Sokolov, Alexei V.
2018-06-01
Recently, optimization techniques have had a significant impact in a variety of fields, leading to a higher signal-to-noise and more streamlined techniques. We consider the possibility for using programmable phase-only spatial optimization of the pump beam to influence the supercontinuum generation process. Preliminary results show that significant broadening and rough control of the supercontinuum spectrum in the visible region are possible without loss of input energy. This serves as a proof-of-concept demonstration that spatial effects can controllably influence the supercontinuum spectrum, leading to possibilities for utilizing supercontinuum power more efficiently and achieving excellent spectral control.
Radac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M
2015-11-01
This paper proposes a novel model-free trajectory tracking of multiple-input multiple-output (MIMO) systems by the combination of iterative learning control (ILC) and primitives. The optimal trajectory tracking solution is obtained in terms of previously learned solutions to simple tasks called primitives. The library of primitives that are stored in memory consists of pairs of reference input/controlled output signals. The reference input primitives are optimized in a model-free ILC framework without using knowledge of the controlled process. The guaranteed convergence of the learning scheme is built upon a model-free virtual reference feedback tuning design of the feedback decoupling controller. Each new complex trajectory to be tracked is decomposed into the output primitives regarded as basis functions. The optimal reference input for the control system to track the desired trajectory is next recomposed from the reference input primitives. This is advantageous because the optimal reference input is computed straightforward without the need to learn from repeated executions of the tracking task. In addition, the optimization problem specific to trajectory tracking of square MIMO systems is decomposed in a set of optimization problems assigned to each separate single-input single-output control channel that ensures a convenient model-free decoupling. The new model-free primitive-based ILC approach is capable of planning, reasoning, and learning. A case study dealing with the model-free control tuning for a nonlinear aerodynamic system is included to validate the new approach. The experimental results are given.
NASA Astrophysics Data System (ADS)
Zhu, Zhengfan; Gan, Qingbo; Yang, Xin; Gao, Yang
2017-08-01
We have developed a novel continuation technique to solve optimal bang-bang control for low-thrust orbital transfers considering the first-order necessary optimality conditions derived from Lawden's primer vector theory. Continuation on the thrust amplitude is mainly described in this paper. Firstly, a finite-thrust transfer with an ;On-Off-On; thrusting sequence is modeled using a two-impulse transfer as initial solution, and then the thrust amplitude is decreased gradually to find an optimal solution with minimum thrust. Secondly, the thrust amplitude is continued from its minimum value to positive infinity to find the optimal bang-bang control, and a thrust switching principle is employed to determine the control structure by monitoring the variation of the switching function. In the continuation process, a bifurcation of bang-bang control is revealed and the concept of critical thrust is proposed to illustrate this phenomenon. The same thrust switching principle is also applicable to the continuation on other parameters, such as transfer time, orbital phase angle, etc. By this continuation technique, fuel-optimal orbital transfers with variable mission parameters can be found via an automated algorithm, and there is no need to provide an initial guess for the costate variables. Moreover, continuation is implemented in the solution space of bang-bang control that is either optimal or non-optimal, which shows that a desired solution of bang-bang control is obtained via continuation on a single parameter starting from an existing solution of bang-bang control. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed continuation technique. Specifically, this continuation technique provides an approach to find multiple solutions satisfying the first-order necessary optimality conditions to the same orbital transfer problem, and a continuation strategy is presented as a preliminary approach for solving the bang-bang control of many-revolution orbital transfers.
Fan, Dong-Dong; Kuang, Yan-Hui; Dong, Li-Hua; Ye, Xiao; Chen, Liang-Mian; Zhang, Dong; Ma, Zhen-Shan; Wang, Jin-Yu; Zhu, Jing-Jing; Wang, Zhi-Min; Wang, De-Qin; Li, Chu-Yuan
2017-04-01
To optimize the purification process of gynostemma pentaphyllum saponins (GPS) based on "adjoint marker" online control technology with GPS as the testing index. UPLC-QTOF-MS technology was used for qualitative analysis. "Adjoint marker" online control results showed that the end point of load sample was that the UV absorbance of effluent liquid was equal to half of that of load sample solution, and the absorbance was basically stable when the end point was stable. In UPLC-QTOF-MS qualitative analysis, 16 saponins were identified from GPS, including 13 known gynostemma saponins and 3 new saponins. This optimized method was proved to be simple, scientific, reasonable, easy for online determination, real-time record, and can be better applied to the mass production and automation of production. The results of qualitative analysis indicated that the "adjoint marker" online control technology can well retain main efficacy components of medicinal materials, and provide analysis tools for the process control and quality traceability. Copyright© by the Chinese Pharmaceutical Association.
State transformations and Hamiltonian structures for optimal control in discrete systems
NASA Astrophysics Data System (ADS)
Sieniutycz, S.
2006-04-01
Preserving usual definition of Hamiltonian H as the scalar product of rates and generalized momenta we investigate two basic classes of discrete optimal control processes governed by the difference rather than differential equations for the state transformation. The first class, linear in the time interval θ, secures the constancy of optimal H and satisfies a discrete Hamilton-Jacobi equation. The second class, nonlinear in θ, does not assure the constancy of optimal H and satisfies only a relationship that may be regarded as an equation of Hamilton-Jacobi type. The basic question asked is if and when Hamilton's canonical structures emerge in optimal discrete systems. For a constrained discrete control, general optimization algorithms are derived that constitute powerful theoretical and computational tools when evaluating extremum properties of constrained physical systems. The mathematical basis is Bellman's method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage optimality criterion which allows a variation of the terminal state that is otherwise fixed in Bellman's method. For systems with unconstrained intervals of the holdup time θ two powerful optimization algorithms are obtained: an unconventional discrete algorithm with a constant H and its counterpart for models nonlinear in θ. We also present the time-interval-constrained extension of the second algorithm. The results are general; namely, one arrives at: discrete canonical equations of Hamilton, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory, along with basic results of variational calculus. A vast spectrum of applications and an example are briefly discussed with particular attention paid to models nonlinear in the time interval θ.
Optimized pulses for the control of uncertain qubits
Grace, Matthew D.; Dominy, Jason M.; Witzel, Wayne M.; ...
2012-05-18
The construction of high-fidelity control fields that are robust to control, system, and/or surrounding environment uncertainties is a crucial objective for quantum information processing. Using the two-state Landau-Zener model for illustrative simulations of a controlled qubit, we generate optimal controls for π/2 and π pulses and investigate their inherent robustness to uncertainty in the magnitude of the drift Hamiltonian. Next, we construct a quantum-control protocol to improve system-drift robustness by combining environment-decoupling pulse criteria and optimal control theory for unitary operations. By perturbatively expanding the unitary time-evolution operator for an open quantum system, previous analysis of environment-decoupling control pulses hasmore » calculated explicit control-field criteria to suppress environment-induced errors up to (but not including) third order from π/2 and π pulses. We systematically integrate this criteria with optimal control theory, incorporating an estimate of the uncertain parameter to produce improvements in gate fidelity and robustness, demonstrated via a numerical example based on double quantum dot qubits. For the qubit model used in this work, postfacto analysis of the resulting controls suggests that realistic control-field fluctuations and noise may contribute just as significantly to gate errors as system and environment fluctuations.« less
Optimizing the construction of devices to control inaccesible surfaces - case study
NASA Astrophysics Data System (ADS)
Niţu, E. L.; Costea, A.; Iordache, M. D.; Rizea, A. D.; Babă, Al
2017-10-01
The modern concept for the evolution of manufacturing systems requires multi-criteria optimization of technological processes and equipments, prioritizing associated criteria according to their importance. Technological preparation of the manufacturing can be developed, depending on the volume of production, to the limit of favourable economical effects related to the recovery of the costs for the design and execution of the technological equipment. Devices, as subsystems of the technological system, in the general context of modernization and diversification of machines, tools, semi-finished products and drives, are made in a multitude of constructive variants, which in many cases do not allow their identification, study and improvement. This paper presents a case study in which the multi-criteria analysis of some structures, based on a general optimization method, of novelty character, is used in order to determine the optimal construction variant of a control device. The rational construction of the control device confirms that the optimization method and the proposed calculation methods are correct and determine a different system configuration, new features and functions, and a specific method of working to control inaccessible surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LAH, J; Shin, D; Manger, R
Purpose: To show how the Six Sigma DMAIC (Define-Measure-Analyze-Improve-Control) can be used for improving and optimizing the efficiency of patient-specific QA process by designing site-specific range tolerances. Methods: The Six Sigma tools (process flow diagram, cause and effect, capability analysis, Pareto chart, and control chart) were utilized to determine the steps that need focus for improving the patient-specific QA process. The patient-specific range QA plans were selected according to 7 treatment site groups, a total of 1437 cases. The process capability index, Cpm was used to guide the tolerance design of patient site-specific range. We also analyzed the financial impactmore » of this project. Results: Our results suggested that the patient range measurements were non-capable at the current tolerance level of ±1 mm in clinical proton plans. The optimized tolerances were calculated for treatment sites. Control charts for the patient QA time were constructed to compare QA time before and after the new tolerances were implemented. It is found that overall processing time was decreased by 24.3% after establishing new site-specific range tolerances. The QA failure for whole process in proton therapy would lead up to a 46% increase in total cost. This result can also predict how costs are affected by changes in adopting the tolerance design. Conclusion: We often believe that the quality and performance of proton therapy can easily be improved by merely tightening some or all of its tolerance requirements. This can become costly, however, and it is not necessarily a guarantee of better performance. The tolerance design is not a task to be undertaken without careful thought. The Six Sigma DMAIC can be used to improve the QA process by setting optimized tolerances. When tolerance design is optimized, the quality is reasonably balanced with time and cost demands.« less
Optimizing the Usability of Brain-Computer Interfaces.
Zhang, Yin; Chase, Steve M
2018-05-01
Brain-computer interfaces are in the process of moving from the laboratory to the clinic. These devices act by reading neural activity and using it to directly control a device, such as a cursor on a computer screen. An open question in the field is how to map neural activity to device movement in order to achieve the most proficient control. This question is complicated by the fact that learning, especially the long-term skill learning that accompanies weeks of practice, can allow subjects to improve performance over time. Typical approaches to this problem attempt to maximize the biomimetic properties of the device in order to limit the need for extensive training. However, it is unclear if this approach would ultimately be superior to performance that might be achieved with a nonbiomimetic device once the subject has engaged in extended practice and learned how to use it. Here we approach this problem using ideas from optimal control theory. Under the assumption that the brain acts as an optimal controller, we present a formal definition of the usability of a device and show that the optimal postlearning mapping can be written as the solution of a constrained optimization problem. We then derive the optimal mappings for particular cases common to most brain-computer interfaces. Our results suggest that the common approach of creating biomimetic interfaces may not be optimal when learning is taken into account. More broadly, our method provides a blueprint for optimal device design in general control-theoretic contexts.
Off-Line Quality Control In Integrated Circuit Fabrication Using Experimental Design
NASA Astrophysics Data System (ADS)
Phadke, M. S.; Kackar, R. N.; Speeney, D. V.; Grieco, M. J.
1987-04-01
Off-line quality control is a systematic method of optimizing production processes and product designs. It is widely used in Japan to produce high quality products at low cost. The method was introduced to us by Professor Genichi Taguchi who is a Deming-award winner and a former Director of the Japanese Academy of Quality. In this paper we will i) describe the off-line quality control method, and ii) document our efforts to optimize the process for forming contact windows in 3.5 Aim CMOS circuits fabricated in the Murray Hill Integrated Circuit Design Capability Laboratory. In the fabrication of integrated circuits it is critically important to produce contact windows of size very near the target dimension. Windows which are too small or too large lead to loss of yield. The off-line quality control method has improved both the process quality and productivity. The variance of the window size has been reduced by a factor of four. Also, processing time for window photolithography has been substantially reduced. The key steps of off-line quality control are: i) Identify important manipulatable process factors and their potential working levels. ii) Perform fractional factorial experiments on the process using orthogonal array designs. iii) Analyze the resulting data to determine the optimum operating levels of the factors. Both the process mean and the process variance are considered in this analysis. iv) Conduct an additional experiment to verify that the new factor levels indeed give an improvement.
Model predictive and reallocation problem for CubeSat fault recovery and attitude control
NASA Astrophysics Data System (ADS)
Franchi, Loris; Feruglio, Lorenzo; Mozzillo, Raffaele; Corpino, Sabrina
2018-01-01
In recent years, thanks to the increase of the know-how on machine-learning techniques and the advance of the computational capabilities of on-board processing, expensive computing algorithms, such as Model Predictive Control, have begun to spread in space applications even on small on-board processor. The paper presents an algorithm for an optimal fault recovery of a 3U CubeSat, developed in MathWorks Matlab & Simulink environment. This algorithm involves optimization techniques aiming at obtaining the optimal recovery solution, and involves a Model Predictive Control approach for the attitude control. The simulated system is a CubeSat in Low Earth Orbit: the attitude control is performed with three magnetic torquers and a single reaction wheel. The simulation neglects the errors in the attitude determination of the satellite, and focuses on the recovery approach and control method. The optimal recovery approach takes advantage of the properties of magnetic actuation, which gives the possibility of the redistribution of the control action when a fault occurs on a single magnetic torquer, even in absence of redundant actuators. In addition, the paper presents the results of the implementation of Model Predictive approach to control the attitude of the satellite.
Mahmoodabadi, M. J.; Taherkhorsandi, M.; Bagheri, A.
2014-01-01
An optimal robust state feedback tracking controller is introduced to control a biped robot. In the literature, the parameters of the controller are usually determined by a tedious trial and error process. To eliminate this process and design the parameters of the proposed controller, the multiobjective evolutionary algorithms, that is, the proposed method, modified NSGAII, Sigma method, and MATLAB's Toolbox MOGA, are employed in this study. Among the used evolutionary optimization algorithms to design the controller for biped robots, the proposed method operates better in the aspect of designing the controller since it provides ample opportunities for designers to choose the most appropriate point based upon the design criteria. Three points are chosen from the nondominated solutions of the obtained Pareto front based on two conflicting objective functions, that is, the normalized summation of angle errors and normalized summation of control effort. Obtained results elucidate the efficiency of the proposed controller in order to control a biped robot. PMID:24616619
RTDS implementation of an improved sliding mode based inverter controller for PV system.
Islam, Gazi; Muyeen, S M; Al-Durra, Ahmed; Hasanien, Hany M
2016-05-01
This paper proposes a novel approach for testing dynamics and control aspects of a large scale photovoltaic (PV) system in real time along with resolving design hindrances of controller parameters using Real Time Digital Simulator (RTDS). In general, the harmonic profile of a fast controller has wide distribution due to the large bandwidth of the controller. The major contribution of this paper is that the proposed control strategy gives an improved voltage harmonic profile and distribute it more around the switching frequency along with fast transient response; filter design, thus, becomes easier. The implementation of a control strategy with high bandwidth in small time steps of Real Time Digital Simulator (RTDS) is not straight forward. This paper shows a good methodology for the practitioners to implement such control scheme in RTDS. As a part of the industrial process, the controller parameters are optimized using particle swarm optimization (PSO) technique to improve the low voltage ride through (LVRT) performance under network disturbance. The response surface methodology (RSM) is well adapted to build analytical models for recovery time (Rt), maximum percentage overshoot (MPOS), settling time (Ts), and steady state error (Ess) of the voltage profile immediate after inverter under disturbance. A systematic approach of controller parameter optimization is detailed. The transient performance of the PSO based optimization method applied to the proposed sliding mode controlled PV inverter is compared with the results from genetic algorithm (GA) based optimization technique. The reported real time implementation challenges and controller optimization procedure are applicable to other control applications in the field of renewable and distributed generation systems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Agarabi, Cyrus D; Schiel, John E; Lute, Scott C; Chavez, Brittany K; Boyne, Michael T; Brorson, Kurt A; Khan, Mansoora; Read, Erik K
2015-06-01
Consistent high-quality antibody yield is a key goal for cell culture bioprocessing. This endpoint is typically achieved in commercial settings through product and process engineering of bioreactor parameters during development. When the process is complex and not optimized, small changes in composition and control may yield a finished product of less desirable quality. Therefore, changes proposed to currently validated processes usually require justification and are reported to the US FDA for approval. Recently, design-of-experiments-based approaches have been explored to rapidly and efficiently achieve this goal of optimized yield with a better understanding of product and process variables that affect a product's critical quality attributes. Here, we present a laboratory-scale model culture where we apply a Plackett-Burman screening design to parallel cultures to study the main effects of 11 process variables. This exercise allowed us to determine the relative importance of these variables and identify the most important factors to be further optimized in order to control both desirable and undesirable glycan profiles. We found engineering changes relating to culture temperature and nonessential amino acid supplementation significantly impacted glycan profiles associated with fucosylation, β-galactosylation, and sialylation. All of these are important for monoclonal antibody product quality. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Metabolic regulation and maximal reaction optimization in the central metabolism of a yeast cell
NASA Astrophysics Data System (ADS)
Kasbawati, Gunawan, A. Y.; Hertadi, R.; Sidarto, K. A.
2015-03-01
Regulation of fluxes in a metabolic system aims to enhance the production rates of biotechnologically important compounds. Regulation is held via modification the cellular activities of a metabolic system. In this study, we present a metabolic analysis of ethanol fermentation process of a yeast cell in terms of continuous culture scheme. The metabolic regulation is based on the kinetic formulation in combination with metabolic control analysis to indicate the key enzymes which can be modified to enhance ethanol production. The model is used to calculate the intracellular fluxes in the central metabolism of the yeast cell. Optimal control is then applied to the kinetic model to find the optimal regulation for the fermentation system. The sensitivity results show that there are external and internal control parameters which are adjusted in enhancing ethanol production. As an external control parameter, glucose supply should be chosen in appropriate way such that the optimal ethanol production can be achieved. For the internal control parameter, we find three enzymes as regulation targets namely acetaldehyde dehydrogenase, pyruvate decarboxylase, and alcohol dehydrogenase which reside in the acetaldehyde branch. Among the three enzymes, however, only acetaldehyde dehydrogenase has a significant effect to obtain optimal ethanol production efficiently.
Chen, Bailian; Reynolds, Albert C.
2018-03-11
We report that CO 2 water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during CO 2 injection with the injected water to control the mobility of CO 2 and to stabilize the gas front. Optimization of CO 2 -WAG injection is widely regarded as a viable technique for controlling the CO 2 and oil miscible process. Poor recovery from CO 2 -WAG injection can be caused by inappropriately designed WAG parameters. In previous study (Chen and Reynolds, 2016), we proposed an algorithm to optimize the well controls which maximize the life-cycle net-present-value (NPV). However,more » the effect of injection half-cycle lengths for each injector on oil recovery or NPV has not been well investigated. In this paper, an optimization framework based on augmented Lagrangian method and the newly developed stochastic-simplex-approximate-gradient (StoSAG) algorithm is proposed to explore the possibility of simultaneous optimization of the WAG half-cycle lengths together with the well controls. Finally, the proposed framework is demonstrated with three reservoir examples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bailian; Reynolds, Albert C.
We report that CO 2 water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during CO 2 injection with the injected water to control the mobility of CO 2 and to stabilize the gas front. Optimization of CO 2 -WAG injection is widely regarded as a viable technique for controlling the CO 2 and oil miscible process. Poor recovery from CO 2 -WAG injection can be caused by inappropriately designed WAG parameters. In previous study (Chen and Reynolds, 2016), we proposed an algorithm to optimize the well controls which maximize the life-cycle net-present-value (NPV). However,more » the effect of injection half-cycle lengths for each injector on oil recovery or NPV has not been well investigated. In this paper, an optimization framework based on augmented Lagrangian method and the newly developed stochastic-simplex-approximate-gradient (StoSAG) algorithm is proposed to explore the possibility of simultaneous optimization of the WAG half-cycle lengths together with the well controls. Finally, the proposed framework is demonstrated with three reservoir examples.« less
Toward Optimal Transport Networks
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Kincaid, Rex K.; Vargo, Erik P.
2008-01-01
Strictly evolutionary approaches to improving the air transport system a highly complex network of interacting systems no longer suffice in the face of demand that is projected to double or triple in the near future. Thus evolutionary approaches should be augmented with active design methods. The ability to actively design, optimize and control a system presupposes the existence of predictive modeling and reasonably well-defined functional dependences between the controllable variables of the system and objective and constraint functions for optimization. Following recent advances in the studies of the effects of network topology structure on dynamics, we investigate the performance of dynamic processes on transport networks as a function of the first nontrivial eigenvalue of the network's Laplacian, which, in turn, is a function of the network s connectivity and modularity. The last two characteristics can be controlled and tuned via optimization. We consider design optimization problem formulations. We have developed a flexible simulation of network topology coupled with flows on the network for use as a platform for computational experiments.
Optimal integration of gravity in trajectory planning of vertical pointing movements.
Crevecoeur, Frédéric; Thonnard, Jean-Louis; Lefèvre, Philippe
2009-08-01
The planning and control of motor actions requires knowledge of the dynamics of the controlled limb to generate the appropriate muscular commands and achieve the desired goal. Such planning and control imply that the CNS must be able to deal with forces and constraints acting on the limb, such as the omnipresent force of gravity. The present study investigates the effect of hypergravity induced by parabolic flights on the trajectory of vertical pointing movements to test the hypothesis that motor commands are optimized with respect to the effect of gravity on the limb. Subjects performed vertical pointing movements in normal gravity and hypergravity. We use a model based on optimal control to identify the role played by gravity in the optimal arm trajectory with minimal motor costs. First, the simulations in normal gravity reproduce the asymmetry in the velocity profiles (the velocity reaches its maximum before half of the movement duration), which typically characterizes the vertical pointing movements performed on Earth, whereas the horizontal movements present symmetrical velocity profiles. Second, according to the simulations, the optimal trajectory in hypergravity should present an increase in the peak acceleration and peak velocity despite the increase in the arm weight. In agreement with these predictions, the subjects performed faster movements in hypergravity with significant increases in the peak acceleration and peak velocity, which were accompanied by a significant decrease in the movement duration. This suggests that movement kinematics change in response to an increase in gravity, which is consistent with the hypothesis that motor commands are optimized and the action of gravity on the limb is taken into account. The results provide evidence for an internal representation of gravity in the central planning process and further suggest that an adaptation to altered dynamics can be understood as a reoptimization process.
A Robust Design Methodology for Optimal Microscale Secondary Flow Control in Compact Inlet Diffusers
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Keller, Dennis J.
2001-01-01
It is the purpose of this study to develop an economical Robust design methodology for microscale secondary flow control in compact inlet diffusers. To illustrate the potential of economical Robust Design methodology, two different mission strategies were considered for the subject inlet, namely Maximum Performance and Maximum HCF Life Expectancy. The Maximum Performance mission maximized total pressure recovery while the Maximum HCF Life Expectancy mission minimized the mean of the first five Fourier harmonic amplitudes, i.e., 'collectively' reduced all the harmonic 1/2 amplitudes of engine face distortion. Each of the mission strategies was subject to a low engine face distortion constraint, i.e., DC60<0.10, which is a level acceptable for commercial engines. For each of these missions strategies, an 'Optimal Robust' (open loop control) and an 'Optimal Adaptive' (closed loop control) installation was designed over a twenty degree angle-of-incidence range. The Optimal Robust installation used economical Robust Design methodology to arrive at a single design which operated over the entire angle-of-incident range (open loop control). The Optimal Adaptive installation optimized all the design parameters at each angle-of-incidence. Thus, the Optimal Adaptive installation would require a closed loop control system to sense a proper signal for each effector and modify that effector device, whether mechanical or fluidic, for optimal inlet performance. In general, the performance differences between the Optimal Adaptive and Optimal Robust installation designs were found to be marginal. This suggests, however, that Optimal Robust open loop installation designs can be very competitive with Optimal Adaptive close loop designs. Secondary flow control in inlets is inherently robust, provided it is optimally designed. Therefore, the new methodology presented in this paper, combined array 'Lower Order' approach to Robust DOE, offers the aerodynamicist a very viable and economical way of exploring the concept of Robust inlet design, where the mission variables are brought directly into the inlet design process and insensitivity or robustness to the mission variables becomes a design objective.
FT-NIR: A Tool for Process Monitoring and More.
Martoccia, Domenico; Lutz, Holger; Cohen, Yvan; Jerphagnon, Thomas; Jenelten, Urban
2018-03-30
With ever-increasing pressure to optimize product quality, to reduce cost and to safely increase production output from existing assets, all combined with regular changes in terms of feedstock and operational targets, process monitoring with traditional instruments reaches its limits. One promising answer to these challenges is in-line, real time process analysis with spectroscopic instruments, and above all Fourier-Transform Near Infrared spectroscopy (FT-NIR). Its potential to afford decreased batch cycle times, higher yields, reduced rework and minimized batch variance is presented and application examples in the field of fine chemicals are given. We demonstrate that FT-NIR can be an efficient tool for improved process monitoring and optimization, effective process design and advanced process control.
Xu, Sen; Hoshan, Linda; Chen, Hao
2016-11-01
In this study, we discussed the development and optimization of an intensified CHO culture process, highlighting medium and control strategies to improve lactate metabolism. A few strategies, including supplementing glucose with other sugars (fructose, maltose, and galactose), controlling glucose level at <0.2 mM, and supplementing medium with copper sulfate, were found to be effective in reducing lactate accumulation. Among them, copper sulfate supplementation was found to be critical for process optimization when glucose was in excess. When copper sulfate was supplemented in the new process, two-fold increase in cell density (66.5 ± 8.4 × 10(6) cells/mL) and titer (11.9 ± 0.6 g/L) was achieved. Productivity and product quality attributes differences between batch, fed-batch, and concentrated fed-batch cultures were discussed. The importance of process and cell metabolism understanding when adapting the existing process to a new operational mode was demonstrated in the study.
Video game practice optimizes executive control skills in dual-task and task switching situations.
Strobach, Tilo; Frensch, Peter A; Schubert, Torsten
2012-05-01
We examined the relation of action video game practice and the optimization of executive control skills that are needed to coordinate two different tasks. As action video games are similar to real life situations and complex in nature, and include numerous concurrent actions, they may generate an ideal environment for practicing these skills (Green & Bavelier, 2008). For two types of experimental paradigms, dual-task and task switching respectively; we obtained performance advantages for experienced video gamers compared to non-gamers in situations in which two different tasks were processed simultaneously or sequentially. This advantage was absent in single-task situations. These findings indicate optimized executive control skills in video gamers. Similar findings in non-gamers after 15 h of action video game practice when compared to non-gamers with practice on a puzzle game clarified the causal relation between video game practice and the optimization of executive control skills. Copyright © 2012 Elsevier B.V. All rights reserved.
Optimal control of complex atomic quantum systems
van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.
2016-01-01
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations. PMID:27725688
Optimal control of complex atomic quantum systems.
van Frank, S; Bonneau, M; Schmiedmayer, J; Hild, S; Gross, C; Cheneau, M; Bloch, I; Pichler, T; Negretti, A; Calarco, T; Montangero, S
2016-10-11
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.
NASA Astrophysics Data System (ADS)
Glaser, Steffen J.; Boscain, Ugo; Calarco, Tommaso; Koch, Christiane P.; Köckenberger, Walter; Kosloff, Ronnie; Kuprov, Ilya; Luy, Burkhard; Schirmer, Sophie; Schulte-Herbrüggen, Thomas; Sugny, Dominique; Wilhelm, Frank K.
2015-12-01
It is control that turns scientific knowledge into useful technology: in physics and engineering it provides a systematic way for driving a dynamical system from a given initial state into a desired target state with minimized expenditure of energy and resources. As one of the cornerstones for enabling quantum technologies, optimal quantum control keeps evolving and expanding into areas as diverse as quantum-enhanced sensing, manipulation of single spins, photons, or atoms, optical spectroscopy, photochemistry, magnetic resonance (spectroscopy as well as medical imaging), quantum information processing and quantum simulation. In this communication, state-of-the-art quantum control techniques are reviewed and put into perspective by a consortium of experts in optimal control theory and applications to spectroscopy, imaging, as well as quantum dynamics of closed and open systems. We address key challenges and sketch a roadmap for future developments.
Zou, Weiyao; Burns, Stephen A.
2012-01-01
A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. PMID:22441462
Zou, Weiyao; Burns, Stephen A
2012-03-20
A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. © 2012 Optical Society of America
NASA Astrophysics Data System (ADS)
Mariajayaprakash, Arokiasamy; Senthilvelan, Thiyagarajan; Vivekananthan, Krishnapillai Ponnambal
2013-07-01
The various process parameters affecting the quality characteristics of the shock absorber during the process were identified using the Ishikawa diagram and by failure mode and effect analysis. The identified process parameters are welding process parameters (squeeze, heat control, wheel speed, and air pressure), damper sealing process parameters (load, hydraulic pressure, air pressure, and fixture height), washing process parameters (total alkalinity, temperature, pH value of rinsing water, and timing), and painting process parameters (flowability, coating thickness, pointage, and temperature). In this paper, the process parameters, namely, painting and washing process parameters, are optimized by Taguchi method. Though the defects are reasonably minimized by Taguchi method, in order to achieve zero defects during the processes, genetic algorithm technique is applied on the optimized parameters obtained by Taguchi method.
Optimal deployment of resources for maximizing impact in spreading processes
2017-01-01
The effective use of limited resources for controlling spreading processes on networks is of prime significance in diverse contexts, ranging from the identification of “influential spreaders” for maximizing information dissemination and targeted interventions in regulatory networks, to the development of mitigation policies for infectious diseases and financial contagion in economic systems. Solutions for these optimization tasks that are based purely on topological arguments are not fully satisfactory; in realistic settings, the problem is often characterized by heterogeneous interactions and requires interventions in a dynamic fashion over a finite time window via a restricted set of controllable nodes. The optimal distribution of available resources hence results from an interplay between network topology and spreading dynamics. We show how these problems can be addressed as particular instances of a universal analytical framework based on a scalable dynamic message-passing approach and demonstrate the efficacy of the method on a variety of real-world examples. PMID:28900013
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Ge, Fuying
1989-01-01
Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.
Wu, Sheng; Jin, Qibing; Zhang, Ridong; Zhang, Junfeng; Gao, Furong
2017-07-01
In this paper, an improved constrained tracking control design is proposed for batch processes under uncertainties. A new process model that facilitates process state and tracking error augmentation with further additional tuning is first proposed. Then a subsequent controller design is formulated using robust stable constrained MPC optimization. Unlike conventional robust model predictive control (MPC), the proposed method enables the controller design to bear more degrees of tuning so that improved tracking control can be acquired, which is very important since uncertainties exist inevitably in practice and cause model/plant mismatches. An injection molding process is introduced to illustrate the effectiveness of the proposed MPC approach in comparison with conventional robust MPC. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Optimization of the production process using virtual model of a workspace
NASA Astrophysics Data System (ADS)
Monica, Z.
2015-11-01
Optimization of the production process is an element of the design cycle consisting of: problem definition, modelling, simulation, optimization and implementation. Without the use of simulation techniques, the only thing which could be achieved is larger or smaller improvement of the process, not the optimization (i.e., the best result it is possible to get for the conditions under which the process works). Optimization is generally management actions that are ultimately bring savings in time, resources, and raw materials and improve the performance of a specific process. It does not matter whether it is a service or manufacturing process. Optimizing the savings generated by improving and increasing the efficiency of the processes. Optimization consists primarily of organizational activities that require very little investment, or rely solely on the changing organization of work. Modern companies operating in a market economy shows a significant increase in interest in modern methods of production management and services. This trend is due to the high competitiveness among companies that want to achieve success are forced to continually modify the ways to manage and flexible response to changing demand. Modern methods of production management, not only imply a stable position of the company in the sector, but also influence the improvement of health and safety within the company and contribute to the implementation of more efficient rules for standardization work in the company. This is why in the paper is presented the application of such developed environment like Siemens NX to create the virtual model of a production system and to simulate as well as optimize its work. The analyzed system is the robotized workcell consisting of: machine tools, industrial robots, conveyors, auxiliary equipment and buffers. In the program could be defined the control program realizing the main task in the virtual workcell. It is possible, using this tool, to optimize both the object trajectory and the cooperation process.
Process optimization electrospinning fibrous material based on polyhydroxybutyrate
NASA Astrophysics Data System (ADS)
Olkhov, A. A.; Tyubaeva, P. M.; Staroverova, O. V.; Mastalygina, E. E.; Popov, A. A.; Ischenko, A. A.; Iordanskii, A. L.
2016-05-01
The article analyzes the influence of the main technological parameters of electrostatic spinning on the morphology and properties of ultrathin fibers on the basis of polyhydroxybutyrate. It is found that the electric conductivity and viscosity of the spinning solution affects the process of forming fibers macrostructure. The fiber-based materials PHB lets control geometry and optimize the viscosity and conductivity of a spinning solution. The resulting fibers have found use in medicine, particularly in the construction elements musculoskeletal.
NASA Astrophysics Data System (ADS)
Cicek, Paul-Vahe; Elsayed, Mohannad; Nabki, Frederic; El-Gamal, Mourad
2017-11-01
An above-IC compatible multi-level MEMS surface microfabrication technology based on a silicon carbide structural layer is presented. The fabrication process flow provides optimal electrostatic transduction by allowing the creation of independently controlled submicron vertical and lateral gaps without the need for high resolution lithography. Adopting silicon carbide as the structural material, the technology ensures material, chemical and thermal compatibility with modern semiconductor nodes, reporting the lowest peak processing temperature (i.e. 200 °C) of all comparable works. This makes this process ideally suited for integrating capacitive-based MEMS directly above standard CMOS substrates. Process flow design and optimization are presented in the context of bulk-mode disk resonators, devices that are shown to exhibit improved performance with respect to previous generation flexural beam resonators, and that represent relatively complex MEMS structures. The impact of impending improvements to the fabrication technology is discussed.
Design optimization of highly asymmetrical layouts by 2D contour metrology
NASA Astrophysics Data System (ADS)
Hu, C. M.; Lo, Fred; Yang, Elvis; Yang, T. H.; Chen, K. C.
2018-03-01
As design pitch shrinks to the resolution limit of up-to-date optical lithography technology, the Critical Dimension (CD) variation tolerance has been dramatically decreased for ensuring the functionality of device. One of critical challenges associates with the narrower CD tolerance for whole chip area is the proximity effect control on asymmetrical layout environments. To fulfill the tight CD control of complex features, the Critical Dimension Scanning Electron Microscope (CD-SEM) based measurement results for qualifying process window and establishing the Optical Proximity Correction (OPC) model become insufficient, thus 2D contour extraction technique [1-5] has been an increasingly important approach for complementing the insufficiencies of traditional CD measurement algorithm. To alleviate the long cycle time and high cost penalties for product verification, manufacturing requirements are better to be well handled at design stage to improve the quality and yield of ICs. In this work, in-house 2D contour extraction platform was established for layout design optimization of 39nm half-pitch Self-Aligned Double Patterning (SADP) process layer. Combining with the adoption of Process Variation Band Index (PVBI), the contour extraction platform enables layout optimization speedup as comparing to traditional methods. The capabilities of identifying and handling lithography hotspots in complex layout environments of 2D contour extraction platform allow process window aware layout optimization to meet the manufacturing requirements.
Del Rio-Chanona, Ehecatl A; Liu, Jiao; Wagner, Jonathan L; Zhang, Dongda; Meng, Yingying; Xue, Song; Shah, Nilay
2018-02-01
Biodiesel produced from microalgae has been extensively studied due to its potentially outstanding advantages over traditional transportation fuels. In order to facilitate its industrialization and improve the process profitability, it is vital to construct highly accurate models capable of predicting the complex behavior of the investigated biosystem for process optimization and control, which forms the current research goal. Three original contributions are described in this paper. Firstly, a dynamic model is constructed to simulate the complicated effect of light intensity, nutrient supply and light attenuation on both biomass growth and biolipid production. Secondly, chlorophyll fluorescence, an instantly measurable variable and indicator of photosynthetic activity, is embedded into the model to monitor and update model accuracy especially for the purpose of future process optimal control, and its correlation between intracellular nitrogen content is quantified, which to the best of our knowledge has never been addressed so far. Thirdly, a thorough experimental verification is conducted under different scenarios including both continuous illumination and light/dark cycle conditions to testify the model predictive capability particularly for long-term operation, and it is concluded that the current model is characterized by a high level of predictive capability. Based on the model, the optimal light intensity for algal biomass growth and lipid synthesis is estimated. This work, therefore, paves the way to forward future process design and real-time optimization. © 2017 Wiley Periodicals, Inc.
Ring rolling process simulation for geometry optimization
NASA Astrophysics Data System (ADS)
Franchi, Rodolfo; Del Prete, Antonio; Donatiello, Iolanda; Calabrese, Maurizio
2017-10-01
Ring Rolling is a complex hot forming process where different rolls are involved in the production of seamless rings. Since each roll must be independently controlled, different speed laws must be set; usually, in the industrial environment, a milling curve is introduced to monitor the shape of the workpiece during the deformation in order to ensure the correct ring production. In the present paper a ring rolling process has been studied and optimized in order to obtain anular components to be used in aerospace applications. In particular, the influence of process input parameters (feed rate of the mandrel and angular speed of main roll) on geometrical features of the final ring has been evaluated. For this purpose, a three-dimensional finite element model for HRR (Hot Ring Rolling) has been implemented in SFTC DEFORM V11. The FEM model has been used to formulate a proper optimization problem. The optimization procedure has been implemented in the commercial software DS ISight in order to find the combination of process parameters which allows to minimize the percentage error of each obtained dimension with respect to its nominal value. The software allows to find the relationship between input and output parameters applying Response Surface Methodology (RSM), by using the exact values of output parameters in the control points of the design space explored through FEM simulation. Once this relationship is known, the values of the output parameters can be calculated for each combination of the input parameters. After the calculation of the response surfaces for the selected output parameters, an optimization procedure based on Genetic Algorithms has been applied. At the end, the error between each obtained dimension and its nominal value has been minimized. The constraints imposed were the maximum values of standard deviations of the dimensions obtained for the final ring.
Optimal control of malaria: combining vector interventions and drug therapies.
Khamis, Doran; El Mouden, Claire; Kura, Klodeta; Bonsall, Michael B
2018-04-24
The sterile insect technique and transgenic equivalents are considered promising tools for controlling vector-borne disease in an age of increasing insecticide and drug-resistance. Combining vector interventions with artemisinin-based therapies may achieve the twin goals of suppressing malaria endemicity while managing artemisinin resistance. While the cost-effectiveness of these controls has been investigated independently, their combined usage has not been dynamically optimized in response to ecological and epidemiological processes. An optimal control framework based on coupled models of mosquito population dynamics and malaria epidemiology is used to investigate the cost-effectiveness of combining vector control with drug therapies in homogeneous environments with and without vector migration. The costs of endemic malaria are weighed against the costs of administering artemisinin therapies and releasing modified mosquitoes using various cost structures. Larval density dependence is shown to reduce the cost-effectiveness of conventional sterile insect releases compared with transgenic mosquitoes with a late-acting lethal gene. Using drug treatments can reduce the critical vector control release ratio necessary to cause disease fadeout. Combining vector control and drug therapies is the most effective and efficient use of resources, and using optimized implementation strategies can substantially reduce costs.
Dynamic optimization case studies in DYNOPT tool
NASA Astrophysics Data System (ADS)
Ozana, Stepan; Pies, Martin; Docekal, Tomas
2016-06-01
Dynamic programming is typically applied to optimization problems. As the analytical solutions are generally very difficult, chosen software tools are used widely. These software packages are often third-party products bound for standard simulation software tools on the market. As typical examples of such tools, TOMLAB and DYNOPT could be effectively applied for solution of problems of dynamic programming. DYNOPT will be presented in this paper due to its licensing policy (free product under GPL) and simplicity of use. DYNOPT is a set of MATLAB functions for determination of optimal control trajectory by given description of the process, the cost to be minimized, subject to equality and inequality constraints, using orthogonal collocation on finite elements method. The actual optimal control problem is solved by complete parameterization both the control and the state profile vector. It is assumed, that the optimized dynamic model may be described by a set of ordinary differential equations (ODEs) or differential-algebraic equations (DAEs). This collection of functions extends the capability of the MATLAB Optimization Tool-box. The paper will introduce use of DYNOPT in the field of dynamic optimization problems by means of case studies regarding chosen laboratory physical educational models.
NASA Astrophysics Data System (ADS)
Sun, Ning; Wu, Yiming; Chen, He; Fang, Yongchun
2018-03-01
Underactuated cranes play an important role in modern industry. Specifically, in most situations of practical applications, crane systems exhibit significant double pendulum characteristics, which makes the control problem quite challenging. Moreover, most existing planners/controllers obtained with standard methods/techniques for double pendulum cranes cannot minimize the energy consumption when fulfilling the transportation tasks. Therefore, from a practical perspective, this paper proposes an energy-optimal solution for transportation control of double pendulum cranes. By applying the presented approach, the transportation objective, including fast trolley positioning and swing elimination, is achieved with minimized energy consumption, and the residual oscillations are suppressed effectively with all the state constrains being satisfied during the entire transportation process. As far as we know, this is the first energy-optimal solution for transportation control of underactuated double pendulum cranes with various state and control constraints. Hardware experimental results are included to verify the effectiveness of the proposed approach, whose superior performance is reflected by being experimentally compared with some comparative controllers.
Risk-Sensitivity in Sensorimotor Control
Braun, Daniel A.; Nagengast, Arne J.; Wolpert, Daniel M.
2011-01-01
Recent advances in theoretical neuroscience suggest that motor control can be considered as a continuous decision-making process in which uncertainty plays a key role. Decision-makers can be risk-sensitive with respect to this uncertainty in that they may not only consider the average payoff of an outcome, but also consider the variability of the payoffs. Although such risk-sensitivity is a well-established phenomenon in psychology and economics, it has been much less studied in motor control. In fact, leading theories of motor control, such as optimal feedback control, assume that motor behaviors can be explained as the optimization of a given expected payoff or cost. Here we review evidence that humans exhibit risk-sensitivity in their motor behaviors, thereby demonstrating sensitivity to the variability of “motor costs.” Furthermore, we discuss how risk-sensitivity can be incorporated into optimal feedback control models of motor control. We conclude that risk-sensitivity is an important concept in understanding individual motor behavior under uncertainty. PMID:21283556
Lin, Yu-Chih; Chang, Feng-Tang
2009-05-30
In this study, we attempted to enhance the removal efficiency of a honeycomb zeolite rotor concentrator (HZRC), operated at optimal parameters, for processing TFT-LCD volatile organic compounds (VOCs) with competitive adsorption characteristics. The results indicated that when the HZRC processed a VOCs stream of mixed compounds, compounds with a high boiling point take precedence in the adsorption process. In addition, existing compounds with a low boiling point adsorbed onto the HZRC were also displaced by the high-boiling-point compounds. In order to achieve optimal operating parameters for high VOCs removal efficiency, results suggested controlling the inlet velocity to <1.5m/s, reducing the concentration ratio to 8 times, increasing the desorption temperature to 200-225 degrees C, and setting the rotation speed to 6.5rpm.
Derived heuristics-based consistent optimization of material flow in a gold processing plant
NASA Astrophysics Data System (ADS)
Myburgh, Christie; Deb, Kalyanmoy
2018-01-01
Material flow in a chemical processing plant often follows complicated control laws and involves plant capacity constraints. Importantly, the process involves discrete scenarios which when modelled in a programming format involves if-then-else statements. Therefore, a formulation of an optimization problem of such processes becomes complicated with nonlinear and non-differentiable objective and constraint functions. In handling such problems using classical point-based approaches, users often have to resort to modifications and indirect ways of representing the problem to suit the restrictions associated with classical methods. In a particular gold processing plant optimization problem, these facts are demonstrated by showing results from MATLAB®'s well-known fmincon routine. Thereafter, a customized evolutionary optimization procedure which is capable of handling all complexities offered by the problem is developed. Although the evolutionary approach produced results with comparatively less variance over multiple runs, the performance has been enhanced by introducing derived heuristics associated with the problem. In this article, the development and usage of derived heuristics in a practical problem are presented and their importance in a quick convergence of the overall algorithm is demonstrated.
Control and optimization system and method for chemical looping processes
Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao
2014-06-24
A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.
Control and optimization system and method for chemical looping processes
Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao
2015-02-17
A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.
Signal processing and control challenges for smart vehicles
NASA Astrophysics Data System (ADS)
Zhang, Hui; Braun, Simon G.
2017-03-01
Smart phones have changed not only the mobile phone market but also our society during the past few years. Could the next potential intelligent device may be the vehicle? Judging by the visibility, in all media, of the numerous attempts to develop autonomous vehicles, this is certainly one of the logical outcomes. Smart vehicles would be equipped with an advanced operating system such that the vehicles could communicate with others, optimize the operation to reduce fuel consumption and emissions, enhance safety, or even become self-driving. These combined new features of vehicles require instrumentation and hardware developments, fast signal processing/fusion, decision making and online optimization. Meanwhile, the inevitable increasing system complexity would certainly challenges the control unit design.
Shanechi, Maryam M.; Williams, Ziv M.; Wornell, Gregory W.; Hu, Rollin C.; Powers, Marissa; Brown, Emery N.
2013-01-01
Real-time brain-machine interfaces (BMI) have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system. PMID:23593130
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rah, Jeong-Eun; Oh, Do Hoon; Shin, Dongho
Purpose: To evaluate and improve the reliability of proton quality assurance (QA) processes and, to provide an optimal customized tolerance level using the statistical process control (SPC) methodology. Methods: The authors investigated the consistency check of dose per monitor unit (D/MU) and range in proton beams to see whether it was within the tolerance level of the daily QA process. This study analyzed the difference between the measured and calculated ranges along the central axis to improve the patient-specific QA process in proton beams by using process capability indices. Results: The authors established a customized tolerance level of ±2% formore » D/MU and ±0.5 mm for beam range in the daily proton QA process. In the authors’ analysis of the process capability indices, the patient-specific range measurements were capable of a specification limit of ±2% in clinical plans. Conclusions: SPC methodology is a useful tool for customizing the optimal QA tolerance levels and improving the quality of proton machine maintenance, treatment delivery, and ultimately patient safety.« less
NASA Astrophysics Data System (ADS)
Ilhan, Z.; Wehner, W. P.; Schuster, E.; Boyer, M. D.; Gates, D. A.; Gerhardt, S.; Menard, J.
2015-11-01
Active control of the toroidal current density profile is crucial to achieve and maintain high-performance, MHD-stable plasma operation in NSTX-U. A first-principles-driven, control-oriented model describing the temporal evolution of the current profile has been proposed earlier by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. A feedforward + feedback control scheme for the requlation of the current profile is constructed by embedding the proposed nonlinear, physics-based model into the control design process. Firstly, nonlinear optimization techniques are used to design feedforward actuator trajectories that steer the plasma to a desired operating state with the objective of supporting the traditional trial-and-error experimental process of advanced scenario planning. Secondly, a feedback control algorithm to track a desired current profile evolution is developed with the goal of adding robustness to the overall control scheme. The effectiveness of the combined feedforward + feedback control algorithm for current profile regulation is tested in predictive simulations carried out in TRANSP. Supported by PPPL.
NASA Astrophysics Data System (ADS)
Ashiri, Rouholah
2015-01-01
The great sensitivity of titanium alkoxides to hydrolysis makes their sol-gel transformation very fast and thus difficult to control. A method was proposed to alleviate this drawback. Preparation of highly transparent solutions and nanothin films is another objective of the present research. Employing nanoemulsion method and optimizing the processing conditions, a clear solution of well-dispersed nanosized particles was obtained. With the proposed process BaTiO3 precursor sols and nanothin films with enhanced optical transparency towards the visible were prepared. The optimal formulation of the sol consists of acetic acid, barium acetate, 2-propanol, TTIP and deionized water with 6:1:1:1:150 M ratios, respectively. It was found that the reduction of the temperature in the initial stage of mixing of precursors controls the size of the forming species and accordingly improves the stability and transparency of the sol. The results also showed that the applied modifications and optimizations significantly downsize the particles within the sol to the nanometric scale and accordingly result in a significant improvement in the optical response of the products.
NASA Technical Reports Server (NTRS)
Stepner, D. E.; Mehra, R. K.
1973-01-01
A new method of extracting aircraft stability and control derivatives from flight test data is developed based on the maximum likelihood cirterion. It is shown that this new method is capable of processing data from both linear and nonlinear models, both with and without process noise and includes output error and equation error methods as special cases. The first application of this method to flight test data is reported for lateral maneuvers of the HL-10 and M2/F3 lifting bodies, including the extraction of stability and control derivatives in the presence of wind gusts. All the problems encountered in this identification study are discussed. Several different methods (including a priori weighting, parameter fixing and constrained parameter values) for dealing with identifiability and uniqueness problems are introduced and the results given. The method for the design of optimal inputs for identifying the parameters of linear dynamic systems is also given. The criterion used for the optimization is the sensitivity of the system output to the unknown parameters. Several simple examples are first given and then the results of an extensive stability and control dervative identification simulation for a C-8 aircraft are detailed.
Gupta, Munish; Kaplan, Heather C
2017-09-01
Quality improvement (QI) is based on measuring performance over time, and variation in data measured over time must be understood to guide change and make optimal improvements. Common cause variation is natural variation owing to factors inherent to any process; special cause variation is unnatural variation owing to external factors. Statistical process control methods, and particularly control charts, are robust tools for understanding data over time and identifying common and special cause variation. This review provides a practical introduction to the use of control charts in health care QI, with a focus on neonatology. Copyright © 2017 Elsevier Inc. All rights reserved.
Multivariable PID controller design tuning using bat algorithm for activated sludge process
NASA Astrophysics Data System (ADS)
Atikah Nor’Azlan, Nur; Asmiza Selamat, Nur; Mat Yahya, Nafrizuan
2018-04-01
The designing of a multivariable PID control for multi input multi output is being concerned with this project by applying four multivariable PID control tuning which is Davison, Penttinen-Koivo, Maciejowski and Proposed Combined method. The determination of this study is to investigate the performance of selected optimization technique to tune the parameter of MPID controller. The selected optimization technique is Bat Algorithm (BA). All the MPID-BA tuning result will be compared and analyzed. Later, the best MPID-BA will be chosen in order to determine which techniques are better based on the system performances in terms of transient response.
NASA Astrophysics Data System (ADS)
Mardlijah; Jamil, Ahmad; Hanafi, Lukman; Sanjaya, Suharmadi
2017-09-01
There are so many benefit of algae. One of them is using for renewable energy and sustainable in the future. The greater growth of algae will increasing biodiesel production and the increase of algae growth is influenced by glucose, nutrients and photosynthesis process. In this paper, the optimal control problem of the growth of algae is discussed. The objective function is to maximize the concentration of dry algae while the control is the flow of carbon dioxide and the nutrition. The solution is obtained by applying the Pontryagin Maximum Principle. and the result show that the concentration of algae increased more than 15 %.
Rapid Generation of Optimal Asteroid Powered Descent Trajectories Via Convex Optimization
NASA Technical Reports Server (NTRS)
Pinson, Robin; Lu, Ping
2015-01-01
This paper investigates a convex optimization based method that can rapidly generate the fuel optimal asteroid powered descent trajectory. The ultimate goal is to autonomously design the optimal powered descent trajectory on-board the spacecraft immediately prior to the descent burn. Compared to a planetary powered landing problem, the major difficulty is the complex gravity field near the surface of an asteroid that cannot be approximated by a constant gravity field. This paper uses relaxation techniques and a successive solution process that seeks the solution to the original nonlinear, nonconvex problem through the solutions to a sequence of convex optimal control problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Wang, Shaobu; Fan, Rui
This report summaries the work performed under the LDRD project on the preliminary study on knowledge automation, where specific focus has been made on the investigation of the impact of uncertainties of human decision making onto the optimization of the process operation. At first the statistics on signals from the Brain-Computing Interface (BCI) is analyzed so as to obtain the uncertainties characterization of human operators during the decision making phase using the electroencephalogram (EEG) signals. This is then followed by the discussions of an architecture that reveals the equivalence between optimization and closed loop feedback control design, where it hasmore » been shown that all the optimization problems can be transferred into the control design problem for closed loop systems. This has led to a “closed loop” framework, where the structure of the decision making is shown to be subjected to both process disturbances and controller’s uncertainties. The latter can well represent the uncertainties or randomness occurred during human decision making phase. As a result, a stochastic optimization problem has been formulated and a novel solution has been proposed using probability density function (PDF) shaping for both the cost function and the constraints using stochastic distribution control concept. A sufficient condition has been derived that guarantees the convergence of the optimal solution and discussions have been made for both the total probabilistic solution and chanced constrained optimization which have been well-studied in optimal power flows (OPF) area. A simple case study has been carried out for the economic dispatch of powers for a grid system when there are distributed energy resources (DERs) in the system, and encouraging results have been obtained showing that a significant savings on the generation cost can be expected.« less
ANN-PSO Integrated Optimization Methodology for Intelligent Control of MMC Machining
NASA Astrophysics Data System (ADS)
Chandrasekaran, Muthumari; Tamang, Santosh
2017-08-01
Metal Matrix Composites (MMC) show improved properties in comparison with non-reinforced alloys and have found increased application in automotive and aerospace industries. The selection of optimum machining parameters to produce components of desired surface roughness is of great concern considering the quality and economy of manufacturing process. In this study, a surface roughness prediction model for turning Al-SiCp MMC is developed using Artificial Neural Network (ANN). Three turning parameters viz., spindle speed ( N), feed rate ( f) and depth of cut ( d) were considered as input neurons and surface roughness was an output neuron. ANN architecture having 3 -5 -1 is found to be optimum and the model predicts with an average percentage error of 7.72 %. Particle Swarm Optimization (PSO) technique is used for optimizing parameters to minimize machining time. The innovative aspect of this work is the development of an integrated ANN-PSO optimization method for intelligent control of MMC machining process applicable to manufacturing industries. The robustness of the method shows its superiority for obtaining optimum cutting parameters satisfying desired surface roughness. The method has better convergent capability with minimum number of iterations.
NASA Astrophysics Data System (ADS)
Chen, Zhou; Tong, Qiu-Nan; Zhang, Cong-Cong; Hu, Zhan
2015-04-01
Identification of acetone and its two isomers, and the control of their ionization and dissociation processes are performed using a dual-mass-spectrometer scheme. The scheme employs two sets of time of flight mass spectrometers to simultaneously acquire the mass spectra of two different molecules under the irradiation of identically shaped femtosecond laser pulses. The optimal laser pulses are found using closed-loop learning method based on a genetic algorithm. Compared with the mass spectra of the two isomers that are obtained with the transform limited pulse, those obtained under the irradiation of the optimal laser pulse show large differences and the various reaction pathways of the two molecules are selectively controlled. The experimental results demonstrate that the scheme is quite effective and useful in studies of two molecules having common mass peaks, which makes a traditional single mass spectrometer unfeasible. Project supported by the National Basic Research Program of China (Grant No. 2013CB922200) and the National Natural Science Foundation of China (Grant No. 11374124).
Han, Min; Fan, Jianchao; Wang, Jun
2011-09-01
A dynamic feedforward neural network (DFNN) is proposed for predictive control, whose adaptive parameters are adjusted by using Gaussian particle swarm optimization (GPSO) in the training process. Adaptive time-delay operators are added in the DFNN to improve its generalization for poorly known nonlinear dynamic systems with long time delays. Furthermore, GPSO adopts a chaotic map with Gaussian function to balance the exploration and exploitation capabilities of particles, which improves the computational efficiency without compromising the performance of the DFNN. The stability of the particle dynamics is analyzed, based on the robust stability theory, without any restrictive assumption. A stability condition for the GPSO+DFNN model is derived, which ensures a satisfactory global search and quick convergence, without the need for gradients. The particle velocity ranges could change adaptively during the optimization process. The results of a comparative study show that the performance of the proposed algorithm can compete with selected algorithms on benchmark problems. Additional simulation results demonstrate the effectiveness and accuracy of the proposed combination algorithm in identifying and controlling nonlinear systems with long time delays.
NASA Astrophysics Data System (ADS)
Gonzalez-Nicolas, A.; Cihan, A.; Birkholzer, J. T.; Petrusak, R.; Zhou, Q.; Riestenberg, D. E.; Trautz, R. C.; Godec, M.
2016-12-01
Industrial-scale injection of CO2 into the subsurface can cause reservoir pressure increases that must be properly controlled to prevent any potential environmental impact. Excessive pressure buildup in reservoir may result in ground water contamination stemming from leakage through conductive pathways, such as improperly plugged abandoned wells or distant faults, and the potential for fault reactivation and possibly seal breaching. Brine extraction is a viable approach for managing formation pressure, effective stress, and plume movement during industrial-scale CO2 injection projects. The main objectives of this study are to investigate suitable different pressure management strategies involving active brine extraction and passive pressure relief wells. Adaptive optimized management of CO2 storage projects utilizes the advanced automated optimization algorithms and suitable process models. The adaptive management integrates monitoring, forward modeling, inversion modeling and optimization through an iterative process. In this study, we employ an adaptive framework to understand primarily the effects of initial site characterization and frequency of the model update (calibration) and optimization calculations for controlling extraction rates based on the monitoring data on the accuracy and the success of the management without violating pressure buildup constraints in the subsurface reservoir system. We will present results of applying the adaptive framework to test appropriateness of different management strategies for a realistic field injection project.
Kim, Dongcheol; Rhee, Sehun
2002-01-01
CO(2) welding is a complex process. Weld quality is dependent on arc stability and minimizing the effects of disturbances or changes in the operating condition commonly occurring during the welding process. In order to minimize these effects, a controller can be used. In this study, a fuzzy controller was used in order to stabilize the arc during CO(2) welding. The input variable of the controller was the Mita index. This index estimates quantitatively the arc stability that is influenced by many welding process parameters. Because the welding process is complex, a mathematical model of the Mita index was difficult to derive. Therefore, the parameter settings of the fuzzy controller were determined by performing actual control experiments without using a mathematical model of the controlled process. The solution, the Taguchi method was used to determine the optimal control parameter settings of the fuzzy controller to make the control performance robust and insensitive to the changes in the operating conditions.
[Quality by design approaches for pharmaceutical development and manufacturing of Chinese medicine].
Xu, Bing; Shi, Xin-Yuan; Wu, Zhi-Sheng; Zhang, Yan-Ling; Wang, Yun; Qiao, Yan-Jiang
2017-03-01
The pharmaceutical quality was built by design, formed in the manufacturing process and improved during the product's lifecycle. Based on the comprehensive literature review of pharmaceutical quality by design (QbD), the essential ideas and implementation strategies of pharmaceutical QbD were interpreted. Considering the complex nature of Chinese medicine, the "4H" model was innovated and proposed for implementing QbD in pharmaceutical development and industrial manufacture of Chinese medicine product. "4H" corresponds to the acronym of holistic design, holistic information analysis, holistic quality control, and holistic process optimization, which is consistent with the holistic concept of Chinese medicine theory. The holistic design aims at constructing both the quality problem space from the patient requirement and the quality solution space from multidisciplinary knowledge. Holistic information analysis emphasizes understanding the quality pattern of Chinese medicine by integrating and mining multisource data and information at a relatively high level. The batch-to-batch quality consistence and manufacturing system reliability can be realized by comprehensive application of inspective quality control, statistical quality control, predictive quality control and intelligent quality control strategies. Holistic process optimization is to improve the product quality and process capability during the product lifecycle management. The implementation of QbD is useful to eliminate the ecosystem contradictions lying in the pharmaceutical development and manufacturing process of Chinese medicine product, and helps guarantee the cost effectiveness. Copyright© by the Chinese Pharmaceutical Association.
2011-09-20
optimal portfolio point on the efficient frontier, for example, Portfolio B on the chart in Figure A1. Then, by subsequently changing some of the ... optimized portfolio controlling for risk using the IRM methodology and tool suite. Results indicate that both rapid and incremental implementation...Results of the KVA and SD scenario analysis provided the financial information required to forecast an optimized
Energy Optimization for a Weak Hybrid Power System of an Automobile Exhaust Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Fang, Wei; Quan, Shuhai; Xie, Changjun; Tang, Xinfeng; Ran, Bin; Jiao, Yatian
2017-11-01
An integrated starter generator (ISG)-type hybrid electric vehicle (HEV) scheme is proposed based on the automobile exhaust thermoelectric generator (AETEG). An eddy current dynamometer is used to simulate the vehicle's dynamic cycle. A weak ISG hybrid bench test system is constructed to test the 48 V output from the power supply system, which is based on engine exhaust-based heat power generation. The thermoelectric power generation-based system must ultimately be tested when integrated into the ISG weak hybrid mixed power system. The test process is divided into two steps: comprehensive simulation and vehicle-based testing. The system's dynamic process is simulated for both conventional and thermoelectric powers, and the dynamic running process comprises four stages: starting, acceleration, cruising and braking. The quantity of fuel available and battery pack energy, which are used as target vehicle energy functions for comparison with conventional systems, are simplified into a single energy target function, and the battery pack's output current is used as the control variable in the thermoelectric hybrid energy optimization model. The system's optimal battery pack output current function is resolved when its dynamic operating process is considered as part of the hybrid thermoelectric power generation system. In the experiments, the system bench is tested using conventional power and hybrid thermoelectric power for the four dynamic operation stages. The optimal battery pack curve is calculated by functional analysis. In the vehicle, a power control unit is used to control the battery pack's output current and minimize energy consumption. Data analysis shows that the fuel economy of the hybrid power system under European Driving Cycle conditions is improved by 14.7% when compared with conventional systems.
Quadrupedal galloping control for a wide range of speed via vertical impulse scaling.
Park, Hae-Won; Kim, Sangbae
2015-03-25
This paper presents a bio-inspired quadruped controller that allows variable-speed galloping. The controller design is inspired by observations from biological runners. Quadrupedal animals increase the vertical impulse that is generated by ground reaction forces at each stride as running speed increases and the duration of each stance phase reduces, whereas the swing phase stays relatively constant. Inspired by this observation, the presented controller estimates the required vertical impulse at each stride by applying the linear momentum conservation principle in the vertical direction and prescribes the ground reaction forces at each stride. The design process begins with deriving a planar model from the MIT Cheetah 2 robot. A baseline periodic limit cycle is obtained by optimizing ground reaction force profiles and the temporal gait pattern (timing and duration of gait phases). To stabilize the optimized limit cycle, the obtained limit cycle is converted to a state feedback controller by representing the obtained ground reaction force profiles as functions of the state variable, which is monotonically increasing throughout the gait, adding impedance control around the height and pitch trajectories of the obtained limit cycle and introducing a finite state machine and a pattern stabilizer to enforce the optimized gait pattern. The controller that achieves a stable 3 m s(-1) gallop successfully adapts the speed change by scaling the vertical ground reaction force to match the momentum lost by gravity and adding a simple speed controller that controls horizontal speed. Without requiring additional gait optimization processes, the controller achieves galloping at speeds ranging from 3 m s(-1) to 14.9 m s(-1) while respecting the torque limit of the motor used in the MIT Cheetah 2 robot. The robustness of the controller is verified by demonstrating stable running during various disturbances, including 1.49 m step down and 0.18 m step up, as well as random ground height and model parameter variations.
Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes
Young, Eric; Alper, Hal
2010-01-01
The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research. PMID:20150964
Research on the optimization of quota design in real estate
NASA Astrophysics Data System (ADS)
Sun, Chunling; Ma, Susu; Zhong, Weichao
2017-11-01
Quota design is one of the effective methods of cost control in real estate development project and widely used in the current real estate development project to control the engineering construction cost, but quota design have many deficiencies in design process. For this purpose, this paper put forward a method to achieve investment control of real estate development project, which combine quota design and value engineering(VE) at the stage of design. Specifically, it’s an optimizing for the structure of quota design. At first, determine the design limits by investment estimate value, then using VE to carry on initial allocation of design limits and gain the functional target cost, finally, consider the whole life cycle cost (LCC) and operational problem in practical application to finish complex correction for the functional target cost. The improved process can control the project cost more effectively. It not only can control investment in a certain range, but also make the project realize maximum value within investment.
[Design of medical devices management system supporting full life-cycle process management].
Su, Peng; Zhong, Jianping
2014-03-01
Based on the analysis of the present status of medical devices management, this paper optimized management process, developed a medical devices management system with Web technologies. With information technology to dynamic master the use of state of the entire life-cycle of medical devices. Through the closed-loop management with pre-event budget, mid-event control and after-event analysis, improved the delicacy management level of medical devices, optimized asset allocation, promoted positive operation of devices.
Application of decomposition techniques to the preliminary design of a transport aircraft
NASA Technical Reports Server (NTRS)
Rogan, J. E.; Kolb, M. A.
1987-01-01
A nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been formulated. A multifaceted decomposition of the optimization problem has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.
Improving processes through evolutionary optimization.
Clancy, Thomas R
2011-09-01
As systems evolve over time, their natural tendency is to become increasingly more complex. Studies on complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 18th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, I discuss methods to optimize complex healthcare processes through learning, adaptation, and evolutionary planning.
NASA Astrophysics Data System (ADS)
Shankar Kumar, Ravi; Goswami, A.
2015-06-01
The article scrutinises the learning effect of the unit production time on optimal lot size for the uncertain and imprecise imperfect production process, wherein shortages are permissible and partially backlogged. Contextually, we contemplate the fuzzy chance of production process shifting from an 'in-control' state to an 'out-of-control' state and re-work facility of imperfect quality of produced items. The elapsed time until the process shifts is considered as a fuzzy random variable, and consequently, fuzzy random total cost per unit time is derived. Fuzzy expectation and signed distance method are used to transform the fuzzy random cost function into an equivalent crisp function. The results are illustrated with the help of numerical example. Finally, sensitivity analysis of the optimal solution with respect to major parameters is carried out.
Computation of output feedback gains for linear stochastic systems using the Zangnill-Powell Method
NASA Technical Reports Server (NTRS)
Kaufman, H.
1975-01-01
Because conventional optimal linear regulator theory results in a controller which requires the capability of measuring and/or estimating the entire state vector, it is of interest to consider procedures for computing controls which are restricted to be linear feedback functions of a lower dimensional output vector and which take into account the presence of measurement noise and process uncertainty. To this effect a stochastic linear model has been developed that accounts for process parameter and initial uncertainty, measurement noise, and a restricted number of measurable outputs. Optimization with respect to the corresponding output feedback gains was then performed for both finite and infinite time performance indices without gradient computation by using Zangwill's modification of a procedure originally proposed by Powell. Results using a seventh order process show the proposed procedures to be very effective.
Intelligent sensor in control systems for objects with changing thermophysical properties
NASA Astrophysics Data System (ADS)
Belousov, O. A.; Muromtsev, D. Yu; Belyaev, M. P.
2018-04-01
The control of heat devices in a wide temperature range given thermophysical properties of an object is a topical issue. Optimal control systems of electric furnaces have to meet strict requirements in terms of accuracy of production procedures and efficiency of energy consumption. The fulfillment of these requirements is possible only if the dynamics model describing adequately the processes occurring in the furnaces is used to calculate the optimal control actions. One of the types of electric furnaces is the electric chamber furnace intended for heat treatment of various materials at temperatures from thousands of degrees Celsius and above. To solve the above-mentioned problem and to determine its place in the system of energy-efficient control of dynamic modes in the electric furnace, we propose the concept of an intelligent sensor and a method of synthesizing variables on sets of functioning states. The use of synthesis algorithms for optimal control in real time ensures the required accuracy when operating under different conditions and operating modes of the electric chamber furnace.
Mutation particle swarm optimization of the BP-PID controller for piezoelectric ceramics
NASA Astrophysics Data System (ADS)
Zheng, Huaqing; Jiang, Minlan
2016-01-01
PID control is the most common used method in industrial control because its structure is simple and it is easy to implement. PID controller has good control effect, now it has been widely used. However, PID method has a few limitations. The overshoot of the PID controller is very big. The adjustment time is long. When the parameters of controlled plant are changing over time, the parameters of controller could hardly change automatically to adjust to changing environment. Thus, it can't meet the demand of control quality in the process of controlling piezoelectric ceramic. In order to effectively control the piezoelectric ceramic and improve the control accuracy, this paper replaced the learning algorithm of the BP with the mutation particle swarm optimization algorithm(MPSO) on the process of the parameters setting of BP-PID. That designed a better self-adaptive controller which is combing the BP neural network based on mutation particle swarm optimization with the conventional PID control theory. This combination is called the MPSO-BP-PID. In the mechanism of the MPSO, the mutation operation is carried out with the fitness variance and the global best fitness value as the standard. That can overcome the precocious of the PSO and strengthen its global search ability. As a result, the MPSO-BP-PID can complete controlling the controlled plant with higher speed and accuracy. Therefore, the MPSO-BP-PID is applied to the piezoelectric ceramic. It can effectively overcome the hysteresis, nonlinearity of the piezoelectric ceramic. In the experiment, compared with BP-PID and PSO-BP-PID, it proved that MPSO is effective and the MPSO-BP-PID has stronger adaptability and robustness.
NASA Astrophysics Data System (ADS)
Shorikov, A. F.
2017-10-01
In this paper we study the problem of optimization of guaranteed result for program control by the final state of regional social and economic system in the presence of risks. For this problem we propose a mathematical model in the form of two-level hierarchical minimax program control problem of the final state of this process with incomplete information. For solving of its problem we constructed the common algorithm that has a form of a recurrent procedure of solving a linear programming and a finite optimization problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gusakovskii, K. B.; Zmaznov, E. Yu.; Katantsev, S. V.
The experience in the installation of modern digital systems for controlling converter units at the Vyborg converter substation on the basis of advanced microprocessor devices is considered. It is shown that debugging of a control and protection system on mathematical and physical models does not guarantee optimum control of actual converter devices. Examples of advancing the control and protection system are described, the necessity for which has become obvious in tests of actual equipment. Comparison of oscillograms of processes before optimization of the control system and after its optimization and adjustment shows that the digital control system makes it possiblemore » to improve substantially the algorithms of control and protection in the short term and without changing the hardware component.« less
Trajectory Design Employing Convex Optimization for Landing on Irregularly Shaped Asteroids
NASA Technical Reports Server (NTRS)
Pinson, Robin M.; Lu, Ping
2016-01-01
Mission proposals that land spacecraft on asteroids are becoming increasingly popular. However, in order to have a successful mission the spacecraft must reliably and softly land at the intended landing site with pinpoint precision. The problem under investigation is how to design a propellant optimal powered descent trajectory that can be quickly computed onboard the spacecraft, without interaction from the ground control. The propellant optimal control problem in this work is to determine the optimal finite thrust vector to land the spacecraft at a specified location, in the presence of a highly nonlinear gravity field, subject to various mission and operational constraints. The proposed solution uses convex optimization, a gravity model with higher fidelity than Newtonian, and an iterative solution process for a fixed final time problem. In addition, a second optimization method is wrapped around the convex optimization problem to determine the optimal flight time that yields the lowest propellant usage over all flight times. Gravity models designed for irregularly shaped asteroids are investigated. Success of the algorithm is demonstrated by designing powered descent trajectories for the elongated binary asteroid Castalia.
Ji, Julie L; Holmes, Emily A; Blackwell, Simon E
2017-01-01
Optimism is associated with positive outcomes across many health domains, from cardiovascular disease to depression. However, we know little about cognitive processes underlying optimism in psychopathology. The present study tested whether the ability to vividly imagine positive events in one's future was associated with dispositional optimism in a sample of depressed adults. Cross-sectional and longitudinal analyses were conducted, using baseline (all participants, N=150) and follow-up data (participants in the control condition only, N=63) from a clinical trial (Blackwell et al., 2015). Vividness of positive prospective imagery, assessed on a laboratory-administered task at baseline, was significantly associated with both current optimism levels at baseline and future (seven months later) optimism levels, including when controlling for potential confounds. Even when depressed, those individuals able to envision a brighter future were more optimistic, and regained optimism more quickly over time, than those less able to do so at baseline. Strategies to increase the vividness of positive prospective imagery may aid development of mental health interventions to boost optimism. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Amand, L; Carlsson, B
2013-01-01
Ammonium feedback control is increasingly used to determine the dissolved oxygen (DO) set-point in aerated activated sludge processes for nitrogen removal. This study compares proportional-integral (PI) ammonium feedback control with a DO profile created from a mathematical minimisation of the daily air flow rate. All simulated scenarios are set to reach the same treatment level of ammonium, based on a daily average concentration. The influent includes daily variations only and the model has three aerated zones. Comparisons are made at different plant loads and DO concentrations, and the placement of the ammonium sensor is investigated. The results show that ammonium PI control can achieve the best performance if the DO set-point is limited at a maximum value and with little integral action in the controller. Compared with constant DO control the best-performing ammonium controller can achieve 1-3.5% savings in the air flow rate, while the optimal solution can achieve a 3-7% saving. Energy savings are larger when operating at higher DO concentrations.
Event-Based Robust Control for Uncertain Nonlinear Systems Using Adaptive Dynamic Programming.
Zhang, Qichao; Zhao, Dongbin; Wang, Ding
2018-01-01
In this paper, the robust control problem for a class of continuous-time nonlinear system with unmatched uncertainties is investigated using an event-based control method. First, the robust control problem is transformed into a corresponding optimal control problem with an augmented control and an appropriate cost function. Under the event-based mechanism, we prove that the solution of the optimal control problem can asymptotically stabilize the uncertain system with an adaptive triggering condition. That is, the designed event-based controller is robust to the original uncertain system. Note that the event-based controller is updated only when the triggering condition is satisfied, which can save the communication resources between the plant and the controller. Then, a single network adaptive dynamic programming structure with experience replay technique is constructed to approach the optimal control policies. The stability of the closed-loop system with the event-based control policy and the augmented control policy is analyzed using the Lyapunov approach. Furthermore, we prove that the minimal intersample time is bounded by a nonzero positive constant, which excludes Zeno behavior during the learning process. Finally, two simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.
Constraint factor in optimization of truss structures via flower pollination algorithm
NASA Astrophysics Data System (ADS)
Bekdaş, Gebrail; Nigdeli, Sinan Melih; Sayin, Baris
2017-07-01
The aim of the paper is to investigate the optimum design of truss structures by considering different stress and displacement constraints. For that reason, the flower pollination algorithm based methodology was applied for sizing optimization of space truss structures. Flower pollination algorithm is a metaheuristic algorithm inspired by the pollination process of flowering plants. By the imitation of cross-pollination and self-pollination processes, the randomly generation of sizes of truss members are done in two ways and these two types of optimization are controlled with a switch probability. In the study, a 72 bar space truss structure was optimized by using five different cases of the constraint limits. According to the results, a linear relationship between the optimum structure weight and constraint limits was observed.
Optimized cross-resonance gate for coupled transmon systems
NASA Astrophysics Data System (ADS)
Kirchhoff, Susanna; Keßler, Torsten; Liebermann, Per J.; Assémat, Elie; Machnes, Shai; Motzoi, Felix; Wilhelm, Frank K.
2018-04-01
The cross-resonance (CR) gate is an entangling gate for fixed-frequency superconducting qubits. While being simple and extensible, it is comparatively slow, at 160 ns, and thus of limited fidelity due to on-going incoherent processes. Using two different optimal control algorithms, we estimate the quantum speed limit for a controlled-not cnot gate in this system to be 10 ns, indicating a potential for great improvements. We show that the ability to approach this limit depends strongly on the choice of ansatz used to describe optimized control pulses and limitations placed on their complexity. Using a piecewise-constant ansatz, with a single carrier and bandwidth constraints, we identify an experimentally feasible 70-ns pulse shape. Further, an ansatz based on the two dominant frequencies involved in the optimal control problem allows for an optimal solution more than twice as fast again, at under 30 ns, with smooth features and limited complexity. This is twice as fast as gate realizations using tunable-frequency, resonantly coupled qubits. Compared to current CR-gate implementations, we project our scheme will provide a sixfold speed-up and thus a sixfold reduction in fidelity loss due to incoherent effects.
NASA Astrophysics Data System (ADS)
Nath, Nayani Kishore
2017-08-01
The throat back up liners is used to protect the nozzle structural members from the severe thermal environment in solid rocket nozzles. The throat back up liners is made with E-glass phenolic prepregs by tape winding process. The objective of this work is to demonstrate the optimization of process parameters of tape winding process to achieve better insulative resistance using Taguchi's robust design methodology. In this method four control factors machine speed, roller pressure, tape tension, tape temperature that were investigated for the tape winding process. The presented work was to study the cogency and acceptability of Taguchi's methodology in manufacturing of throat back up liners. The quality characteristic identified was Back wall temperature. Experiments carried out using L 9 ' (34) orthogonal array with three levels of four different control factors. The test results were analyzed using smaller the better criteria for Signal to Noise ratio in order to optimize the process. The experimental results were analyzed conformed and successfully used to achieve the minimum back wall temperature of the throat back up liners. The enhancement in performance of the throat back up liners was observed by carrying out the oxy-acetylene tests. The influence of back wall temperature on the performance of throat back up liners was verified by ground firing test.
Functional Neuroanatomy for Posture and Gait Control
Takakusaki, Kaoru
2017-01-01
Here we argue functional neuroanatomy for posture-gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture-gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending pathways from the brainstem to the spinal cord. Particularly, reticulospinal pathways arising from the lateral part of the mesopontine tegmentum and spinal locomotor network contribute to this process. On the other hand, walking in unfamiliar circumstance requires cognitive process of postural control, which depends on knowledges of self-body, such as body schema and body motion in space. The cognitive information is produced at the temporoparietal association cortex, and is fundamental to sustention of vertical posture and construction of motor programs. The programs in the motor cortical areas run to execute anticipatory postural adjustment that is optimal for achievement of goal-directed movements. The basal ganglia and cerebellum may affect both the automatic and cognitive processes of posturegait control through reciprocal connections with the brainstem and cerebral cortex, respectively. Consequently, impairments in cognitive function by damages in the cerebral cortex, basal ganglia and cerebellum may disturb posture-gait control, resulting in falling. PMID:28122432
Optimization of controlled processes in combined-cycle plant (new developments and researches)
NASA Astrophysics Data System (ADS)
Tverskoy, Yu S.; Muravev, I. K.
2017-11-01
All modern complex technical systems, including power units of TPP and nuclear power plants, work in the system-forming structure of multifunctional APCS. The development of the modern APCS mathematical support allows bringing the automation degree to the solution of complex optimization problems of equipment heat-mass-exchange processes in real time. The difficulty of efficient management of a binary power unit is related to the need to solve jointly at least three problems. The first problem is related to the physical issues of combined-cycle technologies. The second problem is determined by the criticality of the CCGT operation to changes in the regime and climatic factors. The third problem is related to a precise description of a vector of controlled coordinates of a complex technological object. To obtain a joint solution of this complex of interconnected problems, the methodology of generalized thermodynamic analysis, methods of the theory of automatic control and mathematical modeling are used. In the present report, results of new developments and studies are shown. These results allow improving the principles of process control and the automatic control systems structural synthesis of power units with combined-cycle plants that provide attainable technical and economic efficiency and operational reliability of equipment.
Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Ma, Yongwen; Wang, Yan
2013-12-01
An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy.
Aircraft Flight Modeling During the Optimization of Gas Turbine Engine Working Process
NASA Astrophysics Data System (ADS)
Tkachenko, A. Yu; Kuz'michev, V. S.; Krupenich, I. N.
2018-01-01
The article describes a method for simulating the flight of the aircraft along a predetermined path, establishing a functional connection between the parameters of the working process of gas turbine engine and the efficiency criteria of the aircraft. This connection is necessary for solving the optimization tasks of the conceptual design stage of the engine according to the systems approach. Engine thrust level, in turn, influences the operation of aircraft, thus making accurate simulation of the aircraft behavior during flight necessary for obtaining the correct solution. The described mathematical model of aircraft flight provides the functional connection between the airframe characteristics, working process of gas turbine engines (propulsion system), ambient and flight conditions and flight profile features. This model provides accurate results of flight simulation and the resulting aircraft efficiency criteria, required for optimization of working process and control function of a gas turbine engine.
NASA Astrophysics Data System (ADS)
Mann, Erin
Both industry and commercial entities are in the process of using more lightweight composites. Fillers, such as fibers, nanofibers and other nanoconstituents in polymer matrix composites have been proven to enhance the properties of composites and are still being studied in order to optimize the benefits. Further optimization can be studied during the manufacturing process. The air permeability during the out-of-autoclave-vacuum-bag-only (OOA-VBO) cure method is an important property to understand during the optimization of manufacturing processes. Changes in the manufacturing process can improve or decrease composite quality depending on the ability of the composite to evacuate gases such as air and moisture during curing. Therefore, in this study, the axial permeability of a prepreg stack was experimentally studied. Three types of samples were studied: control (no carbon nanofiber (CNF) modification), unaligned CNF modified and aligned CNF modified samples.
Carmena, Jose M.
2016-01-01
Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter initialization. Finally, the architecture extended control to tasks beyond those used for CLDA training. These results have significant implications towards the development of clinically-viable neuroprosthetics. PMID:27035820
Radar Doppler Processing with Nonuniform Sampling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin W.
2017-07-01
Conventional signal processing to estimate radar Doppler frequency often assumes uniform pulse/sample spacing. This is for the convenience of t he processing. More recent performance enhancements in processor capability allow optimally processing nonuniform pulse/sample spacing, thereby overcoming some of the baggage that attends uniform sampling, such as Doppler ambiguity and SNR losses due to sidelobe control measures.
Encoder-Decoder Optimization for Brain-Computer Interfaces
Merel, Josh; Pianto, Donald M.; Cunningham, John P.; Paninski, Liam
2015-01-01
Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages. PMID:26029919
Encoder-decoder optimization for brain-computer interfaces.
Merel, Josh; Pianto, Donald M; Cunningham, John P; Paninski, Liam
2015-06-01
Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.
The Dilution Effect and Information Integration in Perceptual Decision Making
Hotaling, Jared M.; Cohen, Andrew L.; Shiffrin, Richard M.; Busemeyer, Jerome R.
2015-01-01
In cognitive science there is a seeming paradox: On the one hand, studies of human judgment and decision making have repeatedly shown that people systematically violate optimal behavior when integrating information from multiple sources. On the other hand, optimal models, often Bayesian, have been successful at accounting for information integration in fields such as categorization, memory, and perception. This apparent conflict could be due, in part, to different materials and designs that lead to differences in the nature of processing. Stimuli that require controlled integration of information, such as the quantitative or linguistic information (commonly found in judgment studies), may lead to suboptimal performance. In contrast, perceptual stimuli may lend themselves to automatic processing, resulting in integration that is closer to optimal. We tested this hypothesis with an experiment in which participants categorized faces based on resemblance to a family patriarch. The amount of evidence contained in the top and bottom halves of each test face was independently manipulated. These data allow us to investigate a canonical example of sub-optimal information integration from the judgment and decision making literature, the dilution effect. Splitting the top and bottom halves of a face, a manipulation meant to encourage controlled integration of information, produced farther from optimal behavior and larger dilution effects. The Multi-component Information Accumulation model, a hybrid optimal/averaging model of information integration, successfully accounts for key accuracy, response time, and dilution effects. PMID:26406323
Roux, Emmanuel; Ramalli, Alessandro; Tortoli, Piero; Cachard, Christian; Robini, Marc C; Liebgott, Herve
2016-12-01
Full matrix arrays are excellent tools for 3-D ultrasound imaging, but the required number of active elements is too high to be individually controlled by an equal number of scanner channels. The number of active elements is significantly reduced by the sparse array techniques, but the position of the remaining elements must be carefully optimized. This issue is faced here by introducing novel energy functions in the simulated annealing (SA) algorithm. At each iteration step of the optimization process, one element is freely translated and the associated radiated pattern is simulated. To control the pressure field behavior at multiple depths, three energy functions inspired by the pressure field radiated by a Blackman-tapered spiral array are introduced. Such energy functions aim at limiting the main lobe width while lowering the side lobe and grating lobe levels at multiple depths. Numerical optimization results illustrate the influence of the number of iterations, pressure measurement points, and depths, as well as the influence of the energy function definition on the optimized layout. It is also shown that performance close to or even better than the one provided by a spiral array, here assumed as reference, may be obtained. The finite-time convergence properties of SA allow the duration of the optimization process to be set in advance.
The Dilution Effect and Information Integration in Perceptual Decision Making.
Hotaling, Jared M; Cohen, Andrew L; Shiffrin, Richard M; Busemeyer, Jerome R
2015-01-01
In cognitive science there is a seeming paradox: On the one hand, studies of human judgment and decision making have repeatedly shown that people systematically violate optimal behavior when integrating information from multiple sources. On the other hand, optimal models, often Bayesian, have been successful at accounting for information integration in fields such as categorization, memory, and perception. This apparent conflict could be due, in part, to different materials and designs that lead to differences in the nature of processing. Stimuli that require controlled integration of information, such as the quantitative or linguistic information (commonly found in judgment studies), may lead to suboptimal performance. In contrast, perceptual stimuli may lend themselves to automatic processing, resulting in integration that is closer to optimal. We tested this hypothesis with an experiment in which participants categorized faces based on resemblance to a family patriarch. The amount of evidence contained in the top and bottom halves of each test face was independently manipulated. These data allow us to investigate a canonical example of sub-optimal information integration from the judgment and decision making literature, the dilution effect. Splitting the top and bottom halves of a face, a manipulation meant to encourage controlled integration of information, produced farther from optimal behavior and larger dilution effects. The Multi-component Information Accumulation model, a hybrid optimal/averaging model of information integration, successfully accounts for key accuracy, response time, and dilution effects.
Wang, Xi-fen; Zhou, Huai-chun
2005-01-01
The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pc-fired furnace with multi-burner system. The development of the visualization of 3-D temperature distributions in pc-fired furnaces makes it possible for a new combustion control strategy directly with the furnace temperature as its goal to improve the control quality for the combustion processes. Studied in this paper is such a new strategy that the whole furnace is divided into several parts in the vertical direction, and the average temperature and its bias from the center in every cross section can be extracted from the visualization results of the 3-D temperature distributions. In the simulation stage, a computational fluid dynamics (CFD) code served to calculate the 3-D temperature distributions in a furnace, then a linear model was set up to relate the features of the temperature distributions with the input of the combustion processes, such as the flow rates of fuel and air fed into the furnaces through all the burners. The adaptive genetic algorithm was adopted to find the optimal combination of the whole input parameters which ensure to form an optimal 3-D temperature field in the furnace desired for the operation of boiler. Simulation results showed that the strategy could soon find the factors making the temperature distribution apart from the optimal state and give correct adjusting suggestions.
Computation of output feedback gains for linear stochastic systems using the Zangwill-Powell method
NASA Technical Reports Server (NTRS)
Kaufman, H.
1977-01-01
Because conventional optimal linear regulator theory results in a controller which requires the capability of measuring and/or estimating the entire state vector, it is of interest to consider procedures for computing controls which are restricted to be linear feedback functions of a lower dimensional output vector and which take into account the presence of measurement noise and process uncertainty. To this effect a stochastic linear model has been developed that accounts for process parameter and initial uncertainty, measurement noise, and a restricted number of measurable outputs. Optimization with respect to the corresponding output feedback gains was then performed for both finite and infinite time performance indices without gradient computation by using Zangwill's modification of a procedure originally proposed by Powell.
[Preparation of bioindicators for controlling the efficacy of sterilization processes].
Kalinina, N M; Tikhonova, A S; Motina, G L; Chaĭkovskaia, S M; Semenov, S M
1983-08-01
A test microbe for the control of the efficacy of vacuum steam sterilization was selected. Conditions for the spore cultivation were developed. The optimal bioindicator composition, test microbe loading, nutrient medium, pH indicator, carbohydrates and a carrier were defined.
NASA Astrophysics Data System (ADS)
Zhu, Z. W.; Zhang, W. D.; Xu, J.
2014-03-01
The non-linear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF) subjected to in-plane stochastic excitation were studied. Non-linear differential items were introduced to interpret the hysteretic phenomena of the GMF, and the non-linear dynamic model of the GMF subjected to in-plane stochastic excitation was developed. The stochastic stability was analysed, and the probability density function was obtained. The condition of stochastic Hopf bifurcation and noise-induced chaotic response were determined, and the fractal boundary of the system's safe basin was provided. The reliability function was solved from the backward Kolmogorov equation, and an optimal control strategy was proposed in the stochastic dynamic programming method. Numerical simulation shows that the system stability varies with the parameters, and stochastic Hopf bifurcation and chaos appear in the process; the area of the safe basin decreases when the noise intensifies, and the boundary of the safe basin becomes fractal; the system reliability improved through stochastic optimal control. Finally, the theoretical and numerical results were proved by experiments. The results are helpful in the engineering applications of GMF.
Review on CNC-Rapid Prototyping
NASA Astrophysics Data System (ADS)
Z, M. Nafis O.; Y, Nafrizuan M.; A, Munira M.; J, Kartina
2012-09-01
This article reviewed developments of Computerized Numerical Control (CNC) technology in rapid prototyping process. Rapid prototyping (RP) can be classified into three major groups; subtractive, additive and virtual. CNC rapid prototyping is grouped under the subtractive category which involves material removal from the workpiece that is larger than the final part. Richard Wysk established the use of CNC machines for rapid prototyping using sets of 2½-D tool paths from various orientations about a rotary axis to machine parts without refixturing. Since then, there are few developments on this process mainly aimed to optimized the operation and increase the process capabilities to stand equal with common additive type of RP. These developments include the integration between machining and deposition process (hybrid RP), adoption of RP to the conventional machine and optimization of the CNC rapid prototyping process based on controlled parameters. The article ended by concluding that the CNC rapid prototyping research area has a vast space for improvement as in the conventional machining processes. Further developments and findings will enhance the usage of this method and minimize the limitation of current approach in building a prototype.
NASA Astrophysics Data System (ADS)
Li, J. C.; Gong, B.; Wang, H. G.
2016-08-01
Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.
Approximation of the Newton Step by a Defect Correction Process
NASA Technical Reports Server (NTRS)
Arian, E.; Batterman, A.; Sachs, E. W.
1999-01-01
In this paper, an optimal control problem governed by a partial differential equation is considered. The Newton step for this system can be computed by solving a coupled system of equations. To do this efficiently with an iterative defect correction process, a modifying operator is introduced into the system. This operator is motivated by local mode analysis. The operator can be used also for preconditioning in Generalized Minimum Residual (GMRES). We give a detailed convergence analysis for the defect correction process and show the derivation of the modifying operator. Numerical tests are done on the small disturbance shape optimization problem in two dimensions for the defect correction process and for GMRES.
Generalised additive modelling approach to the fermentation process of glutamate.
Liu, Chun-Bo; Li, Yun; Pan, Feng; Shi, Zhong-Ping
2011-03-01
In this work, generalised additive models (GAMs) were used for the first time to model the fermentation of glutamate (Glu). It was found that three fermentation parameters fermentation time (T), dissolved oxygen (DO) and oxygen uptake rate (OUR) could capture 97% variance of the production of Glu during the fermentation process through a GAM model calibrated using online data from 15 fermentation experiments. This model was applied to investigate the individual and combined effects of T, DO and OUR on the production of Glu. The conditions to optimize the fermentation process were proposed based on the simulation study from this model. Results suggested that the production of Glu can reach a high level by controlling concentration levels of DO and OUR to the proposed optimization conditions during the fermentation process. The GAM approach therefore provides an alternative way to model and optimize the fermentation process of Glu. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Evolution of Query Optimization Methods
NASA Astrophysics Data System (ADS)
Hameurlain, Abdelkader; Morvan, Franck
Query optimization is the most critical phase in query processing. In this paper, we try to describe synthetically the evolution of query optimization methods from uniprocessor relational database systems to data Grid systems through parallel, distributed and data integration systems. We point out a set of parameters to characterize and compare query optimization methods, mainly: (i) size of the search space, (ii) type of method (static or dynamic), (iii) modification types of execution plans (re-optimization or re-scheduling), (iv) level of modification (intra-operator and/or inter-operator), (v) type of event (estimation errors, delay, user preferences), and (vi) nature of decision-making (centralized or decentralized control).
Optimization of robustness of interdependent network controllability by redundant design
2018-01-01
Controllability of complex networks has been a hot topic in recent years. Real networks regarded as interdependent networks are always coupled together by multiple networks. The cascading process of interdependent networks including interdependent failure and overload failure will destroy the robustness of controllability for the whole network. Therefore, the optimization of the robustness of interdependent network controllability is of great importance in the research area of complex networks. In this paper, based on the model of interdependent networks constructed first, we determine the cascading process under different proportions of node attacks. Then, the structural controllability of interdependent networks is measured by the minimum driver nodes. Furthermore, we propose a parameter which can be obtained by the structure and minimum driver set of interdependent networks under different proportions of node attacks and analyze the robustness for interdependent network controllability. Finally, we optimize the robustness of interdependent network controllability by redundant design including node backup and redundancy edge backup and improve the redundant design by proposing different strategies according to their cost. Comparative strategies of redundant design are conducted to find the best strategy. Results shows that node backup and redundancy edge backup can indeed decrease those nodes suffering from failure and improve the robustness of controllability. Considering the cost of redundant design, we should choose BBS (betweenness-based strategy) or DBS (degree based strategy) for node backup and HDF(high degree first) for redundancy edge backup. Above all, our proposed strategies are feasible and effective at improving the robustness of interdependent network controllability. PMID:29438426
Version control system of CAD documents and PLC projects
NASA Astrophysics Data System (ADS)
Khudyakov, P. Yu; Kisel’nikov, A. Yu; Startcev, I. M.; Kovalev, A. A.
2018-05-01
The paper presents the process of developing a version control system for CAD documents and PLC projects. The software was tested and the optimal composition of the modules was selected. The introduction of the system has made it possible to increase the safety and stability of the process control systems, as well as to reduce the number of conflicts for versions of CAD files. The number of incidents at the enterprise related to the use of incorrect versions of PLC projects is reduced to 0.
Multichannel temperature controller for hot air solar house
NASA Technical Reports Server (NTRS)
Currie, J. R.
1979-01-01
This paper describes an electronic controller that is optimized to operate a hot air solar system. Thermal information is obtained from copper constantan thermocouples and a wall-type thermostat. The signals from the thermocouples are processed through a single amplifier using a multiplexing scheme. The multiplexing reduces the component count and automatically calibrates the thermocouple amplifier. The processed signals connect to some simple logic that selects one of the four operating modes. This simple, inexpensive, and reliable scheme is well suited to control hot air solar systems.
ON CONTINUOUS-REVIEW (S-1,S) INVENTORY POLICIES WITH STATE-DEPENDENT LEADTIMES,
INVENTORY CONTROL, *REPLACEMENT THEORY), MATHEMATICAL MODELS, LEAD TIME , MANAGEMENT ENGINEERING, DISTRIBUTION FUNCTIONS, PROBABILITY, QUEUEING THEORY, COSTS, OPTIMIZATION, STATISTICAL PROCESSES, DIFFERENCE EQUATIONS
Chen, Zhi; Yuan, Yuan; Zhang, Shu-Shen; Chen, Yu; Yang, Feng-Lin
2013-01-01
Critical environmental and human health concerns are associated with the rapidly growing fields of nanotechnology and manufactured nanomaterials (MNMs). The main risk arises from occupational exposure via chronic inhalation of nanoparticles. This research presents a chance-constrained nonlinear programming (CCNLP) optimization approach, which is developed to maximize the nanaomaterial production and minimize the risks of workplace exposure to MNMs. The CCNLP method integrates nonlinear programming (NLP) and chance-constrained programming (CCP), and handles uncertainties associated with both the nanomaterial production and workplace exposure control. The CCNLP method was examined through a single-walled carbon nanotube (SWNT) manufacturing process. The study results provide optimal production strategies and alternatives. It reveal that a high control measure guarantees that environmental health and safety (EHS) standards regulations are met, while a lower control level leads to increased risk of violating EHS regulations. The CCNLP optimization approach is a decision support tool for the optimization of the increasing MNMS manufacturing with workplace safety constraints under uncertainties. PMID:23531490
Chen, Zhi; Yuan, Yuan; Zhang, Shu-Shen; Chen, Yu; Yang, Feng-Lin
2013-03-26
Critical environmental and human health concerns are associated with the rapidly growing fields of nanotechnology and manufactured nanomaterials (MNMs). The main risk arises from occupational exposure via chronic inhalation of nanoparticles. This research presents a chance-constrained nonlinear programming (CCNLP) optimization approach, which is developed to maximize the nanaomaterial production and minimize the risks of workplace exposure to MNMs. The CCNLP method integrates nonlinear programming (NLP) and chance-constrained programming (CCP), and handles uncertainties associated with both the nanomaterial production and workplace exposure control. The CCNLP method was examined through a single-walled carbon nanotube (SWNT) manufacturing process. The study results provide optimal production strategies and alternatives. It reveal that a high control measure guarantees that environmental health and safety (EHS) standards regulations are met, while a lower control level leads to increased risk of violating EHS regulations. The CCNLP optimization approach is a decision support tool for the optimization of the increasing MNMS manufacturing with workplace safety constraints under uncertainties.
Optimal Navigation of Self-Propelled Colloids in Microstructured Mazes
NASA Astrophysics Data System (ADS)
Yang, Yuguang; Bevan, Michael
Controlling navigation of self-propelled microscopic `robots' subject to random Brownian motion in complex microstructured environments (e.g., porous media, tumor vasculature) is important to many emerging applications (e.g., enhanced oil recovery, drug delivery). In this work, we design an optimal feedback policy to navigate an active self-propelled colloidal rod in complex mazes with various obstacle types. Actuation of the rods is modelled based on a light-controlled osmotic flow mechanism, which produces different propulsion velocities along the rod's long axis. Actuator-parameterized Langevin equations, with soft rod-obstacle repulsive interactions, are developed to describe the system dynamics. A Markov decision process (MDP) framework is used for optimal policy calculations with design goals of colloidal rods reaching target end points in minimum time. Simulations show that optimal MDP-based policies are able to control rod trajectories to reach target regions order-of-magnitudes faster than uncontrolled rods, which diverges as maze complexity increases. An efficient multi-graph based implementation for MDP is also presented, which scales linearly with the maze dimension.
Design of freeze-drying processes for pharmaceuticals: practical advice.
Tang, Xiaolin; Pikal, Michael J
2004-02-01
Design of freeze-drying processes is often approached with a "trial and error" experimental plan or, worse yet, the protocol used in the first laboratory run is adopted without further attempts at optimization. Consequently, commercial freeze-drying processes are often neither robust nor efficient. It is our thesis that design of an "optimized" freeze-drying process is not particularly difficult for most products, as long as some simple rules based on well-accepted scientific principles are followed. It is the purpose of this review to discuss the scientific foundations of the freeze-drying process design and then to consolidate these principles into a set of guidelines for rational process design and optimization. General advice is given concerning common stability issues with proteins, but unusual and difficult stability issues are beyond the scope of this review. Control of ice nucleation and crystallization during the freezing step is discussed, and the impact of freezing on the rest of the process and final product quality is reviewed. Representative freezing protocols are presented. The significance of the collapse temperature and the thermal transition, denoted Tg', are discussed, and procedures for the selection of the "target product temperature" for primary drying are presented. Furthermore, guidelines are given for selection of the optimal shelf temperature and chamber pressure settings required to achieve the target product temperature without thermal and/or mass transfer overload of the freeze dryer. Finally, guidelines and "rules" for optimization of secondary drying and representative secondary drying protocols are presented.
Blended near-optimal tools for flexible water resources decision making
NASA Astrophysics Data System (ADS)
Rosenberg, David
2015-04-01
State-of-the-art systems analysis techniques focus on efficiently finding optimal solutions. Yet an optimal solution is optimal only for the static modelled issues and managers often seek near-optimal alternatives that address un-modelled or changing objectives, preferences, limits, uncertainties, and other issues. Early on, Modelling to Generate Alternatives (MGA) formalized near-optimal as performance within a tolerable deviation from the optimal objective function value and identified a few maximally-different alternatives that addressed select un-modelled issues. This paper presents new stratified, Monte Carlo Markov Chain sampling and parallel coordinate plotting tools that generate and communicate the structure and full extent of the near-optimal region to an optimization problem. Plot controls allow users to interactively explore region features of most interest. Controls also streamline the process to elicit un-modelled issues and update the model formulation in response to elicited issues. Use for a single-objective water quality management problem at Echo Reservoir, Utah identifies numerous and flexible practices to reduce the phosphorus load to the reservoir and maintain close-to-optimal performance. Compared to MGA, the new blended tools generate more numerous alternatives faster, more fully show the near-optimal region, help elicit a larger set of un-modelled issues, and offer managers greater flexibility to cope in a changing world.
Combining analysis with optimization at Langley Research Center. An evolutionary process
NASA Technical Reports Server (NTRS)
Rogers, J. L., Jr.
1982-01-01
The evolutionary process of combining analysis and optimization codes was traced with a view toward providing insight into the long term goal of developing the methodology for an integrated, multidisciplinary software system for the concurrent analysis and optimization of aerospace structures. It was traced along the lines of strength sizing, concurrent strength and flutter sizing, and general optimization to define a near-term goal for combining analysis and optimization codes. Development of a modular software system combining general-purpose, state-of-the-art, production-level analysis computer programs for structures, aerodynamics, and aeroelasticity with a state-of-the-art optimization program is required. Incorporation of a modular and flexible structural optimization software system into a state-of-the-art finite element analysis computer program will facilitate this effort. This effort results in the software system used that is controlled with a special-purpose language, communicates with a data management system, and is easily modified for adding new programs and capabilities. A 337 degree-of-freedom finite element model is used in verifying the accuracy of this system.
Robust active noise control in the loadmaster area of a military transport aircraft.
Kochan, Kay; Sachau, Delf; Breitbach, Harald
2011-05-01
The active noise control (ANC) method is based on the superposition of a disturbance noise field with a second anti-noise field using loudspeakers and error microphones. This method can be used to reduce the noise level inside the cabin of a propeller aircraft. However, during the design process of the ANC system, extensive measurements of transfer functions are necessary to optimize the loudspeaker and microphone positions. Sometimes, the transducer positions have to be tailored according to the optimization results to achieve a sufficient noise reduction. The purpose of this paper is to introduce a controller design method for such narrow band ANC systems. The method can be seen as an extension of common transducer placement optimization procedures. In the presented method, individual weighting parameters for the loudspeakers and microphones are used. With this procedure, the tailoring of the transducer positions is replaced by adjustment of controller parameters. Moreover, the ANC system will be robust because of the fact that the uncertainties are considered during the optimization of the controller parameters. The paper describes the necessary theoretic background for the method and demonstrates the efficiency in an acoustical mock-up of a military transport aircraft.
Virtual solar field - An opportunity to optimize transient processes in line-focus CSP power plants
NASA Astrophysics Data System (ADS)
Noureldin, Kareem; Hirsch, Tobias; Pitz-Paal, Robert
2017-06-01
Optimizing solar field operation and control is a key factor to improve the competitiveness of line-focus solar thermal power plants. However, the risks of assessing new and innovative control strategies on operational power plants hinder such optimizations and result in applying more conservative control schemes. In this paper, we describe some applications for a whole solar field transient in-house simulation tool developed at the German Aerospace Centre (DLR), the Virtual Solar Field (VSF). The tool offers a virtual platform to simulate real solar fields while coupling the thermal and hydraulic conditions of the field with high computational efficiency. Using the tool, developers and operator can probe their control strategies and assess the potential benefits while avoiding the high risks and costs. In this paper, we study the benefits gained from controlling the loop valves and of using direct normal irradiance maps and forecasts for the field control. Loop valve control is interesting for many solar field operators since it provides a high degree of flexibility to the control of the solar field through regulating the flow rate in each loop. This improves the reaction to transient condition, such as passing clouds and field start-up in the morning. Nevertheless, due to the large number of loops and the sensitivity of the field control to the valve settings, this process needs to be automated and the effect of changing the setting of each valve on the whole field control needs to be taken into account. We used VSF to implement simple control algorithms to control the loop valves and to study the benefits that could be gained from using active loop valve control during transient conditions. Secondly, we study how using short-term highly spatially-resolved DNI forecasts provided by cloud cameras could improve the plant energy yield. Both cases show an improvement in the plant efficiency and outlet temperature stability. This paves the road for further investigations of new control strategies or for optimizations of the currently implemented ones.
On Efficient Multigrid Methods for Materials Processing Flows with Small Particles
NASA Technical Reports Server (NTRS)
Thomas, James (Technical Monitor); Diskin, Boris; Harik, VasylMichael
2004-01-01
Multiscale modeling of materials requires simulations of multiple levels of structural hierarchy. The computational efficiency of numerical methods becomes a critical factor for simulating large physical systems with highly desperate length scales. Multigrid methods are known for their superior efficiency in representing/resolving different levels of physical details. The efficiency is achieved by employing interactively different discretizations on different scales (grids). To assist optimization of manufacturing conditions for materials processing with numerous particles (e.g., dispersion of particles, controlling flow viscosity and clusters), a new multigrid algorithm has been developed for a case of multiscale modeling of flows with small particles that have various length scales. The optimal efficiency of the algorithm is crucial for accurate predictions of the effect of processing conditions (e.g., pressure and velocity gradients) on the local flow fields that control the formation of various microstructures or clusters.
Using fuzzy rule-based knowledge model for optimum plating conditions search
NASA Astrophysics Data System (ADS)
Solovjev, D. S.; Solovjeva, I. A.; Litovka, Yu V.; Arzamastsev, A. A.; Glazkov, V. P.; L’vov, A. A.
2018-03-01
The paper discusses existing approaches to plating process modeling in order to decrease the distribution thickness of plating surface cover. However, these approaches do not take into account the experience, knowledge, and intuition of the decision-makers when searching the optimal conditions of electroplating technological process. The original approach to optimal conditions search for applying the electroplating coatings, which uses the rule-based model of knowledge and allows one to reduce the uneven product thickness distribution, is proposed. The block diagrams of a conventional control system of a galvanic process as well as the system based on the production model of knowledge are considered. It is shown that the fuzzy production model of knowledge in the control system makes it possible to obtain galvanic coatings of a given thickness unevenness with a high degree of adequacy to the experimental data. The described experimental results confirm the theoretical conclusions.
Analytical Models of Cross-Layer Protocol Optimization in Real-Time Wireless Sensor Ad Hoc Networks
NASA Astrophysics Data System (ADS)
Hortos, William S.
The real-time interactions among the nodes of a wireless sensor network (WSN) to cooperatively process data from multiple sensors are modeled. Quality-of-service (QoS) metrics are associated with the quality of fused information: throughput, delay, packet error rate, etc. Multivariate point process (MVPP) models of discrete random events in WSNs establish stochastic characteristics of optimal cross-layer protocols. Discrete-event, cross-layer interactions in mobile ad hoc network (MANET) protocols have been modeled using a set of concatenated design parameters and associated resource levels by the MVPPs. Characterization of the "best" cross-layer designs for a MANET is formulated by applying the general theory of martingale representations to controlled MVPPs. Performance is described in terms of concatenated protocol parameters and controlled through conditional rates of the MVPPs. Modeling limitations to determination of closed-form solutions versus explicit iterative solutions for ad hoc WSN controls are examined.
Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning
NASA Technical Reports Server (NTRS)
Englander, Jacob; Vavrina, Matthew; Ghosh, Alexander
2015-01-01
Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed and in some cases the final destination. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very diserable. This work presents such as an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on a hypothetical mission to the main asteroid belt.
New numerical methods for open-loop and feedback solutions to dynamic optimization problems
NASA Astrophysics Data System (ADS)
Ghosh, Pradipto
The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development is that the resulting control law has an algebraic closed-form structure. The proposed method uses an optimal spatial statistical predictor called universal kriging to construct the surrogate model of a feedback controller, which is capable of quickly predicting an optimal control estimate based on current state (and time) information. With universal kriging, an approximation to the optimal feedback map is computed by conceptualizing a set of state-control samples from pre-computed extremals to be a particular realization of a jointly Gaussian spatial process. Feedback policies are computed for a variety of example dynamic optimization problems in order to evaluate the effectiveness of this methodology. This feedback synthesis approach is found to combine good numerical accuracy with low computational overhead, making it a suitable candidate for real-time applications. Particle swarm and universal kriging are combined for a capstone example, a near optimal, near-admissible, full-state feedback control law is computed and tested for the heat-load-limited atmospheric-turn guidance of an aeroassisted transfer vehicle. The performance of this explicit guidance scheme is found to be very promising; initial errors in atmospheric entry due to simulated thruster misfirings are found to be accurately corrected while closely respecting the algebraic state-inequality constraint.
Optimal deployment of resources for maximizing impact in spreading processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lokhov, Andrey Y.; Saad, David
The effective use of limited resources for controlling spreading processes on networks is of prime significance in diverse contexts, ranging from the identification of “influential spreaders” for maximizing information dissemination and targeted interventions in regulatory networks, to the development of mitigation policies for infectious diseases and financial contagion in economic systems. Solutions for these optimization tasks that are based purely on topological arguments are not fully satisfactory; in realistic settings, the problem is often characterized by heterogeneous interactions and requires interventions in a dynamic fashion over a finite time window via a restricted set of controllable nodes. The optimal distributionmore » of available resources hence results from an interplay between network topology and spreading dynamics. Here, we show how these problems can be addressed as particular instances of a universal analytical framework based on a scalable dynamic message-passing approach and demonstrate the efficacy of the method on a variety of real-world examples.« less
Optimal deployment of resources for maximizing impact in spreading processes
Lokhov, Andrey Y.; Saad, David
2017-09-12
The effective use of limited resources for controlling spreading processes on networks is of prime significance in diverse contexts, ranging from the identification of “influential spreaders” for maximizing information dissemination and targeted interventions in regulatory networks, to the development of mitigation policies for infectious diseases and financial contagion in economic systems. Solutions for these optimization tasks that are based purely on topological arguments are not fully satisfactory; in realistic settings, the problem is often characterized by heterogeneous interactions and requires interventions in a dynamic fashion over a finite time window via a restricted set of controllable nodes. The optimal distributionmore » of available resources hence results from an interplay between network topology and spreading dynamics. Here, we show how these problems can be addressed as particular instances of a universal analytical framework based on a scalable dynamic message-passing approach and demonstrate the efficacy of the method on a variety of real-world examples.« less
Application of Advanced Process Control techniques to a pusher type reheating furnace
NASA Astrophysics Data System (ADS)
Zanoli, S. M.; Pepe, C.; Barboni, L.
2015-11-01
In this paper an Advanced Process Control system aimed at controlling and optimizing a pusher type reheating furnace located in an Italian steel plant is proposed. The designed controller replaced the previous control system, based on PID controllers manually conducted by process operators. A two-layer Model Predictive Control architecture has been adopted that, exploiting a chemical, physical and economic modelling of the process, overcomes the limitations of plant operators’ mental model and knowledge. In addition, an ad hoc decoupling strategy has been implemented, allowing the selection of the manipulated variables to be used for the control of each single process variable. Finally, in order to improve the system flexibility and resilience, the controller has been equipped with a supervision module. A profitable trade-off between conflicting specifications, e.g. safety, quality and production constraints, energy saving and pollution impact, has been guaranteed. Simulation tests and real plant results demonstrated the soundness and the reliability of the proposed system.
Optimisation des proprietes physiques d'un composite carbone epoxy fabrique par le procede RFI
NASA Astrophysics Data System (ADS)
Koanda, Mahamat Mamadou Lamine
The RFI (Resin Film Infusion) process is a composite materials manufacturing process. Especially known for the small investment it requires, RFI processes are more and more widely used in the aeronautical industry. However a number of aspects of this process are still not well controlled. The quality of the final part depends on which process is used. In the case of RFI, controlling physical characteristics such as thickness, fiber volume fraction or void content remains a major challenge. This dissertation deals with the optimization of the physical properties of a carbon composite manufactured with RFI processes. The ASTMD3171 and ASTMD792 standards were used to measure the void content and fiber volume fraction. First, we introduced different layup sequences in the RFI process and evaluate their impact on the physical properties of the final product. The experiments show the primary mode A, with the resin film at the bottom, resulting in much better quality with controlled fiber volume fraction and void content. Mode B (film in the symmetrical plane) yields results identical to mode A except more irregular thicknesses. Mode C (symmetrical film in the laminate) produces locally unacceptable void contents. Mode D (resin film on the top of the laminate) yields much better results than mode A with the exception of the more irregular thicknesses. Making gaps and overlaps with the resin film has negative effects beyond 2.54
Method and system for controlling a gasification or partial oxidation process
Rozelle, Peter L; Der, Victor K
2015-02-10
A method and system for controlling a fuel gasification system includes optimizing a conversion of solid components in the fuel to gaseous fuel components, controlling the flux of solids entrained in the product gas through equipment downstream of the gasifier, and maximizing the overall efficiencies of processes utilizing gasification. A combination of models, when utilized together, can be integrated with existing plant control systems and operating procedures and employed to develop new control systems and operating procedures. Such an approach is further applicable to gasification systems that utilize both dry feed and slurry feed.
JWST Wavefront Control Toolbox
NASA Technical Reports Server (NTRS)
Shin, Shahram Ron; Aronstein, David L.
2011-01-01
A Matlab-based toolbox has been developed for the wavefront control and optimization of segmented optical surfaces to correct for possible misalignments of James Webb Space Telescope (JWST) using influence functions. The toolbox employs both iterative and non-iterative methods to converge to an optimal solution by minimizing the cost function. The toolbox could be used in either of constrained and unconstrained optimizations. The control process involves 1 to 7 degrees-of-freedom perturbations per segment of primary mirror in addition to the 5 degrees of freedom of secondary mirror. The toolbox consists of a series of Matlab/Simulink functions and modules, developed based on a "wrapper" approach, that handles the interface and data flow between existing commercial optical modeling software packages such as Zemax and Code V. The limitations of the algorithm are dictated by the constraints of the moving parts in the mirrors.
Optimization of EB plant by constraint control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hummel, H.K.; de Wit, G.B.C.; Maarleveld, A.
1991-03-01
Optimum plant operation can often be achieved by means of constraint control instead of model- based on-line optimization. This is because optimum operation is seldom at the top of the hill but usually at the intersection of constraints. This article describes the development of a constraint control system for a plant producing ethylbenzene (EB) by the Mobil/Badger Ethylbenzene Process. Plant optimization can be defined as the maximization of a profit function describing the economics of the plant. This function contains terms with product values, feedstock prices and operational costs. Maximization of the profit function can be obtained by varying relevantmore » degrees of freedom in the plant, such as a column operating pressure or a reactor temperature. These degrees of freedom can be varied within the available operating margins of the plant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, L.; Britt, J.; Birkmire, R.
ITN Energy Systems, Inc., and Global Solar Energy, Inc., assisted by NREL's PV Manufacturing R&D program, have continued to advance CIGS production technology by developing trajectory-oriented predictive/control models, fault-tolerance control, control platform development, in-situ sensors, and process improvements. Modeling activities included developing physics-based and empirical models for CIGS and sputter-deposition processing, implementing model-based control, and applying predictive models to the construction of new evaporation sources and for control. Model-based control is enabled by implementing reduced or empirical models into a control platform. Reliability improvement activities include implementing preventive maintenance schedules; detecting failed sensors/equipment and reconfiguring to tinue processing; and systematicmore » development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which in turn have been enabled by control and reliability improvements due to this PV Manufacturing R&D program.« less
High-productivity DRIE solutions for 3D-SiP and MEMS volume manufacturing
NASA Astrophysics Data System (ADS)
Puech, M.; Thevenoud, J. M.; Launay, N.; Arnal, N.; Godinat, P.; Andrieu, B.; Gruffat, J. M.
2006-12-01
Emerging 3D-SiP technologies and high volume MEMS applications require high productivity mass production DRIE systems. The Alcatel DRIE product range has recently been optimized to reach the highest process and hardware production performances. A study based on sub-micron high aspect ratio structures encountered in the most stringent 3D-SiP has been carried out. The optimization of the Bosch process parameters have shown ultra high silicon etch rate, with unrivaled uniformity and repeatability leading to excellent process yields. In parallel, most recent hardware and proprietary design optimization including vacuum pumping lines, process chamber, wafer chucks, pressure control system, gas delivery are discussed. A key factor for achieving the highest performances was the recognized expertise of Alcatel vacuum and plasma science technologies. These improvements have been monitored in a mass production environment for a mobile phone application. Field data analysis shows a significant reduction of cost of ownership thanks to increased throughput and much lower running costs. These benefits are now available for all 3D-SiP and high volume MEMS applications. The typical etched patterns include tapered trenches for CMOS imagers, through silicon via holes for die stacking, well controlled profile angle for 3D high precision inertial sensors, and large exposed area features for inkjet printer head and Silicon microphones.
Veneri, Giacomo; Federico, Antonio; Rufa, Alessandra
2014-01-01
Attention allows us to selectively process the vast amount of information with which we are confronted, prioritizing some aspects of information and ignoring others by focusing on a certain location or aspect of the visual scene. Selective attention is guided by two cognitive mechanisms: saliency of the image (bottom up) and endogenous mechanisms (top down). These two mechanisms interact to direct attention and plan eye movements; then, the movement profile is sent to the motor system, which must constantly update the command needed to produce the desired eye movement. A new approach is described here to study how the eye motor control could influence this selection mechanism in clinical behavior: two groups of patients (SCA2 and late onset cerebellar ataxia LOCA) with well-known problems of motor control were studied; patients performed a cognitively demanding task; the results were compared to a stochastic model based on Monte Carlo simulations and a group of healthy subjects. The analytical procedure evaluated some energy functions for understanding the process. The implemented model suggested that patients performed an optimal visual search, reducing intrinsic noise sources. Our findings theorize a strict correlation between the "optimal motor system" and the "optimal stimulus encoders."
Autopilot for frequency-modulation atomic force microscopy.
Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri
2015-10-01
One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.
Autopilot for frequency-modulation atomic force microscopy
NASA Astrophysics Data System (ADS)
Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri
2015-10-01
One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.
Autopilot for frequency-modulation atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri, E-mail: phsivan@tx.technion.ac.il
2015-10-15
One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loopsmore » require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard
Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less
Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard; ...
2017-06-06
Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less
Optimized design of embedded DSP system hardware supporting complex algorithms
NASA Astrophysics Data System (ADS)
Li, Yanhua; Wang, Xiangjun; Zhou, Xinling
2003-09-01
The paper presents an optimized design method for a flexible and economical embedded DSP system that can implement complex processing algorithms as biometric recognition, real-time image processing, etc. It consists of a floating-point DSP, 512 Kbytes data RAM, 1 Mbytes FLASH program memory, a CPLD for achieving flexible logic control of input channel and a RS-485 transceiver for local network communication. Because of employing a high performance-price ratio DSP TMS320C6712 and a large FLASH in the design, this system permits loading and performing complex algorithms with little algorithm optimization and code reduction. The CPLD provides flexible logic control for the whole DSP board, especially in input channel, and allows convenient interface between different sensors and DSP system. The transceiver circuit can transfer data between DSP and host computer. In the paper, some key technologies are also introduced which make the whole system work efficiently. Because of the characters referred above, the hardware is a perfect flat for multi-channel data collection, image processing, and other signal processing with high performance and adaptability. The application section of this paper presents how this hardware is adapted for the biometric identification system with high identification precision. The result reveals that this hardware is easy to interface with a CMOS imager and is capable of carrying out complex biometric identification algorithms, which require real-time process.
Modeling and Analysis of Power Processing Systems (MAPPS). Volume 1: Technical report
NASA Technical Reports Server (NTRS)
Lee, F. C.; Rahman, S.; Carter, R. A.; Wu, C. H.; Yu, Y.; Chang, R.
1980-01-01
Computer aided design and analysis techniques were applied to power processing equipment. Topics covered include: (1) discrete time domain analysis of switching regulators for performance analysis; (2) design optimization of power converters using augmented Lagrangian penalty function technique; (3) investigation of current-injected multiloop controlled switching regulators; and (4) application of optimization for Navy VSTOL energy power system. The generation of the mathematical models and the development and application of computer aided design techniques to solve the different mathematical models are discussed. Recommendations are made for future work that would enhance the application of the computer aided design techniques for power processing systems.
Finite-Dimensional Representations for Controlled Diffusions with Delay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Federico, Salvatore, E-mail: salvatore.federico@unimi.it; Tankov, Peter, E-mail: tankov@math.univ-paris-diderot.fr
2015-02-15
We study stochastic delay differential equations (SDDE) where the coefficients depend on the moving averages of the state process. As a first contribution, we provide sufficient conditions under which the solution of the SDDE and a linear path functional of it admit a finite-dimensional Markovian representation. As a second contribution, we show how approximate finite-dimensional Markovian representations may be constructed when these conditions are not satisfied, and provide an estimate of the error corresponding to these approximations. These results are applied to optimal control and optimal stopping problems for stochastic systems with delay.
2017-01-01
Computational scientists have designed many useful algorithms by exploring a biological process or imitating natural evolution. These algorithms can be used to solve engineering optimization problems. Inspired by the change of matter state, we proposed a novel optimization algorithm called differential cloud particles evolution algorithm based on data-driven mechanism (CPDD). In the proposed algorithm, the optimization process is divided into two stages, namely, fluid stage and solid stage. The algorithm carries out the strategy of integrating global exploration with local exploitation in fluid stage. Furthermore, local exploitation is carried out mainly in solid stage. The quality of the solution and the efficiency of the search are influenced greatly by the control parameters. Therefore, the data-driven mechanism is designed for obtaining better control parameters to ensure good performance on numerical benchmark problems. In order to verify the effectiveness of CPDD, numerical experiments are carried out on all the CEC2014 contest benchmark functions. Finally, two application problems of artificial neural network are examined. The experimental results show that CPDD is competitive with respect to other eight state-of-the-art intelligent optimization algorithms. PMID:28761438
NASA Astrophysics Data System (ADS)
Li, Shaopo; Li, Jiading; Ding, Wenhua; Zhang, Hai
This paper reports on the experience with the production of 27/33 mm X80 heavy wall thicknesses, large OD (48") in Shouqin Steel Co., Ltd. (SQS). Considering the technology capability of the plate mill in SQS, a optimized rolling and cooling process was developed to achieve stable heavy gauge X80 mechanical properties. The importance of the slab reheating process and rolling schedule will be discussed in the paper. In addition, the per pass reductions logic used during recrystallized rough rolling, and special emphasis on the reduction of the final roughing pass prior to the intermediate holding resulting in a fine uniform prior austenite microstructure will be discussed. The optimized cooling process application after finish rolling guarantees the steady control of the final bainitic microstructure with optimum M/A phase for heavy gauge X80 plates. The plates produced by this process achieved good flatness and excellent mechanical properties. SQS has produced 10000 tons 27mm X80 for the Middle Asia C Line Project and 1000 tons 33mm X80 for the 3rd West-to-East Natural Gas Transmission Pipeline Project in 2013-2014. The products utilizing optimized rolling and cooling process showed extremely excellent low temperature toughness.
Modeling and Advanced Control for Sustainable Process ...
This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-inspired, multi-agent-based method. The sustainability and performance assessment of process operating points is carried out using the U.S. E.P.A.’s GREENSCOPE assessment tool that provides scores for the selected economic, material management, environmental and energy indicators. The indicator results supply information on whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous bioethanol fermentation process whose dynamics are characterized by steady-state multiplicity and oscillatory behavior. This book chapter contribution demonstrates the application of novel process control strategies for sustainability by increasing material management, energy efficiency, and pollution prevention, as needed for SHC Sustainable Uses of Wastes and Materials Management.
NASA Astrophysics Data System (ADS)
Cekli, Hakki Ergun; Nije, Jelle; Ypma, Alexander; Bastani, Vahid; Sonntag, Dag; Niesing, Henk; Zhang, Linmiao; Ullah, Zakir; Subramony, Venky; Somasundaram, Ravin; Susanto, William; Matsunobu, Masazumi; Johnson, Jeff; Tabery, Cyrus; Lin, Chenxi; Zou, Yi
2018-03-01
In addition to lithography process and equipment induced variations, processes like etching, annealing, film deposition and planarization exhibit variations, each having their own intrinsic characteristics and leaving an effect, a `fingerprint', on the wafers. With ever tighter requirements for CD and overlay, controlling these process induced variations is both increasingly important and increasingly challenging in advanced integrated circuit (IC) manufacturing. For example, the on-product overlay (OPO) requirement for future nodes is approaching <3nm, requiring the allowable budget for process induced variance to become extremely small. Process variance control is seen as an bottleneck to further shrink which drives the need for more sophisticated process control strategies. In this context we developed a novel `computational process control strategy' which provides the capability of proactive control of each individual wafer with aim to maximize the yield, without introducing a significant impact on metrology requirements, cycle time or productivity. The complexity of the wafer process is approached by characterizing the full wafer stack building a fingerprint library containing key patterning performance parameters like Overlay, Focus, etc. Historical wafer metrology is decomposed into dominant fingerprints using Principal Component Analysis. By associating observed fingerprints with their origin e.g. process steps, tools and variables, we can give an inline assessment of the strength and origin of the fingerprints on every wafer. Once the fingerprint library is established, a wafer specific fingerprint correction recipes can be determined based on its processing history. Data science techniques are used in real-time to ensure that the library is adaptive. To realize this concept, ASML TWINSCAN scanners play a vital role with their on-board full wafer detection and exposure correction capabilities. High density metrology data is created by the scanner for each wafer and on every layer during the lithography steps. This metrology data will be used to obtain the process fingerprints. Also, the per exposure and per wafer correction potential of the scanners will be utilized for improved patterning control. Additionally, the fingerprint library will provide early detection of excursions for inline root cause analysis and process optimization guidance.
Liu, Xiaoqian; Tong, Yan; Wang, Jinyu; Wang, Ruizhen; Zhang, Yanxia; Wang, Zhimin
2011-11-01
Fufang Kushen injection was selected as the model drug, to optimize its alcohol-purification process and understand the characteristics of particle sedimentation process, and to investigate the feasibility of using process analytical technology (PAT) on traditional Chinese medicine (TCM) manufacturing. Total alkaloids (calculated by matrine, oxymatrine, sophoridine and oxysophoridine) and macrozamin were selected as quality evaluation markers to optimize the process of Fufang Kushen injection purification with alcohol. Process parameters of particulate formed in the alcohol-purification, such as the number, density and sedimentation velocity, were also determined to define the sedimentation time and well understand the process. The purification process was optimized as that alcohol is added to the concentrated extract solution (drug material) to certain concentration for 2 times and deposited the alcohol-solution containing drug-material to sediment for some time, i.e. 60% alcohol deposited for 36 hours, filter and then 80% -90% alcohol deposited for 6 hours in turn. The content of total alkaloids was decreased a little during the depositing process. The average settling time of particles with the diameters of 10, 25 microm were 157.7, 25.2 h in the first alcohol-purified process, and 84.2, 13.5 h in the second alcohol-purified process, respectively. The optimized alcohol-purification process remains the marker compositions better and compared with the initial process, it's time saving and much economy. The manufacturing quality of TCM-injection can be controlled by process. PAT pattern must be designed under the well understanding of process of TCM production.
De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Facchini, Francesco; Mummolo, Giovanni; Ludovico, Antonio Domenico
2016-11-10
A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW) process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable) and the mechanical properties (output responses) of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls). The simulation model was based on the adoption of the Artificial Neural Networks (ANNs) characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration.
Optimal diabatic dynamics of Majorana-based quantum gates
NASA Astrophysics Data System (ADS)
Rahmani, Armin; Seradjeh, Babak; Franz, Marcel
2017-08-01
In topological quantum computing, unitary operations on qubits are performed by adiabatic braiding of non-Abelian quasiparticles, such as Majorana zero modes, and are protected from local environmental perturbations. In the adiabatic regime, with timescales set by the inverse gap of the system, the errors can be made arbitrarily small by performing the process more slowly. To enhance the performance of quantum information processing with Majorana zero modes, we apply the theory of optimal control to the diabatic dynamics of Majorana-based qubits. While we sacrifice complete topological protection, we impose constraints on the optimal protocol to take advantage of the nonlocal nature of topological information and increase the robustness of our gates. By using the Pontryagin's maximum principle, we show that robust equivalent gates to perfect adiabatic braiding can be implemented in finite times through optimal pulses. In our implementation, modifications to the device Hamiltonian are avoided. Focusing on thermally isolated systems, we study the effects of calibration errors and external white and 1 /f (pink) noise on Majorana-based gates. While a noise-induced antiadiabatic behavior, where a slower process creates more diabatic excitations, prohibits indefinite enhancement of the robustness of the adiabatic scheme, our fast optimal protocols exhibit remarkable stability to noise and have the potential to significantly enhance the practical performance of Majorana-based information processing.
Optimal dynamic voltage scaling for wireless sensor nodes with real-time constraints
NASA Astrophysics Data System (ADS)
Cassandras, Christos G.; Zhuang, Shixin
2005-11-01
Sensors are increasingly embedded in manufacturing systems and wirelessly networked to monitor and manage operations ranging from process and inventory control to tracking equipment and even post-manufacturing product monitoring. In building such sensor networks, a critical issue is the limited and hard to replenish energy in the devices involved. Dynamic voltage scaling is a technique that controls the operating voltage of a processor to provide desired performance while conserving energy and prolonging the overall network's lifetime. We consider such power-limited devices processing time-critical tasks which are non-preemptive, aperiodic and have uncertain arrival times. We treat voltage scaling as a dynamic optimization problem whose objective is to minimize energy consumption subject to hard or soft real-time execution constraints. In the case of hard constraints, we build on prior work (which engages a voltage scaling controller at task completion times) by developing an intra-task controller that acts at all arrival times of incoming tasks. We show that this optimization problem can be decomposed into two simpler ones whose solution leads to an algorithm that does not actually require solving any nonlinear programming problems. In the case of soft constraints, this decomposition must be partly relaxed, but it still leads to a scalable (linear in the number of tasks) algorithm. Simulation results are provided to illustrate performance improvements in systems with intra-task controllers compared to uncontrolled systems or those using inter-task control.
ERIC Educational Resources Information Center
Crossland, John
2015-01-01
Learning depends on the effective use of basic cognitive processes such as memory and attention, but for optimal learning, learners also need to have awareness of, and control over, these cognitive processes. The literal meaning of metacognition is cognition about cognition or, more informally, thinking about your thinking: a good starting point…
Alternatives for jet engine control
NASA Technical Reports Server (NTRS)
Sain, M. K.
1984-01-01
The technical progress of researches on alternatives for jet engine control is reported. Extensive numerical testing is included. It is indicated that optimal inputs contribute significantly to the process of calculating tensor approximations for nonlinear systems, and that the resulting approximations may be order-reduced in a systematic way.
Error field optimization in DIII-D using extremum seeking control
NASA Astrophysics Data System (ADS)
Lanctot, M. J.; Olofsson, K. E. J.; Capella, M.; Humphreys, D. A.; Eidietis, N.; Hanson, J. M.; Paz-Soldan, C.; Strait, E. J.; Walker, M. L.
2016-07-01
DIII-D experiments have demonstrated a new real-time approach to tokamak error field control based on maximizing the toroidal angular momentum. This approach uses extremum seeking control theory to optimize the error field in real time without inducing instabilities. Slowly-rotating n = 1 fields (the dither), generated by external coils, are used to perturb the angular momentum, monitored in real-time using a charge-exchange spectroscopy diagnostic. Simple signal processing of the rotation measurements extracts information about the rotation gradient with respect to the control coil currents. This information is used to converge the control coil currents to a point that maximizes the toroidal angular momentum. The technique is well-suited for multi-coil, multi-harmonic error field optimizations in disruption sensitive devices as it does not require triggering locked tearing modes or plasma current disruptions. Control simulations highlight the importance of the initial search direction on the rate of the convergence, and identify future algorithm upgrades that may allow more rapid convergence that projects to convergence times in ITER on the order of tens of seconds.
Optimal Real-time Dispatch for Integrated Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, Ryan Michael
This report describes the development and application of a dispatch optimization algorithm for integrated energy systems (IES) comprised of on-site cogeneration of heat and electricity, energy storage devices, and demand response opportunities. This work is intended to aid commercial and industrial sites in making use of modern computing power and optimization algorithms to make informed, near-optimal decisions under significant uncertainty and complex objective functions. The optimization algorithm uses a finite set of randomly generated future scenarios to approximate the true, stochastic future; constraints are included that prevent solutions to this approximate problem from deviating from solutions to the actual problem.more » The algorithm is then expressed as a mixed integer linear program, to which a powerful commercial solver is applied. A case study of United States Postal Service Processing and Distribution Centers (P&DC) in four cities and under three different electricity tariff structures is conducted to (1) determine the added value of optimal control to a cogeneration system over current, heuristic control strategies; (2) determine the value of limited electric load curtailment opportunities, with and without cogeneration; and (3) determine the trade-off between least-cost and least-carbon operations of a cogeneration system. Key results for the P&DC sites studied include (1) in locations where the average electricity and natural gas prices suggest a marginally profitable cogeneration system, optimal control can add up to 67% to the value of the cogeneration system; optimal control adds less value in locations where cogeneration is more clearly profitable; (2) optimal control under real-time pricing is (a) more complicated than under typical time-of-use tariffs and (b) at times necessary to make cogeneration economic at all; (3) limited electric load curtailment opportunities can be more valuable as a compliment to the cogeneration system than alone; and (4) most of the trade-off between least-cost and least-carbon IES is determined during the system design stage; for the IES system considered, there is little difference between least-cost control and least-carbon control.« less
Physics and control of wall turbulence for drag reduction.
Kim, John
2011-04-13
Turbulence physics responsible for high skin-friction drag in turbulent boundary layers is first reviewed. A self-sustaining process of near-wall turbulence structures is then discussed from the perspective of controlling this process for the purpose of skin-friction drag reduction. After recognizing that key parts of this self-sustaining process are linear, a linear systems approach to boundary-layer control is discussed. It is shown that singular-value decomposition analysis of the linear system allows us to examine different approaches to boundary-layer control without carrying out the expensive nonlinear simulations. Results from the linear analysis are consistent with those observed in full nonlinear simulations, thus demonstrating the validity of the linear analysis. Finally, fundamental performance limit expected of optimal control input is discussed.
NASA Astrophysics Data System (ADS)
Rosenberg, David E.
2015-04-01
State-of-the-art systems analysis techniques focus on efficiently finding optimal solutions. Yet an optimal solution is optimal only for the modeled issues and managers often seek near-optimal alternatives that address unmodeled objectives, preferences, limits, uncertainties, and other issues. Early on, Modeling to Generate Alternatives (MGA) formalized near-optimal as performance within a tolerable deviation from the optimal objective function value and identified a few maximally different alternatives that addressed some unmodeled issues. This paper presents new stratified, Monte-Carlo Markov Chain sampling and parallel coordinate plotting tools that generate and communicate the structure and extent of the near-optimal region to an optimization problem. Interactive plot controls allow users to explore region features of most interest. Controls also streamline the process to elicit unmodeled issues and update the model formulation in response to elicited issues. Use for an example, single-objective, linear water quality management problem at Echo Reservoir, Utah, identifies numerous and flexible practices to reduce the phosphorus load to the reservoir and maintain close-to-optimal performance. Flexibility is upheld by further interactive alternative generation, transforming the formulation into a multiobjective problem, and relaxing the tolerance parameter to expand the near-optimal region. Compared to MGA, the new blended tools generate more numerous alternatives faster, more fully show the near-optimal region, and help elicit a larger set of unmodeled issues.
Optimized collectives using a DMA on a parallel computer
Chen, Dong [Croton On Hudson, NY; Gabor, Dozsa [Ardsley, NY; Giampapa, Mark E [Irvington, NY; Heidelberger,; Phillip, [Cortlandt Manor, NY
2011-02-08
Optimizing collective operations using direct memory access controller on a parallel computer, in one aspect, may comprise establishing a byte counter associated with a direct memory access controller for each submessage in a message. The byte counter includes at least a base address of memory and a byte count associated with a submessage. A byte counter associated with a submessage is monitored to determine whether at least a block of data of the submessage has been received. The block of data has a predetermined size, for example, a number of bytes. The block is processed when the block has been fully received, for example, when the byte count indicates all bytes of the block have been received. The monitoring and processing may continue for all blocks in all submessages in the message.
Fan, Yuzhou; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam
2017-01-01
Chinese hamster ovary (CHO) cells have become the primary expression system for the production of complex recombinant proteins due to their long-term success in industrial scale production and generating appropriate protein N-glycans similar to that of humans. Control and optimization of protein N-glycosylation is crucial, as the structure of N-glycans can largely influence both biological and physicochemical properties of recombinant proteins. Protein N-glycosylation in CHO cell culture can be controlled and tuned by engineering medium, feed, culture process, as well as genetic elements of the cell. In this chapter, we will focus on how to carry out experiments for N-glycosylation modulation through medium and feed optimization. The workflow and typical methods involved in the experiment process will be presented.
Advanced overlay: sampling and modeling for optimized run-to-run control
NASA Astrophysics Data System (ADS)
Subramany, Lokesh; Chung, WoongJae; Samudrala, Pavan; Gao, Haiyong; Aung, Nyan; Gomez, Juan Manuel; Gutjahr, Karsten; Park, DongSuk; Snow, Patrick; Garcia-Medina, Miguel; Yap, Lipkong; Demirer, Onur Nihat; Pierson, Bill; Robinson, John C.
2016-03-01
In recent years overlay (OVL) control schemes have become more complicated in order to meet the ever shrinking margins of advanced technology nodes. As a result, this brings up new challenges to be addressed for effective run-to- run OVL control. This work addresses two of these challenges by new advanced analysis techniques: (1) sampling optimization for run-to-run control and (2) bias-variance tradeoff in modeling. The first challenge in a high order OVL control strategy is to optimize the number of measurements and the locations on the wafer, so that the "sample plan" of measurements provides high quality information about the OVL signature on the wafer with acceptable metrology throughput. We solve this tradeoff between accuracy and throughput by using a smart sampling scheme which utilizes various design-based and data-based metrics to increase model accuracy and reduce model uncertainty while avoiding wafer to wafer and within wafer measurement noise caused by metrology, scanner or process. This sort of sampling scheme, combined with an advanced field by field extrapolated modeling algorithm helps to maximize model stability and minimize on product overlay (OPO). Second, the use of higher order overlay models means more degrees of freedom, which enables increased capability to correct for complicated overlay signatures, but also increases sensitivity to process or metrology induced noise. This is also known as the bias-variance trade-off. A high order model that minimizes the bias between the modeled and raw overlay signature on a single wafer will also have a higher variation from wafer to wafer or lot to lot, that is unless an advanced modeling approach is used. In this paper, we characterize the bias-variance trade off to find the optimal scheme. The sampling and modeling solutions proposed in this study are validated by advanced process control (APC) simulations to estimate run-to-run performance, lot-to-lot and wafer-to- wafer model term monitoring to estimate stability and ultimately high volume manufacturing tests to monitor OPO by densely measured OVL data.
Multi-mode ultrasonic welding control and optimization
Tang, Jason C.H.; Cai, Wayne W
2013-05-28
A system and method for providing multi-mode control of an ultrasonic welding system. In one embodiment, the control modes include the energy of the weld, the time of the welding process and the compression displacement of the parts being welded during the welding process. The method includes providing thresholds for each of the modes, and terminating the welding process after the threshold for each mode has been reached, the threshold for more than one mode has been reached or the threshold for one of the modes has been reached. The welding control can be either open-loop or closed-loop, where the open-loop process provides the mode thresholds and once one or more of those thresholds is reached the welding process is terminated. The closed-loop control provides feedback of the weld energy and/or the compression displacement so that the weld power and/or weld pressure can be increased or decreased accordingly.
NASA Astrophysics Data System (ADS)
Yang, Nancy; Yee, J.; Zheng, B.; Gaiser, K.; Reynolds, T.; Clemon, L.; Lu, W. Y.; Schoenung, J. M.; Lavernia, E. J.
2017-04-01
We investigate the process-structure-property relationships for 316L stainless steel prototyping utilizing 3-D laser engineered net shaping (LENS), a commercial direct energy deposition additive manufacturing process. The study concluded that the resultant physical metallurgy of 3-D LENS 316L prototypes is dictated by the interactive metallurgical reactions, during instantaneous powder feeding/melting, molten metal flow and liquid metal solidification. The study also showed 3-D LENS manufacturing is capable of building high strength and ductile 316L prototypes due to its fine cellular spacing from fast solidification cooling, and the well-fused epitaxial interfaces at metal flow trails and interpass boundaries. However, without further LENS process control and optimization, the deposits are vulnerable to localized hardness variation attributed to heterogeneous microstructure, i.e., the interpass heat-affected zone (HAZ) from repetitive thermal heating during successive layer depositions. Most significantly, the current deposits exhibit anisotropic tensile behavior, i.e., lower strain and/or premature interpass delamination parallel to build direction (axial). This anisotropic behavior is attributed to the presence of interpass HAZ, which coexists with flying feedstock inclusions and porosity from incomplete molten metal fusion. The current observations and findings contribute to the scientific basis for future process control and optimization necessary for material property control and defect mitigation.
CD uniformity control for thick resist process
NASA Astrophysics Data System (ADS)
Huang, Chi-hao; Liu, Yu-Lin; Wang, Weihung; Yang, Mars; Yang, Elvis; Yang, T. H.; Chen, K. C.
2017-03-01
In order to meet the increasing storage capacity demand and reduce bit cost of NAND flash memories, 3D stacked flash cell array has been proposed. In constructing 3D NAND flash memories, the higher bit number per area is achieved by increasing the number of stacked layers. Thus the so-called "staircase" patterning to form electrical connection between memory cells and word lines has become one of the primarily critical processes in 3D memory manufacture. To provide controllable critical dimension (CD) with good uniformity involving thick photo-resist has also been of particular concern for staircase patterning. The CD uniformity control has been widely investigated with relatively thinner resist associated with resolution limit dimension but thick resist coupling with wider dimension. This study explores CD uniformity control associated with thick photo-resist processing. Several critical parameters including exposure focus, exposure dose, baking condition, pattern size and development recipe, were found to strongly correlate with the thick photo-resist profile accordingly affecting the CD uniformity control. To minimize the within-wafer CD variation, the slightly tapered resist profile is proposed through well tailoring the exposure focus and dose together with optimal development recipe. Great improvements on DCD (ADI CD) and ECD (AEI CD) uniformity as well as line edge roughness were achieved through the optimization of photo resist profile.
Optimal and adaptive methods of processing hydroacoustic signals (review)
NASA Astrophysics Data System (ADS)
Malyshkin, G. S.; Sidel'nikov, G. B.
2014-09-01
Different methods of optimal and adaptive processing of hydroacoustic signals for multipath propagation and scattering are considered. Advantages and drawbacks of the classical adaptive (Capon, MUSIC, and Johnson) algorithms and "fast" projection algorithms are analyzed for the case of multipath propagation and scattering of strong signals. The classical optimal approaches to detecting multipath signals are presented. A mechanism of controlled normalization of strong signals is proposed to automatically detect weak signals. The results of simulating the operation of different detection algorithms for a linear equidistant array under multipath propagation and scattering are presented. An automatic detector is analyzed, which is based on classical or fast projection algorithms, which estimates the background proceeding from median filtering or the method of bilateral spatial contrast.
NASA Astrophysics Data System (ADS)
Rudrapati, R.; Sahoo, P.; Bandyopadhyay, A.
2016-09-01
The main aim of the present work is to analyse the significance of turning parameters on surface roughness in computer numerically controlled (CNC) turning operation while machining of aluminium alloy material. Spindle speed, feed rate and depth of cut have been considered as machining parameters. Experimental runs have been conducted as per Box-Behnken design method. After experimentation, surface roughness is measured by using stylus profile meter. Factor effects have been studied through analysis of variance. Mathematical modelling has been done by response surface methodology, to made relationships between the input parameters and output response. Finally, process optimization has been made by teaching learning based optimization (TLBO) algorithm. Predicted turning condition has been validated through confirmatory experiment.
Coherent optimal control of photosynthetic molecules
NASA Astrophysics Data System (ADS)
Caruso, F.; Montangero, S.; Calarco, T.; Huelga, S. F.; Plenio, M. B.
2012-04-01
We demonstrate theoretically that open-loop quantum optimal control techniques can provide efficient tools for the verification of various quantum coherent transport mechanisms in natural and artificial light-harvesting complexes under realistic experimental conditions. To assess the feasibility of possible biocontrol experiments, we introduce the main settings and derive optimally shaped and robust laser pulses that allow for the faithful preparation of specified initial states (such as localized excitation or coherent superposition, i.e., propagating and nonpropagating states) of the photosystem and probe efficiently the subsequent dynamics. With these tools, different transport pathways can be discriminated, which should facilitate the elucidation of genuine quantum dynamical features of photosystems and therefore enhance our understanding of the role that coherent processes may play in actual biological complexes.
A computer network with scada and case tools for on-line process control in greenhouses
NASA Astrophysics Data System (ADS)
Gieling, Th. H.; van Meurs, W. Th. M.; Janssen, H. J. J.
Climate control computers in greenhouses are used to control heating and ventilation, supply water and dilute and dispense nutrients. They integrate models into optimally controlled systems. This paper describes how information technology, as in use in other sectors of industry, is applied to greenhouse control. The introduction of modern software and hardware concepts in horticulture adds power and extra opportunities to climate control in greenhouses.
Error field optimization in DIII-D using extremum seeking control
Lanctot, M. J.; Olofsson, K. E. J.; Capella, M.; ...
2016-06-03
A closed-loop error field control algorithm is implemented in the Plasma Control System of the DIII-D tokamak and used to identify optimal control currents during a single plasma discharge. The algorithm, based on established extremum seeking control theory, exploits the link in tokamaks between maximizing the toroidal angular momentum and minimizing deleterious non-axisymmetric magnetic fields. Slowly-rotating n = 1 fields (the dither), generated by external coils, are used to perturb the angular momentum, monitored in real-time using a charge-exchange spectroscopy diagnostic. Simple signal processing of the rotation measurements extracts information about the rotation gradient with respect to the control coilmore » currents. This information is used to converge the control coil currents to a point that maximizes the toroidal angular momentum. The technique is well-suited for multi-coil, multi-harmonic error field optimizations in disruption sensitive devices as it does not require triggering locked tearing modes or plasma current disruptions. Control simulations highlight the importance of the initial search direction on the rate of the convergence, and identify future algorithm upgrades that may allow more rapid convergence that projects to convergence times in ITER on the order of tens of seconds.« less
Electron Beam Melting and Refining of Metals: Computational Modeling and Optimization
Vutova, Katia; Donchev, Veliko
2013-01-01
Computational modeling offers an opportunity for a better understanding and investigation of thermal transfer mechanisms. It can be used for the optimization of the electron beam melting process and for obtaining new materials with improved characteristics that have many applications in the power industry, medicine, instrument engineering, electronics, etc. A time-dependent 3D axis-symmetrical heat model for simulation of thermal transfer in metal ingots solidified in a water-cooled crucible at electron beam melting and refining (EBMR) is developed. The model predicts the change in the temperature field in the casting ingot during the interaction of the beam with the material. A modified Pismen-Rekford numerical scheme to discretize the analytical model is developed. These equation systems, describing the thermal processes and main characteristics of the developed numerical method, are presented. In order to optimize the technological regimes, different criteria for better refinement and obtaining dendrite crystal structures are proposed. Analytical problems of mathematical optimization are formulated, discretized and heuristically solved by cluster methods. Using important for the practice simulation results, suggestions can be made for EBMR technology optimization. The proposed tool is important and useful for studying, control, optimization of EBMR process parameters and improving of the quality of the newly produced materials. PMID:28788351
Optimal control theory investigation of proprotor/wing response to vertical gust
NASA Technical Reports Server (NTRS)
Frick, J. K. D.; Johnson, W.
1974-01-01
Optimal control theory is used to design linear state variable feedback to improve the dynamic characteristics of a rotor and cantilever wing representing the tilting proprotor aircraft in cruise flight. The response to a vertical gust and system damping are used as criteria for the open and closed loop performance. The improvement in the dynamic characteristics achievable is examined for a gimballed rotor and for a hingeless rotor design. Several features of the design process are examined, including: (1) using only the wing or only the rotor dynamics in the control system design; (2) the use of a wing flap as well as the rotor controls for inputs; (3) and the performance of the system designed for one velocity at other forward speeds.
NASA Astrophysics Data System (ADS)
Gleason, J. L.; Hillyer, T. N.
2011-12-01
Clouds and the Earth's Radiant Energy System (CERES) is one of NASA's highest priority Earth Observing System (EOS) scientific instruments. The CERES science team will integrate data from the CERES Flight Model 5 (FM5) on the NPOESS Preparatory Project (NPP) in addition to the four CERES scanning instrument on Terra and Aqua. The CERES production system consists of over 75 Product Generation Executives (PGEs) maintained by twelve subsystem groups. The processing chain fuses CERES instrument observations with data from 19 other unique sources. The addition of FM5 to over 22 instrument years of data to be reprocessed from flight models 1-4 creates a need for an optimized production processing approach. This poster discusses a new approach, using JBoss and Perl to manage job scheduling and interdependencies between PGEs and external data sources. The new optimized approach uses JBoss to serve handler servlets which regulate PGE-level job interdependencies and job completion notifications. Additional servlets are used to regulate all job submissions from the handlers and to interact with the operator. Perl submission scripts are used to build Process Control Files and to interact directly with the operating system and cluster scheduler. The result is a reduced burden on the operator by algorithmically enforcing a set of rules that determine the optimal time to produce data products with the highest integrity. These rules are designed on a per PGE basis and periodically change. This design provides the means to dynamically update PGE rules at run time and increases the processing throughput by using an event driven controller. The immediate notification of a PGE's completion (an event) allows successor PGEs to launch at the proper time with minimal start up latency, thereby increasing computer system utilization.
Performance and evaluation of real-time multicomputer control systems
NASA Technical Reports Server (NTRS)
Shin, K. G.
1983-01-01
New performance measures, detailed examples, modeling of error detection process, performance evaluation of rollback recovery methods, experiments on FTMP, and optimal size of an NMR cluster are discussed.
A Framework for WWW Query Processing
NASA Technical Reports Server (NTRS)
Wu, Binghui Helen; Wharton, Stephen (Technical Monitor)
2000-01-01
Query processing is the most common operation in a DBMS. Sophisticated query processing has been mainly targeted at a single enterprise environment providing centralized control over data and metadata. Submitting queries by anonymous users on the web is different in such a way that load balancing or DBMS' accessing control becomes the key issue. This paper provides a solution by introducing a framework for WWW query processing. The success of this framework lies in the utilization of query optimization techniques and the ontological approach. This methodology has proved to be cost effective at the NASA Goddard Space Flight Center Distributed Active Archive Center (GDAAC).
NASA Technical Reports Server (NTRS)
1975-01-01
NASA structural analysis (NASTRAN) computer program is operational on three series of third generation computers. The problem and difficulties involved in adapting NASTRAN to a fourth generation computer, namely, the Control Data STAR-100, are discussed. The salient features which distinguish Control Data STAR-100 from third generation computers are hardware vector processing capability and virtual memory. A feasible method is presented for transferring NASTRAN to Control Data STAR-100 system while retaining much of the machine-independent code. Basic matrix operations are noted for optimization for vector processing.
Optimizing Web-Based Instruction: A Case Study Using Poultry Processing Unit Operations
ERIC Educational Resources Information Center
O' Bryan, Corliss A.; Crandall, Philip G.; Shores-Ellis, Katrina; Johnson, Donald M.; Ricke, Steven C.; Marcy, John
2009-01-01
Food companies and supporting industries need inexpensive, revisable training methods for large numbers of hourly employees due to continuing improvements in Hazard Analysis Critical Control Point (HACCP) programs, new processing equipment, and high employee turnover. HACCP-based food safety programs have demonstrated their value by reducing the…
40 CFR 420.16 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... percent of the above limitations, shall be provided for process wastewaters from coke oven gas wet... from coal charging and coke pushing emission controls), coal tar processing operations and coke plant... optimization of coke plant biological treatment systems. (b) Cokemaking—non-recovery. Except as provided in 40...
40 CFR 420.16 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... percent of the above limitations, shall be provided for process wastewaters from coke oven gas wet... from coal charging and coke pushing emission controls), coal tar processing operations and coke plant... optimization of coke plant biological treatment systems. (b) Cokemaking—non-recovery. Except as provided in 40...
40 CFR 420.16 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... percent of the above limitations, shall be provided for process wastewaters from coke oven gas wet... from coal charging and coke pushing emission controls), coal tar processing operations and coke plant... optimization of coke plant biological treatment systems. (b) Cokemaking—non-recovery. Except as provided in 40...
40 CFR 420.16 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... percent of the above limitations, shall be provided for process wastewaters from coke oven gas wet... from coal charging and coke pushing emission controls), coal tar processing operations and coke plant... optimization of coke plant biological treatment systems. (b) Cokemaking—non-recovery. Except as provided in 40...
40 CFR 420.16 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... percent of the above limitations, shall be provided for process wastewaters from coke oven gas wet... from coal charging and coke pushing emission controls), coal tar processing operations and coke plant... optimization of coke plant biological treatment systems. (b) Cokemaking—non-recovery. Except as provided in 40...
Optimal growth trajectories with finite carrying capacity.
Caravelli, F; Sindoni, L; Caccioli, F; Ududec, C
2016-08-01
We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.
The optimization of total laboratory automation by simulation of a pull-strategy.
Yang, Taho; Wang, Teng-Kuan; Li, Vincent C; Su, Chia-Lo
2015-01-01
Laboratory results are essential for physicians to diagnose medical conditions. Because of the critical role of medical laboratories, an increasing number of hospitals use total laboratory automation (TLA) to improve laboratory performance. Although the benefits of TLA are well documented, systems occasionally become congested, particularly when hospitals face peak demand. This study optimizes TLA operations. Firstly, value stream mapping (VSM) is used to identify the non-value-added time. Subsequently, batch processing control and parallel scheduling rules are devised and a pull mechanism that comprises a constant work-in-process (CONWIP) is proposed. Simulation optimization is then used to optimize the design parameters and to ensure a small inventory and a shorter average cycle time (CT). For empirical illustration, this approach is applied to a real case. The proposed methodology significantly improves the efficiency of laboratory work and leads to a reduction in patient waiting times and increased service level.
Optimal growth trajectories with finite carrying capacity
NASA Astrophysics Data System (ADS)
Caravelli, F.; Sindoni, L.; Caccioli, F.; Ududec, C.
2016-08-01
We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.
Workflow management in large distributed systems
NASA Astrophysics Data System (ADS)
Legrand, I.; Newman, H.; Voicu, R.; Dobre, C.; Grigoras, C.
2011-12-01
The MonALISA (Monitoring Agents using a Large Integrated Services Architecture) framework provides a distributed service system capable of controlling and optimizing large-scale, data-intensive applications. An essential part of managing large-scale, distributed data-processing facilities is a monitoring system for computing facilities, storage, networks, and the very large number of applications running on these systems in near realtime. All this monitoring information gathered for all the subsystems is essential for developing the required higher-level services—the components that provide decision support and some degree of automated decisions—and for maintaining and optimizing workflow in large-scale distributed systems. These management and global optimization functions are performed by higher-level agent-based services. We present several applications of MonALISA's higher-level services including optimized dynamic routing, control, data-transfer scheduling, distributed job scheduling, dynamic allocation of storage resource to running jobs and automated management of remote services among a large set of grid facilities.
NASA Astrophysics Data System (ADS)
Yang, Chunhui; Su, Zhixiong; Wang, Xin; Liu, Yang; Qi, Yongwei
2017-03-01
The new normalization of the economic situation and the implementation of a new round of electric power system reform put forward higher requirements to the daily operation of power grid companies. As an important day-to-day operation of power grid companies, investment management is directly related to the promotion of the company's operating efficiency and management level. In this context, the establishment of power grid company investment management optimization system will help to improve the level of investment management and control the company, which is of great significance for power gird companies to adapt to market environment changing as soon as possible and meet the policy environment requirements. Therefore, the purpose of this paper is to construct the investment management optimization system of power grid companies, which includes investment management system, investment process control system, investment structure optimization system, and investment project evaluation system and investment management information platform support system.
Layout design-based research on optimization and assessment method for shipbuilding workshop
NASA Astrophysics Data System (ADS)
Liu, Yang; Meng, Mei; Liu, Shuang
2013-06-01
The research study proposes to examine a three-dimensional visualization program, emphasizing on improving genetic algorithms through the optimization of a layout design-based standard and discrete shipbuilding workshop. By utilizing a steel processing workshop as an example, the principle of minimum logistic costs will be implemented to obtain an ideological equipment layout, and a mathematical model. The objectiveness is to minimize the total necessary distance traveled between machines. An improved control operator is implemented to improve the iterative efficiency of the genetic algorithm, and yield relevant parameters. The Computer Aided Tri-Dimensional Interface Application (CATIA) software is applied to establish the manufacturing resource base and parametric model of the steel processing workshop. Based on the results of optimized planar logistics, a visual parametric model of the steel processing workshop is constructed, and qualitative and quantitative adjustments then are applied to the model. The method for evaluating the results of the layout is subsequently established through the utilization of AHP. In order to provide a mode of reference to the optimization and layout of the digitalized production workshop, the optimized discrete production workshop will possess a certain level of practical significance.
Yang, Jian; Liu, Chuangui; Wang, Boqian; Ding, Xianting
2017-10-13
Superhydrophobic surface, as a promising micro/nano material, has tremendous applications in biological and artificial investigations. The electrohydrodynamics (EHD) technique is a versatile and effective method for fabricating micro- to nanoscale fibers and particles from a variety of materials. A combination of critical parameters, such as mass fraction, ratio of N, N-Dimethylformamide (DMF) to Tetrahydrofuran (THF), inner diameter of needle, feed rate, receiving distance, applied voltage as well as temperature, during electrospinning process, to determine the morphology of the electrospun membranes, which in turn determines the superhydrophobic property of the membrane. In this study, we applied a recently developed feedback system control (FSC) scheme for rapid identification of the optimal combination of these controllable parameters to fabricate superhydrophobic surface by one-step electrospinning method without any further modification. Within five rounds of experiments by testing totally forty-six data points, FSC scheme successfully identified an optimal parameter combination that generated electrospun membranes with a static water contact angle of 160 degrees or larger. Scanning electron microscope (SEM) imaging indicates that the FSC optimized surface attains unique morphology. The optimized setup introduced here therefore serves as a one-step, straightforward, and economic approach to fabricate superhydrophobic surface with electrospinning approach.
Integrated control-structure design
NASA Technical Reports Server (NTRS)
Hunziker, K. Scott; Kraft, Raymond H.; Bossi, Joseph A.
1991-01-01
A new approach for the design and control of flexible space structures is described. The approach integrates the structure and controller design processes thereby providing extra opportunities for avoiding some of the disastrous effects of control-structures interaction and for discovering new, unexpected avenues of future structural design. A control formulation based on Boyd's implementation of Youla parameterization is employed. Control design parameters are coupled with structural design variables to produce a set of integrated-design variables which are selected through optimization-based methodology. A performance index reflecting spacecraft mission goals and constraints is formulated and optimized with respect to the integrated design variables. Initial studies have been concerned with achieving mission requirements with a lighter, more flexible space structure. Details of the formulation of the integrated-design approach are presented and results are given from a study involving the integrated redesign of a flexible geostationary platform.
Robust Control Design for Systems With Probabilistic Uncertainty
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.
2005-01-01
This paper presents a reliability- and robustness-based formulation for robust control synthesis for systems with probabilistic uncertainty. In a reliability-based formulation, the probability of violating design requirements prescribed by inequality constraints is minimized. In a robustness-based formulation, a metric which measures the tendency of a random variable/process to cluster close to a target scalar/function is minimized. A multi-objective optimization procedure, which combines stability and performance requirements in time and frequency domains, is used to search for robustly optimal compensators. Some of the fundamental differences between the proposed strategy and conventional robust control methods are: (i) unnecessary conservatism is eliminated since there is not need for convex supports, (ii) the most likely plants are favored during synthesis allowing for probabilistic robust optimality, (iii) the tradeoff between robust stability and robust performance can be explored numerically, (iv) the uncertainty set is closely related to parameters with clear physical meaning, and (v) compensators with improved robust characteristics for a given control structure can be synthesized.
High-fidelity spin entanglement using optimal control.
Dolde, Florian; Bergholm, Ville; Wang, Ya; Jakobi, Ingmar; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Neumann, Philipp; Schulte-Herbrüggen, Thomas; Biamonte, Jacob; Wrachtrup, Jörg
2014-02-28
Precise control of quantum systems is of fundamental importance in quantum information processing, quantum metrology and high-resolution spectroscopy. When scaling up quantum registers, several challenges arise: individual addressing of qubits while suppressing cross-talk, entangling distant nodes and decoupling unwanted interactions. Here we experimentally demonstrate optimal control of a prototype spin qubit system consisting of two proximal nitrogen-vacancy centres in diamond. Using engineered microwave pulses, we demonstrate single electron spin operations with a fidelity F≈0.99. With additional dynamical decoupling techniques, we further realize high-quality, on-demand entangled states between two electron spins with F>0.82, mostly limited by the coherence time and imperfect initialization. Crosstalk in a crowded spectrum and unwanted dipolar couplings are simultaneously eliminated to a high extent. Finally, by high-fidelity entanglement swapping to nuclear spin quantum memory, we demonstrate nuclear spin entanglement over a length scale of 25 nm. This experiment underlines the importance of optimal control for scalable room temperature spin-based quantum information devices.
Chou, Ann F; Yano, Elizabeth M; McCoy, Kimberly D; Willis, Deanna R; Doebbeling, Bradley N
2008-01-01
To address increases in the incidence of infection with antimicrobial-resistant pathogens, the National Foundation for Infectious Diseases and Centers for Disease Control and Prevention proposed two sets of strategies to (a) optimize antibiotic use and (b) prevent the spread of antimicrobial resistance and control transmission. However, little is known about the implementation of these strategies. Our objective is to explore organizational structural and process factors that facilitate the implementation of National Foundation for Infectious Diseases/Centers for Disease Control and Prevention strategies in U.S. hospitals. We surveyed 448 infection control professionals from a national sample of hospitals. Clinically anchored in the Donabedian model that defines quality in terms of structural and process factors, with the structural domain further informed by a contingency approach, we modeled the degree to which National Foundation for Infectious Diseases and Centers for Disease Control and Prevention strategies were implemented as a function of formalization and standardization of protocols, centralization of decision-making hierarchy, information technology capabilities, culture, communication mechanisms, and interdepartmental coordination, controlling for hospital characteristics. Formalization, standardization, centralization, institutional culture, provider-management communication, and information technology use were associated with optimal antibiotic use and enhanced implementation of strategies that prevent and control antimicrobial resistance spread (all p < .001). However, interdepartmental coordination for patient care was inversely related with antibiotic use in contrast to antimicrobial resistance spread prevention and control (p < .0001). Formalization and standardization may eliminate staff role conflict, whereas centralized authority may minimize ambiguity. Culture and communication likely promote internal trust, whereas information technology use helps integrate and support these organizational processes. These findings suggest concrete strategies for evaluating current capabilities to implement effective practices and foster and sustain a culture of patient safety.
Belavkin filter for mixture of quadrature and photon counting process with some control techniques
NASA Astrophysics Data System (ADS)
Garg, Naman; Parthasarathy, Harish; Upadhyay, D. K.
2018-03-01
The Belavkin filter for the H-P Schrödinger equation is derived when the measurement process consists of a mixture of quantum Brownian motions and conservation/Poisson process. Higher-order powers of the measurement noise differentials appear in the Belavkin dynamics. For simulation, we use a second-order truncation. Control of the Belavkin filtered state by infinitesimal unitary operators is achieved in order to reduce the noise effects in the Belavkin filter equation. This is carried out along the lines of Luc Bouten. Various optimization criteria for control are described like state tracking and Lindblad noise removal.
Model based adaptive control of a continuous capture process for monoclonal antibodies production.
Steinebach, Fabian; Angarita, Monica; Karst, Daniel J; Müller-Späth, Thomas; Morbidelli, Massimo
2016-04-29
A two-column capture process for continuous processing of cell-culture supernatant is presented. Similar to other multicolumn processes, this process uses sequential countercurrent loading of the target compound in order maximize resin utilization and productivity for a given product yield. The process was designed using a novel mechanistic model for affinity capture, which takes both specific adsorption as well as transport through the resin beads into account. Simulations as well as experimental results for the capture of an IgG antibody are discussed. The model was able to predict the process performance in terms of yield, productivity and capacity utilization. Compared to continuous capture with two columns operated batch wise in parallel, a 2.5-fold higher capacity utilization was obtained for the same productivity and yield. This results in an equal improvement in product concentration and reduction of buffer consumption. The developed model was used not only for the process design and optimization but also for its online control. In particular, the unit operating conditions are changed in order to maintain high product yield while optimizing the process performance in terms of capacity utilization and buffer consumption also in the presence of changing upstream conditions and resin aging. Copyright © 2016 Elsevier B.V. All rights reserved.
Conceptual design and multidisciplinary optimization of in-plane morphing wing structures
NASA Astrophysics Data System (ADS)
Inoyama, Daisaku; Sanders, Brian P.; Joo, James J.
2006-03-01
In this paper, the topology optimization methodology for the synthesis of distributed actuation system with specific applications to the morphing air vehicle is discussed. The main emphasis is placed on the topology optimization problem formulations and the development of computational modeling concepts. For demonstration purposes, the inplane morphing wing model is presented. The analysis model is developed to meet several important criteria: It must allow large rigid-body displacements, as well as variation in planform area, with minimum strain on structural members while retaining acceptable numerical stability for finite element analysis. Preliminary work has indicated that addressed modeling concept meets the criteria and may be suitable for the purpose. Topology optimization is performed on the ground structure based on this modeling concept with design variables that control the system configuration. In other words, states of each element in the model are design variables and they are to be determined through optimization process. In effect, the optimization process assigns morphing members as 'soft' elements, non-morphing load-bearing members as 'stiff' elements, and non-existent members as 'voids.' In addition, the optimization process determines the location and relative force intensities of distributed actuators, which is represented computationally as equal and opposite nodal forces with soft axial stiffness. Several different optimization problem formulations are investigated to understand their potential benefits in solution quality, as well as meaningfulness of formulation itself. Sample in-plane morphing problems are solved to demonstrate the potential capability of the methodology introduced in this paper.
NASA Astrophysics Data System (ADS)
Maringanti, Chetan; Chaubey, Indrajeet; Popp, Jennie
2009-06-01
Best management practices (BMPs) are effective in reducing the transport of agricultural nonpoint source pollutants to receiving water bodies. However, selection of BMPs for placement in a watershed requires optimization of the available resources to obtain maximum possible pollution reduction. In this study, an optimization methodology is developed to select and place BMPs in a watershed to provide solutions that are both economically and ecologically effective. This novel approach develops and utilizes a BMP tool, a database that stores the pollution reduction and cost information of different BMPs under consideration. The BMP tool replaces the dynamic linkage of the distributed parameter watershed model during optimization and therefore reduces the computation time considerably. Total pollutant load from the watershed, and net cost increase from the baseline, were the two objective functions minimized during the optimization process. The optimization model, consisting of a multiobjective genetic algorithm (NSGA-II) in combination with a watershed simulation tool (Soil Water and Assessment Tool (SWAT)), was developed and tested for nonpoint source pollution control in the L'Anguille River watershed located in eastern Arkansas. The optimized solutions provided a trade-off between the two objective functions for sediment, phosphorus, and nitrogen reduction. The results indicated that buffer strips were very effective in controlling the nonpoint source pollutants from leaving the croplands. The optimized BMP plans resulted in potential reductions of 33%, 32%, and 13% in sediment, phosphorus, and nitrogen loads, respectively, from the watershed.
Shimansky, Y P
2011-05-01
It is well known from numerous studies that perception can be significantly affected by intended action in many everyday situations, indicating that perception and related decision-making is not a simple, one-way sequence, but a complex iterative cognitive process. However, the underlying functional mechanisms are yet unclear. Based on an optimality approach, a quantitative computational model of one such mechanism has been developed in this study. It is assumed in the model that significant uncertainty about task-related parameters of the environment results in parameter estimation errors and an optimal control system should minimize the cost of such errors in terms of the optimality criterion. It is demonstrated that, if the cost of a parameter estimation error is significantly asymmetrical with respect to error direction, the tendency to minimize error cost creates a systematic deviation of the optimal parameter estimate from its maximum likelihood value. Consequently, optimization of parameter estimate and optimization of control action cannot be performed separately from each other under parameter uncertainty combined with asymmetry of estimation error cost, thus making the certainty equivalence principle non-applicable under those conditions. A hypothesis that not only the action, but also perception itself is biased by the above deviation of parameter estimate is supported by ample experimental evidence. The results provide important insights into the cognitive mechanisms of interaction between sensory perception and planning an action under realistic conditions. Implications for understanding related functional mechanisms of optimal control in the CNS are discussed.
Manufacturing engineering: Principles for optimization
NASA Astrophysics Data System (ADS)
Koenig, Daniel T.
Various subjects in the area of manufacturing engineering are addressed. The topics considered include: manufacturing engineering organization concepts and management techniques, factory capacity and loading techniques, capital equipment programs, machine tool and equipment selection and implementation, producibility engineering, methods, planning and work management, and process control engineering in job shops. Also discussed are: maintenance engineering, numerical control of machine tools, fundamentals of computer-aided design/computer-aided manufacture, computer-aided process planning and data collection, group technology basis for plant layout, environmental control and safety, and the Integrated Productivity Improvement Program.
Process Modeling and Dynamic Simulation for EAST Helium Refrigerator
NASA Astrophysics Data System (ADS)
Lu, Xiaofei; Fu, Peng; Zhuang, Ming; Qiu, Lilong; Hu, Liangbing
2016-06-01
In this paper, the process modeling and dynamic simulation for the EAST helium refrigerator has been completed. The cryogenic process model is described and the main components are customized in detail. The process model is controlled by the PLC simulator, and the realtime communication between the process model and the controllers is achieved by a customized interface. Validation of the process model has been confirmed based on EAST experimental data during the cool down process of 300-80 K. Simulation results indicate that this process simulator is able to reproduce dynamic behaviors of the EAST helium refrigerator very well for the operation of long pulsed plasma discharge. The cryogenic process simulator based on control architecture is available for operation optimization and control design of EAST cryogenic systems to cope with the long pulsed heat loads in the future. supported by National Natural Science Foundation of China (No. 51306195) and Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, CAS (No. CRYO201408)
Gaythorpe, Katy; Adams, Ben
2016-05-21
Epidemics of water-borne infections often follow natural disasters and extreme weather events that disrupt water management processes. The impact of such epidemics may be reduced by deployment of transmission control facilities such as clinics or decontamination plants. Here we use a relatively simple mathematical model to examine how demographic and environmental heterogeneities, population behaviour, and behavioural change in response to the provision of facilities, combine to determine the optimal configurations of limited numbers of facilities to reduce epidemic size, and endemic prevalence. We show that, if the presence of control facilities does not affect behaviour, a good general rule for responsive deployment to minimise epidemic size is to place them in exactly the locations where they will directly benefit the most people. However, if infected people change their behaviour to seek out treatment then the deployment of facilities offering treatment can lead to complex effects that are difficult to foresee. So careful mathematical analysis is the only way to get a handle on the optimal deployment. Behavioural changes in response to control facilities can also lead to critical facility numbers at which there is a radical change in the optimal configuration. So sequential improvement of a control strategy by adding facilities to an existing optimal configuration does not always produce another optimal configuration. We also show that the pre-emptive deployment of control facilities has conflicting effects. The configurations that minimise endemic prevalence are very different to those that minimise epidemic size. So cost-benefit analysis of strategies to manage endemic prevalence must factor in the frequency of extreme weather events and natural disasters. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Z. W., E-mail: zhuzhiwen@tju.edu.cn; Tianjin Key Laboratory of Non-linear Dynamics and Chaos Control, 300072, Tianjin; Zhang, W. D., E-mail: zhangwenditju@126.com
2014-03-15
The non-linear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF) subjected to in-plane stochastic excitation were studied. Non-linear differential items were introduced to interpret the hysteretic phenomena of the GMF, and the non-linear dynamic model of the GMF subjected to in-plane stochastic excitation was developed. The stochastic stability was analysed, and the probability density function was obtained. The condition of stochastic Hopf bifurcation and noise-induced chaotic response were determined, and the fractal boundary of the system's safe basin was provided. The reliability function was solved from the backward Kolmogorov equation, and an optimal control strategy was proposedmore » in the stochastic dynamic programming method. Numerical simulation shows that the system stability varies with the parameters, and stochastic Hopf bifurcation and chaos appear in the process; the area of the safe basin decreases when the noise intensifies, and the boundary of the safe basin becomes fractal; the system reliability improved through stochastic optimal control. Finally, the theoretical and numerical results were proved by experiments. The results are helpful in the engineering applications of GMF.« less
Coherent control of alkali cluster fragmentation dynamics
NASA Astrophysics Data System (ADS)
Lindinger, Albrecht; Lupulescu, Cosmin; Bartelt, Andreas; Vajda, Štefan; Wöste, Ludger
2003-06-01
Metal clusters exhibit extraordinary chemical and catalytic properties, which sensitively depend upon their size. This behavior makes them interesting candidates for the real-time analysis of ultrafast photo-induced processes—ultimately leading to coherent control scenarii. We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters, like its phase, amplitude and duration; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photochemical process. We present first the vibrational dynamics of bound, dissociated, and pre-dissociated electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced fragmentation experiments on bifurcating reaction channels were carried out. In these experiments different branching ionization and fragmentation pathways of electronically excited Na 2K were investigated. By employing an evolutionary algorithm for optimizing the phase and amplitude of the applied laser field, the yield of the resulting parent or fragment ions could significantly be influenced and interesting features could be concluded from the obtained optimum pulse shapes revealing the characteristic molecular oscillation period. Moreover, the influence on the optimal pulse shape due to fragmentation from larger clusters into NaK is obtained. The substructure of the optimal pulse shape thereby offers new insight into the fragmentation channel during the control process. Characteristic motions of the involved wave packets are proposed, in order to explain the optimized dynamic dissociation pathways.
Process simulation for advanced composites production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allendorf, M.D.; Ferko, S.M.; Griffiths, S.
1997-04-01
The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coatingmore » techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.« less
Two-phase strategy of controlling motor coordination determined by task performance optimality.
Shimansky, Yury P; Rand, Miya K
2013-02-01
A quantitative model of optimal coordination between hand transport and grip aperture has been derived in our previous studies of reach-to-grasp movements without utilizing explicit knowledge of the optimality criterion or motor plant dynamics. The model's utility for experimental data analysis has been demonstrated. Here we show how to generalize this model for a broad class of reaching-type, goal-directed movements. The model allows for measuring the variability of motor coordination and studying its dependence on movement phase. The experimentally found characteristics of that dependence imply that execution noise is low and does not affect motor coordination significantly. From those characteristics it is inferred that the cost of neural computations required for information acquisition and processing is included in the criterion of task performance optimality as a function of precision demand for state estimation and decision making. The precision demand is an additional optimized control variable that regulates the amount of neurocomputational resources activated dynamically. It is shown that an optimal control strategy in this case comprises two different phases. During the initial phase, the cost of neural computations is significantly reduced at the expense of reducing the demand for their precision, which results in speed-accuracy tradeoff violation and significant inter-trial variability of motor coordination. During the final phase, neural computations and thus motor coordination are considerably more precise to reduce the cost of errors in making a contact with the target object. The generality of the optimal coordination model and the two-phase control strategy is illustrated on several diverse examples.
Approximate Linear Regulator and Kalman Filter
1980-09-01
of Equivalent Dominant Poles and Zeros Using Industrial Specifications," IEEE Trans. on Industrial Electronics and Control Instrumentation, Vol. IECI...true. In recent years, the rapid development of powerful minicomputers and microprocessors makes the industrial applications of optimal control...1976, pp. 677-687. [21] Y. Takahashi, M. Tomizuka and D. I. Auslander, Simple discrete control of industrial processes, Trans. on ASME J. of Dynamic
Use of scatterometry for resist process control
NASA Astrophysics Data System (ADS)
Bishop, Kenneth P.; Milner, Lisa-Michelle; Naqvi, S. Sohail H.; McNeil, John R.; Draper, B. L.
1992-06-01
The formation of resist lines having submicron critical dimensions (CDs) is a complex multistep process, requiring precise control of each processing step. Optimization of parameters for each processing step may be accomplished through theoretical modeling techniques and/or the use of send-ahead wafers followed by scanning electron microscope measurements. Once the optimum parameters for any process having been selected, (e.g., time duration and temperature for post-exposure bake process), no in-situ CD measurements are made. In this paper we describe the use of scatterometry to provide this essential metrology capability. It involves focusing a laser beam on a periodic grating and predicting the shape of the grating lines from a measurement of the scattered power in the diffraction orders. The inverse prediction of lineshape from a measurement of the scatter power is based on a vector diffraction analysis used in conjunction with photolithography simulation tools to provide an accurate scatter model for latent image gratings. This diffraction technique has previously been applied to looking at latent image grating formation, as exposure is taking place. We have broadened the scope of the application and consider the problem of determination of optimal focus.
Automated control of hierarchical systems using value-driven methods
NASA Technical Reports Server (NTRS)
Pugh, George E.; Burke, Thomas E.
1990-01-01
An introduction is given to the Value-driven methodology, which has been successfully applied to solve a variety of difficult decision, control, and optimization problems. Many real-world decision processes (e.g., those encountered in scheduling, allocation, and command and control) involve a hierarchy of complex planning considerations. For such problems it is virtually impossible to define a fixed set of rules that will operate satisfactorily over the full range of probable contingencies. Decision Science Applications' value-driven methodology offers a systematic way of automating the intuitive, common-sense approach used by human planners. The inherent responsiveness of value-driven systems to user-controlled priorities makes them particularly suitable for semi-automated applications in which the user must remain in command of the systems operation. Three examples of the practical application of the approach in the automation of hierarchical decision processes are discussed: the TAC Brawler air-to-air combat simulation is a four-level computerized hierarchy; the autonomous underwater vehicle mission planning system is a three-level control system; and the Space Station Freedom electrical power control and scheduling system is designed as a two-level hierarchy. The methodology is compared with rule-based systems and with other more widely-known optimization techniques.
Investigation of multidimensional control systems in the state space and wavelet medium
NASA Astrophysics Data System (ADS)
Fedosenkov, D. B.; Simikova, A. A.; Fedosenkov, B. A.
2018-05-01
The notions are introduced of “one-dimensional-point” and “multidimensional-point” automatic control systems. To demonstrate the joint use of approaches based on the concepts of state space and wavelet transforms, a method for optimal control in a state space medium represented in the form of time-frequency representations (maps), is considered. The computer-aided control system is formed on the basis of the similarity transformation method, which makes it possible to exclude the use of reduced state variable observers. 1D-material flow signals formed by primary transducers are converted by means of wavelet transformations into multidimensional concentrated-at-a point variables in the form of time-frequency distributions of Cohen’s class. The algorithm for synthesizing a stationary controller for feeding processes is given here. The conclusion is made that the formation of an optimal control law with time-frequency distributions available contributes to the improvement of transient processes quality in feeding subsystems and the mixing unit. Confirming the efficiency of the method presented is illustrated by an example of the current registration of material flows in the multi-feeding unit. The first section in your paper.
Artificial blood circulation: stabilization, physiological control, and optimization.
Lerner, A Y
1990-04-01
The requirements for creating an efficient Artificial Blood Circulation System (ABCS) have been determined. A hierarchical three-level adaptive control system is suggested for ABCS to solve the following problems: stabilization of the circulation conditions, left and right pump coordination, physiological control for maintaining a proper relation between the cardiac output and the level of gas exchange required for metabolism, and optimization of the system behavior. The adaptations to varying load and body parameters will be accomplished using the signals which characterize the real-time computer-processed values of correlations between the changes in hydraulic resistance of blood vessels, or the changes in aortic pressure, and the oxygen (or carbon dioxide) concentration.
Electronic circuitry development in a micropyrotechnic system for micropropulsion applications
NASA Astrophysics Data System (ADS)
Puig-Vidal, Manuel; Lopez, Jaime; Miribel, Pere; Montane, Enric; Lopez-Villegas, Jose M.; Samitier, Josep; Rossi, Carole; Camps, Thierry; Dumonteuil, Maxime
2003-04-01
An electronic circuitry is proposed and implemented to optimize the ignition process and the robustness of a microthruster. The principle is based on the integration of propellant material within a micromachined system. The operational concept is simply based on the combustion of an energetic propellant stored in a micromachined chamber. Each thruster contains three parts (heater, chamber, nozzle). Due to the one shot characteristic, microthrusters are fabricated in 2D array configuration. For the functioning of this kind of system, one critical point is the optimization of the ignition process as a function of the power schedule delivered by electronic devices. One particular attention has been paid on the design and implementation of an electronic chip to control and optimize the system ignition. Ignition process is triggered by electrical power delivered to a polysilicon resistance in contact with the propellant. The resistance is used to sense the temperature on the propellant which is in contact. Temperature of the microthruster node before the ignition is monitored via the electronic circuitry. A pre-heating process before ignition seems to be a good methodology to optimize the ignition process. Pre-heating temperature and pre-heating time are critical parameters to be adjusted. Simulation and experimental results will deeply contribute to improve the micropyrotechnic system. This paper will discuss all these point.
Parametric modeling and stagger angle optimization of an axial flow fan
NASA Astrophysics Data System (ADS)
Li, M. X.; Zhang, C. H.; Liu, Y.; Y Zheng, S.
2013-12-01
Axial flow fans are widely used in every field of social production. Improving their efficiency is a sustained and urgent demand of domestic industry. The optimization of stagger angle is an important method to improve fan performance. Parametric modeling and calculation process automation are realized in this paper to improve optimization efficiency. Geometric modeling and mesh division are parameterized based on GAMBIT. Parameter setting and flow field calculation are completed in the batch mode of FLUENT. A control program is developed in Visual C++ to dominate the data exchange of mentioned software. It also extracts calculation results for optimization algorithm module (provided by Matlab) to generate directive optimization control parameters, which as feedback are transferred upwards to modeling module. The center line of the blade airfoil, based on CLARK y profile, is constructed by non-constant circulation and triangle discharge method. Stagger angles of six airfoil sections are optimized, to reduce the influence of inlet shock loss as well as gas leak in blade tip clearance and hub resistance at blade root. Finally an optimal solution is obtained, which meets the total pressure requirement under given conditions and improves total pressure efficiency by about 6%.
The effect of spectral filters on visual search in stroke patients.
Beasley, Ian G; Davies, Leon N
2013-01-01
Visual search impairment can occur following stroke. The utility of optimal spectral filters on visual search in stroke patients has not been considered to date. The present study measured the effect of optimal spectral filters on visual search response time and accuracy, using a task requiring serial processing. A stroke and control cohort undertook the task three times: (i) using an optimally selected spectral filter; (ii) the subjects were randomly assigned to two groups with group 1 using an optimal filter for two weeks, whereas group 2 used a grey filter for two weeks; (iii) the groups were crossed over with group 1 using a grey filter for a further two weeks and group 2 given an optimal filter, before undertaking the task for the final time. Initial use of an optimal spectral filter improved visual search response time but not error scores in the stroke cohort. Prolonged use of neither an optimal nor a grey filter improved response time or reduced error scores. In fact, response times increased with the filter, regardless of its type, for stroke and control subjects; this outcome may be due to contrast reduction or a reflection of task design, given that significant practice effects were noted.
Development and Testing of Control Laws for the Active Aeroelastic Wing Program
NASA Technical Reports Server (NTRS)
Dibley, Ryan P.; Allen, Michael J.; Clarke, Robert; Gera, Joseph; Hodgkinson, John
2005-01-01
The Active Aeroelastic Wing research program was a joint program between the U.S. Air Force Research Laboratory and NASA established to investigate the characteristics of an aeroelastic wing and the technique of using wing twist for roll control. The flight test program employed the use of an F/A-18 aircraft modified by reducing the wing torsional stiffness and adding a custom research flight control system. The research flight control system was optimized to maximize roll rate using only wing surfaces to twist the wing while simultaneously maintaining design load limits, stability margins, and handling qualities. NASA Dryden Flight Research Center developed control laws using the software design tool called CONDUIT, which employs a multi-objective function optimization to tune selected control system design parameters. Modifications were made to the Active Aeroelastic Wing implementation in this new software design tool to incorporate the NASA Dryden Flight Research Center nonlinear F/A-18 simulation for time history analysis. This paper describes the design process, including how the control law requirements were incorporated into constraints for the optimization of this specific software design tool. Predicted performance is also compared to results from flight.
A computer network with SCADA and case tools for on-line process control in greenhouses.
Gieling ThH; van Meurs WTh; Janssen, H J
1996-01-01
Climate control computers in greenhouses are used to control heating and ventilation, supply water and dilute and dispense nutrients. They integrate models into optimally controlled systems. This paper describes how information technology, as in use in other sectors of industry, is applied to greenhouse control. The introduction of modern software and hardware concepts in horticulture adds power and extra oppurtunities to climate contol in greenhouses.
Optimal management strategies in variable environments: Stochastic optimal control methods
Williams, B.K.
1985-01-01
Dynamic optimization was used to investigate the optimal defoliation of salt desert shrubs in north-western Utah. Management was formulated in the context of optimal stochastic control theory, with objective functions composed of discounted or time-averaged biomass yields. Climatic variability and community patterns of salt desert shrublands make the application of stochastic optimal control both feasible and necessary. A primary production model was used to simulate shrub responses and harvest yields under a variety of climatic regimes and defoliation patterns. The simulation results then were used in an optimization model to determine optimal defoliation strategies. The latter model encodes an algorithm for finite state, finite action, infinite discrete time horizon Markov decision processes. Three questions were addressed: (i) What effect do changes in weather patterns have on optimal management strategies? (ii) What effect does the discounting of future returns have? (iii) How do the optimal strategies perform relative to certain fixed defoliation strategies? An analysis was performed for the three shrub species, winterfat (Ceratoides lanata), shadscale (Atriplex confertifolia) and big sagebrush (Artemisia tridentata). In general, the results indicate substantial differences among species in optimal control strategies, which are associated with differences in physiological and morphological characteristics. Optimal policies for big sagebrush varied less with variation in climate, reserve levels and discount rates than did either shadscale or winterfat. This was attributed primarily to the overwintering of photosynthetically active tissue and to metabolic activity early in the growing season. Optimal defoliation of shadscale and winterfat generally was more responsive to differences in plant vigor and climate, reflecting the sensitivity of these species to utilization and replenishment of carbohydrate reserves. Similarities could be seen in the influence of both the discount rate and the climatic patterns on optimal harvest strategics. In general, decreases in either the discount rate or in the frequency of favorable weather patterns lcd to a more conservative defoliation policy. This did not hold, however, for plants in states of low vigor. Optimal control for shadscale and winterfat tended to stabilize on a policy of heavy defoliation stress, followed by one or more seasons of rest. Big sagebrush required a policy of heavy summer defoliation when sufficient active shoot material is present at the beginning of the growing season. The comparison of fixed and optimal strategies indicated considerable improvement in defoliation yields when optimal strategies are followed. The superior performance was attributable to increased defoliation of plants in states of high vigor. Improvements were found for both discounted and undiscounted yields.
Optimization of cooling strategy and seeding by FBRM analysis of batch crystallization
NASA Astrophysics Data System (ADS)
Zhang, Dejiang; Liu, Lande; Xu, Shijie; Du, Shichao; Dong, Weibing; Gong, Junbo
2018-03-01
A method is presented for optimizing the cooling strategy and seed loading simultaneously. Focused beam reflectance measurement (FBRM) was used to determine the approximating optimal cooling profile. Using these results in conjunction with constant growth rate assumption, modified Mullin-Nyvlt trajectory could be calculated. This trajectory could suppress secondary nucleation and has the potential to control product's polymorph distribution. Comparing with linear and two step cooling, modified Mullin-Nyvlt trajectory have a larger size distribution and a better morphology. Based on the calculating results, the optimized seed loading policy was also developed. This policy could be useful for guiding the batch crystallization process.
1992-03-01
setting of sub- optimal goals and quotas, barriers between departments, and awarding contracts primarily on price are all anti-TQM practices that hinder...customer focus, the setting of sub- optimal goals and quotas, barriers between departments, and awarding contracts primarily on price are all anti-TQM/L...surveys are often required to determine if a lower competitive price could be achieved before exercising options. This requirement is a sub- optimal
Patterning control strategies for minimum edge placement error in logic devices
NASA Astrophysics Data System (ADS)
Mulkens, Jan; Hanna, Michael; Slachter, Bram; Tel, Wim; Kubis, Michael; Maslow, Mark; Spence, Chris; Timoshkov, Vadim
2017-03-01
In this paper we discuss the edge placement error (EPE) for multi-patterning semiconductor manufacturing. In a multi-patterning scheme the creation of the final pattern is the result of a sequence of lithography and etching steps, and consequently the contour of the final pattern contains error sources of the different process steps. We describe the fidelity of the final pattern in terms of EPE, which is defined as the relative displacement of the edges of two features from their intended target position. We discuss our holistic patterning optimization approach to understand and minimize the EPE of the final pattern. As an experimental test vehicle we use the 7-nm logic device patterning process flow as developed by IMEC. This patterning process is based on Self-Aligned-Quadruple-Patterning (SAQP) using ArF lithography, combined with line cut exposures using EUV lithography. The computational metrology method to determine EPE is explained. It will be shown that ArF to EUV overlay, CDU from the individual process steps, and local CD and placement of the individual pattern features, are the important contributors. Based on the error budget, we developed an optimization strategy for each individual step and for the final pattern. Solutions include overlay and CD metrology based on angle resolved scatterometry, scanner actuator control to enable high order overlay corrections and computational lithography optimization to minimize imaging induced pattern placement errors of devices and metrology targets.
Optimization of valve opening process for the suppression of impulse exhaust noise
NASA Astrophysics Data System (ADS)
Li, Jingxiang; Zhao, Shengdun
2017-02-01
Impulse exhaust noise generated by the sudden impact of discharging flow of pneumatic systems has significant temporal characteristics including high sound pressure and rapid sound transient. The impulse noise exposures are more hazardous to hearing than the energy equivalent uniform noise exposures. This paper presents a novel approach to suppress the peak sound pressure as a major indicator of impulsiveness of the impulse exhaust noise by an optimization of the opening process of valve. Relationships between exhaust flow and impulse noise are described by thermodynamics and noise generating mechanism. Then an optimized approach by controlling the valve opening process is derived under a constraint of pre-setting exhaust time. A modified servo-direct-driven valve was designed and assembled in a typical pneumatic system for the verification experiments comparing with an original solenoid valve. Experimental results with groups of initial cylinder pressures and pre-setting exhaust times are shown to verify the effects of the proposed optimization. Some indicators of energy-equivalent and impulsiveness are introduced to discuss the effects of the noise suppressions. Relationship between noise reduction and exhaust time delay is also discussed.
NASA Astrophysics Data System (ADS)
Mohanty, Itishree; Chintha, Appa Rao; Kundu, Saurabh
2018-06-01
The optimization of process parameters and composition is essential to achieve the desired properties with minimal additions of alloying elements in microalloyed steels. In some cases, it may be possible to substitute such steels for those which are more richly alloyed. However, process control involves a larger number of parameters, making the relationship between structure and properties difficult to assess. In this work, neural network models have been developed to estimate the mechanical properties of steels containing Nb + V or Nb + Ti. The outcomes have been validated by thermodynamic calculations and plant data. It has been shown that subtle thermodynamic trends can be captured by the neural network model. Some experimental rolling data have also been used to support the model, which in addition has been applied to calculate the costs of optimizing microalloyed steel. The generated pareto fronts identify many combinations of strength and elongation, making it possible to select composition and process parameters for a range of applications. The ANN model and the optimization model are being used for prediction of properties in a running plant and for development of new alloys, respectively.
Boundary Control of Linear Uncertain 1-D Parabolic PDE Using Approximate Dynamic Programming.
Talaei, Behzad; Jagannathan, Sarangapani; Singler, John
2018-04-01
This paper develops a near optimal boundary control method for distributed parameter systems governed by uncertain linear 1-D parabolic partial differential equations (PDE) by using approximate dynamic programming. A quadratic surface integral is proposed to express the optimal cost functional for the infinite-dimensional state space. Accordingly, the Hamilton-Jacobi-Bellman (HJB) equation is formulated in the infinite-dimensional domain without using any model reduction. Subsequently, a neural network identifier is developed to estimate the unknown spatially varying coefficient in PDE dynamics. Novel tuning law is proposed to guarantee the boundedness of identifier approximation error in the PDE domain. A radial basis network (RBN) is subsequently proposed to generate an approximate solution for the optimal surface kernel function online. The tuning law for near optimal RBN weights is created, such that the HJB equation error is minimized while the dynamics are identified and closed-loop system remains stable. Ultimate boundedness (UB) of the closed-loop system is verified by using the Lyapunov theory. The performance of the proposed controller is successfully confirmed by simulation on an unstable diffusion-reaction process.
NASA Astrophysics Data System (ADS)
Hasan, T.; Kang, Y.-S.; Kim, Y.-J.; Park, S.-J.; Jang, S.-Y.; Hu, K.-Y.; Koop, E. J.; Hinnen, P. C.; Voncken, M. M. A. J.
2016-03-01
Advancement of the next generation technology nodes and emerging memory devices demand tighter lithographic focus control. Although the leveling performance of the latest-generation scanners is state of the art, challenges remain at the wafer edge due to large process variations. There are several customer configurable leveling control options available in ASML scanners, some of which are application specific in their scope of leveling improvement. In this paper, we assess the usability of leveling non-correctable error models to identify yield limiting edge dies. We introduce a novel dies-inspec based holistic methodology for leveling optimization to guide tool users in selecting an optimal configuration of leveling options. Significant focus gain, and consequently yield gain, can be achieved with this integrated approach. The Samsung site in Hwaseong observed an improved edge focus performance in a production of a mid-end memory product layer running on an ASML NXT 1960 system. 50% improvement in focus and a 1.5%p gain in edge yield were measured with the optimized configurations.
Analysis of problems with dry fermentation process for biogas production
NASA Astrophysics Data System (ADS)
Pilát, Peter; Patsch, Marek; Jandačka, Jozef
2012-04-01
The technology of dry anaerobic fermentation is still meeting with some scepticism, and therefore in most biogas plants are used wet fermentation technology. Fermentation process would be not complete without an optimal controlled condition: dry matter content, density, pH, and in particular the reaction temperature. If is distrust of dry fermentation eligible it was on the workplace of the Department of Power Engineering at University of Zilina built an experimental small-scale biogas station that allows analysis of optimal parameters of the dry anaerobic fermentation, in particular, however, affect the reaction temperature on yield and quality of biogas.
Integrated structure/control design - Present methodology and future opportunities
NASA Technical Reports Server (NTRS)
Weisshaar, T. A.; Newsom, J. R.; Zeiler, T. A.; Gilbert, M. G.
1986-01-01
Attention is given to current methodology applied to the integration of the optimal design process for structures and controls. Multilevel linear decomposition techniques proved to be most effective in organizing the computational efforts necessary for ISCD (integrated structures and control design) tasks. With the development of large orbiting space structures and actively controlled, high performance aircraft, there will be more situations in which this concept can be applied.
NASA Technical Reports Server (NTRS)
Welstead, Jason; Crouse, Gilbert L., Jr.
2014-01-01
Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.
On the Design of a Fuzzy Logic-Based Control System for Freeze-Drying Processes.
Fissore, Davide
2016-12-01
This article is focused on the design of a fuzzy logic-based control system to optimize a drug freeze-drying process. The goal of the system is to keep product temperature as close as possible to the threshold value of the formulation being processed, without trespassing it, in such a way that product quality is not jeopardized and the sublimation flux is maximized. The method involves the measurement of product temperature and a set of rules that have been obtained through process simulation with the goal to obtain a unique set of rules for products with very different characteristics. Input variables are the difference between the temperature of the product and the threshold value, the difference between the temperature of the heating fluid and that of the product, and the rate of change of product temperature. The output variables are the variation of the temperature of the heating fluid and the pressure in the drying chamber. The effect of the starting value of the input variables and of the control interval has been investigated, thus resulting in the optimal configuration of the control system. Experimental investigation carried out in a pilot-scale freeze-dryer has been carried out to validate the proposed system. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Dalwadi, Chintan; Patel, Gayatri
2016-01-01
The purpose of this study was to investigate Quality by Design (QbD) principle for the preparation of hydrogel products to prove both practicability and utility of executing QbD concept to hydrogel based controlled release systems. Product and process understanding will help in decreasing the variability of critical material and process parameters, which give quality product output and reduce the risk. This study includes the identification of the Quality Target Product Profiles (QTPPs) and Critical Quality Attributes (CQAs) from literature or preliminary studies. To identify and control the variability in process and material attributes, two tools of QbD was utilized, Quality Risk Management (QRM) and Experimental Design. Further, it helps to identify the effect of these attributes on CQAs. Potential risk factors were identified from fishbone diagram and screened by risk assessment and optimized by 3-level 2- factor experimental design with center points in triplicate, to analyze the precision of the target process. This optimized formulation was further characterized by gelling time, gelling temperature, rheological parameters, in-vitro biodegradation and in-vitro drug release. Design space was created using experimental design tool that gives the control space and working within this controlled space reduces all the failure modes below the risk level. In conclusion, QbD approach with QRM tool provides potent and effectual pyramid to enhance the quality into the hydrogel.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.
2015-01-01
Our recently developed multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been upgraded with respect to its predictive capabilities regarding the process optimization for the attainment of maximum ballistic limit within the weld. The original model consists of six modules, each dedicated to handling a specific aspect of the GMAW process, i.e., (a) electro-dynamics of the welding gun; (b) radiation-/convection-controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler metal consumable electrode to the weld; (c) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (d) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; (e) spatial distribution of the as-welded material mechanical properties; and (f) spatial distribution of the material ballistic limit. In the present work, the model is upgraded through the introduction of the seventh module in recognition of the fact that identification of the optimum GMAW process parameters relative to the attainment of the maximum ballistic limit within the weld region entails the use of advanced optimization and statistical sensitivity analysis methods and tools. The upgraded GMAW process model is next applied to the case of butt welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler metal electrodes made of the same material. The predictions of the upgraded GMAW process model pertaining to the spatial distribution of the material microstructure and ballistic limit-controlling mechanical properties within the MIL A46100 butt weld are found to be consistent with general expectations and prior observations.
Laser cutting: industrial relevance, process optimization, and laser safety
NASA Astrophysics Data System (ADS)
Haferkamp, Heinz; Goede, Martin; von Busse, Alexander; Thuerk, Oliver
1998-09-01
Compared to other technological relevant laser machining processes, up to now laser cutting is the application most frequently used. With respect to the large amount of possible fields of application and the variety of different materials that can be machined, this technology has reached a stable position within the world market of material processing. Reachable machining quality for laser beam cutting is influenced by various laser and process parameters. Process integrated quality techniques have to be applied to ensure high-quality products and a cost effective use of the laser manufacturing plant. Therefore, rugged and versatile online process monitoring techniques at an affordable price would be desirable. Methods for the characterization of single plant components (e.g. laser source and optical path) have to be substituted by an omnivalent control system, capable of process data acquisition and analysis as well as the automatic adaptation of machining and laser parameters to changes in process and ambient conditions. At the Laser Zentrum Hannover eV, locally highly resolved thermographic measurements of the temperature distribution within the processing zone using cost effective measuring devices are performed. Characteristic values for cutting quality and plunge control as well as for the optimization of the surface roughness at the cutting edges can be deducted from the spatial distribution of the temperature field and the measured temperature gradients. Main influencing parameters on the temperature characteristic within the cutting zone are the laser beam intensity and pulse duration in pulse operation mode. For continuous operation mode, the temperature distribution is mainly determined by the laser output power related to the cutting velocity. With higher cutting velocities temperatures at the cutting front increase, reaching their maximum at the optimum cutting velocity. Here absorption of the incident laser radiation is drastically increased due to the angle between the normal of the cutting front and the laser beam axis. Beneath process optimization and control further work is focused on the characterization of particulate and gaseous laser generated air contaminants and adequate safety precautions like exhaust and filter systems.
NASA Astrophysics Data System (ADS)
Azmi, Nur Iffah Mohamed; Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Romlay, Fadhlur Rahman Mohd
2018-03-01
Controller that uses PID parameters requires a good tuning method in order to improve the control system performance. Tuning PID control method is divided into two namely the classical methods and the methods of artificial intelligence. Particle swarm optimization algorithm (PSO) is one of the artificial intelligence methods. Previously, researchers had integrated PSO algorithms in the PID parameter tuning process. This research aims to improve the PSO-PID tuning algorithms by integrating the tuning process with the Variable Weight Grey- Taguchi Design of Experiment (DOE) method. This is done by conducting the DOE on the two PSO optimizing parameters: the particle velocity limit and the weight distribution factor. Computer simulations and physical experiments were conducted by using the proposed PSO- PID with the Variable Weight Grey-Taguchi DOE and the classical Ziegler-Nichols methods. They are implemented on the hydraulic positioning system. Simulation results show that the proposed PSO-PID with the Variable Weight Grey-Taguchi DOE has reduced the rise time by 48.13% and settling time by 48.57% compared to the Ziegler-Nichols method. Furthermore, the physical experiment results also show that the proposed PSO-PID with the Variable Weight Grey-Taguchi DOE tuning method responds better than Ziegler-Nichols tuning. In conclusion, this research has improved the PSO-PID parameter by applying the PSO-PID algorithm together with the Variable Weight Grey-Taguchi DOE method as a tuning method in the hydraulic positioning system.
Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P
2016-05-01
Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Fricke, Jens; Pohlmann, Kristof; Jonescheit, Nils A; Ellert, Andree; Joksch, Burkhard; Luttmann, Reiner
2013-06-01
The identification of optimal expression conditions for state-of-the-art production of pharmaceutical proteins is a very time-consuming and expensive process. In this report a method for rapid and reproducible optimization of protein expression in an in-house designed small-scale BIOSTAT® multi-bioreactor plant is described. A newly developed BioPAT® MFCS/win Design of Experiments (DoE) module (Sartorius Stedim Systems, Germany) connects the process control system MFCS/win and the DoE software MODDE® (Umetrics AB, Sweden) and enables therefore the implementation of fully automated optimization procedures. As a proof of concept, a commercial Pichia pastoris strain KM71H has been transformed for the expression of potential malaria vaccines. This approach has allowed a doubling of intact protein secretion productivity due to the DoE optimization procedure compared to initial cultivation results. In a next step, robustness regarding the sensitivity to process parameter variability has been proven around the determined optimum. Thereby, a pharmaceutical production process that is significantly improved within seven 24-hour cultivation cycles was established. Specifically, regarding the regulatory demands pointed out in the process analytical technology (PAT) initiative of the United States Food and Drug Administration (FDA), the combination of a highly instrumented, fully automated multi-bioreactor platform with proper cultivation strategies and extended DoE software solutions opens up promising benefits and opportunities for pharmaceutical protein production. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
''Illusion of control'' in Time-Horizon Minority and Parrondo Games
NASA Astrophysics Data System (ADS)
Satinover, J. B.; Sornette, D.
2007-12-01
Human beings like to believe they are in control of their destiny. This ubiquitous trait seems to increase motivation and persistence, and is probably evolutionarily adaptive [J.D. Taylor, S.E. Brown, Psych. Bull. 103, 193 (1988); A. Bandura, Self-efficacy: the exercise of control (WH Freeman, New York, 1997)]. But how good really is our ability to control? How successful is our track record in these areas? There is little understanding of when and under what circumstances we may over-estimate [E. Langer, J. Pers. Soc. Psych. 7, 185 (1975)] or even lose our ability to control and optimize outcomes, especially when they are the result of aggregations of individual optimization processes. Here, we demonstrate analytically using the theory of Markov Chains and by numerical simulations in two classes of games, the Time-Horizon Minority Game [M.L. Hart, P. Jefferies, N.F. Johnson, Phys. A 311, 275 (2002)] and the Parrondo Game [J.M.R. Parrondo, G.P. Harmer, D. Abbott, Phys. Rev. Lett. 85, 5226 (2000); J.M.R. Parrondo, How to cheat a bad mathematician (ISI, Italy, 1996)], that agents who optimize their strategy based on past information may actually perform worse than non-optimizing agents. In other words, low-entropy (more informative) strategies under-perform high-entropy (or random) strategies. This provides a precise definition of the “illusion of control” in certain set-ups a priori defined to emphasize the importance of optimization.
Robust parameter design for automatically controlled systems and nanostructure synthesis
NASA Astrophysics Data System (ADS)
Dasgupta, Tirthankar
2007-12-01
This research focuses on developing comprehensive frameworks for developing robust parameter design methodology for dynamic systems with automatic control and for synthesis of nanostructures. In many automatically controlled dynamic processes, the optimal feedback control law depends on the parameter design solution and vice versa and therefore an integrated approach is necessary. A parameter design methodology in the presence of feedback control is developed for processes of long duration under the assumption that experimental noise factors are uncorrelated over time. Systems that follow a pure-gain dynamic model are considered and the best proportional-integral and minimum mean squared error control strategies are developed by using robust parameter design. The proposed method is illustrated using a simulated example and a case study in a urea packing plant. This idea is also extended to cases with on-line noise factors. The possibility of integrating feedforward control with a minimum mean squared error feedback control scheme is explored. To meet the needs of large scale synthesis of nanostructures, it is critical to systematically find experimental conditions under which the desired nanostructures are synthesized reproducibly, at large quantity and with controlled morphology. The first part of the research in this area focuses on modeling and optimization of existing experimental data. Through a rigorous statistical analysis of experimental data, models linking the probabilities of obtaining specific morphologies to the process variables are developed. A new iterative algorithm for fitting a Multinomial GLM is proposed and used. The optimum process conditions, which maximize the above probabilities and make the synthesis process less sensitive to variations of process variables around set values, are derived from the fitted models using Monte-Carlo simulations. The second part of the research deals with development of an experimental design methodology, tailor-made to address the unique phenomena associated with nanostructure synthesis. A sequential space filling design called Sequential Minimum Energy Design (SMED) for exploring best process conditions for synthesis of nanowires. The SMED is a novel approach to generate sequential designs that are model independent, can quickly "carve out" regions with no observable nanostructure morphology, and allow for the exploration of complex response surfaces.
Experimental Design For Photoresist Characterization
NASA Astrophysics Data System (ADS)
Luckock, Larry
1987-04-01
In processing a semiconductor product (from discrete devices up to the most complex products produced) we find more photolithographic steps in wafer fabrication than any other kind of process step. Thus, the success of a semiconductor manufacturer hinges on the optimization of their photolithographic processes. Yet, we find few companies that have taken the time to properly characterize this critical operation; they are sitting in the "passenger's seat", waiting to see what will come out, hoping that the yields will improve someday. There is no "black magic" involved in setting up a process at its optimum conditions (i.e. minimum sensitivity to all variables at the same time). This paper gives an example of a real world situation for optimizing a photolithographic process by the use of a properly designed experiment, followed by adequate multidimensional analysis of the data. Basic SPC practices like plotting control charts will not, by themselves, improve yields; the control charts are, however, among the necessary tools used in the determination of the process capability and in the formulation of the problems to be addressed. The example we shall consider is the twofold objective of shifting the process average, while tightening the variance, of polysilicon line widths. This goal was identified from a Pareto analysis of yield-limiting mechanisms, plus inspection of the control charts. A key issue in a characterization of this type of process is the number of interactions between variables; this example rules out two-level full factorial and three-level fractional factorial designs (which cannot detect all of the interactions). We arrive at an experiment with five factors at five levels each. A full factorial design for five factors at three levels would require 3125 wafers. Instead, we will use a design that allows us to run this experiment with only 25 wafers, for a significant reduction in time, materials and manufacturing interruption in order to complete the experiment. An optimum solution is then determined via response surface analysis and a series of 3-D and contour plots are shown. The offset between the mask dimensions and poly CD at the optimum operating conditions is discussed with respect to yield, profits and return-on-investment. The expert system used for process optimization covers all types of process steps, producing the best custom designed experiment based on the actual equipment used. The knowledge base contains parameter lists, by machine make and model, ranked by sensitivity and controllability. One option allows 3-D spatial characterization of equipment. For the purpose of this presentation, we will assume that we want to optimize a photo-lithographic process used for polysilicon pattern definition and that we have determined minimum and maximum line widths, based on electrical yield requirements of the product. For this MOS process, the minimum critical dimension (CD) for the poly gate was determined by punchthrough voltage, threshold voltage, etc., while the maximum CD was determined from other performance factors like access time. We will start with the product engineer's analysis.
NASA Astrophysics Data System (ADS)
DeSena, J. T.; Martin, S. R.; Clarke, J. C.; Dutrow, D. A.; Newman, A. J.
2012-06-01
As the number and diversity of sensing assets available for intelligence, surveillance and reconnaissance (ISR) operations continues to expand, the limited ability of human operators to effectively manage, control and exploit the ISR ensemble is exceeded, leading to reduced operational effectiveness. Automated support both in the processing of voluminous sensor data and sensor asset control can relieve the burden of human operators to support operation of larger ISR ensembles. In dynamic environments it is essential to react quickly to current information to avoid stale, sub-optimal plans. Our approach is to apply the principles of feedback control to ISR operations, "closing the loop" from the sensor collections through automated processing to ISR asset control. Previous work by the authors demonstrated non-myopic multiple platform trajectory control using a receding horizon controller in a closed feedback loop with a multiple hypothesis tracker applied to multi-target search and track simulation scenarios in the ground and space domains. This paper presents extensions in both size and scope of the previous work, demonstrating closed-loop control, involving both platform routing and sensor pointing, of a multisensor, multi-platform ISR ensemble tasked with providing situational awareness and performing search, track and classification of multiple moving ground targets in irregular warfare scenarios. The closed-loop ISR system is fullyrealized using distributed, asynchronous components that communicate over a network. The closed-loop ISR system has been exercised via a networked simulation test bed against a scenario in the Afghanistan theater implemented using high-fidelity terrain and imagery data. In addition, the system has been applied to space surveillance scenarios requiring tracking of space objects where current deliberative, manually intensive processes for managing sensor assets are insufficiently responsive. Simulation experiment results are presented. The algorithm to jointly optimize sensor schedules against search, track, and classify is based on recent work by Papageorgiou and Raykin on risk-based sensor management. It uses a risk-based objective function and attempts to minimize and balance the risks of misclassifying and losing track on an object. It supports the requirement to generate tasking for metric and feature data concurrently and synergistically, and account for both tracking accuracy and object characterization, jointly, in computing reward and cost for optimizing tasking decisions.
Optimization of the nitrification process of wastewater resulting from cassava starch production.
Fleck, Leandro; Ferreira Tavares, Maria Hermínia; Eyng, Eduardo; Orssatto, Fabio
2018-05-14
The present study has the objective of optimizing operational conditions of an aerated reactor applied to the removal of ammoniacal nitrogen from wastewater resulting from the production of cassava starch. An aerated reactor with a usable volume of 4 L and aeration control by rotameter was used. The airflow and cycle time parameters were controlled and their effects on the removal of ammoniacal nitrogen and the conversion to nitrate were evaluated. The highest ammoniacal nitrogen removal, of 96.62%, occurred under conditions of 24 h and 0.15 L min -1 L reactor -1 . The highest nitrate conversion, of 24.81%, occurred under conditions of 40.92 h and 0.15 L min -1 L reactor -1 . The remaining value of ammoniacal nitrogen was converted primarily into nitrite, energy, hydrogen and water. The optimal operational values of the aerated reactor are 29.25 h and 0.22 L min -1 L reactor -1 . The mathematical models representative of the process satisfactorily describe ammoniacal nitrogen removal efficiency and nitrate conversion, presenting errors of 2.87% and 3.70%, respectively.
Wang, Yong; Chen, Changjing; Cai, Di; Wang, Zheng; Qin, Peiyong; Tan, Tianwei
2016-10-01
The cost reduction of raw material and sterilization could increase the economic feasibility of l-lactic acid fermentation, and the development of an cost-effective and efficient process is highly desired. To improve the efficiency of open fermentation by Lactobacillus rhamnosus based on sweet sorghum juice (SSJ) and to overcome sucrose utilization deficiency of Bacillus coagulans, a mixed fermentation was developed. Besides, the optimization of pH, sugar concentration and fermentation medium were also studied. Under the condition of mixed fermentation and controlled pH, a higher yield of 96.3% was achieved, compared to that (68.8%) in sole Lactobacillus rhamnosus fermentation. With an optimized sugar concentration and a stepwise-controlled pH, the l-lactic acid titer, yield and productivity reached 121gL(-1), 94.6% and 2.18gL(-1)h(-1), respectively. Furthermore, corn steep powder (CSP) as a cheap source of nitrogen and salts was proved to be an efficient supplement to SSJ in this process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stabilizing photoassociated Cs2 molecules by optimal control
NASA Astrophysics Data System (ADS)
Zhang, Wei; Xie, Ting; Huang, Yin; Wang, Gao-Ren; Cong, Shu-Lin
2013-01-01
We demonstrate theoretically that photoassociated molecules can be stabilized to deeply bound states. This process is achieved by transferring the population from the outer well to the inner well using the optimal control theory, the Cs2 molecule is taken as an example. Numerical calculations show that weakly bound molecules formed in the outer well by a pump pulse can be compressed to the inner well via a vibrational level of the ground electronic state as an intermediary by an additionally optimized laser pulse. The positively chirped pulse can enhance the population of the target state. With a transform-limited dump pulse, nearly all the photoassociated molecules in the inner well of the excited electronic state can be transferred to the deeply vibrational level of the ground electronic state.
An Improved Wavefront Control Algorithm for Large Space Telescopes
NASA Technical Reports Server (NTRS)
Sidick, Erkin; Basinger, Scott A.; Redding, David C.
2008-01-01
Wavefront sensing and control is required throughout the mission lifecycle of large space telescopes such as James Webb Space Telescope (JWST). When an optic of such a telescope is controlled with both surface-deforming and rigid-body actuators, the sensitivity-matrix obtained from the exit pupil wavefront vector divided by the corresponding actuator command value can sometimes become singular due to difference in actuator types and in actuator command values. In this paper, we propose a simple approach for preventing a sensitivity-matrix from singularity. We also introduce a new "minimum-wavefront and optimal control compensator". It uses an optimal control gain matrix obtained by feeding back the actuator commands along with the measured or estimated wavefront phase information to the estimator, thus eliminating the actuator modes that are not observable in the wavefront sensing process.
Reliability-based optimization of an active vibration controller using evolutionary algorithms
NASA Astrophysics Data System (ADS)
Saraygord Afshari, Sajad; Pourtakdoust, Seid H.
2017-04-01
Many modern industrialized systems such as aircrafts, rotating turbines, satellite booms, etc. cannot perform their desired tasks accurately if their uninhibited structural vibrations are not controlled properly. Structural health monitoring and online reliability calculations are emerging new means to handle system imposed uncertainties. As stochastic forcing are unavoidable, in most engineering systems, it is often needed to take them into the account for the control design process. In this research, smart material technology is utilized for structural health monitoring and control in order to keep the system in a reliable performance range. In this regard, a reliability-based cost function is assigned for both controller gain optimization as well as sensor placement. The proposed scheme is implemented and verified for a wing section. Comparison of results for the frequency responses is considered to show potential applicability of the presented technique.
Chen, Allen Kuan-Liang; Chew, Yi Kong; Tan, Hong Yu; Reuveny, Shaul; Weng Oh, Steve Kah
2015-02-01
Large amounts of human mesenchymal stromal cells (MSCs) are needed for clinical cellular therapy. In a previous publication, we described a microcarrier-based process for expansion of MSCs. The present study optimized this process by selecting suitable basal media, microcarrier concentration and feeding regime to achieve higher cell yields and more efficient medium utilization. MSCs were expanded in stirred cultures on Cytodex 3 microcarriers with media containing 10% fetal bovine serum. Process optimization was carried out in spinner flasks. A 2-L bioreactor with an automated feeding system was used to validate the optimized parameters explored in spinner flask cultures. Minimum essential medium-α-based medium supported faster MSC growth on microcarriers than did Dulbecco's modified Eagle's medium (doubling time, 31.6 ± 1.4 vs 42 ± 1.7 h) and shortened the process time. At microcarrier concentration of 8 mg/mL, a high cell concentration of 1.08 × 10(6) cells/mL with confluent cell concentration of 4.7 × 10(4)cells/cm(2) was achieved. Instead of 50% medium exchange every 2 days, we have designed a full medium feed that is based on glucose consumption rate. The optimal medium feed that consisted of 1.5 g/L glucose supported MSC growth to full confluency while achieving the low medium usage efficiency of 3.29 mL/10(6)cells. Finally, a controlled bioreactor with the optimized parameters achieved maximal confluent cell concentration with 16-fold expansion and a further improved medium usage efficiency of 1.68 mL/10(6)cells. We have optimized the microcarrier-based platform for expansion of MSCs that generated high cell yields in a more efficient and cost-effective manner. This study highlighted the critical parameters in the optimization of MSC production process. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Precision of Sensitivity in the Design Optimization of Indeterminate Structures
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Pai, Shantaram S.; Hopkins, Dale A.
2006-01-01
Design sensitivity is central to most optimization methods. The analytical sensitivity expression for an indeterminate structural design optimization problem can be factored into a simple determinate term and a complicated indeterminate component. Sensitivity can be approximated by retaining only the determinate term and setting the indeterminate factor to zero. The optimum solution is reached with the approximate sensitivity. The central processing unit (CPU) time to solution is substantially reduced. The benefit that accrues from using the approximate sensitivity is quantified by solving a set of problems in a controlled environment. Each problem is solved twice: first using the closed-form sensitivity expression, then using the approximation. The problem solutions use the CometBoards testbed as the optimization tool with the integrated force method as the analyzer. The modification that may be required, to use the stiffener method as the analysis tool in optimization, is discussed. The design optimization problem of an indeterminate structure contains many dependent constraints because of the implicit relationship between stresses, as well as the relationship between the stresses and displacements. The design optimization process can become problematic because the implicit relationship reduces the rank of the sensitivity matrix. The proposed approximation restores the full rank and enhances the robustness of the design optimization method.
2017-01-01
Summary The present study was done to optimize the power ultrasound processing for maximizing diastase activity of and minimizing hydroxymethylfurfural (HMF) content in honey using response surface methodology. Experimental design with treatment time (1-15 min), amplitude (20-100%) and volume (40-80 mL) as independent variables under controlled temperature conditions was studied and it was concluded that treatment time of 8 min, amplitude of 60% and volume of 60 mL give optimal diastase activity and HMF content, i.e. 32.07 Schade units and 30.14 mg/kg, respectively. Further thermal profile analyses were done with initial heating temperatures of 65, 75, 85 and 95 ºC until temperature of honey reached up to 65 ºC followed by holding time of 25 min at 65 ºC, and the results were compared with thermal profile of honey treated with optimized power ultrasound. The quality characteristics like moisture, pH, diastase activity, HMF content, colour parameters and total colour difference were least affected by optimized power ultrasound treatment. Microbiological analysis also showed lower counts of aerobic mesophilic bacteria and in ultrasonically treated honey than in thermally processed honey samples complete destruction of coliforms, yeasts and moulds. Thus, it was concluded that power ultrasound under suggested operating conditions is an alternative nonthermal processing technique for honey. PMID:29540991
Differential geometric methods in system theory.
NASA Technical Reports Server (NTRS)
Brockett, R. W.
1971-01-01
Discussion of certain problems in system theory which have been or might be solved using some basic concepts from differential geometry. The problems considered involve differential equations, controllability, optimal control, qualitative behavior, stochastic processes, and bilinear systems. The main goal is to extend the essentials of linear theory to some nonlinear classes of problems.
An Optimal Parameter Discretization Strategy for Multiple Model Adaptive Estimation and Control
1989-12-01
Zicker . MMAE-Based Control with Space- Time Point Process Observations. IEEE Transactions on Aerospace and Elec- tronic Systems, AES-21 (3):292-300, 1985...Transactions of the Conference of Army Math- ematicians, Bethesda MD, 1982. (AD-POO1 033). 65. William L. Zicker . Pointing and Tracking of Particle
Human Information Processing and Supervisory Control.
1980-05-01
interpretation of information .............. 16 Sampling strategies .............................. 17 Speed-accuracy tradeoff ................... 23...operator is usually highly trained, and largely controls the tasks, being allowed to use what strategies he will.. Risk is incurred in ways which can...his search less than optimally effective. Hence from matters of tactics and strategy which will be discussed below, straightforward questions of
Controlled grafting of vinylic monomers on polyolefins: a robust mathematical modeling approach
Saeb, Mohammad Reza; Rezaee, Babak; Shadman, Alireza; Formela, Krzysztof; Ahmadi, Zahed; Hemmati, Farkhondeh; Kermaniyan, Tayebeh Sadat; Mohammadi, Yousef
2017-01-01
Abstract Experimental and mathematical modeling analyses were used for controlling melt free-radical grafting of vinylic monomers on polyolefins and, thereby, reducing the disturbance of undesired cross-linking of polyolefins. Response surface, desirability function, and artificial intelligence methodologies were blended to modeling/optimization of grafting reaction in terms of vinylic monomer content, peroxide initiator concentration, and melt-processing time. An in-house code was developed based on artificial neural network that learns and mimics processing torque and grafting of glycidyl methacrylate (GMA) typical vinylic monomer on high-density polyethylene (HDPE). Application of response surface and desirability function enabled concurrent optimization of processing torque and GMA grafting on HDPE, through which we quantified for the first time competition between parallel reactions taking place during melt processing: (i) desirable grafting of GMA on HDPE; (ii) undesirable cross-linking of HDPE. The proposed robust mathematical modeling approach can precisely learn the behavior of grafting reaction of vinylic monomers on polyolefins and be placed into practice in finding exact operating condition needed for efficient grafting of reactive monomers on polyolefins. PMID:29491797